Mass Spectroscopic Atomic Mass Differences. II.**

HENRY E. DUCKWORTH

Department of Physics, Hamilton College, McMaster University, Hamilton, Ontario, Canada

I. INTRODUCTION

BRIEF description is given of the mass spectroscopic methods in current use for the determination of atomic masses. The agreement between atomic masses so-derived and those obtained by studying the energy balance in nuclear reactions is also lightly touched upon, with particular reference to the mass of C¹². Finally, a table is given of the atomic mass differences which have been obtained mass spectroscopically during the past three years. This table supplements (and occasionally amends) a similar table which appeared¹ in the October, 1954, issue of this Journal.

II. PRECISION MASS SPECTROSCOPY

The mass spectroscopes employed in the study of atomic masses are necessarily high resolution instruments. With a single exception, those under construction or now in use are deflection instruments which take advantage of the double-focusing property which may be achieved by appropriately combining electrostatic and magnetic fields. The exception is the "mass synchrometer" of L. G. Smith² at the Brookhaven National Laboratory, in which measurements are made of the cyclotron frequencies of the motions of ions in a homogeneous magnetic field.

In a mass spectroscope, depending upon whether photographic or electrical detection is employed, "lines" or "peaks" are recorded. As a rule, in mass comparison work, two such lines or peaks are observed, representing two groups of ions whose specific charges are nearly equal. These constitute a "doublet," and it is the concern of the mass spectroscopist to ascertain, in terms of mass, the doublet spacing. Indeed, most of the data given in Table II, which is the principal raison d'être of this review, are simply mass differences for various doublets.

The precision with which such a mass difference can be determined is dependent upon the precision with which a line or peak may be located. Let us designate the mass width of a line or peak by Δm , a quantity which is directly proportional to the resolution $(\Delta m/m)$

of the mass spectroscope. In the case of photographic recording, the position of a mass spectral line may be determined to some fraction of its width, say 1/50 for an observer who is neither unduly optimistic nor unduly conservative. Thus, if a resolution of 1/20000 be available, the mass of an atom may be determined with a precision of one part in a million. In practice the grain size ($\sim 10^{-4}$ cm) of the photographic plate sets a lower limit to the actual line width, with the result that, for a given size of mass spectroscope, the resolution cannot be improved beyond a certain point. This limit has been approximately reached by Mattauch and his collaborators³ and by Ewald⁴ who have achieved resolutions of 1/100 000 with mass spectrographs possessing dispersions of only 0.2 cm/1% mass difference. This corresponds to an actual line width of 2×10^{-4} cm.

With electrical recording, it has been demonstrated that it is possible to locate a peak with a precision of approximately 1/500 of its width, a tenfold improvement over the photographic case. This is done by the "peak-matching" technique introduced by Smith⁵ and also employed, in a modified form, by Nier and his collaborators.⁶ In this technique, by taking advantage of rapidly-responding detector systems, the two doublet peaks are made to appear on an oscilloscope screen on alternate sweeps. These two peaks are then brought into coincidence by adjustment of some circuit parameter (in Smith's case, a frequency; in Nier's case, a resistance) whose value gives the doublet mass difference. The peaks are thus "matched" by the human eye, an organ which can discern lack of coincidence with exceptionally keen discrimination. This peak-matching scheme is perhaps the most important single advance in precision mass spectroscopy since the discovery of the double-focusing principle in the mid-1930's. By this device, stated precisions have been regularly achieved of one part in 2×10^7 and, occasionally, of even one part in 10⁸.

Partly because of the grain-size limitation in the case of photographic detection instruments but, even more, because of the difficulty of making and aligning the diminutive slits needed in small instruments if high resolution is to be attained, the current trend in precision mass spectroscopes is toward the bigger-andbetter variety. Such instruments are larger than their predecessors by roughly an order of magnitude and are

^{*} This work was supported by the U. S. Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command and by the National Research Council of Canada.

[†] Prepared at the suggestion of the Subcommittee on Nuclear Constants of the Committee on Nuclear Science of the National **Research** Council

¹ Duckworth, Hogg, and Pennington, Revs. Modern Phys. 26, 463 (1954).

² L. G. Smith and C. C. Damm, Rev. Sci. Instr. 27, 638 (1956).

³ F. Everling, Proceedings of the Mainz Conference on Atomic Masses (Pergamon Press, New York, 1957). ⁴ H. Ewald, Natl. Bur. Standards Circ. **522**, 37 (1953).

⁵ L. G. Smith and C. C. Damm, Phys. Rev. 90, 324 (1953) ⁶ Quisenberry, Scolman, and Nier, Phys. Rev. 102, 1071 (1956).

Method	Investigator(s)	C12	Error	Reference	
Mass spectroscopic	Collins, Nier, and Johnson (1952)	12.003842	4	a	
	Ogata and Matsuda (1953)	12.003844	6	b	
	Mattauch and Bieri (1954)	12.0038231	33	Ma 54	
	Smith (1955)	12.0038212	38	с	
	Ouisenberry, Scolman, and Nier (1955)	12.0038174	18	d	
	Liebl and Ewald (1956)	12.003819	2	Li 56	
	Kettner (1956)	12.003814	6	Ket 56	
	Ouisenberry, Scolman, and Nier (1956)	12.0038167	8	Ou 56	
	Demirkhanov et al. (1956)	12.003820	5	Ďe 56	
	Smith (1957)	12.00381458	11	Sm 57	
	Quisenberry, Giese, and Benson (1957)	12.0038156	4	Qu 57	
Nuclear reactions	Li et al. (1951)	12.003804	17	е	
	Wapstra (1955)	12.003803	5	f	
	Mattauch et al. (1956)	12.0038000	39	g	

TABLE I. Recent values for the mass of C¹².

Collins, Nier, and Johnson, Phys. Rev. 86, 408 (1952).
K. Ogata and H. Matsuda, Phys. Rev. 89, 27 (1953).
L. G. Smith, Third Annual Meeting, Am. Soc. Testing Materials Committee E-14 on Mass Spectrometry (1955).
Quisenberry, Scolman, and Nier, Phys. Rev. 100, 1245(A) (1955).
Li, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512 (1951).
I. A. H. Wapstra, Physica 21, 367 (1955).
Mattauch, Waldmann, Bieri, and Everling, Z. Naturforsch. 11a, 525 (1956).

under construction at Osaka University,7,8 Harvard University,⁹ the Max Planck Institute for Chemistry¹⁰ and McMaster University.¹¹

Although doublets are the traditional objects of study in precision mass spectroscopy, Johnson and Nier¹² have shown that electrical recording makes possible the determination of mass differences that are much larger than doublet spacings. This, with photographic detection, would require a knowledge of the dispersion of the mass spectrograph over a considerable range, a knowledge which no mass spectroscopist to date has had the temerity to aver that he possesses. With electrical recording, however, the ion groups are brought in turn to the same collector, say, by altering a resistance that determines the voltage across the electrostatic analyzer, as in Nier's case. Here the ions have each traveled identical paths at the time of detection, and the mass change in moving from one peak to another is proportional to the corresponding resistance change. The accuracy of this dispersion law has been repeatedly verified by determining directly the H¹ mass as, for example, from the C₅H₈-C₅H₇ mass difference. These "mass unit" (MU) mass differences do not carry with them the same precision as a doublet difference but they have already proved¹³ an important means of determining neutron binding energies among the heavy atoms.

III. MASS SPECTROSCOPIC VERSUS NUCLEAR **REACTION MASSES-C12**

Three years ago, at the time the first compilation was prepared, the lack of agreement between the mass of C¹² as determined mass spectroscopically and as derived from reaction data was a source of concern. In the interval, the absolute value of this discrepancy has been greatly reduced, in fact, from $\sim 40 \,\mu$ MU to $\sim 15 \,\mu$ MU. The discrepancy which remains, however, is still a real one which, statistically-speaking, is more significant than before. The evidence is presented in Table I.

Discrepancies exist elsewhere as well, but these are not so sharply defined, as the nuclides in question have not been the subject of such intense investigation. Giese and Benson,¹⁴ at the University of Minnesota, have recently concluded a mass spectroscopic study of atomic masses in the region $31 \leq A \leq 55$. These results, when compared with the masses derived from nuclear reactions, show a discrepancy whose magnitude appears to be linearly dependent upon the distance by which the nuclide is removed from O¹⁶. Such a discrepancy could be explained by assuming small errors in the determination of nuclear reaction Q's. These errors would be cumulative and, consequently, the total error would increase with the number of reaction stages connecting the nuclide in question to O¹⁶. On the other hand, it is hard to imagine a systematic error in the mass spectroscopic work that could lead to this steadily-increasing type of discrepancy. True, an error in the mass of C12 is potentially present, but this is much smaller than the inconsistencies here referred to. In each case the mass of the atom is found by studying some particular doublet, that is, by a one-stage operation. Furthermore, the doublets employed by Giese and Benson are such that they do not

⁷ K. Ogata and H. Matsuda, Z. Naturforsch. 10a, 843 (1955). ⁸ K. Ogata and H. Matsuda, Proceedings of the Mainz Conference

⁸ K. Ogata and H. Matsuda, Proceedings of the Mainz Conference on Atomic Masses (Pergamon Press, New York, 1957).
⁹ K. T. Bainbridge and T. L. Collins, Proceedings of the Mainz Conference on Atomic Masses (Pergamon Press, New York, 1957).
¹⁰ Everling, Hintenberger, König, Mattauch, Müller-Warmuth, and Wende, Proceedings of the Mainz Conference on Atomic Masses (Pergamon Press, New York, 1957).
¹¹ Duckworth, Kerr, and Bainbridge, Proceedings of the Mainz Conference on Atomic Masses (Pergamon Press, New York, 1957).
¹² W. H. Johnson and A. O. Nier, Phys. Rev. 105, 1014 (1957).
¹³ W. H. Johnson and V. B. Bhanot, Bull. Am. Phys. Soc. Ser. II, 2, 224 (1957).

¹⁴ C. F. Giese and Benson, Bull. Am. Phys. Soc. Ser. II, 2, 223 (1957).

TABLE II.	Mass	spectroscopic	atomic r	nass d	ifferences.	8,
						_

Element Z A	Doublet	∆M in mMU Err	Refer- or ence	Element Z A	Doublet	ΔM in mMU Erro	Refer- r ence
1 H 1	$\begin{array}{c} H_2-D\\ CH_2-N\\ CH_4-O\\ NH_2-O\\ CH_4-NH_2 \end{array}$	1.5483 1 12.5803 36.388 36.3931 23.8164 12.5804 1	0 De 56 4 Qu 56 4 De 56 9 Qu 56 5 Qu 56 5 Qu 56	6 C 1	$\begin{array}{ccc} 2 & C_{2}H_{4}-CO \\ & C_{2}H_{4}-N_{2} \\ & N_{2}-CO \\ & CH_{3}OH-O_{2} \\ & \frac{1}{2}C_{4}H_{2}O-O^{17}O \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Qu 56 Qu 57 Sco 56 Sco 56 Qu 57 Ket 56
	$\begin{array}{c} \rm NH_{3}-\rm OH\\ \rm NH_{3}-\rm NDH\\ \rm C^{13}\rm H_{4}-\rm OH\\ \rm H_{2}\rm O-\rm DO\\ \rm H_{2}\rm O-\rm O^{18}\\ \rm N^{15}\rm H_{3}-\rm H_{2}\rm O\\ \rm H_{3}\rm O-\rm H_{2}\rm O^{17}\\ \rm H_{3}\rm O-\rm HO^{18}\\ \rm D_{2}\rm O-\rm H_{2}\rm O^{18}\\ \rm D_{2}\rm O-\rm H^{19}\\ \rm CoH-\rm CO\end{array}$	$\begin{array}{c} 23.833\\ 23.8159\\ 1.5478\\ 31.943\\ 1.5476\\ 11.4033\\ 2\\ 13.019\\ 13.0234\\ 3.601\\ 11.405\\ 8.3102\\ 16.8944\\ 36.934\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\begin{array}{c} \frac{1}{2}C_{4}H_{4}O-H_{2}S\\ \frac{1}{2}C_{4}H_{4}O-H_{2}O_{2}\\ \frac{1}{2}C_{4}H_{4}O-O^{18}O\\ C_{3}H_{4}-A^{40}\\ C_{3}H_{8}-CO_{2}\\ N_{2}O-CO_{2}\\ C_{4}-SO\\ C_{3}D_{8}-C_{4}D_{2}\\ 3\\ \end{array}$	$\begin{array}{cccccc} 25.3926 & 9\\ 7.6312 & 8\\ 19.040 & 13\\ 19.0367 & 8\\ 68.9344 & 13\\ 68.9346 & 11\\ 72.7870 & 16\\ 72.7932 & 16\\ 11.244 & 10\\ 33.0269 & 13\\ 84.62526 & 22\\ 31.943 & 11\\ 31.9253 & 7 \end{array}$	Qu 56 Qu 57 Ket 56 Qu 56 Qu 56 Qu 57 Qu 57 Qu 57 Kr 57 Qu 56 Sm 57 Ket 56 Sco 56
	$\begin{array}{c} C_{2}H_{4}-N_{2}\\ CH_{3}OH-O_{2}\\ \frac{1}{2}C_{4}H_{2}O-O^{17}O\\ \frac{1}{2}C_{4}H_{4}O-H_{2}S\\ \frac{1}{2}C_{4}H_{4}O-H_{2}O_{2}\\ \frac{1}{2}C_{4}H_{4}O-H_{2}O_{2}\\ \frac{1}{2}C_{4}H_{4}O-O^{18}O\\ C_{3}H_{4}-A^{40}\\ C_{3}H_{8}-CO_{2}\end{array}$	$\begin{array}{c} 36.3960\\ 25.1585\\ 36.3958\\ 11.224\\ 25.3926\\ 7.6312\\ 19.040\\ 1.\\ 19.0367\\ 68.9344\\ 1.\\ 68.9346\\ 1\\ 72.7870\\ 1.\\ 72.7932\\ 1.\\ \end{array}$	5 Qu 57 6 Sco 56 2 Qu 57 9 Qu 57 9 Qu 57 9 Qu 57 9 Qu 57 9 Qu 57 3 Ket 56 8 Qu 56 8 Qu 57 6 Qu 57 6 Qu 57 6 Qu 57	7 N 1	$\begin{array}{cccc} 4 & CH_2-N \\ & NH_2-O \\ & NH_3-OH \\ \\ & & CD_4-ND_3 \\ & ND_3-D_2O \\ & ND_3-Ne^{20} \\ & ND_3-\frac{1}{2}A^{40} \\ & C_2H_4-N_2 \\ & N_2-CO \\ & N_2O-CO_2 \\ \\ 5 & CH_3-N^{16} \\ & H & O \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Qu 56 Qu 56 Ket 56 Qu 56 Sm 57 Sm 57 Sm 57 Qu 56 Sco 56 Kr 57 Sco 56
D 2	$\begin{array}{c} H_2 - D \\ D_2 - He^4 \\ D_3 - \frac{1}{2}C \\ NH_3 - NDH \\ H_2O - DO \\ CD_4 - D_2O \\ ND_3 - D_2O \\ CD_4 - NC^{30} \\ CD_4 - Nc^{30} \\ D_2O - Ne^{20} \\ D_2O - Ne^{20} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	De 56 2 De 56 2 De 56 4 Qu 56 5 Qu 56 4 Sm 57 0 Sm 57 0 Sm 57 0 Sm 57 2 Sm 57 3 Sm 57 2 Sm 57 3 Qu 56 2 Sm 57 3 Qu 56 5 Sm 57 6 Sm 57	80 1 1	$ \begin{array}{cccc} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ket 56 Sco 56 Sco 56 Ket 56 Qu 56 Ket 56 Qu 56 Ket 56 Sco 56 Ket 56 Sco 56 Sco 56
2 He 4	${ m D}_2-{ m He^4}\ { m He_2^4}-{1\over 2}{ m O}$	25.600 2 ‡7.7543 44	2 De 56 4 Ma 54		$\begin{array}{c} H_2O^{18} - HF^{19} \\ D_2O - HF^{19} \\ B^{10}F_2^{19} - SO \\ C H O D^{11}F_2^{19} \end{array}$	8.582 2 16.8944 5 42.7730 17	Ket 56 Sco 56 Sco 56
5 B 10 11	$\begin{array}{c} B^{10}H-B^{11}\\ B^{10}B^{11}H_2-Na^{23}\\ B^{10}F_2{}^{19}-S^{22}O\\ B^{10}H-B^{11}\\ B^{11}H-C\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 Li 56) Li 56 / Sco 56 2 Li 56 / Li 56		$C_4H_4O-B^{aa}F_2^{19}$ $C_5H_9-CF_3^{19}$ $C_6H_{13}-Si^{28}F_3^{19}$ $C_6H_{14}-Si^{29}F_3^{19}$ $C_4H_7O_2-Si^{30}F_3^{19}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sco 56 Sco 56 Sco 56 Sco 56 Sco 56
6 C 12	$\begin{array}{c} {}^{\rm B^{10}B^{11}H_2 - N_{\rm A}^{23}} \\ {}^{\rm C_4H_4O - B^{11}F_3^{19}} \\ \\ {}^{\rm D_3 - \frac{1}{2}C} \\ {}^{\rm CH_2 - N} \\ {}^{\rm CH_4 - NH_2} \\ {}^{\rm CH_4 - NH_2} \\ {}^{\rm CH_4 - O} \\ \\ \\ {}^{\rm CD_4 - D_2O} \\ {}^{\rm CD_4 - ND_3} \\ {}^{\rm CD_4 - Ne^{20}} \\ {}^{\rm CD_4 - \frac{1}{2}A^{40}} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Li 56 Sco 56 Qu 56 Qu 56 Qu 56 Qu 56 Qu 56 Sm 57 Sm 57 Sm 57 Sm 57	10 Ne 2	$\begin{array}{ccc} 0 & CD_4 - Ne^{20} \\ & ND_3 - Ne^{20} \\ & D_2O - Ne^{20} \\ & H_2O^{18} - Ne^{20} \\ & Ne^{20} - \frac{1}{2}A^{40} \\ & \frac{1}{2}C_2H_2O - Ne^{21} \\ & HDO^{18} - Ne^{21} \\ & 2 & \frac{1}{2}CO_2 - Ne^{22} \end{array}$	$\begin{array}{cccccc} 63.97896 & 13\\ 52.94890 & 12\\ 30.6872 & 7\\ 30.68443 & 12\\ 22.392 & 5\\ 22.3770 & 6\\ 11.24730 & 18\\ 11.429 & 5\\ 27.2482 & 7\\ 3.521 & 12\\ 3.5307 & 6\\ \end{array}$	Sm 57 Sm 57 Sco 56 Sm 57 Ket 56 Qu 56 Sm 57 Ket 56 Sco 56 Ket 56 Sco 56

* Special symbols appearing in this table are defined in the second last paragraph of Sec. IV,

TABLE II.—Continued.

Eleme Z	nt A	Doublet	ΔM in mMU	Error	Refer-	Eler	nent A	Doublet	ΔM in mMU	Error	Re	efer-
11 Na	23	B ¹⁰ B ¹¹ H ₂ -Na ²³	48.130	10	Li 56	24 Cr	54	C4H6-Cr ⁵⁴	108.1099	23	Ge	57
		$\frac{1}{2}$ COO ¹⁸ – Na ²³	7.2592	20	Sco 56	25 M		C II M=55	116 7517		C.	57
12 Mg	24	$C_2 - Mg^{24}$	14.9621	11	Sco 56	25 M	11 55	$\frac{1}{3}$ Ho ¹⁶⁵ – Mn ⁵⁵	\$38.3	3	Ho	54
	25 26	$C_2H - Mg^{25}$	21.9944 33.0676	10 10	Sco 56	26 Ee	54	C.H Fe ⁵⁴	107 374	4	01	569
	20	$C_2 I I_2 - I M g$	55.0070	10	500 50	20 10	56	$Si^{28} - \frac{1}{2}Fe^{56}$	§9.30	6	Du	50a
13 Al	27	$C_2H_3 - Al^{27}$	41.9548	23	Sco 56		57	$C_4H_8 - Fe^{56}$ $C_4H_6 - Fe^{57}$	127.698 135.005	4 7	Qu	56a 56a
14 Si	28	$C_6H_{13} - Si^{28}F_3^{19}$	129.625	4	Sco 56		58	$C_4H_{10} - Fe^{58}$	144.977	4	Qu	56a
	29 30	$C_6H_{14} - Si^{29}F_3^{19}$ $C_4H_7O_9 - Si^{30}F_9^{19}$	$137.889 \\ 75.6590$	7 36	Sco 56 Sco 56	27 Cc	59	$C_{2}H_{2}O_{2}-CO_{2}^{59}$	80,1466	23	Ou	56a
15 D	24		0.0402		0 57			011 NT:59	142.044		Q	
15 P	31	$O_2 - P^{o_1}H$	8.2423	0	Ge 57	28 N1	58	$C_4H_{10} - Ni^{58}$ $C_8H_6O - Ni^{58}$	142.941 106.52	15	Qu Ea	50a 56
16 S	32	$O_2 - S$	17.756	10	Sch 56		60	$C_2H_4O_2 - Ni^{60}$	90.387	6	Qu	56a
			17.7599	11	Qu 56 Qu 57		61	$C_2H_5O_2-Ni^{61}$	90.82 97.894	15	Ea Ou	50 56a
		$HS - S^{33}$	8.448	$\overline{25}$	Sch 56		62	$C_5H_2 - Ni^{62}$	87.339	6	Qu	56a
	22	$\frac{1}{2}C_4H_4O-H_2S$	25.3926	9	Qu 56		64	$SO_2 - Ni^{64}$	33.901	5	Qu	56a
	33	$C_4H - S^{33}O$	41.4602	15	Ge 57	29 Cu	ı 63	$C_5H_3 - Cu^{63}$	93.909	7	Ou	56a
	34	$H_2S - S^{34}$	19.851	10	Sch 56		65	$C_5H_5 - Cu^{65}$	111.377	4	Qu	56a
		$C_{3} - H_{2}S^{34}O$ $C_{4}H_{2} - S^{34}O$	10.400 52.9889	15	Ge 57	30 Zn	64	$O_2 - \frac{1}{2} Zn^{64}$	25.45	15	Kr	55
	36	$C_4H_4 - S^{36}O$	69.3175	35	Ge 57			CO 7 M	25.2633	26	Qu	56a
17 CI	35	HC135_A36	9 1346	0	Ge 57		66	$SU_2 - Zn^{64}$	32.7087	32 6	Qu Ou	50a 56a
11 01	00	$C_5H_{10} - Cl_{2^{35}}$	140.5850	34	Ge 57		00	$\frac{1}{2}$ Xe ¹³² -Zn ⁶⁶	25.61	15	Řr	55
	37	$HCl^{37} - A^{38}$	11.0001	10	Ge 57	30 Zn	67	$C_5H_7 - Zn^{67}$	127.675	7	Qu	56a
		$C_6H_2 - C_{12}$	83.8092	23	Ge 5/		68	$_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{18}$ $_{16}$ $\overline{16}$ $_{16}$ $_{1$	23.25 137.781	20 4	Ou	55 56a
18 A	36	${ m H_2O}\!-\!{1\over 2}{ m A^{36}}$	(26.7937	6)	Qu 56			$\frac{1}{2}$ Xe ¹³⁶ -Zn ⁶⁸	27.70	20	Řr	55
		$C_3 - A^{36}$ HC135 - A^{36}	(32.4729	20)	Qu 56		70	$C_{5}H_{10}-Zn^{70}$	152.953	6	Qu	56a
	38	$HCl^{37}-A^{38}$	11.0001	10	Ge 57 Ge 57	36 Kr	· 84	${ m CH_2Cl_{2^{35}}-Kr^{84}}$	41.849	33	Kr	57
	40	$CD_4 - \frac{1}{2}A^{40}$	75.22626	17	Sm 57		86	$\frac{1}{3}$ Xe ¹²⁹ $-\frac{1}{2}$ Kr ⁸⁶	12.969	17	Kr	57
		$D_{3} - \frac{1}{2}A^{40}$ $D_{2}O - \frac{1}{2}A^{40}$	41.9390	13	Ou 50			CIICIST 2" - KISS	02.755	49	KI	51
		DT 90 1440	41.93173	15	Šm 57	38 Sr	88	$CO_2 - \frac{1}{2}Sr^{88}$	§37.00	18	Du	51a
		$Re^{40} - \frac{1}{2}A^{40}$ C ₃ H ₄ - A ⁴⁰	68.9344	18	Ou 50	39 Y	89	$C_8H_9 - Y^{89}O$	§169.84	11	Co	54
			68.9346	11	Qu 57	54 V.	106	С Ц 1У-126	871 07	7	Цo	52
19 K	39	$C_{3}H_{3}-K^{39}$	59.762	20	Li 56	54 A	120	$\frac{1}{3}$ Xe ¹²⁹ $-\frac{1}{2}$ Kr ⁸⁶	12.969	17	Kr	57
		G TTDT TTM	59.7819	15	Ge 57		130	$C_6H_{10}O_3 - Xe^{130}$	159.53	3	Ĵο	57
	40	$C_2HN - K^{49}$	147.58 67 3178	8 21	He 51 Ge 57		131	$C_{10}H_{11} - Xe^{131}$ $CO_2 - \frac{1}{2}Xe^{132}$	21 762	20^{4}	Jo Kr	57
	41	$C_{3}H_{5}-K^{41}$	77.331	20	Li 56		101	$\frac{1}{2}$ Xe ¹³² $-$ Zn ⁶⁶	25.61	15	Kr	55
		CILN VA	77.3167	19	Ge 57		12/	$C_{10}H_{12} - Xe^{132}$	189.79	20	Jo Kr	57
		$C_{211311} - K^{-1}$	403.13	5	me si		104	$C_{10}H_{14} - Xe^{134}$	204.20	20 5	Jo	57
20 Ca	40	$C_{3}H_{4} - Ca^{40}$	68.7341	15	Ge 57		136	$\frac{1}{2}$ Xe ¹³⁶ -Zn ⁶⁸	27.70	20	Kr	55 57
	42 43	$C_{3}H_{6} - Ca^{42}$ $C_{2}H_{7} - Ca^{43}$	88.3500 96.0186	22 26	Ge 57 Ge 57			C10H16-Ae	218.055	23	Jo	57
	44	$CO_2 - Ca^{44}$	34.3442	$\overline{24}$	Ge 57	55 Cs	133	$C_{10}H_{13} - Cs^{133}$	196.66	7	Jo	57
	46 48	$CSH_2 - Ca^{46}$	34.0462 47 4064	39 55	Ge 57	56 Ba	1.30	$C_{e}H_{10}O_{2} - Ba^{130}$	156.24	20	Τo	57
	то	C4Ca	17.1901	55	uc 57		132	$C_{10}H_{12} - Ba^{132}$	188.84	12	Ĵo	57
21 Sc	45	$CSH-Sc^{45}$	23.9873	18	Ge 57		134 135	$C_{10}H_{14} - Ba^{134}$ $C^{13}C_{0}H_{14} - Ba^{135}$	205.36 207.40	8 10	Jo To	57 57
22 Ti	46	CSH2-Ti ⁴⁶	35.1026	14	Ge 57		136	$C_{10}H_{16} - Ba^{136}$	220.89	9	Jo	57
	47	$CSH_3 - Ti^{47}$	43.8035	30	Ge 57		137	$C^{13}C_9H_{16}-Ba^{137}$	223.08	6	Jo	57
	40	C₄H−Ti ⁴⁹	59.9781	15	Ge 57 Ge 57		138	$C_{10}H_{18} - Ba^{138}$	236.03	8	Jo	57
	50	$C_4H_2 - Ti^{50}$	70.8839	18	Ge 57	57 La	138	C10H18-La138	234.17	20	Jo	57
23 V	50	C4H9-V50	68.5076	15	Ge 57		139	$C^{13}C_9H_{18}-La^{139}$	238.23	6	Jo	57
	51	$C_4H_3 - V^{51}$	79.5223	18	Ge 57	58 Ce	136	C10H10-Ce ¹³⁶	218 19	20	Τo	57
24 Cr	50	$C_4H_9-Cr^{50}$	69,6218	18	Ge 57		138	$C_{10}H_{18} - Ce^{138}$	234.89	20	Ĵo	57
	52	$\tilde{C}_4H_4 - \tilde{C}r^{52}$	90.8165	17	Ge 57		140	$C_{10}H_{20} - Ce^{140}$	251.29	6	Jo	57
	53	C ₄ H ₅ -Cr ⁵³	98.5062	21	Ge 57		142	$C_{10}H_{22} - Ce^{142}$	262.93	7	Jo	57

regularly increase in width as heavier atoms are investigated. If this latter had not been the case, a systematic error that increased with doublet spacing might have provided an explanation for the mounting inconsistencies.

Among heavier atoms, particularly in the iron-nickelzinc region, certain large discrepancies¹⁵ between mass differences as calculated from mass spectroscopy and as derived from reaction energies have been virtually removed.¹⁶ Large inconsistencies still exist in the 50-neutron region.

In short, the absolute agreement between the results from these two major sources of atomic mass information has much improved in the past three years. The remaining dissonance would be greatly lessened and, incidentally, great joy would be brought to the heart of the mass spectroscopist, if a *small* systematic error were to be found among O-value determinations.

IV. TABLE OF ATOMIC MASS DIFFERENCES

In Table II are listed the atomic mass differences which have been obtained by mass spectroscopic methods in the past three years. These data supplement those in Tables II, III, and IV of reference 1. Appearing herein is a good deal of information which has not, at the time of writing (June 1957), been published.

In reference 1 the doublets that were used to obtain the masses of the secondary standards H^1 , D^2 , and C^{12} were tabulated separately. Recently, however, several new doublet cycles that provide means of calculating these masses have been introduced, 17,6,18 with the result that there is now a rather formidable number of "fundamental" doublets, some of which are sacrosanct in one laboratory but not in another. For this reason, and also because a number of heavier atoms are likely to be added¹⁹ to the list of secondary standards, all the mass data are here shown in a single table.

The mass differences in Table II are arranged according to element in order of increasing atomic number, Z, and, within the given element, according to isotope in order of increasing mass number, A. The entries associated with any particular nuclide represent those data which may be useful in calculating the mass of the nuclide in question. As a result there are many double entries, for example, the H₂O-DO mass difference is listed under both H and D. On the other hand, the C12H10-Sm154 mass difference is listed only under Sm¹⁵⁴. Although it does involve both H and C, this difference is not of practical use in determining the masses of these two atoms.

TABLE II.-Continued.

Elem Z	ent A	Doublet	ΔM in mMU	Error	Re e:	efer- nce
59 Pr	141	$C_{11}H_9 - Pr^{141}$	163.00	3	Jo	57
60 Nd	142	$C_{10}H_{22} - Nd^{142}$	264.74	3	Jo	57
	143	$C^{13}C_{10}H_{10} - Nd^{143}$	172.08	10	Ĵο	57
	144	$C_{10}H_5F^{10} - Nd^{144}$	127.77	10	Jo	57
	145	$C_{10}H_{7}F^{19} - Nd^{146}$	140 53	6	JO	57
	148	$C_{2}^{13}C_{8}H_{7}F^{19}-Md^{148}$	143.46	ő	Io	57
	150	$C_9H_{10}O_2 - Nd^{150}$	147.30	7	Ĵо	57
52 Sm	144	$C_{10}H_5F^{19}-Sm^{144}$	125.92	9	Jo	57
	147	$Sm^{148} - Sm^{147}$	+1000.25	3	Jo	57
	140	Sm ¹⁴⁹ -Sm ¹⁴⁸	1000.25		Io	57
	149	Sm ¹⁴⁹ -Sm ¹⁴⁸	†1002.71		Jo	57
		$Sm^{150} - Sm^{149}$	†1000.42		Ĵо	57
	150	$C_9H_{10}O_2 - Sm^{150}$	151.23	7	Ĵο	57
	152	$C_{12}H_8 - Sm^{152}$	143.29	13	Jo	57
	154	$C_{12}H_{10} - Sm^{134}$	150.57	15	Jo	57
3 Eu	151	$C_{12}H_7 - Eu^{151}$ $C_{12}H_{11} - Eu^{151}O$	135.26 171.69	17 19	Jo Io	57 57
	153	$C^{13}C_{12}H_{12} - Eu^{153}O$	181.8	4	Jo	57
64 Gd	154	${ m Gd}^{155}-{ m Gd}^{154}$	†1002.15	6	Jo	57a
	155	$Gd^{156} - Gd^{155}$	†999.90	6	Ĵο	57a
	156	$Gd^{157} - Gd^{156}$	1002.20	6	Jo	57a
	157	Gam-Gam	1000.53	0	Jo	57a
66 Dy	160	$Dy^{161} - Dy^{160}$	†1002.10	6	Jο	57a
	161	$Dy^{162} - Dy^{161}$	†1000.21	6	Ĵο	57a
	162 163	$Dy^{163} - Dy^{162}$ $Dy^{164} - Dy^{163}$	†1002.26 †1000.80	6 6	Jo Jo	57a 57a
57 Ho	165	$rac{1}{3} m Ho^{165} - Mn^{55}$	§38.3	3	Но	54
58 Er	166	Er167-Er166	†1002.06	6	Jo	57a
	167	Er ¹⁶⁸ -Er ¹⁶⁷	†1000.65	6	Ĵо	57a
'0 Yb	170	Yb ¹⁷¹ -Yb ¹⁷⁰	†1001.88	6	Jo	57a
	171	$Y D^{1/2} - Y D^{1/1}$ Vb173 Vb179	†1000.40	6	Jo	57a
	172	$Yb^{174} - Yb^{173}$	1002.17	6	Jo Jo	57a 57a
2 Hf	176	Hf ¹⁷⁷ -Hf ¹⁷⁶	†1002.25	6	To	57a
	177	Hf ¹⁷⁸ -Hf ¹⁷⁷	†1000.88	6	Ĵо	57a
	178	$Hf^{179} - Hf^{178}$	†1002.36	6	Ĵο	<u>57</u> a
	179	H1100-H1119	†1001.1 <i>3</i>	6	Jo	57a
4 W	182 183	$W^{183} - W^{182}$ $W^{184} - W^{183}$	†1002.23 †1000.99	6	Jo Io	57a
< 0-	100	0.1%7 0.1%	11000.55	6	ј0 т	
o Us	180	$Os^{187} - Os^{180}$	T1002.14	6	Jo	57a
	188	$Os^{189} - Os^{188}$	+1002 55	6	JO	57a
	189	Os ¹⁹⁰ -Os ¹⁸⁹	†1000.52	6	Jo	57a
8 D+	10/	D+195 D+194	+1002 45	6	To	570
	195	$Pt^{196} - Pt^{195}$	1002.45	6	Jo Jo	57a 57a
010						
0 Hg	198	Hg ¹⁹⁹ -Hg ¹⁹⁸	†1001.82	6	Τo	57a
0 Hg	198 199	Hg ¹⁹⁹ —Hg ¹⁹⁸ Hg ²⁰⁰ —Hg ¹⁹⁹	†1001.82 †1000.31	6 6	Jo Jo	57a 57a
) Hg	198 199 200	Hg ¹⁹⁹ — Hg ¹⁹⁸ Hg ²⁰⁰ — Hg ¹⁹⁹ Hg ²⁰¹ — Hg ²⁰⁰	†1001.82 †1000.31 †1002.26	6 6 6	Jo Jo Jo	57a 57a 57a
0 Hg	198 199 200 201	Hg ¹⁹⁹ —Hg ¹⁹⁸ Hg ²⁰⁰ —Hg ¹⁹⁹ Hg ²⁰¹ —Hg ²⁰⁰ Hg ²⁰² —Hg ²⁰¹	†1001.82 †1000.31 †1002.26 †1000.64	6 6 6	Jo Jo Jo Jo	57a 57a 57a 57a
0 Hg 2 Pb	198 199 200 201 206	$\begin{array}{c} Hg^{199} - Hg^{198} \\ Hg^{200} - Hg^{199} \\ Hg^{201} - Hg^{200} \\ Hg^{202} - Hg^{201} \\ \end{array}$	†1001.82 †1000.31 †1002.26 †1000.64 †1001.74	6 6 6 6	Jo Jo Jo Jo	57a 57a 57a 57a 57a

Symbols appearing in Table II have the following significance: ‡ indicates a datum omitted in the tables of reference 1, § indicates a correction to the tables of

 ¹⁵ Kerr, Taylor, and Duckworth, Nature 176, 458 (1955).
 ¹⁶ Quisenberry, Scolman, and Nier, Phys. Rev. 104, 461 (1956).
 ¹⁷ M. E. Kettner, Phys. Rev. 102, 1065 (1956).

 ¹⁸ L. G. Smith, Bull. Am. Phys. Soc. Ser. II, 2, 223 (1957).
 ¹⁹ H. E. Duckworth, Progr. in Nuclear Phys. 6, 139 (1957).

reference 1, and † designates mass differences which are not true doublets but are, rather, mass-unit differences of the type described in the concluding paragraph of Sec. II. A datum in parentheses indicates that the investigator originally responsible for it now views it with suspicion. As before, it should be assumed that later values supersede earlier values from the same laboratory.

The reader should consult the original papers for descriptions of the assigned errors. In most cases these are probable errors based *only* on the internal consistency of the data. The frequency with which two entries for the same doublet agree within the stated errors suggests that systematic errors are roughly comparable in size to the statistical ones.

V. ACKNOWLEDGMENTS

I have been greatly helped in the preparation of this review by a number of persons who have kindly provided me with pre-publication information concerning their work and who have checked the accuracy of the first draft of Table II. These include J. L. Benson, V. B. Bhanot, H. Ewald, C. F. Giese, W. H. Johnson, J. T. Kerr, M. E. Kettner, J. Mattauch, A. O. Nier, K. Ogata, K. S. Quisenberry, T. T. Scolman, and L. G. Smith. I also much appreciate the assistance of Gertrude Isenor who has compiled most of the information in Table II and has assiduously checked it.

VI. REFERENCES

- Co 54 Collins, Johnson, and Nier, Phys. Rev. 94, 398 (1954).
- De 56 Demirkhanov, Gutkin, Dorokhov, and Rudenko, Atomnaya Energ. 2, 21 (1956); J. Nuclear Energy 3, 251 (1956).
- Du 50 Duckworth, Johnson, Preston, and Woodcock, Phys. Rev. 78, 386 (1950).
- Du 51a H. E. Duckworth and R. S. Preston, Phys. Rev. 82, 468 (1951).
- Ea 56 Eastman, Isenor, Bainbridge, and Duckworth, Phys. Rev. 103, 145 (1956).
- Ge 57 C. F. Giese and J. L. Benson, Bull. Am. Phys. Soc. Ser. II, 2, 223 (1957).
- Ha 52 R. E. Halsted, Phys. Rev. 88, 666 (1952).
- Ho 54 B. G. Hogg and H. E. Duckworth, Can. J. Phys. 32, 65 (1954).
- He 51 A. Henglein, Z. Naturforsch. 6a, 745 (1951).
- Jo 57 W. H. Johnson, Jr., and A. O. Nier, Phys. Rev. 105, 1014 (1957).
- Jo 57a W. H. Johnson, Jr., and V. B. Bhanot, Bull. Am. Phys. Soc. Ser. II, 2, 224 (1957).
- Ket 56 M. E. Kettner, Phys. Rev. 102, 1065 (1956).
- Kr 55 Kerr, Isenor, and Duckworth, Z. Naturforsch 10a, 840 (1955).
- Li 56 H. Liebl and H. Ewald, Z. Naturforsch 11a, 406 (1956).
- Ma 54 J. Mattauch and R. Bieri, Z. Naturforsch. 9a, 303 (1954).
- Qu 56 Quisenberry, Scolman, and Nier, Phys. Rev. 102, 1071 (1956).
- Qu 56a Quisenberry, Scolman, and Nier, Phys. Rev. 104, 461 (1956).
- Qu 57 Quisenberry, Giese, and Benson, Bull. Am. Phys. Soc. Ser. II, 2, 223 (1957).
- Sch 56 Schierstedt, Ewald, Liebl, and Sauermann, Z. Naturforsch 11a, 216 (1956).
- Sco 56 Scolman, Quisenberry, and Nier, Phys. Rev. 102, 1076 (1956).
- Sm 57 L. G. Smith, Bull. Am. Phys. Soc. Ser. II, 2, 223 (1957).