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INTRODUCTION

HE correct representation of potential energy of a
set of atoms as a function of the interatomic
distance is of fundamental importance in molecular
structure. A good deal of information about the struc-
ture of a molecule is summarized in its potential energy
(P.E.) curves. Potential energy minima determine the
bond lengths. The second derivatives of the P.E. with
respect to distance give the force constants. And these
determine the vibrational and rotational levels of the
molecule. Anharmonicity constants depend on higher
derivatives of the P.E. curve.

For molecular structure, the problem assumes its
simplest form in the case of diatomic molecules where
the interatomic distance is the one independent
variable.

It is possible to plot the P.E. curves by making use
of the energy levels themselves. Oldenberg (01),!
Rydberg (R6, R7), and Klein (K1) have developed
methods of doing this, and Klein’s method has been
used with success by Rosenbaum (RS5) and by Almy
and Beiler (A1) for the upper electronic states of LiH
and KH, respectively.

This method is very laborious and further it cannot
be applied with accuracy at low vibrational quantum
numbers for which the power series expansion method
of Crawford and Jorgenson (CS5) has to be applied.
This power series for the potential energy in terms of
the displacement of the atoms from the equilibrium

* F1c. 1. Simple potential energy curve of a diatomic molecule.

1 References are listed at the end of this article.

position does not converge rapidly for any range of
displacements and involves even more computation
than the Rydberg-Klein method. Rees (R1, R2) has
given an analytical formulation of the Klein-Rydberg
method which enables the P.E. curve to be evaluated
with accuracy in the region of the minimum and has
applied it to certain states of Br,.

On the theoretical side, by quantum-mechanical
methods, it has not been found possible to calculate the
P.E. curve to any great degree of accuracy due to
mathematical and computational difficulties, except in
the case of the simplest molecules like Hy* (Teller T3,
Chakravarty C2), H, (James and Coolidge J1), etc.
Classical electrostatic models for ionic molecules like
alkali halides have yielded good results (Rittner R3,
Varshni V2).

The most widely used method is to represent the
P.E. curve by a suitable function—empirical or semi-
empirical, and many functions have been suggested.
First we formulate the criteria that a good potential
function must satisfy. We are not concerned here with
repulsive states. These criteria (Morse M6, Frost and
Musulin F1, Lippincott and Schroeder L6) can be
divided in two parts, (a) necessary and (b) desirable.

(a) Necessary:

(1) It should come asymptotically to a finite value
as r—,

(2) It should have a minimum at r=r,,

(3) It should become infinite at #=0. This need not
be very strict, because results are practically the same
if U becomes very large at »=0. Also if nuclear structure
and forces are taken into account, this criterion is not
exactly true. However, for our purposes, the change in
the P.E. function at internuclear distances of 1072 cm
is of no consequence.

(b) Desirable:

(4) The above three criteria give a conventional
form of P.E. curve as shown in Fig. 1. However, it is
not the only possible form for the curve. Potential
energy curves with at least one maximum between the
main minimum and the dissociation limit are certainly
known (Gaydon G1, Mulliken M7, M8, Herzberg H3,
Barrow B3). Gaydon (G1) does not exclude the possi-
bility of multiple maxima and minima.

The maximum often arises when an “attractive”
potential curve in a low approximation is crossed by
a “repulsive’” potential curve. Because of the finer
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interaction, the intersection is avoided leading to a
potential maximum of the lower of the resulting po-
tential curves if the interaction is not too strong (Fig.
2). A few cases of such potential curves with maximum
have been observed by means of predissociation phe-
nomenon, for example for AIH and BH (Herzberg and
Mundie H4). Maxima also arise due to Van der Waals
interaction. Another case when the maximum is below
the asymptote is shown in Fig. 3.

Thus to accommodate such states the potential
function should be capable of giving rise to at least one
maximum under certain conditions.

Frost and Musulin (F1) have given a theoretical
discussion of the various criteria. In analogy with the
wave-mechanical calculations, they consider the po-
tential energy as the algebraic sum of two parts:—
(i) the nuclear repulsive potential corresponding to
merely a Coulomb potential Z1Z:¢?/r where Z; and Z,
are effective atomic numbers; (ii) the purely electronic
energy defined as U, which is also a function of 7. Thus

Z 1Z 262
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F1c. 2. Potential energy
curve with one maximum.
The maximum lies above
the dissociation limit.

They have shown that an ideal potential function
should also satisfy the following additional criteria.
Somewhat similar ideas were advanced by Davidson
and Price (D2) and Newing (N1) earlier.

(5) (a) U, is finite at r=0.
(b) U.,=Uy at r=0, where U is the known
“united” atom energy.
(6) Usox —Z1Zse?/r for large 7.

auv, :
(7) —=0 at r=0.
ar

This condition is known to exist for Hyt as its elec-
tronic energy approaches the united atom Het (Matsen
M3). This is believed to be correct also for other
diatomic molecules, but the proof has apparently not
been given.

(8) Van der Waals terms should introduce terms of
the form 1/7* (Coulson C4, Pauling and Beach P2).

Criteria 4 to 8 need not be exactly true.
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F1c. 3. Another case of
potential energy curve with
a maximum, the maximum
lying below the dissociation
limit.

The experimental constants which are available for
fitting the curve are: 1. r.—internuclear distance at
equilibrium; 2. D,—dissociation energy; 3. k.—force
constant; 4. a.; 5. wdke; 6. weye; 7. r~—the critical
distance, a quantity obtained indirectly from mass
spectrometry appearance potentials. 7, is the value of
7, less than 7,, at which U=0 or the same as at r=o0 ;
8. UL

For most molecules only the first five are available.
weYe is known only for a few of the more extensively
investigated molecules, and that too not very ac-
curately. So far, the 7. value is available only for Hy+
(Stevenson S2). U, can only be used in conjunction
with criterion Sb, which is a stringent condition and
may not be satisfied by a function satisfactory from
other criteria. Thus we are left with the first five
constants.

Two types of analytical functions have been used:
(1) power series of the type

U=61(1’—73)+02(7—7e)2+63(7_'re)3 Yy (1)

(2) closed formulas.

The first type has been investigated by Kratzer (K4)
on old quantum theory and by Dunham (DS5) and
Chakravorti (C1) by wave mechanics. Dunham’s work
has been extended and simplified by Sandeman (S1).

Though this function has the advantage that the
corresponding wave equation can be solved to a very
good degree of accuracy, there is one serious objection.
The series is not convergent and unsuitable for high 7
(the P.E. as obtained from this function tends to plus
or minus infinity as 7 becomes infinite, instead of going
to the dissociation limit), though it can be used to give
a very accurate P.E. curve close to the minimum. Also
this is not a very convenient expression from compu-
tational viewpoint. The only advantage that can be
claimed for Dunham’s expression is flexibility.

Numerous empirical or semiempirical functions have
been proposed to represent the P.E. curve.

Comparative tests for some of the functions on a few
molecules have been made (Lotmar L10, Coolidge,
James, and Vernon C3, Davies D3). However, no ex-
tensive examination has been made so far to test the
relative merits of the various functions.
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In view of the fact that five constants are available,
for maximum flexibility, one can keep five parameters
in the functions, but such functions are only useful for
plotting the P.E. curve.

Functions with fewer constants (3 or 4) have also
been suggested. Because the number of parameters is
less than the available spectroscopic constants, such
functions also yield relations between the different
constants. This gives rise to another question: is it
possible to find interrelation between the different
constants, irrespective of the type of binding, etc.?
Special emphasis is laid on this point in this paper.

In principle we can utilize any of the known constants
(in all equal to the number of parameters in the func-
tion) for fitting the function. However, this is not
always satisfactory for two reasons: firstly, the expres-
sions for the parameters in terms of constants usually
are much simpler for 7., k., D, than for a, and w,;
secondly, the values of a, and w.x, are not known with
the accuracy that the k. and 7, values are known (at
times values of a, and/or w.x, are not known at all).
Hence, as a uniform policy we would determine the
curve from &,, 7., and D, when there are three constants.
The function can be tested in two ways—(a) by com-
paring it with the experimental curve, (b) by evaluating
the values of the coefficients in the series or the unused
constants and comparing them with the actual values.
Here we only utilize method (b).

Comparison of a, and w.x, is a more direct method,
rather than of the coefficients of the series. Further it
is more convenient for comparing different functions.
Hence we adopt this method.

The condition that a satisfactory function should be
capable of yielding the correct a, and w.. values is
only necessary but not sufficient. A function may yield
correct a, and w.x., but still may not be satisfactory
in the neighborhood of 7=0. (See also Wu and Chao
Ww2.)

To find the parameters from the experimental con-
stants we have to solve the corresponding wave equation
and compare the resulting coefficients of the terms with
the series

G(v) =we(‘v+%) —wexe(v+%)2+weye(v+%)3+ Tt (2)

However, this is not always possible. The Schrodinger
equation is exactly solvable in only a very limited
number of cases (Manning M1, Eisenhart E1) and
perturbation methods are often cumbersome. Hence
the following procedure is adopted. The closed analyti-
cal function can be expanded as follows:

1 1
U(r)==U"(r)(r—ro)2+-U""(r) (r—7.)}*
2 B

1
’*’I;Uiv(’e) (r—r*+--- (3)
[*
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which is the same as series (1) with

U (7e)
Cy=
2
u (7e)
3=
B
Uiv (re)
C4=
4

Dunham (DS) has shown that

C3 6Be2
Q=— [*7.;*-1] (4)
Co We

and
15 C3 2 Cq h
R EORCI
8 \¢, co / 187%
where B,=rotational constant and g=reduced mass.
Actually there are some further terms but they are
negligible. We put
U”’(?’e)/U”(f’e)=X
U¥(r)/U" (r)=7Y.

Then in terms of X, ¥, and u4 (reduced mass in atomic
weight units)

X7, 6B .2
ae=—[ -l—l] (6)
3 We
B 1 h
wxke=|-X2—Y
K] 16472 X 1.6597 X 1024 4
B 72.1078 10716
=-X2—YV|—
|3 | BA
5 w
={-X?—V |— @)
| 3 Jua

where W=2.1078 X106

If we are dealing with a three constant curve we can
fit the curve from k., 7., and D, and deduce the value
of a, and wex, from (6) and (7). The curve can be fitted
from the following three conditions

U(r)—U()=—D, (8a)
U
(z:)m:(’ (8b)
and
@U
E)T =,.e= ke. (80)
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The relative merits of the functions can be tested by
calculating the values of a. and w.x. and comparing
them with the experimental values. For a broad
behavior of the function a new graphical method is
used, which very clearly shows the applicability of a
function without detailed calculations. In (6) and (7)
it is only the quantities

X, 5
[—-I— 1] and [—XZ— Y]
3 3
which will be different for different functions. For most
of the functions

foapr

5
[;XL— Y]r;":G (10)

can be represented as functions of the dimensionless
parameter A where
ka2

2D,

=A. (11)

This A may be called Sutherland parameter in honor
of Sutherland (S3) who was the first to emphasize its
importance. Then '

6B
a,=F- (12)
We
w
wte=G- (13)
,uAre2

From the later analysis, it appears that those func-
tions which give a, and w.x, values higher than those
given by the Morse function can be safely ruled out.

The following symbols are used:

P=T—7,

r—7¢

E=

7e

A, B, C ---a, b ¢ --- m n etc. are constants.
Though often the constants in different functions are
represented by the same symbols, the value of the
constants for different functions is different and should
not be confused.

DOUBLE-EXPONENTIAL AND MORSE FUNCTIONS

Assuming that the repulsive and attractive terms
both vary in an exponential manner, the potential
function can be put as

U=Ae ™ — Be, (14)
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Morse (M6) suggested a special form of this:

U=D,J[1—¢at-r, (15)

This satisfies criteria (1) and (2) and although at
r=0, U is not infinite, it is nevertheless a satisfactorily
large quantity.

Applying conditions (8 a, b, c) one easily gets

a=(ko/2D,)%.

Morse solved his function for a special case and found
that
G('U) = we(v+%) —wexe('u—'_%)z

for the vibrational energy levels without any higher
power of (v43%). However Ter Haar (T4) has shown
that this conclusion is not rigorously true.

Pekeris (P4, P5) solved the Schrédinger equation for
the Morse curve by a perturbation method and found
that to a good approximation

B.\! B,
wmotanl (=) - | (16)
Weke Wee
Since
U’ (rs)=2a*D,
U"(re)=—6a*D,
U¥(r,)=14a*D.,,
from Egs. (6) and (7) we easily get
6B;2 :
a,=(A¥—1) W)
We
weXo=8a*—=8A (18)

M4 714

Equation (17) is equivalent to (16) by virtue of (18).
Equation (16) has been tested by Pekeris and found to
yield good results.

On the other hand (18) has been examined by Hug-
gins (HS, H6), Linnett (L1), etc., and found to give
very poor results.

Equation (18) can be simplified to

we

4w.x,

D,=

(19)

which corresponds to the linear Birge-Sponer extra-
polation. Gaydon (G1) has shown that usually this
method gives rather high values for the dissociation
energies.

For hydrogen halides, Davies (D3) found the values
of U"'(r,) and U™ (r.) to be satisfactory.

This function predicts for Hy*, 7.=0.50 A or 169,
low as compared with Stevenson’s (S2) experimental
value of 0.595 A. .

Badger (B2) has proposed the following empirical
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rule for estimating “¢” for single bonds:
a= 115/ (re—-d,'j)

where d;; is the constant occurring in Badger’s relation
(B1) between k. and 7..

Huggins (HS, H6) modified the Morse function by
putting ¢ in (15) equal to e™12, both 7,5 and m being the
same for all electronic states of the same diatom. This
gave satisfactory values of 7, from observed values of
k. and wex.. But when he attempted to use the same
function with the same values of 71, and m to calculate
the heats of dissociation, the results were quite un-
satisfactory, the errors being of the order of 100-200%.
It appears that the function of Huggins gives an
adequate representation of the relation between U and
7 in the neighborhood of 7., but departs widely from the
actual relation outside this region.

EXTENDED MORSE FUNCTION

Coolidge, James, and Vernon (C3) examined the
following extended version of the Morse curve:

v > all (rmra ]
—— c.[1— —a’ (r—"e, n,
D, »n=23...

(20)

In actual calculations on certain states of H,,
Coolidge, James, and Vernon have taken 7 terms in
this series. The form is flexible, but it has one serious
disadvantage: o’ is difficult to determine, and in fact
loses its significance as we take more terms in the
extended Morse curve.

HULBURT-HIRSCHFELDER FUNCTION
Hulburt and Hirschfelder (H7) modified the simple

Morse function in this way:

U=DJ (1—e ) +cre2(1+bx)] (1)

where
We r—7,

" 2(B.DY) 7,

x=20¢

and b and ¢ are simple algebraic functions of the five
spectroscopic constants. This has the great practical
advantage that it uses just those five parameters which
are most readily obtained from the study of band
spectrum. Hulburt and Hirschfelder give a list of the
numerical values of the parameters for 25 common
diatomic molecules. With only a few exceptions, their
potential curves lie above the Morse curves.

Recent work of Tawde and Gopalkrishnan (T1) on
the transition probabilities in the C, (Swan) system
suggests that this function is only satisfactory in the
region 7>7,.

RYDBERG FUNCTION

Rydberg (R6) proposed: ‘

U=—D,(14bp)e? (22)
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which is similar to the radial wave function Ra(7) of
the hydrogen atom. This satisfies criteria (1) and (2),
but like the Morse function, does not become « at
r=0, though it is sufficiently large at that point.

From the three conditions (8 a, b, ¢) one gets

b= (k./D,)*.
Further we have
U" (re)=—2D b

U¥(r,)=3Db*
whence we get

2V2 6B .2
Ole=[-—A%— 1] (23)
3 We
2 W
Wele=—A" . (24)
3 re2MA

In predicting transition probabilities of C, (Swan)
system, the Rydberg function gives better performance
than the Morse or Hulburt-Hirschfelder functions
(Tawde and Gopalkrishnan T1).

ROSEN-MORSE FUNCTION

In its simple form the Rosen-Morse (R4) curve is
U=A4 tanh(r/d)—C sech®(r/d). (25)

This does not satisfy the 3rd criterion. The relations
to observed constants are

tanh(r./d) = —A/ZC

D= (4+2C)*/4C.
Let
f=1/C?. (4C?— A%?
then
ko= U" (r,)=f/84*C

U (r,)=3Af/88°C?
U(re) = (942—8C?) f/84'C?.

We define another parameter p given by

re/d=9p.

Then we have
A= p?(1+4tanhp)?
6B 2

(26)

.= (2p tanhp—1)-

(27)

We

we=842(3 tanh2p--1)
fﬁﬂA

8A(3 tanh?p+1) W
(1+tanhp)? rlua

w
—8A(1— 2 4-o—17)——.
rgﬂA

(28)
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Variation of F and G with p and A is tabulated in
Table I.

Other methods of fitting the curve have been given
by Lotmar (L10), Kronig (K6), and Davies (D3).
Davies found that for hydrogen halides it gives results
no better than Morse function. An extended four con-
stant version of the Rosen-Morse function has been
suggested by Lotmar (L10) which has been tested by
Tawde and Gejji (T2).

MANNING-ROSEN-NEWING FUNCTION
The Manning-Rosen (M2) function is

1 [B(B—1)e?/d  Aerid
S
kL (1—erldp2  1—e /e
which may be put as
Beld-+-Ce2rld
= (30)

(1—erlaye

It obeys the 3 necessary criteria. However, Manning
and Rosen found that for this function “the disso-
ciation energy . . . is greater than the quantity we®/4w.x.
given by the Morse function.” Thus

we

D,=

+0
4w,

or
we2 we2

——>,
4(D,—8) 4D,

WekXe

Thus it gives wqx, values even higher than does the
Morse function (which itself gives much higher values),
and hence this function is not suitable.

Newing (N1, N2) studied the function

(1 —_— e—-ap)eure]2

U= —De-i-De[ (31)

gare— g—ap

(There is a misprint in the original equation as given
in his paper. The first term in the denominator has been
printed as ¢, whereas it should be e%".)

This expression on simplification takes the form of
function (30).

POSCHL-TELLER FUNCTION

The function due to Poschl and Teller (P6) has the
form

U=A4 cosech’a(r—rq) — B sech’a(r—7) (32a)
which uses 4 constants.
We examine here the simpler version
U=M cosech*(r/d)— N sech?(r/d). (32b)

This obeys the three criteria.

DIATOMIC MOLECULES 669

TaBLE 1. Rosen-Morse function.

F G

? A

0.7 1.26 —0.1539 8.208
0.8 1.77 0.0624 11.89
0.9 2.39 0.289 16.45
1.0 3.10 0.523 21.92
11 3.94 0.761 28.43
1.2 4.84 1.001 35.55
1.3 5.86 1.240 43.63
14 6.96 1.479 52.49
1.6 9.45 1.949 72.68
1.8 12.28 2.408 95.63
2.0 15.43 2.856 121.2
2.2 18.89 3.293 149.3
2.4 22.67 3.723 179.8
2.6 26.74 4.144 212.8
2.8 31.13 4.559 248.1

From conditions (8 a, b, ¢) we get the following
relations (Davies D3):

tanh*(r,/d)=M/N=y*" (say).

Then :
&*=8D./k, or A=4rp2/d
y=tanh(r,/d)
N=D./(1—)
Further

U (r) =8N /@ (1—y?)?
U™ (re)=—24N/yd*- (1—3%) (1—y")

vam)=%[15(MN>%{1—;3:}2—321\7(1..3,2)2]

whence we get

B2

a,=[A? cothAt—17]

(33)

We

@ety=8A-——, (34)

4 ezﬂ A

While the value of «, is different from the Morse
function, the value of w.x. comes out to be the same as
in the Morse function.

Davies (D3) examined this function on hydrogen
halides and from the values of U"'(r,) and Uiv(r,)
concluded that it is slightly superior to the Morse
function.

HYLLERAAS FUNCTION
Hylleraas (H8, H9, H10) introduced the potential:
14-e)(14c¢)(z+0d
U=De[1—( ) (149 ()
(z4a) (z-+c) (14-0)

where
2= 20+ BE
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and the intermediate quantities @, b, ¢ are defined by

a=(k—ks)/(1+ks)
b={k— (kitke)}/(1+kitko)
c=(k—ky)/(1+ky)

k, ki1, ks being the parameters.

The function involves 6 parameters which are difficult
to determine. Coolidge, James, and Vernon (C3) have
given complicated equations for finding them. Ob-
viously this function cannot furnish any relation
between the molecular constants. This passes into the
Morse curve upon making k=£%;=0, so that a=0, ¢c=0.
The Poschl-Teller function is also a special case k=0,
ky=1%[tanh(r/d)—1], ko=%[coth(r/d)—1].

KRATZER FUNCTION

The Kratzer (K5) function approximates to the form

r—7r.1
U=D6[ ]

(36)

4

This has the drawback that it makes use of only two
constants. The solution of the corresponding wave
equation was first given by Fues (F3).

While it satisfies the three necessary criteria, appli-
cation of conditions (8 a, b, ¢) leads to the abnormal
result

A=ky2/2D,=1. 37)

This value is not found in any of the 23 molecules
considered in the present paper. Even H, (which has
the lowest value of A) has a value higher than 2, and
it is extremely unlikely that any other molecule will
satisfy this condition. Hence this function is not
applicable to molecular problems. A modified form is
considered later.

DAVIDSON FUNCTION

Davidson (D1) examined the function

r o 1)
U=a ———] .
re 7
This does not satisfy the criterion that U should be
finite when 7= . Also only two constants are used.

However, on applying conditions (8 a, b, ¢), this leads
to the interesting result

(38)

ko 2=8a=constant.

39)

Although this is not a universal relation, it is well
satisfied by ground states of hydrogen halides (Kratzer
K4, Glasstone G3, Davies D3, Heath, Linnett, and
Wheatley H1).
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It is easily deduced that
6B 2

=2

(40)

We
wexe=0. (41)
F always comes out to be equal to 2, contrary to fact,
and (40) does not hold for any molecule.
MECKE-SUTHERLAND FUNCTION

Mecke (M4) and Sutherland (S3) suggested

e b
U=———.

ymorn

(42)

Here both the attractive and the repulsive terms are
of the reciprocal type. This type of function was used
before by Griineisen (G6), Mie (M3), etc., for forces in
the solid state. A special case (m=2, n=1) has been
treated by Fues (F3). Baughan (B4) used such a
function for interaction between nonbonded atoms.

From conditions (8 a, b, ¢),

¢ [fm—n b ym—n
AT
7" n 7" m
ke=am(m—mn)/r;"2=bn(m—n)/r, 2 (44)
whence
20=ka /D . =mn. (45)

Sutherland found that for the same class of molecules
k#2/D, is approximately constant, which led him to
conclude that # and # are constant for similar
molecules.

We can further deduce

2B2
ac=(m-+n)- (46)
We
2 7 2 w
W= [—m2+—mn+—n2+4(m+n)+4] . (47)
3 3 3 7e2ﬂvA

From considerations of the relation between %, and
r., Linnett (L1) thinks that this function is not
satisfactory.

Equation (42) is a four-constant function and we can
determine their values from k., 7., D,, and a. by (44),
(45), and (46) and then try to evaluate w.x, from (47)
(actually we need calculate only 7 and # for finding
wex,). However, as we are restricting ourselves to three
constant potentials we will not attempt it.

Sutherland (S4) later modified it by replacing by
(r—d), so that it becomes

e b

= — 48
(r—ad™ (r—a) “
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This modified Sutherland function can be used (V3)
to derive a series of very fruitful relations connecting
the various molecular constants, by making certain
assumptions regarding @, d, m, and n. These will be
published later on.

Lovera (L11) applied (48) to 4b-6b group of
molecules.

LINNETT FUNCTION

Linnett (L1, L2) investigated the function

=——le

rm

(49)

Conditions (8 a, b, ¢) provide the following relation-

ships:
a [m—nr,
pe=-—[ ] (50)
7™ nre
kEo=am(m+1—mnr,)/r, 2 (51)
mZDeyem
kerem+2=ma+—_' (52)
14+Der.™/a

Assuming m(=3) to be constant for the KK period
of molecules, and o to be constant for all states of a
given molecule, he showed that (52) gives a satisfactory
relation between &, and 7.. He further deduced

Oee= E { 20— (nr.)? r_ { 120— (nr)* l 12.098

4—nr, 4—nr, I rTeuA

where 7, is in angstroms.

The mean percentage error in w.x. values over the
states considered was found to be 16, compared to 46
by the Morse function—a considerable improvement.

Linnett also traced regularities in the value of ¢ and
later (L2) extended the function to other periods. This
function is capable of giving rise to a low maximum
between r=r, and =, and such a behavior of the
function was found with 2+ and %I, states of Ny,
however, experimental evidence does not favor such a
maximum in these states.

a. and wex, can be deduced in terms of parameter ¢
(=nr,) which can be found from

m(m+1—1i)t
Then "
o [(m-f-l) (m+3) —tz—t‘|6B,,2 (55)
mti—t .
[Sl ('m+1)(m+2)—152]2
Weko=|—
3 m+1—1
_{(m+1)(m+2)(m+3)—t3}] w . 56
mt1—1 Iriua
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TasBLE II. Linnett function.

14 A F G
0 0 6 11.67
1 2.25 7.33 272
1.5 3.75 8.1 37.28
2.0 6.0 9.0 50.6
2.25 7.875 9.53 59.4
2.5 11.25 10.17 70.47
2.6 13.65 10.46 75.92
2.7 17.55 10.78 82.16
2.75 20.625 10.95 83.69
2.8 25.2 11.13 89.96
3.0 © 12 108.7

The expression for w.x, coincides with that of Linnett
for m=3.

Table II gives the variation of F and G with ¢ and A
for the special case of m=3.

WU-YANG FUNCTION

Wu and Yang (W3) used a function similar to the
Born-Mayer function used for crystal forces:

U=aem—b/rm. (57)

This differs from the Linnett function in that the
attractive and repulsive terms have been exchanged.

This satisfies only the first and second criteria. At
7=0, this gives U= — » ! Conditions (8 a, b, ¢) yield

ko= —bn(n+1)/r,+bnm. (58)

For each molecular period Wu and Yang plotted
ke, against 1/r, with different values of n. They
obtained straight lines for a certain value of #, whence
they concluded that », # and b are constant in each
period. This function will be examined in detail for a,
and wex, in a later publication.

PUPPI FUNCTION

Puppi (P7) derived a reduced functional relation,
his reduced distance variable being

y=(r—7r5)/r.D3.

This was obtained by assuming a Morse function and
introducing an empirical relation, equivalent to k.2
=const. Puppi’s reduced equation is not universal as
ko2 remains constant only within small groups of
molecules. Furthermore, his variable y is complicated
in that it mixes distance and energy.

LIPPINCOTT FUNCTION

Recently Lippincott (L3, L4) has given the following
function for which he also gives a semitheoretical
justification :

U=DJ[1—exp(—=np*/2r)[1+af(n].  (59)

Here f(7) is a function of the internuclear distance,
chosen such that ()= when =0 and f() =0 when
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r= 0. Lippincott says that for many purposes the f(r)
term is unimportant, and neglects it to a first approxi-
mation. Thus

U=D[1—exp(—np*/2r)]. (60)

At r=0, r,, and o, it has the values D,, 0, and D.,
respectively.

Then from conditions (8 b, c) we get n=~Fk../D..

Further

6B 2
QAe="—"7%" (61)
We
wite= (6A+3)- (62)
722#'11
= (3nr,+3)
reZMA

Calculations of w.x. have been reported by Lippincott
and Schroeder (L6). They have calculated it in terms
of n, where » is empirically given by

n=mno(I/I0)'a(I/10)*s

where (I/Iy)4 and (I/I,)p are the ionization potentials
of atoms 4 and B, respectively, relative to those of the
corresponding atoms in the same row and first column
of the periodic table. For the H atom I/I, has been
assigned the value 0.88 rather than 1. For diatomic
alkali metal and alkali hydrides, 7o=4.21X103, for
most of the others #¢=6.32XX108,

For a., Lippincott and Schroeder report that (60)
gives a,=0. [As (61) shows, this appears to be in error. ]

Hence later they have used (59) with

af(r)=—a(r./r)*[1—exp(—nr/2r 1) ]t
+a(ro/r)P[1—exp(—bnr't/2r2)]

and deduced the following expressions

D,=wp?/2nr B,

nre\ i 6Bg2
o= b(—) . -
2 We

wee=1.5B,[0.25+nr,/4+ab(nr./2)}
+ (520> — ab®)nr,/2].

TasiLE III. Frost-Musulin function.

s A F G

0 0 0 3

1 1.5 0.555 15.29
2 4 1.17 34.42
3 7.5 1.8 60.60
4 12 2.44 93.96
5 17.5 3.09 134.6
5.5 20.625 347 157.6

YATENDRA PAL VARSHNI

Utilizing the fact that b and b are found to be nearly
constant for most molecules, they computed a, and
we¥e from the above expressions. The calculated values
agree well with the experimental values for the molecules
considered.

The simple equation (60) has also been applied to the
problem of the hydrogen bond by Lippincott and
Schroeder (L5).

FROST-MUSULIN FUNCTION

Another recent function is due to Frost and Musulin
(F1). From semitheoretical reasoning they have
constructed

U=e*(1/r—0). (63)

This satisfies the three criteria. Its special feature is
that the united atom energy can be utilized in deter-
mining the constants @ and 4. Frost and Musulin found
quite satisfactory results with this function for Hy*
and Ho.

a. and wex, are best represented in terms of a pa-
rameter s, defined by

A=s%/24s or s=-—14(1+24)%

Then
2s*435716B 2
=[ ] (64
3(s+2)J w,
115446654 15652+144s+36] w
wexe=[ . (65)
3(s+2)? JrﬁpA

A short table of the variation of functions F and G
with s and A is given in Table III.

Frost and Musulin (F2) have also attempted to
obtain a “universal” potential energy function in terms
of reduced potential energy U/D,. and reduced inter-
nuclear distance (r—r7;;)/(r.—r:;), where 7;; is a con-
stant for a given molecule formed from atoms ¢ and j.
They interpret 7;; as a measure of inner shell radii and
correlate with Badger’s d;;. However, the results ob-
tained for UY(r,) and U'V(r,) are rather poor, the
average percentage deviations being 13.2 and 42, re-
spectively, for the 23 molecules examined.

IONIC P.E. FUNCTIONS

For ionic molecules, P.E. functions based on a
classical model have been used. These usually consist
of several terms, including a Coulomb attractive term,
a repulsive term and polarization terms etc. For details
reference may be made to papers by Rittner (R1) and
Varshni (V2).

SOME NEW POTENTIAL ENERGY FUNCTIONS

In the above, we have considered the various po-
tential energy functions suggested by different authors.
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Now we consider a few new potential energy functions
and their possible applicability to diatomic molecules.
FIRST

U=D {1—exp[—b(r*—7r2)]}% (66)

This satisfies criteria 1 and 2 and is sufficiently large
at r=0.
We easily get

b= (ko/8Dr2)}=A%/2r ;2

) 6B 2
.= (AY—2) (67)
We
w
weke=[8A—12A3412] (68)
rZPA
Table IV shows the variation of F and G.
TasiLE IV. First function.
A F G
0 -2 12
1 —1 8
2 —0.586 11.03
3 —0.268 15.22
4 0 20.00
6 +0.4495 30.61
8 0.8284 42.06
10 1.162 54.06
14 1.742 78.89
18 2.243 105.1
22 2.690 131.7
24 2.899 145.2
26 3.099 158.9
SECOND
7e 2
U= De[ 1— —e‘“""e)] . (69)
r
This satisfies all the three criteria.
1 Al
at—=—
Te 7o
1 6B2
=] At —— 1] (70)
A} We
8 127w
Weko= [8A+ 12—~+—]~—~. (71)
AY A 7021111

Obviously a, values by this function would be higher
than those by Morse and because
12 17 8
~[A*+~]>—.
A¥ Al A}
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TaBLE V. Third function.

A F G

1 1.0 24

2 0.828 23.04

3 0.887 29.46

4 1.0 36.75

6 1.266 51.46

8 1.535 65.94
10 1.796 79.74
14 2.276 108.4
18 2.714 138.0
22 3.116 165.4
24 3.307 179.6
26 3.693 193.9

wex, values calculated by this function will also be
higher than those by Morse.

THIRD

As the first function gave too low values, and second
function high, hence a mixture was attempted

2

Te
U=D{1——exp[—B(—r2]} . (72)
7
This also obeys the three criteria.
: [al—-1]
B=—o/A—
2r?
6B
a.=[AM2/A1-2] (73)
We
w
weXe=[8A—12A%4-66—111/A+73/AT——. (74)

74

Table V depicts the variation of F and G with A.
FOURTH

U=B(A-+e¥)?

fulfills the three criteria.
Conditions (8 a, b, c) furnish

A=e¢blre
D,=B(ebre—1)?
b=r.Ind
]2

(75)

[ In4
1—1/4

We get
6B.2

Q= (lnA + 1) (76)

We

w
wete=[8(InA4)2424 In4+64]
7'62“14

(77

As A is ~5 or higher, (In4)?=A. To this approxi-
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TaBre VI. Sixth function.

A F G
1 —1 16
2 —0.293 15.66
3 +0.1546 20.62
4 0.5 27.00
6 1.041 41.27
8 1.474 56.33
10 1.846 71.77
14 2475 103.0
18 3.007 134.5
22 3.477 166.3
24 3.695 182.1
26 3.903 198.0
mation
6B 2
ae~[AMH1]—
We

w
wete~[8A-+24A14-64]

reZMA

FIFTH

oeali- ()]

This is a generalization of Kratzer function and a
special case of the Mecke-Sutherland function.

(78)

n2=A
6B 2
a,=A%} (79)
We
w
woto=[8A+12A1+-4]—. (80)
riua
SIXTH
7 2
- De[l ——e—w—m] [4+E/(] (681
7e

where f(7) is a function such that at »=0, f(r)=c and
at r=oo, f(r)=0. This general function satisfies the
three criteria. Neglecting the f(7) term, we get

7 2
penfilen].
7o
This gives U=D, at »=0.
We have
ar.=A¥1
6B2
a.=[At—1/A}—1] (83)
We
weke=[8A—1248/A}4-12/A (84)

rezﬂA
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Notice the similarity in coefficients of the terms in
bracket in wex, with similar terms of the second func-
tion.

F and G values are recorded in Table VI.

SEVENTH
U=—Are“[1—Kf(r)] (85a)

where, as before, f(r) is a function such that at =0,
f(r)=x and at r=o, f(r)=0. This function is very
similar to the Lippincott function.

As before, neglecting the f(r) term

U=—Arre—o, (85b)

The general function (85a) satisfies the three criteria.
However, the simplified version (85b) gives U=0 at
r=0.

The values of the constants in (85b) can be obtained
from conditions (8 a, b, c):

a=n/r,
A=D,[rre "
n=2A.

a. and wex, are given by

6B
1

Qe=—73

(86)

We

w

wexe=[6A+%] (87)

¥ 62,“ A

Here the F and G values are very similar to those of
the Lippincott function; F comes out to be negative
and G is only slightly less than Lippincott’s value.

COMPARISON

For testing any potential function, we require ac-
curate data for the various molecular constants. A
search of the available experimental data reveals that
there are only 23 neutral molecules for which reliable
values are available. Even for these the situation is not
quite satisfactory for all of them. Dissociation energies
of Ny, CO, and NO are still an open question. Two
values for Ny, three for CO, and two for NO have been
widely discussed. Reference is made to recent reviews
by Gaydon and Penney (G2), Long (L7, L8, L9),
Pauling and Sheehan (P3), Glockler (GS5), Valatin (V1),
Gaydon (G1), and Douglas (D4). We have used all the
values considered probable in-our calculations. Recent
experiments of Hendrie (H2) and Brook and Kaplan
(B7) lend a strong support to the higher value (9.756 ev)
for No.

Quantum-mechanical calculations by Kopineck (K2,
K3) also support the high value of N,. However,
Wolfsberg (W1) considers that some of the approxi-
mations used by Kopineck are not justified and his
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calculations should not be used as an argument favoring
the 9.8 ev value for D,(N).

The dissociation energy for HF is also not certain.
We have used the value given by Herzberg (H3). For
Li, also there is slight uncertainty in the dissociation
energy; again Herzberg’s value has been followed.

The data for the 23 diatomic molecules for the ground
states are given in Tables VII (a) and (b), collected
from Herzberg (H3). For O,, a more recent value of
Do(=5.115 ev) recommended by Brix and Herzberg
(BS, B6) has been used. D, has been calculated from
the usual relation

D,=D¢+3}w..

and k&, from k,=4n%uc%w 2= 5.8883 X 10%u 4w,? dyne/cm.

Dissociation energies favored by Gaydon are marked
with an asterisk. Most of the D, values are given to 4
significant figures and some even to 5. These values are
not that accurate. Because the conversion factors led
to these values, and to keep consistency with original
values, sometimes extra figures were retained.

For SO it is not yet certain that it is the ground state.

Some authors (e.g., Hulburt and Hirschfelder H7)
use the “corrected” dissociation energies of molecules
at absolute zero by subtracting the rotational, vibra-
tional, and translational heat contents. Others have
applied corrections to get the value of 7. at absolute
zero (e.g., Verwey and de Boer V5). Such corrections
are difficult to determine and often uncertain, hence we
have completely omitted them. '

While for most of the diatoms under consideration,
the experimental evidence suggests a conventional
potential energy curve, perhaps such is not the case
with ZnH, CdH, and HgH. Dissociation energies de-
termined by Birge-Sponer linear extrapolation come
too high than the actual values. Mulliken (M7, MS8)
suspects that there might be a maximum and a long
distance minimum in the P.E. curves of these molecules
due to the approach of two interacting states. Glockler
and Sister Horst (G4) have constructed a P.E. curve
for HgH taking into account the fact that at large 7, the
molecule can change from a structure bonded by
exchange forces to a quasi-molecule held together by
London dispersion forces which leads to a small
maximum.

The experimental values of F and G are given by

X7, Qe
F=— [ + 1] = (88)
3 6B2
5
G= [—XL Y]rf
3
wekel F X 6412 X 1.6597 X 1024u 4
= . (89)

h
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TaBrE VII.

(a)
Molecule we ae weXe
figures in BA cm™! cm™! cm™!
H, 0.5041 4395.2 2.993 117.99
ZnH 0.9928 1607.6 0.2500 55.14
CdH 0.9992 1430.7 0.218 46.3
HgH 1.0031 1387.1 0.312 83.01
CH 0.930 2861.6 0.534 64.3
OH 0.9484 3735.2 0.714 82.81
HF 0.9573 4138.5 0.7705 90.069
HCI 0.9799 2989.7 0.3019 52.05
HBr 0.9956 2649.7 0.226 45.21
HI 1.0002 2309.5 0.183 39.73
Li, 3.509 351.43 0.00704 2.592
Na, 11.498 159.23 0.00079 0.726
K, 19.488 92.64 0.000219 0.354
N. (i) 7.0038 2359.6 0.0187 14.456
N, (i)* 7.0038 2359.6 0.0187 14.456
P, 15.492 780.43 0.00142 2.804
0O, 8.000 1580.4 0.01579 12.073
SO 10.665 1123.7 0.00562 6.116
Cly 17.489 564.9 0.0017 4.0
Br; 39.958 323.2 0.000275 1.145
I 63.466 214.6 0.000117 0.6127
ICl 27.422 384.18 0.000536 1.465
CO (1) 6.8584 2170.2 0.01748 13.46
CO (i1) 6.8584 2170.2 0.01748 13.46
CO (iin)* 6.8584 2170.2 0.01748 13.46
NO (i) 7.4688 1904 0.0178 13.97
NO (if)* 7.4688 1904 0.0178 13.97

(b)
Molecule ke e B, D,
figures in 105 dynes/cm 108 cm cm™! 10 12 erg
H, 5.734 0.7417 60.809 7.607
ZnH 1.511 1.594 6.6794 1.523
CdH 1.204 1.762 5.437 1.228
HgH 1.137 1.740 5.549 0.740
CH 4.482 1.12 14.457 5.843
OH 7.792 0.971 18.871 7.340
HF 9.655 0.9171 20.939 10.65
HCl 5.157 1.275 10.591 7.394
HBr 4.117 1.414 8.473 6.277
HI 3.142 1.604 6.551 5.125
Li, 0.2552 2.672 0.6727 1.685
Na, 0.1717 3.078 0.1547 1.185
K, 0.0985 3.923 0.0562 0.8322
N, (i) 22.96 1.094 2.010 12.046
N, (ii)* 22.96 1.094 2.010 15.863
P, 5.556 1.894 0.3033 8.137
0. 11.76 1.207 1.4457 8.351
SO 7.93 1.493 0.7089 6.522
Clp 3.279 1.988 0.2438 4.021
Br, 2.457 2.284 0.08091 3.190
I, 1.721 2.667 0.03736 2.489
ICl 2.296 2.321 0.11416 3.486
CO (i) 19.02 1.128 1.9314 14.865
CO (ii) 19.02 1.128 1.9314 15.602
CO (ii)* 19.02 1.128 1.9314 18.01
NO (i) 15.944 1.151 1.7046 8.673
NO (i)* 15.944 1.151 1.7046 10.57

We have seen that F and G depend on the parameter
A [defined in (11)7. It is these F and G values which
differ for different functions. F determines a, and G
determines wex.. The experimental values of A, F, and
G have been tabulated in Table VIII. Figures 4 and 6
show respectively the actual values of F and G against
A.

F and G values as given by various functions have
been compared in Tables IX and X. Their variation
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Fic. 4. Experimental values of the function F plotted against
Sutherland parameter A.

with A for a few of the important functions have been
shown graphically in Figs. 5 and 7, respectively. (To
avoid confusion, the curves were not drawn in Figs. 4
and 6.)

Table VII (a) gives the experimental values of a, and
wexe. Numerical calculations of a, and w.x, for a few of
the functions along with percentage errors have been
reported in Tables XI (a), (b) and XII (a), (b), (c),
respectively. For calculating average percentage errors,
only those values of N3, CO, and NO which are favored

3%

Morse

3o Frost-Musulin

25

201

L ! !
20 22 24 26

o".
0246910/2/4A1619

Fic. 5. Behavior of function F according to various potential
energy functions. Experimental points are shown as dots.
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by Gaydon (marked with an asterisk) have been taken
into account,

DISCUSSION

A few important facts emerge clearly from Figs. 4 and
6. In case of both F and G, points are scattered. For F,
they are rather too widely scattered. Had it been
possible to represent all molecules by a ‘‘universal”
P.E. curve, we should have obtained smooth curves
passing through all the points. Thus the possibility that
a “universal” P.E. curve exists can be ruled out. This
agrees with what one expects theoretically. The shape
of a P.E. curve depends on the electron configuration as
well as on the position of neighboring electronic states
and it is quite clear that any general relation cannot
have exact validity. Of course, this is only relevant when

TasLE VIIIL.

Diatom A F G
H, 2.073 0.5928 15.52
ZnH 12.62 1.500 66.01
CdH 15.23 1.758 68.14
HgH 23.25 2.343 119.6
CH 4.814 1.218 35.58
OH 5.003 1.248 35.14
HF 3.813 1.213 34.40
HCl 5.669 1.342 39.33
HBr 6.554 1.390 42.69
HI 7.881 1.642 48.51
Li, 5.408 0.9065 30.80
Na, 6.864 0.8758 37.53
K. 9.107 1.070 50.37
N (i) 11.40 1.820 57.49
N, (i)* 8.662 1.820 57.49
P, 12.25 2.008 73.94
0. 10.26 1.990 66.74
SO 25.81 2.093 131.5
Cly 16.12 2.693 131.2
Br, 20.09 2.262 113.3
I, 24.58 2.997 131.2
ICl 17.74 2.633 98.06
CO (1) 8.139 1.694 55.73
CO (i) 7.752 1.694 55.73
CO (ii)* 6.719 1.694 55.73
NO (i) 12.18 1.944 65.58
NO (i)* 9.995 1.944 65.58

we utilize only a limited number of molecular constants
for fitting the P.E. curve, and try to find other constants
from them. If the P.E. curve is made sufficiently flexible
by including all the available molecular constants, no
such question arises.

It may be thought that in view of the different nature
of binding, HgH, CdH, and ZnH should be treated on
somewhat different footing from other molecules for
P.E. curve considerations. However, the position of
these points in Figs. 4 and 6 does not seem to justify
such an exclusion.

Nevertheless, Figs. 4 and 6 show that broadly
speaking, F and G both increase with increasing A. This
shows that it is possible to have “universal” potential
curves broadly describing such a behavior, though not



POTENTIAL ENERGY FOR DIATOMIC MOLECULES

TasLE IX.
F values
Morse At—1
Rydberg 2V2A1/3—1
Rosen-Morse 2p tanhp—1
Poschl-Teller At cothAt—1
Linnett 24—/ (4—1)
Lippincott —3%
Frost-Musulin (2524+3s)/3(s+2)
I Ar—2
II At-1/AE—1
111 AYF2/A1—2
v A1
v Al
VI At—1/AE—1
VII -1

very accurately. It is with this point of view that we will
consider the various functions.

We can also represent the variation of F and G with A
empirically. As a first approximation, straight lines have
. been drawn in both cases. In case of G, the points are
not so widely distributed and excepting a few points, a
straight line would be a good approximation. However,
in case of F one is tempted to draw two straight lines—
one for the low-lying points and another for higher
points. Then the question arises that for an unknown
molecule, which line will be taken for prediction. On
the lower line we may count H,, Lis, Na,, K, ZnH,
CdH, Br,;, HgH, SO. There does not seem to be any
characteristic feature regarding such molecules for
distinguishing them from others. While several of them
belong to s—s type of binding, and three of them are
perhaps van der Waals molecules, there are still Br,
and SO. Hence only one straight line was drawn. The

TasLE X.
G values
Morse 8A
Rydberg 22A/3
Rosen-Morse 8A(1—¢2r4-¢4p)
Poschl-Teller 8A
. 5[20—212 [120—#
Linnett 3[ 4—t] - [—4—t ]
Lippincott 6443
Frost-Musulin (115*4-6653+ 15652+ 1445+-36) /3 (s +2)2
I 8A—12A34-12
1I 8A+12—8/A4+12/A
111 8A—12A-66—111/A4-73/A
v 8A+24A64
A" 8A+12A%4+-4
VI 8A—12+4-8/A%12/A
VII 6A+3
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F16. 6. Experimental values of the function G versus
Sutherland parameter A.

equations of the two lines are:
F=0.11A+0.36
G=35A49.

(90)
1)

One more question arises: While it is not possible to
have exact “universal” P.E. function for @/l molecules,

is it possible to have such a function for molecules with
similar linkage, i.e., those belonging to the same

Fic. 7. Behavipr of function G according to various potential
energy functions. Experimental points are shown as dots.
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TasLE XI.
(a)
Morse Rydberg

Diatom a. calc % error ae calc % error
H, 2.222 —25.8 1.853 —38.1
ZnH 0.4248 +69.9 0.3950 +358.0
CdH 0.3599 +65.1 0.3355 +54.0
HgH 0.5090 +63.1 0.4765 +52.7
CH 0.5238 —1.9 0.4744 —11.2
OH 0.7141 0 0.6425 —11.1
HF 0.5822 —244 0.5429 —29.5
HCl1 0.3109 +3.3 0.2836 —6.0
HBr 0.2540 +7.9 0.2326 +3.0
HI 0.2015 +9.2 0.1857 +1.5
Li, 0.0103 +46.3 0.00938 +30.0
Na, 0.00146 +84.8 0.001342 +70.0
K, 0.000412 +88.1 0.0003813 +74.1
N (i) 0.02864 (+53.2) 0.02266 (+21.2)
N, (i)* 0.01996 +6.2 0.01844 +1.4
Ps 0.00177 +24.7 0.001644 +15.8
O, 0.00175 +10.8 0.01619 +2.5
SO 0.01095 +94.8 0.01026 +82.5
Cly 0.00190 +11.8 0.001775 +4.4
Br, 0.000423 +53.8 0.0003957 +-43.8
Iy 0.000154 +31.6 0.0001446 +23.6
ICl 0.000654 +22.0 0.000689 +13.6
CO (1) 0.01912 (+9.4) 0.01762 (+0.9)
CO (ii) 0.01844 (+5.5) 0.01694 (—3.0)
CO (iii)* 0.01643 —6.0 0.01506 —13.8
NO (i) 0.0228 (+28.1) 0.02117 (4+18.1)
NO (if)* 0.0198 +11.2 0.01832 +3.0
Average +33.1 +28.0

(b)
Third Empirical

Diatom ae calc % error ae calc % etror
H, 4.186 +39.8 2.969 —0.9
ZnH 0.3523 +40.9 0.291 +16.4
CdH 0.2996 +37.4 0.2524 +15.8
HgH 0.4311 +38.5 0.3886 +24.6
CH 0.4837 —-94 0.3898 —-27.0
OH 0.6319 —11.5 0.5207 —24.1
HF 0.6210 —194 0.4953 —35.7
HCI 0.2749 —8.9 0.2215 —26.6
HBr 0.2181 -3.5 0.1758 —22.2
HI 0.1694 —74 0.1369 —25.2
Li» 0.009204 +30.7 0.007415 +4.1
Na, 0.001247 +57.8 0.001006 +27.3
K. 0.0003439 +57.0 0.0002786 +27.2
N, (i) 0.02023 (+8.2) 0.01659 (—11.3)
N, (i))* 0.01665 —10.9 0.01349 —27.3
P, 0.001464 +3.1 0.001207 —15.0
0O, 0.01450 —8.2 0.01181 —25.2
SO 0.009324 +65.8 0.008586 +52.8
Clp 0.001588 —6.6 0.001283 —24.5
Br, 0.0003558 +29.1 0.0003127 +13.0
I, 0.0001311 +12.0 0.0001196 +2.2
IC1 0.0005468 +2.1 0.0004706 —12.2
CO (1) 0.01603 (—8.3) 0.01293 (—26.0)
CO (i) 0.01550 (—11.3) 0.01251 (—28.4)
CO (iin)* 0.01405 —19.6 0.01133 —35.2
NO (i) 0.01888 (+6.1) 0.01556 (—12.6)
NO (Gi)* 0.01643 7.7 0.01336 —249
Average +22.9 +22.1

molecular group (Varshni and Majumdar V4)? Very
few points are available to throw light on this question.

In case of G (Fig. 6), HF, HCl, HBr, and HI seem
to be on a regular curve. The case with Li,;, Nag, and
K is similar. Neglecting Cl,, we can consider ICl, Bry,

and I to be in a straight line. ZnH, CdH, and HgH are
erratic which is not surprising in view of the irregular
behavior of their molecular constants.

However, for F the situation is worse. Only for HF,
HCI, HBr, and HI a regular curve can be drawn quite
close to these points. Others do not show any regular
behavior. In short, we can say that there is not sufficient
evidence to give any definite conclusion on this point.

Now we consider the relative merits of each function.

Morse Function

This simple function though very widely used, to
quote Partington (P1), “has been overworked in many
branches of investigation,” gives rather a poor
performance.

a.: (see Fig. 5, Table XT a) : Excepting H,, HF, and
one point of CO, all other experimental points lie below
the curve. Corresponding results are obtained in the
numerical calculations which show the high average
percentage error of 33.1.

we¥e: (see Fig. 7, Table XII a): The case here is
similar. Only Cl,, one point of CO, and HF lie above the
Morse line. As expected, the average percentage error
is high, being 31.2.

In a way, the Morse function sets an upper limit to
F and G values. A satisfactory P.E. function should
give F and G values which are lower than Morse’s. As
mentioned earlier, previous workers also found unsatis-
factory results with this function. On the whole, this
function is not. suitable for using with a randomly
chosen molecule.

Rydberg Function

From a comparison of F and G values of Morse and
Rydberg functions, the latter gives lower values so the
trend is in the right direction.

a,: (see Fig. 5, Table XTI a): There is a significant
improvement from the Morse function, though even
now only about 8 points lie above the curve. The
average percentage error has slightly decreased to 28.

weke: (see Fig. 7, Table XII a): Though better than
Morse, still only about 5 points are above the Rydberg
line. The average percentage error has decreased to 23.1.

On the whole, this function is distinctly better than
the Morse function.

Rosen-Morse Function

a,: (see Table I): From the expression for F when p
is small (i.e., A is small), this gives lower values than
Morse function, as p increases (i.e., A increases), the
Rosen-Morse F approaches the F of the Morse function.

wexe: (see Table I): Behavior of G is very similar to
that of F.

Thus, the Rosen-Morse function is somewhat better
than Morse function, though more complicated.
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TasLE XII.
(a) (b)
Morse, Poschl-Teller Rydberg Lippincott First
Diatom weXe calc % error wexs calc % error Diatom ws%e calc % error weXe calc % error
H, 126.3 +7.0 115.8 —-19 P, 2.902 +34 2.578 —-8.1
ZnH 84.35 +52.9 71.32 +40.2 0O, 11.68 -3.3 10.24 —15.2
CdH 82.80 +78.8 75.90 +63.9 SO 7.352 +20.2 7.335 +1.9
HgH 129.2 +55.6 118.4 +42.6 Cly 3.041 —234 2.83 —29.3
CH 69.58 +8.2 63.78 —-5.5 Br, 1.248 +9.0 1.202 +35.0
OH 94.36 +13.9 86.5 +4.4 I, 0.7028 +14.7 0.6965 +13.7
HF 79.86 —11.3 73.2 —18.7 ICl1 1.621 +10.6 1.531 +4.5
HCl 60.00 +15.3 55.00 +5.6 CO (i) 12.52 (=17.0) 10.43 (—22.5)
HBr 55.53 +22.8 50.9 +12.6 CO (ii) 11.96 (—11.1) 9.806 (—27.1)
HI 51.64 +30.0 47.34 +24.2 CO (iii)* 10.45 —224 8.370 —-37.8
Li, 3.639 +37.3 3.336 +24.8 NO (1) 16.21 (+16.0) 14.39 (+3.0)
Na, 1.048 +44.3 0.9605 +g§g NO (i)* 13.42 —4.0 11.51 —17.6
K. 0.512 +44.6 0.4692 +32. :
N (i) 22.93 (458.0) 21.02 (+45.4) Average +12.7 +18.2
N (i)* 17.42 +20.5 15.97 +10.4 ©
P, 3.7117 +32.5 3.408 +21.5 Seventh Empirical
0. 14.85 +23.0 13.61 +12.7
SO 9.615 +57.2 8.814 +44.1 Diatom we¥e calc % error weXe calc % error
Cl, 3.932 —-1.7 3.604 -99 — 25.8
Br, 1624 4418 148 4300 | Ziy Py Rt B N
I 09183 +49.8 08418 +37.4 CdH 62.38 +354 5786 +249
ICl 2.101 +43.4 1.926 +31.5 HgH 97.27 +172 86.96 +47
CO (i) 15.76 (+17.1) 14.45 (+7.4) CH 5338 2168 5074 71
CO (i1) 14.98 (4+11.3) 13.73 (4+2.0) OH 72.33 —12.6 80.19 _39
CO (iin)* 12.99 -3.5 1191 —11.5 HF 61.65 _31s 73.48 184
NO (@) | 2075 (+485) 1902 (+36.1) HCl 45.88 —118 4942 —51
NO (i) 17.04 +21.9 15.62 +11.9 HBr 42.36 63 44.23 _2.5
HI 39.27 —-1.2 39.64 —0.
Average 312 21 Li, 2.786 +7.4 3033 +170
(b) Na. 0.8091 +11.5 0.8362 +15.2
Lippincott First K, 0.3887 +9.8 0.3832 +8.2
Diatom wee calc % error wee calc % error ﬁ: 82)* iggg (+Egg) ig?g (+ 14. 8)
H, 117.6 -0.3 86.14 —27.0 P, 2.813 +0.3 2.664 - S.O
ZnH 65.77 +19.3 58.76 +6.5 0O, 11.26 —6.7 10.90 —-9.7
CdH 64.13 +38.5 59.12 +27.7 SO 7.243 +18.4 6.428 +35.1
}cIﬁH 2?23 + igi Z; ﬂ + %g i Cl 2.970 —25.7 2.732 -317
. - aU . —40. 1.22 1 1.107 -3.3
OH 77.84 —6.0 59.37 —283 Brs ; +7 10
I, 0.6763 +10.4 0.616 +0.5
HF 67.76 —24.7 49.94 —44.5 -
_ ICl 1.586 +8.3 1.446 1.3
HCl 48.97 —-5.9 36.77 29.3 .
HBr 44.81 —0.9 35.70 ~21.0 CO (i) 11.96 (—11.1) 12.00 (—10.9)
HI 41.19 +3.7 33.88 —14.7 CO (i) 11.40 (—15.3) 11.53 (—14.3)
Li, 2.983 +15.1 2.218 —144 CO (iii)* 9.9 —26.5 8.172 —-39.3
Na, 0.8547 +17.7 0.6863 -35.5 NO (i) 15.71 (+12.5) 14.89 (4+6.6)
K. 04051  +144 0.3418 —34 NO (ii)* 12.93 —-7.5 12.56 —-10.1
N. (i) 17.96 (+24.2) 15.77 (4+9.1)
N, (i)* 13.82 —4.4 11.56 —20.0 Average +13.6 +11.1

Poschl-Teller Function

a.: (see Fig. 5): Since cothA}>1, it will always give
higher values than the Morse function. However, as A
increases, this almost merges with the Morse value.

wex.: (see Fig. 7, Table XII a): Same expression, as
given by the Morse function.

Thus this function is slightly inferior to the Morse
function, though the difference is not large. The fact
that Davies (D3) found it slightly superior to the
Morse function for HF, HCl, and HI, is because he
compared U""(r,) and Ui (r,), rather than a, and w.x..
U"'(r.) depends on a., while U¥(r,) depends both on
a.and w.x.. As Tables VI and IX of Davies’ paper show,
he obtained U’"’(r.) for the P&schl-Teller higher than
U"'(r.) for the Morse. This is in agreement with our

Fig. 5. However, for Uiv(r,), the effect of o, and w.x.
got mixed up. While the effect of w.x. remained the
same on both the functions, a, effected an increase in
Ut (r,) for the Péschl-Teller over the Morse. As Davies
found U (r,) for the Morse lower than experimental,
he concluded that the Péschl-Teller is slightly superior.

Actually only for HF, the Poschl-Teller is superior
to the Morse ; for HCl and HI, it is inferior, as is evident
from Fig. 5.

Linnett Function

a.: (see Table IT) : F values given by this function are
too high. Indeed the smallest value of F=6 (for A=0)
given by this function is almost twice the highest value
of F found in the 23 molecules under consideration.
Hence for o, it is quite unsatisfactory.
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we: (see Fig. 7, Table II): The course of the G
curve is very peculiar. For low A it is greater even than
the Morse, for high A it is too low.

At least for m=3, this is not a very useful function.

Simple Lippincott Function

a,: It gives a negative value which is meaningless.

wete: (see Fig. 7, Table XII b): From the expression
for wexe, for A>2 (which is usually the case) the values
are much lower than from the Morse function (almost
three-fourth of the Morse function). Table XII b shows
that the average percentage error is much lower (£12.7)
as compared to the Morse (4-31.2) and the Rydberg
(+£23.1) functions, indicating a significant improve-
ment.

The simple function (60) does not satisfy the third
criterion; to achieve this the f(r) term has to be
introduced. The f(r) given by Lippincott and Schroeder
makes the function a five constant function and thus
rather complicated. Only by assuming that ab and b are
constant can one predict a, and wex,. As we are con-
fining ourselves to three-constant functions, calculations
for a, and w.x. have not been carried out.

From the spread of points in Fig. 7, when two or
more D, have been suggested for a diatom, there is no
reason to assume the value favored by this function
as the “correct” one. Thus, Lippincott’s statement that
“where two or more alternative values have been
proposed, this function should suggest which is the
correct one” seems to be rather optimistic.

Frost-Musulin Function

a,: (see Fig. 5, Table IIT): For low A it is slightly
higher than Morse function, but for high A it is slightly
lower than Morse function.

we¥e: (see Fig. 7, Table III): Behavior of G is very
similar to that of F.

On the whole this function is very close to the Morse
function, though slightly more complex.

First Function

a,: (see Fig. 5, Table IV): This gives much lower
values for F than the Morse function, which is also
evident from Fig. 5.

wete: (see Fig. 7, Tables IV and X1I b) : Usually gives
lower values. Average percentage error (18.2) is lesser
than that for the Morse and Rydberg functions.

Second Function
As shown before, both for a, and wex, it would give
higher values than the Morse function and hence is
unsuitable.
Third Function

a,: (see Fig. 5, Tables V and XTI b): The average
percentage error (22.9) is significantly lower than that
by Morse (33.1) and Rydberg (28.0) functions.

YATENDRA PAL VARSHNI

weXo: (see Table V) : At low A (but >2), it is midway
between the Linnett and Frost-Musulin curves; as A
increases it almost follows the Frost-Musulin curve (to
avoid overlapping, the curve has not been drawn).

Fourth Function

This gives much higher values for F and G than the
Morse function, and hence can be dismissed.

Fifth Function

This also gives higher values than the Morse for both
F and G and hence is not applicable.

Sixth Function

a,: (see Fig. 5, Table VI): Course of the F curve is
encouraging. However, for A<2.5, it is negative.

wexe: (see Table VI): Very close to the Rydberg
function.

Seventh Function

ae: It gives a negative value of F (= —3) which is
absurd.

weke: (see Fig. 7, Table XII ¢): Slightly lower than,
and parallel to the Lippincott function. Consequently,
the average percentage error (13.6) is also very near to
that of Lippincott (12.7).

The results given by this function have astriking
resemblance to those of the Lippincott function.

Empirical Relations

ae: (Fig. 4, Table XI b): As can be expected, the
average percentage error is lowest, being 22.1. How-
ever, this is not far from the third function (22.9).

wete: (Fig. 6, Table XII c): Here also the average
percentage error is lowest, being 11.1.

CONCLUSIONS

We may summarize as follows:

It is not possible to find three-constant “universal”
potential energy functions, and consequently, there are
no “universal”’ relations connecting o, and wex. with A.

Several functions give relations which may be used
for estimating a, and wex.. Further, w.x, can be esti-
mated to a greater degree of accuracy than a,. A sur-
prising fact emerges that a function which may be
useful for calculating we, may fail completely to
reproduce a, (e.g. Lippincott, Seventh).

On the basis of these 23 diatoms, for a., the functions
in order of increasing accuracy are:

(i) Morse, Poschl-Teller,
Musulin

(i) Rydberg

(iii) Third, Sixth.

Rosen-Morse, Frost-
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And for wex,:

(1) Morse, Poschl-Teller,
Musulin, Third, Sixth

(i) Rydberg

(ili) Lippincott, Seventh.

Rosen-Morse, Frost-

Thus for over-all representation of the P.E. curves,
the Rydberg, Third, and Sixth functions are the most
useful.

Such diverse looking functions as those of Morse,
Poschl-Teller, Rosen-Morse, and Frost-Musulin are
actually extremely close to each other.

The best values of e, and w.x. are obtained from
a,= (0.11A+0.36)6B2/w, (92)
wete= (SA+NW /riua. (93)
Equation (93) can be transformed as
SWket
Dy=—r—, (94)

2wkt Fua—OW

For estimating dissociation energies, (94) deserves
to be employed in preference to D.=w./4w.x.. How-
ever, this cannot serve as a strong argument for favoring
any of the values when several appear to be possible
(e.g. NO, CO, Ny, etc.).

In Table VIIT the Sutherland parameter A varies
regularly in a molecular group (V4) and increases with
increasing ua.

The author is thankful to Professor K. Banerjee for
his kind interest in the work and the Government of

India for a research grant,
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