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FIG. 1. Simple potential energy curve of a diatomic molecule.

' References are listed at the end of this article.

(b) Desirable:

(4) The above three criteria give a conventional
form of P.E. curve as shown in Fi 1 However, it is
not the only possible form for the curve. P '

1

energy curves with at least one maximum between the
main minimum and the dissociation limit are certainly
known (Gaydon G1, Mulliken M7, MS, Herzberg H3,

arrow B3). Gaydon (G1) does not exclude the possi-
bility of multiple maxima and minima.

The maximum often arises when an "attractive"
potential curve in a low approximation is crossed by
a "repulsive" potential curve. Because of the oner
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interaction, the intersection is avoided leading to a
potential maximum of the lower of the resulting po-
tential curves if the interaction is not too strong (Fig.
2). A few cases of such potential curves with maximum
have been observed by means of predissociation phe-
nomenon, for example for A1H and BH (Herzberg and
Mundie H4). Maxima also arise due to Van der Waals
interaction. Another case when the maximum is below
the asymptote is shown in Fig. 3.

Thus to accommodate such states the potential
function should be capable of giving rise to at least one
maximum under certain conditions.

Frost and Musulin (F1) have given a theoretical
discussion of the various criteria. In analogy with the
wave-mechanical calculations, they consider the po-
tential energy as the algebraic sum of two parts:—
(i) the nuclear repulsive potential corresponding to
merely a Coulomb potential ZiZ2e'/r where Zi and Z2
are effective atomic numbers; (ii) the purely electronic
energy defined as U, which is also a function of r. Thus

ZyZ28
+U..

Fio. 2. Potential energy
curve with one maximum.
The maximum lies above
the dissociation limit.

dU,
=0 at r =0.

This condition is known to exist for H2+ as its elec-
tronic energy approaches the united atom He+ (Matsen
M3). This is believed to be correct also for other
diatomic molecules, but the proof has apparently not
been given.

(8) Van der Waals terms should introduce terms of
the form 1/r" (Coulson C4, Pauling and Beach P2).

Criteria 4 to 8 need not be exactly true.

They have shown that an ideal potential function
should also satisfy the following additional criteria.
Somewhat similar ideas were advanced by Davidson
and Price (D2) and Newing (N1) earlier.

(5) (a) U, is finite at r=0.
(b) U, =U,' at r=0, where U,o is the known

"united" atom energy.

(6) U, ~ Z,Z2e'/r for large r—

FIG. 3. Another case of
potential energy curve with
a maximum, the maximum
lying below the dissociation
limit.

The experimental constants which are available for
fitting the curve are: 1. r,—internuclear distance at
equilibrium; 2. D.—dissociation energy; 3. k,—force
constant; 4. n, , 5. co,x„6. co,y„7. r,—the critical
distance, a quantity obtained indirectly from mass
spectrometry appearance potentials. r, is the value of
r, less than r„at which U=O or the same as at r= ~;
8. U,'.

For most molecules only the first five are available.
co,y, is known only for a few of the more extensively
investigated molecules, and that too not very ac-
curately. So far, the r, value is available only for H2+
(Stevenson S2). U,' can only be used in conjunction
with criterion Sb, which is a stringent condition and
may not be satisfied by a function satisfactory from
other criteria. Thus we are left with the first five
constants.

Two types of analytical functions have been used:
(1) power series of the type

U=ci(r r,)+c2(r r—,)'+cii(r r—,)'—
(2) closed formulas.

The 6rst type has been investigated by Kratzer (K4)
on old quantum theory and by Dunham (DS) and
Chakravorti (C1) by wave mechanics. Dunham's work
has been extended and simplified. by Sandeman (S1).

Though this function has the advantage that the
corresponding wave equation can be solved to a very
good degree of accuracy, there is one serious objection.
The series is not convergent and unsuitable for high r
(the P.E. as obtained from this function tends to plus
or minus infinity as r becomes infinite, instead of going
to the dissociation limit), though it can be used to give
a very accurate P.E. curve close to the minimum. Also
this is not a very convenient expression from compu-
tational viewpoint. The only advantage that can be
claimed for Dunham's expression is Qexibility.

Numerous empirical or semiempirical functions have
been proposed to represent the P.E. curve.

Comparative tests for some of the functions on a few
molecules have been made (Lotmar L10, Coolidge,
James, and Vernon C3, Davies D3). However, no ex-
tensive examination has been made so far to test the
relative merits of the various functions.
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In view of the fact that five constants are available,
for maximum flexibility, one can keep five parameters
in the functions, but such functions are only useful for
plotting the P.E. curve.

Functions with fewer constants (3 or 4) have also
been suggested. Because the number of parameters is
less than the available spectroscopic constants, such
functions also yield relations between the different
constants. This gives rise to another question: is it
possible to find interrelation between the different
constants, irrespective of the type of binding, etc. ?

Special emphasis is laid on this point in this paper.
In principle we can utilize any of the known constants

(in all equal to the number of parameters in the func-

tion) for fitting the function. However, this is not
always satisfactory for two reasons: firstly, the expres-
sions for the parameters in terms of constants usually
are much simpler for r„k„D, than for u. and co,x„
secondly, the values of 0,, and or,x, are not known with
the accuracy that the k, and r, values are known (at
times values of n. and/or o&.x. are not known at all).
Hence, as a uniform policy we would determine the
curve from k„r„and D.when there are three constants.
The function can be tested in two ways —(a) by com-

paring it with the experimental curve, (b) by evaluating
the values of the coefBcients in the series or the unused
constants and comparing them with the actual values.
Here we only utilize method (b).

Comparison of 0,, and co,x. is a more direct method,
rather than of the coefhcients of the series. Further it
is more convenient for comparing diRerent functions.
Hence we adopt this method.

The condition that a satisfactory function should be
capable of yielding the correct 0,, and or,x, values is

only necessary but not sufhcient. A function may yield
correct ri. and co,x„but still may not be satisfactory
in the neighborhood of r=0. (See also Wu and Chao

W2.)
To find the parameters from the experimental con-

stants we have to solve the corresponding wave equation
and compare the resulting coefFicients of the terms with

the series

which is the same as series (1) with

C2=—
l2

C3=
Unt(r )

c4=—

Dunham (DS) has shown that

C3

Gg= ~~+1
C2

-6g 2

(4)

15 (ca) (c4 ) h
pCOgXg =

. 8 (c2) Ec2) 8m c

Then in terms of X, F, and p~ (reduced mass in atomic
weight units)

Xr, 68,2
(6)

5
co,x,= —X'—I'

3 64m'c&(1.6597)(10 "pg

5 2.1078&10 "
= —X'—I"

3 p,g

5 lV
= —X'—I'—

3 pg
(7)

where B,=rotational constant and p=reduced mass.
Actually there are some further terms but they are
negligible. We put

U"'(r,)/U" (r,) =X
U'~(r, )/U" (r,)= I'.

However, this is not always possible. The Schrodinger
equation is exactly solvable in only a very limited
number of cases (Manning M1, Eisenhart K1) and

perturbation methods are often cumbersome. Hence

the following procedure is adopted. The closed analyti-

cal function can be expanded as follows: U(r, ) U(~) = D, — —(8a)

where P'= 2.1078)&10 "
If we are dealing with a three constant curve we can

fit the curve from k„r„and D, and deduce the value
of n. and co,x, from (6) and (7). The curve can be fitted
from the following three conditions

and

)dUq

| dr ).=„
(8b)

(8c)
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The relative merits of the functions can be tested by
calculating the values of 0., and ~,x, and comparing
them with the experimental values. For a broad
behavior of the function a new graphical method is
used, which very clearly shows the applicability of a
function without detailed calculations. In (6) and (7)
it is only the quantities

Xr. 5
+1 and —2P —I'

3 .3
which will be diferent for different functions. For most
of the functions

Morse (M6) suggested a special form of this:

(15)

This satis6es criteria (1) and (2) and although at
r=0, U is not in6nite, it is nevertheless a satisfactorily
large quantity.

Applying conditions (8 a, b, c) one easily gets

a = (k,/2D. ) '*.

Morse solved his function for a special case and found
that

Xr,
+1 =F

5
-X —Y r,2=G
3

for the vibrational energy levels without any higher

(9) power of (n+-', ). However Ter Haar (T4) has shown
that this conclusion is not rigorously true.

Pekeris (P4, P5) solved the Schrodinger equation for
the Morse curve by a perturbation method and found
that to a good approximation

k,r,' 4

(11) U" (r.) =2a'D,
U"' (r.) = —6a'D.
U' (r )=14a'D

2D.

This 3, may be called SNtherlald parameter in honor
of Sutherland (S3) who was the first to emphasize its
importance. Then

6B'
from Eqs. (6) and (7) we es,sily get

can be represented as functions of the dimensionless
parameter d where (16)

(12) 68,'
n.= (6&—1) (17)

Gpx =G
pgrg a),x,=Su'—=86—

pg r,kg
(18)

From the later analysis, it appears that those func-
tions which give n, and ~.x. values higher than those
given by the Morse function can be safely ruled out.

The following symbols are used:

Equation (17) is equivalent to (16) by virtue of (18).
Equation (16) has been tested by Pekeris and found to
yield good results.

On the other hand (18) has been examined by Hug-
gins (H5, H6), Linnett (L1), etc., and found to give
very poor results.

Equation (18) can be simpli6ed to

3, B, C ~ u, b, c . m, I, etc. are constants.
Though often the constants in different functions are
represented by the same symbols, the value of the
constants for diGereo. t functions is different and should
not be confused.

Assuming that the repulsive and attractive terms
both vary in an exponential manner, the potential
function can be put as

U=Ae "—Be "".

which corresponds to the linear Birge-Sponer extra-
polation. Gaydon (G1) has shown that usually this
method gives rather high values for the dissociation
energies.

For hydrogen halides, Davies (D3) found the values
of U'"(r,) and U' (r,) to be satisfactory.

This function predicts for Ha+, r, =0.50 A or 16/~
low as compared with Stevenson's (S2) experimental
value of 0.595 A.

Badger (B2) has proposed the following empirical
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rule for estimating "a" for single bonds:

a=1 15/(r —if")
where d;; is the constant occurring in Badger's relation
(81) between k, and r..

Huggins (HS, H6) modified the Morse function by
pllttlllg 9 lil (15) eqilal to e "'4 both ri2 a,ild 4N being tlie
same for all electronic states of the same diatom. This
gave satisfactory values of r, from observed values of
k, and co,x,. But when he attempted to use the same
function with the same values of ri2 and m to calculate
the heats of dissociation, the results were quite un-

satisfactory, the errors being of the order of 100—200'P~.
It appears that the function of Huggins gives an
adequate representation of the relation. between U and
r in the neighborhood of r„but departs widely from the
actual relation outside this region.

b= (i4,/D, )&.

whence we get

U"'(r,) = —2D,b'

U' (r )=3D b'

-242 -68,2

3 GOg

(23)

22 5"
COg$4r =

3 fag&
(24)

which is similar to the radial wave function 824(r) of
the hydrogen atom. This satisfies criteria (1) and (2),
but like the Morse function, does not become ~ at
r=0, though it is suKciently large at that point.

From the three conditions (8 a, b, c) one gets

EXTENDED MORSE FUNCTION In predicting transition probabilities of C2 (Swan)

Coolidge, James, and Vernon (C3) examined the sys«m~ the Rydbeig «n«ion gives better performance

following extended version of the Morse curve: than the Morse or Hulburt-Hirschf elder functions
(Tawde and Gopalkrishnan T1).

U
[1 e a' jr t~)—jn-

@ 2 3 e ~ ~

(20) ROSEN-MORSE FUNCTION

In its simple form the Rosen-Morse (R4) curve is

In actual calculations on certain states of H2,
Coolidge, James, and Vernon have taken 7 terms in
this series. The form is flexible, but it has one serious
disadvantage: e' is dificult to determine, and in fact
loses its significance as we take more terms in the
extended Morse curve.

HULBURT-HIRSCHFELDER FUNCTION

U =A tanh(r/d) —C sech'(r/d). (25)

tanh (r,/d) = —A/2C

D,= (A+ 2C)'/4C.

This does not satisfy the 3rd criterion. The relations
to observed constants are

Hulburt and Hirschfelder (H7) modified the simple
Morse function in this way: then

f= 1/C' (4C'—A')'

U=D,L(1—e *)'+ex'e ' (1+br)]

x= 2PP=
2(a.D,)l

(21)
k.= U"(r.)=f/8d'C

U"'(r,) =3A f/8d'C'

U(r,)= (9A' 8C') f/8d4C—'

We define another parameter p given by

and b and c are simple algebraic functions of the five

spectroscopic constants. This has the great practical
advantage that it uses just those five parameters which

are most readily obtained from the study of band
spectrum. Hulburt and Hirschfelder give a list of the
numerical values of the parameters for 25 common
diatomic molecules. With only a few exceptions, their
potential curves lie above the Morse curves.

Recent work of Tawde and Gopalkrishnan (T1) on

the transition probabilities in the C2 (Swan) system
suggests that this function is only satisfactory in the
region r) r, .

RYDBERG FUNCTION

Then we have
r,/d=p

&=p'(1+ tanhp)'

Qg 2

n.= (2p tanhp —1).

44,x,=gp'(3 tanh'p+1)
re pA

2

(3 tanh'p+1) W
=85

(1+tanhp)' r,2pg

(26)

(27)

Rydberg (R6) proposed:

U= D.(1+bp)e ~1'—(22)

8'
=86(1—e '"+e 4&)

r,2p, g
(28)
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Variation of F and G with P and 6 is tabulated in
Table I.

Other methods of 6tting the curve have been given

by Lotmar (L10), Kronig (K6), and Davies (D3).
Davies found that for hydrogen halides it gives results
no better than Morse function. An extended four con-
stant version of the Rosen-Morse function has been
suggested by Lotmar (L10) which has been tested by
Tawde and Gejji (T2).

The Manning-Rosen (M2) function is

1 P(8 1)e '"—'" Ae "'~
U=

kd' (1-e-"1')' 1-e-"«

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.6
1.8
2.0
2.2

2.6
2.8

1.26
1.77
2.39
3.10
3.94
4.84
5.86
6.96
9.45

12.28
15.43
18.89
22.67
26.74
31.13

—0.1539
0.0624
0.289
0.523
0.761
1.001
1.240
1.479
1.949
2.408
2.856
3.293
3.723
4,144
4.559

TABLE I. Rosen-Morse function.

8.208
11.89
16.45
21.92
28.43
35.55
43.63
52.49
72.68
95.63

121.2
149.3
179.8
212.8
248.1

which may be put as

(30)

From conditions (8 a, b, c) we get the following
relations (Davies D3):

tanh'(r, /d) =M/N =y4 (say).

It obeys the 3 necessary criteria. However, Manning
and Rosen found that for this function "the disso-
ciation energy. . . is greater than the quantity co,'/4o, x,
given by the Morse function. "Thus

d'=SD./k, or 6=4r '/d'

y = tanh (r,/d)

E=D,/(1 —y')'.

oi"

(de

U"(r,)=SE/d' {1—y')'

COe&e =
4(D,—8) 4D,

Thus it gives co,x. values even higher than does the
Morse function (which itself gives much higher values),
and hence this function is not suitable.

Newing (N1, N2) studied the function

y4 2

U"(r.) = 15(MS—)
'*—— —32$ (1—y')'

d4 y'

whence we get
68,2

u, = t 6& cotha& —1j (33)

-(1 e np)ear~-2-
U= —D,+D,

get'e g
—6P

(31)
Glebe= 86 '-

~e PA.

(There is a misprint in the original equation as given
in his paper. The first tenn in the denominator has been
printed as e ~", whereas it should be e ".)

This expression on simplification takes the form of
function (30).

POSCHL-TELLER FUNCTION

The function due to Poschl and Teller (P6) has the
forDl

U=A cosech'n{r —ro) 8 sech'n(r —ro) —(32a)

which uses 4 constants.
We examine here the simpler version

U=M cosech'(r/d) —X sech'(r/d). (32b)

This obeys the three criteria.

While the value of 0,, is di6erent from the Morse
function, the value of co~, comes out to be the same as
in the Morse function.

Davies (D3) examined this function on hydrogen
halides and from the values of U"'(r,) and U' (r.)
concluded that it is slightly superior to the Morse
function.

HYLLERAAS FUNCTION

Hylleraas {HS, H9, H10) introduced the potential:

(1+a) (1+c) (s+f')
U=D, 1—

(s+a) (s+c) (1+5)

~2(1+A:)L9$
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and the intermediate quantities u, b, c are. de6ned by It is easily deduced that

u= (k—k2)/(1+k2)

b= (k—(kl+k2))/(1+kl+kg)
c= (k—kl)/(1+kl)

k, k~, k~ being the parameters.
The function involves 6 parameters which are diRicult

to determine. Coohdge, James, and Vernon (C3) have
given complicated equations for 6nding them. Ob-
viously this function cannot furnish any relation
between the molecular constants. This passes into the
Morse curve upon making k=k~=0, so that g= 6, v=0.
The Poschl-Teller function is also a special case k=0,
kl ——-', [tanh(r/d) —1],k2 ——-', [coth(r/d) —1].

KRATZER FUNCTION

Tile Kratzcr (K5) fllllctloI1 RpproxlII1R'tes to thc foI'111

(36)

F always comes out to be equal to 2, contrary to fact,
and (40) does not hold for any molecule.

MECKE-SUTHERLAND FUNCTION

Mcckc (M4) and Sutherland (S3) suggested

(42)

Here both the attractive and the repulsive terms are
of the reciprocal type. This type of function was used
before by Gruneisen (G6), Mie (M5), etc. , for forces in
the solid state. A special case (m=2, e=1) has been
treated by Fues (F3). Baughan (84) used such a
function for interaction between nonbonded atoms.

From conditions (8 a, b, c),

This has the drawback that it makes use of only two
constants. The solution of the corresponding wave

equation was flrst given by Fues (F3).
%bile it satishes the three necessary criteria, appli-

cation of conditions (8 a, b, c) leads to the abnormal
result

d =k,r 1/2D. =1.

I

a (m ei —b )m ei-
r,"& e ) r," & m )

k, = um(m e)/r, "+'=—be(m e)/r, "+'—

26= k,r.'/D, =me.

(43)

(45)

This value is not found in any of the 23 molecules
considered in the present paper. Even Hl (which has
the lowest value of 6) has a value higher than 2, and
it is extremely unlikely that any other molecule will

satisfy this condition. Hence this function is not
applicable to molecular problems. A modihed form is

considered later.

Sutherland found that for the same class of molecules

k,r,'/D, is approximately constant, which led him to
conclude that m and e are constant for similar
molecules.

Ke can further deduce

DAVIDSON FUNCTION

Davidson (D1) examined fhc functloll

2 7 2 8"
a),x,= -m'+-me+-e'+4(m+e)+4 — —. (47)

3 3 3 rg IJ.&

(38)

This does not satisfy the criterion that U should. be
6nite when r= ~. Also only two constants are used.

However, on applying conditions (8 a, b, c), this leads

to the interesting result

kgrg =Sc=constant. (39)

Although this is not a universal relation, it is weB

satisfied by ground states of hydrogen halides (Kratzer

K4, Glasstone 03, navies D3, Heath, Linnett, and

Wheatley H1).

From considerations of the relation between k, and

r., Linnett (L1) thinks that this function is not
satisfactory.

Equation (42) is a four-constant function and we can
determine their values from k„r„D„and n, by (44),
(45), and (46) and then try to evaluate ~,x, from (47)
(actually we need calculate only m and e for findin
M,x,). However, as we are restricting ourselves to three
constant potentials we will not attempt it.

Sutherland (S4) later modifled it by replacing r by
(r—d), so that it becomes

U=
(r d)m;. (» d):e
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This modified Sutherland function can be used (V3)
to derive a series of very fruitful relations connecting
the various molecular constants, by making certain
assumptions regarding u, d, ns, and N. These will be
published later on.

Love ra (L11) applied (48) to 4b—6b group of
molecules.

LINNETT FUNCTION

Linnett (L1, L2) investigated the function

0
1
1,5
2.0
2.25
2.5
2,6
2.7
2.75
2.8
3.0

0
2.25
3.75
6.0
7.875

11.25
13.65
17.55
20.625
25.2

6
7.33
8.1
9.0
9.53

10.17
10.46
10.78
10.95
11.13
12

Thmz II. Linnett function.

11.67
27.2
37.28
50.6
59.4
70.47
75.92
82.16
83.69
89.96

108.7

g ~ Ste

Sfe

(50)

Conditions (8 a, b, c) provide the following relation-
ships:

The expression for ~,x, coincides with that of Linnett
for' ted=3.

Table II gives the variation of Ii and 6 with t and 6
for the special case of m =3.

k.=um(m+1 rtr.)/r. +'—

m2D.r.
k,r, +'=ma+

1+.D r m/g

(51)

(52)
U —gg-m, r b/rn (57)

%'U-YANG FUNCTION

Wu and Yang (W3) used a function similar to the
Born-Mayer function used for crystal forces:

Assuming m(=3) to be constant for the EK period
of molecules, and u to be constant for all states of a
given molecule, he showed that (52) gives a satisfactory
relation between k, and r, . He further deduced

5 20—(rlr, )' ' 120—(er,)' 2.098
CO X—

4-er. I 4—St'e t'e Pg

where v. is in. angstroms.
The mean percentage error in or~. values over the

states considered was found to be 16, compared to 46
by the Morse function —a considerable improvement.

Linnett also traced regularities in the value of a and
later (L2) extended the function to other periods. This
function is capable of giving rise to a low maximum
between r=r, and r= ~, and such a behavior of the
function was found with 'Z,+ and 'lI, states of N2,
however, experimental evidence does not, favor such a
maximum in these states.

o, and co,x, can be deduced in terms of parameter t
(=Sr ) wlllc11 call be foulld fl'0111

Then
2(m —t)

(m+ 1)(m+3) t' t 68,'——

(54)

5 (m+1)(m+2) P'—
{de&e=

3 m+1 —t

(m+1) (m+2) (m+3) —P W
(56)

m+1 —t -~e PA.

This differs from the Iinnett function in that the
attractive and repulsive terms have been exchanged.

This satisfies only the first and second criteria. At
r=0, this gives U= —~!Conditions (8 a, b, c) yield

k,r,"+'= brt(rt+1)—/r, +brtm. (58)

For each molecular period Ku and Vang plotted
k,r,"+' against 1/r, with different values of rt. They
obtained straight lines for a certain value of e, whence
they concluded that e, m and b are constant in each
period. This function will be examined in detail for n,
and co,x, in a later publication.

PUPPI FUNCTION

Puppi (P7) derived a reduced functional relation,
his reduced distance variable being

y= (r—r,)/r j7,'*.

This was obtained by assuming a Morse function and
introducing an empirical relation, equivalent to k,r,
=const. Puppi's reduced equation is not universal as
k,r,2 remains constant only within small groups of
molecules. Furthermore, his variable Y is complicated
in that it mixes distance and energy.

LIPPINCOTT FUNCTION

Recently Lippincott (L3, L4) has given the following
function for which he also gives a semitheoretical
)ustlficatlon:

U =D,L1—exp( —ep'/2r) jL1+of (r)). (59)

Here f(r) is a function of the internuclear distance,
chosen such that f(r) =- ~ when r =0 and f(r) =0 when



r = ~. Lippincott says that for many purposes the f(r)
term is unimportant, and neglects it to a first approxi-
mation. Thus

U =D.[1—exp( —ep'/2r)].

At r=o, r„and , it has the values B„O, and D„
respectively.

Then from conditions (8 b, c) we get n= k,r,/D, .
Further

Utilizing the fact that ab and b are found to be nearly
constant for most molecules, they computed n, and
~,x, from the above expressions. The calculated values
agree well with the experimental values for the molecules
considered.

The simple equation (60) has also been applied to the
problem of the hydrogen bond by Iippincott and
Schroeder (LS).

FROST-MUSULIN FUNCTION

a),x,= (66+3)
re gA

(61)

U=e '"(1/r —b). (63)

Another recent function is due to Frost and Musulin
(F1). From semitheoretical reasoning they have

(62) constructed

= (3nr, +3)
re IJA

Calculations of cv,x, have been reported by Lippincott
and Schroeder (L6). They have calculated it in terms
of n, where e is empirically given by

e=eo (I/I 0) 'g (I/Io) '*g

where (I/Io) ~ and (I/Io)~ are the ionization potentials
of atoms A and 8, respectively, relative to those of the
corresponding atoms in the same row and first column
of the periodic table. For the H atom I/Io has been
assigned the value 0.88 rather than 1. For diatomic
alkali metal and alkali hydrides, no=4. 21.&10', for
most of the others eo ——6.32&10'.

For n„Lippincott and Schroeder report that (60)
gives a, =0. [As (61) shows, this appears to be in error. ]

Hence later they have used (59) with

af(r) = —a(r./r) '[1—exp( —b'nru ~2r,")ji
+ a(r,/r) "[1—exp (—b'nr"/2r, ")]

and deduced the following expressions

D,=(o,'/2nr &,

)mr, y
l 68/

n, =ab(
&2)

co,x,= 1.58.[0.25+Nr, /4+ab(er. /2) '

+ (Sa'b' ab') er,/2 j. —

This satisfies the three criteria. Its special feature is
that the united atom energy can be utilized in deter-
mining the constants a and b. Frost and Musulin found
quite satisfactory results with this function for H2+

aild H2.
o,, and co,x, are best represented in terms of a pa-

rameter s, dehned by

h=s'/2+s or s= —'1+ (1+2&)~.

2$ +3$68
Qg=

3(s+2) (o,
(64)

11s4+66s'+156s'+144s+36 ' 8'

3(s+2)'
(65)

rg pg

IONIC P.E. FUNCTIONS

short table of the variation of functions F and 6
with s and 6 is given in Table III.

Frost and Musulin (F2) have also attempted to
obtain a "universal" potential energy function in terms
of reduced potential energy U/D, and reduced inter-
nuclear distance (r—r;)/(r. —r,;), where r;; is a con-
stant for a given molecule formed from atoms i and j.
They interpret r;; as a measure of inner shell radii and
correlate with Badger's d,, However, the results ob-
tained for U'"(r,) and U'v(r, ) are rather poor, the
average percentage deviations being 13.2 and. 42, re-
spectively, for the 23 molecules examined.

0

2
3

5
5.5

0
1.5

7.5
12
17.5
20.625

0
0.555
1.17
1.8
2.44
3.09
3.47

TABLE III. Frost-Musulin function.

3
l5.29
34.42
60.60
93.96

134.6
157.6

For ionic molecules, P.K. functions based on a
classical model have been used. These usually consist
of several terms, including a Coulomb attractive term,
a repulsive term and polarization terms etc. For details
reference may be made to papers by Rittner (R1) and
Varshni (V2).

SOME NEW' POTENTIAL ENERGY FUNCTIONS

In the above, we have considered the various po-
tential energy functions suggested by different authors.



POTENTIAL ENERGY FOR D IATOM I C MOLECULES

Now we consider a few new potential energy functions
and their possible applicability to diatomic molecules.

ThsLz V. Third function.

FIRST

U=D, (1—exp) —b(r' —r,m)])'. (66)

This satis6es criteria 1 and 2 and is su%.ciently large
at r=0.

%e easily get

b= (k./SD, r,') & =6&/2r, 2

68,'
n, = (Al —2)

1
2
3

6
8

10
14
18
22
24
26

1.0
0.828
0.887
1.0
1.266
1.535
1.796
2.276
2.714
3.116
3.307
3.693

24
23.04
29.46
36.75
51.46
65.94
79.74

108.4
138.0
165.4
179.6
193.9

(a,x,= LSD —126'+12j
fe Ijg

Table IV shows the variation of Ii and G.

(68)

~,x. values calculated by this function will also be
higher than those by Morse.

THIRD

As the erst function gave too low values, and second
function high, hence a mixture was attempted

TAsl, x IV. First function. re 2

U=D. 1——expL —P(r' —rP)]
r

(72)

0
1
2
3

6
8

10
14
18
22
24
26

—2

—0.586—0.268
0

+0.4495
0.8284
1.162
1.742
2.243
2.690
2.899
3.099

12
8

11.03
15.22
20.00
30.61
42.06
54.06
78.89

105.1
131.7
145.2
158.9

This also obeys the three criteria.

68,'
n, = [6'*+2/Al 2j-— (73)

8'
co,x,= LSD—126'+66—111/6~+73/h$ —.(74)

re pg

Table V depicts the var&at&on of F and G vnth A.

re
U D j N(~~, )

r

This satishes all the three criteria.

(69)

FOURTH

U= J3(A+e"')2

ful6lls the three criteria.
Conditions (8 a, h, c) furnish

68,'
n, = 6'+——1

Me

8 12 8'
M,x,= 86+12——+—=—.

r,2IJ,g

(70)

(71) We get

Obviously 0., values by this function would be higher
than those by Morse and because

b=r, lnA

ln.A

1—1/A

68,~
n, = (1nA+1)

co.x.= LS(lnA)'+24 inA+647
re pA

(77)

—6&+—)—
gk gk gk As 6 is 5 or higher, (1nA)'=lL. To this approxi-



1
2
3

6
8

10
14
18
22
24
26

TABLE VI, Sixth function.

—0.293
+0.1546

0.5
1.041
1.474
1.846
2.475
3.007
3.477
3.695
3.903

16
15.66
20.62
27.00
41.27
56.33
71.77

103.0
134.5
166.3
182,1
198.0

Notice the similarity in coeKcients of the terms in
bracket-in ~,x, with similar terms of the second func-
tion.

Ii and 6 values are recorded in Table VI.

SEVENTH

U= Ar"e —'"[1 Xf—(r)g (Ssa)

where, as before, f(r) is a function such that at r=0,
f(r)=~ and at r= ~, f(r) =0. This function is very
similar to the Lippincott function.

As before, neglecting the f(r) term

+me —ar (85b)

mation
68,2

u, =Lhi+1]

(u.x,=Lsd+ 246'+64]
re gA

FIFTH

U=D, 1—
(
—

f&r)
(78)

The general function (85a) satisfies the three criteria.
However, the simplified version (85b) gives U=O at
r=0.

The values of the constants in (85b) can be obtained
from conditions (8 a, b, c):

a=I/r,
A =D,/r. "e "
e= 2A.

ee and Mexe are given by

This is a generalization of Kratzer function and a
special case of the Mecke-Sutherland function.

(86)

68,2
(79)

(87)

~,x,=$86+125'+4j
re gA

SIXTH

Here the Ii and G values are very similar to those of
the Lippincott function; Ii comes out to be negative

(80) and G is only shghtly less than Lippincott's value.

COMPARISON

U =D, 1—e "-" L1+ It/-(r) j

This gives U=D, at r=o.
We have

ar, =6&+1

68,2.=P "—1/a' —1j (83)

8'
~.x.=Ls~ —12+8/~:+12/~$—.

re pA
(s4)

where f(r) is a function such that at r=0, f(r) = ~ and
at r=oe, f(r) =0. This general function satis6es the
three criteria. Neglecting the f(r) term, we get

-2

(82)

I'or testing any potential function„we require ac-
curate data for the various molecular constants. A
search of the available experimental data reveals that
there are only 23 neutral molecules for which reliable
values are available. Even for these the situation is not
quite satisfactory for all of them. Dissociation energies
of N2, CO, and NO are still an open question. Two
values for N2, three for CO, and two for NO have been
widely discussed. Reference is made to recent reviews

by Gaydon and Penney (62), Long (L7, Ls, L9),
Pauling and Sheehan (P3), Glockler (65), Valatin (V1),
Gaydon (61), and Douglas (D4). We have used all the
values considered probable in-our calculations. Recent
experiments of Hendrie (H2) and Brook and Kaplan
(B7) lend a strong support to the higher value (9.756 ev)
for N2.

Quantum-mechanical calculations by Kopineck (K2,
K3) also support the high value of N2. However,
Wolfsberg (W1) considers that some of the approxi-
mations used by Kopineck are not justi6ed apd bjs



calculations should not be used as an argument favoring
the 9.8 ev value for D, (N2).

The dissociation energy for HF is also not certain.
We have used the value given by Herzberg (H3). For
L12 Rlso theI'e ls slight unceI'tR1Ilty ln the dissociation
energy; again Herzberg's value has been followed.

The data for the 23 diatomic molecules for the ground
states are given in Tables VII (a) and (b), collected
from Herzberg (H3). For 02, a more recent value of
Do(=5.115 ev) recommended by Brix and Herzberg
(B5, B6) has been used. D. has been calculated from
the usual relation

De= Do+ 2~e.

and k from k =4s'pc'(o '= 5 8883X 10 '@~a& ' dyne/cm
Dissociation energies favored by Gaydon are marked

with an asterisk. Most of the D, values are given to 4
signilcant 6gures and some even to 5. These values are
not that accurate. Because the conversion factors led
to these values, and to keep consistency with original
values, sometimes extra figures were retained.

For SO it is not yet certain that it is the ground state.
Some authors (e.g. , Hulburt and. Hirschfelder H7)

use the "corrected" dissociation energies of molecules
at absolute zero by subtracting the rotational, vibra-
tional, and translational heat contents. Others have
applied corrections to get the value of r, at absolute
zero (e.g. , Verwey and de Boer V5). Such corrections
are diScult to determine and often uncertain, hence we
have completely omitted them.

While for most of the diatoms under consideration,
the experimental evidence suggests a conventional
potential energy curve, perhaps such is not the case
with ZnH, CdH, and HgH. Dissociation energies de-
termined by Birge-Sponer linear extrapolation come
too high than the actual values. Mulliken (M7, M8)
suspects that there might be a maximum and a long
distance minimum in the P.E. curves of these molecules
due to the approach of two interacting states. Glockler
and Sister Horst (G4) have constructed a P.K. curve
for HgH taking into account the fact that at large r, the
molecule can change from a structure bonded by
exchange forces to a quasi-molecule held together by
London dispersion forces which leads to a small
maximum.

The experimental values of Ii and G are given by

Molecu1e
figures in

H2
ZnH
CdH
HgH
CH
OH
HF
HCI
HBr
HI
L12
Nam
Kg
N, (I)
N, (iI)*
P2
02
SO
CI2
Br2
I2
ICI
CQ (i)
CO (ii)
CO (iii)*
No (I)
NO (ii)'

Molecule
figures in

H2
ZnH
CdH
HgH
CH
OH
HF
HCI
HBr
HI
Li2
Na2
K2
N, (i)
N2 (ii)*
P2
Og
SO
Clg
Br2
I2
ICI
CO (i)I (ii)
CO (iii)*
NO (i)
NO (ii)*

TABLE VII.

0.5041
0.9928
0.9992
1.0031
0.930
0.9484
0.9573
0.9799
0.9956
1.0002
3.509

11.498
19.488
7.0038
7.0038

15.492
8.000

10.665
17.489
39.958
63.466
27.422

6.8584
6.8584
6.8584
7.4688
7.4688

cm i

4395,2
1607.6
1430.7
1387.1
2861.6
3735.2
4138,5
2989.7
2649.7
2309.5
351.43
159.23
92,64

2359.6
2359.6
780.43

1580,4
1123.7
564.9
323.2
214.6
384.18

2170.2
2170.2
2170,2
1904
1904

(b)
Pe

10 8cm

0.7417
1.594
1.762
1.740
1.12
0.971
0.9171
1.275
1.414
1.604
2.672
3.078
3.923
1.094
1.094
1.894
1.207
1.493
1.988
2.284
2.667
2,321
1.128
1.128
1.128
1.151
1.151

ke
105 dynes/cm

5.734
1.511
1.204
1.137
4.482
7.792
9.655
5.157
4.117
3.142
0.2552
0.1717
0.0985

22.96
22.96
5.556

11.76
7.93
3.279
2.457
1.721
2.296

19.02
19.02
19.02
15.944
15.944

Ae
cm 1

2 993
0.2500
0.218
0.312
0,534
0.714
0.'?705
0.3019
0.226
0.183
0.00704
0.00079
0.000219
0.0187
0.0187
0.00142
0.01579
0.00562
0.0017
0.000275
0.000117
0.000536
0.01748
0.01'?48
0.01748
0.0178
0,0178

&e
cm i

60.809
6.6794
5.437
5.549

14.457
18.871
20.939
10.591
8.473
6.551
0.6727
0.1547
0.0562
2.010
2.010
0.3033
1.4457
0.7089
0.2438
0.08091
0.03736
0.11416
1.9314
1.9314
1.9314
1.7046
1.7046

117.99
55.14
46.3
83.01
64.3
82.81
90.069
52.05
45.21
39.73

2.592
0.726
0.354

14.456
14.456
2.804

12.073
6.116
4.0
1.145
0.6127
1.465

13.46
13.46
13.46
13.97
13.97

De
jo-i2 erg

7.607
1.523
1.228
0.740
5.843
7.340

10.65
7.394
6.277
5.125
1.685
1.185
0.8322

12.046
15.863
8.137
8.351
6.522
4.021
3.190
2.489
3.486

14.865
15.602
18.01
8.673

10.57

Xr,
+1 =

3

5
G= —X'—I' r,2

3

~e&ere'X64~'~X j.6~9&Xj.o 'kg

(88)

(89)

%e have seen that Ii and G depend on the parameter
6 Lde6ned in (11)j. It is these Ii and G values which
diGer for diGerent functions. F determines 0,, and G
determines ~,x,. The experimental values of 6, Ii, and
G have been tabulated in Table VIII. Figures 4 and 6
show respectively the actual values of F and G against

Ii and G values as given by various functions have
been compared in Tables IX Rnd X. Their va, riation
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by Gaydon (marked with an asterisk) have been taken
into account,

DISCUSSION

A few important facts emerge clearly from Figs. 4 and
6. In case of both F and G, points are scattered. For P,
they are rather too widely scattered. Had it been
possible to represent all molecules by a "universal"
P.E. curve, we should have obtained smooth curves
passing through all the points. Thus the possibility that
a "universal" P.E. curve exists can be ruled out. This
agrees with what one expects theoretically. The shape
of a P.E. curve depends on the electron configuration as
well as on the position of neighboring electronic states
and it is quite clear that any general relation cannot
have exact validity. Of course, this is only relevant when

t l I l I I I l f I I I

e g 4 6 s le e l+ ls ls ae ga a+ as

Diatom

TABLE VIII.

Fn. 4. Experimental values of the function Il plotted against
Sutherland parameter A.

with 6 for a few of the important functions have been
shown graphically in Figs. 5 and 7, respectively. (To
avoid confusion, the curves were not drawn in Figs. 4
and 6.)

Table VII (a) gives the experimental values of n, and
co,x,. Numerical calculations of n, and ~,x, for a few of
the functions along with percentage errors have been
reported in Tables XI (a), (b) and XII (a), (b), (c),
respectively. For calculating average percentage errors,
only those values of N2, CO, and NO which are favored

3'5--

HR
ZnH
CdH
HgH
CH
OH
HF
HC1
HBr
HI
Li2
Nam
K2
N2 (i)
Ng (ii)*
Pg
Op
SO
Clp
Br2
I2
IC1«()
CO (ii)
CO (111)
XO (1)
NO (i1)*

2.073
12.62
15.23
23.25
4.814
5.003
3.813
5.669
6.554
7.881
5.408
6.864
9.107

11.40
8.662

12.25
10.26
25.81
16.12
20.09
24.58
17.74
8.139
7.752
6.719

12.18
9.995

0.5928
1.500
1.758
2.343
1.218
1.248
1.213
1.342
1.390
1.642
0.9065
0.8758
1.070
1.820
1.820
2.008
1.990
2.093
2.693
2.262
2.997
2.633
1.694
1.694
1,694
1.944
1.944

15.52
66.01
68.14

119.6
35.58
35.14
34.40
39.33
42.69
48.51
30.80
37.53
50.37
57.49
57.49
73.94
66.74

131.5
131.2
113.3
131.2
98.06
55.73
55.73
55.73
65.58
65.58

2'0-

0
0 g 4 6 8 IO I2 I4 16 Ia gD 22 24 26'

Fxo. 5. Behavior of function Ii according to various potential
energy functions. Experimental points are shown as dots.

we utilize only a limited number of molecular constants
for fitting the P.K. curve, and try to 6nd other constants
from them. If the P.E. curve is made suSciently Qexible

by including all the available molecular constants, no
such question arises.

It may be thought that in view of the diferent nature
of binding, HgH, CdH, and ZnH should be treated on
somewhat diferent footing from other molecules for
P.E. curve considerations. However, the position of
these points in Figs. 4 and 6 does not seem to justify
such an exclusion.

Nevertheless, Figs. 4 and 6 show that broadly

speaking, Ii and 6 both increase with increasing A. This
shows that it is possible to have "universal" potential
curves broadly describing such a behavior, though not



TAsr.z IX.

Morse
Rydberg
Rosen-Morse
Poschl-Teller
Linnett
Lippincott
Frost-Musulin

I
II

III
IV
V

VI
VII

P values

2426»/3 —1

2p tanhp —1

6,» cothd» —1

(24—t~)/(4 —t)

(2s'+3s)/3(s+2)
a» —2

~I+1/~1 —1

xI+2/aI —2
a»+1

Z» —1/Z» —1

130-

70-

very accurately. It is with this point of view that we will

consider the various functions.
We can also represent the variation of F and G with 5

empirically. As a first approximation, straight lines have
. been drawn in both cases. In case of G, the points are

not so widely distributed and excepting a few points, a
straight line would be a good approximation. However,
in case of Ii one is tempted to draw two straight lines-
one for the low-lying points and another for higher
points. Then the question arises that for an unknown
molecule, which line will be taken for prediction. On
the lower line we may count H2, Li2, Na2, K2, ZnH,
CdH, IIlr2, HgH, SO. There does not seem to be any
characteristic feature regarding such molecules for
distinguishing them from others. While several of them
belong to s—s type of binding, and three of them are
perhaps van der Waals molecules, there are still Br2
and SO. Hence only one straight line was drawn. The

TAsLz X.

0 I I I I I I I I I 1 I I

0 2 4 6 8 IO I2 I4 16 I8 20 22 24 26

Fro. 6. Experimental values of the function G versus
Sutherland parameter h.

equations of the two lines are:

F=0.116+0.36

6=56+9.
(90)

(91)

130

140

u0

One more question arises: While it is not possible to
have exact "universal" P.K. function for al/ molecules,
is it possible to have such a function for molecules with
similar linkage, i.e., those belonging to the same

- Morse
Rydb erg
Rosen-Morse
Poschl- Teller

Linnett

Lippincott
Frost-Musulin

I
II

III
IV
V

VI
VII

G values

8z
226/3

86(1—e~&+e '&)

8n
5 20—t' 2 120—t'
3 4—

& 4—~

66+3
(11s'+66s'+156s~+ 144s+36)/3 {s+2)'

8a —12'»+12
86+12—8/AI+ 12/6
8a—12'»+66—111/a»+73/a
86+246»+64
8a+12S»+4
8a—12+8/a»+12/a
6a+-',

90

60

30

I I I I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20 22 24 N

FIG. 7'. Behavior of function G according to various potential
energy functions. Experimental points are shown as dots.
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Diatom

H2
ZIIH
CdH
HgH
CH
OH
HF
HCl
HBr
HI
L12
Na2
K2 .
N, (I)
N2 (ii)'
P2
02
SO
Cl2
Br2
I2
ICl
CO (i)
CO (ii)
CO (iii)*
NO (i)
NO (ii)*

Average

Diatom

H2
ZnH
CdH
HgH
CH
OH
HF
HCl
HBr
HI
Li2
Na2
K2 .
N, (i}
N2 (ll)

02
SO
C12
Br2
I2
ICl
CO (I)
CO (ii)
CO (lli)
NO (i)
NO (ii)*

TAaLE XI.

(a)
Morse

% error

—25.8
+69.9
+65.1
+63.1—1.9

0—24.4
+3.3
+7.9
+92

+46.3
+84.8
+88.1

(+53.2)
+6,2

+24.7
+10.8
+94.8
+11.8
+53.8
+31.6
+22.0
(+9.4)
(+5.5)—6.0

(+28.1)
+11.2
&33.1

(b)
Third

e& calc

4.186
0.3523
0.2996
0.4311
0,4837
0.6319
0.6210
0.2749
0,2181
0.1694
0.009204
0.001247
0.0003439
0.02023
0.01665
0.001464
0.01450
0.009324
0.001588
0.0003558
0.0001311
0.0005468
0.01603
0.01550
0.01405
0.01888
0.01643

% error

+39.8
+40.9
+37.4
+38.5—9.4—11.5—19.4—8.9—3.5—7.4
+30.7
+57.8
+57.0
(+8.2)—10.9
+3.1—8.2

+65.8—6.6
+29.1
+12.0
+2.1

(—83)
(—11.3)—19.6
(+6 1)—77

rxe calc

2.222
0.4248
0.3599
0.5090
0.5238
0.7141
0.5822
0.3109
0.2540
0.2015
0.0103
0.00146
0.000412
0.02864
0.01996
0.001.77
0.00175
0.01095
0.00190
0.000423
0.000154
0.000654
0.01912
0.01844
0.01643
0.0228
0.0198

Rydberg

e Caic % error

1.853
0.3950
0.3355
0.4765
0.4744
0,6425
0.5429
0.2836
0.2326
0.1857
0.00938
0.001342
0.0003813
0.02266
0,01844
0.001644
0.01619
0.01026
0.001775
0,0003957
0.0001446
0.000689
0.01762
0.01694
0.01506
0.02117
0.01832

—38.1
+58.0
+54.0
+52.7—11.2—11.1—29.5—6.0
+3.0
+1.5

+30.0
+70.0
+74,1

(+21.2)
+14

+15.8
+2.5

+82.5
+44

+43.8
+23.6
+13,6
(+0.9)
(—3.0)—13.8

(+18.1)
+3.0

2.969
0.291
0.2524
0.3886
0.3898
0.5207
0.4953
0,2215
0.1758
0.1369
0.007415
0.001006
0.0002786
0.01659
0.01349
0.001207
0.01181
0.008586
0.001283
0.0003127
0.0001196
0.0004706
0.01293
0.01251
0.01133
0.01556
0.01336

—0.9
+16.4
+15.8
+24,6—27.0—24.1—35.7—26,6—22,2—25.2
+4.1

+27.3
+27.2

(—113)—27.3—15.0—25.2
+52,8—24.5
+13.0
+2,2—12.2

(—26.0)
(—28.4)—35.2
(—12.6)—24.9

Empirical

a& calc % error

and I2 to be in a straight line. ZnH, CdH, and HgH are
erratic which is not surprising in view of the irregular
behavior of their molecular constants.

However, for Ii the situation is worse. Only for HF,
HC1, HSr, and HI a regular curve can be drawn quite
close to these points. Others do not show any regular
behavior. In short, we can say that there is not sufFicient
evidence to give any definite conclusion on this point.

Now we consider the relative merits of each function.

Morse Function

This simple function though very widely used, to
quote Partington (Pi), "has been overworked in many
branches of investigation, " gives rather a poor
performance.

n, : (see Fig. 5, Table XI a): Excepting H2, HF, and
one point of CO, all other experimental points lie below
the curve. Corresponding results are obtained in the
numerical calculations which show the high average
percentage error of 33.1.

M,x. : (see Fig. 7, Table XII a): The case here is
similar. Only Cl~, one point of CO, and HF lie above the
Morse line. As expected, the average percentage error
is high, being 31.2.

In a way, the Morse function sets an upper limit to
F and 6 values. A satisfactory P.E. function should
give Ii and G values which are lower than Morse' s. As
mentioned earlier, previous workers also found unsatis-
factory results with this function. On the whole, this
function is not. suitable for using with a randomly
chosen molecule.

Rydberg Function

From a comparison of Ii and 0 values of Morse and
Rydberg functions, the latter gives lower values so the
trend is in the right direction.

n, : (see Fig. 5, Table XI a): There is a significant
improvement from the Morse function, though even
now only about 8 points lie above the curve. The
average percentage error has slightly decreased to 28.

a&,x, : (see Fig. 7, Table XII a): Though better than
Morse, still only about 5 points are above the Rydberg
line. The average percentage error has decreased to 23.1.

On the whole, this function is distinctly better than
the Morse function.

Rosen-Morse Function

molecular group (Varshni and Majumdar V4) P Very
few points are available to throw light on this question.

In case of G (Fig. 6), HF, Hcl, HBr, and HI seem
to be on a regular curve. The case with Li2, Na2, and
Kq is similar. Neglecting Cl2, we can consider ICl, Br~,

n, : (see Table I):From the expression for F when p
is small (i.e., 6 is small), this gives lower values than
Morse function, as p increases (i.e., 6 increases), the
Rosen-Morse Ii approaches the Ii of the Morse function.

ar.x.: (see Table I): Behavior of G is very similar to
that of F.

Thus, the Rosen-Morse function is somewhat better
than Morse function, though more complicated.
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TABLE XII.

Diatom

H2
ZnH
CdH
HgH
CH
OH
HF
HCl
HBr
HI
Li2
Na2
K2
N2 (i)
¹

(ii)*
P2
02
SO
C12
Br2
I2
Icl
Co (i}
CO (ii)
Co (111)*
No (i)
No (ii)~

Average

Diatom

H2
ZnH
CdH
HgH
CH
OH
HF
HCl
HBr
HI
L12
Na2
K2
N, (i)
N, (ii)*

cuexe CR1C

126.3
84.35
82.80

129.2
69.58
94.36
79.86
60.00
55.53
51.64
3,639
1.048
0.512

22.93
17.42
3,717

14.85
9.615
3.932
1.624
0.9183
2.101

15.76
14.98
12.99
20.75
17.04

% error

+7.0
+52.9
+78,8
+55.6
+8.2

+13.9—11.3
+15.3
+22.8
+30.0
+37.3
+44.3
+44.6

(+58.0)
+20.5
+32.5
+23.0
+57.2—1.7
+41.8
+49.8
+43.4

(+17.1)
(+113)—3.5
(+48.s)
+21.9
&31.2
(b)

Lippincott

eoexe CR1C

117.6
65.77
64.13
98.93
57.59
77.84
67.76
48.97
44.81
41.19

2.983
0.8547
0.4051

17.96
13.82

% error

—0.3
+19.3
+38.5
+19.2
—10.4—6.0—24.7—5.9
—0.9
+3.7

+15.1
+17.7
+14.4

(+24.2)
44

(a)
Morse, Poschl- Teller Rydberg

% erroreoexe CR1C

iiS.8
77.32
75.90

118.4
63.78
86.5
73.2
55.00
50.9
47.34
3.336
0.9605
0.4692

21.02
15.97
3.408

13.61
8.814
3.604
1.489
0.8418
1.926

14.45
13.73
11.91
19.02
15.62

—1.9
+40.2
+63.9
+42.6—5.5
+4.4—18.7
+5.6

+12.6
+24.2
+24.8
+32'3
+32.5

(+45.4)
+10.4
+21.5
+12.7
+44.1—9.9
+30.0
+37.4
+31.5
(+7.4)
(+2.0)—11.5

(+36.1)
+11.9
~23 1

% error

—27.0
+6.5

+27.7
+17.2—26.4—28.3—44.5—29.3—21.0—14.7—14.4—5,5—3.4
(+9.1)—20.0

First

coax~ calc

86.14
58.76
59.12
97.27
47.31
59.37
49.94
36.77
35.70
33.88
2.218
0.6863
0.3418

15.77
11.56

Diatom

P2
02
SO
C12
Br2
I2
IC1
CO (i)
Co (ii}
Co (iii)*
NO (I)
No (ii)*

Average

Diatom

H2
ZnH
CdH
HgH
CH
OH
HF
HCl
HBr
HI
Li2
Na2
K2
N, (I)
N, (ii)*
P2
02
So
C12

Br2
I2
ICl
CO (i)
CO (ii)
Co (iii)*
NO (i)
NO (ii)*

Average

2.902
11.68
7.352
3.041
1.248
0.7028
1.621

12.52
11.96
10.45
16.21
13.42

+3.4—3.3
+20.2—23.4
+9.0

+14.7
+10.6
(—7.0)

(—11.1)—22.4
(+16.0)—4.0

%12.7

(c)
Seventh

cdeXg CRlC

99.06
63.81
62.38
97.27
53.38
72 33
61.65
45.88
42.36
39.27
2.786
0.8091
0.3887

17.37
13.23
2.813

11.26
7.243
2.970
1.226
0.6763
1.586

11.96
11.40
9.9

15.71
12.93

% error

—16.0
+15.7
+35.4
+17.2—16.8—12.6—31.5—11.8—6.3—1.2
+7.4

+11.5
+9.8

(+20.0)—8.5
+0.3—6.7

+18.4
—25.7
+7.1

+10.4
+83

(—11.1)
(—is.3)
—26.5

(+12.5)—7.5

a13.6

(b)
Lippincott

~st calc % error % error

—8.1—15.2
+1.9—29.3
+5.0

+13 7
+45

(—22.s}
(—27 1)—37.8
(+3.0)—17.6

&18.2

Empirical

cox& calc

147.5
60.23
57.86
86.96
59.74
80.19
73.48
49.42
44.23
39.64
3.033
0.8362
0.3832

16.60
13.15
2.664

10.90
6.428
2.732
1.107
0.616
1.446

12.00
11.53
8.172

14.89
12.56

% error

+25.8
+9.2

+24.9
+4.7—7.1—3.2—18.4—5.1—2.2—0.2

+17.0
+15.2
+8.2

(+14.8)—9.0—5.0—9.7
+5.1

—31.7
—3.3
+0.5
—1.3

(—10.9)
(—14.3)
—39.3
(+6.6)
—10.1

First

coexe CR1C

2.578
10.24
7.335
2.83
1.202
0.6965
1.531

10.43
9.806
8.370

14.39
11,51

Poschl-Teller Function

n, . (see Fig. 5): Since cothh') 1, it will always give
higher values than the Morse function. However, as d,

increases, this almost merges with the Morse value.
co.x.: (see Fig. 7, Table XII a): Same expression, as

given by the Morse function.
Thus this function is slightly inferior to the Morse

function, though the difference is not large. The fact
that Davies (D3) found it slightly superior to the
Morse function for HF, HC1, and HI, is because he
compared U'"(r,) and U' (r,), rather than n, and cu,x,.
U'"(r,) depends on n„while U' (r,) depends both on
o,, and co,x,. As Tables VI and IX of Davies' paper show,
he obtained U'"(r.) for the Poschl-Teller higher than
U"'(r,) for the Morse. This is in agreement with our

Fig. 5. However, for U' (r,), the e6ect of n, and M.x,
got mixed up. awhile the effect of ~,x, remained the
same on both the functions, n, effected an increase in
U'~(r, ) for the Poschl-Teller over the Morse. As Davies
found U' (r,) for the Morse lower than experimental,
he concluded that the Poschl-Teller is slightly superior.

Actually only for HF, the Poschl-Teller is superior
to the Morse; for HCl and HI, it is inferior, as is evident
from Fig. 5.

Linnett Function

n, (see Tabl'e. II):F values given by this function are
too high. Indeed the smallest value of F=6 (for 6=0)
given by this function is almost twice the highest value
of Il found in the 23 molecules under consideration.
Hence for a, it is quite unsatisfactory.
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~~.: (see Fig. 7, Table II): The course of the G
curve is very peculiar. For low 6 it is greater even than
the Morse, for high 6 it is too low.

At least for m=3, this is not a very useful function.

~,x, : (see Table V):At low 5 (but & 2), it is midway
between the Linnett and Frost-Musulin curves; as 6
lilcreases it allilost follows tile Frost-Milsllhn curve (to
avoid overlapping, the curve has not been drawn).

SimyIe Liyyincott Function

e, '. It gives a negative value which is meaningless.
ar,x, : (see Fig. 7, Table XII b): From the expression

for ~,x„ for 6& 2 (which is usually the case) the values
are much lower than from the Morse function (almost
three-fourth of the Morse function). Table XII b shows
that the average percentage error is much lower (+12.7)
as compared to the Morse (+31.2) and the Rydberg
(+23.1) functions, indicating a significant improve-
ment.

The simple function (60) does not satisfy the third
criterion; to achieve this the j(r) term has to be
introduced. The f(r) given by Lippincott and Schroeder
makes the function a 6ve constant function and thus
rather complicated. Only by assuming that Ob and b are
constant can one predict n, and co.x.. As we are con-
6ning ourselves to three-constant functions, calculations
for 0., and co,x, have not been carried out.

From the spread of points in Fig. 7, when two or
more D, have been suggested for a diatom, there is no
reason to assume the value favored by this function
as the "correct" one. Thus, Lippincott's statement that
"where two or more alternative values have been
proposed, this function should suggest which is the
correct one" seems to be rather optimistic.

Frost-Musulin Function

n, : (see Fig. 5, Table III): For low b it is slightly
higher than Morse function, but for high 6 it is slightly
lower than Morse function.

&o~,: (see Fig. 7, Table III): Behavior of G is very
similar to that of P.

On the whole this function is very close to the Morse
function, though slightly more complex.

First Function

n, : (see Fig. 5, Table IV): This gives much lower
values for Ii than the Morse function, which is also
evident from Fig. 5.

~~.: (see Fig. 7, Tables IV and. XII b):Usually gives
lower values. Average percentage error (18.2) is lesser
than that for the Morse and Rydberg functions.

Second, Function

As shown before, both for 0., and ~~, it would give
higher values than the Morse function and hence is
unsuitable.

Fourth Function

This gives much higher values for Ii and G than the
Morse function, and hence can be dismissed.

Fifth Function

This also gives higher values than the Morse for both
Ii and G and hence is not applicable.

Sixth Function

o.,: (see Fig. 5, Table VI): Course of the F curve is
encouraging. However, for 6&2.5, it is negative.

~,x, : (see Table VI): Very close to the Rydberg
function.

Seventh Function

n, : It gives a negative value of F (= —3) which is
absurd.

M s: (see Fig. 7, Table XII c): Slightly lowel' tllail
and parallel to the Lippincott function. Consequently,
the average percentage error (13.6) is also very near to
that of Lippincott (12.7).

The results given by this function have a striking
resemblance to those of the Lippincott function.

Emyirical, Relations

a, . (Fig. 4, Table XI b): As can be expected, the
average percentage error is lowest, being 22.1. How-
ever, this is not far from the third function (22.9).

e,x, : (Fig. 6, Table XII c): Here also the average
percentage error is lowest, being 11.1.

CONCLUSIONS

We may summarize as follows:
It is not possible to 6nd three-constant "universal"

potential energy functions, and consequently, there are
no "universal" relations connecting a, and o),x. with A.

Several functions give relations which may be used
for estimating n, and ~,x„. Further, ~,x. can be esti-
mated to a greater degree of accuracy than n, . A sur-
prising fact emerges that a function which may be
useful for calculating ~,x„may fail completely to
reproduce n. (e.g. Lippincott, Seventh).

On the basis of these 23 diatoms, for n„ the functions
in order of increasing accuracy are:

Third, Function

n, : (see Fig. 5, Tables V and XI b): The average
percentage error (22.9) is significantly lower than that
by Morse (33.1) and Rydberg (28.0) functions.

(i) Morse, Poschl- Teller,
Musulin

(ii) Rydberg
(iii) Third, Sixth.

Rosen-Morse, Frost-
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And for co,x, :
(i) Morse, Poschl-Teller,

Musulin, Third, Sixth
(ii) Rydberg
(iii) Lippincott, Seventh.

Rosen-Morse, Frost-

Thus for over-all representation of the P.E. curves,
the Rydberg, Third, and Sixth functions are the most
useful.

Such diverse looking functions as those of Morse,
Poschl-Teller, Rosen-Morse, and Frost-Musulin are
actually extremely close to each other.

The best values of e, and ~,x. are obtained from

cr, = (0.116+0.36)68,'/co.

co,cc,= (5d,+9)W/r, 'tsar.

Equation (93) can be transformed as

(92)

(93)

5$'k,r,'
D.=

2',x,r,'pg —9$'
(94)

For estimating dissociation energies, (94) deserves
to be employed in preference to D.=co.'/4co, x,. How-
ever, this cannot serve as a strong argument for favoring
any of the values when several appear to be possible
(e.g. NO, CO, Ns, etc.).

In Table VIII the Sutherland parameter 6 varies
regularly in a molecular group (V4) and increases with
increasing pg.

The author is thankful to Professor K. Banerjee for
his kind interest in the work and the Government of
India for a research grant.
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