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I. EARLY LINE BROADENING THEORY

N approaching the subject of line broadening the
original work of Michelson provides an entree which
utilizes the historical and phenomenological approach
simultaneously. The causes of line broadening advanced
in this author’s early work remain as valid today as they
were sixty years ago. So let us therefore utilize this work
as our starting point.

A. The Causes of Line Broadening (1895)

Michelson began his consideration of line broadening
effects by a summarization of the hypotheses which had
been advanced previous to that time to account for
these phenomena, and a verbatim restatement may be
of interest here.

“1. As a consequence of Kirchhoff’s law ‘the ratio of
brightness of two immediately contiguous portions of a
discontinuous bright-line spectrum constantly de-
creases, if the number of luminous strata is multiplied or
if the coefficient of absorption of the single stratus is
increased, until the value is reached which, for the same
wavelength and the same temperature, corresponds to
the ratio in the continuous spectrum of a body com-
pletely opaque for a given thickness.!®f

“2. The direct modification of the period of the
vibrating atoms in consequence of presence (sic) of the
neighboring molecules.

3. The exponential diminution in amplitude of the
vibrations due to communication of energy to the sur-
rounding medium or to other causes.

“4, The change in wavelength due to the Doppler
effect of the component of the velocity of the vibrating
atom in the line of sight.”

To these causes Michelson added:

“5. The limitation of the number of regular vibrations
by more or less abrupt changes of phase amplitude
or plane of vibration caused by collisions.

“6. The possible variations in the properties of the
atoms within such narrow limits as to escape detection
by other than spectroscopic observations.”%

Having presented the historical list, let us use it in a
phenomenological consideration of the general line
broadening situation.

* Now at Special Defense Projects Department, General Elec-
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We consider an emitting atom which we shall proceed
to remove to infinity and reduce the “temperature” to
the point where, classically at least, no translational
motion exists. Now from the classical picture of a
vibrating electron or the simple picture of a pair of
energy levels between which our radiating transition
takes place, we should expect these conditions to yield
a spectral line of a single frequency. We, of course, do
not obtain this result, but, rather, we obtain the familiar
natural line shape which is attributable to Michelson’s
Cause 3. We shall not specifically deal with the problem
of natural line shape.

Having observed the behavior of the emitted radia-
tion when the atom is removed from all neighbors, its
translation motion reduced, let us now give the atom a
certain translational velocity. As we are, of course,
aware, the resulting atomic “heat” motion leads to a
line broadening which Rayleigh first demonstrated as
due to the Doppler effect.”

B. The Doppler Effect in Line Broadening

First, let us define the word “intensity” of emission
(absorption) as the energy emitted (absorbed) per unit
area per unit time. Then, if one makes a plot of fre-
quency vs intensity for this ‘“‘almost homogeneous”
radiation, one obtains a distribution of intensities over
a small frequency range giving rise to a spectral line of
definite shape. We are desirous of eventually obtaining
the intensity distribution.

We suppose our emitting molecule possessed of a
velocity component £ in the line of sight of the observer.
Then if the molecule is emitting radiation of wavelength
\, the Doppler effect decrees that our observer will
receive radiation of wavelength )\, such that

N=N1—E/c)

in which expression we assume that £<c.

The distribution of the velocities in the line of sight
is given by the Maxwellian distribution as exp[ —B&*]
where

(1.1)

B=m/2kT. (1.2)

In Eq. (I.2) m is the molecular mass, % is the
Boltzmann constant, and 7T is the temperature in
degrees Kelvin.

From Eq. (1.1)

£2=2N(Av)% (1.3)
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In Eq. (1.3) X may now be considered as the wave-
length corresponding to the maximum intensity of the
line (line center), and Ay as the frequency increment
between the line center and the frequency whose dis-
placement corresponds to the line of sight velocity £.

Thus, if one arbitrarily equates the line center in-
tensity to one, the Doppler effect alone produces a
distribution of intensities over the spectral line which
may be represented by the expression

mA%(Av)?
I=exp[———~——]. (T.4)
kT

Let us define the quantity “half-width” which we
shall designate by the symbol 6 and which we shall
encounter rather frequently throughout our considera-
tions of line shape. Quite simply, this quantity is defined
as the width—a frequency measurement—of the spectral
line at an intensity equivalent to one-half the maximum
intensity in the line. In the present case then

2/kT 4
5=—(—— 1n2) .
A\ m

These equations are Lord Rayleigh’s solution to
Michelson’s Point 4 and our explanation of the results
of “warming” our atom.

We next bring this emitter in from infinity so that it is
surrounded by other atoms and inquire as to the effect
of these neighbors on the radiation which is emitted.
The answer to this inquiry is furnished by Michelson’s
Causes 2 and 5. Indeed these line broadening causes are
quite as valid from the contemporary viewpoint as from
any earlier one.

Cause 2 provides an explanation of the statistical
theory which we shall consider in a good bit more detail
at a later point. For the statistical considerations we
shall find it necessary to proceed from a classical con-
sideration of electron vibrational frequency disturbance
to atomic energy level distortion, but the analogy is
quite precise.

Cause 5 underlies what has variously been called
collision broadening, impact broadening, velocity broad-
ening, and what have you. We shall designate this
phenomenon interruption broadening, the mathematics
of which were originally contributed by Michelson.

(L5)

C. The Application of the Fourier Analysis
to Line Broadening

In considering the Michelson development, we shall
begin by referring to Fig. 1. The circles in the figure in
question represent the broadening atoms while the
arrow we suppose to be the path of the emitter amongst
this assemblage of broadeners. Now Michelson used a
billiard ball atomic model so that a collision between the
emitter and a broadener will have taken place when the

Fic. 1. A physical model for the interruption theory.

separation of the emitter and broadener centers is equal
to or less than their mean atomic diameter. Let us
suppose that at point “c’” on our emitter path such a
collision has just taken place. Then Michelson supposed
that this collision has the following effect.

For all practical purposes we may suppose that the
classical oscillator model of the emitting atom began
emitting at time minus infinity and will continue to do
so until plus infinlty. The collision which occurred at
“c” has the effect of rendering the radiation emitted
prior to the collision completely incoherent with the
radiation emitted subsequent to this time. This is the
crux of the argument for it forms the basis for the
Michelson broadening mechanism.

Thus, according to our theory, since a collision has
just been undergone at point “4”” (on Fig. 1), radiation
will effectively begin at this point. If 7 is now the time
which elapses before the next collision, this is also the
time during which radiation continues. Finally the
radiation is terminated at point ‘“c,” and we are left
with a wave train of finite length ¢r where ¢ is, of course,
the velocity of light.

Now we may recall that the functions, e** form a
complete orthonormal set, in terms of the members of
which any function may be expanded. Further, each of
these functions represents a wave train of appropriate
frequency and infinite extent. Thus, if we expand our
finite wave train in terms of these functions we are
essentially expressing the finite wave train as a sum of
an infinite number of wave trains of infinite extension.
In this expansion the amounts of each train which we
take are regulated by the magnitude of the vibrational
amplitude. As a result of all this, we obtain

M@= f] (w)ettdw (1.6a)

which is, of course, the familiar Fourier expansion with
amplitudes given by

J(w)= f M (f)e~*tdt=const f eiwoma gy (1.6b)

where wo is the angular frequency of the cut-off wave
train.
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The last integral is, quite naturally, carried out over
the intercollision time 7, with the result

sin[ (v—vg)7 ]

J (v) = const: (.7

(v—ro)7

We now suppose the Fourier components which have
been expressed as Eq. (1.7) to represent the observed
spectral line. Intensity, from the classical viewpoint, is
always associated with the square of the amplitude, so
that Michelson supposed the distribution of intensities
within the line to be given by

sin?[ (v—wo)7 ]
I=const———m——,

(I.8)f

(v—vo)?m?

If we now suppose the width of the spectral line to be
the separation of the minima to either side of the line
intensity maximum, the width is

lc ¢

(1.9)

Michelson found that Eq. (1.9) gave an order of
magnitude agreement with experimental data. Some-
what better agreement was achieved by him when he
took the “half-width” as given by Eq. (1.9) and added
it to the half-width Eq. (1.5). As Michelson noted the
problem is not herewith solved, but it will be of interest
to see if “. . . such able contributions . . . recently
. . . justify the prediction that a complete and satis-
factory theory will be forthcoming in the near future.”®’

Finally, Point 1 is of no particular interest to us, and
Point 6, although it shrewdly predicts isotopic spectra,
is related to a “pseudobroadening” with which we shall
not concern ourselves.

It seems particularly interesting to note the correct-
ness of the factors which Michelson listed as causing line
broadening, correctness at least from the contemporary
viewpoint.

Certainly of great historical interest is the Lorentz
theory of line broadening which appeared some ten
years after Michelson’s considerations. For our pur-
poses, however, suffice it to say that this theory con-
sidered the mechanics of absorption in obtaining an
interruption type result.%

II. STARK BROADENING

In a study of the line broadening problem that portion
of the work done in the field subsequent to the period
which we have designated “early” attains such volumi-
nous proportion that some subdivision of the problem
must be attempted. We shall divide the field into areas
dependent on the phenomenon involved, at least insofar

1 We shall see that the mere application of a random distribution
of intercollision times to this intensity distribution yields the more
familiar Interruption shape.
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as this is practicable. Our areas of consideration will
then be: (1) Stark broadening by the electric fields of
the perturbing atoms. (2) Statistical broadening. (3) In-
terruption broadening. (4) Resonance broadening by
like perturbers. (5) Molecular broadening. We shall
take up these sometimes overlapping areas of considera-
tion in the order in which we have enumerated them.

Holtsmark’s Stark broadening treatment is ad-
mittedly a statistical one, but the phenomenon with
which his treatment deals is sufficiently unique and,
perhaps more important, the subsequent treatments of
the phenomenon are sufficiently removed from anything
statistical that the assignment of his work to this
section seems the proper one.

In the theoretical treatment of the Stark broadening
there have essentially been three general treatments
each of which remains of importance within its range of
applicability. The first of these is the venerable
Holtsmark classical treatment of the ionic Stark broad-
ening. The second is Spitzer’s quantum treatment of the
same problem. The last is the quantum treatment of
Stark broadening by electronic fields. We shall consider
these three theories in precisely this order.

A. The Simple Holtsmark Theory

Following Lorentz’s treatment of broadening by
atoms other than the emitter almost fifteen years were
to elapse before another detailed study of the problem
was to be carried out. This study was, of course,
Holtsmark’s classical consideration of the broadening by
ionic fields.

Asweare presently well aware, the Michelson-Lorentz
theory of line broadening falls far short of explaining the
various shifts which spectral lines may be made to
undergo and the shapes which they may be made to
assume. Now Stark'® himself had suggested that some
forms of line broadening might be due to fields of the
surrounding atoms. Holtsmark?®? developed the idea
and carried out the analytical attack which demon-
strated precisely how these fields might be responsible
for this broadening. To this attack we now turn our
attention.

We begin by dividing the atoms which surround our
emitter and cause broadening into (1) ions, (2) dipoles,
or (3) quadrupoles and further specify that there will be
only one type of field producer present. A certain spatial
configuration of these surrounding, broadening atoms
will produce a certain electric field at the emitter. Since
all field producers will be of the same type, the only
difference between one electric field and another will be
a difference in perturber configuration. This is simply
because the other factor which enters into the field
strength determination, the electrical constants (ionic
charge, dipole moment, quadrupole constant) are just
that, constants. Now the heat motion of these perturbers
will result in various electric fields at the emitter which
will occur, of course, with various probabilities. If we
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suppose a random spatial distribution, then the proba-
bility of a particular field strength will be a function of
the spatial configuration and hence expressible as a
function of the field strength itself. Finally a given field
strength will be responsible for a certain Stark splitting
of the emitted spectral line. Since the field strength
probability is a function of the field strength, the proba-
bility of a Stark splitting appropriate to this field
strength will also be a function of the field strength.
This line of reasonlng and the probability expression
obtainable because of it are all very well, but the
mechanics of the broadening remains to be particu-
larized.

We now suppose our spectral line to be split into its
Stark components by a linear Stark effect due to one of
these fields of magnltude, say, Fo. We agree that the
distribution of intensities in the split spectral line is
given by I (Fo,v). If our electric field were F, we should
obtain a different intensity distribution in the split line,
and so on. The spectral line which we actually consider
is made up of contributions from all these possible
intensity distributions, each distribution weighted by
the probability of occurrence of the electric field re-
sponsible for the contribution. Then in order to obtain
the intensity distribution in the Stark broadened line
we must sum over all such distributions weighted by the
probability of the distribution occurrence

Idv= f ) I(F»)W (F)dF, (IL.1)

where the W (F) are the field strength probability func-
tions which we shall consider later.

The probability expression of Eq. (II.1) we can calcu-
late but the expression for the intensity in the split line
I(F,v) is something else again. The actual expression is
an extremely complicated one within the limits of the
outermost Stark components, but an approximation,
which proves quite satisfactory, does exist. Quite simply
we suppose I (F,») to be a constant within the limits of
the outermost Stark components and zero outside these
components, A rectangle of height I(F,») and width
2v,—wherein we suppose different F values to yield
different heights and widths but the same area, g=2v,,.
I(F,v)—then results.

This rectangular assumption would appear to require
a little change in our integral limits in Eq. (IL.1). Let us
suppose ourselves interested in a frequency » on the final
spectral line. (This must not be confused with what
might be called the initial spectral line, that is, our
rectangle.) Then only those rectangles will contribute to
the intensity at this frequency for which »,,> v while
rectangles of lesser »,, will not contribute. Thus, for a
given frequency in the final spectral line, we integrate
over all electric field strengths greater than the field
strength producing a splitting equal to this frequency.

Equation (II.1) then becomes

4 © g
Idv=dv f W (F)dF=d» f Z W(F)dF, (11.2)
F! 2Vm F’ aF

where the relation 2v,,= aF arises from the linear Stark
effect, and F’ is that field for which »,,=v.
In evaluating Eq. (I1.2) we must first evaluate W (F).

B. Probability of an Electric Field Strength
at the Emitter

Holtsmark® began with the assumption that the
probability of a particular field strength Fy is a function
of Fy, and set out to determine this probability.

Let the components of the field strength at 0 due to
the nth perturber be X ,, ¥, Z.. The components of Fy
will then be given by

N/ N’ N/
Xo=Y Xn; Vo= Vi Zo=3 Zn (IL3)
n=l1 n=1 n=1

We desire the probability that X, lies between X, and
Xo+dX 0, €tc.

Let the position of the #th broadener be specified by
the o coordinates %15, %2n, * * *, Xon. Then the Xy, ¥Va, Z,
are functions of these ¢ coordinates. It follows that the
Xo, Yo, Zo of Eq. (I1.1) are functions of the N’¢ coordi-
nates thus introduced. An N’e dimensional space is next
set up, and to each point in this space there now
corresponds a stipulated field strength. These points will
be distributed in space according to some probability
law, or what amounts to the same thing, some density
function.

The probability that all N'o coordinates lie in the
range dwyy, dXa1, * * +y d%on 1S

(IL.4)

It should be noted that this coordinate distribution
establishes our electric field strength within a certain
small range.

We integrate Eq. (I1.4) over those portions of space
satisfying the requirements X, between X, and Xo+dX,,
etc. Subsequently the proper Dirichlet factors are
introduced, and we obtain

W(XoYZ0)dXdY odZo

Wy "ledxudxm' . -dxl,dle- . -de:,.

4o
1
B dXodYodZofffdfdnd{-ei(fxﬂ'ﬂyﬁ‘fzo)

h 8t

1
L -
Ve

all space

Xei(fzxn‘*'nzyn‘f‘fzzn)dxll. . .dx”N,' (II_S)

The X,, Y., and Z, are functions of the %1, - *%n
while the X, Yo, Zo are constants in all the integrations.
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It should be stipulated now that all the broadening
atoms are considered the same, that is, the Stark
broadening is not treated for the case where, for atoms,
more than one element acts as a broadening agent. In
this event, identical electric field strength components
X ny Y, Z, will be the same functions of %15, Zan, * * *, Zen.
It follows from these considerations that for identical
Xny Yoy, Zn, w1, wy, -+, wy will all be equal. As a
consequence the inner integral in Eq. (II.5) can be
broken up into a product of N’ identical integrals, each
of which is integrated only over the ¢ coordinates of a
single atom. The result is

W(XoYZ)

+00

= f cee f dEdndie— i EXorY ot 20N’ (T1.6a)

8t

. N
X[f . -fe“fx*'””madxldxz- . -dx.,] . (I1.6b)

all space

Subsequent to assuming three types of broadeners—
that is to say, (1) ions, (2) dipoles, and (3) quadrupoles

—Holtsmark carried out a rather lengthy calculation

(which we shall not detail) for the field strength proba-
bility functions. The result for the dipole is

1 C3
W(XoYZp)=——. (IL.7)
7’.3 (63?+F02)2
We note that ¢3=4.54uN where y is the dipole moment
of a broadener.

A “Normalfeldstarke” may be defined as

Fo=c3=4.54uN (I1.8a)
with 8 then defined as
B=Fo/F,.

Now we replace the volume element dXodYodZo by
472F?dFy and Eq. (IL7) results in

(I1.8b)

W(Fo)(lFo = 47FFOQW(X0YOZ()) d}"o
4 pHdp

4 1 Fy?
= L A= . (I1.92)
r (14892 ¢ r (14822

Figure 2 furnishes a plot of W (F,) vs 8 as given by
Eq. (11.9a). After we have obtained W (Fy) for the ion
and the quadrupole, we can consider the significance of
these plots.
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In the case of the ion

1 Co Fn ¥
———— (-—-—) :;)Fn=(]2%=2.61N;€-
B: Fot \F,

If we take as the mean separation of two of the particles
70(4/3)mr®N=1 where N is, as usual, the particle
density, then this mean particle separation would give
about the same result for a normal field strength,
namely, for F'=2.60N%.

The ion result is

W (Fo)dFo=W (XY oZo)dwF2dF,
4
=3—ﬂ2dﬁ[1—-0.462/32+o.1227ﬁ4
s

—0.0232585+--+7.  (IL.9b)

Equation (II.9b) converges only for small 8. For large
B one obtains

a8 2.555
W(Fo)dF0=——1.496[1+-—~
g Bl

1443 O
+—-- J (I1.9¢c)§
63 59/2
The plot resulting from Holtsmark’s versions of
Egs. (IL.9b) and (I1.9¢) is given in Fig. 2.
Finally the probability of a field strength Fo is re-
quired for the quadrupole and has been found as

4 d 0.730
W(Fo)dF0=~—o.sos[1——-—
m BT gt
0.328 0.621 0.163
- | — ] (I1.94)
gtoops g

for small values of 3.
Again B=F,/F, where F,=c,!.

w

Fi1c. 2. The field strength probability function for the three cases.
(After Holtsmark.??)

§ Holtsmark obtained

. __ag 5.106 7.4375
W(Fo)dlv0=;~r5i2.350[1+~—§i— ~IR ]
but a check of the work preceding is sufficient to show that this is
not correct. Also see Verweiz8® as reported by Unsold?” which is
almost correct.
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For 0<B<1, Holtsmark obtained

4 4
W (Fo)dFo= —ﬁz(wgn —2.448
" +11.2584— 72854+ --].  (IL.9)

Equations (I1.9d) and (II.9¢) yield the quadrupole
curve in Fig. 2. Figure 2 tells us that, since the proba-
bility of zero field strength is zero, we must expect some
broadening due to the Stark effect under any conditions.
The maxima of the three curves give us the most
probable field strengths in the three cases, and it may be
noted that the slopes of these probability curves vary.
The positions of the maxima indicate that the ion yields
the greatest relative broadening, the dipole the inter-
mediate, and the quadrupole the least. It should be
recalled, however, that, since 8 depends on a different
“Normalfeldstarke” Fy in each case, these comparative
considerations cannot be directly carried over to com-
parisons of broadened lines in the three cases.

Equations (I1.9) now give the probability W (Fo) for
the existence at a certain time of the field o due to one
of three causes, which is to be utilized in Eq. (I1.2).

C. Line Shape and Half-Widths According to
the Early Stark Theory

When Eq. (I1.9a) is substituted into Eq. (IL.2), the
result is

4 r* g BdB g
Idv=dv- — =dy - (I1.10)
7 Vg aF, (14-3%)? 2aF, v (148
in which g'=2(v—wvo)/aF,=2Av/aF,, so that
2g al,
I)y=—————. (IL.11a)
r a*F 244 (v—r)?
The half-width of the line can be seen to be
6=aF,=a4.54Np. (I1.11b)

The dependence of the line half-width on the electric
dipole moment and the gas density is apparent from
Eq. (I1.11b). With which comment we turn our atten-
tion to the ion and the quadrupole.

Equation (I1.2) may be rewritten as

2vn=alF,B (I1.12)
© W (B)dq,
Idv=dv—g——f —-(B)—B (I1.13)
aF,, B’ 3

DI1-OR QUADRUPOLE

Py

Fic. 3. Spectral line shape as predicted by the Holtsmark Stark
theory. (After Holtsmark.28)

=1/2 0 1/2 3/2 2

Fi1G. 4. The line shape according to the Spitzer theory for single
encounters as a function of phase shift. (After Spitzer.”)

Holtsmark evaluated Eq. (I1.3) graphically for the
cases of the ion and the quadrupole. Figure 3, represents
his results for the intensity distribution for all three
cases. In Fig. 3 the abscissae have been changed for the
three perturbers so that the half-widths coincide, thus
giving a curve shape comparison. The half-intensity 8’s
for the ion and the quadrupole may be obtained from the
curve as 1.25 and 0.67, respectively. These values of 8
yield the half-widths:

Ton: 8=1.25aF ,=3.25aN*? (I1.14a)

Quadrupole: §=0.67aF,=5.53aN%4. (I1.14b)||

Equations (I1.14a), (I1.14b), and (IL.11b) show the
dependence of the half-width on the electrical properties
of the perturbing molecule through € (charge), u (dipole
moment), or 4 (quadrupole constant) and also on the
gas density through N.

D. The Introduction of Finite Molecular
Diameters

It may be recalled that we have essentially considered
the atoms involved in the theory as points, in that,
when the integration was carried out over the atomic
positions in space, no portions of space were excluded on
the basis of previous occupancy. In 1920 Debye'® com-

|| Debye? obtained approximate expressions for these field
strengths and hence, an idea as to the behavior of the half-widths
as follows: Electric charge is taken as 5)X 107 gt-cm?-sec™? and the
radius of the molecule as 1078 cm. We assume that (a) the ion has
charge 5X1079 gi.cmisec), (b) the moment of the dipole is
5X 10718 gt-cm5/2 sec! and (c) the quadrupole constant is 5X 10726
gh-cm™2-sec™1. Since the electric field has the units g#-cmi-sec?,
and since we may assume the field to be the product of either (a),
(b), or (c) and some power of N (molecules-cm™3), thus yielding
approximate expressions for the electric field in each of the three
cases. Hence, we obtain for (a) F=eN?, for (b) F=uN, and for
(c) F=6N*3 or 4500 esu, 135 esu, and 4 esu, respectively. Multi-
plicative constants would yield the values obtained by Holtsmark.
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mented on this “punktformig” assumption to the effect
that this was responsible for the infinite value resulting
for second moment of the probability distribution. This
appears to be a reasonable objection, and so Holtsmark
evidently considered it, for in 1924, he attacked the
problem again,* this time with finite diameters assigned
to the atoms under consideration. Gans? had approached
the problem earlier under the assumption of finite
diameters for the emitting atoms, but he had retained
the point assumption for the broadening atoms. As
Holtsmark noted, this would be a good assertion for the
case where ions are the field producers, since we would
normally expect the ions to make up only a small
portion of the total number of atoms present. On the
other hand, these assumptions would not appear to be
valid for the dipole or quadrupole case. Gans further
found a Gaussian distribution for very high field
strengths, “. . . wie zu erwarten war.”

In this development, Holtsmark retained the simpli-
fying assumption which classifies the broadening atoms
as ions, dipoles, or quadrupoles, that is, he again took
only the first term in the series for the potential. Since
these assumptions are predicated on large R (radius), it
is apparent that when the gas density or pressure is
high, R no longer remains large enough to justify them.
How high ‘“high” is, is, of course, a matter for dis-
cussion.§ For these ‘“high” densities the calculations
cannot be carried out, but the field strength distribution
in these cases is assumed Gaussian. Holtsmark thus
limits himself to those gas densities where the first term
in the potential series does give a good approximation of
the electric field.

We begin with Eq. (ILS) rewritten in a slightly
different form.

™

Fo ® G
W (Fo)= —2— j; dss sin (Fos)—Q—E—?)-, (I1.15a)
where

G(s)= fdaweiE(EXn+nYn+s’Zn) (I1.15Db)

Q(s)=fsdrr

and where the integration over the angular coordinates
has been carried out.

Now in the computation of L(s) and M(s), the
finiteness of the atomic diameters is to be taken into
account. In the earlier computation, it was possible to
transform Eq. (IL.5) into Egs. (IL.6), a product of
identical integrals. This was legitimate, due to the
independency of the atoms in that the motion of one
atomic point is not interfered with by the other atomic
points. This integral product is no longer admissible

(I1.15¢)

T In a somewhat similar consideration, Spitzer (see infra, this
Chapter) takes as a limit a pressure such that R=10r, where 7, is
the radius of the Bohr orbit.
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after finite diameters have been assigned the atoms, for
we may not now allow the center of an atom to be
separated from the center of another atom by less than
this atomic diameter. We let

= — pisFy cos
Han=e n Xn

(I1.16a)
so that

Nt
G(S)= dO’wHEn

% k—1

=f E1’w1d0'1f Eowados
k1 k:

2

v f f Eyavydoy  (T116b)
knt

where the first integral is carried over the space not
occupied by the other (V'—1) atoms and the Oth atom
(emitter). Thus, the first integral is dependent on the
coordinates of the other atoms and must be included
under the integral sign of the second integral, and so on.
This fact obviously does not simplify matters. The
difficulty may be eliminated, however, by selecting a
suitable initial distribution for atoms. This selection
would appear to be justified, since our results should not
depend on the arbitrary initial distribution of the
atoms. As an initial distribution we group all the atoms
together at a point, of arbitrary initial selection but
remaining fixed during the first V'—1 integrations. The
position of the first atom is chosen for this union. After
locating the atoms in this manner, we may move atom
N’ about space in the process of the integration, while
keeping the remaining atoms at position one. This
process is carried out for N'—1 of the atoms. Without
belaboring the details of the remainder of the calcula-
tion, let us remark that Holtsmark obtained

4 FeF
O L
7 (F24-F)

where F/=4.54Nu.

The factor in brackets in Eq. (I1.17) is identical to
Eq. (I1.9a) the probability for the case of point atoms,
while the remaining factors essentially correct it for
finite diameters. Gans had already obtained the cor-
rective factor e’ which, it may be noted, is independent
of field strength, and thus does not take into account
any field strength changes. As a consequence, this factor
will not influence the broadening. We should remember
that Eq. (I1.17) breaks down for very large field
strengths, and the Gaussian probability function must
be utilized. Equation (I1.17) may be written as

3F?—Fy

0

Wiy
O 1y

3__2

e“’/3{1+b } (IL.18)

14+7
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where
n=F/F’.

A simple calculation shows the maximum of the
probability curve to fall at n=1—b, while this maximum
is at p=1 for the dipole on the uncorrected curve. The
resulting line width is changed by the same percentile
amount.

E. Dipole Line Shape from Refined Stark
Broadening Theory

Although Holtsmark did not work out the line shape
for this corrected case, let us make the short calculation
necessary to obtain an idea of this shape. We shall
utilize Eq. (I1.13) and assume that for » <9<,
Equation (I1.18) yields the correct form of W (5) while
for "’ <9< « Erfi(y) yields the correct W (5). We are as-
suming " very large. Equation (I1.13) becomes

’r

d¢ o -7
I(v)dv=dve®' - f { 1+5 ]d'r)
waF, vV (147492 1+

4 g ®
+dv— f Erf(n)dy
7!'an e

n
4 g e¥ (24-5b)+ (244b)n

raF, 4 (147")2

FO(4'"). (I1.19)

The spectral line given by Eq. (IL.19), if we neglect
the O(»”’) term, will still be symmetrical about the line
center. For small b, and b has been assumed small, the
curve shape as given by Eq. (I1.19) is very nearly
identical with the shape given by Eq. (11.10). A good
approximation for values of & up to 0.0020 is

1+2b —%e“'” (1+2b)aF .,
A+9? = @F 244 (v—9.)?
8 G/

™ (r—v0)*+(8/2)

Holtsmark calculated & for four monatomic and four
diatomic gases on the basis of Debye’s work®® and ob-
tained values of 5<0.0020 in all but one instance.

ea’ 3

7w 2aF,

(I1.20)

F. The Line Shift .

We might now, with Holtsmark, consider another form
of broadening which may arise. Suppose the line is not
split to give a band for the field strength F as was
assumed in deriving Egs. (I1.10) and (IL.20), but that
it is simply displaced by a frequency Av. Now for a
linear Stark effect the right (or left) side of the W (¥,)
curve is the intensity distribution curve for the broad-
ened spectral line, since the probabilities for a shift of
the line by an amount corresponding to this field
strength, and, hence, the relative intensities at those
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frequencies. If + is the line shift per unit field strength,
we may read the shifts of the line intensity maxima di-
rectly from Fig. 4 as

Av=1.5yF, Ton (I1.21a)
Av=1.0yF, Dipole (T1.21b)
Av=0.65vF, Quadrupole. (I1.21¢)

Thus, this type consideration gives an asymmetrical
spectral line whose maximum intensity has undergone a
frequency shift. Qualitative examples of this shift and
asymmetry had been given by Takamine and Kokubu?®?
for certain He lines and for many metal lines by
Takamine.%

The Holtsmark Stark broadening theory has its
region of applicability although, it is not, of course, the
complete answer to the problem. Some conclusions as to
applicability were drawn by Holtsmark as a result of his
comparison of theory with experiment.

Two possibilities arose from these comparisons. (1)
The Stark effect, if it is a factor, is not the only factor
which contributes to the broadening of a spectral line.
With this statement there can be little disagreement.
(2) Simultaneous broadening by both ions and dipoles or
quadrupoles occurs and the fields produced may be
inhomogeneous ones.

A further comment in definition of this inhomogeneity
may be in order. Let us consider, say, an alkali atom in
which we may only be concerned with the spectrum-
producing valence electron. For our purposes here we
can deal either with a Bohr orbit for this electron or
those regions of space where Yydo is relatively high for
the electron. Then in order that the fields producing
Stark broadening be homogeneous for this case, these
fields must be essentially constant over the region of the
orbit or of high Yydo.

We have restricted our gas to low pressure in order
that the results may be valid, and another restriction
has been inferred but not actually stipulated. If a given
field F at time ¢ is to broaden a line into one of the
rectangles which have been assumed for the various
values of F, the F must be a constant for a time interval
sufficient to allow the atom to emit under conditions
which will produce this rectangle. The field at the
emitter varies due to the motion of the atomic broad-
eners,and this means that an upper limit, which depends
on the lifetime of the upper of the two quantum states
involved in the emission, must be placed on these
atomic velocities, and hence, the gas temperature.

These considerations also demonstrate the necessity
for forbidding the application of this theory to the fields
of neighboring electrons.

G. The Adiabatic Quantum Broadening Problem

We first remark that Epstein'® has shown that, when
the problem of the Stark effect in hydrogen is considered
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in parabolic coordinates, one obtains

h?

E®=

n(kz—k1)=—q; (I1.222)
7

2ue

for the linear Stark effect, and

J I AN
E®= ____(_)
16p2\ €

XA 1Tn2— 3 (ka— k1) —Om2+19] (I1.22b)

for the quadratic Stark effect.

Spitzer began with three simplifying assumptions:
“(1) the matrix elements of the interaction potential
between states of different total quantum number may
be neglected, and . . . the other matrix elements may
be computed on the assumption that the atom is in a
homogeneous field of strength Ze*/r- - -. (2) Each colli-
sion . . . may be assumed isolated from all others.
(3) The mass of the colliding particles may be taken
infinitely large.”’”

Assumption (1) supposes a homogeneous field F over
the “boundaries” of the atom, or, say, over the electron
orbit. If a field is imposed from “outside” there can be
little objection to this. Now, however, we are supposing
our field to be produced by an ion, and, if the separation
of the hydrogen and the ion 7 is not large compared to
the average distance of the electron from the hydrogen
nucleus (r,), this approximation surely breaks down.
Thus, some lower limit R must be set on 7, and Spitzer
chooses this limit as R> 10{r,). Now (r.) may have as its
maximum value 37a,%/2- - -ay is the radius of the first
Bohr orbit—so that R>8.0X1078 #? where » is the
total quantum number. The exchange integrals as well
as quadratic Stark effects will be small for these dis-
tances as we may show by Egs. (11.22).

AV]_ E(l) 24n (kl—'kz)R2

Avs E®  wA[17n2—3(ka— k)24 9m2+197a>

When k;—k; is set equal to #/2 and m and 19 are
neglected, the result is

Av; 3R* 27/ R \?
—= =—(—-) > 150.
Avy 4ant 16 \(r,)

This is the binary assumption which, together with
the third assumption, will become familiar ones. It is
certainly obvious that the treatment of a two particle
interaction is far simpler than the treatment of a three
or more particle interaction. In addition, it is rather
apparent that at the lower pressures the approximation
should be a reasonable one by virtue of the following.
The highest probability is that the separation of a single
one of the surrounding molecules from the emitter is
sufficiently small to insure that its interaction over-
shadows that of the remaining broadeners. It might be
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said that, although Assumption (3) is reasonable for
heavy particles, this will certainly not be true where the
ions are electrons.

In considering the broadening problem we suppose
the change in the potential as adiabatic so that the
quantum state of the system will remain unchanged
during a collision. Let us digress for just a moment on
the subject of adiabatic processes, since we shall en-
counter them continuously in our further consideration
of line broadening theories.

An adiabatic process may be considered as one in
which the entropy of the system—or the degree of
disorder thereof—remains unchanged. Now if the proba-
bility that an atom is in state X has the value unity
before and after the occurrence of some phenomenon
which affects the atom ““system,” the degree of disorder
of this system remains unchanged and hence, the
occurrence of the phenomenon constitutes an adiabatic
process. On the other hand, if the probability for state X
is unity at the initiation of the process and changes by
virtue of the occurrence of this process to 0.6 for state
X, 0.3 for state ¥, and 0.1 for state Z, the degree of
system disorder has changed, and in consequence, a non-
adiabatic process has occurred.

In the present adiabatic case, a two state atom with
an upper state 4 and a lower state B is considered
where E4 and Eg, respectively, are the energy of the
two states.

Since the electric field is assumed directed along the z
axis of the emitting hydrogen atom, and since this
electric field is radial from the perturber to the emitter—
this, of course, would only be strictly correct for the one
perturber assumed—the coordinate system will rotate
with the passage of the ion so that the z axis is always
directed toward the ion. Adiabaticity requires that this
rotation occur for the following reason. The quantum
number m specifies the projection of the angular mo-
mentum on the electric field of the ion. In order that m
remain constant as required by the adiabatic hypothesis
the atom must rotate with the changing direction of the
ionic field.

We now define 3C as the atom-field Hamiltonian, ¥ 4 as
the eigenfunction for the upper state (no photons in the
field), and ¥s; the function for the lower state (a photon
of frequency »; in the field).

The Schroedinger equations,

ey O=Ey (t)'»ba (t)
Ty =[Ep(t)+hv; Wni(t)

(11.23a)

(11.23b)
result.

In Egs. (I1.23) ¢is a parameter, and E4(2) and Eg(f)
are the atomic level energies as perturbed by the linear
Stark effect of the ionic field.

The state growth equations are

thi=E4 (t) +d(lf)+z GCabib,(t)
ihb;= {Ep(t)+hv:}b:i()+3Criaa(l).

(I1.242)

(11.24b)
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As usual we suppose ¢(0)=1 and ;(0)=0 to obtain the
solutions

y t
a(t)= -Wexp{~; f EA(t')dt'} (I1.25a)
0

’L.(}Cb,'a

7 ¢
bi(t) =— exp[ —Zwivit—£ f EB(t')dt,]
0

t

3
f et gy exp{21riwt’+—
0 /2

% f ’ [EB(t”)—EA(t")]dt"}. (I1.26b)

By time ¢= o the emitter will certainly be in the
ground state, and a photon of frequency » will be in the
field. The intensity distribution in the spectral line is
surely given by |y () |2 since this will represent the
probabilities for the appearance of these various fre-
quencies. If we call I’ (v) the intensity of the frequency »
there results

(SC b ia)2

I'(v)=
()=—

© i
f et gy exp{Zm'u;t'—f——-
0 /2

2

X f [Es(t")—EA(t")]dt”] . (11.26)

A few algebraic manipulations lead to

W(T,
I(x)=—7~{1+ (E)Tzfr“(é)}, (I1.27a)
2 Y
where
+° exp[i(éu—T tan—'u) |
= d 11.27b
o= e (am)
and
xR vt” QA_QB
f=—y; u=—; '=1"+t; T= (I1.27¢)
v R ARy

where ¢ has been defined by Eq. (I1.22a). W (T,£)=v/R
is the number of collisions per second.

From Eq. (I1.27a) it is possible to show that for &
small (v large or the density small and hence p large) the
interruption distribution (which we consider in Chapter
IV) holds. It is also possible to demonstrate the appli-
cability of the statistical distribution (which we con-
sider in Chapter III) for ¢ large (v small or the density
large). Finally, Eq. (I1.27a) may be integrated, if rather
laboriously—an operation which we shall not detail.

Figure 4 gives the results of Spitzer’s calculations
for several values of T. Zmax is nothing more than
(ga—gs)/AR2. The limiting value for T= o corresponds,
of course, to zero velocity according to Eq. (IL.27c).
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Thus, this value of T should yield the line shape as given
by the statistical theory.

These then are the Spitzer results for the Stark
broadening of a line due to the adiabatic collision of the
emitter with a broadener of a particular velocity and
distance of closest approach. A detailed consideration of
the nonadiabatic case for the first Lyman lines of
hydrogen showed that the breakdown of the adiabatic
hypothesis (for this particular case) necessitated the
replacement of T by o where now ¢?=1-+72, We might
remark that there is no particular reason to expect the
same replacement for any other situation since the
problem applies solely to these first Lyman lines.

The problem which remains consists of the averaging
of Eq. (I1.27a) over the requisite distributions of the
optical collision diameter (distance of closest approach)
and the velocity.® Together with the sum over the
various type broadeners these operations result in

1<x)=l2{ iiis (C

T Y™ Yo
% f W (o) T f2(E)dp b (I1.28)

W (p,v) is the collision frequency for collisions of
diameter p and velocity v. The introduction of a
Maxwellian velocity distribution and a random collision
diameter distribution leads to an integral whose evalua-
tion requires approximations and graphical evaluations
which we shall not detail. Equation (I1.28) may be
rewritten without much difficulty, however, as

i)

N (qap—qBm)?
X2 %(vl)*ﬂm(x)} (11.29a)

m

where
0 vi/v2Vu d
H (@)= f v f £20% (1w.20)
0 0 £

_ (gam— qu)lmx ) _ (qu— qu) (I}

M= YeTFT—————

h ks

1 MBmH
lpy=———  (I1.29¢)
2-RT MB—i—mH

and NV, is the broadener density in the collision class .
The Holtsmark 8 of our classical Stark considerations
may be obtained by the transformation

W (8)dB=1I (x)dax==E*W (B)
3 _ Y2 Hu(x)N,

(I1.30a)

mtm
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Fi1c. 5. The line shape for a single H line component. The solid
line is the Holtsmark result. The dashed lines arise from the simple
interruption theory. (After Spitzer.89)

where
x5%

B= . (11.30b)
qa—qs

These results through Fig. 5 afford a convenient
method of comparing this theory with the interruption
and statistical theories as well as demonstrating the
predictions of the theory itself.

The horizontal lines in the figure represent the inter-
ruption result—the oft-called Weisskopf result—for
several values of v, Inner agreement is actually ob-
tained only for y»=0.047. This is a demonstration of the
error involved in the failure of the simple interruption
theory to include the effect of distant collisions and
nonadiabaticity. We mention this fact with no special
emphasis, since we shall go into a much more detailed
consideration of these facets of the interruption theory
in Chapter 4.

One other rather obvious point seems worthy of
mention in connection with Fig. 5. Equation (I1.29¢c)
tells us that . is directly proportional to the density,
since it is inversely proportional to the mean molecular
separation. The result is that as the density increases
the theory tends toward the statistical theory, and
conversely, as the pressure decreases, the theory tends
toward the interruption theory. This may be seen
directly from Fig. 5. These are facts which we shall
encounter on several subsequent occasions, but this
seems a particularly simple way to demonstrate these
facts about the two types of theories. One more item of
interest may be garnered from a perusal of the figure in
question. The parameter v, in addition to being density
dependent, is inversely velocity dependent through /..
[see Eq. (I1.29c)]. Firstly then, it is rather obvious that
we tend toward the statistical theory with decreasing
velocity—this too we shall later divine from different
considerations. ,

In tofo the quantum Stark theory is restricted by the
approximations: (1) linear Stark effect; (2) binary
collisions; (3) broadeners of infinite mass. These re-
strictions tend in general to restrict the applicability to
low pressures such that R>7, and ionic (as opposed to
electronic) broadeners.

R. G. BREENE,
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Spitzer’s and Holtsmark’s work on ionic broadening
still appears to leave the field of electronic Stark
broadening rather neglected so that for this area of
consideration we must turn our attention to recent work
of Kivel, Bloom, and Margenau,*® and Meyerott and
Margenau.%

H. The Broadening Effect of Electrons

Perhaps the prime reason for the inability of the
theories which we have thus far considered to deal with
the broadening of spectral lines by electrons is their
implicit assumption of a classical path. When an ex-
pression for the perturbation due to the broadening
particle depends primarily on an emitter-broadener
separation, then a classical path assumption has surely
been made. Now the Heisenberg uncertainty principle
tells us that such an assumption constitutes an ex-
tremely poor approximation when the particles involved
are electrons, so we must look to a completely quantum
treatment of this type broadening.

The familiar time dependent form of the Schroedinger

equation
(Bc—iﬁa%)x//=0 (I1.31)
we suppose satisfied by the expansion
\I’=}; %" aus (¥a (1) a™(R)
Xexp[—i(Ea"+E)i/B]. (11.32)

The Hamiltonian appearing in Eq. (I1.31) may be
written out as
3C=3C4(r)+3C,(R)+3¢" (r,R)+3C"(r) (I1.33)
where 3C,(r) is the Hamiltonian of the isolated atom;
3C.(R) is the Hamiltonian of the electron in the field of
this atom; 3¢'(r,R) the Hamiltonian of the atom-
electron interaction; and 3¢” (r) the Hamiltonian of the
atom-field interaction. The eigenfunctions of the ex-
pansion Eq. (I1.32) are given by

(c«za+ f ¢A":fc'¢A"dR)¢nA=EnA¢nA (I1.342)

and
(gce+f$nAgcl¢nAdr) ‘PAn= é’A"gonA. (IIS4b)

The substitution of Eq. (11.31) into Eq. (I1.32) re-
sults in the state growth equation

iHamar expl—i(Eam+En)t/i]
:g %n dnAGCmn”f¢Mm¢AndR
Xexp[—i(8a"+En)t/h]
+ % 5rau [ purdenodR

n#Em A

Xexp[ —¢(Ea"+E)t/h] (11.35)
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wherein we must recall that the electron eigenfunctions
are not orthonormal.

The second term on the right of Eq. (I1.35) represents
what Kivel, Bloom, and Margenau (KBM hereafter)
have called the “polarization effect.” For the two states
of our atom degenerate or nearly so this term is actually
a polarization term. For such not the case the combina-
tion of these states through this term represents a
quenching effect. We shall consider this in a little more
detail at a later point, but let us now turn our attention
to the subject of this section which is representable by
the first term on the right side of Eq. (II.35).

The first term represents what these authors have
dubbed “universal broadening,” or, perhaps more con-
cisely, it represents the interaction effect responsible for
this phenomenon. The effect was termed universal since
it will always be present by virtue of requiring no change
in the atomic state. It represents a radiating atomic
transition during which a change in the interacting
electron energy takes place.

In our sketchy treatment of the mathematics of the
situation we shall begin by neglecting the 3C,. in Eq.
(I1.35). We thus consider a two state atom whose
transition simply takes place in the field of a broadening
electron. The coefficient @y we take to be associated
with the upper of the two states wherein no photon is in
the radiation field. The coefficient b,y refers to the
lower of the two atomic states in conjunction with
which a photon of frequency w, is in the field. Further
B = 8a'— 83" and w,=watom—w. Next we shall
accept the exponential decay quality of ax, the proof of
which may be found in Kivel, Bloom, and Margenau.
At any rate, one may then obtain for the line intensity
distribution

IU(w)=T,%|b,M(oo)|2

% ' f‘Z’MOWnIdR[
=1,|3¢'/#|*

. (T1.36)
Y24 (0@ m)?

The introduction of the time development matrix
representation for a(f) and 5(¢) and a goodly bit of addi-
tional manipulation of an algebraic nature leads to

T|J/k|? R
To= { 1+ } (I1.37a)
b o? i o?
where
R=3" T2 Ram;
A o
(TL.37h)
Arm Bay
Ryu= f
YA (0= u)? Y2+ (w+Qam)?
and
——y Y (T1.37¢)
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F16. 6. Electron density versus energy. In the region below the
curve the universal broadening effect is negligible compared to the
natural line width. (Kivel, Bloom, and Margenau.402)

In"Eq. (I1.37b) the first term in Ry arises for the
situation in which energy is not conserved during the
radiation process. The resonance condition,

QAMZOJ

we suppose to exist. Then, when w,>w, the radiation
has received more energy than the atom gave up. It
hasn’t received this additional energy from the electron,
however, since the electron too has gained energy. The
effect, resulting from this nonconservative phenomenon,
these authors point out, will be small. The second term
in the expression for Raay represents energy transfer
which adds up in such a way that conservation can be
claimed. This may be demonstrated as was the first case.

The remainder of our consideration of this treatment
will be just sufficient so that the terms with which we
shall be presented will be defined with a degree of
clarity. To begin with the electron-field interaction may
be written as

,~_i . [¥a(r)]?
Inn' = IRl+ef—_—lR_rldr

We may surely write the unperturbed electron func-
tions as plane waves

1
u,\:\—/—; exp(tky- R)

where now kj is the electron momentum vector. At the
same time we define a momentum transfer vector
K=k ,—k, which enters our considerations through the
electron eigenfunction products arising in the matrix
elements. Also

1 f KR5e, JAR= (30,) 1 47!'62[
- e nn = mn JAM™="" Gnn_l .
% v ke :

One finally obtains for the universal broadening line
shape

_ T3/ tyo)
@+ (y+yv)?

(I1.38)
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Fic. 7. The collision frequency as a function of velocity according to various of the electron broadening theories.
(After Meyerott and Margenau.t6)

The line width of this distribution is given by
6=2vy=2fSuv, (I1.39)
where we now must needs define the additional terms:
f=2nvp0n/y=)os=m(h/mvy)*

In Fig. 6 is given a representation of the region of
applicability of this theory. The curve represents a value
of one tenth for the ratio yy/, that is, the ratio between
the universal and the natural widths. Below the curve it
does not hold due to certain approximations which were
made in the expansions for the time development
matrices for a(f) and b(¢). As we get farther above the

curve (very high densities) a statistical type (static)
theory may be used.

As Meyerott and Margenau have pointed out, Sy may
be approximately written as

Sy=4.3(1—¢41%). (11.40)

The collision frequency (v,=+vy) obtainable through
Eq. (IL.39) from Eq. (I1.40) is plotted in Fig. 7. Also
indicated in this figure are collision frequencies as
obtainable from certain other theories of electron
broadening. First let us consider the Unsold result.

We suppose the frequency perturbation due to the
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atomic charge distribution at r to be
€
Aw=-U(r).
7

Then the Weisskopf form of the interruption theory (we
shall consider this in detail in Chapter IV) yields

Yo=Nvrpe® (I1.41)

where po is the minimum transit distance for perturba-
tions effective in broadening.

The classical result which has been obtained by
Lindholm—and which we shall also consider in Chapter
IV—is

.n
Ye=Nv f 4arpdp sm2§ (1I1.42)
0
and the phase shifts may be calculated from
2 2 p
1==f@)== [ (Un LG+~ UuL D) ds
v v Yy

wherein we remark that particular atomic states have
been specified. The potentials are those of the atomic
distribution—averaged over angles—that act on the
broadening electron specifically

1
Uis(r) =—[-—+ 1]3‘2'.
alr
The quantum form of the Lindholm result,
Yo=NvZ oi[1—cos(m—ni)],  (IL43)
1

also appears in Fig. 7. Meyerott and Margenau have
used the calculations of Swan and Massey and
Moiseiwitsch in addition to their own for the phase shift
evaluations in this equation.

The comparisons between the universal broadening
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Fic. 8. Potential curves going with two different electronic states
for consideration in connection with the statistical theory.
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effect of KBM and these other theories should be rather
apparent from the figure in question.

Let us now conclude our study of Stark broadening by
an inclusion of the second term in Eq. (I1.35).

As we have remarked, this term results in what these
authors have called “polarization broadening.” The line
shape is of the same form, and when both the polariza-
tion and universal effects are included, one obtains

I(w)
(w—wo)*+ (y+vu+vp)?

where, as for the universal effect,

y=2NvsSp
-+ IGnmlz
SpEf dx (11 44a)
0 «?

Gun= [e% 0 0Wa0)r. (1Laat

KBM have given a comparison of the universal,
polarization, and ionic Stark broadening effects for the
Lyman « line which we reproduce:

Universal broadening: yu/v= 0.13
Polarization by reorientation
(2p0—2p1): yei/y= 0.027
Quenching (2p0—150): vo/vy  0.0013
Polarization by induction
(2p0—250) : ypo/y= 2.7
Tonic stark broadening: 7 stark/ v = 80.

As concerns ypy, YPs, v @ We note that they all arise from
the second term in Eq. (I1.35). The only difference is the
specific off-diagonal matrix element which is involved.
Depending on what this element is, one can physically
qualify the phenomenon involved as “polarization by
induction,” “polarization by reorientation,” or “quench-
ing.” For example, if we reorient the dipole from m=0 to
m=1, we obtain the ‘“polarization by reorientation”
effect.

III. STATISTICAL BROADENING
A. A First Approach

Any consideration of statistical broadening may per-
haps best begin with some mention of the Franck-
Condon®'8 principle, for if we are to point to any one
concept as fundamental to this type broadening, then it
is to this principle that we must apply ourselves. As one
might suppose, the Franck-Condon principle was first
enunciated by Franck and enlarged and clarified by
Condon. Having startled the reader with this opening
statement, let us consider the principle itself.

In doing so we consider the potential curves of Fig. 8.
Although the principle in question was first advanced in
connection with the constituent atoms in a diatomic
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molecule, our considerations will relate to two free
atoms. The potential curves of the figure we suppose
give the energy, as a function of atomic separation, for
two atomic states. In the form in which we shall utilize
it, this principle hypothesizes that the atomic transition
takes place vertically on the figure, that is, it supposes
the interatomic separation R to remain unchanged
during this transition.

Jablonski®® first utilized this principle in advancing a
qualitative explanation of spectral line broadening.
Now during an electronic transition we suppose (as a
consequence of the Franck-Condon principle) that (1)
the separation and (2) the relative velocity of the
interacting emitter and broadener remain unchanged.
Let us again consider Fig. 8 in detailing the fashion in
which such a pair of assumptions may be expected to
lead to line broadening.

Firstof all, the level separation at infinite interatomic
distance corresponds to the frequency of the emitted
radiation in the absence of any broadening perturbations.
Next let us suppose the transition to take place when the
atomic separation is R,. Under these conditions the
level energy separation will be different from the un-
perturbed separation, and radiation of a different fre-
quency will be emitted. From this it follows (and we are
supposing binary collisions for conceptual clarity) that
the line intensity maximum will be shifted to the fre-
quency corresponding to the most probable atomic
separation. Around this maximum will then be distrib-
uted other frequencies—corresponding to other separa-
tions—with the intensity (probability) of these fre-
quencies corresponding to the probabilities for the
various separations requisite for the frequencies. As we
shall later see detailed the type of spectral line will
depend on the type of interaction curve.

This process has been described by Oldenberg™: " and
Minkowski® as one in which the difference between the
“natural frequency” of the atom and the frequency
observed is made up from the relative velocity of the
two particles involved. To our two potential curves—
which, we remark, must be different in order that any
but one frequency be emitted as a function of separation
—there will correspond two different kinetic curves.
Now, although the relative velocity will remain constant
during the transition, it will change (in that it will be
governed by a new kinetic curve) subsequent to the
collision. In this fashion one can create a picture of this
radiation-kinetic energy exchange.

B. Statistical Theory

In a series of papers on the subject Margenau®5—5862
has developed the statistical theory from the qualitative
explanation of the last section to the sophisticated,
contemporary theory.®? In his earlier studies of the
subject, he devoted himself largely to the specific
treatment of the van der Waals broadening, primarily,
it would seem, because he felt this was the explanation
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of the broadening by foreign gas atoms possessed of no
permanent poles. From our present apparent vantage
point, the Holtsmark theory appears to be simply an
explanation of Stark broadening which we may neatly
categorize and apply at the proper time. At the time it
was written, however, it was meant to be a little more
than this. It was advanced in order—at least so the
author tells us in the original article—to supplant the
earlier Michelson-Lorentz theory which had been found
wanting in general applications. It was found wanting,
as we might suppose, since it requires the possession of a
permanent pole on the part of the broadener. Margenau
essentially advanced the van der Waals force as a
broadening agent quite applicable to such situations
and, at the same time, created the theory which was to
provide the framework within which this broadening
agent could be utilized. Some time later, however, he set
forth the development of the generalized theory which
we shall detail and from which the earlier work may be
obtained.

The broadening we attribute to some sort of forces
which act between the two atoms. Now these forces
give rise to potential curves of the type which we have
discussed in the preceding section. Let us further sup-
pose that the differential energy level distortion due to
these forces is given U=)_; U, where U, is the interac-
tion between the emitter and the 7th broadener. The
assumption of such additivity of potentials, of course,
supposes that there are no interactions between broad-
eners, an assumption corresponding to the assumption
of point broadeners in the simple Holtsmark Stark
theory. The mathematics of the statistical theory is now
devoted to answering the following question: What is
the chance that a configuration of broadeners exists such
that a displacement of the spectral line corresponding to
U results? This “chance” is, of course, precisely the
intensity of the displaced frequency in the broadened
line.

In detailing the mathematics of the situation, we
must begin by determining an expression for the po-
tential. Firstly, we suppose this potential to depend on
some inverse power of the emitter-broadener separation
since van der Waals, dipole-dipole, and many other
interactions of a type which we shall wish to investigate
are dependent on such a separation. Primarily in order
that the potential may change sign—this is not to say
that this does not describe the physical situation—we
also introduce a spin interaction #(£) such that (%)
disappears in the mean. If the assumption as to %(£) is
incorrect, it will lead only to incorrect numerical factors.
All of which leads us to the following choice for the
potential :

U= arf”u(&) (IIII)
where

—1 for E,<0

H _1<gz<1-
+1 for. £>0

w(E)= (I11.2)
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We suppose the volume occupied by the entire gas to
be (4/3)wR%. The distribution of broadeners may be
taken as random™* so that the probability that the
emitter-broadener separation be 7 is

dV 7 sindddd pdr 3
— = (=) p(r)dr=—1%r (11L.3a)
14 (4/3)wR? R?

and of a spin £

dl
p(s)d£=7=%d£. (IT1.3b)
The probability that the spectral frequency radiated
by the emitter differs in energy from the unperturbed
frequency by an amount between U and U+dU is

3
I@av=11 fuf ridrdt.  (ITL4)

The integration in Eq. (ITL.4) is to be carried out over
those portions of space which yield the perturbation in
question. This integration may be extended to one over
all space by an application of the proper Dirichlet factor

§
I(U)dU:—— ff"l"'7'nd7'1"‘d7’nd51"'d£n
2R3

1 psin[(3dU)s
. — f _____?_..__]ei’!‘sds
T s
3
= deffrl-wrnemdrl-n
47 R?
all space
Xdr,dgy: - -dénds  (1I1.5a)
where
T=> U;—U. (I11.5b)

Now we have supposed there to be no interactions
between broadeners so that the »# product integrals here
are identical, and we may rewrite Eq. (ILL.5a) as

00

Wa(0)=— f U4 (s (ITLGa)
™ vV o

where

An(s)= { f p(D)ds f p(r)dr explisar-in(8)] } " (IIL6b)

Using no subterfuge whatever, we may rewrite Eq.

(I11.6b) as
An(s)=[1—-3B(s)/2R*] (II1.7a)

where

+1 R
B(s)= d 1— isar—7 2dr. (II1.7b
s) f_ R f (1—exp[isar—iu(®)rdr. (IILTD)

** A Maxwell-Boltzmann distribution was found by Margenau
to have little effect.
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Equation (IIL.7a) may surely be expanded according
to the binomial theorem. In the result we allow R to
approach infinity which converts our binomial expansion
into the infinite MacLaurin series for

A(s)=exp[—2rNB(s)]
so that our Eq. (ITII.6a) becomes

(IIL.7¢)

1 b
W)= f exp[—isU—2xNB(s)ds. (IILS)

T Yo

Next, Eq. (II1.7b) may be integrated over & so that

-0
B(s)=2 f (1—cossv)r2dr (I11.9a)
0
where
v=ar7, (I11.9b)
If we let
1=, (I11.9¢)
B may be written as
B=2%(a|s|)¥i f 8 sinFdF (111.10)
0

where integration by parts has been utilized and
I"Hospital’s rule applied. This application of "'Hospital’s
rule results in the restriction of 7 such that j>$. This is
actually no restriction on the theory, since none of our
interaction laws will require a value of less than 2.

For convenience, let

(4/3)a®i f §%isinFdF=g;  (IIL.11a)
0
so that
2wB(s)=g;|s|%1. (TIL.11b)

Our probability W (U) is a real affair, and the
utilization of this reality and Eq. (IIL.11b) in Eq.
(I11.8) yields

1 0
W(U)=- f exp[ —Ng;s¥7] cos(sU)ds (111.12)
0

™

since the integrand is an even function.
By evaluating Eq. (II1.12) for the case U=0 (no
shift)

W(O)=%rr (2) (N;)*' |

Margenau demonstrated the interesting result that the

(I11.13)

line center intensity decreases as N—#3,

If we define a function I; as,

L 3/
Ii(x)= f exp[—— (Z) ]cosudu (TI1.14a)
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QUADRUPOLES

F16. 9. Dipole and quadrupole line shapes according to the
statistical theory. (After Margenau.5?)

then Eq. (I11.12) may quite readily be written as

rIlU]Ij(UEo)

U= (Vg

w(U)=

(IT1.14b)

where
(TI1I1.14c)

All of which leads us to the departure point of special
cases, and, with Margenau, we shall consider three,
namely, broadening by (1) permanent dipoles, (2)
quadrupoles, and (3) forces which do not change sign.

In the dipole case we have j=3 so that from Egs.
(II1.14c), (1II.11), and (III.14a)

Us=2%rNa; I;(x)=

1422

so that Eq. (II1.14b) becomes

W(U)= (II1.15a)

(U4 U

or, when we recall that U=/ (wo—w)
Uo/Hr

(wo—c)+ (Uo/)"

This is of some interest, since it is the Michelson-
Lorentz or dispersion form of the line shape.

A consideration of Eq. (ITI.11a) and Eq. (III.14a)
should suffice to justify the statement that numerical
calculations or series expansions are requisite for the
evaluation of the integrals in these equations for other
values of 7. Margenau has carried out this numerical
evaluation for the quadrupole case, j=35, and the
resulting curve I5(x)/x is compared to the one for the
dipole case in Fig. 9.

As our third example we consider the van der Waals
force as the broadening agent. In this instance we take

W(w)=

(IT1.15b)
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the same sign so that the spin interaction factor in the
potential energy expression is simply equated to unity.
As we have remarked the statistical theory was origi-
nally developed by Margenau in conjunction with a
consideration of these van der Waals forces.

Under these conditions we obtain in place of Eq.
(I11.10)

B(s)=2 f " (1= ety

= —i%(a]sl)“"f 3/ exp (1F)dF
0

1
=4|s|¥ig=—/|s|%i(g'+ig") (IIL.16)
2m
corresponding to which one obtains

1 00
W(U)=- f exp(—Ng's7)
0

m™

Xcos(sU+g"s¥'N)ds (I11.17)

for forces which do not change sign. For the van der
Waals interaction m=6, and Eq. (II1.17) may be
evaluated utilizing the ¢’ and g’ values obtainable from
Eq. (I11.16) with the result

1 0
I(Ay)=- f exp[ —ZxN (2mas)?]
0

™

Xcos[s(Av)— 2w N (2nas)t Jds

[ 4 7r3aN2]
exp| ——

9 (V— V())
which is precisely the result Margenau had originally

obtained for this special case. The half-width of this
distribution is

2m/a

(v—w0)?

(I11.18)

5=0.827a N2 (II1.19a)

and the line shift

— (2
Avimax= (37)%aN>.

(IT1.19h)

We have compared the van der Waals distribution
predicted by the theory with an observed line in Fig. 10.
Although the good agreement in the red wing is ap-

Fic. 10. A comparison of the theoretical prediction of the
statistical theory for the van der Waals forces with an experi-
mental result. (After Margenau.5¢)
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Fic. 11. An example of Margenau’s application of the integrable block and triangle function
to the statistical theory. (After Margenau.57)

parent, we note the poor agreement between theory and
experiment in the blue wing. Albeit other limits (such as
the low velocity approximation) are imposed on the
theory, one reason for the discrepancies appears worthy
of mention at this point. Were the theory itself com-
pletely free of limiting assumptions, the precise potential
curve for a given broadening situation would have to be
known in order that a precise agreement between the
theoretical results and the observations could be ob-
tained. In general (although one could probably say in
all cases) the potential curve due to the interaction be-
tween emitter and surrounding broadeners is known
with but little accuracy. Thus, an approximate curve
must be used which may be a reasonable assumption but
which cannot be expected to detail the behavior of the
potential energy and from which we can hardly expect to
obtain completely correct broadening answers. Along
this line, Margenau had, in one of his early studies of the
situation, considered a block and triangle approximation
to the interaction potential curves and then numerically
integrated the results of inserting these approximations
into the line shape integrals. As an interesting example
of the method we give a few of his results in Fig. 11.
Particularly in the study of forces by means of line
shapes does it appear that this technique might have
some interesting possibilities.

C. The Jablonski Theory

Jablonski felt that a wave mechanical theory of line
broadening should be developed and that this develop-
ment might well follow the line of attack utilized by
certain authors in their treatment of molecular rotation-
vibration spectra. To this end Jablonski’s paper of
19373 and those which followed?*—3® were devoted.tt

We begin, with Jablonski, by assuming that our
absorber (emitter) and the N’ foreign gas atoms, whose
perturbing influence shall be responsible for the broad-
ening of the spectral line, go to make up a very large,
(N’41)-atomic molecule.

1t One of these articles® was not available to the author. The
material contained in this article, however, is covered by subse-
quent_papers which were consulted.

In treating the molecule Jablonski applied the tech-
nique which had originally been developed in connection
with molecular electronic-vibration theory, that is to
say, he supposed the (N'+1)-atomic molecular eigen-
function to be a product of one electronic and N’ two
atomic eigenfunctions each of these latter is concerned
with the interaction between the emitter and one of its
perturbers. Since such is the case, the probability for the
shift in the emitted radiation frequency will be partially
dependent on the matrix element whose evaluation is
possible through a utilization of these eigenfunctions.
The calculation inferred is one familiar from inelastic
scattering theory.

We now suppose that we know the probability distri-
butions Pi(x1), Pa(xs), + -+, Pn(xn') of the quantities
%1, %3, * * -, Zn+. Then the problem with which Jablonski
was faced was the determination of the probability
distribution of

NI

X=Z X

i=1

which by the judicious utilization of an inductive proof
he was able to show was

’

[ Ponax- fA ) [a (X)etV'+ :zzl( - )

X W ( X)e—r(N’—"O]dX . (111.20)

Let us make the connection between Eq. (II1.20) and
the development somewhat more apparent. To begin
with we shall wish that x,=E/—E,, that is, this
variable refers to the translational energy separation
between two levels & propos to the two particle system
consisting of the emitter and the <th broadener.
Jax P(X)dX gives the probability for the small indi-
cated range of the variable for the translational energy
of the N'+4-1 particles comprising the emitting-broaden-
ing system. As to the terms within the right-hand
integral the first term represents the probability for no
translational energy change in the system; the first
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Fi1c. 12. A physical model for the calculation of the optical collision
diameter probability.

term within the sum (the second term on the right of the
equation) gives the probability of a binary collision,
that is, of a collision between the emitter and one
broadener; the second term within the sum gives the
probability for an emitter-two-broadener collision, and
so on. The probability distribution in question then
allocates the requisite relative importance to the various
types of collisions and may certainly be of some interest
under certain broadening situations, although it has not
been utilized in any problems. What we now do is
effectively ignore our result, Eq. (ITI1.20), and again
suppose binary collisions. Thus, we content ourselves
with an interest in W® (X).

Now the probability that the emitter-broadener sys-
tem in a state #/l shall undergo a transition to a state »'’]
is given by

WO(X)= WD (Ey— En)

lmax gDn’n"z dn'
= l e
50,
S Do
n/=1
Imax j)n’n”z an’
- o0 a
[, o

lmax an'
[ owAuwi—a
j(; dE

n!

(IT1.21)

wherein we have utilized the relations S=9e% Dprnr
=Mod prnrr, and Dyrnv is the matrix element for the
electronic transition. Q(!) is the probability of occur-
rence of a certain / and dn’/dE,  the density of levels in
the upper state. In the case of emission we replace
dn' /dE, by dn' /dE,.

We consider probability Q(f) of a particular / value.
Firstly, let us make an appeal to correspondences (on
the assumption of high ! values) in order to equate the
classical and quantum angular momenta:

(2mE)}p=[1(+1)Ph=0D)dl=Q (0)dp (II1.22)
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where, as usual, p is the distance of closest approach of
broadener to emitter.

We turn our attention to Fig. 12 for an evaluation of
Q(p)-

In the figure, one half the atoms may be considered as
moving toward (or across) the plane 4-4 from the left,
while the remainder proceed toward the plane from the
right. The probability under a random probability
assumption, that a collision of optical collision diameter
between p and p-+dp occurs is thus the volume of the
tube shell of thickness dp divided by the total volume
available to the broadeners. We suppose the assemblage
to be confined to a sphere of radius R. In consequence

f 2mwpdpdy

Y0
Q' (p)dp=—————=—Fmaxpdp
(4/3)rR* RS

from which when we suppose

3
Q' (p)dp= ﬁd (%)= O’ (p)dp

hZ

I+1)dl.  (II1.23)

4R*mE

Next the evaluation of 4, leads, for Eq. (II1.21),
to the result

3r U’ (ro\?
WO X)= (1— )
ax B
R3|—
dr r=rg
L(h+1)

x[1~(1~lt(lt+1))%]+§(x,z,). (IT1.24)

The asymptotic form (I=1;) of W®(X) is
3rE(1=U"(re)/En-)?
aX

dr

WO(X)=

(I11.25)
R3

r=re

and a corresponding form results for the emission line.

Although it is from Eq. (III.25) that we shall obtain
the line shape, let us remark the implications of a
complete calculation.

It has been tacitly assumed that there is one interac-
tion curve for the upper electronic state and one for the
lower. This is not generally the case for there may well
be several interaction curves for each electronic state,
and for single encounters we would then have various
WO(X) (see Eq. (I11.20) for the various pairs of
curves. Our W® (X) would then have the form

WO=Y a.W®(X). (1T1.26)
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It should also be apparent that since each A n-
would be different for each W;®(X), each 4,/ would
have to comprise a separate calculation for each
W:®(X). When one considers that we have here dis-
cussed only single encounters, the complexity of the
accurate computation for multiple collisions appears
rather staggering. In general, we do not know one such
pair of curves with any accuracy, however, so we shall
content ourselves with having mentioned the general
case.

In Eq. (II1.25) we now suppose the potential function
to depend only on some inverse power of the collision
partner separation—Aw=(1/4)X =K /r,"—so that this
equation becomes

l 2a"" Aw
' 3KET

4rN K3 (1
1(Aw) e

3
(@)= ) . w2

Equation (IT1.27) corresponds to the statistical result
after an approximate fashion in the wings of the line, the
second circumstance restricting the theory to this
region.

The fact that the Jablonski theory simply leads via
another route to the Margenau statistical results renders
its practical value somewhat limited. However, the
worth of the theory appears to lie in the quantum
treatment involved, and, perhaps, some additional re-
sults may be drawn from the theory itself by a slightly
different use of the approximations or the replacement
of certain of them. Foley used certain approximations to
show that his form of the Lorentz result could be ob-
tained from the Jablonski theory. This led to a mild
controversy, but the flaw in the theory which we have
just considered lies not so much in the fact that a
judicious utilization of approximations results in some-
one else’s theory—this is usually the case—but in the
necessity for the approximations which must be used to
obtain any results whatever, for these are the limiting
features.

IV. INTERRUPTION BROADENING

A. The Interruption Theory for Zero
Collision Time

Now we have remarked in Chapter III that the
Holtsmark Stark broadening theory was originally
advanced partly due to the belief on Holtsmark’s part
that the Lorentz—and consequently the Michelson—
theories could not be expected to withstand the advent
of the quantum theory. Beginning with Lenz’s appeal to
correspondences in 19246 however, a large number of
authors have devoted themselves to demonstrating the
incorrectness of such a viewpoint, quite often in no
uncertain terms. We shall give one short consideration
of quantum classical equivalence a bit later, but now we
consider the early work of Lenz only in order to extract
from it his major contribution to the development of the
interruption theory.
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We have seen the fashion in which Michelson’s
utilization of the Fourier transform results in Eq. (I.8)
for the spectral line shape. Let us also remark the
Lorentz utilization of a random distribution of electronic
vibrational coordinate and time derivative thereof.
Now our further interruption considerations will consist
to a large extent in developing the Michelson conception
of line broadening. First in this development then is the
Lenz procedure of averaging Eq. (I1.8) over the Lorentz
distribution of r. If we let the I of Eq. (1.8) be given by
I’ and consider 7 as the mean intercollision time, there
then results

()= fo " i
st (1/2x%7)
(7= vo) (1/27)?

wherein the exponential function defines the Lorentz
distribution.
This rather familiar line shape equation has as its
half-width
1 1{w

d=—=——=(n)Np?

T T

= CO:.

(Iv.1)

(IV.2)

wherein (o) is the relative velocity. The symbol / refers
to the mean free path. In defining the symbol p we shall
find the next refinement in the theory arising quite
naturally and almost unbidden.

In the Michelson consideration we recall that p is
simply the atomic diameter since the atom was con-
sidered a billiard ball sort of thing whose diameter occurs
specifically in the expression for the free path. This is
admittedly a more strained physical interpretation than
the one subsequently given by Weisskopf.?2:9

Now surely we can expect, say, the van der Waals
forces between an emitter and a broadener to exert
some influence on the broadening of ‘a spectral line
before the two collision partners are separated by an
atomic diameter, and we must suppose ourselves capable
of defining this latter quantity. Weisskopf suggested
that we define p as the “optical collision diameter,” a
quantity which defines an atomic collision for purposes
of line broadening and which we now proceed to con-
sider in some detail.

We begin by considering the quantity wo in Eq. (1.6b).
This quantity, of course, represents the angular vibra-
tional frequency of the spectrum producing valence
electron. In the Michelson treatment it was a constant,
since nothing was present which could change it until
the sudden bang of the billiard ball collision. With the
Weisskopf assumption of action at a distance through
some sort of interaction force, however, this situation is
changed. As a result of this force wo will begin to change
with time (this temporal coordinate is introduced by the
heat motion of the emitter) as soon as the emitter is
within the range of these forces. Now if these forces are,
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say, a function of emitter broadener separation—which
we generally consider them—of the form A(7) then

12
wo=wol+f A(?’)(ﬂ/=wol+1] (IV3)
0

wherein wo’ is the vibrational frequency of the photo-
electron in the absence of any perturbing forces while
the remaining term is the change in the phase of this
vibration due to perturbing influence of the collision
partners. Perhaps redundantly, let us note that for
conceptual clarity we are considering binary collisions.
All of which means that the phase of the emitted radia-
tion will change with the approach of the emitter. And
at this point we introduce the crux of the Weisskopf
argument: A collision has been undergone by the
emitter when the phase of the emitted radiation, », has
changed by unity. This is an admittedly arbitrary
collision definition, but one which has proven quite
satisfactory for certain physical situations and, further,
one which forms one of the bases for the simple form of
the interruption theory.

Having defined an optical collision we now simply
consider the wo of Eq. (I1.6b) again a constant between
two such collisions in order to obtain once more Egs.
(IV.1) and (IV.2) for the line shape and half-width. The
optical collision diameter which we shall now evaluate
from our definition of an optical collision has been
changed by this new collision definition. As an example,
let us determine the optical collision diameter for use in
Eq. (IV.2) for the case of van der Waals forces. For this
case A(r)=C/r% in Eq. (IV.3). If we now let x=(v)t/p,
we may then write

f+°° Cdt C to dy
") @t o0 S (1)

C /3r
IS
P\ 8
and wherein we see that from our definition of a collision,
the closest approach occurs at ¢=0, from which

- (Z%(;)m

and we remark that C is in angular frequency units, w.

In this section then we have discussed the Lenz-
Weisskopf modifications of the Michelson theory which
resulted in what may be called the simple form of the
interruption theory. This simple theory certainly has
its areas of application which may roughly be described
as low pressures and frequencies near line center. Now
the reasons for such restrictions to the theory may be
rendered quite physically plausible by a reference to
Fig. 1.

In our ruminations of Chapter I we considered points
“p” and ““c” as positions at which billiard ball collisions
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occurred. Now we simply consider these locations as
defining the optical collisions of this section. The re-
mainder of our earlier description of the figure is pre-
cisely the same. Now then, it is apparent that such a
physical picture of the optical collision process is
possessed of the following flaws: (1) It neglects the
effects of distant collisions. In this connection let us
consider the “A4” broadeners. They will actually have
some effect on the resulting spectral line, but, since they
are too far removed from the emitter path to cause
phase shifts as great as unity, their presence is neglected
by the theory. (2) The effect of close collisions is also
neglected. At point “c”” the emitter is at such a distance
from the “B” broadener that the phase has changed by
unity. As a result we declare a collision to have occurred
and cut off the wave train. Thus, we neglect the effect of
greater phase changes. This second neglect is essentially
the same as neglecting the time of collision. A further
consideration of the physical situation suffices to demon-
strate that (1) limits our application of the theory to
relatively low pressures while (2) restricts the applica-
tion in the line wing. This second restriction arises since
surely we may expect the large frequency perturbations
of the line wing to arise as a result of phase shifts greater
than unity. Although, as we have remarked, there is a
definite region of applicability of this theory, there are
refinements which result in theories of more compre-
hensive application. The first and perhaps most obvious
of these is the inclusion of the time of collision. Such an
inclusion was first attempted by Lenz'’ in an effort to
obtain an interruption theory which would allow for the
shifts and asymmetries often observed in spectral lines
and totally unprovided for in this simple theory. He
did, indeed, achieve his end, but, unfortunately at the
expense of applicability, for his result was even more
restricted than those which we have already considered.
Lindholm®® showed that these shifts and asymmetries
may be obtained from the interruption theory without
considering the time of collision. Actually, he eliminated
approximation (1) rather than approximation (2) as we
shall see.

B. The Inclusion of Various Phase Shifts

Let us begin by rewriting Eq. (I1.6b) with the help of
Eq. (IV.3) as

+00
J(w)=f ei?‘lr(v-—ﬂlo) H—ir](t)dt
—0

from which we may obtain for the spectral line shape:

HOBIMOIE

+00
=ffei2r<u~vo)(t"—u)+i[n<:”)—w(t’)]dt/d;/'
—00

+00 +o0
— f ei?r(u-yo) tdtf

eiln(tH =1 gy (IV.4)
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We now consider the integral over dt’ in Eq. (IV.4).
It was Lenz who developed the ingenious method of
evaluation which we shall presently detail: Lindholm
later utilized it, and Foley'” appears to have named it.
At any rate the Lenz idea may be described as follows.

If we suppose a random distribution in time, then the
integral in ¢ has the look of a time average, specifically,
the time average of the exponential. Now let us recall
Boltzmann’s ergodic hypothesis. A consideration of this
hypothesis in connection with the average in question
suffices to demonstrate the equality of this time average
and a statistical average of the exponential. Quite
simply then we evaluate this integral by determining the
statistical average of the exponential. We will surely
agree it legitimate to equate the average to exp[ —4 (¥)
-+iB(f)]. Since I(v) and 75(f) are real, we require
A(—t)=A(t) and B(—t)=— B(f) so that

I(v)= f°° ¢4 cos[ 2w (v—wo)i+B(£) Jdt. (IV.5)

Next it is assumed that but three different phase
changes occur on collision.}f These we shall designate as
Nay Moy Me. This in turn would mean that three different
“differential collision cross sections,” ¢; occur.

The total cross section is ¢=0,+ 05+ 0., and the mean
time between collisions is 7. The probability that »
collisions of type @ corresponding to a phase shift 5,
(e collisions), 7 b collisions, and / ¢ collisions will occur in
time ¢ is

e\ " [T\ ™ O 1 1 t ntm+1
C)C) C)mal) o avo
a T o/ nmli\r

Further, our exponential may be evaluated as

() =n () =2 In (i) —m(¥) ]

=mnat+mnetin.. (IV.7)

In this case then the mean value of e#n(t+t)—u(t)]
which Lindholm assumed equal to the second integral in
Eq. (IV.4) is given by

<ei[n(t+t')-n(¢’)]>

222000

1 I3 nt+m+1
(_) e~ tr{gilmmatmutindy  (TV 8)

nmllI\ 7

w fogleay 1 ool
> ( )—=exp[—e“'ﬂ], etc.
n=0 oT n! oT

11 As we shall see, we could initially assume some other number
and later extend the number of allowed phase changes as desired.

Since
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Equation (IV.8) becomes

(gstntsHer—n(e]y

TO

14
= exp[——[craei"“-}—a e+ o] } (Iv.9)
Utilizing Eq. (IV.9) in Eq. (IV.4) we obtain

I(V)= (Rfeh'i(v—-vo)

¢
X expl —[2_ oi(cosni+i sing ;) —a ] ]dt

T0 i

=f exp{ -—i Slo—os cosm]]

TO
TO 4

t
XCOS[— 2 oy sinmi+27 (v— o) ]dt (IV.10)

where we have taken the real part of exp (% sing;) since
the intensity is a real quantity. Thus, from Eqs. (IV.5)
and (IV.10) there results

o3
A=t Z —[a'-—oi COS’!]i]:(It

(IV.11a)
i 0T
a;
B=1Y — sinni=4, (IV.11b)
i oT
and Eq. (IV.5) becomes
()= f eat cos{ [ 2 (v—vo) +-B]1} !
0
const
= . (Iv.12)

[+l

In obtaining Eq. (IV.12) the collision time has been
neglected in that we simply took the various phase
changes as having occurred, thus neglecting the effects
of close collisions. Equation (IV.12) of course, yields no
line asymmetry. This we shall obtain on consideration of
close collisions. :

It might also be noted that we restricted ourselves to
three phase changes #,, 73, and 7., in setting up Eq.
(IV.8), but there is no reason to restrict Eqs. (IV.11) for
the shift and half-width in this manner.

In Sec. A of this chapter we have remarked the fashion
in which the simple interruption theory ignores the
effects of (1) distant and (2) close collisions. In the
developement which we have just considered the effect
of this ignoration of distant collisions has been demon-
strated. In other words we have demonstrated the
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F16. 13. An illustration of the reason for the failure of the
simple interruption theory to yield a line shift. (After Lindholm?®
and Unsold.?)

fashion in which consideration of these distant collisions
leads to a line shift. This fact is further borne out by a
study of Fig. 13.

The vertical line in about the center of the figure is
the Weisskopf collision diameter. Now the area under
the upper curve is related to the integral in Eq. (IV.11a)
and is hence a measure of the broadening. In like

R. G. BREENE,
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the shift. The simple theory only considers those areas
to the left of the abscissa specifying the Weisskopf
collision diameter. It thus becomes quite apparent that
with the adoption of this diameter we obtain almost all
the broadening effects (insofar as this theory is con-
cerned) while we obtain almost none of the shift effects.
In addition these curves serve to illustrate the relative
importance of near and distant collisions in broadening
and shift.

C. The Effect of Close Collisions

Next Lindholm® considered the problem with the
collision time included, thus essentially including the
effects of both near and distant collisions.

Although our consideration of this more general
interruption treatment shall be quite sketchy, we par-
ticularly want to emphasize Lindholm’s manner of in-
cluding the time of collision (close collisions) within the
framework of his earlier theory.

Let the collision time be #;, and the phase change per
unit of time during the collision be %,. Then the total
phase change in collision will be ;= k... Let us consider
Fig. 14. The coordinates x and y measure time back from
¢ and ¢’ respectively as shown. The five arrows below
the temporal axis represent five different collisions whose
duration is represented by the respective arrow lengths.
Only those collisions which occur at least partly during
#"’—1t are to be included.

It can be seen directly from our definitions that these
collisions will contribute to ein(¢")=1(¢11 the factor

manner the area under the lower curve is a measure of gineikio(ti—z) (IV.13a)
dx dy
| |
A S L
L ! 11l - TivE
l : I ' 'l r 'l I f" bl
! I
1) :———b I
! |
2) } — |
| |
3+ q -
|
|
: 4) b——
I |
| b —p
| 5) I
I I
| I
|
. |
' 1
I
! I
' l
i
' I
| |
| ]
1 |
| |
! !

F16. 14. The Lindholm method of classifying collisions as to duration. (After Lindholm.5')
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where

o(t—x)=0 for ¢;—x<0

o(ti—x)=t;—x for O0<t—ax<t’'—t¢
o(ti—x)=t for t"'—¥<t;—ux.

Equation (IV.13b) is merely a restatement of our
restriction of the collision such that at least a portion of
it occurs within #/—#, and the method of including
close collisions has been demonstrated.

In analogy to Eq. (IV.8) one obtains for the present
case

(IV.13b)

(et =n(e)

0

-z

nz(1)1=0

> I I

ny(Hs=0 ¢ dz(1) dy(s)

1 os du(l)\ m=os
X J—
U278 ,-!e‘“(”“ [ T

i (w@@)wm
(NOY AN

Xeilna(vyikie(ti=a)tny )ik (ti—y)]

> 5

ng(1)i=0 nz(2)i=0

(IV.14)

In Eq. (IV.14) the x(J) represent the possible dx time
intervals during which included collisions may originate.
The y(4) represent the possible dy time intervals during
which included collisions may originate. Thus, %,z is
the number of collisions of the type one originating with
some probability during the dx(!) time interval.

Equation (IV.14) in conjunction with Egs. (IV.4) and
(IV.5) may be evaluated for the van der Waals case.
For high pressures the result is

I(v)=TIy=c:N{v)%5(Av)~% exp(— N%y/Av). (IV.15)

A consideration of Eq. (IV.15) shows that Lindholm’s
line shape has reduced to Margenau’s statistical shape
for the case of high pressure. If we let the phase shift
O=16/3r=1.7 instead of the 0.75 which Lenz had
used, we obtain exact agreement between the expo-
nentials in the Margenau statistical theory Eq. (IV.15).
Since the statistical theory had yielded such excellent
agreement with experiment at high pressure Lindholm
chose 16/3w as the value for § on the basis of this
resulting agreement. Lindholm justified his disagree-
ment as follows.

First, let us recall that the time duration of the colli-
sion is essentially 28 and consider Fig. 15. Curve (a) in
this figure is the actual curve for the phase integral
2xb S dt/ ((9)*#+p%)?. Curve (b) is Lenz’s approximate
curve where §=0.75, and curve (c) is the Lindholm
curve where §=1.7. Lindholm felt that the larger §
value is more justified in that it includes the slow fre-
quency shifts at either end of the true curve (a).

117

(b)

(c)

™ T

F16. 15. The Lenz and Lindholm approximations to the phase shift
function. (After Lindholm.5?)

The low pressure solution for van der Waals forces
yielded

I,=I+I.

' 0.227
1— (k+0.577))———0.165!
. 0.795

=0.795 . (IV
(0.7950)2+ (0.5771+k)?

where the definitions of / and % may be inferred from
Eqgs. (IV.17). The line shift and half-width are given by

.16)

0.577 0.5771
Ayy= = =0.97N()*%5 (IV.17a)
219 [31r2b]‘/ 5 ¢
() L8(v)
0.7951
30= =2.68 N ()*/5p2/5 (IV.17b)

c

which is essentially the Lenz result.

Having considered the Lenz and Margenau limiting
cases, let us turn our attention to the behavior of the
van der Waals result in the wings of the line.

For this case, Lindholm was able to use an approxi-
mate numerical evaluation to obtain the following two
equations for the red and violet wings of the line,
respectively,

0.7411  0.254/
(R (R
0.1292  0.5327*
- I (IV.18a)
(___k)S/Z (_k)17/6
0.507! 0.6142 0.3204
= | (IV.18b)

y)=
k7l3 p1i/e klOla
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If the first term in Eq. (IV.18a) is taken as the ex-
pression for the intensity in the red wing, agreement
with the expressions of Kuhn*? and Margenau is, of
course, obtained. The earlier verification of Kuhn’s
expression for the intensity distribution in the red wing
in the case of Na broadened by A as obtained by Kuhn®
provide experimental justification for the Lindholm
result.

Let us assume that the first term in Eq. (IV.18b) is
sufficient to describe the intensity distribution in the
violet wing. When a comparison of this expression with
the measurements of Minkowski” for the violet wing of
the Na D, line broadened by A is made, really excellent
agreement is obtained. It might be mentioned here that,
although the (Av)~* dependence had been previously
obtained for the red wing, the (A»)~"/® dependence had
certainly not been previously obtained for the violet
wing. Minkowski had attempted to use a (Ap)~% de-
pendence without the success which attended Lindholm’s
utilization of (Ay)~753,

Kleman and Lindholm* experimentally investigated
the broadening of Na lines by A and obtained excellent
agreement in shift, half-width, and line contour with
this theory.

The interruption theories to which we have so far
devoted our attention may reasonably be classified as
classical ones based on the Michelson application of the
Fourier analysis to the problem. We shall show rather
shortly that a quantum consideration also may lead to
the mathematics of the Fourier analysis. Before doing so
however, let us consider the interesting and important
matters of distributions and detailed balancing which
were studied by Van Vleck and Weisskopf and by Van
Vleck and Margenau, respectively.

D. A Maxwell Distribution of Dipole Moments

Van Vleck and Weisskopf®® were of the opinion that a
revision of Lorentz’ development, such that an agree-
ment between this work and that of Debye be obtained
was required. In essence this revision consisted in
substituting for the random Lorentz distribution of %
and & after a collision the Maxwell-Boltzmann distribu-
tion, and let us detail this. ‘

The Lorentz solution to the equation of motion for the
vibrating photoelectron is

{ eae’s? l" 14 (w/wo)
x=Q® —
m(wo"’-—w"’)l. 2r[—i(wo—w)+1/7]
1— (w/wo)
— V.1
27[i(w+wo)—|-l/'r]] ] ( %)
= R{ae™t(a’—1ix"")}. (IV.19Db)

In order to write down the desired result from Eq.
(IV.19b), it is necessary to disgress for a moment.

R. G. BREENE, JR.

We begin by considering a molecule of electric dipole
moment u which makes an angle ¢ with an external
electric field a cosw?. In this case now, we assume that
after collision a Maxwell-Boltzmann distribution governs
the dipole orientation (and hence, the orientation of ).
If the last collision occurred at time #o, the energy due to
the dipole-field interaction is u-a. Then we may obtain
the mean polarization

i f cos®? exp[ua cosd cos(wlo)/kT ] sinddd
0

(o=
f exp[ua cos(wty)/kT] sindd &

u*a cos(who) f cos?d sinddd
0

kT f sinddd
0 %

Ir:
=——Q®{ei0t} (IV.20
3kT ’ )

when we have expanded the exponential in a MacLaurin
series and only retained the term containing a. The
polarization per cubic centimeter may be obtained by
averaging Eq. (IV.20) over the Lorentz distribution
a exp(—1/7). The result is

Napu?

P= ®
3kT

eiwt

1 +Wl=ad’»{(bl~ibz)em}. (Iv.21)

The work done on the molecule by the radiation field
will surely be given by the average value of a coswi{(dp/d?).
Finally, if we divide this work by the energy flow in the
field, ca?/8m, we should determine the energy taken out
of the field by the molecule, or, simply, the absorption
coefficient.

Now

Nap? o't cos (wt)]

dp
a cos(wt)—=F coswt[
dt 3T 14w?r?

Nau? w?r cos(wt)

= _— (IV.22a)
3T  1+4wr?
and the average value is
dp\ Nau? o*r

<F cos(wl)— )= —.  (IV.22b)

dat 6kT 1+w’r?

As a consequence we obtain the Debye result
wdrNu?  wr v

D=- (Iv.23)

¢ 3kT 1+4u?r?

for the absorption coefficient.
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Now we note that the same result could have been
obtained if we had set

41rb 2

(IV.24)
c

from Eq. (IV.21). This tells us then that, from Eq.
(IV.19b),

_41erex"_21rN62/_ci)
- c - me \wo
1/7 1/r
X[ ] (Iv.25)
(0—wo)+(1/7)?  (wtwo)*+(1/7)?

From the Lorentz theory we obtained Eq. (IV.25),
the quantum analog of which is obtained by replacing
1/m by (4/3)w/kv:;| x:;|2 Next we introduce a Maxwell-
Boltzmann distribution over the energy states and sum
over these states with the result

Z Z |xi7]2f(vsjyv)eBilkT

dryNe\ i i
= ( ) (IV.26a)
3hc Z e FilkT
where the “shape factor” is given by
1 (6/2)
f(w,V)=—[—
7L (vij—»)*+(6/2)°
6/2
———————(L)——“] (IV.26b)
(vistv)*+(6/2)
1
d=—. (IV.26¢)
T

Let us now write

2 2%l f(vijyw)e EilkT
P
=3 2[xe]2f (igp)e Bilb T+ | x5 2 f(vj4,0) e EilHT ]
For .
I O L
= X2 f(vijp)——e Fi
i ! ’ 2T
since
vii=—vij; friap)=—fin);  |xi5]= x5
and
(ev—e o v)=ix(ev+e =) for 2Kl

so that Eq. (IV.19a) becomes:

2 X f(vigp)e kT
i

dryNe\ b i
()
6hc /2T

. (IV.27)
3 e EilkT
n
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Now if Egs. (IV.25) and (IV.27) were truly equiva-
lent, as it would appear they should be, the latter would
be expected to reduce to the former for »;;=0. It is
rather apparent that zero instead of such a reduction
results. Van Vleck and Weisskopf remedied this dis-
crepancy by using a Maxwell-Boltzmann distribution
for x and € in the equations of motion for the vibrating
photoelectron. Lorentz had used a random distribution
of x and & in these equations.

A solution under these conditions yields, in place of
Eq. (IV.19),

eFeiot (wotw) (w/we?r)
—® -
) [ 2){ 11— i(wo—w)]
(wo—w) (w/wo?7)

o1/ rti(wetw)]

In analogy to the method of obtaining Eq. (IV.25)
we may then obtain

)
1/ 1/7
X[ (@—wo)*+(1/7)* } (w+wo)2+(1/7)2] (IV.29)

of quantum equivalent

2 2| xisviif (vigp)e BT

]. (IV.28)

% (4:1r1/1\fe2 h o V.30
\ 6ne )kT S e Bilk (1V.30s)
where
A ) 1 V[ Ay
v —7r viL (vi—v)* (Av)?
Ay
+ ] (1V.30b)
(vij+v)*+ (Av)?

Utilizing Egs. (IV.30), we do indeed obtain Eq.
(IV.23) for the case of zero resonant frequency, v;;=0,
and €2 |x;|?=p> which at least is of import in
resolving the paradox in the low-frequency region.
Equation (IV.29) on the other hand, offers little change
in the visible region, the (w/wo)? factor yielding slightly
more line asymmetry.

E. Detailed Balancing

The studies of Van Vleck and Margenau®” did not
serve to actually change the shape of the proposed
absorption line, but they did finally show that the
shapes of the spectral lines are the same in emission as in
absorption, a point of no mean import. At any rate,
since we accept the thesis that the integrated absorption
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and emission balance each other in a Rayleigh-Jeans
radiation field, detailed balance of emission and ab-
sorption results from this equivalence of absorption and
emission line shapes. That is, a given frequency interval
absorbs as much as it emits. The balance was obtained
by a hitherto untried technique, that is, the summing of
the work done on the oscillator by the electric field at
collision as well as during the intercollision intervals.
This yielded the same frequency by frequency power as
that emitted between two collisions.

If our oscillator motion is described by x(z)
=1 cos(wot+ ¢) we may quite readily write down the
Fourier analysis of x(f). We may then integrate the
expression for x(w) and average |x(w)|? over a random
distribution of ¢ to obtain a result which, when averaged
over a random distribution of intercollision times,

yields§§

e
X\w =" )
A7l a4 (wo—w)?  a?+ (wotw)?

] (IV.31)

where now a=1/7.
A point charge which is oscillating in one dimension
radiates power of amount

from the equation for simple harmonic motion &= —w?x.
In addition, normalization of the Fourier components
requires

| e Ta= [ " o) o2 f (e [

—00 —00

so that

= — () '= — ot (@)

We thus obtain for the power emitted by the oscillator
in the frequency interval between w and w-dw

2é
PE’(w)dw=g—32w4lx(w) |2des. (IV.32a)
C

This must be modified to include the intervals be-
tween all collisions over a long period £, however, since
the Fourier analysis has only been carried out over one
such period. As a result, Eq. (IV.32a) becomes

atPy (w)dw 2 é
PE(w)dw=——=§ —;2(;)41 x(w) [2adw. (IV.32b)
¢

4

§§ In evaluating the Fourier integral we have taken the limits
0 and & where? is the time between two collisions, thus integrating
x0 cos(wi+ ¢) over the time between two collisions to obtain x(w).
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Substitution of Eq. (IV.31) into Eq. (IV.32b) then
yields

a
w“[ { ] (1V.33)
@+ (wo—w)® @+ (wotw)?

Now in order to obtain detailed balancing, we must
needs show that P4(w), the power absorbed at the
frequency w, corresponds to this.

If the velocity proportional viscous drag force g is
dropped from the electronic equation of motion, the
Van Vleck-Margenau equation is obtained as

el
E4wetv=— cos(wi+ o)
m

a solution to which is sought under the Lorentz bound-
ary conditions, x=&=0.

The solution in question leads to the following result
for the work done—per unit time—by the field on the
electron between collisions:

W ér? a a
_wz_-[ ! ] (IV.34)
t Amla®+ (w—wo)? @+ (wtw)?

The work done—per unit of time—by the field af
collision may be obtained as
ezFZdl' w+wg

oL (w—wo)? @+ (wtwo)?

wW—wo

] (1V.35)

which, when added to Eq. (IV.34), yields

W eFw
PA (w) = ——
t 4mw0

a a
x[ ] (1V.36)
d2+ (0)"'0)0)2 d2+ (w+wo)2

A consideration of Egs. (IV.33) and (IV.36) is suffi-
cient to show that detailed balance has not been
obtained if for no other reason than that the shape
factors as given by the brackets in the two equations
differ. Van Vleck and Margenau overcame this difficulty
by passing from the Lorentz to the Van Vleck-Weisskopf
boundary conditions on x and & at collision. This has the
effect of adding the term

w?+wwy

4mw2[a2+ (w—wo)? I @+ (wtwo)?

eFa |" w?— wwo

] (IV.37)

to Eq. (IV.37) to arrive at the power absorbed from the
light wave as a function of frequency.

If we let T(w)dw be the energy density in the field for
the frequency interval w to w+dw, we may replace F? in
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Egs. (IV.36) and (IV.37) by

4 mwtwy?
F=-

3 xct

f0e? C(1v.38)

in the sum of Egs. (IV.36) and (IV.37) to obtain

€’ a a
Py(w)= w“[ 1
@+ (w—w)* @ (wotw)?

A comparison of Egs. (IV.33) and (IV.39) shows that
a detailed balance condition between absorption and
emission has indeed been obtained by considering, in
absorption, the work done by the field (a) between
collisions and (b) a¢ collisions and by including the
Maxwell-Boltzmann boundary conditions.

We have remarked that the boundary conditions
especially are an approximation. In an actual atomic
system, of course, finite collision times would have to be
considered. In addition, the Planck radiation law would
more logically replace the Rayleigh-Jeans law. In the
limit of low frequency, however, the former reduces to
the latter, so that, as in the case of the earlier Van
Vleck-Weisskopf considerations, the results are particu-
larly applicable to the microwave region.

]. (IV.39)

F. The Correlation Function Treatment

At the beginning of the present chapter we remarked
on the various methods which have been utilized to
demonstrate the quantum justification of the use of the
Fourier analysis in line broadening. We shall now give
an extremely simple demonstration of such a justifica-
tion by using the state growth equations for transitions
accompanied by the emission of radiation.

Let us suppose that the natural width of the spectral
line is small compared to the interruption width so that
we may neglect the radiation damping constant, v in
Eq. (I1.24). Then this equation may be approximately
written down as

t
bi()=—1 constf ar
0

i v
XeXP{ij; LEs(t")—Ea(")]dt +wit}. (IV .40)

We have previously considered the argument which
results in the relation between state growth coefficient
and line intensity distribution:

I(w)=|bw(°°)lz=j;w dt’j‘:w dt"’

Xexp[—i f ‘ P(t)dl+iw(t’—t")] (Iv.41)

’
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where now P(?) is the angular frequency separation of
the perturbed energy levels.

We will agree that Eq. (IV.41) is a form of the
Fourier integral which we have previously encountered,
for example, Eq. (IV.4). Having obtained this Fourier
integral after a quantum fashion, we should now feel
justified, as did Foley,'” in proceeding with the treat-
ment of what this latter author was pleased to dub the
“correlation function.”

In connection with the evaluation of Eq. (IV.4) we
mentioned the replacement of the second integral by the
statistical average. The principal behind such a pro-
cedure had, as we have remarked, been set forth by
Lenz. The exponential factor [which we now designate
as ¢(t)] was named by Foley. The remainder of the
work which has been done on the interruption theory
has consisted of the attempts of Foley!” and Anderson?
to evaluate this correlation function, a term which
appears to have been given a favorable reception. Let us
sketch Foley’s evaluation and turn to that of Anderson
which does seem a bit more general of application.

We write:

(1) =(y(19))= f % exp[i J o P(t)dt]

=<exp[i fo ’ P(t)dt]>.

Much after the Lindholm fashion we may replace the
integral within the exponent by a sum over phase shifts:

(IV.42)

which we now average over the distribution of phase
shifts, p(n):

f @ expl~i 3 0]

n  pt®

= H dnp () (cosp—ising) = (4—iB)». (IV.43)

~—00

Finally this result is averaged over the standard
distribution of intercollision times,

o) =3 ﬂh(ﬁ)"m—w)"

n=0 n! \7

A—iB ¢
=exp[—-——0——] (IV.44)

T T.
which, when substituted into Eq. (IV.41), results in
(1—4) /77

I(w)= .
LA—=A4)/rP+[B/r—w]

(IV.45)
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The line shift and half-width for this intensity dis-
tribution are then

A=B/7r
2(1-4)

(IV.46a)

(IV.46b)

T

Equation (IV.43) provides the means for the requisite
evaluation of the coefficients A and B, a somewhat
lengthy procedure which we shall not detail. With which
we turn our attention to Anderson’s work on the
subject.

Margenau®® had early (1935) demonstrated that the
Fourier integral will reduce to the Margenau statistical
distribution for sufficiently low velocities. Now Ander-
son, armed with the Lenz method of evaluation, has
carried this procedure a step further. He has (1) ob-
tained the statistical distribution for high pressures and
for the line wing, (2) obtained the simple interruption
result for low pressures and near line center, and (3)
numerically evaluated the intermediate cases.

We begin by supposing that the perturbations arising
due to the various members of our gaseous assembly are
additive so that

— 3 Aw(R).

t=1

(Iv.4rmn

This means that Eq. (IV.42) assumes the form

¢(to)=<exp[i f v(t)dt]> <gexp[ V(Ri)dt]>
=<exp[i fo tov(R)dt]> .

Now let us remark in connection with this equation
that the replacement of the average of the product by
the product of # identical averages is predicated on (1)
the identical nature of all broadeners and (2) the absence
(assumed) of interactions between these broadeners. No
justification appears required for

R2= (o (0)t)2+2.

This means, however, that the averaging process will
now be one over xp and p

wo:%{ fo " oo f_ :w do exp[i fo ) v(R)dt]}n
=[1—2—ﬂf pdpf deo
X (l—exp[ifv(R)dt] )] '

=exp[—NV'(t)]

(IV.48)

(IV.49a)
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since

N0

lim[l—g]n=exp[~—f1]

and where

0 —+-c0
V' (to)=2m f pdp f dxg
0

—00

x| t—exi [ ’ v([(xo+<v>t)2+p2]%)dt]} (1V.49)

0

with V==/N.

Now in order to obtain the low velocity statistical
limit, one simply lets (v)=0 with the desired result. A
comparison with Eq. (ITL.8) serves to demonstrate this
quite nicely.

For the simple interruption theory limit we suppose
the reverse situation to prevail, namely, (v) large com-
pared to xq, thus justifying ignoring this latter coordi-
nate in the exponential. It would seem intuitively
apparent that the range of integration —(v)r to +(u)r
would make the greatest contribution to the integral in
#o. Such a limitation on the range of integration of g

leads to
pdp (1 - exp[i _ [ - v([o* e ]h) dt])

o= f 3

= (o, o) (@r=0(v)7 (IV.50a)

from which one obtains [through Eq. (IV.58)] for the
intensity distribution

00

N{v)o,
I w)= . (v
(w—wo— N{v)a;)*+ (N{v)o,)?

This should suffice to demonstrate the fashion in
which the theory reduces in the two limiting cases. For
the intermediate values numerical calculation is re-
quired. It is understood that Anderson has carried out
such calculations, but the results have not as yet been
published.

.50b)

V. RESONANCE BROADENING
A. The Qualitative Basis of Self-Broadening

In our specific studies of the last three chapters the
broadening phenomena considered have resulted from
the presence of other atoms. Although different inter-
atomic forces have been utilized as agents for this
broadening, no direct consideration has been given to
the relation between the emitter and the broadener, that
is, no consideration has been given to whether the
broadeners are of the same or of a different species than
the emitter. In this chapter we propose to devote our-
selves to that unique set of phenomena which occur
when the broadeners are the same type atoms as the
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emitter, as opposed to the various broadenings which
may occur when the broadeners are of a different type
from the emitter.

In 1915 Rayleigh™ appears to have first raised the
question as to the possible difference in broadening
effects in the presence of like atoms as broadeners and in
the presence of foreign gas atoms. When foreign and self-
broadening were subsequently studied as distinct phe-
nomena, it was early recognized that the magnitude of
the latter was much greater than that of the former. We
may rather easily present a qualitative picture of these
self broadening (a term which we shall subsequently
replace by resonance broadening) effects either from the
classical or quantum viewpoint. Since such is the case,
let us begin with the classical explanation of the
phenomenon.

In the classical sense, the similar atoms of a radiating
gas are made up of a collection of like oscillators of the
same natural frequency. Because of the sameness of this
natural frequency, a strong coupling of these oscillators
may be expected to occur in the usual classical manner
given some basic, say electrostatic, coupling force. This
in turn will cause a spread of the coupled oscillator
frequencies about the natural frequency of a single
oscillator.

From a quantum-mechanical sense, the same strong
broadening can be inferred. Let us hypothesize a two-
atom system in which the level degeneracy arising
from the sameness of the atoms results in an energy
perturbation dependent on the inverse cube of the
atomic separation. We recall that under the same inter-
action force two unlike atoms give rise to an inverse
sixth power dependence on the atomic separation. Thus,
obviously greater broadening will result from the pres-
ence of like molecules. We shall later discuss the
reduction in state lifetime for the case of resonance
broadening which results in a broadening of the spectral
line, but the state degeneracy which we have mentioned
above we shall allow to suffice as an introductory
consideration.

B. The Coupled Oscillator Theory

The first attack on the problem of resonance broaden-
ing was made by Holtsmark?® in 1925. This author
considered the problem from a classical point of view
which depicted the atoms of the absorbing, self-
broadening gas as classical oscillators.

Now we suppose a coupling force, dependent on the
electric dipole moment of the atoms, to be present. Let
us begin by considering two of these classical oscillators
each consisting primarily of a “quasi-elastically bound”
electron. If x; is the vibrational coordinate of the first
oscillator and ., that of the second, and these two
coordinates are coupled through the potential term
ksx1xs, then the frequencies of the coupled system are
surely

ks\*1?
w2=%(w12+w22:t[(w12—w22)+4(_‘) ] ) (V.1
m
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If the two atoms are unlike then |w?—wa?|>ks/m
and we obtain
ks?
w2~w1, 22=:':——— (VZ)
m (w2~ wsd)

whereas, in the case w;=ws=wy (like atoms), we obtain

(V.3)

W—wet=—,
m

A consideration of Eqgs. (V.2) and (V.3) serves to
illustrate the much larger frequency shift accompanying
the coupling of like oscillators since k; is always small.
This essentially forms the basis for Holtsmark’s con-
siderations. Let us first determine k3, and then proceed
with the problem.

We have assumed our coupling force to arise from the
electric dipole moments of the oscillators, and we may
write the dipole potential as

2

€
U=%i'9k="“3‘[1_3 COSY i X i 1, (V.4)
7

where u; and uy are the dipole moments of the ¢th and
kth atom.

vk 1s now the angle between either u; or uy and r. We
further have supposed u.|us.

Then the force on atom ¢ due to the field produced by
atom £ is, since =—VU

eﬁuikxk
F= =ma (V.5a)
i
with
Uikp= (1—3 COS2’Y1Zk)- (VSb)

Now if we consider a system of # atoms instead of our
original two-atom system we may obtain

k=1

Eitwlxi+2 eixe=0 (V.6)

F i=1,2, -+, m.

From Eq. (V.6) we evolve the secular determinant
for the problem

A a2 Qi3 Q1n

an A Q23 Q2n

a3 azx A a3,|=0 v.7
an1 Gn2  An3 e A

where the abbreviation A=w’—w,® has been utilized.
Now it is rather obvious that it would be somewhat
difficult at best to obtain the roots of the determinant of
Eq. (V.7) for the general case, in fact, it presently ap-
pears impossible. We can, however, determine the mean
and the root-mean-square spread of the roots of this
equation after a fashion which we shall not detail.
After Holtsmark had done precisely this, he proceeded
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to make an assumption which does not appear too
well justified in the light of subsequent—and one might
add previous—knowledge of resonance broadening.
Quite simply he supposed the spectral line to be of a
Gaussian shape. In the extreme wings of the line this
appears to be a reasonable supposition, and we might
recall that earlier Holtsmark had been required to
assume such a shape in the wings of the electric field
strength distribution in connection with the Stark
broadening. The connection between the two situations
is certainly obscure, however, and subsequent studies of
resonance broadening seem to confirm the fact that the
Gaussian distribution is not the proper one. At any rate,
such an assumption leads to

1
I(w )=m exp(—w?/(w'?) (V.8a)
of half-width
§=2w"=2.36[{w?)1}=103.5X 10 — (V.8h)

P”’ 2w
in which { ) indicates the mean value of the quantity
enclosed.

The feature in the half-width equation which appears
most striking—although perhaps not most pleasingly so
—is the dependence on the root of the density. Other
theories as well as available experimental evidence
appear to be unanimous in their refutation of any such
dependence claim. A consideration of the half-width
equation will probably indicate to the reader, however,
that p offers a bonnet out of which we might possibly
produce a different pressure dependence. Schutz-
Mensing® has produced just such a dependence in what
seems a very straightforward manner.

We take the separation of the emitter and the ith
broadener as p;, and proceed to average over the p;.
Schutz-Mensing obtained a value 0.55N73 for (o). It is
obvious that such a value for p in Eq. (V.8b) resultsina
linear density dependence for the half-width. For the
root mean square spread of the energies—resulting from
the roots of the determinant—this author obtained

w1

C. The Statistical Resonance for Binary
Encounters

(V.9)

Let us assume that one member of our two like
particle system will proceed from a state of energy Ex to
the ground state of energy E, with accompanying
radiation. Then familiar degenerate perturbation theory
yields, as the energy of this interaction

2 &
_———[71212 fOI' m=0
1.3
EO=kA)= (V.10a)
€
+——|ri2|? for m=z1
37
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where, as usual, 7 is the magnetic quantum number,
and where

3h
[712]2= f12; (V.10b)
8mimvy
all of which leads to
e 2
— fi2 for m=0

73 871'2’}%1/0

Ap= (V.11)
e 1
—_ f12 fOI' m=:!:1
73 871'27%1}()

From Egs. (V.3) and (V.4) the classical result,
& (1—3 cos’ysr)
Av=cb—

¢ dnm(v+vo)

62 (1_3 COS2’Y7;k)

= , (V.12)
73 8wimvy
may be written down for comparison.
Equation (V.11) may be rewritten as
€2hf12 1
E,® =hv’=’y( )——— (V.13)
8mimvo/ 1r?

where v is the statistical weight factor associated with
m. After the fashion of Margenau and Watson, let us
equate v to unity. We consider this an averaging process
over the possible atomic orientations. The result is

Eh f1s
U=E1(l)=ar‘m=( )7’3 (V.14a)
87!' 27}’“/0
so that
éh f1o
a=— (V.14b)
871'21%110

From Eq. (II1.15) the half-width of the resonance
broadened spectral line is

20, 4
§=—=-7'Na,
k3
so that

€f12
N. (V.15)
6m1/0

Equation (V.15) was originally obtained by Margenau
and Watson® in a slightly different manner.

D. The Simple Interruption Result

As we recall the simple interruption theory prognosti-
cates the same spectral line form regardless of the
interaction forces which give rise to the broadening
under consideration. Thus, Eqs. (IV.1) and (IV.2) for
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the line shape and half-width remain unchanged by
virtue of the resonance forces. Now this is, of course,
not the case for the optical collision diameter p for it
will be given by Eq. (IV.3). Let us specificize.

The resonance interaction may be expressed in the
form

A(r)=K/r®
which means that the phase change is
f+°° Kdt K f+°° dx
n: ——— ————— e e
— L(@2+p) T (@p* Vo [(+1)°]
2K
=1, (V.16)
(v)p?

From Eq. (V.16) we obtain

[
=
()
which is here expressed in angular frequency units w.
Now Eq. (V.13) tells us that

K= é/2mwo. (V.18)

The substitution of Egs. (V.17) and (V.18) yields the
optical collision diameter from which we may obtain the
half-width as

(V.17)

€2

0=2r——fnmlV.
Mo

(V.19)

E. Qualitative Consideration of the Energy
Transfer Theory

Some four years after the publication of Weisskopf’s
theory Furssow and Wlassow! entered the field with
what did amount to a new conceptual approach. Their
entry was marked by the intriguing statement that the
Weisskopf theory—and the Lenz theory in passing—
was completely incorrect.|||| It would appear reasonable
for us to briefly consider the reasons which they advance
for this conclusion.

For greatest accuracy of consideration let us quote the
Furssow and Wlassow statement verbatim before at-
tempting to consider their reasoning.

“To be sure Weisskopf’s considerations of the collisions
between the like atoms is not entirely correct. Weisskopf
without foundation applies the correct concept of the
mechanism of the collision damping in the case of non-
extinguishing atoms of different types to the case of like
atoms. As is known the broadening of the lines through
collisions result not only when the wave train emitted by
the atom is propagated after the collision (extinguishing
gases) but also at the time when at the collision a change

|l Houston took mild exception to this statement to the effect
that ¢. . . the criticism of Weisskopf’s work contained in this
paper does not appear to be justified . . .”® but did not reply to
the Furssow and Wlassow criticism specifically.
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of the vibration phase of the excited atoms sets in (non-
extinguishing gases). In order to compute the phase
shift during the collision one must take the change of
Srequency AwYY of the emitting atom which occurs
through the interaction with foreign atoms and integrate
over the colliston time.qY If one makes this integral equal
to one then the magnitude of the optical collision
diameter can be evaluated. The collisions of the like
atoms Weisskopf takes instead of arbitrarily the differ-
ence between the frequency of one of the normal
vibrations of a system of two dipole linked like linear
oscillators and the frequency of the isolated atom. It is
clear that this computation is based on a misunder-
standing. Aw is in terms of its nature the change of the
frequency of the emitting atom, the light of which is
analyzed according to Fourier. That however which
Weisskopf substitutes instead of it has nothing at all to -
do with the matter because of the degeneracy . . . the
concept that in the collision of two like atoms one of
which is excited and the other of which is unexcited the
vibration phase of the excited atom is changed does not
at all correspond to reality.”"?

It might be remarked first that the Aw which they
believe to have been improperly chosen seems to be the
very one whose choice they advocate for the following
reason . . . takethe change of the frequency Aw . . . and
inlegrate over the collision time.”"® Now it is true that
integration is not extended over these limits in Eq.
(V.16), but let us recall that these limits are a good
approximation which is predicated on the reasonable
assumption that no appreciable contribution to the
integral arises outside the proper limits. If they base
their argument on the “degeneracy’—they do not define
this degeneracy but we can assume that it is that
degeneracy arising from the indistinguishability of the
atoms of our ensemble—then the question of which
approach is more nearly correct has to be answered a
little more conclusively than has been done to date.
Surely though the simple interruption theory has not
been so devastated by the above quoted argument that
it cannot be considered as remainlng a reasonable ap-
proximation on proper application.

The Furssow and Wlassow theory really has its basis
in a conception advanced by Kallmann and London* in
1929 to the effect that like atoms may simply exchange
energy between each other without accompanying radia-
tion. Even a cursory consideration of this conception
gives an inkling of an application to the theory of self-
broadening. We may examine it from either a quantum
or a classical viewpoint.

First the classical viewpoint. To begin with we con-
sider our atoms as classical oscillators, and again we
have the dipole interaction between two like oscillators,
one of which is excited and the other of which is
unexcited. As a result of this interaction the amplitude
of oscillation of the excited atom decreases while that of

9 Italics added.
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the unexcited atom increases, that is, an energy transfer
occurs. This is effectively the same as damping the
oscillations of the excited atom, and, as in the case of the
Lorentz damping will result in a broadening of the
spectral line. Let us now consider qualitatively the
quantum-mechanical explanation of this effect.

Energy is assumed to be transferred as a result again
of the dipole interaction from an excited to an unexcited
atom of the same kind. Whatever the lifetime of the
excited state would be under conditions of no transfer
this lifetime will be greatly shortened by a high proba-
bility of transfer before radiation. Now we may recall
that one form of the Heisenberg uncertainty principle
states that AEA{>h. Thus, if, as is the case in the
ground state, the state lifetime is infinite, the ground
state will be infinitely well defined or virtually infinitely
narrow. As soon as we consider a state with a finite
lifetime, however, the situation changes. A certain life-
time Af will give us a certain indefiniteness AE in the
state energy, or a certain level width. This level width in
turn will mean that a spectral line arising from the
combination of this level with another will be broadened
as a consequence. If we decrease our state lifetime by
this energy transfer, quantum mechanics decrees that
we indirectly broaden our spectral line by widening the
energy level.

These then are the classical and quantum forms of the
theory as advanced by Furssow and Wlassow. It now
remains only to rewrite our qualitative conjectures after
a quantitative fashion. Let us do so rather briefly.

F. The Classical Energy Transfer (Low Pressure)

To begin with it is of course necessary to make a few
simple assumptions regarding our system. In this con-
sideration we are assuming our atom to be a classical
harmonic oscillator. Now we shall consider that the
electronic transition which gives rise to our broadened
spectral line proceeds to the ground state. We will
assume that only one valence electron is responsible for
the spectral line under consideration. Finally let us
suppose that the excited atom, of which our system
contains one for our purposes here, moves in the
neighborhood of the remainder of the unexcited atoms.
The excited atom we then consider as moving recti-
linearly with velocity v. We might possibly bring up the
same type of objection to the utilization of a linear
velocity here as was brought up by Jablonski in objec-
tion to Weisskopf’s utilization of a linear velocity in a
central force problem. However this is probably minor
at this stage. ***

In considering our interaction which leads to the self-
broadening of the line, we shall assume this interaction
to take place between our emitter and one of the
unexcited broadening atoms. The interaction in question
we presume to be due to the electric dipole. Lagrange’s

*** Most authors appear to consider it minor at any stage,
although this is not conclusive.
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equations may then be solved by a method of successive
approximations to obtain

34 pt
2V =— A cosa cosydt sinwol
2600
34 pt
YO =— A cosB cosydt sinwol
2{.00 .. (VZO)
t
71 W=—— | A(1—3 cos?y)dt sinwet
2(4)0

oW =9,0=0; 2,0 =4 coswol.

Equations (V.20) are quite enlightening in that they
serve to show the manner in which the energy is
transferred from the initially excited atom to the ini-
tially unexcited one during the course of an optical
collision.

Let us assume that the optical collision, which serves
to transfer energy from the excited to the unexcited
atom, lasts a time interval . If this is the case, and if
we assume the collision to begin at time /=0, then the
collision must be initiated at a distance —v7o/2 from .

Then after a collision of duration 7o, the amplitude,
for example, of x:* we may obtain from Eq. (V.20)

34 0
X, 0=
2wo Vo

A cosa cosyd!. (V.21)

It is apparent that oBy are time dependent through
the heat motion of the atoms. We may express these

quantities as functions of time and integrate to obtain

e A

X W =———(2 cosaz coSY2+cCosa; COSY1), €tc.
Mwo P2V

(V.22)

We are now desirous of obtaining the amount of
energy which is transferred during the collision from the
initially excited atom to the initially unexcited one. In
the present case the energy E which has been transferred
to the initially unexcited atom will be given by the sum
of the squares of the amplitude components as given by
Eq. (V.22) multiplied by $mw,®. We then obtain for the
transferred energy

et

§= (V.23)

— sin?y
miwg? p?

where E, the initial energy of the excited molecule is, of
course, 3w?42.

Equation (V.23) is predicated on the first approxi-
mate solutions as given by Eq. (V.20). The validity of
these Egs. (V.20) is assumed only for large transit
distances. Furssow and Wlassow defined the minimum
distance of closest approach—transit distance—as that
distance at which the transferred energy is equal to the
energy at time zero of the initially excited oscillator,
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that is, §=E. Thus if po is taken as the minimum
transit distance Eq. (V.23) leads us to the following
criteria for large distances

1/po?v=muwo/ €. (V.24)

In order to determine the total energy which our
initially excited atom will lose in the course of time, it
will be necessary to ascertain the total loss of energy to
all the atoms in the neighborhood. In passing through a
layer of thickness As lying perpendicular to the direction
of motion of the excited atom to those atoms a distance
po or more away the emitter will lose energy of amount

et 1
sin*y;—£F
po?e?

dE= -—27rNAsf Epdp=—mNAs
0

m2w02

2

€
= —rN—— sin?y,Edl (V.25)
Mwo
from Eq. (V.24) and As=vd{. From Eq. (V.25)
E=FEoet (V.26a)
where
2r Né
y—— (V.26b)
3 mMwo

From this knowledge of the attenuation of the
initially excited atom’s energy we would like to de-
termine the line broadening.

The electric vector of the radiation field will be of the
form:

F=Fyeri2gint,

In the usual manner the electric vector may be ex-
panded in a Fourier integral from which may be
obtained

(v/2)

I(»)=|F(v)|?« t————————— (V.27
)= IFO) Pacomst— s (V20

the half-width of the emitted spectral line is found to be
2r €

op/=— —N.
3 Mmwo

(V.28)

It is then apparent that the effect of this energy
transfer at large transit distances is a damping of the
atomic oscillations resulting in a broadening of the
spectral line whose half-width is given by Eq. (V.28).

For the close approaches they simply took the half-
width as given by the simple interruption theory:

2

€
8r="2mp*N(v)=2m——N. (V.29)
Mmwo
The total half-width is then
8T €
8= (0g'+0r) f=——N}/. (V.30)
3 mwo
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The manner in which the dipole interaction between
two like atoms causes a transfer of the oscillatory energy
from the initially excited atoms to the remaining
initially unexcited atoms has been shown. This energy
transfer then acts as a damping force on the oscillatory
motion of the atom and, as a result, the emitted
radiation is broadened into a spectral line of finite
width. We shall see that a quantum consideration under
certain specific assumptions leads to the same results.

G. Quantum Treatment of Low-Pressure
Self-Broadening

We have sketched qualitatively the quantum-me-
chanical theory of resonance broadening by energy
transfer, and our first task in a quantitative considera-
tion will be to ascertain the time change of eigenfunctions
—probability amplitudes—of the excited atom due to
this energy transfer.

Again the system is initially taken as two like atoms
one of which is excited and one of which is unexcited.
The motion of the atom will be considered classically as
is normally done in problems of this kind with quite
reasonable justification. The potential of interaction
between the two atoms is still the dipole potential. The
symbols such as p, a1, etc. which were utilized in the
classical consideration will again appear with the same
connotation.

Familiar procedures of degenerate perturbation theory
may be used in obtaining the state growth coefficients.

a=a; ay=a3;=0

a 70
et [0
ih Jo
The a; refer to the states of the initially excited while
the b; refer to those of the initially unexcited atom. In
finding a matrix element of U we carry the angle func-

tions as constants—it may be recalled that these angle
functions depend on the heat motion of the atoms.

m10; n00

n00; mmdlf, etc. (V.31)

- Finally then Eq. (V.31) becomes

70 (1—3 cos¥y)

a
b1=% 2(100 | | m10)? dt, etc. (V.32)
i

0

Again, as in the classical case, we allow 7, (the
collision time) to approach infinity and integrate
Eq. (V.32). :

It is apparent that the probability for excitation of
the initially unexcited atom is

4

[B1]24 | b |24 bs] 2= a?

H2p%?

siny;(#00]z|m10)%. (V.33)

To find a4, still under the assumption a¢.=a3=0:

[a1|® | b1] >4 bs| 24 | bs |2+ | e1|2= | a |2+ [c]?  (V.34)
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and, if we suppose | ¢1|2=¢|? the change in | 2|2 may be
determined from Eq. (V.34) as

Alal*=la1|*—|a|*=— (| bs]*+] 62|+ 0s]%)

4

—_ a2 2 il
|a] m2wnm2fm e sin’y; (V.35)
where

fnm= (zmnm/h> ("OO [ z I mlO)z,

the oscillator strength of the m# transition.

We earlier set the condition §= E for determining py.
Similarly, we now establish the criteria for po as A|a|?
=|a|2 From Eq. (V.35) py may then be defined as

po=[ d fm,ir.

MW nm ?.

(V.36)

If there are NV atoms per unit of volume of our gas
then surely 2wpdpvN of them appear per unit of time
lying a distance between p and p+dp from the emitter.
Furssow and Wlassow asserted this to mean that the
total change of the probability per unit of time is the
result of averaging over p:

P

—la|?=—7|a|? (V.37)

famdV sinyi.
dt MW pom

If Eq. (V.37) is averaged over v, and the resulting
equation solved for |e¢|?, the quantum-mechanical
analog of Eq. (V.26a) is obtained:

la|2= | ao 2t (V.38)
where
2r €
Y= fnmN-
3 Mwum

Thus the state lifetime has been decreased by the
energy exchange as predicted, and this decrease is
dependent on the gas density.

If we simply consider the atom-field interaction, then
the state growth equations are given by

1hdmoo- - -050- - (f)

700+ 150" -+

=3Cmoo- 4040 - -anoo... (t)ei(wnm—ws)t (V39)

of solution

an0o---150---(£)

et(ws—wam) t—yt/2__ |
00150+ -+
MO0 -+ 050+ - (V'4O)

- haa_wnm+'i(7/2>:]

=3C

and we may recall that

I(w)=const|anoo---10---(0)|?

const

" (o—an)+ (r/2)*

(V41
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From Eq. (V.41) it is apparent that our half-width is
given by the following:

€2

T
dp=y=—
3 Mwnm

SamlV. (V.42)

It can be seen that Eq. (V.42) yields the same results
for the half-width as Eq. (V.28) which latter equation
was found for the case of distant collisions.

For the case of near collisions let us utilize the
Heisenberg uncertainty principle in the form

AEAt=#/

where we shall now assume AE to be the width of the
state and At to be the mean lifetime of the state.

Let us suppose that the life of a state is terminated by
a collision so that Al=7 where 7 is the mean time
between collisions. This means that the width of the
state will now be

R €
AE=—=—=20m——fpulV
Al T Mwo
or
AE €
br=Aw=—=21r—fpnlV. (V.43)
h mwo
Finally we obtain for the half-width
8 €
0="0k+07r=-——fnulV (V.44)
3 Mwo

which is the same as the classical result given by
Eq. (V.30).

In the main Furssow and Wlassow considered their
results to hold only in the case of low gas densities. We
may question the Furssow-Wlassow procedure in which
they work out the broadening effect of one like atom and
then simply extend these results to the case of NV
similar atoms. Because of the procedure Furssow and
Wilassow felt that their results were only applicable to
low gas densities. In a later paper® on the subject they
investigated the self-broadening of a spectral line in the
case of high gas densities. They found it necessary to
use a slightly different although comparable method of
approach to which we now turn our attention.

H. High-Pressure Quantum Resonance
Broadening

The previous theory was really predicated on a
collision between two particles. Now if, as in the Schulz
and Rompe experiments, we take wo=1.02X10'¢ sec™?,
f=1.3, T=06000° we will obtain a p of approximately
5.35X107". Then with the pressure used by Schulz and
Rompe N=2.57X10" cm™3. This means that in the
“sphere of action” we shall have (4/3)mp*N=17 mole-
cules. Thus, the approximation of a two-particle colli-
sion is hardly reasonable.
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A modification of the first theory is certainly called
for, on the basis of these considerations.

Let us begin by supposing the gas density sufficiently
high that we can expect a large number # of atoms
within the “sphere of action.” If we allow this system of
n-+1 atoms to possess two levels, the resonance level and
the ground state, methods of degenerate perturbation
theory lead to the state growth equations:

ihi=3 (a| U|be)bs

k=1

(V.45a)
b= (b U[a)a+zl(bk[ Ulby)by. (V.45b)

Again under the initial conditions stipulating that
atom O is initially excited we obtain a¢(f)=a(0)=1 and
b(0)=0. Subsequent to the time {=0 we can expect the
transfer of energy from the initially excited to the
unexcited atom to proceed as governed by the matrix
element (¢|U|bs). In addition Eq. (V.45) tells us that
there will be a secondary transfer of energy among the
initially unexcited atoms as governed by the matrix
element (bx|U|b). We now introduce the approxima-
tion that the secondary energy transfer process as
governed by (b,|U|b.) can be disregarded and suppose
U to be time independent. This latter is nothing more
nor less than saying that the thermal motion of the
atom is so small as to be considered negligible during the
energy transfer process. As we shall see, at high pressure
for the resonance level this is a reasonable approxima-
tion. We now substitute for bj from the thus modified
Eq. (V.45b) into a differentiated Eq. (V.45a). This
yields

—Ri=a Y (a|U|by)". (V.46)

If we now ignore the angular dependence of the dipole
interaction there results

i+pta=0 (V.47a)
3 - “r V.47b
P - = Rkﬁ, a_4m2w02. ( o )

A solution of Eq. (V.47a) which satisfies the initial
condition a(0)=1is

a=cospt. (v.48)
A collision has occurred when ¢=0 so that
To=m/2p. (V.49)
We assume the step function
a=1 for 0<t< 7o
A (V.50)

a=0 for 0<t>T
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for @ so that the Fourier integral for a is

o
a=f g(w)et“tdw
- (V.51)
© 1 1—¢ter
w)=—
8 2w

1w
We average the absolute square of this expression

over all collision times in order to obtain the intensity
distribution in the level:

I(w)= f | g(w) | *0(70)do. (V.52)
0
Let us utilize the expression
7{'2
y=——=p? (V.53)
4:’1'02 P

for a change in variable in Eq. (V.52) as follows:

7w(r/24/v)

w(7o)dro= ; dv=—1I"(v)dv. (V.54)

14

In order to find I’ (v)dv we suppose a random distribu-
tion of spatial coordinates to exist. Let us establish a
configuration space of 3» dimensions whose volume is
U=V" where V is the volume of our gas. Now if we
temporarily disregard the interatomic forces, we can
expect equal probability for the occupation of any
portion of this space. This means that the followlng
relation will hold:

Al
I'(v)dy=—0, (V.55)
u

where AU represents that portion of configuration space
for which our » lies between » and »-dv. This value of »
will, of course, depend on the distribution of the R; in
Eq. (V.47b). Thus

AU= (4)" f e f Ri*Ry?- - R,2dR:dRs- - -dR,. (V.56)

The analogy to Margenau’s equation (II1.4) is ap-
parent. Our solution then is given by Eq. (II1.18) as

( A
exp( — )

9y
I'(v)=2xNA/a

(V.57)
vV

We may now transform back to our variable 7o by
utilizing Eq. (V.54). We obtain

w(7o) =\7’; exp(—v27o?) (V.58)
fé
v=(4/3)N (wa)}=2%r/m—N. (V.59)

Mo
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Equations (V.49) and (V.58) may now be substituted
into Eq. (V.52) and the results integrated to obtain

ryo L 1mel= /20

272 w?

(V.60)

as the distribution of energies in the resonance level. For
the breadth we obtain

o fe
6=2.54y=3——-N.
Mwg

(V.61)

In order to find the spectral line width, it would
appear reasonable to assume that we must needs have a
knowledge of not only the resonance level width but
also the width of the level from which the radiating
transition originates.T1 The phrase “from which” leads
us to the next consideration.

Furssow and Wlassow felt that these results should
only be applied to transitions proceeding from upper
levels to the resonance level, that is, these results should
not be applied, to the transition from the resonance level
to the ground state. A short consideration renders this
assertion plausible.

Let us suppose that the initially excited atom
undergoes a transition from the resonance level to the
ground state with the accompanying emission of radia-
tion. This emitted radiation may be absorbed by one of
the unexcited atoms where absorption would not be
possible were this radiation the result of a transition to
some level above the ground state. This process, which
should not be confused with the transfer of energy
without accompanying radiation has certainly not been
considered in the theory, and, since it can be expected to
have some effect on the line broadening, this theory
cannot be expected to hold in such cases.

The justification for the assumption of fixed atoms,
that is, d/di(a|U|br)=0 which led to Eq. (V.46)
appears worthy of note here. Let us consider the Rompe
and Schulz case.” The pressure is 80 atmospheres and
T=2800°. The experimental width was found to be
§=7X10" sec™ so that the mean life of the resonance
level is 7o=1/6=1.4X10"* sec. The mean relative
velocity is (9)=1.3)X10° cm/sec, which leads us to the
conclusion that during the mean level life we may expect
our atoms to move a distance ()7o=1.8%X10"8 c¢m, or
the order of their own diameter. Thus, the approxima-
tion appears a reasonable one.

Furssow and Wlassow’s high pressure theory yields
results in reasonable agreement with those of Schulz and
Rompe.

I. Comparison of Some Experimental Results

Three of the equations for the half-width which we
have obtained are

11t The complexity of computing the width of a higher level may
be inferred from the preceding work.

BREENE,
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Weisskopf : 0=——fumlV
mwo
T €
Margenau and Watson: 6=——7F,,V
3 Mwo
4 ¢
Furssow and Wlassow: &6=——Ff,.JV.
3 mMwo

These three equations have been compared with the
experimental results, for rubidium by Chen,”” for sodium
by Watanabe,® and for caesium by Gregory.*

Other than demonstrating the fact that none of the
theories propounded in explanation of the resonance
broadening phenomenon is precisely correct these ex-
perimental results indicated that the combined reso-
nance and, say, van der Waals forces should be investi-
gated. Such an investigation might provide the
explanation of the observed line shape variations with
radiating transition as well as with pressure.

VI. MOLECULAR BROADENING

A. Early Studies of Polyatomic Molecular
Broadening

In beginning our considerations of the last chapter we
remarked that those studies which had gone before had
not distinguished between broadeners of a type different
from the emitter and broadeners of the same type as the
emitter. In this same vein we might now remark that,
for all practical purposes, we have not differentiated
between atoms and polyatomic molecules, for the
broadening phenomena to which we have so far devoted
some little attention are equally as applicable to the
latter as to the former. It is really by the appearance of
rotation and vibration spectra that we may differentiate
between the polyatomic and monatomic molecule so
that by such a statement we mean that these previous
broadening considerations are properly applicable to
this type spectra as well as to electronic spectra. It was
originally felt by such authors as Kussmann®* and
Lasareff** and Grasse?? that these theories were not only
applicable but also sufficient. The intimation that some
different approach to the broadening of rotation-vibra-
tion lines was in order appears to have arisen first in the
work of Herzberg and Spinks.?” These investigators
found a decrease of the line width with higher values of
the rotational quantum number J in the near infrared
spectra of HCN. This would surely indicate that
rotation-vibration spectra should be treated differently
than electronic spectra, but this clear indication was
rather clouded when the work of Cornell and Watson'!
and Herzberg, Spinks, and Watson?? failed to verify this
variation with J. The hint had been given however, and
it was certainly apparent that the possibility of J width
dependence and other unique molecular phenomena
should be theoretically investigated.
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B. The Directional Effect and Rotational Resonance

In studying broadening phenomena one usually looks
first to the molecular or atomic interaction to which we
can attribute responsibility for the broadening in ques-
tion. In molecular broadening an interaction which
plays quite a major role is the directional effect, a special
case of which is the rotational resenance effect, to which
we now turn our attention.

Let us specify the dipole moments of two rotators by
p1 and pg and their separation by R. In this case then,
the dipole-dipole interaction leads to the interaction

energy

2 [.L12;£22 1
(E(2)>=__._
3 RS (271+1)(27,41)
24, 24, 7 2A1 2A2 —1
Sl Preaei I Eaoee]
Jot+1 Ji+H1 J2  Jit1
2A1 24,71 24, 24,71
[ ST T o
]2+1 J1 ]2 ]1

where the J; refer to the lower state, and 4,=#4%/2I,.
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If the two molect‘xles are identical so that 4;=4, and
u1=us Eq. (VI.1) becomes

(E(m):E Wl
3 h2RS
g Ji(J14+1) 4T (J2+1)
(J1+T2) (J1t+To+2) (J1—To—1) (J1—T2+1)

(V1.2)

A special case arises when the broadener is in the
ground state, a case for which we shall find specific use:

<E(2)>=_:2_l_‘_12 1 ’Z’[(OO,G?I]{M{)P
3RS2T,+1
Jo'+1
(EJl'—Eo_Z(J2H+1)A
J2//

4

" Erv— Ey274"4

) o

In passing, let us note a corresponding expression for
the dipole-dipole interaction of two symmetric top
molecules possessed of dipoles as given by Carroll’:

(E(‘Z)) 2 ut IA[ (]1+1)2-K12 [ (]2+1)2—K22 ' K,? ) Tt —K,?
3R D) @ADL Tk 1) @Ik D) (b Tob2) | Ta(Uat D) Ut ) | T2(2T 1) (J1— Ty 1)
K%K, l J2—K® l’ (J2+1)2—K,2 K»? J?— K2

]

A — —
LTADT2 a1 1QIAD) Gk 1) @It 1) (Je— Tk 1) TiTs (1) T2 (2T 1) (J1+T2)

A consideration of Eq. (VI.2) tells us that a rotational
resonance condition sets in for identical rotators for
|Jy—Js| =1. Further, Eq. (VL2) indicates that for
dissimilar dipoles an accidental rotational resonance
condition comes about when Jeds=(J1+1)4; or
(Jo+1)4s=J14. For these cases a first-order perturba-
tion energy exists and must be evaluated.

The method of evaluation which is applicable here is
the variational perturbation treatment. In carrying out
this treatment one obtains a determinant of the form,
say, Eq. (V.7) whose order is, of course, dependent on
the J values involved. This means that no solution for
the general case (any J value, as, for example, is given
by Eq. (VL1)) is obtainable since no such general
$olution to the determinant is available. The root-mean-
Square value of the first-order energy perturbation is the

samg? for all determinants, however, and it may be
obtained ag

2\t J+1 u?
eyt [ Z _
Tem (3) [J+1)(2T+3) R

(VLS)

Il e

As an example of the specific calculation, if we let
J1=0, Jy,=1, the perturbation amounts to

1 u?
EW=g——
"3 R?

2 u?

. (V1.6)

3 Rs

A further consideration of Eq. (VI.2) suffices to show

that J;=J,=0 also leads to a rotational resonance

condition, but this case corresponds to the precise
2uAl?

solution:
h? i
E“’z——[h—(l—f— ) }
I 3#Re/

Equation (VI.7) tells us the first order interaction
energy for two like dipole linear rotators for the case
J1=J2=0. For large R, the radical in this equation may
be expanded with the result

(VL7)

ul
E(l) =
3h2R®

(V1.8a)
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and for small R Eq. (VI.7) becomes
2\t u?
0= (~) all (VL8b)
3/ R

Let us now sketch a resonance development of London
in just enough detail so that the results which we shall
later utilize will be somewhat intelligible. This author
used what we might call an order-of-magnitude tech-
nique to arrive at the secular determinant

I UTiTj+ (E'r,~<°>—Erk@)—Ek“))erml =0. (VIQ)

We shall be able to define the new symbols Er;© and
Er©@ after another step in the development.

London considered only the eigenfunction yr M 4r 2
and the thirteen eigenfunctions with which this eigen-
function may combine, as always, under the influence of
U, thus rendering his treatment an approximate one.

Under these restrictions then, we shall utilize the
eigenfunctions:

u0=\//JlMl‘//J2M2

=y 1+1M0 o1 M2
%2=¢J1+1M‘+]1//J2+1M’—1}T1
ty=Pri1M Ny Mot
wy=yr1—1M ) rp—1M2
ws=spr1—1 My, le—x}
ug =1 1M1y M2t

wr=yr1+1M0p s 1 M2
1/&8=1[/J1+1M1+1¢.)‘2—1M2~1 T-/
MQ;¢J1+1M1—1¢J2_1M2+1

o=y 1~1M) s 41 M2 }

Ty
(VI.10)

%11=1//J1—1M1+1‘//-72+1M2_1 T1o
Up= Yo 1M1 o Mot

from which we may define Er;© and Er,©.

Ex,© is in all cases the zeroth-order energies going
with #o. Er;©¥ are the zeroth-order energies going with
%y, U, ** +, Uy We may note that the energies associated
with #, #s, 13 are the same as are those associated with
%, U5, ug and so forth. Thus

hZ

E1= ET],(O) —_ ETQ(O) = (J1+J2+2)}—, etc. (VI].I)

A secular determinant results. In addition, we let
Uo;= U ;and from this secular determinant, the equation

a,? as?
RSE® = y
EO—E, EO—FE,
a3’ a4’
f f (V1.12)
EO—FE; EW—E,
follows, where
(14;2
IQ_": Usd+Usii®+Usia® (VI.13)
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For the resonance case (J1>0, J:>0, Jy=J:+1)
Eq. (VI1.12) becomes

a,? as? as? a4
{ i +—. (VL1l4a)
EO—F, E®—FE, EO—F, E®

RGE(I) =

For large R and | E® || E,] :
a 2

a’ @)’ ag
R“(E<1>)2+(-+~—+~—)E(‘)—a42=0 (VI.14b)
E, E,

3
whose solution is

a? a? a®\1 a4
EW=—1 F— +—.
E, E, E;/R® R?

(VL.15)

Equation (VI.15) gives the first-order perturbation
energy for the rotational resonance case. We note the
comparison with Eq. (VL6).

C. Broadening by Molecules with No Permanent
Poles

Margenau® initiated the first attack on the theory of
molecular broadening in 1936. He chose to investigate
the case of broadening by foreign gases which possess no
permanent poles since Watson and Hull®* had previously
obtained experimental data on this case. These authors
had investigated the broadening of AIH by H, and
concluded that all ‘rotation-vibration lines associated
with a particular electronic transition would be broad-
ened by the same amount.

From Eq. (VI.3) we may obtain the perturbation on
the energy of the absorber averaged over all orientations
of the absorber as

2 2| (U 2
(E®)= -~ ,!(GT)OA[ [ (D)9 (VL1
3R 2D Er—Ev+ES—Ey

where © and A refer to absorber and broadener,
respectively.

We have stipulated that E, is the lowest energy of the
perturber. This means that Ey—E, will always be
positive. In addition we have not allowed this perturber
a permanent dipole moment. This means that no pure
rotational transitions, which amount to the lowest
energy transitions, are possible. Thus the vibrationsl
transitions are the lowest energy allowed.

On the other hand, E(D)—E; may be positive of
negative. Consequently (E®) may be greater than of
less than zero so that the spectral line may exhibit either
a violet or a red asymmetry.

Now where we simply have dealt with a set of
relatively widely spaced electronic levels in our mon¥
tomic considerations, we now also deal with the closely
spaced superposed rotation-vibration levels. When W
are considering the visible and ultraviolet portion of th¢
spectrum we may, as an approximation, consider only
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the electronic contributions to E(9)— E;—they surely
constitute the largest ones—and merely let the rotation-
vibration levels superposed upon them amount to
degeneracies accounted for by a summation in Eq.
(VI.20). It follows that the result will closely correspond
to that for monatomic molecules.

In order to consider the possible effect of molecular
rotation let us approximate our absorber by a rigid
rotator of dipole moment u. Now I is usually of the
order of 10~%, and, with % of the order of 102" we see
that 4 will be small compared to Ex—E, when the
perturber has no permanent dipole. When 4 is neglected
Eq. (VL.3) becomes

2 u?
(E@)=—- 2 5
3R o E,—E,

2

, l(ff)oAV: Ol

(VL.17)

If the dipole moment p==10"3, the perturbation given
by Eq. (VI.17) is about 1/20 of that for the electronic
case. Now let us write Eq. (VL.3) as

op? 24
(E;®)= ———[l-i-—————-
RS (Ex—Ey)

4(J2+T+1)A2

Y + ] (VI.18)

It is apparent from Eq. (VI.22) that the portion of
(E;®) which depends on J is very small due to the
appearance of A2 in the numerator and (Ex— E;)? in the
denominator involved.

Margenau carried out his considerations of the effect
of molecular vibrations in an analogous manner. In this
case we obtain

2

ek,

(E,2)=3

a. (VI1.19)
Mmw?RS

On the basis of these investigations, we may conclude
that within the limits of experimental error all rotation-
vibration lines associated with the same electronic
transition should show broadening and shift of about the
same degree when the broadening agent is a nonpolar
molecule. In addition these lines should be affected by
foreign perturbers almost in the manner of the corre-
sponding monatomic lines under similar circumstances.

As Watson® has noted ““dispersion forces”—the type
considered—also appear to predominate in the self-
broadening of nonpolar molecular lines. Were the normal
resonance forces between like monatomic molecules
present, we would not normally expect this to be the
case, but the closely spaced rotational levels of the
polyatomic molecule render this predominance reason-
able. As we have noted, the rotational levels specified
by, say, just J are comparatively closely spaced
energywise. As a consequence a Maxwell-Boltzmann
temperature distribution of molecules over these levels
will not lead to the preferential population of the
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monatomic case, and they will be more equally divided
among many levels. On the other hand, the allowed J
change in transition is generally limited to =1 or 0 so
that the probability of energy exchange with the re-
sultant degeneracy is severely restricted. In toto, then,
this resonance effect would not appear to be primarily
responsible for self-broadening, and we may safely look
to these dispersion forces as broadening agents for non-
polar molecules. This conclusion had been verified for
the case of methane by Childs,® Dennison and Ingram,
and Vedder and Mecke,® for atmospheric pressure and
above, and for the case of acetylene by Hedfield and
Mecke,? Herzberg and Spinks,?® Lochte-Holtgreven and
Eastwood,*?and McKellar and Bradley® foratmospheric
pressure.

We have broadened molecular lines by nonpolar
molecules, and it would appear a logical next step to
broaden these lines by polar molecules.

D. Qualitative Explanations of Broadening
by Dipole Molecules

It is to the directional effect of Sec. B that we may
look for an explanation of the relatively large, J-
dependent broadening effects due to dipole broadeners.

To begin with we must hypothesize unpolarizable
(rigid) dipoles, and we recall from Sec. B that (1) the
intermolecular forces are relatively weak except when
the near resonance condition, |J1—J3| <2 or 3, set in
and (2) the lowest rotational state is most strongly
influenced by other molecules in the lowest of neigh-
boring states.

The lower state J,” we take as other than the lowest
rotational state so that we can concern ourselves with
(1). As has been mentioned, the rotational levels lie
sufficiently close together so that a thermal distribution
over them may be expected. Suppose J;" to designate a
level near the maximum of this thermal distribution.
Then a much greater number of perturbers can be
expected to fulfill the condition |J1”—J5"'| <2 or 3 than
would be the case were the J,” level to be found toward
the wings of this thermal distribution. Since the upper
level will also enter into the line broadening one cannot
say more as yet than that those most intense lines
arising from J levels near the maximum of the thermal
distribution should be broadened more than the re-
mainder of the lines of the band.

In regard to (2) this indicates that a greater broaden-
ing of the line arising from the lowest rotational level is
to be expected, but only under certain conditions. At
normal temperatures, the thermal distribution should
not populate levels lying near J,"=0 very highly so that
the effect may not be very pronounced. As the tempera-
ture is lowered, however, these low level populations will
increase and we should expect to see an increase in the
broadening of the line with J;”=0 over neighboring
spectral lines. It might be noted also that due to
“greater flexibility downward” a violet asymmetry in
this line may be expected.
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We now devote ourselves to Margenau and Warren’s
more quantitative consideration of the broadening
effected by dipole interactions.

E. Statistical Broadening by Symmetrical
Top Dipole Molecules

For our two interacting molecules we choose two
identical symmetrical rotators each possessed of a per-
manent electric dipole moment u oriented along the
molecular figure axis. The interaction potential between
the two rotators is again given by Eq. (VI.1) where now
pi=pe=pu. The eigenfunctions for this system are the
familiar product functions for sufficient separation R. U
is not dependent on the Eulerian angle x so that K;”
=K, and K,’=K," under the aegis of U, and the
matrix of U is diagonal in K; and K as a consequence.

After a reasonable amount of mathematical manipula-
tion one obtains

(MM U MMY)
2 KK
TR (A DTt D)

X {—2M " M5 (MY My")s (Mo M)
ATy M) (o M) (T M)
X (oM + 1) oML, My —1)6(MS, My +1)
+3[ (1 +My"—1) (1= M) (To— My +1)
X (o b My (MY, My 1)

(MY, M —1)}.

(V1.20)

From Eq. (VI.20) it is apparent that the first-order
perturbation energy does not disappear. The secular
determinant breaks into blocks, with identical blocks
symmetrical about the secondary diagonal. Thus every
root of this determinant will be a double root so that
general equation describing the level splitting due to
this interaction is not to be found, but an idea as to the
maximum splitting may be obtained, and the example
of a special case may be presented.

We may write down from Eq. (VI.20) the double root
which lies at either end of the principal diagonal and
where Ji=M, and J.=M.,.

2u? KK,
J o[ P——

RS (J14-1) (JoH1)

(VI.21)

Figure 16 illustrates the level splitting with the ro-
tator separation R and the magnetic quantum number
M for the special case Ji=K1=2, J)’=K,'=1 for the
upper state and J;=K;=1, Jo’=K,"”" =1 for the lower
state.

Let us finally remark that since K=0 for a spherical
top rotator, the matrix elements of U in Eq. (VI.20)
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would all be zero so that the effect considered would not
take place.

Insofar as second-order effects are concerned, we cer-
tainly are aware that they will depend on the inverse
sixth power of the molecular separation. In addition
Margenau and Warren felt that for finding those regions
in which the first order perturbations predominate,
London’s second-order results for diatomic molecules
should be sufficient. Under these assumptions a limiting
range of about 74 for the predominance of the forces
which we have considered was imposed by these authors.

The root-mean-square energy perturbation may be
obtained as

2\ ¢ u? KK,
(CEYP)= () il .
3/ R[]

Now surely a reasonable approximation to the half-
width arising from these considerations may be expected
if we equate ¢ to

(V1.22)

(2 3 IK1K2]
z) DT (T D T

in order to obtain the half-width

4 Na 2\ ? 7l"2[.L2 { KK, I N
d=—pl—= (~) (VI1.23)
3 h 3/ W (JHD)T (1)

for the statistical result.

It is true, of course, that we have here found the level
width while we are really desirous of the spectral line
width. The level here (J1K1J2K32) would have to be

J
R =

F16. 16. The Rotational levels of the symmetric top rotator
are split due to the dipole interaction. (After Margenau and
Warren.)
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considered in conjunction with another possible level
(J1==1, 0; K121, 0; J2K3). One may perhaps consider
the Ky and J, appearing in Eq. (VI.23) as the mean of
the quantum numbers for the two states.

We might conclude by noting that the effect as given
by Eq. (VI.23) is around 20 times as weak as the self-
broadening effect in monatomic resonance lines.

The results of this theory were born out order of
magnitude wise by Cornell’s results.'

F. Broadening by the Linear Dipole Molecule HCN

The first attempt at a rigorous theoretical interpreta-
tion of the self-broadening of the absorption lines of a
linear dipole molecule was carried out by Lindholm,*
for the HCN molecule. In essence Lindholm used the
energy perturbations due to the directional and reso-
nance effects within the framework of the simple
interruption theory to determine the broadening of the
HCN lines in a manner which we now consider.

According to the simple interruption theory the half-
width of the lines for a heterogeneous gas containing N7,
molecules with optical collision diameters p;, N2 with

diameters ps, etc.
d=(v) 2 Nps

if all molecules are of the same mass, thus allowing a
common ().}If Let us consider the necessity for
introducing Eq. (VI.24).

From Lindholm’s experimental results, it is quite
apparent that a marked dependence on J is present in
the line width. In the interruption theory, this can only
come about through some variation in N and p with J;
(the absorber J value) and J» (the perturber J value).
‘Thus, we hypothesize a dependence of p on J; and J
which a little consideration immediately bears out. To
begin with a frequency perturbation Av=>5/R% (which is
brought about by the directional effect | J;—J2|51) or
Av=B/R? (due to the resonance effect |J1—Jz|=1)
leads to the optical collision diameter

(V1.24)

3w b \Y°
p= (-—— — (VI.25a)
4 ()
or
4rB\?
p= (—) , (VI.25Db)
, )
respectively.

This then is at least a part of the general manner in
which p may depend on J; and J., and let us now
specificize this into usefulness. Lindholm dealt only
with the P branches (AJ= —1) of the two HCN bands
which he considered. Insofar as the vibrational quantum
numbers involved are concerned »,”=1v,""=0. We now
let

A=y —J" (V1.26a)
so that

T =T =Ty — (J{"—1)=A+1 (VI.26b)

111 Lindholm defines (v) as the mean relative velocity.
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for the upper state since we consider only the P branch.
A is now a convenient parameter for the determination
of the type effect to be considered, and leads to three
cases.

Case (1): Resonance effect in ground state and direc-
tional in upper (A=1).

Frequency perturbation:

b B
Ay=—ct— (VI.27a)
RS R3
3rb 1 47B 1
f 2rdvdi=|— —— | =1, (VL.27b)
4v) p* () p?

Case (2) : Directional in ground and resonance in upper
(A=0, —2).
Same as Case (1).
Case (3): Directional effect in both states (all other A).

Frequency perturbation:
Av=0/RS

37|'2 b 1/5
Sk
4 (@

In cases (1) and (2) p may be found as roots of Eq.
(VI.27b), in particular there will be roots py for the
repulsive case (positive sign) and p_ for the attractive
case (negative sign). In all cases of multiple roots p the
highest valued root will be taken as significant. Further
we shall suppose there to be equal amounts of resonance
repulsion and attraction so that for p? from Eq. (VI.27b)
we shall write p,?+p_2/2. Now the p values furnished by
the three possible sets of physical conditions may be
substituted into Eq. (VI1.24) with the result

(VI.28a)

(VI.28b)

2
J

iF+o-
8=22(()" 5 bIN A() T N]f+—~2”—. (V1.29)

Let us first consider the directional effect contribu-
tions. Lindholm approximated Eq. (VI.2) for this case
by the expression

1 ul
Errg®=—

- (VL.30)
RS 372(A2—1)

which he noted is asymptotic for large J, exact for
J1=J3, 86% of the correct value for J1=1, J,=3, and
929, of the correct value for J,;=2, J,=4,

We obtain & for Eq. (VI.29) from Eq. (VI.30) as

RS6
b=—"{Eryry®— Eyyrrym®]
h

4nutl |‘ 1 1
3w Lar1e—1 a—1
according to Egs. (VI.26).

] (VL.31)
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In order to find NV;a Maxwell-Boltzmann distribution
of the molecules over the rotational levels is assumed and
the first term in Eq. (VI.29) now becomes

AT\ 25
sp=22() (=)
p=22(e)" (-

N w 1 1 2/
X > wJ[ ] , (VL32

. i L@ad—1 -1 (VL.32)
Z WJIe

Jo=0

where the prime on the summation sign decrees the
dropping of those J, values for which A=41, 0, —2
(resonance effect).

Lindholm found it necessary to use the first twenty or
thirty terms in the sum.

We first consider the case of both molecules in the
ground state with A==t1. For the vibrational quantum
numbers, the same Eq. (VI.19) is valid as it stands.
London has evaluated @i, as, and @3 and Lindholm
evaluated a4 so that Eq. (VI.15) becomes

w2l 1 u?

E®O=— TR
64#* R® 252 R?

(V1.33)

Equation (VI.33) then gives the firsi-order interaction
energy for this resonance condition, in the lower state
(Case 1). Equations (VI.27) must now be solved for p.
In Eq. (VI.27b) B is simply given by the coefficient of
R-3in Eq. (VL.33), but & presents a slightly different
case. Since in the upper state, we have the directional
effect taking place, bypper Will be given by the coefficient
of R—%in Eq. (VI.30). On the other hand, the resonance
effect of the lower state furnishes diower Which is the
coefficient of the R~% term in Eq. (VI.33). Finally

(VL.34)

The values of B and b thus obtained may now be used
in Eq. (VL.27b) to yield p values which when properly
utilized in Eq. (V1.29) yield

b= bupper'_ b1ower-

5R=(7)>

0
2w

J'=0

X [@rpr7. 71X 10 4 1w,_15.95% 10714].  (VI.35)

Finally Case (2) remains to be investigated, and we
introduce a vibrating rotator whose moments of inertia
are dependent on the vibrational state. In correspond-
ence with the uy of Eq. (V1.14) let us take

' =Y s M0, (1Y M, (2)

and now there will be twenty-four additional eigen-
functions of this form which may combine with this one
—we assume that v is the ground vibrational state and

R. G. BREENE, JR.

9’ some resonating upper vibrational state. Corre-
sponding to each of London’s matrix elements U,;= Ul
there are now two matrix elements. As an example, to Uy
there correspond

Un=U/= f¢J+1M’%(1)

XY MUY g2 (D s M2y (2)do - (V1.36a)
U/'= f¢J+1M‘I//v(1)‘//JM2%'(2)
X UY sy ()Y 1112, (2)do.  (VI.36b)

Let us look at Egs. (VL36) rather carefully since
some important physical phenomena are inferred by
them. The rotational resonance condition |J1—J,| =1
is fulfilled by all four two-molecule eigenfunctions. In
Eq. (VI.36a) the individual vibrational quantum num-
bers remain the same for both system state functions
appearing in the matrix element. Equation (VI.36b)
presents a different case, however. In this matrix
element, the vibrational quantum number for molecule
one changes from v to v’ under the aegis of U while the
vibrational quantum number for molecule two changes
from o' to v. Thus, one or more quanta of vibrational
energy are exchanged in this process, and resonance in
the sense of Chapter V sets in. It seems important to
clearly differentiate between this exchange type reso-
nance and the rotational type of Eq. (VI.2). Perhaps
this type differentiation is not too satisfactory for
| J1—Js] =1 also implies an exchange in that the two
molecules may exchange one quantum of rotational
energy between themselves. The semantics of the situa-
tion should hardly trouble us, however, if we have a
clear picture of the physical phenomena involved. In
order to determine one of the reasons for neglecting
exchange resonance, the portions of Egs. (VI.36) per-
taining to vibration may be written as

lel = f¢v (1)“1\07) (1)d0'f‘!/v’ (2)H2¢v’ (2)d0’ =#2 (VI37a)

U= [t (o [ u@ustr (Do, (VISTH)

Equation (VI.37a) tells us that U/=1U; London’s
matrix elements. Equation (VI.37b) is proportional to
the intensity of the rotation-vibration band involved.
For the bands which Lindholm considered, the intensity
is very low which means that Eq. (VI.37b) will be
small. This in turn will cause Eq. (VI.36b) to be small
which allows us to neglect the exchange resonance.
Another consideration leads to the weakness of exchange
resonance. The dispersion f value enters this resonance
broadening as we have seen in Chapter V. In this case,
we divide the dispersion f value for a monatomic
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transition among myriads of rotation-vibration levels.
The net result of all this is a further decrease in the
exchange resonance effect which we now proceed to
neglect. This means that we are again only concerned
with the twelve matrix elements of Eq. (VI1.36a).

A calculation similar to the one leading to Eq. (VI.14)
results in

a 12 dz2 032 (142
1

1
E/ ! Ey ‘ Ea') ‘ EOY—E/

RSEW = — ( , (VI.38)

where a; is again given by Eq. (VI1.13). This equation is

of solution
w2l
+ [Ei—l—

37*RS

2Em%utl  4pt
3#*R®  6RS

E<1>=~;~‘E4— ]é} (VI1.39)
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Figs. 17-21. Comparisons of various of Lindholm’s
theoretical results for the HCN molecule with experi-
mental results. (After Lindholm.*8)

in which the term in R under the radical has been
dropped.

The second term within the curly braces in Eq.
(VL.39) gives us dypper- diower iS again obtained from
Eq. (VI1.30), from which

3r%  3x? 7 wiutl
—= "‘—(bupper_ blower) = g

4

(VI.40)

It is again necessary to solve Eq. (VI.27b) for p.

In his first paper on the subject Lindholm concluded
that B contributed little to the optical collision diameter
so that he neglected the resonance contribution in this
case. This small contribution would indicate that a
sharp resonance is required for effect. This sharpness is
reduced by the variation of the rotational constant for
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the two states since this variation will in turn cause a
variation in the rotational level separations for the two
vibrational states.

Lindholm then obtained the Case (2) contribution as
the additional directional effect contribution

5=(2) [w,4.78 X 10-Y4-,_,3.43X 10-14] (VI.41)

0

2wy

J'=0

with the w; defined as before.

The total half-width is now the sum of Egs. (VI.32),
(VL.39), and (VL.35). Figure 17 gives the individual
directional and resonance effect contributions as well as
the sum of the total directional effect plus the resonance
effect. Figure 18 gives the individual directional effect
contributions as well as the sum of the total directional
and resonance effects. Figures 19, 20, and 21 simply give
the total predicted widths in comparison with Lindholm’s
observed widths.

In a later paper Lindholm* concluded that his ap-
proximation, Eq. (VL.41), was not sufficient and that
Eq. (VL.27b) in conjunction with Eq. (VI.39) and
(VI.40) should be utilized for a numerical calculation of
p for each J value. This has the effect of raising the plot
of Eq. (V1.41) in Fig. 17 0.06 cm™ for J=2, 0.12 cm™
for J=5,0.11 cm™ for J=10, 0.05 cm™ for J=16, and
0.02 cm™ for J=20.

Lindholm also carried out an investigation similar to
that of HCN for the HCI molecule. Although his results
are rather impressive, the general method of their
obtention is precisely the same. Thus, since we have
rather thoroughly investigated this method, we shall
content ourselves with having mentioned the HCI
investigation.

G. An Application of Symmetric Top Dipole
Broadening. Ammonia

The development of microwave spectroscopic tech-
niques in recent years has naturally led to a quickened
interest on the part of many investigators in pure
rotational spectra and the line broadening particular to
these spectra. In this and the next several sections we
shall consider some of the theories which have been
advanced in recent years aimed directly at microwave
broadening effects or at microwave and infrared effects.

Bleaney and Penrose® have furnished the microwave
field with some excellent results on the widths of the
ammonia inversion lines. Some of the results of their
experiments are contained in Fig. 22. Bleaney® used an
interruption type approach to this broadening under the
assumption that the disturbing ammonia molecule
causes a certain perturbation of the absorbing ammonia
molecule due to the field of its dipole. A collision is
declared as having occurred at a certain separation or
interaction energy, and, under an application of the
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simple interruption theory, Bleaney determines the
half-widths as proportional to 3 [K%/(J*+J)]h Al-
though a cursorily satisfactory agreement between
theory and experiment was thus obtained, Margenau®
has made a telling point which casts more than a little
doubt on the meaningfulness of this agreement.

In order that this interruption approach succeed in
explaining the broadening, it was found necessary that
an interaction energy (corresponding to a minimum
collision-defining separation) of around twice the in-
version doublet level separation be used. In suggesting
this, the theory implies that the molecule could go right
on absorbing when the perturbation is larger than the
unperturbed level separation, even resulting in a nega-
tive frequency. This appears a bit difficult to accept.

Margenau thus decided to use the interaction between
two symmetric dipole rotators in conjunction with his
statistical theory to account for this broadening. His
results were in good agreement with those of experi-
ment, but, equally important, they were based on
tenable theoretical assumptions.

In carrying out the requisite calculation Margenau
did not use any of his previous results but worked the
entire problem through to obtain an answer which we
shall obtain by multiplying Eq. (VI.23)—which should
be applicable—by the square root of =. We do not repeat
the Margenau development since it is a repetition of the
obtention of the statistical theory and the root-mean-
square energy perturbation. The result is

2w\ ¥ u? KK,
5=2(—“) —1\’7 .
3/ 0 LA DL DT

(V1.42)

Finally the average value of the involved combination
of perturber quantum numbers over a Maxwell-
Boltzmann distribution is taken

(KoJo(Jo 1))
> [Ko(J2+Ty) Jg(JoK o) e EC2ED kT

JoK2
= . (VI43)
Z g(JQKz)e_E(“KZ)/kT
J2K2
In Eq. (VI143) the E(J3K,), are the symmetric
rotator energies. The g(J2K») are the statistical weights

]
)
o...
° .
o °
: L 1 -K/SI0
0.2 0.4 0.6 0.8 /9t 1)

F16. 22. The line width of the NHj; inversion line as a function of
rotational quantum number. (After Margenau.®)
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of the levels. Smith’® has carried out the calculation
indicated by Eq. (VI.43) to obtain 0.54 for 7'=20°C.
For ammonia p=1.44X10"®esu. On this basis Margenau
obtained the result

0
-=1.13X10"?
?
K,
X—————cm™! (mm Hg)' @ 20°C, (VI1.44)
[J:(J:+1) ]

and the straight line in Fig. 22 yields the results of
applying this equation.

This then is Margenau’s low pressure (and the theory
has not here developed for any but low pressures) result
for ammonia inversion lines, and its success for this case
is manifestly apparent from Fig. 22. Some of the
modifications which higher pressures invoke will become
apparent in Margenau’s more refined treatment of
interactions between potential hill molecules which we
consider next.

H. Interactions between Linear Vibrators
with Mirror Potentials

The shift to the red with increase of pressure of the
NH;inversion line, which had recently been observed,*
provoked the Margenau investigation® of the phe-
nomenon which we shall now consider. First let us note
that in applying the term “linear” to NHj (or other
mirror potential molecules) we simply wish to imply
that the mirror potential of the molecule is a function
only of the separation of the N atom from the H plane.

Now two interacting molecules of this type are to be
considered. Margenau has carried out a variational
perturbation calculation which details the effects of such

1 1 |
I 2 3

- A

F1c. 23. The splitting and shifts of the NHj inversion line due
to the binary interaction. Intensities are indicated. (After
Margenau.5!)
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an interaction. The treatment need not be given, but the
results, which are rather informative, can be gleaned by
a consideration of Fig. 23. On this figure the two
frequencies, into which our inversion frequency has
split by virtue of the interaction, are given by Ar and
Ar;. The probabilities—which correspond to the in-
tensities—associated with these two frequencies also
appear on the figure and are indicated as wr and wyy.
These four results of the Margenau calculation are
plotted as functions of the inversion doublet separation.
The parameter A is proportional to R=%. From this figure
then we may gather that the binary interaction between
two such mirror potential molecules splits the inversion
line into two components, the most intense of which is
shifted by the greatest amount.

The interaction between three molecules with mirror
potentials was next considered by Margenau using a
variational perturbation technique, and we have indi-
cated the results in Fig. 24. The inversion line has been
split into four components of which we have indicated
only three since the fourth is of such low intensity as to
be not reasonable of display. We might remark that the
dominant intensity (frequency-wise) is more strongly so
than was the case for the two molecule interaction and
becomes dominant more rapidly with A. Further, the
frequency shifts much more rapidly with A than does
the dominant frequency in the binary encounter. The
trend with higher orders of interaction appears to be
apparent then and, we might add, in the proper direc-
tion. Thus, this study would indicate that as the pres-
sure increases we may no longer accept the binary
approximation as a reasonable one. Let us now consider
the low pressure case further.

Under the assumption that the resonance frequency
could be approximated by the mean frequency, as given
by #{y)=wiAi+wiArn and that Margenau obtained for
the shifted frequency

() =ve(1—A2). (VI1.45)
Since

2u?

where p is the ammonia pressure in atmospheres,
E,—E»=0.8 cm™ u=1.44X1071% and the temperature
is taken as 0°C, Eq. (VI1.45) becomes

(¥)=o(1—0.36p?). (V1.46)

This can only be expected to hold at low pressures
since (a) it has been obtained under the assumption of a
binary collision or a two particle interaction and (2) the
factor A has been assumed as small. The “dominant”
frequency may also be written approximately for low
pressures from the binary theory as

vir=ve(1 *—06p) (VL.47)

and this may be compared with the experimental results.
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F16. 24. The splittings of the NHj; inversion line due to the three
particle interaction. (After Margenau.®)

1. Anderson’s Line Broadening Theory

We have made some mention of the adiabatic collision
approximation in our considerations of Chapters IT and
IV, and some additional comments on this subject
appear to be necessary here. Let us suppose we are
simply considering nondegenerate states which are
distorted after some fashion by the collision interaction
between broadener and emitter. Now in the optical
region of the spectrum the separation of the energy
levels of the emitter is so great that it is highly unlikely
that this collision interaction will so distort the levels—
energy-wise—as to effectively put the atom into another
state. As we progress out into the infrared and thence to
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the microwave the situation changes, however, since the
levels between which the contemplated transitions take
place move closer and closer together. It follows quite
readily that a distortion of these levels may be sufficient
to bring about a change of state of the emitter. When
the collision causes such a change then we have, of
course, experienced a nonadiabatic collision. As a result
of all this we can see that, although the adiabatic
collision assumption may be a reasonable one in the
visible region, it becomes less and less so as we progress
into the microwave region. This theory of Anderson’s!
to which we now propose to devote some little con-
sideration, treats nonadiabatic collisions, since it was
written for application to the long wavelength transi-
tions of the microwave and infrared regions.

™ We begin by making the assumption of a classical
path. For all save electrons this is a reasonable approxi-
mation. We then arrive at the equation for the intensity :

o0
T()f dte we z(l)

—00

I (w) = constwT7

oo
Xf dtle=¥u, ()| (VI.48)

which has a somewhat familiar appearance. In essence a
quantum mechanical solution of this equation for the
line shape, line width, and line shift under certain rather
standard interruption assumptions constitute the resi-
due of the theory.

First the matter of obtaining Eq. (VI.48) must be
considered, and we shall simply accept the replacement
of the classical Fourier expansion for the dipole moment
by an operator and the quantum averaging of the result
over a density matrix. .

Letting [[u())||=|U"woU|, we then perform a few
familiar matrix operations which transform Eq. (V1.48)
into the correlation function form:

o0
I(w)=w* const 3 d’
de

—o0

Xexpli(w—wae)t" Jpae(t”) (VIA9a)

+o0
pat) = f dt Y expl—i(wretwa)t]
abe

~—00

X (a]T(0)[6) (b]mo] c)
(el 57(¢") [d) (@] mol€) (e F(t") |a).

The assumption to be made is that the time between
collisions is much greater than the time of collision.
This assumption when applied to a consideration of the
matrix elements of ||U¢H1Uo|| leads one to the con-
clusion that these matrix elements and hence Eq.
(VL.62b) disappear unless

(VI.49b)

(VL.50)

wpetwae=0.
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We specify the density matrix by a typical matrix
element as

(n] Y5 M)8nmgn €xp(— En/kT)/
> gnexp(—E./kT). (VL51)

We now suppose that different types (this means
collisions of different optical collision diameter and
direction) of collisions are designated by different values
of o. The probability that a collision will occur during
the time interval d¢”’ and lie in the type range do is given

p(do in dt")= Nvdodt”. (VI1.52)

Next do(#"') is averaged over these collisions as
dgo(t")=dt”N7)fda'[¢(t”+dt”)— ()] (V1.53)

and ¢(¢"+dt"’) and ¢(¢”") may be obtained by utilizing
an isotropic collision assumption.
The solution of this equation is

G({'")=e Nvot” (V1.54a)

where

(VL.54b)

In order to obtain the intensity distribution in the
broadened spectral line we substitute Eqs. (VI.54a) in

o=0,+10;

Egs. (V1.49):
(J|7| T2
Iw)= 2% ———— X |[(J:M|p.|JM)|?
JiJ s gJ; MMy

Nvo,
X .
(w—wys;+Nvo )2+ (Nvo,)?

From Eq. (VI.55) we may obtain the line half-width
and shift as

(V1.55)

Ny
0=—0, (VI1.56a)
™
Nov
D=—y, (VI.56b)
27

It would appear that were ¢ in a form which was
amenable to calculation the problem would be essentially
solved, and indeed this remains the major step to the
solution. Now

UZZ(JZIT{Jz)O'JQ (VIS7a)
J2
and we may write a7; as
ore= f 27pdpS (o), (VL.57b)
0

where S(p) is a trace which is being averaged over all
possible optical collision diameters p.
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In evaluating Egs. (VI.57) the assumption of a
minimum distance of approach—what we might refer to
as a cut-off distance—is introduced. Finally, one obtains

S=S5;+Ss- - - (V1.58a)
. (]tMtszzlP[.Ithszﬂ
51(9):—1[ > -
M (2T 1) (2T51) P
(JsM T M| P|J M 1T M)
] (VI1.58b)
(27 /4+1)(2T5+1)
(JiMiszzlP2l]¢M¢sz2)
S2(P)outer=%I Z }
MiM2 (2J¢+1)(2]2+1) MysMs
(JsM T oM 2| P2\ T s M 1T M 5)
AT Ma| P21 T M 2](VI.ssc)
2T 4+1) (2T 2+1)
So(p)migate= 2 2
MMMy Jo'
M/’]Il‘llez’

UAMM|TAT M) TAMS M| TAT M)
(27 1) (2T 24+1)
X (1M T M| P\ T M T M)
(TMLTSMY | P T M TM), (VIS8d)

where

= f Ul (VLSS
I = U AT, (VI.58¢)

so that B
S2(p) = SZ(p)outer+S2(P)middle-

Let us notice that Si(p) contributes only toward line
shift while the S2(p) contributes only to line breadth,
not that these facts should prove startling.

As has been the case with the varied and sundry
theories which we have considered, the theory breaks
down for small values of p. This transpires in the
following manner. H, depends—for the dipole-dipole
interaction which is the only one which Anderson
considered§§§—on 72 in first order and % in second
order. This means that for sufficiently small », P will
become as large as you like. The expansion of .S in
terms of P, Eq. (VL.58a), is only valid, however, for
small P. Thus does the theory, through S, break down
for small p. Anderson treats this in a manner which we
may now detail.

To begin with we assume that for very small values of
p the collisions are so strong that they terminate the
radiation by causing the molecule to proceed to some
different nondegenerate state or when the molecule
remains in the same state they result in an arbitrary
phase shift that averages to zero. In either case then

(V1.59)

§8§ Tsao and Curnuttes? have also considered dipole-quadrupole
and quadrupole-quadrupole interaction within the framework of
the Anderson theory.
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¥16. 25. Anderson’s approximation to S(p). The probable actual
shapes of the curve are also given. (After Anderson.!)

S(p) contains only the first term, unity so that while
S2(p) is given by Eq. (VI.76) values of p greater than p;
where Si(p1)=1, it is simply given by one for lesser
values of p. '

Anderson also tried two other approximations for
S(p), namely

S41(p)=1—rcos(—2S,(p))*
and
S ug(p)=1—exp(—25:(p)).

These three possibilities for .S, are illustrated in
Fig. 25 and we might note here that Anderson found the
best agreement with experiment to arise from .Sy .,.

Several applications of this theory have been made, in
general with a good measure of success. In some of these
application was made of the dipole-dipole interaction
which Anderson considered while in others the dipole-
quadrupole and quadrupole-quadrupole interactions,
which Tsao and Curnutte have studied, was applied. Our
approximations here have mainly concerned themselves
with (1) the classical path, (2) collision duration very
short compared to intercollision time, (3) binary colli-
sions. Approximation (2) is perhaps the least justifiable
of the three except at quite low pressures. From our
earlier considerations, it is apparent that as the pres-
sures increase, this short collision time approximation
becomes a very poor one. Quite recently Tamita® has
produced a theory which includes the nonadiabatic
considerations of Anderson and to them adds a con-
sideration of finite collision time. In general he finds
that the Anderson theory is applicable to the line center
or low pressure which is what one would expect from our
studies of Chapter IV. This latter theory is also pri-
marily concerned with the region of the microwave.
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