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I. INTRODUCTION

N both the theories of radiative equilibrium and
neutron diffusion we encounter transfer equations
of the form

Q- W (1,Q)+o:(1):i(r,Q)
=5 [Fu@.0000, 00,00 +0i(20). (1)

Since the most direct application of the specific
results to be obtained will be to neutron diffusion we
will use the terminology of that subject. Here ¥:(r,Q)
is the angular flux of neutrons of energy 7 at r moving
in direction Q. oi(r) is the total cross section for
neutrons of energy 7 and Fy; is the probability that if a
neutron with. energy 7, direction Q' suffers a collision
at r a neutron of energy 7, direction Q, will appear at r.
¢:(r,Q) describes any external neutron source.

While (1) is, without simplifying assumptions, ex-
ceedingly complex, a few general statements can be
made. These concern the reciprocity principle and
questions of uniqueness. The first of these is most
important. Besides enabling us to compare different
experimental situations and simplifying much of the
mathematics it shows, as will be seen, how apparently
difficult problems can be solved by relating them to
simpler ones.

Unfortunately, even the most elegant proofs' have
been rather complex. Indeed, there are a number of
theorems all of which go by this same name. In the
following it will be shown that all these theorems are
consequences of a simple identity. The method of proof
has a number of advantages. First, the origin of the
theorems and their generalizations in more complex
situations are directly apparent. Second, the equations
used so powerfully by Chandrasekhar! to determine the
angular densities are obtained at exactly the same step.
In a certain sense Chandrasekhar’s argument is turned
around. Instead of obtaining equations for the reflection
and transmission functions and then deriving a reci-
procity principle we start from a slightly generalized
principle. From this the equations and the specific
reciprocity result follow. This permits one to see exactly
what the simplifications resulting from the “Principle
of Invariance” ! are and makes possible a simple proof

* Permanent address: Physics Department, University of
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!For example, see S. Chandrasekhar, Radiative Transfer
(Oxford University Press, New York, 1950).

of this latter principle. A last advantage is that we can
in this way obtain the fundamental equations for
reflection and transmission functions even when reci-
procity in a strict sense does not hold.

Uniqueness theorems are particularly useful in con-
nection with equations like Eq. (1). They not only show
what must be specified to achieve a unique solution but
also suggest certain notations which materially simplify
the obtaining of the solution. Such a theorem is proved
in Sec. II for a simple situation. The result is essential
for the later arguments. Fortunately the proof is quite
similar to the proof of the reciprocity identity in its
general form which follows in Sec. III. In that section
we obtain as special cases various results which have
been called “Reciprocity Principles.”

In Secs. IV and V we turn to plane problems and

* derive Chandrasekhar’s' equations for the reflection

function for a half-space. In Sec. VI these equations are
used to obtain the Green’s function for one velocity
neutron diffusion in the same geometry. A specific
reciprocity result of Sec. ITI is used in Sec. VII to obtain
the Green’s function for two adjacent half-spaces.

In Sec. VIII Chandrasekhar’s equations for a slab
are obtained as another specialization of the general
reciprocity identity together with certain invariance
considerations.

II. A UNIQUENESS THEOREM

For simplicity in deriving the general results and in
order to be able to carry through the detailed calcu-
lations for specific solutions we restrict ourselves in the
body of this article to the following equation which is
appropriate for one velocity neutron diffusion:

Q- VI//(I,Q)+U(I)¢(I‘,Q)
—e(o(®) [ @@ (@), @)

Here ¢(r) is the number of neutrons emitted at r per
neutron collision at r. It is chosen so that

f f(R,Q)dQ=1. (3a)
We also assume that
f f(@,0)dQ' =1, (3b)

651



652 K. M.

and
f(,Q)>0 all Q' 4)

(These conditions are satisfied for all interesting physical
situations.)

Theorem.—If ¢(r)<1 throughout a region V, the
angular density is uniquely determined by the incident
angular distribution on the bounding surface S and the
sources within V.

Proof —Let 1, Y2 be two solutions of (2) with the
same incident angular distribution. The difference
Y=y1—, satisfies the equations,

Q- Wrs(=c(e() [ @AW rNQ (3

and
Y(r,2)=0, for ny- Q<0. (6)

Here r, is an arbitrary point on .S where the outward
normal is n.

If (5) is multiplied by ¢(r,Q) and then integrated
over V and Q we find on using Gauss’ theorem that

Il= 127 (7)
where
Y(r,Q)F
Il= f Ny Q[—TﬂdeS, (8)
and

Ih= f dro(r) f f 14Q'Y(1,Q) (2,0 (1,2")

_ j; dro(1) f QP (r,Q). (9)

Remembering (6) we see that
I;>0. (10)

Since f(Q,Q') is positive definite [from (4)], we
know that

[ faaiar@amuma)—vaarrzo. an

This together with the conditions of (3a) and (3b) gives
[ [amiaveor@amears< favrea). a2

Hence

Iggfdra(r)[c(r)—l]fdﬂl/ﬂ(r,ﬂ)SO. (13)

The inequalities of (10) and (13) are compatible with

CASE

the equality of (7) only if

Y(r,Q)=0 inV. (14)

Two remarks should be made:

(a) The assumptions of the theorem are probably
stronger than absolutely necessary. However, they are
satisfactory for the applications of interest here.

(b) In case the region V extends to infinity (such as
the exterior of a sphere or a half-space) the uniqueness
is to be understood as applied to functions vanishing
sufficiently rapidly. (Physically this means there are
to be no sources at infinity.)

As a direct application of this theorem we note that
to obtain the most general solution of (2) we need
determine only two functions for a given region. These
are ¥, (1,Q; 10,Q0) and ¢¥,(1,Q; 1,,Q;). Here ¢, satisfies
Eq. (2) with ¢(r,Q)=08(r—1r0)d2(Q- Qo) and describes
zero incoming flux. (§(r) is the Dirac delta function:
52(9 . Qo) =0, Q-Qp#1 and faz(g' Qo)dg’: 1) \Ps
satisfies the homogeneous form of (2) with the con-
dition

Vo(1,Q5 15,Q,) | r on 5=08,(r—1,)82(Q-Q,). (15)

Here 4, is the delta function on the surface S and Q; is
a direction such that ng. Q] =, <0.

The solution of (2) with arbitrary source ¢(r,Q) and
arbitrary incident flux ¥ino(r;,Qs;) is clearly

Y(r,Q)= f as f Qs (1,Q; 16, )Wine(Ts,Rs)
8 n0-L, <0

+j; drofdﬁo\bp(r,ﬂ; ro,Qo)q(fo,Qo). (16)

Proof that this is the solution is obtained merely by
noting that (a) the equation is satisfied; (b) the bound-
ary conditions are satisfied; (c) the solution is unique.
In a sense to be shown below only ¥, is necessary
(¥ will be obtained from ).
It is we hope clear how uniqueness can be proved
similarly for the more general situation envisaged in (1).

III. FUNDAMENTAL IDENTITY
Let ¢1(r,Q) be the solution of

Q- Vi (r,Q)+o(r)y

=co(s) [ f@.000@I0 +au(x0) (1)

within a region V subject to ¥1(r,Q)=v1 ino(r,Q) (for
no- Q<0) on the bounding surface S. Here ¥in is a
given function. Similarly we consider a solution ¥, cor-
responding to a source ¢ and a-given incident flux
V2 ine. In addition to y; we consider a function ¥,(r,Q)
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which is the solution of

Q- Via(r,Q) +o(1)s
= (o (x) f S, — Q)(1, Q)i +4:(1,2), (182)

subject to
1;2(1',9) =‘Z2 iﬂc(r79) E‘l/‘b’ inc(l’,Q)
(for no- Q<0 on .S).

(The ~ is associated with the indicated transposition
operation on the scattering function f.) Let us sub-
stitute —Q for Q in (18a). This becomes

—Q-Viu(r, =) 4o (r)fs(r, — Q)
~c()e(s) [ (@, Qa(r, — )0 +as(r, — ). (15b)

Multiply (17) by ¥s(r, —Q) and (18b) by y1(r,Q).
Subtract the second from the first and integrate over
V and Q. Applying Gauss’ theorem we obtain

f is f dQno- Qa(r, — QA (r,Q)
S

= [ aretotr) [ [anaar g, - 1@,
' X%(l‘,ﬂl)—lbl(r:g)f(gl,ﬂ)l/;z(f, _QI)}

+ f dr f dQ(Ja(r, —Q)q:(1,2)
—¢1(1,Q):(1, — Q)}.

Interchanging the names of the integration variables
Q and Q' shows that the first term on the right in Eq.
(19) vanishes identically. Since ¥1(r,Q) and ¥.(r,Q)
are prescribed on S for ng- Q <0, it is useful to rewrite
Eq. (19) as

(19)

f is f 49|00 Q| {¥s ime(1, QW (1, — L)
S no-£2 <0
_¢’1 inc(r)ﬂ)lzZ(ry —Q)}

- f dr f Q(Ja(r, — Qi)
(1, Q)ga(x, — ).

From this identity the results which have been called
reciprocity principles follow as special cases. We give
three examples here. In all these we suppose f(Q,Q')
= f(—Q', —Q), i.e., the scattering function has time
reflection symmetry. From the uniqueness theorem we
conclude that s =ys.

(20)
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(a) Let ¢ correspond to a directional point source in
direction Q; at r1. (¢1(r,Q)=38(Q Q1)d(r—11), ¥1 inc
=0.) We denote this solution by ¥,(r,Q;r,Q).
Similarly let ¥»(1,Q)=y,(r,Q; 15,Q5). Inserting in Eq.
(20) gives

Yo(r1, —Q1; 1y, Qo) =9, (15, — Qg5 11, Qq).  (21)

Thus the angular density at ry, direction — Q, resulting
from a unit point source in direction Q, at rs, is equal
to the angular density at r,, in direction —Q,, due to
a unit point source in direction Q at r;. From this
many additional results follow. For example, on inte-
grating the two sides of (21) over Q; and Q, we find
the theorem: The density at r; due to a unit isotropic
source at rs is equal to the density at r; due to a unit
isotropic source at ri.? Similarly on multiplying Eq.
(21) by w-Q (w an arbitrary unit vector) and then
integrating over Q; and Q; we see that the component
of the current in direction w at r; due to an isotropic
source at ry is equal to the demsity at r. due to the
directional source w-Q at r;.

(b) Let ¢1=ys(r,Q;11,Q1,), (ie, ¢1=0, ¥1 inc
=5s(l'1— rls)az(ﬂ . 91)), and let z//2=¢3 (I',Q; 1'23,92>.
(Note that no- Q1| r1,<0 and no- Q3| 12, <0 is implied.)
From Eq. (20) we find

]n2'92]¢s(r2s, _92; T1sy 91)
=|ny- Q;|Y(r1,, —Q1; T2y Qo). (22)

This says that the emergent angular distribution in direc-
tion — Q. at rss due to an incident beam at ry, in direc-
tion Q; times the absolute value of the cosine of the
angle between Q. and the normal to S at ry, is equal
to the emergent distribution at ry, in direction —Q;
due to an incident beam at rs; in direction Q, times the
absolute value of the cosine of the angle between Q,
and the normal at ry,.

(C) Let ¢1=¢p(r>g; 1'1,91), x//2=¢,(r,9; 1'23,93). Sub-
stituting in Eq. (20) we find

Vp(Toe, — Qg5 11, Q1) =

Yo (11, —Q1; Tag, Qa). (23)
n2-92|

Thus, the emergent angular distribution in direction
—Q, at 1y, due to a point source of direction Q; at r;
is the product of the reciprocal of the absolute value
of the cosine of the angle between the normal at rs,
and Q, and the angular density at ry, direction —Qq
due to an incident beam in direction Q: at rs;. Hence,
if we are primarily interested in emerging angular dis-
tributions only the function ¢, is necessary.

A particular consequence of Eq. (23) that will be
used below is obtained by integrating both sides over
all Q;. This yields: the emergent angular distribution
at rg, direction —Q, is 1/(4w|ny-Q2|) times the

2By “density” and “current” we mean Sy (r,Q)dQ and
S QY (r,Q)dQ, respectively.
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density at r; due to an incident beam in direction Q.
at rs,.

IV. PROBLEMS WITH PLANE SYMMETRY

In these problems Eq. (2) simplifies (on introducing
the optical thickness?) to

0 (2,9Q)

9z

M +y (579)

~c(@) f (0,005,242 +q(59), (24)

where p is the cosine of the angle between Q and the
positive z direction. The equation for ¢ is the same with
f(Q,Q") replaced by f(—Q', — Q).

We can, of course, appropriately specialize Eq. (20)
for this symmetry. It is, however, convenient to rede-
rive the result. Since incident and emergent directions
will be characterized by u>0 or u<0 it is suggested by
the uniqueness theorem to make the decomposition
(used by Chandrasekhar?) of y into ¥, defined by

‘l’:}:(z7n)=‘l/(z} :I:Q), (“>0)

Similarly we decompose our sources into ¢.(2,Q). For
a given source ¢ Eq. (24) becomes the two equations

W (2,Q)
__i_____;_
9z

(25)

¥ 1)

+u +

=) [ (0,00 6e) (262, 1)

+f(:1: Q, - Q,)‘l/—(l) (Z;Q/)}dgl‘i‘% w (ng)

(Here all Q are restricted to x>0.)
For the functions . ® corresponding to a different
source ¢® we have

L ®
+u

(5Q)+FJ=®
dz :

=(2) f {f(—Q,FQ)y.?(,Q) (27a,b)

HA(Q,FQ)J-*(2,2)}dQ+¢+®(3,Q).

Multiply Eq. (26a) by J_®(z,Q), Eq. (26b) by
U@ (2,Q), Eq. (27a) by -V (2,Q), and Eq. (27b) by
¥, @ (2,Q). Subtract the sum of the resulting second
two equations from the sum of the resulting first two.
Integrating Q over all angles with x>0 and z between

8 For example, see Case, deHoffmann, and Placzek, Introduction
to the Theory of Neutron Diffusion (U. S. Government Printing
Office, Washington, D. C., 1953), Vol. I.

CASE

a and b (a>b) we find
fdgl‘{ J—— @ (Z)Q)'l’-i- ® (Z;Q)
=94 @ (2,2 (3,Q)}
b
S AT TS

+¢+(2) (2,9)9—“)(2,9) _.‘p_(l) (2;9)%(2) (Z,Q)
—¥40(5,Q)g-?(2,Q)}.

Specializing to various sources and incident angular
distributions the analogs of the theorems in Sec. III
are obtained. It will be seen, though, that even more
information is contained in these equations.

(28)

V. HALF-SPACE PROBLEMS—BASIC EQUATIONS

The fundamental problem of this type is: find func-
tions (Y. (,Q; Q")) which satisfy Egs. (26a, b) (with
g+=0) for z2>% such that ¢, (2,Q; 2,Q1) =8,(Q- Q).

A convenient reformulation of this problem is the
following: Find functions satisfying Egs. (26a, b)
everywhere which agree with the above ¥, (3,Q; z,Q1)
for 2> 2 and which vanish for z<z. Clearly this can
only be achieved by having plane sources at z=2. To
see what these sources must be we can write our equa-
tions as

3
in&(z,ﬂ;é,ﬂf)-ﬁﬁfd@f{ AL (RQ)3(z—2).
9z

Integrating these equations from Z—e to Z4¢ (e is
infinitesimal) gives /

Hulps(Zte Q;2 QN—Y.(2—¢ Q; 7, 1)}

=A:(Q). (29a,Db)
Since
Vi(Z—e Q; 2 QN=0
and
V. (Zte Q; 2, Q) =5:(Q-Q1),
we have
M (Q)=uba(Q-Q1), (30a)
A(Q)=—w_(3,Q; 7,Q1. (30b)

Let us now apply Eq. (28) to ¥.(3,Q; 2,Q:) and
¥4 (2,Q; 25,Q4) where 35> 2;. The sources are

q+(1,2) (z’g)=#52(g - Qy, 2)6(2-—21, 2),
7-©(2,Q) = — wh-(21,Q ; 21,€1)8 (2~ 21),
4- P (2,Q) = — uP_(22,Q ; 20,2)8(3— 22).

€2Y)
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If we remember that ¥, (2,9 ; 22,Q5) =0 for <2, and
require the functions to vanish as z— we obtain

pol—(22,Q2; 71,Q1)
= f dQu_(22,Q; 72, Q2)¥4 (32,2 21,Q1).  (32)

Suppose 2:—21. Then ¢ (25, ; 21,Q1)—02(Q - Q1) and
we find the relation

(21,025 21, Q1) = url(21,Q1; 21,Q2).

If in particular the reversal symmetry holds
(f(Q,Q) = f(—Q', —Q)), we have y=¢ and Eq. (33a)
becomes

s (21,9025 21, Q1) = p—(21,Q1; 21,Q22).  (33b)

Up to this point there has been absolutely no use of
“The Principle of Invariance.” Equation (32) is
generally valid. However, as Chandrasekhar! has so
fully shown, considerable further progress is possible if
we can call on this invariance. In the present context
this means only the following theorem.

(33a)

Theorem.—If ¢(z) is independent of z,
\bi(zxg; E’QT) =‘l/ﬂ:(z— z,Q;0, Qt)-

Proof —.(2—2, Q; 0, QF) satisfy. exactly the same
equations and boundary conditions as ¥.(2,Q; 2,Qt).
The uniqueness theorem then tells us they are identical.

Define .S and .S by

S(ng’) =”¢—(O;9 5 O)Q,)l
S(Q,2)=w_(0,Q;0,Q),
and put 2:=0, 2=z in Eq. (32). We find

(5,23 0,0)) = f Q/S(Q, Q)4 (5,975 0,2,). (34a)

From Eq. (34a) complete knowledge of S and S can
be obtained. For example, if we put =0 this becomes

S(Q,2)=5(Q,,2), (35a)

which can be used to rewrite Eq. (34a) as
W (5,03 0,0)= [ 40'S(@.00W (250,00, (34b)

[It is convenient that all “reversed” functions have
disappeared from the fundamental Eq. (34b) even
though no symmetry assumptions on the scattering law
have been made.] We note that Eq. (34b) is just
Chandrasekhar’s starting point for treating half-space
problems. _

Further information can be obtained from Eq. (34b)
by considering the limit z—. Since in this limit we
are far from the boundary z=0 it is to be expected that
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¥ will tend towards an infinite medium solution of the
homogeneous Eq. (26a, b). Translational invariance
implies such a solution in as'exponential function of z
times a function of Q. The requirement y—0 as z—
shows the argument of the exponential to be negative
(ie., Y10, (Q)e** where x>0 and ¢, (Q)e ™ is a
solution of the homogeneous transfer equation). Sub-
stituting in Eq. (34b) we find that

w-(@)= [a@'s@ane.@).  (3sb)

The remaining information needed can be obtained
by following Chandrasekhar’s procedure and differen-
tiating Eq. (34b) with respect to z. The transfer equa-
tions [Eq. (26a, b)] can then be used to eliminate
dy./0z. Taking the limit z—0 and remembering that

hr{]l ¢+(Z,Q; 0791) =62(Q 91)7

and
lln(’]l ‘//~(Z,Q; 0791) =S(Q:gl)/ﬂ9

we obtain

(i-}--l—)S(ﬂo,Ql):c f f aQ'dQ" f(Q', — Q")

Mo M1
S(Q0,Q")
X[az("ﬂo' Q')‘l“——,—]
u

’

x[az(— 9".91)+sz:’9—1)]. (36)

Here, for compactness in writing, we use the conven-
tions that integrals are over all directions and S(Q,Q’)
is taken zero for u or u’<O0.

Thus, using only the reciprocity identity and the
translational invariance the nonlinear integral equation
[Eq. (36) and the condition on the solution Eq. (35b)]
are obtained. Chandrasekhar' has shown in many cases
that these uniquely determine S.* Given S the deter-
mination of ¥, (3,Q; 0,Q;) is well known and straight-
forward. Examples are given below.

For further applications of the reciprocity relations
it is useful to specialize f. Let us assume, as is true in
many cases of interest, that

f(Q,Q")=, (:“,)‘I’Z(M”)/‘LW:

where &, ®; are even functions. (The physical origin
of this even requirement will be seen later.) Then Eq.
(36) becomes

1+1)S(g Q) =—1¢( 7
—_ 0,521, —; #0)9(ﬂ1)> (3 )

Mo M1
* A general proof is possible. Since it introduces many concepts

foreign to the present discussion and is applicable to a wider class
of equations it will be presented elsewhere.
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where
S(Q0,2")
3¢ (uo) =1 (po)+ f ———,*——@1(#’)(19', (38a)
I
and
S(Q",Q1)
§(u) =) + [ N (38b)
I

Substituting for .S from Eq. (37) gives the coupled
integral equations

1@1 14 I3 d !
5C(M0)=‘I’1(Mo)+fuoffc(uo) f M, (39a)
2 o kot

]@ 7 :}C 14 d ”
(1) =s(u)+-p§ o) [ BTGB sony
2 0 it

These are readily reducible to a single integral equa-
tion. Let 3C(u)=®1(wH ), Gu)=P2(w)H (). The
coupled equations are then equivalent to

1y ! H Ndu'
H(w)=14pH () f PR 4
2 0 pt
where
T () =81 ()8 (). (41)

The equation for H is thus just in the standard form
discussed in detail by Chandrasekhar.!
For .S we have

(20,20 =~ b () Ba () H () H )y (422)

4 potp
while
~ C Mo
S(Q0,21) =— ——P2(10)®1 (1) H (wo) H (u1).  (42b)
potu1 .

VI. HALF-SPACE GREEN’S FUNCTION

For simplicity we restrict ourselves in the following
example to isotropic scattering (ie., ®1=®;=1).
Clearly® the discussion can be restricted to isotropic
sources. The problem is then to find the solution

(¥ (2,2 20)) of

a‘/’pi
i#—a—(Z,Q; 20)+¥ps
2

-2 f 49/ (Vs (5,2") +p (5,2)) ) dQ+5 (s 50) /4,
4

(43)
subject to

lim (2,95 %0)=0, (44)

and
li_r’g Vi (2,9 20)=0.

5 For example, see reference 3, p. 122.

CASE

The remark at the end of Sec. III states that

1
¥p— (0,9 20) =——p(20; O,u0),
4

(45)

where p(z0; O,u)= /S dQ"Y (20,RQ"; 0,Q) is the density at
2o due to an incident beam in direction Q on the plane
z=0. p is obtained in the following well-known way.
Formal integration of Egs. (26a, b) yields

1 z
¢+<z,sz>=e—z/ﬂ'{¢+<o,n>+— [ e+z'mo+<z',sz>dz'],
u o

(46a)

and
0

Ef e—z’/uQ_(z',Q)dZ/], (46b)

MYz

¥-(z,Q)=el

where

04(5,2)=6(2) f (2, Q) (52)

+/(£Q, —QW_(5,Q)}dQ'+¢.(2,Q). (47)

In the present instance of isotropic scattering, con-
stant ¢, and isotropic sources ¢go(z)/4m this says

90(2)
4

b (00) = f ) e—z'/P[irp(z')Jr }dz', (48)

or
1 c o
—_(0,1/p) = Laplace transform of ‘—p—*——}. (49)
P dr 4w

Applying the Fourier-Mellin inversion theorem gives

c 1 Btio {
P (ZU; Oyl") = _'50— (0:1/1’: O,Iu)epzodp' (50)
4ar L o f—ioo
In Sec. V it was found that
1 ¢ HwH(1/p)
'—‘0——(0)1/?’ 07”‘) =T T (51)
? dr p+1/p
where
¢ VH (u")dy!
Hw) =1+ () f i (52)
2 o wtwu
Therefore,
HG) (e H(1/p)e
oo 0= [ ———ap. ()
i Jp—iw  pF+1/u

The work of Chandrasekhar! and others? enables us to
regard H (u) (0 <up <1) as a known function. (“Known”
here means in the sense of numerical tables. While it is
true that analytical formulas are available these are so
complicated as to be virtually useless.) The main
problem is to express the contour integral in terms of
“known” functions. This can be done with the aid of



RECIPROCITY PRINCIPLES

the condition given by Eq. (35) which has so far been
ignored. The infinite medium form of the homogeneous
equations (26a, b) for isotropic scattering and constant ¢
have the unique solution which vanishes for z—w

V. (2,Q) = (constant)[ 1/ (1F«u) Je—**,
where « is the positive root of the equation
1—c¢(tanh~%)/k=0.
Hence in Eq. (35b) we have
¢+ (@)=1/(1Fxu).

Substituting the expression for .S in terms of the H
function we find from Eq. (35b) that

(54)

1 "H (u)dw' 2 1
f WHW)d (55)

(u+u) (1—s) ¢ H(w) (14+u)

However, on decomposing into partial fractions we have
the identity

uw 1 —u 1
= { + ] (56)
(wtu)A=wp') 1txplptu’ « (1/0)—p

On substituting this into Eq. (55) we obtain integrals
readily evaluated on recalling the integral equation
[Eq. (52)] satisfied by H (u). The result is

fl W H (u")dp' =E 1 { 1
o (utp)(A—xu) ¢l4wulH(w) H(—1/x)

Comparing Egs. (57) and (55) we see that H(p) has a
pole at p=—1/k.

The integral in Eq. (53) can now be evaluated in the
limit of large 2. Deforming the contour to the left we
see that the dominant term in an asymptotic expansion
of p(20;0,u) is given by the singularity of H(1/p)
furthest to the right in the complex plane. This is just
the pole at p= —«. Hence

}. (57)

uH (1)
p(20; O,u) — (constant)e—*z ,
20—

(58)
1—«ku

The reciprocity relation (Eq. 45) says then that the
emergent angular distribution from a half-space with a
plane source far from the boundary is proportional to
H(u)/(1—«ku). Alternatively, H(u)/(1—xu) is the
emergent angular distribution for the Milne problem
(i.e., the problem of finding a solution of the homo-
geneous transfer equation for the half-space which is
~e* for large z). Thus

1 B+io I 1 Dz
f Mdp_ (59)

Pm (Z) =E7;j r—x

B—iw
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This is a “known” function with thoroughly inves-
tigated properties.® (The normalization® chosen here is
such that p,(0)=1.)

Comparing Egs. (53) and (59) it is apparent that

d 1 ) P(ZO; O:M’)

- 60
H(p) ©0

- =77M(ZO)7
dzo

where we define 7, (20) by

Nm(20) = (d%—x) pm(%0).

An elementary integration then gives
20
otz 0) =) et [ et (o)
0

The emergent angular distribution for a unit iso-
tropic plane source at % is given by Eq. (45) in con-
junction with Eq. 61).

The density p(2;20) resulting from an isotropic plane
source is obtained by inverting the Laplace transform
of Eq. (49). Thus

1 B+i0
(s 200 = — f e H(1/)

T & —iw0
20
X{e—p=o+ f e—mw'm(z')dz'}dp. (62)
0

The contour integral is readily evaluated since it is
seen from Eq. (59) that

1 B-100
— H(1/p)erdp=05(z—20)+S(2)1m(s), (63)
i i
where
S(z)=0, z<0
=1, 2>0.

Using this result in Eq. (62) it follows that

co(2; 20) =nm(|2—20|)
(e+e0) 2 | 2— 2|
—l—f nm(z'-l- )
=20l /2 2
|2—20]
Xnm(z'— . )dz’. (64)7

A more convenient form of this equation is one in
which the corrections to the infinite medium plane

¢ The solution of the Milne problem given in reference 3 is
[¢/(1~0)4Jom(2). .

7 A result equivalent to this has been obtained by B. Davison
and G. Placzek, Canadian Report MT-118.



658 K. M.

source solution due to the boundary z=0 are given
explicitly. This can be obtained as follows: Let gz,
z— while |3—z| is kept finite. The result must
certainly be the infinite medium plane source solution®
P (3—20) 1.€.,

P (3—20) =1 (| 2—20])

® |z— 20|
+ 1w\ '+ )
|z—z0] /2 2

X"lm(z,—

Therefore, on making a simplifying change of variable
in the additional term in Eq. (64) we have

| 2—20]

)dz’. (65)

1 0
5350 =pale—s0)— [ mm(etIm(z+adiz  (60)

c

If desired the angular distributions can be obtained
using Egs. (66) and (46a, b).

VII. GREEN’S FUNCTION FOR ADJACENT
HALF-SPACES

Generalizing the problem considered in the previous
section we will here construct the Green’s function for
adjacent half-spaces. For simplicity we again restrict
ourselves to isotropic scattering. The media for >0
(region 1) and z<0 (region 2) are to be characterized
by constants ¢; and c,, respectively. The unit isotropic
source will be at zo where 2,>0.

It is useful to start with the simpler problem of a
unit directional plane source at z=0 emitting in direc-
tion €, into region 1 (u;>0). The first example of a
reciprocity relation discussed in Sec. III relates the
density at zo due to this source to the emergent angular
distribution at 3= 0 due to the unit isotropic source at 2.
Specifically

¥p—(0,Q1; 20) = p (205 0,Q1) /4. (67)

Our program will be the following

(1) We will find the emergent distribution from region
1 due to the directional source at z=0. »

(2) From this emergent distribution the density at zo
due to the directional source will be obtained.

(3) Using (67) the emergent distribution from “1”
due to the isotropic plane source is then known. From
this we can determine:

(a) The density for z>0.
(b) The emergent distribution from “2.”

(4) From the emergent distribution from “2” the
density for <0 due to the isotropic source will be
found.

8 This is discussed in detail in reference 3.

CASE

The first step is then to solve the equations
S}
:*:.U‘a—‘p:}: (Z:Q 5 O)QI) +¢:t
2

:% f{‘l/-F(Z;QI) +¢~(Z’Q’)}dﬂ' (68&7 b)
0,
where
c(8)=c1, >0

=¢y 2<0.

Denote the solutions for z>0 and z<0 by super-
scripts ! and 2, respectively. Integrating Eqs. (68a, b)
from slightly less than to slightly greater than zero gives

Q-Q 69
Ul 0.) 422 0,0 (@) (6
(69b)
From the discussion in Sec. V we also know that
S0(0,0)
4-000)= [da———yw0a), 10
and
S®(Q,Q")
4200~ [da———y e 0a), ()

"

where S, S® are the S functions corresponding to
¢1 and co.

Eliminating ¢, @ and ¢_® from Egs. (70a, b) by
means of the relations of Egs. (69a, b) we obtain the
integral equations

¢ Hi(u)H1(p1)

‘p—(l) (O)Q) =
dr  ptw

+— I(M)f

2R Q)——Hz

Hi(p')

—¢-®(0,Q")dy’,
(71)

0

Fortunately, these equations are readily solved. The
identity

w 1

() (W +a) p—a

together with the integral equation satisfied by an H
function gives

7 a }
utu' W+ta

fl W H(u")du 2 1 [ 1 } 12)
0 (u+ﬂ')(#'+a) H(d) H(w)

cu—a
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This suggests that

Y- (0,Q) = {art+BiH1(k)/Ha(1)}/ (utw1),
¥+ @(0,Q) = {ast+B2Ho(u)/H1(1)}/ (u—p1),

where a1, as, 81, B2 are constants to be determined.’
Substituting Eq. (73) into Eq. (71) gives

{ar+BaH 1 (w)/He(w)}/ (u+tn1)
_ Hy(u) [ﬁﬂl(m)+ az } Bzc1/ca ]
(wtur)ldr Hy(—p1) Hy(—m)
arz  BeHi(w)er/cs
) ) Hy(e)
{ae+BHo (1) /H1(1)}/ (u—p1)
RAOTIC 3162/61]
—(u—ul)l-Hz(Ml)l Hi(p)
ay BiH 2 (w)co/ 1
C(u—w) () Hr()

(73)

(74)

These equations are compatible if

Q1= —Qy, ,31= _,8251/627
[} C1/ C:
2 N ﬂ2 1/ 2

Hy(—p1) I Hz(—ﬂl)=

)

C1
—H (1)
4

and
a Bics/c1

Hy(u1)  Hi(ur) -

Solving for the constants we obtain

C1 Hl(ﬂl) Co Hl(l‘l)

1= = ——

4 Hy(us) ’ 4 Hy(u1) ’

Co

C!1="‘4_{ }7

20
Qg=— )
T 47

where

o/ ]—l. (75)

¢ }:[Hg(,u.l)Hz(—,ul)_Hl(m)Hl(_Nl)

The expression of Eq. (75) simplifies on using the
identity!®
1

— = 1—¢(tanh™
HOH =D 1—c(tanh™) /3,

(76)

which follows directly from the integral equation for the

® This form is also suggested by the solution obtained for a
similar set of equations by S. Chandrasekhar, Can. J. Research
A29, 14 (1951).

10 See reference 1, p. 116.
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H functions. Thus we obtain

W e 1 ‘I_ClHl(l-h)Hl(l-t)} (772)
T dn(a—e) whu) | (e Ha(w)
—C1iCo 1 Hi(u)H(u) ]
o= —1+ :
i 4 (c1—cs) (u—u1) { Hy(puy)Hy (1) (77)

Inverting Eq. (49) shows the neutron density at
20>0 due to the directional source at z=0 is given by

2 1 Pty ©(0,1/p;0,Q))
—p (205 0,Q1) =— f
47 T B

er2dp, (78)

— 00

or
p(20; 0,Q1) =J 1+,
where
—cy 1 At gpodp  —(y gl
J1= - = 5 (79)
Cc1—Cy 27['1 B—1i00 1+pﬂ,1 C1—C2 M1
and
C1 Hl(ﬂl) 1 Btiw H1(1/P)epz°dﬁ
2= — (80)

c1—cs Ha(p1) 2w Yoo Hy(1/9) (14 pus)

As in Sec. VI, J; can be related to “known” functions.
When z;— the principal contribution in Eq. (78)
comes from the pole of H1(1/p) at p=—x«;.

[1—c (tanh™%,) /xk;= 0.]
Hence
€% Hy(u)

11—k H2(ﬂl).

Thus, by Eq. (67), Hi(u1)/Hz(ur) (1—kip1) is the
emergent distribution from region “1” resulting from a
source located far from the boundary. In other words,
this is the emergent distribution for the generalized
Milne problem—the problem of finding the solution of
the homogeneous form of Eq. (68) subject to the con-
dition of behaving as e%® for z—. Let us call the
density for >0 corresponding to this problem p,,® (z).
The inverse of the Laplace transformation gives

p(20;0,Q1) — (constant) (81)
20—

1 et H(1/p)erdp
5@ () =— — (82
00 2mi j,;-m (p—r)H,(1/p) )

This can be expressed in terms of the known functions
Hy(u) and p,®(2). [Here p,,®(2) is defined as in Eq.

(59) by
1 Bty (1
oD (2)=— f (/2 )ez»dp.]
2ri Yoo p—i1

Thus, on using the integral equation for H, in the form

1 c2 (' Hy(u')dy
S Tl skl (83)
H,(1/p) 2y 14-p
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it is found that

Ca 2
PO @) =0~ [ pu()i
0

! Hy(u")dp'
X f W (8)
0 w

In terms of 7, (2) =(d/dz—K1)pn® (3) We can write
Eq. (80) as

¢ Hi(w) 1

2=

C1—Ce Hz(ﬂl) M1
20
X {e—zo/#1+f 8~(20—2’)In1,-7m(1)(z’)dz'}. (85)
0

Using Eq. (67) the emergent angular distribution from
region “1”” due to a unit isotropic plane source at 20>0
is

—C e—20/m

p—(Q,€21; =
¥ (0,Q1; 20) o)

1 C1 H1(It1) 1{ }
Cdr(er—co) Halw) pn

(86)

where { } is the same as in Eq. (85).
The inversion theorem gives for the density at z>0

p(z; 20)= n® (|2—20])
c1—Cy
1 (z+20) 12 . l z—zoi
+ f ﬁm“’(z’+ )
c1—Ca v |z—=0l /2 2
|3—20]
XinP| &' — )dz'. (87)

Again considerations of z, z—®, |3—z]| finite,
identifies the terms which describe a plane source in an
infinite medium of properties “1”” (p, > (s—20)) and the
correction terms due to the boundary. The result is

1 00
5(2; 20) =pu® (3—20) — f i (2"+20)
ci—¢C2 Yo
Xiim® (2 +2)dz'.  (3,20>0). (88)

[It is immediately apparent that Eq. (88) reduces to
Eq. (66) when ¢;—0 and to p,,®(z—20) when cr—c1. ]
The emergent angular distribution from region “2”

CASE

due to the plane source at 2 in region “1” is

S®(Q,Q)
'Pp+(0,9;zo)=f————‘il/p_(O,Q';zo)dQ'.
"

(89)
Expressing S® in terms of H,, using the integral equa-
tion for H, and remembering that 20> 0 we find
Hy(w) 1
dr(ci—cs) Ha(w) 2mi
X f e Hl(l/ﬁ)dp. (90a)
p—in 1—pp Hy(1/p)

With the aid of Eq. (82) it is seen that

1 e e Hy(1/p)
2mi Jsin 1—up Ho(1/p)

—C

¢p+ (079 ) Zo) =

e/n LJ
= f e*z'/"ﬁm(l)(z')dz'
M 20
eoln HI(IJ') 20
=—’ — f e—z'/nﬁ,,m(z')dz'}.
u VHy(u) 0
Hence
u —c 1 Hy(u)
m(o,sz;zo)=————}ezo/~— 2
4#(61—62) 1’3 Hl(#)

20
% f e(zo—z')/u,-,m(l)(z')dz’], (90b)
0

The Fourier-Mellin inversion theorem then gives
-1 1 Hy(1/p)
— e p?
H.(1/p)

C1—Co 2mi Vi

B+ic0

eP#—

p(z;20)=

20
Xf e”(z""')ﬁm(l)(z')dz’}, (2<0, 20>0). (91)
0

Changing the order of integration yields

p(z; 20)=

20 1
[ anwena—
0

C1—Cy 27!"1

Fie . Hx(1/p)
X f ep (20—2'—2) dp.
B—in Hl(l/P)
However, it is readily shown that
1 e Hy(1/p)
2wt Jp—io Hi(1/p)

(92)

d

e—pzdj) = 'Flmm) (Z) = (_‘_Kl) pm(2) (Z)’
dz

(93)

where $,®(2) is the density in region “2” in the
generalized Milne problem. Expressed in terms of 7,®
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Eq. (92) is

1 (2+20) /2 , 2—20
f ﬁm(l) g —
C1— C2 Y(z—20)/2 2

2—2o
Xﬁ,,.<2>(z'+—2 )dz’,

p(z; 20)=

where z<0, 20>0. [Explicit formulas for p,®, anal-
ogous to Eq. (84) for 5,D, in terms of H;(x) and the
solution of the standard Milne problem for a medium
of properties “2” (p,,®) are readily obtained.]

VIII. EQUATIONS FOR A PLANE SLAB

Finally it will be shown that Chandrasekhar’s equa-
tions™ which determine the reflection and transmission
of a finite slab follow directly from the identity of Eq.
(28).

The problem is to determine the solution of the
homogeneous form of Eq. (26) in a region 2<z<247
subject to the boundary conditions

Yine (2,9) =y, (ZJQ) = 62(9 * QT)y
lllim(2+ Ty Q) E\[/—(2+ Ty Q):O

Leaving the 7 dependence implicit, we denote the solu-
tion by ¥, (3,Q,2,Q1). As before we consider a solution
which coincides with ¥ for 2<z<Z+47 and vanishes
outside this region. Clearly it is necessary to introduce
the sources

(94)

9+ (2,Q) =ud(Q- Q1)d(z—2)
— ¥, (Z+1, Q; 3 QNé(z— (3+7)),
q9- (Z,Q) = —-[J,\I/__(Z,Q 5 2,906 (Z— 5)

(95)

Applying the identity of Eq. (28) to ¥.(2,Q; 21,Q1) and
¥, (3,Q; 2,Q,) where 2147 >35> 2; results in

oV (22,2 21,R1)

= fdﬂy\il_(zz,ﬁ ; 50, Qa) ¥, (20,95 21,Q1)

- f AU (514 7,2 71,21)

XY_(z1+7, Q; 22, D3).  (96a)

Assuming ¢ independent of z we know from the
“Principle of Invariance” that

V(2,Q; 2,QN=V(z—3z, Q; 0, Q).
It

S(Q)Q’) =;I,‘I’_(0,Q; O)QI); S(Q:Q,) =/-"\~I}—(O’Q; O:Q/)’
T(;“)‘zl) =”'\Il+(7')9; O)Q,); T(Q7Q,) =,u,‘fl+('r,0; 019’)’

11 See reference 1, Chap. VII.
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it is possible to rewrite Eq. (96a) in the form
W (5,03 0,00 = [ 40/ 5(@, 0%, (0500
- f dQ'T(Q,Q)¥_(r—z Q';0,Q;). (96b)

Putting =0 and remembering the boundary condition
of Eq. (94) one finds
S(Q791)=S(Qlyg)~ (96d)

Therefore, if f(Q,Q’) has the time reflection symmetry
S is symmetrical. In any event it is permissible to
rewrite Eq. (96b) as

w_(z2,; O,Ql)=fdQ’S(Q,Q')\I/+(z,Q’; 0,Q,)

— f dQ'T(Q,9)T_(1—2,@';0, Q). (96c)

Differentiate this equation with respect to z. Use the
transfer equations to eliminate derivatives and put z=0.
Remembering the boundary conditions and the defi-
nitions of .S and T one obtains

(ﬂioJri)S(go,nl):c f f dQ'dQ"( },

where
S(Q0,")
(y=1@, —n">[52<—ao.gf>+__/_]
u
S(Q",Qy)
x[az(—a"-91)+_;__]
m

Cew Q”\T(n',no) T(Q",Q,)
’ J .

97)

“I ”ll
[The same convention is used as in Eq. (36).]

The remaining conditions to determine .S and 7 are
obtained by comparing a solution with a beam incident
on the slab from the left to one in which the incidence
is from the right. Let $(z,Q; 2,Q1) be the solution of
the homogeneous Eq. (27) for 2<z<Zz4r subject to
the boundary conditions

d_(7+32, Q; 2 Q) =6,(Q-Q1),
. (3Q; 29N =0.

Again consider a solution of Eq. (27) everywhere which
vanishes except for Z<z<Zz-+7 where it coincides with



662 K. M.

®. The sources that must be introduced are

9+ (3,Q)=—pud, (Z+1, Q; 2, QNd(z— (3+1)),
0-(2,Q) =ud(Q- QNd(z— (2+7))

—ud_(2,Q;2,0N5(z—32). (98)

Let ¢, O =V, (2,Q; 2,Q1) and ¥+ @ =3, (3,Q; 25,Q,) in
the identity of Eq. (28) (where 21<2:<z+7). The
result is

fdﬂ[l.‘l’+(22,9; 21,91)&'_(22,9; 22,92)

= f dQud_(z1+7, Q; 22, Qo)W (1417, Q; 21, Q1) (99)

Suppose ¥, (z,Q) give a solution of Egs. (27) with
constant ¢. Clearly ¥, (2,Q)=V¥+(—z, Q) is a solution
of the equations obtained from Eq. (27) by replacing
f(Q,Q") by f(—Q,—Q'). Let us assume f(Q,Q")
= f(—Q, —Q’). (This corresponds to invariance under
spatial reflections. It is satisfied for all important appli-
cations.?) From the uniqueness theorem it follows that
for constant ¢

P5(2,Q; 2,00 =V, (3+7—2, Q;0, Q1. (100)

Inserting this in Eq. (99) and using the translational

invariance one concludes that

f a7 (Q,Q,)V, (2,Q; 0,Q,)
=fdQT(Q,Ql)\ff+(z,Q;O,Qz). (101)

Putting 2=0 gives
T(Ql,gz)-: T(Qz,91>. (102)

Differentiate Eq. (101) with respect to z. Eliminate
derivatives by means of the transfer equation and then
put z=0. One obtains

T(Qo2) T(@,00) f f dQdQ’{ }, (103)

Mo M
where
T(Q,21) S(Q',20)
()=r@, —sz)——~[az<—n'-szo)+————]
M M
7(Q,Q S(Q',Q
_f(g, — Q’)__(___)_[32(_ Q. Ql)‘l"“—(——‘—)]
M M

Finally, using the symmetry properties [ Egs. (96d) and
(102)] we obtain as the fundamental equations for S

12 This is why the functions &1, ®; in Sec. V are usually even.

CASE

and T

(i+i)s<go,al>=o f f dQdQ'f(Q, —Q){ )1,

) (104a)
(i“i)T(Qo,Ql)=c f f dQdQ'{ },, (105)
{ }1=[52(—90.Q)+M]
B

N (9’,91)]_ T(Q0,9) T(Q',Q1)

!

X[52('—9"91) -

b

and 12 14 1
T(@,2) S(@0@)
( Jo=rf(a, ~n)—————[az<—sz'-no>+-——]
u u
T QO,Q S 9',91
1@, - o-ar-ap ]
1] 13

It is remarkable that Egs. (104a) and (105) have no
explicit dependence on 7. (Exactly the same equations
hold for slabs of all thicknesses.) Clearly some addi-
tional condition must be added to make the solution
of the problem for a given slab unique. However, Eq.
(105) tells, in essence, what the condition is. Solving
for T in terms of the integral on the right it is seen
that T'(0,Q;) is determined only up to a term propor-
tional to &(uo—pu1). This must describe the direct con-
tribution of the incident beam. Thus the correct form
of Eq. (105) including the condition necessary to make
Egs. (104a) and (105) determinate is

T(R0,Q1) =u182(Qo Qp)e—#/m

Clhoph1

+“ - f f dQdQ'{ }.. (104b)

Equations (104a, b) are then the fundamental equations
which determine the reflection and transmission for a
slab. To recapitulate: we have assumed c¢=constant
(translational invariance), f(Q,Q)=f(—Q, —Q’)
(spatial inversion invariance), but we have not assumed
f(Q,Q")=f(—Q', — Q) (time reflection invariance). If
we do make this additional assumption we have also
proved that S and T are symmetric. The essential dif-
ference between this and Chandrasekhar’s! derivation
is that we start from Egs. (96c) and (101)—which
follow immediately from the reciprocity identity and
translational invariance. There is never any need to
consider solutions of slab problems with different thick-
nesses.

APPENDIX

Since reciprocity relations are important for much
more complicated situations than those treated above
(where analytic, or semianalytic, solutions can be
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found), it seems worthwhile to sketch the proof of such
theorems for the general case described by Eq. (1).
Let ¢;® (r,Q) and ¢, (1,Q) satisfy

Q- V'pi(l) (I;Q)_"'o'i(r)\bi(l) = Z fFij(Q)QI’r)

Xoi(0Y; (r,Q)dQ"+¢:V(1,Q), (A1)
and
—Q- VO (r, —Q)Fo:(P:® =% fFji(Q',Q;f)
Xoi()§;® (r, —Q)dQ"+¢.P (r, —Q). (A2)

Multiply Eq. (A1) by ¢¥:®(r, —Q), Eq. (A2) by
¥V (r,Q). Subtract, sum over 7 and integrate over the
volume V under consideration and all Q. The result is

f ds f dQno @ T ¥ (1,2)¥:® (1, — Q)

=f dr (a0 X0 (1, ~2)00 ()

_'pi(l) (T,Q)Qim(f: _Q)] (As)
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Specializing to various point sources and incident
distribution it is possible to obtain a large number of
relations between solutions of different problems.

If we define a matrix $(Q,Q’,r) by

Fii(Q,Q,1)=F;;(Q,Q',1)¢;(r)

we might say that reciprocity in a strict sense exists
provided there is a nonsingular matrix Q(Q) such that

Q(Q)iﬁ(_ Q' — Q, r)Q—l(QI) = EF(Q,Q',I)’ (A4)
where &t denotes the transpose of &.
Under these conditions,
V=, (AS)

and the identities implied in Eq. (A3) will relate
various solutions of the same equation. (A particular
example of this is the reciprocity relation proved by
Chandrasekhar®® for the case of Rayleigh scattering of

partially polarized light.)

13 Reference 1, Chap. VII, Sec. 52.



