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THE STATISTICAL THEORY OF THERMOELECTRIC, GALVANO-
AND THERMOMAGNETIC PHENOMENA IN METALS

BY A. SOMMERFELD, UNIVERSITY OF MUNICH AND

N. H. FRANK, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HERMOELECTRI CITY and the galvano- and thermomagnetic effects
in metals have been the subjects of countless theoretical and experimen-

tal investigations during the past half century. In spite of the tremendous
amount of work done in these fields, a satisfactory explanation of these phe-
nomena has been lacking up to the past few years, when the electron theory of
metals (especially as developed by Lorentz) was given new life by the applica-
tion of the Fermi-Dirac statistics. The main theme of this report will be a
more or less detailed development of the new electron theory in its application
to the above mentioned subjects. We shall assume that the reader is familiar
with the article "Statistical Theories of Matter, Radiation and Electricity"
which Dr. K. K. Darrow has written for this journal. For the sake of com-
pleteness, it will be unavoidable to prevent a certain repetition of what is al-
ready presented in Dr. Darrow's report. We shall try to keep a repetition to a
necessary minimum.

A. THERMOELECTRICITY

V'e shall be concerned in the following with the thermoelectric effects
in homogeneous metallic circuits, thus concentrating our attention on the
Thomson effect in its various aspects and omitting such eRects (e.g. Peltier
effect) which appear only in circuits where two or more different metals are
present.

A short review of the method developed by H. A. Lorentz for handling
the problem of electrical and thermal conduction in metals is necessary for
the understanding of what follows. We imagine a piece of metal in thermal
equilibrium with its surroundings at a temperature T. The free electrons'

~ I wish to emphasize that the parts of this report as far as they carry further than the
results of my paper, Zeits. f. Physik 4T, 1, 1928, are due mainly to Dr. Frank, on whom the
credit and the responsibility thereof fall.—A. S.

' Ke fully realize that the assumption of totally free electrons is but a first approximation
to the actual state of affairs, and that at low temperatures this assumption, and more especially
that of elastic collisions which is used in deriving the right hand side of Eq. (6), is no longer
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in the metal will then have a certain distribution of their velocities which
we shall assume governed by the Fermi distribution law. Lorentz, of course,
assumed the classical Maxwell distribution. The number of electrons per unit
volume whose velocity components lie between the limits $ and $+df, g and
il+dil, f and t +dl is given by:

dn = G(so/h)ofo($, g, f)d$diidf

G is a weight factor which takes the electron spin into consideration (G =2),
iio the mass of the electron and li the Planck constant. fo is given by:

I

(I/A) sly /2 or + (2)

k is the Boltzmann gas constant per molecule, i(= (p+ilo+p)"" the velocity
of the electrons, and A is a factor which is fixed by the number of free elec-
trons which are present in a unit volume of the metal, i.e. the integral of the
right hand side of (I) is to be set equal to I, the number of free electrons per
unit volume. The factor A is very large compared to unity for a degenerate
gas, and very small compared to unity for the non-degenerate case (Maxwell
distribution). We shall, of course, deal with the case that A ))I.

If an electric field is now applied to the metal, let us say in the x-direction,
the equilibrium distribution (2) will be disturbed, and we shall assume that
the perturbed function can be written in the form:

(3)

where P is small compared to fo It is ev. ident that the function Q cannot be
symmetrical in $, il and I', but that it will depend in a special manner on $,
the x-component of velocity, and will be symmetrical in g and f Furt. her-
more, we require of the function (1( that the integrals fitid&dqd f and fv'ibid/drldf'

vanish, when the integration is carried out over all possible values of $, ol and
|'. The vanishing of the first integral states that the number of free electrons
in the metal is not changed by the presence of the external field, and the van-
ishing of the second one insures the fact that the temperature at each point
of the metal maintains its specified value. The simplest conceivable form of
the function Q which satisfies these conditions is b (v), where x depends only
on r(. We hence write for (3):

f = fo + kX(i)

The electric current in the x-direction is obviously given by:

and the heat current:

sufEicient. At ordinary temperatures, however, the results hereby obtained remained essentially
unaltered by a more rigorous wave mechanical calculation, which of course, takes the crystal
structure and the lattice field into account. Ke shall return to this point in $9.
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IV = —iI (vofdoz = —if Pvzx(v)dzo = —I v'y( v)d zo

e is the charge of the electron and doo =G(zzz/fz)odtdrzdf' T.here remains only
the problem of determining X. This is done by means of imposing the condi-
tion that the motion shall be steady, a condition first introduced by Boltz-
mann, which requires that the total number of electrons per unit volume en-

tering a given velocity range d$dzld| in unit time at every point of the metal
must be equal to the number leaving this range in the same time. (8/Bt =0).
This condition of the stationary state is expressed by the equation:

et Bf Bf——+ k
=—-——vx(v)

m &3' Bx
(6)

Here l denotes the free path of the electrons, which in general is to be
considered a function of the velocity and of the temperature, and F is the
electric field strength in the x-direction. The terms on the left are the "drift"
terms, and the expression on the right takes into account the effect of the
collisions. KVe thus obtain for y the equation:

(6zz)

If we insert this value of X in equations (4) and (5) and perform an integra-
tion by parts, we find easily for the general equations for the currents of
heat and electricity:

4meG n~ ' eI = — — —FB —04'
3 h . ni. (3x

4mnG m ' e—gc 0
6 h m.

&) THs'—
Bx

The II denotes the following integrals:

co g ~ oo

G = zfo (lv')dv; H—o —— folv'dv
Qp 0

(0 QQ 00

Ho =
I fo (lv4)dv; EIo = —fofv'dv
0 ~& O

The dash denotes differentiation with respect to the temperature I', where-
by only the function fo and not I is to be differentiated. (AVe have placed
Bfo/Bx= (Bfo/BT)(BT/Bx), which is valid only for homogeneous metals). '

It must be pointed out that although in the original paper in the Zeits. f. Physik 4'7,

(1928), the assumption was expressly made that the free path L depend only on the velocity of
the electrons and not on the temperature, the general equations and results therein rerIIain
unaltered by this generalization. This fact divas 6rst recognized and pointed out by E.Kret-
schmann, Zeits, f. Physik 48, 739, (1928).
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The Eqs. P) and (8) provide two relations among the four quantities I,
W, F and 8'r/Bx, when the integrals have been evaluated. (We give the cal-
culation of these integrals and others which appear elsewhere in this article
in the Appendix). For our purposes, however, it is not necessary for the time
being to evaluate the integrals, and hence the conclusions which we now

draw are entirely independent of the statistics which the electrons obey. It
is of importance to consider which of our four unknowns can be arbitrarily
fixed or determined by an appropriate experimental arrangement, and which

not. Obviously, the electric current and the temperature difference between
the ends of the conductor (i.e. BT'/Bx) can be set at any desired value. The
heat current W, however, can only be determined in the special case that no
electric current Rows; for should an electric current Row, a closed circuit is
necessary and consequently any device inserted in this closed circuit for meas-
uring the heat Row will have as much heat Rowing into it per unit time as
leaves it, thus preventing the determination of the heat current. The case
I=0, on the other hand, offers no difFiculty since then the total amount of
heat which has traversed a given cross-section of the conductor in a given
time can be collected and measured calorimetrically. AVe can therefore not
look upon 8' as an arbitrarily given quantity. The electric field Ji can be
fixed and determined only outside the metal (a given voltage can be applied
to the ends of the conductor), but only under certain conditions will this
applied field be equal to that field which is present inside the metal and which

is, of course, aH-important for the calculations. This quantity is therefore as
little at our disposal as the heat current W; It is peculiar that in the case of
the Row of electricity the current but not the potential gradient can be arbi-
trarily prescribed, and that in the case of the Row of heat exactly the oppo-
site is true. This fact introduces a certain unavoidable asymmetry into our
considerations. Particularly interesting from a theoretical standpoint are the
special cases when one of the four available variables vanishes. Table I pre-
sents these four cases.

Case I: This case in which the temperature of the metal is held constant
and the electric current is arbitrarily fixed represents the arrangement usually
employed for the determination of the electrica1 conductivity 0. For this ar-
rangement, but only for this one of the four under consideration, is the field
inside the metal equal to the applied field. We see from Eq. (9b) that a heat
current proportional to I must Row if the temperature is to be kept constant.
(This is in addition to the Joule heat which, of course, must be removed). We
denote this heat current as the Thomson heat current and define the coefficient
p„ thereof as:

mo. H6

2e EI2
(13)

Case II: The conditions supposed in this case are hardly to be obtained
practically as we must assume the possibility of the existence of an electric
current without an accompanying heat flow. Nevertheless, the case is of
theoretical interest. We see by consulting Eqs. (10a) and (10b) that the field
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existing in the interior of the metal is not equal to the applied field, (I/o).
Furthermore, a temperature gradient which is proportional to the inner field
is set up as a consequence of the condition TV=0. Ke call this temperature
gradient the Thomson temperature gradient and define its coefficient py by the
relation:

BT Bx e H6
(14)

Case III: Here we imagine the conductor electrically insulated and with
its ends maintained at diferent temperatures, an arrangement employed for

TABLE I
Fixed by

experiment

Consequences of

Eq. {7)and {8)
4xe'G

{9a)

m Hs mr H6F'= ——I=——F
2e H~ 2e H2

m Hs' BT
F = ———

@ H6 Bx

BT m 1 H3

Bx 2e x H2

m H4' 8T
F = ———

e Hg 8x

{9b)

(10a)

{10b)

(11a)

{11b}

ma H4' BT

e H2 Bx

nz'o Hg' BT
2e' H2 Bx

(12b)

the experimental determination of the heat conductivity. As a consequence
of the electric insulation and the resulting accumulation of charge at one end
of the conductor, we find according to Eq. (1ia) an electric field established
inside the conductor. This field shall be called the Thomson potential gradient
and the coefficient p, p thereof defined by:

p m B4'

82/BX r 0 8 II2

Case IV: This case, which is similar to II inasmuch as it is hardly to be
realized experimentally, is introduced for the sake of symmetry. %'e must
imagine an electric current sent through the conductor, which is exactly
large enough to compensate the electric field inside the conductor produced
by the temperature gradient. This current is given by Eq. (12a) and the
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accompanying heat flow by Eq. (12b). AVe shall call this electric current the
Thomson electric current and define its coefficient p8 by the relation:

I ) ma EE4'

PS = ——
1

= ————= —PEa
87 /i1'x/r ii e EE,

(16)

In the preceding discussion we have carefully discriminated among four
different "Thomson-coefficients. " The need for such a discrimination be-
comes apparent when one considers the huge amount of work which has been
done in attempting to prove or disprove the existence of the inversion of the
"Thomson-effect, " (see the article by A. Benedicks, "Ergebnisse der exakten
iVissenschaften, " Bd. VIII), in many cases without a precise definition of
what is to be understood by this eAect. If we mean, when we talk of Thomson
effect, that electric field which is caused by a temperature gradient in a metal
when no electric current is allowed to flow (pp in Case III), then the inversion
of this eA'ect is clearly the production of a temperature gradient by an elec-
tric field when no heat current is allowed to flow (pr in Case II). In an ex-
actly corresponding manner we can consider Case I and Case IV as inver-
sions of one another. Of these possibilities, none seems to have been realized
in the experiments of Benedicks, which claim to have shown the existance of an
inverted "Thomson effect. "

The coefficient p, p has been frequently called the "Thomson coefficient"
without further specification. Unfortunately, the coefficient which is mea-
ured in the usual manner is none of the four which we have considered.

One measures the heat which is reversibly absorbed or given up in unit
volume of a metal per unit time, when heat and electric currents simultane-
ously How through the conductor. This heat energy is called the Thomson
heat "Qr", and the Thorrison energy coe//icient yE (frequently called the speci-
fic heat of electricity) as defined by:

Ke shall now proceed to derive an expression for pg in terms of the coeffi-
cients which have already been introduced. The energy produced in unit
volume per unit time is IF and in general depends on the temperature gradi-
ent BT/Bx. Of this energy an amount BW/r3x* is carried away by thermal con-
duction, and there remains the energy:

L = IF —BH'/Bx.

6'e can write (7) in the form:

J '/Pl I74 E3 7
j5 — +

0 e EI2 Bx

(18)

and (8) with the help of (19) and the definition of the heat conductivity x as:
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The expression for Z in (18) then becomes:

0 e EE. 2e dI' Ilg dx 8x Bx
(21)

The first term of this equation is the Joule heat, the last term the heat com-
ing by means of the thermal conductivity and the middle term is the rever-
sible Thomson heat Qr. KVe thus find for the coefficient ps.

(22zz)

A comparison with equations (13) and (15) allows us to write:

(22b)

Proceeding now to the values of these coeAicients as given by the values
of the integrals EI&, H& and H4' (taken from the Appendix) we get for izzz. .

2m 2mk2T) ~

pg =
3eh'

(22c)

if we consider the number of free electrons as temperature independent and
and the free path of the electrons independent of their velocity. ** (Although
this last assumption is only a rough approximation, it seems to suf6ce for the
prediction of the order of magnitude of all the eAects calculated by the elec-
tron theory). X denotes the de Broglie wave-length of those electrons which
have the critical velocity of the Fermi distribution function and depends es-
sentially only on the density of free electrons. On the other hand, v ith the
same neglect as above, we get for p;.

The difference between p„and p, , has given rise to some misunderstanding
in the literature. For example, in his book on "Statistical Mechanics, " R. H.
Fowler derives an expression for the Thomson effect from equilibrium theory
considerations which is smaller by a factor two than the result here obtained
for p, . Fowler identi6es the Thomson coef6cient with the increase of specific
heat of the electrons in a metal caused by an increase of unity in the electro».
density. Obviously such a calculation corresponds to the case where energy
(i. e. heat current) is transferred to the metal under consideration zizz'thozzt

an accompanying electric current, and leads to the value of pp, which is in
fact just half as large as pg. This is exactly what Fowler found in his calcu-

* In this differentiation it is necessary to take the dependence of I on T, hence on x', into
account.

~* It has been recently pointed out by R. H. I owler that the sign of the Thomson heat as
predicted by (22c) is the negative of that observed for the "normal" metals, (Au, Ag, Cu). This
seems to be a difhculty of the classical theory which is carried over into this theory.
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lation. T. E. Stern has called attention to this discrepancy and considers
it an example of the inability of equilibrium theory to handle problems be-
longing to a transport theory. It seems, however, that the danger of applying
equilibrium theory to problems of metallic conduction is not so much one of
principle, but lies more in the fact that one must be exceedingly careful in
the identification of a calculated result with the experimentally determined
quantity. KVe shall have occasion again to point out the necessity of discrim-
minating carefully among the various possibilities which we have discussed
in connection with the equation proposed by Moreau.

B. MAGNETIC EFFECT IN METALS

(1). General principles.

We consider a metallic conductor in a homogeneous magnetic field, and
conFine ourselves to a discussion of the action of this field on the free elec-
trons in the metal as far as is necessary for the understanding of the galvano-
and thermomagnetic phenomena. The magnetic field mill, in general, act in

two different ways on the electrons; first, the Lorentz force e[v&&IZ] will act
on each electron, a diamagnetic eR'ect, and secondly, the energy of the elec-
trons wi11 change in the field due to their spin, a paramagnetic effect. The
first question which presents itself is; how is the distribution function fo
changed by the presence of the magnetic field? The Lorentz force can ob-
viously have no effect on the distribution function as it acts at right angles to
the motion of the electron, and hence leaves its energy unchanged. Since
fo depends only on the energy (in its dependence on the velocity components),
it can not be affected by the Lorentz force. The spin, however, gives rise
to a change of energy equal to +lioH where po ——eh/4irm is the magnetic
moment of the electron. If we place s =mv'/2 (equal to the kinetic energy of
the electrons), then the distribution function in a magnetic field is given by:

1 1
+

2 (1 /A')e&'+»& &i+ 1 (1/A')e&' &Os'ii + 1
(23)

The factor —,
' must be introduced to compensate for the fact that the weight

factor 6 = 2, which takes the spin degeneracy into account, remains in the
formulas. KVe have purposely written A' in place of the former symbol A,
as the value of A' now depends on the strength of the magnetic field. If we
assume that the number of free electrons in the metal does not change when a
magnetic field is applied, we must have (as in (1)):

ri = Jl fsd&d

as the equation which determines A', the integration to be carried out over
the whole of momentum space. %e obtain in this manner:

log A' = l*gA —v'/41 gA

y = poH/k2'

' T. E. Stem, Proc. Roy. Soc. A126, 570 (i930).
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where A is the value of A' for H =0, and we have neglected terms with higher
powers of II than II'. This is legitimate for all fields which can be obtained
in practice. Ke now are in a position to see how the spin can be systematically
introduced into all the following work. We must replace f, everywhere by
fz as given by (23) and use the modified value of log A as given by (25). It
turns out that the e6ect of the spin is so small as to be of little interest in
most cases, so that we shall neglect it in all but a few special cases. In the
Appendix will be found the necessary values of the integrals to allow the in-
troduction of the spin in all the work. Ke shall not stop here to discuss the
interesting questions of the paramagnetism and diamagnetism of free elec-
trons, 4 but turn directly to the questions of electrical and thermal conduction
in magnetic fields.

(2). Conduction in a homogeneous magnetic field.

Leaving the spin for the present out of consideration, we can proceed in
the determination of the various thermo- and galvanomagnetic effects by
an extension of the method described in part A.

Ke consider a metallic plate lying in the xy plane, through which a pri-
mary current may How in the x direction and which lies in a homogeneous
magnetic field perpendicular to the plane of the plate. With this arrangement
only two of the components of the Lorentz force are diferent from zero,
vis. , the x component equal to er»H and the y'component equal to e(H. —
We now write in place of (3):

f = fo + hxi(v) + vxs(v) (26)

as we must now consider the y-axis as well as the x-axis as preferred. We
consider yi and Xz as dependent only on v = (P+i»'+P)» and the reasons for
writing f in the above form are similar to those which we have already dis-
cussed in the case of (3a). Instead of (6) we now have for the condition of
steady How'.

B
+ '9 ((xi + 'OXR)

By l
(27)

With the left hand side of this equation the exact expression (26) for f in
the terms which contain H (so as to keep the calculation valid for strong
fields), and the approximate expression fo in the remaining terms as we have
done before, we obtain after a simple reduction:

fi +»i~a/v
X1 + ~2/2/v'I

fi —plji/vX2-
v 1 + li'P/v'

W. Pauli, Jr. Zeits. f. Physik 41, 81 (192'E); L. Landau, Zeits. f. Physik 64, 626 (1930).
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V'ith the abbreviations:

1 dfo
+

PPL V Bv

e 1 Bfo
f,, — F — +

$71 '0 Bd

(30)

Proceeding exactly as in the case of Eq. (4) and (5), we can now write for
the electric and heat currents in the x and y directions:

8 (fJM — 0 3 8 x dc'

ra

I = e )1jdcu = (e//3) ~l v'x, dku

Il', = (m(2) (e'fd/e = (m/6) ~s'x)dc'

(31)

Before writing these equations explicitly, we shall discuss them as they
stand, and show that certain general results can be predicted without fur-
ther knowledge of the integrals involved. It is well known that for a com-
pletely degenerate electron gas, (T=0), the only electrons which take part
in the conduction process are those which have the critical velocity 8 de-
fined by:

~mt) /2k'

Only for this value of v is e)fo/Bv different from zero. One can, in first approxi-
mation, consider the electron gas completely degenerate even at ordinary
temperatures. The error thus made is of the order of 1/(log A)'. If we sup-
pose that all the conduction electrons have exactly the same velocity 8, then
we see that the requirement that the current in the y direction vanish (a
usual experimental arrangement) is equivalent to the condition y2 = 0. Equa-
tion (29) then gives as this condition:

f~ = I/If)f&. (32)

Inserting this value of f2 in (28), we obtain for y), which determines the cur-
rent in the x direction:

Xl If1jV

an expression which no longer contains the magnetic held. XVe thus see that
the resistance of a metal stays unchanged in a magnetic held if the conduc-
ting electrons all have the same velocity. Assuming now a conductor at con-
stant temperature (elf/Bx=8f/By=0) we find from (32):
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f2 F„eH l

F, ~n v
(33)

Introducing the isothermal Hall constant, defined by:

F„ F„
R =

I,H rIIF, (34)

and the de Broglie vrave-length of the electrons:

vie obtain for the Hall constant:

elk
R = —.

0 ne
(3e)

The last step is obtained by inserting the values of o =(Ss/3)(e'l/hV) and
'A'=S7r/3n, which are valid in this approximation.

We notice that because of Eqs. (31), the vanishing of the electric current
insures the vanishing of the heat current in this first approximation. ' This
is of importance, not only as it means that the heat conductivity vanishes
in this first approximation, but that an adiabatic condition (one which re-
quires W, or W„or both vanish) gives no more information than the condi-
tion that the corresponding electric current vanish. We may therefore be
sure that in order to obtain results for adiabatic conditions, the calculations
must be carried out to a second approximation, thus taking into account
deviations from complete degeneracy;

After these general remarks, we proceed to write the equations (31) after
the values of xq and X2 have been introduced by means of (28) and (29) and
an integration by parts have been carried out. We obtain (for homogeneous
metals):

4~eG m 3 e e BTI, = —EQ, + p—EiF„—E4'
3 h m m Bx

B7
pE3

4mmG m ' e e
tV, = — —K6J', + p,—KQ„—Es'

6 h m m Bx

BT
pE7

Bp

4nmG rn ' e e BT BT—p,—KQ& + —ESP„+IJ,E7' —Es'
6 h m m Bx By

4xeG ~n ' e e BT BTIif
——p, Kill, + —K+„+pK3' —K4'

3 h 5$ m Bx By
~ (37)

I Since the first approximation is equivalent to considering all the electrons as possessing a
single velocity, the integration in {31)is to be disregarded, (with the result that the heat cur-
rent must vanish for Z=O). Since the heat conductivity x is defined by g= —~/{gT/gg),
a must also vanish.
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The dashes denote differentiation with respect to T as before (I constant
in this differentiation. ) and the X's are the following integrals:

8 l'e
ICi = fo — d'v&

Bs 1 + p'1'/ii'

x. = JI i.—'( '"'
)~.;

f" t2e~dv

J 1 + ~2]2/sR

lv'dv

+ ~2]2/s2

E, =Jf f, (
—

)d

l'v'de
Zi ——

I foJ 1 + p212/g2

lv'dv
Es= I fo

] + +2P/&2

(38)

The integrals II which were introduced at the beginning of this article are
the values of the corresponding K for @=0. The Eqs. (37) are the funda-
mental equations from which all the galvanomagnetic and thermomagnetic
effects can be derived. The equations are entirely independent of the statis-
tics used, only the values of the integrals X depend thereon. If one wishes
to introduce the spin into these equations, it is only necessary to modify the
values of the integrals X.

(3). Isothermal effects. (General formulas).

By an isothermal effect is meant a galvano- or thermomagetic eSect so
produced that the temperature in the y direction (perp=ndicular to the prim-
ary current) is kept constant, i.e. BT/By =0.

The Hall egect is, as we have seen, the production of a transverse potential
gradient F„by a primary electric current I, in a magnetic field. We have
already defined the Hall constant as:

7t! = F„/I P. (34)

We obtain its isothermal value by placing I„=BT/Br =BI'/By =0 in the sec-
ond equation of (37) as:

e HEI
R = ~ ~ ~

7S O' E2
(39)

The condition BT/Bx = 0 denotes that the temperature in the direction of the
primary current flow is constant. The condition I„=O denotes that we have
to do with the open circuit Hall potential.

The conductivity in a magnetic field is obtained as follows: with the value
of the Hall constant in (39) and the corresponding value of Ii„, we can write
the first equation of (37) as:

E2 1+p'—

and since the conductivity when no magnetic field is present is given by:
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00= (39a)

we find for the ratio of these conductivities

(40)

The N'ernst effect is the production of a transverse electric field F„by a
primary heat current W, . To calculate this field, we place I,=I„=BT/By =0
in the first two equations of (37) and obtain two linear equations for F, and

F„, out of which follows:

e KK' —EK' BT
F7I = P

pb Eg + p, Ey 8$

and as the constant Q of the Nernst effect is defined by the equation:

F„=QHBT/Bx

we obtain

K,K,' —K,K,'

E'+ p,'E' (4&)

The subscript i denotes the fact that this is the isothermal Nernst constant,
as it is obtained with the condition 8 1/8y = 0.

We also obtain from the two equations for F, and F„the following expres-
sion for F, :

p
tn Eg' + p, 'Eg2 Bx

Using the definition of the Thomson potential gradient coe$cient (Eq. (15) ):

there follows for the isothermal value of this coe%cient in a magnetic field:

m KgK4' + p, 'K)K3'
pp =—

E22 + p 2E12
(41')

and for the ratio of these coe%cients with and without a magnetic field
present:

» a, K,E,'+ &2E,E,'

(i ~)o H4' K,' + p, '&,'

Kith the help of the expressions for F, and F„soobtained, the third equa-
tion of (37) for the thermal conductivity in the x direction can be written:
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w, 4 mG(m)' KgE6K4'+ y 'K, (K,It 4' K—gKg') +y'E, KSK~'

K~'+ p'E, '

There follows immediately for the ratio of the thermal conductivities of a
metal in and out of a magnetic 6eld (measured isothermally):

H, E,Z, ' —E,E.4'
4

Ko E2 H2H8' —H6H4' E2' + P,'EI'

jK (& E ' —K,E,'j —E;(l'c,E,' —EA, 'j

j1 + p, '
l Eg(K2Eg' E,E—4')

(41')

gee return to the question of the evaluation of these expressions and the dis-
cussion of the results so obtained in a later paragraph.

(4). Adiabatic effects. (General formulas).

By an adiabatic eHect, we mean an effect produced when no heat is al-
lowed to How in the y direction, i.e., with the condition S'„=0. The question
as to what to assume in regard to the x direction is a little annoying. To
place P",=0 when there is an electric current in the x direction is obviously
incorrect, since in a closed metallic circuit, heat will inevitably How along
with the current (compare p. 4). In view of the extremely large heat conduc-
tivities of metals, it seems reasonable to suppose that heat is carried away
fast enough along the metal so that the temperature in the x direction (at
least in that part of the circuit which is in the magnetic field) remains con-
stant. Certainly this condition is more nearly reached than the alternative
8' =0. We shall accordingly place BT/Bx =0 when I,/0.

The two transversal galvanomagnetic eA'ects produced by a primary electric
current are obtained by placing:

I, W 0 IV„= I„=BT/Bx = 0.

The second and fourth equations of (37) then become:

B'1 e
E4' ——K.I',

By nz

e—P—EII',
,

fn

e—p—EP,
tn

The Bttinghansen constant I' is defined by the equation:

BT/By = PIII, .

(Obviously the Ettinghausen effect is zero for an isothermal arrangement. )
The adiabatic IIaIl constant is denoted by 8 . We thus obtain as the values
of the Hall and Ettinghausen constants:

e DI
EQ

mfT DP
(43)
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Kith the following abbreviations:

E4 K2
;Dg=

Es' E6

e2 D2

ma Do

K4 Kg K2 Kg
) D2

Es' K5 E6 K5

(44)

The two transversal tkermontagnetic sects are produced by a primary heat
current and are obtained by placing:

g', &0; I, =Iy= H„=O.
The first, second, and fourth equations of (37) can then be written:

e e BT
P Key + K2F g tlg, K3

m m

BT
E4

e e 8T BT—E2F~ + P KyI z + E4 = PK3
m m Bx

e BT BT——E6Fy + p,—E5F.+ K's ———p&'7—
m m 8y Bx J

It follows from these equations, that

(46)

e—F
m

e—F.
m

D4 BT'
D3 BX

D5 BT

D3 Bx

D6 aT

D3 BX

(47)

with the following abbreviations:

@Kg E2 —PA 3' K4' E2 —
p, K3'

D3 = —E2 PKl K4 ', D4 = P,K3 pEg K4'

—A. 6 tLf, A. 5 Ks

@Kg K2 K4'

D5 = K2 IJ,Ky PE3 ) D6

—K6 pK5 pKV'

pK7

pKg K4 —p, K3'

K2

E6

pK3 K4

pK7' Ks'

&K5 Ks'
(48)

The constant of the I.edur. Righi egect -5 is defined by

9 ith this and calling the adiabatic 7i7ernst constant Q„we obtain with the
help of (47):



A. SON'MERFELD AND ¹ H. FRAME

(49)

e Dg

mp D3
(50)

If we insert the values of F„and BT/By as found in (43) and (44) into the
first equation of (37), we find easily for the ratio of the electrical cortductivities
in and out of a magnetic field:

A2 EjDI E3D,
1 + p,

0 p H2 E2Dp E+p
(51)

On the other hand, using the values of F„,BT/By and F, as given by (47) in
the third equation of (37), we find for the corresponding ratio of ttiermat con
declivities:

D3

a, — D, DE,' —D4E, —

, Es —E6—+p
H2HS' —B6H4' D3

(52)

The third equation of (47) gives the value of the Thomson Potential gradient
coegcient tii in a transverse magnetic field. With the help of Eq. (15),we find:

pp H2D6

(tii )0 II4'Ds
(53)

We thus have obtained general formulas f'or the four transversal eRects
and three of the longitudinal eRects in a transverse magnetic field. The re-
sults hitherto are independent of the statistics obeyed by the electrons, and
accordingly have been' grouped together. We now shall consider the conse-
quences of introducing the Fermi statistics in the evaluation of the expres-
sions which have been obtained.

(5). The change of resistance of a metal in a magnetic Beld.

Ke now turn to a more or less detailed discussion of the different eRects,
and consider first the change of resistance of a metal in a magnetic field. This
question has caused a great deal of interest recently because of the measure-
ments of Kapitza' in strong fields, and because of the resulting speculations
about the nature of the eHect.

Ke have already seen that, in the first approximation, the change of re-
sistance vanishes. Ke must therefore calculate the integrals to a second ap-
proximation, and consider first the isothermal case, for which:

If we introduce the variable u =mv'/2k T, the integrals Xi and ICi can be writ-
ten: (compare 38)

' P. Kapitza, Proc. Roy. Soc. A123, 292 (1929).
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d313; 2k Tpp '" l'
E; =, fp dpp with 3b, =

de rN 1 + WP/pp

2kTn l

m 1+ WP/u

Here w is used in place of mp'/2kT. Carrying out the evaluation of the in-

tegrals to a second approximation without any neglect with respect to m, we
obtain:

Eg = 2k Tu '" l' m'1—
1 + wlP/Np 24upP

WP/ppp K'l /Qp
+

6+p~ 1 + l2 Np 3lo2 1 + ~l2 +p

2kTmp pr' WP/pp p1+
3 + 3'/I, 3,'(3 + 3'/, )

2kT'up l
H2 = 0

H~ is of course obtained from Z2 by placing m=0. up is an abbreviation for
log A. Ke now introduce the following notation:

a=; a& (1
3Qp

i'

WE ppp

; 0&b&1
1+WP/I p J

(56)

At room temperature a has a value of the order of magnitude 1.0 4 and be-
comes smaller with decreasing temperature. Ke can now write:

Eg 1+ Gb

+p 1 + wl /ppp

1 —c b+—

Here quantities which contain a~ have been consistently neglected. Inserting
these expressions in (40), we get:

—= (1 + abP)(1 —ab [b + -', ]) = 1 —ab/4
0'p
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and finally for the relative change of resistance:

60. a————b
O.

p 4

Using the value of u, =h'/2mhTX-' we obtain:

BH2

1+CEi2

with

7r2

Fl = —(emlhT)'—
3 h

(57a)

C = (eD/h)'. (57b)

I. The constant C; Flfeasnrements of Kapitsa. If we now consult (36) we
find that C can be written as:

C = 0282. (57e)

The relative change of resistance, as given by (57), increases proportional to
H2 for weak fields, then increases more slowly and finally tends to the "satura-
tion" value FI/O for extremely large values of FI. (CFI' »1) Upt-o the time
of Kapitza's measurements, a quadratic law had always been observed ex-
cept in the case of Bi, which is decidedly abnormal in its magnetic behaviour.
Kapitza, with his skillful methods of producing magnetic fields up to a magni-
tude of 300 kilogauss, showed that all metals show a departure from the quad-
ratic law at sufficiently strong fields and low temperatures. For the case of
normal metals, such as Cu, Ag and Au, this eRect can be first measured with
a reasonable degree of precision when the temperature has been reduced to
about 100' K. From a series of extensive measurements, Kapitza was led to
believe that the true law of change of resistance is a linear one and that the
observed quadratic law for small fields is due to an internal disturbance in the
the metal lattice, which he represents by a randomly distributed magnetic
field. The only reason for assuming a linear law is that the measurements for
strong fields can be thus well represented, except in the cases of Te, Ge, and
E;. For further details of Kapitza's theoretical standpoint and its implica-
tions with regard to supraconductivity, the reader is referred to the original
papers. '

The need of an empirical law to explain the measurements is completely
removed by our formula (57). In the transition region between the quadratic
law and the approach to saturation, this function represents all of Kapitza's
r suits fully as well as this linear law. Figs. 1 and 2 show this clearly. In
Fig. 1 are shown the measurements on annealed copper at a temperature of
SS'K (Curve II). Curve I is a plot of Dp/p=8FP. In Fig. 2, curve I is for

' P. Ka.pitza, 1 roc. Roy. S~c. A123, 292 (1929).
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gold and curve II for tellurium, the latter showing the saturation effect pre-
dicted by (57) most clearly. The measurements were made at the tempera-
ture of liquid nitrogen (88'K). The constant 8 has been so chosen as to
give the correct curve for small values of II, and C has been then determined
with the help of (57) to fit one point on the curve. (Usually b p/p for IJ= 300
kg).

Not only is the correct form of the function given by (57) but the con-
stant C, which alone determines the departure from the quadratic law, is cor-
rectly given (in its order of magnitude) by the theory. According to (57c),

0.7

0.3

0 100 200 500 400 500 600 '700 600
0 (kllogauss)

Fig. 1. Measurements on annealed copper at a temperature of 88'K (Curve II). Curve I

is a plot of hp/p = BII2

G5

0 ipp 200 &00 aO0 g00 6(X)
~ (I ilogauss)

Fig. 2. Measurements on gold and tellurium at a temperature of 88'K. Curve I is for
gold and curve II is for tellurium.

from the values of C from Kapitza's measurements, we can calculate 0R at
the temperature of the measurements. Ke then can calculate the Hall con-
stant, using the known conductivity of the metal at room temperature and
the ratio of conductivities at room temperature and at the temperature for
which Dp/p is measured. Kapitza gives only the last data, and we must use an
average value of the conductivity at room temperature. In Table II are given
the values of R so determined in the first column. In the second column are
the values of R observed by direct measurement at room temperature, and
i» the third column, the theoretical values of R calculated by means of Eq.
(36). The temperature refers to that at which theAp/p measurements are made.
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TABLE II.

Metal

Cuz (annealed)
Cuzz (half annealed)
Cuz (hard drawn)
Ag (annealed)
Ag (hard drawn)
Auz (annealed)
Auzz (hard drawn)
Auzz (Meissner and

ScheEers)

R X104
from

7.5
6.8
5.0

12.5
7.8

17.5
12.8

19.7

R X104
directly

measured

5 ' 5
5.5
5.5
8.4

6.5
6.5

6.5

R X10'
theor.

from (36)

7.4
7.4
7.4

10.4
10.4
10.5
10.5

10.5

88' K
88
88
88

~90
88

~90

20.4

Ke see that for these normal metals the agreement is satisfactory as far as
the order of magnitude is concerned. There are several reasons why a better
agreement cannot be expected. In the first place, it is experimentally known
that R increases for normal metals with decreasing temperature, so that some-
what larger values of R are to be expected from the determinations at low
temperatures. Furthermore, the metals used in the Ap/p measurements are
characterized by their extreme purity, especially the gold Au» of Meissner and
ScheHers. As we have used an average value of 0 in calculating R, we have
probably used too sma11 a value and hence are led to somewhat too large
values of R. The diHerence 'found between annealed and hard drawn metals
is also worthy of notice. The electrical conductivity 0. is certainly smaller for
hard-drawn than for annealed metals. The values of R would agree more
closely among themselves for the same metal if this fact is taken into con-
sideration. Finally, the values of R vary a good deal from sample to sample
of the same metal, even two different samples of the same purity can give
different Hall eGects, so that all in all the most that can be expected is the
agreement in order of magnitude which has been found. In Table III are
given the same results for a number of other metals. We see that the correct
order of magnitude of R is obtained in all cases except those of Cd and Bi.
The abnormality of Bi is not surprising. In the case of Cd, it has been ob-
served that the value of the Hall constant has an abnormally large negative
temperature coefFicient.

TABLE III.

RX10&
(from
~ulI )

Zn Zn Zn Cd Cd Al Al Al Sb Sb Sb Bi

3.7 4.2 2.8 8.1 12.5 1.6 1.2 1.3 178 105 36 800

RX10'
(meas. ) 0.76 0.76 0.26 0.88 0.88 0.4 0.4 0.4 219 219 219 6330

If, in treating the question of change of resistance of a metal in a mag-
netic field, the field is considered as a small perturbation, one is led to a quad-
ratic law. The magnetic field can only be considered as a small perturbation
as long as the mean free paths of the electrons are small compared to the radi;
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of curvature of their paths. When these two quantities become comparable,
it is to be expected that departures from the quadratic law shall appear. This
is exactly what is shown by our formula (57).

Let us consider for simplicity an electron which is moving in the x direc-
tion with the critical velocity 8. Under the influence of the magnetic field it
mill move in a circle whose radius of curvature r is given by:

eH e) H

m8 h

If we consult (57b) we see that

CH' = (l/r)'.

The denominator of (57) thus becomes appreciably different from unity
when l becomes comparable to r. The type of orbit for the case l)&r is of a
different nature from that for /&(r. In the first case, the electron moves
through several complete circular orbits before it collides with an ion, in the
second, on the other hand, a collision is to be expected when the electron
covers but a small fraction of the periphery of the circle.

II. The magnitude of the constant B. We now turn to a difFiculty in the
theory, namely that the value of 8 as predicted by (57a) is far too small (a
factor of about 10 ' at room temperature) to explain the observed results for
small fields. In the discussion of this problem, we can restrict ourselves to
the case of weak fields, where the relative change of resistance follows a quad-
ratic law. In order to explain this discrepancy, we shall find that the simple
assumption of totally free electrons is no longer sufhcient. We have already
seen, that as long as we consider the conduction electrons as possessing one
and the same velocity, the resistance of a metal remains unaltered in a mag-
netic field. The constant 8, therefore, which is different from zero only when
the conducting electrons possess diRerent velocities, depends essentially on
the fluctuations of v (or more exactly of 1/v) among the electrons. We see this
most easily by means of the following considerations. The condition that the
current in the y direction vanish is, according to (31) and (29):

e t' l e 1 Bfo dco f'to e 1 Bfo dco
F =0

3 ~ v m v Bv I + tcoto/vo 3 vo m v Bv 1 + tcoto/vo

or for small fields: (we develop in powers of tc):

fl 1Bf, (P 1Bfo
F )' —— dco —tcF il

—— dco = 0.
BS e2 e Bo

We now denote 1/v by P; and define:

f' l 1 Bfo
P =

Jl
—— dco

'v 'v Bv

f' to 1 Bfo
des

o' e Be

(5g)

(59)
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We then obtain

~w = WPIP
The expression for the current in the x direction, I„ is according to (31)
and (29):

eIg
3

+ ~J

t I e 1 Bfo d(o
F

s m s Bs 1+ p'P/s'

P e 1 &fo Cko

m s 8s 1 + ii'P/s'

(61)

or developing in powers of p and keeping terms in p, '-:

e'
[F*(P —~'P') + W.P'].

3m
(62)

Here tl' is defined similarly as

Inserting the value of F„as given in (60) in the expression for I„we find:

PP' —(P')'
0 p —p.

"-

3m P

The value of o 0 is obtained by placing p, = 0, and we get for:

OO

,tI I3' —(P')'
p,

(fl ' (63)

We see, therefore, that the relative change of resistance depends, as we have
already remarked, on the fluctuations of P, i.e. of I/v. AVe have hitherto con-
sidered the only reason for fluctuations in I/v as the distribution in velocity
of the electrons as given by the Fermi function, and this has proved to be too
small to explain the observations.

There is, of course, another reason the values of I/s vary among the con-
duction electrons. The assumption that the electrons in a metal are totally
free is only an approximation. As a matter of fact the electrons move in the
potential 6eld of the metal lattice and when this fact is taken into considera-
tion the energy of the electrons no longer depends simply on the absolute
magnitude of their velocity, but explicitly on the direction of the velocity.
This means that the fluctuations of I/v become very much larger. One can
show' that a fluctuation of some ten percent in the velocity of the electrons
which have the same energy is sufEicient to raise the value of 8 to the correct
order of magnitude. We must content ourselves here with these more or less
qualitative remarks; however, it should be pointed out that Eq. (63) loses
its validity in a more exact calculation, as it presupposes the possibility of

This result is due to R. Peierls and was communicated in a letter to H. Bethe.
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separating the equation of the steady state (27) into the two functions xi and
This is no longer possible when the energy of the electrons does not de-

pend on v"- alone, and hence the exact calculation becomes very much more
complicated. '

III. Tke in/uence of the spin KVe .now shall consider the effect of electron
spin in this connection. Ke here show how this is to be obtained in the sim-
plest manner from our preceding equations. KVe start from (39a):

o. = ———FI '.

Here the upper index. s denotes that. the integral II2 is to be calculated with
the distribution function fir as given by (23), thus taking the spin into ac-
count. AVe have therefore

Taking the value of II2" frons the appendix

(66)

we find for the relative change of resistance:

(67)

for such values of II, that Dp/p«1. Inserting the numerical values for Ag,
(T=300, go=9. 1)&10 '-, Iog A =210), we find:

Ap/p = 3 && 10 '9 II' (68)

which is about 50times smaller than the value found in (57a). (8 = 1.2 && 10 'r).
It is clear that there will be no departure from the quadratic law for this
effect in the magnetic fields which can be experimentally produced. The
effect of the spin is independent of the direction of the magnetic field relative
to the current, whereas our previous results were obtained for the case that
they were mutually perpendicular. There is as yet no satisfactory explana-
tion of the change of resistance of a metal when a magnetic field is applied
parallel to the direction of the current flow. It is possible that the effect of
the binding of the electrons in the metal lattice, and the consequent non-
separability of the stationarity equation will suffice to explain this phenome-
non. Another possibility which may play an important role is the effect of
the exchange (Austausch) phenomena among the electrons which may con-
siderably increase the spin effect. At present, however, it is impossible to
decide if these proposed explanations will suffice to account for the observa-
tions.

IV. The Odmbatic case. Before closing this paragraph, we shall show that
9 Compare R. Peierls, Zeits. f. Physik 53, 265 (1929).



hp/p vanishes in second approximation when a strict1y adiabatic arrange-
ment is employed. We have from (51):

hp K2 EjDg E3 D2
+ jul

p H2 E2Do EgDo

As we are interested here only in the e8ect for weak 6elds, we shall place
p =0 in the calculation of the terms multiplying p'. We shall need Do and D&

in second approximations, which means calculating the individual integrals
involved to a third approximation. From the appendix we take the following
values:

Hg =P8 1—

H2=18' 1—

Do = nl'84 1
84

5 a
Dg = O.l'8' 1 ——

2

E2=l8' 1—

B'=0.

p.'l' n

8' 2

We 6nd then:
K2 p, 'l' n T

KgDj HgDj. l o.T1+
E2Dp H2DO 8' 2 84

and hence:

1 — 1+ 1+ 1+ = 1.

which was to be shown. The fact that the adiabatic change of resistance is
smaller than the isothermal is of no practical consequence, as we have seen
that the magnitude of the actual effect is determined by the fluctuations of
l/u among the e1ectrons, and those due to the Fermi distribution which we
have here alone taken into account are not essential.
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(6). The galvanomagnetic effects.

In this paragraph we shall examine the results obtained for the two gal-
vanomagnetic effects, viz. the Hall and Ettinghausen effects, more in detail.
We have found (Eq. (39) ) the value of the isothermal Hall constant as:

e 1 Kq
R s

m r Eg

From Eq. (55), we see that in first approximation:

Kg

Z. (2k 2'iso/m) '"
and using the value of 0 = (8vr/3)(e'f/hX'), we find, as before:

3 V 1R'=
Sm e ne

(68a)

(69)

as the value of the isothermal Hall constant, independent of the magnetic
Field. That this latter conclusion is unaffected by the introduction of the spin,
we see at once from the values of Ki and E2 with spin as given in the ap-
pendix:

2kT log A

2AT log A

In fact no dependence of the Hall constant on the strength of the magnetic
Field has been found for the normal metals, which is in accordance with our
theoretical conclusions.

Turning to the adiabatic Hall effect, we find from (43) with the help
of (45):

e E;its' —&sA4'
R

ma &~&s' —&6&4'

If we insert the values of the integrals in First approximation, we find that
both numerator and denominator vanish, leaving the value of R indetermin-
ate in this approximation. This is in accord with our previous remark that
for an adiabatic effect, all integrals have to be evaluated to a second approxi-
mation. Using the values of the integrals as given in the appendix in second
approximation, we find:

R, = e t
~ —= R.s ~

mr 8
(12)

We thus Find that the adiabatic Hall effect is equal to the isothermal effect,
if we assume, as is done throughout, that the number of free electrons does
not depend on the temperature. The equality of R, and R; is not surprising,



as it holds in first approximation (the quotient of the two second order quan-
tities is in itself a quantity of the first order), and in this approximation the
heat conductivity vanishes. " A numerical calculation of the Hall constant
for Ag at room temperature gives R= 10.4&(10 ' and the experimentally de-
termined value is R =8.4X10 ', a most satisfactory agreement. In this con-
nection, we must point out that the classical theory, i.e. when one uses the
Maxwell instead of the Fermi distribution law, leads to the following values
of R.

R; = 3s/Seii

R, = 27ir/64em

the numerical values of which differ but little from that obtained by the new
theory.

For the Ettinghausen eifect, we have from (44) and (45):
e' EgA. 6

—EoKgI' =
m-"0 EgE8' —EGE4'

(73)

Here again both numerator and denominator are different from zero only
when the second approximation is carried out, but the quotient is of the first
order. We find upon inserting the values given in the appendix:

(74)

'Ate thus find that the Ettinghausen constant, just as the Hall constant, is in-

dependent of the magnetic field in this approximation. If the ~ alue of 0 is in-
serted into (74) along with the de Broglie wave-length X, the final expression
for I' becomes

(75)

A numerical estimation for the case of Ag at room temperature leads to the
value 0.3)&10 ' as compared to the measured value of 1.6)&10 '. The pre-
dicted value is thus found to be of the correct order of magnitude, but about
five times too small, a discrepancy which is not to be looked upon as serious
in view of the assumptions made in deriving (75). For example, the depend-
ence of the electron free path on velocity has been consistently neglected,
as not much can be said about it, It is not unreasonable to suppose, however,
that discrepancies, such as that which is here found, are due to the depend-
ence of 1 on v. The classical theory yields for I':

3Ã
I' = ——

32 ke

an expression whose numerical value for Ag is about 3.7&10 ". This value
is no longer of the correct order of magnitude, (about 20 times too large), and
here we find the new theory predicting a somewhat better value.
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Summarizing the results, we can say that the new theory affords a some-
what better explanation of the galvanomagnetic effects than the classical
theory gave. In both theories, however, fails completely an explanation of the
fact that these eHects, and also the thermomagnetic e8ects, show variations
in sign among different metals. It seems that the solution of this problem is
to be found in the departure of the electrons from complete freedom, thus in-
volving a more rigorous wave mechanical treatment of the problem. We re-
turn to this point in ff9.

(7). The thermomagnetic effects.

The thermomagnetic effects, comprising the Nernst and Righi-Leduc ef-
fects, form the subject of discussion of this paragraph. Ke see that the actual
calculation of these effects shall prove somewhat more troublesome than the
corresponding calculation of the galvanomagnetic effects, as we now have 3-
rowed determinants to evaluate instead of 2-row:d ones as hitherto, except
for the case of the isothermal Nernst co=Scient, which w= write according to
(41) as:

F'"- 1 + p2

(76)

With (69) and the values of the integrals given in the app=ndix we obtain
easily:

2x'O'T

3pn2
(77)

which is an effect of second order. (Only the numerator of (76) vanishes in
first approximation). At room temperature the term depending on the mag-
netic field, which can be written as (ef}4/t3)2&2 is exceedingly small compared
to unity for all Beld strengths which can easily be obtained. This fact has
already been assumed in the evaluation of the integrals. ~Ve can write with
an exceedingly good degree of approximation:

(77a)

Turning now to the adiabatic effects, Eq. (49) and (50) become, with the
help of (48) and a simple algebraic reduction:

(K1K4 K2~~3 )(Ii-1K3 K6I14 ) + (Ii-2IC4 + P K1K8 )(KIK7 +6K3 )
(K2 + 84 Kl )(K1K8 I3.6I3. 4 } (K2K4 + 34 K1K3 )(KIK8 K2K6)

233 (K22 + i4' K12)(K1E3' —K6K3-') + iK1Fi8 —F K6)(K1IC4'. —K2K3')—5
8 (K22 + P2K12) (K,E3' —K6K4') —(K..K4' + P2K1K3 ) (K1K8 —K K6)

The evaluation of these expressions including the dependence on the magnetic
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field is rather complicated, so we shall restrict ourselves to the case of weak
fields (which is sufficient for all practical purposes). The rather unwieldly ex-
pressions (78) can be then simplified by means of the following consideration:
the denominators (p =0) can be written in the following form:

H4' H, II, —H,H,
—

Hg'(H iH8' —H,H4') 1—
Hg HjH8' —HgH4'

With the help of (71) and (73) the second term in the square brackets is easily
shown to be equal to

m H4' I'
~ ~

e B2R
Hi' vanishes in first approximation, but II, and R do not (see appendix).

Hence this term can be neglected in comparison to unity. The expressions
(78) thus reduce to the simpler forms:

and

H, H4' —H, H, ' H, ' H,H, ' —H,H, '
+

H2' H, H,II,' —H,H4'

m H,Hi' —HiH3 (HiH6 HiHfj)(H, H4' —H2H3')—S= +
H,H, ' —a~4' H2'(IIiIIS' —HiH4')

(79)

(80)

The second term of (80) is clearly to be neglected in comparison with the first,
as it is of the second order and the first term is of the first order. (The second
term is equal to PQ~/R) Accordingly, the value of S becomes:

t. H gPY' —HSEI3'5=-
is H/H8' —H/H4'

and that of Q„with the help of (81) and (76):

m H4'
Q. = Q'+-

e H2

(81)

(82)

Introducing the Thomson potential gradient coefficient p& as defined by Eq.
(15) (Sec. A); (82) becomes:

Q. = Q'+ vis. (83)

The evaluation of (81) with the help of the integrals tabulated in the ap-
pendix gives for 5:

e l
S = ——=

OS V

(84)

and for Q, :

2~2mtk2r X 3
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The numerical values for these expressions for Ag at room temperature are

Qs = 2Q; = 1.0 X 10 '

S = 6.7 X10-~.

The values measured are:
Q = 1.8 X 10 4

S = 2. 7 X j.o-7

and we Find the agreement quite satisfactory. The classical theory gives the
following values for Ag at room temperature:

15+ tk

32 (2s.mk T)"'
lk

= 68x io-'

Q' =— = 36.4 x &0-4
(2s.mk T) '"

7x te
S =— = 7.2X10 '.

16 (2smkT)'"

The value of 5 agrees essentially with the value obtained by the new theory.
Q, however, is 20 to 30 times too large, and here we see that the new theory
is in better agreement with experiment than the classical theory.

Ke shall not enter into a detailed discussion of the change of thermal con-
ductivity in a magnetic field as the effect is so small that it has never been
observed for normal metals. It turns out that in the adiabatic arrangement
(i.e. no heat liow perpendicular to the direction of the primary heat current)
the predicted change is smaller than that due to the effect of the electron spin.

(8). The relations among the transverse efFects.

There are a number of relations which have been found among the four
transverse galvano- and thermomagnetic effects, some of which are purely
empirical and others with more or less of a theoretical foundation. We shall
now see that these relations can be theoretically established on the basis of
the foregoing values for the various effects.

I Hall and I..educ sects We have .found for the Hall constant the value

et&
R =—

0 h
(Eq. 36)

and for the Leduc-Righi coeScient the value:

8 = eA/A:.

A comparison of these two expressions shows that

5=0R.

(~V (84)

(86)

The appearance of ~ in this equation is due to the following fact. The Hall
constant is defined per unit primary current, the Leduc coefficient on the
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other hand per unit temperature gradient. Were the Hall constant defined as
the transverse potential gradient per unit primary potential gradient, this a-
symmetry would disappear and Eq. (86) would then simply be 5=R. The
other relations among these effects would also be somewhat simplified. The
historical reason for such an asymmetry is closely connected with our re-
marks in section A concerning the quantities which are experimentally con-
trollable. The relation (86) is well obeyed experimentally. The following
table shows the results for a number of metals as given by Bridgman:"

7=&Hz.E IV.

Metal Ag Al Cd Co Cu Fe Ni Zn Au Sb Bi
tTRX10' —5.0 —1.4 +1.2 +2.5 —3.0 +7.2 —2.5 +1.2 —2.7 +48 —400
5X 10' —2. 7 —0.62 +0.89 +1.1 —2. 1 +5.2 —2.5 +1.1 —2.5 —20. 1 —20.5

Bismuth, which is decidedly abnormal in regard to all magnetic effects, shows
a departure from the law, but all the other metals obey it within the experi-
mental uncertainty. One must remember that the Leduc effect is extremely
difficult to measure and that Huctuations of 100 percent in the measured
values are found. The Hall effect can be relied upon on the average with a
precision of some 30 percent.

II. Nernst and Zttinghausen coegcients Bridgm. an and Lorentz have de-
rived the following relation:

Q; = xP/T.

We have inserted the subscript ~ to denote the isothermal Nernst coefficient.
The difference between the isothermal and adiabatic Nernst effects is not
made in the original papers, but is clear from the following derivation of this
law due to Bridgman. Ke consider a primary electric current Homing in the

Tz
I x

Fig. 3.

x direction. (Fig. 3) Because of the Ettinghausen effect this produces a tem-
perature gradient BT/By in the y direction (T2, T~). If we now imagine that
we let a heat current flow in the external (dotted) circuit and do work, then
this energy must be supplied by the primary current. The heat current which
Hows in the external circuit is

IV, = xBT/By = zPI,H

using the definition of I'. The power delivered by this heat current is ob-
viously (per cm in the y direction):

"P. %. Bridgman, Phys. Rev. 24, 644 (1924).
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BT ~PI,II BT8"„—
T 8$ T Bp

As this energy must be supplied by the primary current, the heat current
S', must produce an electric I', in the x direction against which the current
must flow by virtue of the Nernst effect (Z&, Z2). The power thus expended
by the primary current is:

It is clear that the isothermal value of Q; musr. be used here, as we must sup-
pose that the x direction in which a primary electric current Rows is at con-
stant temperature for the same reasons which are given in paragraph 4.
Equating these two expressions for the energy expended per unit time, we Find

exactly the desired relation Q, = zI'/T.
As this relation is derived from purely energetic considerations, we should

expect that it is exactly obeyed by the expressions we have found. This is
indeed so, and we proceed to give the proof for small magnetic fields. AVe

have the following expressions for weak fields: (76), (73), (11b):

HgII4 —HgHg

HP

We must then show that

1
HiH4' —HIH3' = (IIiH6 —HgH, ) .

2T
(88)

The integrals II,' and H4' are, by definition (38):

(89)

XVe have:

8 o 8 l9 1
s mo /2kr

BT BT (1/A)e~'/'"r + 1 BT A

m~' 1 dA
f lsmu /2kr +

2kT' A dT

On the other hand:
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itfa

Bv

mv 1
f 2 emu& /2kr

kT .4

itfo v hT dlogA 1
+

Bv 2T ~n dT
(90)

Inserting the value of Bfo/BT as given by (90) in the integrals (89), they be-
come

kT d logd ('" 8
H3' =

ll fo (l'v')d—v + fo (l2v) d—v
2T ~p m dT .&p

Qo kT d log A
fo (lv4)—dv + fo (lv')—dv

2T p Bv nZ dt p

A comparison of these integrals with those defined in (38) now shows that:

EXg kT dlogA
II3' = —+ Bl——

2T m dT

and therefore

06
574' —— + II2-

2T

kT d log A

'M dT

1
H, H4' —H.H3' —— (H iH6 —H..H g)

2T

which was to be proved. A comparison of the measured values of Q and of
zP/T is given the following table:"

TABLE V.

Metal
QX 10'
(~~f'T)

&104

Ag Al Ct.l Co Cu Fe Xi Zn Au Sb 8j—1.8 +0.42 —1.2 +7.8 —1.9 —9.5 +10 —0.73 —1.7 +176 +1780
—2. 2 +0.74 —0.90 +4.3 —2.0 —8.5 +6.1 —0.99 —0, 93 +110 +950

The agreement is certainly all that can be expected.

III. Bridgman's relation among the four effects. Equations (86) and (87)
lead immediately to another relation proposed by Bridgman, namely;

(90)

which also agrees very well with experiment. It is interesting to note that the
isothermal ~alue of Q appears in this equation, a point which is not stressed



by Bridgman. We can combine Eqs. (86) and (87), however, in a somewhat
neater manner by dividing the latter by the former. This leads to the rela-
tion:

RQ; '(k)'

which is course equivalent to (90). In this way we find a law among the four
coef6cients analogous to the Kiedemann-Franz law; in fact, the constant on
the right hand side of (91) is the Wiedemann-Franz constant. The following
table gives the values of RQ;/2 8 taken from measurements.

TABLE VI.

Metal Ag Al Cd Co Cu Fe Ni Zn Au Sb Bi
RQs/PSX10 ' 3.4 2.6 4 1 8 0 3 1 3.7 3.8 1.9 4.6 9.9 155

The numerical value predicted by (91) is 2.45 X10'. The agreement is worthy
of notice and surely within the experimental error, except in the case of bis-
muth and perhaps antimony. According to the classical theory

RQ; 16 = 1.7 X 10'
I'S 7 f,

Here the isothermal value of R is used. If we use the adiabatic value, a fac-
tor of 9/8 must be introduced. Although the values in the table check the
new theoretical result somewhat better than the old one, the experimental un-
certainty is so large that no such difference can be looked upon as convincing.
Much more convincing is the fact that the four individual efI'ects are better
given by the new theory than by the classical theory.

IV. Moreau's relation. Ke come 6nally to a relation proposed by
Moreau, "which is well con6rmed by experiment:

(92)

Here Q denotes the Nernst coefFicient and y the Thomson coeKcient (both
not more exactly defined). If we consult Eq. (83), we find

Q. —Q'= ~~
and using (86), this becomes:

Q. —Q; = piEo. (93)

We thus see that the relation of Moreau can be theoretically deduced, if we
interpret Q as the difference between the adiabatic and isothermal Nernst
coefficients, and p as the Thomson potential gradient coeKcient, and not as
the measured energy coefficient ps. The reason that (92) is well confirmed
by experiment is that Q =2Q;, and hence Q, —Q;= Q; and that according to

"G. Moreau, Cornptes Rendus 13Q, 120, 412, 562 (1900).
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Eq. (22d), pp= pz/2. Since not more than an agreement in order of magnitude
can be expected (the measurements of ps are hardly reproducible), Eq. (93)
agrees with experiment fully as well as (92).

(9). Wave mechanical re6nements.

Ke have seen that the results of our theoretical considerations have, on
the whole, been quite satisfactory and have the advantage of being relatively
simple. We must now, however, discuss the weaknesses therein and shall try
to give a general idea of how these remaining questions are to be solved. In
the case of the change of resistance of a metal in a magnetic field, we en-
countered a defect in the theory, and of course the fact that the theory offers
only a possibility of one sign for the galvano- and thermomagnetic effects
(corresponding to the negative charge of the electron) is very disturbing.
This difficulty, which existed in the classical theory, has given rise to many
speculations about the existence of positive carriers of electricity in the
process of electrical conduction. Another very unsatisfactory phase of our
theory is the necessity of treating the free path of the electrons as a more
or less phenomenological quantity, and to a less extent the more or less
plausible assumptions Iwhich are introduced concerning the number of free
electrons are not wholly free from criticism.

The removal of the aforementioned weaknesses can be accomplished by a
more rigorous wave mechanical calculation (as we have already mentioned in

the text) which treats the electrons no longer as free particles, but as material
waves moving in the field of the lattice ions or atoms. This more correct
model immediately frees us of the necessity of introducing the accessory quan-
tities, free path and number of free electrons, but offers in their place quan-
tities which demand a far more thorough knowledge of the interatomic fields
than is now available. At the time of writing, the results of the wave mechan-
ical calculations of conductivity are so complicated and contain so many un-
known quantities, that one cannot use it for a quantitative discussion in most
cases.

Bloch" has given the first complete wave mechanical calculation of con-
ductivity. There are several points in which his results add essentially to
those obtained by the more simple theory. In the first place, it is character-
istic of our theory that the collisions (or interaction) between electrons and
atoms (or lattice vibrations) have been considered as elastic (without change
of energy). That this is only approximately true for high temperatures and
not at all so for low temperatures, one can see from the following considera-
tion; if we consider the interaction between the electron "waves" and the heat
oscillations of the metal lattice, it is clear from the selection rules for the har-
monic oscillator, that such interaction can take place only when the electrons
gain or lose an amount of energy equal to hv with v the frequency of the lat-
tice oscillation with which the electron interacts. This small but definite
energy interchange is of importance because of the Pauli exclusion principle,
which allows such transitions to take place only if the end state is not already

~' F. BIoch, Zeits. f. Physik 52p 555 41928).
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occupied by another electron. Because of these "inelastic" collisions, the sta-
tionary condition which lies at the basis of the whole calculation must be
modified. This modification becomes important at low temperatures but does
not change the state of affairs much at high temperatures. In the former case
most of the possible end states are already occupied, whereas in the latter,
this is no longer true. This accounts for the increase of conductivity at very
low temperatures, since the collisions alone prevent an infinite conductivity
and insure the stationary state, so that if they are infrequent, the conduc-
tivity becomes correspondingly large.

There is another effect at very low temperatures which becomes important
in limiting the number of collisions. In Bloch's work it is assumed that the
oscillations of the metal lattice are always in thermal equilibrium. This equi-
librium is certainly disturbed by the collisions and if the time necessary for
the re-establishment of equilibrium is small compared to the time between
collisions, then Bloch's assumption is essentially correct. An investigation of
this point is carried out by Peierls, "who shows that the departure from har-
monicity of the lattice oscillations is responsible for the maintenance of equi-
librium (and for the heat conductivity of insulators). At low temperatures,
however, due to the reduced amplitude of the lattice oscillations, departures
from harmonic'ity are rare, and it takes a relatively long time for the lattice
of itself to come to equilibrium. In this case, the electron collisions become
the controlling factor in the maintenance of thermal equilibrium and the cal-
culations of Bloch must be accordingly modified. "

Characteristic of the motion of the electron "waves" is the dependence of
their energy on the velocity components (or more exactly, on the quantum
numbers of their states of translation). This is no longer given by the simple
relation 8 v'. Ke consider a metallic crystal and characterize the available
state of translation for each electron by the quantum numbers k, l, m. The
energy belonging to one of these states may be written:"

Ep~ = Ep —const. [cos (k/kp + cos (l/lp) + cos (sp/mp) j (94)

and the current for the same state in the x direction

Sp~ = const. sin (k/kp).

Equation (94) shows a most interesting result, in that the values of kp, lp and
mo are equal to one another only for cubic crystals. For small values of k, 3

and m, the energy is then given essentially by const. (k'+f'+m') just as in
the case of free electrons. But it is noteworthy that for non-cubic crystals
in this approximation the energy does not depend simply on (k'+P+mp). The
so-called normal metals all have a cubic crystal structure and the abnormal-
ity which is often present in metals which display other than a cubic structure
may be explained to a large extent by the "abnormal" dependence of the
energy of its electrons on the quantum numbers.

'~ R. Peierls, Ann. d. Physik (5}4, 121 (1930)."F. Bloch, Zeits. f. Physik 52, 555 (1928).
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Equation (95) leads to a most surprising consequence. For electrons for
which k&irko/2 the current increases with increasing k, but for those for
which k)irko/2 it decreases. In the latter case, therefore, an electron in an
electric field (the field produces an increase in k) is actually decelerated in-

stead of accelerated. Peierls" had made use of this fact to try to explain the
change of sign of the Hall effect. For such metals in which the values of
k &irko/2 the Hall e8ect will have the normal sign (corresponding to that of
bismuth) and for those in which k &irko/2 it will have the opposite sign.

Thus wave mechanics offers in principle the possibility of the removal of
the unpleasant features of the simple theory of free electrons. There remains
of course a large amount of work to be done in regard to a more complete
solution of the problems of conduction than has been obtained. A»mp«tant
step in this direction has been recently taken by Morse, ' who has attacked
the mathematical problem of finding the exact wave functions and their eigen-

values in a metallic crystal in a systematic manner.

APPENDIX

fl. In this appendix we bring together the values of a number of integrals
and combinations of them which are necessary in the text. There are the
following eight integrals which primarily interest us:

X, = J~ f. '( "
)d—v;tC. = )r J,+ )d.

Z, = )~ f( ,—)dv; t'C, = )" f, ( —, ,)A—

l'p2dv
E3= I foJ I + ii'I'/n'

p oo l2~4dp

E7 =
Jo I + ii'P/s'

lu'd~

J l + viz/&P'

fO 00

Fs=
J(l

lv'dv

+ ~2)2/p2

s denotes the velocity of the electrons, I their mean free path, p =eH/m with s

the charge, m the mass of an electron, and II the magnetic field strength.

fo is the Fermi distribution function:

with

(I/A) ~mv /24r + I ~u —u +

0 = eiv'/2kT; No = log A .

4Ve shall evaluate the integrals for the case p'l2/v'&(1 that is, for weak mag-

netic fields, and with l treated as independent of the velocity. These restric-

"R. Peierls, reference 9."P. M. Morse, Phys. Rev. 35, 1310 (1930).
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tions are not necessary, but are sufhcient for obtaining the order of magnitude
of the results. The case for which Ei and X2 are needed without approxima-
tion in p, i.e. II, is treated in detail in the text. In all the above integrals, we
write

j. p, 'l'

I + p2l2/s2
(A2)

and in the following (as in the text) H; is to denote the value of Z; for p, =0.
Introducing the variable u and the abbreviation w =my'/2k' in the in-

tegrals, we can now write:

2k i~' p" d ml'
Ei = P p

—e'l' — du

2kT ('" d
K~ ——l I fo—(u —wP)du

5$ ~ p ds

2kT 'I' r'" d
F =P fo (u'"——wl'u '")du

t5 ~p dQ

2kT ' I" dEe=l fo (u' ——wl'u) du
m p du

(A3)

It is convenient to write the remaining integrals in the form:

—Pel2HI = H3 —P~l2Hz

~2l2 p2l2
H2 = H4 — H2

2

~2l2
E7 = H7 — H5 = H7 —p'l'H3

3

p, 'l'
Es = Hs — H6 = H8 —p, l H4

(A4)

The integrals IIV and Bs are given by:

l' 2 k T '~' " d
H7 =— fo (u"')du—

5 sz p dN

l 2k T
Hs =— fo (u')du—

6 m 0p du

(A6)

The method for the evaluation of integrals of the type f,f,(dPi/du)du is
given in the paper cited on the first page. We shall carry through the evalua-
tion here to the third approximation, retaining the dependence on the mag-
netic field only in the first two approximations, and obtain:
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Carrying out the indicated differentiations, we find:

Eg — — l' i ——— 1 +

2 k Ts~o z l'
Eg = ——l

E5 = — l' 1 — + 1+ +-
2k Tuo ' ml'

(A9)

From these equations all the desired results can be obtained. We must first,
however, determine the value of uo = log A in the third approximation. The
condition which fixes No is the constancy of the number of free electrons. This
is expressed by the equation:"

& = —G

4vrG m ' Hg

Using (A8) we find immediately:

If' we now introduce the de Broglie wave-length ) defined by:

V = 4W/3n

and the corresponding velocity

(A11)

(A12)

19 Compare Zeits. f. Physik 4V, 1 (1928}Eq. (18}.



STATISTICAL THEORY OP METALS

then we can write

nS m) Sgo2 640+o4

2kTno ~2 )~4 —2 j3

(A 13)

This equation can be solved by successive approximations. Introducing the
abbreviation:

n = 2m'O'T/3m'

we obtain the following series of equations, which are later needed:

2~T+o
V2 1

m 28 20 8'

(A 14)

1 6nT n1+
n2 m284 V

36n2T'

(A 15)

2 ~284 84

d 1 144n2T

dT 1$o

It is to be emphasized that the quantities X and 8 depend only on n and are
assumed to be independent of the temperature. v is the critical velocity of
the Fermi distribution function for 1=0. It is not to be confused with 8 for
other temperatures which can readily calculated by means of (A10).

We now introduce the values of iso as given by (A15) in the equations
(A8) and obtain as final formulas:

@92 n T 2p2l2 11 n2T'
Kg = 128 1 — ——1+

8' 2v' 82 ]0 8s

p2)2
K. =/V2 1 —— nT 9 n' T'

284 20 8s

p212 n T

V 2V

13 n2T2-
K6 = 184 1 ———+—1+

V V' 8' 20 8'
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and for the remaining integrals of interest, using (A4), (AS) and (A9), and

the definition K ='dK;/d T:

p'l' nPE'=3
lp 2

9 n'l'T
Ev' ——nl'8 ——

5 8'

n'l T
84

(A1'/)

3 p, 2l2 12 n2l T
E ' = —nlrb'

2 3v 5 v

From (A16) and (A17) follow the values of the expressions appearing in the
text.

E),ES' —E5E4'
2p2l2 5 n2P T

nP8' 1—
Vz 2 v

EgE6 —E2E5

E.E8 —E6E4

Ej E4' —E..E3' ——

E1A.7' —E5E3'

nl'8T 1

nl'84 1

i'

(
nl'8' 1

2p, l

V"

9 n'-PT'

2p, 'l' —3n'l'T
g2

2p'l' 9 n'P T

8 10 8'

2p'l' 23 n'l'T

8' 10 84

(A1S)

It is to be noticed that in first approximation the following holds:

E,'= 0.

This follows from the fact that in first approximation all the integrals depend
only on the number of electrons per unit volume and not on the temperature.
One sees easily that if the expressions in the curled brackets in (AS) and (A 9)
are disregarded, as must be done in first approximation, the temperature de-

pendence of the integrals is removed. The reader can easily convince himself
that the expressions (A1S) vanish in this approximation even if one assumes
that the number of free electrons varies with the temperature.
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$2. The effect of the electron spin.

We shall in this paragraph show how the effect of the spin is to be taken
into account in the calculation of the preceding integrals. We here give the
method for the case of the integrals II;. The extension to the general case is
obvious, and is not treated here because it leads to eEects which are vanish-
ingly small in comparison to those here obtained.

In a homogeneous magnetic field of strength II, the Fermi distribution
function becomes:

E = e+/leP
(1/Al)e(c+»)I&r + 1

(A 19)

Here pe =eh/4s. m is the magnetic moment of the electron and e =-', ms'=-', m

(P+q'+P) is the kinetic energy. The constant A' is determined as usual by
the number of free electrons, the condition that this matter stay constant
takes the form:

2xesk e'I'de

h' J e (1/A")e" + 1 J, (1/A"')e

Here the following abbreviations are employed:

A" = A'e»i~r or u," = log A" = log A' + p,P/kT
A"' = A'e I'~a~" or uo'" = log A'" = log A' —u, +/AT

(A 21)

The integration of the equation (A20) can be performed according to the
formula (A 7), and yields in second approximation:

3nh' x'+ 37'= (2mkT logA')'" 1+
Sm 8(log A')'

~

with y =peH/IeT. Here terms containing higher powers of (y/log A)' than the
Erst have been neglected. For y =0, we have obviously:

3nh3
= (2mleT log A)'" 1+

8(log A)'
(A22a)

Dividing (A22) by (22a), and replacing log A' =u&' by ue inside the square
brackets of (A22), there follows:

or we can wnte

So 3~2 2/3 ~2=1-
No 8NO ~ 4NO'

(A 23)

with the help of (A21), we 6nd:
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+o = No+7 — = No+7
4eo'

2
III

No = uo —y —= No —y —~
4uo'

(A 24)

The values of the integrals H; can now be written without further calculation.
Ke shall denote these integrals by H, the upper index s showing that they
are calculated with spin. For example, II, becomes (in 2nd approx):

2kT '" m'H'=/' 1 ———[(u,")')' + (u '")')'] [compare (A8) ]:
m 24uo'

with the help of (A24) and the definition of Hi (without spin) there follows:

and also:

Hi' ——H i(1 —y'/4u4') H4'

H4' = Hi(1 —y'/4uo') H '

H4' ——H4(1 + y /2uo') Hs'

= H5

= H4(1 + y'/2u4')

= Hi(1 + 5y'/4u42)

= HH(1 + 9y'/4u4').

(A 25)

From these last equations follow by means of differentiation with respect to T:
(H4')' = H4'

(A 25)

[H ')' = H, '(1+—
) + (

—-

)
and finally with the help of (A18) and (A15):

37' 117'
(H,H, ' —H, H, ') = 1'"(1+ +

4uo'

(HiH4 —H4H4)' = aP8T

3H}))& 5 P2
(H, H, —H, H. ) =.).-(1+

2

o.'1 0 3'y
(H, H4' —H4H4')' = 1 + +

2 4uo

37'
)H,H ' —H,H, ')' = i')'(1 y +

(A 26)

These formulas have been used in obtaining the conclusions discussed in the
text, and suKce to allow the evaluation of those effects for which we have
omitted such details.


