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I. INTRODUCTION

''N both the theories of radiative equilibrium and
~ ~ neutron di8usion we encounter transfer equations
of the form

Q VP(r, Q)+o;(r)P;(r, Q)

F;;(Q,Q', r)a.,(r)il;(r, Q')dQ'+q;(r, Q). (1)

Since the most direct application of the spcci6c
lcsults to bc obtaI1Md will bc to 1Mutxon diffusion wc
will use the terminology of that subject. Here P;(r,Q)
is the angular Aux of neutrons of energy i at r moving
111 dlrectlon Q. o';(I') ls 'tile 'total cl'088 scctloll fol'

neutrons of energy i and Ii;; is the probability that if a
neutron with, energy j, direction Q suGers a collision
at r a neutron of energy i, direction Q, will appear at r.
q;(r, Q) describes any external neutron source.

While (1) 18 without slIIlpllfylllg assllInptloI18 ex-
ceedingly complex, a few genexal statements can be
made. Thcsc concern thc Icclpl'oclty pl lllclplc Rnd
questions of uniqueness. The first of these is most
important. Besides enabling us to compare di6erent
experimental situations and simplifying much of the
mathematics it shows, as will be seen, how apparently
dificult problems can be solved by relating them to
slInplcx' ones.

Unfortunately, even the most elegant proofs' have
been rather complex. Indeed, there are a number of
thcorems all of which go by this same name. In the
following it will be shown that all these theorems are
consequences of a simple identity. The method of proof
has a number of advantages. First, the origin of the
thcorems and their generalizations in more complex
situations are directly apparent. Second, the equations
used so powerfully by Chandrasekhar' to determine the
angular densities are obtained at exactly the same step.
In a certain sense Chandrasekhar's argument is turned
around. Instead of obtaining equations for the rcacction
Rnd transmission functions and then dcrlvtng a rccl-
procity principle wc start from R slightly generalized
principle. Prom this the equations and the specific
lcclproclty lcsult foHow. This pcx'DQts onc to scc exactly
what the simpli6cations resulting from the "Principle
of Invariance" ' are and makes possible a simple proof
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of this latter principle. A last advantage is that we cs'n

in this way obtain the fundamental equations for
rcQcction Rnd tx'RQsIQlsslon fuQctloQs cvcn when rccl-
procity in a strict sense does not hold.

Uniqueness theorems are particularly useful in con-
nection with equations like Eq. (1).They not only show
what must be speci6cd to achieve a unique solution but
also suggest certain notations which materially simplify
the obtaining of the solution. Such R theorem is proved
in Scc. II for a simple situation. The result is essential
for the later arguments. Fortunately the proof is quite
similax to the proof of the reciprocity identity in its
general form which follows in Sec. III. In that section
we obtain as special cases various results which have
been called "Reciprocity Principles. "

In Secs. IV and V we turn to plane problems and.
derive Chandrasekhar's' equations for the reQection
function for a half-space. In Sec. VI these equations are
used to obtain the Green's function for one velocity
neutron diffusion in the same geometry. A specihc
x'cclpI'oclty result of Scc.III ls used ln Scc.VII to obtRlQ
the Green's function for two adjacent half-spaces.

In Sec. VIII Chandrasekhar's equations for a slab
are obtained as another specialization of the general
reciprocity identity together with certain invariance
considerations.

H. A UNlQUENESS THEOREM

For simplicity in deriving the general results and in
order to be able to carry through the detailed calcu-
latloQs fol spccl6c solutlolls wc x'cstl'lct oulsclvcs ln thc
body of this article to the following equation which is
appropriate for one velocity neutron di8usion:

Q ViP(r, Q)+o (r)f(r, Q)

= ( ) ( ) f(Q,Q')0(,Q')dQ'+q(, Q) (2)

Herc c(r) 18 'tile nlllllber of llcll'tlolls cnll'ttcd at r pcl'
neutron collision at r. It is chosen so that

f(Q,Q')dQ =1.

"f(Q,Q')dQ'= 1,
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f(Q, Q') &0 all Q, Q'.

(These conditions are satis6ed for all interesting physical
situations. )

Theorem. —If e(r)(1 throughout a region V, the
angular density is uniquely determined by the incident
angular distribution on the bounding surface 8 and the
sources within V.

Proof. Let Q—I, f2 be two solutions of (2) with the
same incident angular distribution. The diGerence
f=fi—$2 satisfies the equations,

Q VP+o(r)iP=e(r)o(r) f(Q, Q')P(r, Q')dQ' (5)

f(r„Q)=0, for no Q&0. (6)

Here r, is an arbitrary point on 5 where the outward
normal is no,

If (5) is multiplied by $(r,Q) and then integrated
over V and A we 6nd on using Gauss' theorem that

B(r,Q) j'
J&—— no A dadS,

2

the equality of (7) only if

P(r, Q) =—0 in V.

Two remarks should be made:

(a) The assumptions of the theorem are probably
stronger than absolutely necessary. However, they are
satisfactory for the applications of interest here.

(b) In case the region V extends to infinity (such as
the exterior of a sphere or a half-space) the uniqueness
is to be understood as applied to functions vanishing
sufFiciently rapidly. (Physically this means there are
to be no sources at in6nity. )

As a direct application of this theorem we note that
to obtain the most general solution of (2) we need
determine only two functions for a given region. These
are P„(r,Q; r~, Q0) and f, (r,Q; r.,Q,). Here P, satisfies
Eq. (2) with q(r, Q)=h(r —ro)82(Q Qo) and describes
zero incoming fiux. (8(r) is the Dirac delta function:
82(Q Qo)=0, Q. QON1 and J'82(Q Q(&)dQ=1.)
satisfies the homogeneous form of (2) with the con-
dition

y.(r,Q; r„Q.) ~,,&=&,(r-r, )S,(Q Q,) .(15).

Here 8, is the delta function on the surface 5 and Q, is
a direction such that no. Q, ~, „(0.

The solution of (2) with arbitrary source q(r, Q) and
arbitrary incident flux f;„,(r„Q,) is clearly

I2 ~ dro (r), dQdQ'P(r, Q)f(Q,Q')f(r, Q')
J~

~ dra{r) i dQP(r Q). (9)
J~ J

Remembering (6) we see that

Since f(Q,Q) is positive definite /from (4)], we

know that

P(r, Q) = dS dQ,P, (r,Q; r„Q,)P;,(r„Q,)
~no Q, (0

+ ' dro dQolgy(r, Q
~ ro, Qo)g(ro, QO). {16)

Proof that this is the solution is obtained merely by
noting that (a) the equation is satis6ed; (b) the bound-

ary conditions are satis6ed; (c) the solution is unique.
In a sense to be shown below only P, is necessary

(f„will be obtained from f,).
It is we hope clear how uniqueness can be proved

slnlllal'ly for tile Illol'e geIlel'al sltua'tloll eilvlsaged II1 (1).

dQdQ f(Q,Q')y(r, Q)-y(r, Q')]'&0. (11)

This together with the conditions of (3a) and (3b) gives

III. FUNDAMENTAL IDENTITY

Let fi(r, Q) be the solution of

dQdQ'y(r, Q) f(Q, Q')P(r, Q') & de(r, Q). (12) =e(r)o(r), t f(Q,Q')P, (r,Q')dQ'+q, (r,Q) (17)

tI2( dra(r)t e(r) —1], dQP(r, Q) &0.
~J

(13)

The inequalities of (10) and (13) are compatible with

within a region V subject to pi{r,Q) =p, ;~,{r,Q) (for
no. Q&0) on the bounding surface S. Here f;„, is a
given function. Simil'arly we consider a solution P2 cor-
responding to a source q2 and a given incident Qux

$2;„.In addition to fq we consider a function+2(r, Q)
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which is the solution of

Q 7'$2(r, Q)+o(r)$2

=c(r)o(r) tf( O'—, —Q) t|2(r,Q')dQ'+q 2(r, Q), (18a)

subject to

y, (x,Q) =g„„.(x,Q) =—P„.,(r,Q)

(for no Q&0 on S).

Multiply (17) by $2(r, —Q) and (18b) by f&(r,Q).
Subtract the second from the erst and integrate over
V and Q. Applying Gauss' theorem we obtain

I dS~ dQno QP2(r, —Q)iP&(r, Q)
J$

drc(r)o (r), dQdQ'{$2(r, —Q)f(Q,Q')

Xfi(r,Q') —Pi(r, Q)f(Q', Q)$2(r, —Q'))

+ "dr "dQ{yg(r, Q)qi(—r, Q)J, J
—Pi(x, Q)q2(r, —Q)). (19)

Interchanging the names of the integration variables
Q and Q' shows that the first term on the right in Kq.
(19) vanishes identically. Since fi(r, Q) and $2(r, Q)
are prescribed on 5 for no'Q (0, it is useful to rewrite
Eq. (19) as

"dS )" dQ)n Q){P;„,(r,Q)y (r, —Q)
JS 'i no Q (0

—Pi;„,(r,Q)$2(r, —Q))

~ dx ~ dQ{g~(x, Q)qi(r, Q—)J„J
P, (r, Q)q—,(r, —Q)}. (20)

From this identity the results which have been called
reciprocity principles follow as special cases. We give
three examples here. In all these we suppose f(Q, Q')
=f(—O', —Q), i.e., the scattering function has time
reQection symmetry. From the uniqueness theorem we
conclude that i/2 =$2. —

(The is associated with the indicated transposition
operation on the scattering function f )Let. us sub-
stitute —Q for Q in (18a). This becomes

—Q VP, (r, —11)+o(r)P,(r, —Q)

=c(r)o (r) "f(Q',Q)$2(x, —Q')dQ'+q2(r, —Q). (18b)

(a) Let Pi correspond to a directional point source in
direction Qi at ri. (qi(r, Q)=82(Q Q&)8(r—ri), f»~,
=0.) We denote this solution by f„(r,Q; ri, Qi)
Similarly let $2(r, Q) =go(r, Q; rm, Q2). Inserting in Eq.
(20) gives

fo(ri, —Qi', r2, Q2) =f~(r2, —Q2', ri, Qi). (21)

Thus the angular density at r», direction —Q», resulting
from a unit point source in direction Q2 at r2, is equal
to the angular density at r2, in direction —Q2, due to
a unit point source in direction Q» at r». From this
many additional results follow. For example, on inte-
grating the two sides of (21) over Qi and Q2 we 6nd
the theorem: The density at r& due to a unit isotropic
source at r2 is equal to the density at r2 due to a unit
isotropic source at r». Similarly on multiplying Eq.
(21) by w Q (w an arbitrary unit vector) and then
integrating over Q» and Q2 we see that the component
of the client in direction w at r» due to an isotropic
source at r2 is equal to the density at r2 due to the
directional source w Q at r».

(b) Let Pi f, (r,Q; —r—i„Qi,), (i.e., qi ——0,
=8,(ri ri,)—82(Q Qi)), and let P2

——P, (r,Q; r~„Q2).
(Note that no Qi

~
ri, &0 and no Q~~ r2, &0 is implied. )

From Eq. (20) we find

~n& Q, ~f, (rn„—Q„r„,Q,)
= I» Qily(». —Qi; r2., Q2) (22)

This says that the emergeet angular distribution in direc-
tion —Q2 at r2, due to an incident beam at r», in direc-
tion Q» times the absolute value of the cosine of the
angle between Q2 and the normal to S at r2, is equal
to the emergent distribution at r», in direction —Q»
due to an incident beam at r2, in direction Q2 times the
absolute value of the cosine of the angle between Q»
and the normal at r», .

(c) Let iji=iPo(r, Q; ri, Qi), iPg=iP, (r,Q; r», Q,). Sub-
stituting in Eq. (20) we find

p (r2„—Q2, ri, Qi) = f, (ri, —Qi, r2„Q2). (23)
in2 Q2i

Thus, the emergent angular distribution in direction
—Q2 at r2, due to a point source of direction Q» at r»
is the product of the reciprocal of the absolute value
of the cosine of the angle between the normal at r2,
and Q2 and the angular density at r», direction —Q»
due to an incident beam in direction Q2 at r2, . Hence,
if we are primarily interested in emerging angular dis-
tributions only the function g, is necessary.

A particular consequence of Eq. (23) that will be
used below is obtained by integrating both sides over
all Q&. This yields: the emergent angular distribution
at r2„direction —Q2 is 1/(4s. ~n2 Q2~) times the

~ By "density" and "current" we mean J'P(r, Q)dQ and
J'Qp(r, Q)dQ, respectively.



density at ri due to an incident beam in direction as a and f& (u)b) we find
at r~, .

IV. PROBLEMS WITH PLANE SYMMETRY

In these problems Eq. (2) simplifies (on introducing
the optical thickness') to

dap{p &»(s,a)y, &»(s,a)

—0+"&(s a)4-"&(s,a)j.'
&&f(s,Q)

+4'(s,a) ds~ da{p (s,a)q, ' (s,a)

=~(s) f(a,a')P( sa')da'+q( sa), (24)

where p, is the cosine of the angle between 0 and the
positive s direction. The equation for P is the same with

f(Q,Q') replaced by f( a', ——a).
We can, of course, appropriately specialize Eq. (20)

for this symmetry. It is, however, convenient to rede-
rive the result. Since incident and emergent directions
will be characterized by p, &0 or @&0it is suggested by
the uniqueness theorem to make the decomposition
(used by Chandrasekhar') of &&t into f~ defined by

Similarly we decompose our sources into q+(s, a). For
a given source qi Eq. (24) becomes the two equations

&&&~&'& (s,a)
~p +/~&i&

+p+&»(s, a)q &»(s,a)—p &»(s, a)q+&»(s, a)
—4+"&(,a)q-"'(,a)} (2g)

Specializing to various sources and incident angular
distributions the analogs of the theorems in Sec. III
are obtained. It will be seen, though, that even more
information is contained in these equations.

V. HALF-SPACE PROBLEMS—BASIC EQUATIONS

The fundamental problem of this type is: find func-
tions (f+(s,a; z, Q )) which satisfy Eqs. (26a, b) (with
qua=0) for s) z such that f+(z,a; z, at) =i&2(a at).

A convenient reformulation of this problem is the
following: Find functions satisfying Kqs. (26a, b)
everywhere which agree with the above $~(s,a; z,at)
for s&g and which vanish for 2(Z. Clearly this can
only be achieved by having plane sources at s= z. To
see what these sources must be we can write our equa-
tions as

=c(s)~ {f(+a,a')p, &»(s,a')

+f(+a, —a')p "'(s,Q') }da'+q~&i'(s, a).

(Here all Q are restricted to p,)0.)
For the functions P+&'& corresponding to a different

source q&') we have

Bfg
(s,a; z,at)+p, =c(s) { }+l&,(a)S(s—z).

as

Integrating these equations from z—e to z+e (e is
infinitesimal) gives

&&«{Pg(z+e, Q; z, at) —P~(z—e, Q; z, et) j
=Xp(a). (29a, b)

-(s,a)+p~ &'&
Since

fg(z s, a;z, at)=—0

=c(s) {f(—a', ~a)p, &»(s,a') y, (z+ ~, a; z, at)=s, (a.at),

+f(a', +a)p &»(s,a') }da'+q~&'&(s, a). ~(a) =&s,(a at), (30a)

X (a)= —&y (z,a;z,at). (30b)Multiply Eq. (26a) by P &'&(s,Q), Eq. (26b) by
'(s,Q), Eq. (27a) by/ "&(s,Q), and Kq. (27b) by L t „pl Fq (2g) t p ( a. a)

p+&'&(s,a). Subtract the sum of the resulting second

two equations from the sum of the resulting 6rst two.
Integrating a over all angles with &&i)0 and s between q+"' (s,a)=&i&&2(a QL2)&&(s—si, 2),

' For example, see Case, deHoRmann, and Placzek, Introductiorl
to the Theory of neutron Diffusion (U. S. Government Printing
Ofhce, Washington, D. C., 1953), Vol. I.

q
&"(s,Q)= —pp (si, a, ;si,ei)&&(s—si),

q &'&(s,a)= —pp (s2,Q;s2, ag)5(s —s2).

(31)
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If we remember that g~(z, a; zo, ao) =0 for z&zo and
require the functions to vanish as z—+~ we obtain

poP (zo, ao; zl, al)

=, da&P (z„a;z„a,)y, (z„a;z„a,). (32)

C

Suppose zo-+zl. Then p+(zo, a; zl, al)~So(a Ql) and
we 6nd the relation

@pj's(zl, ao, zl, al) =pl/ (zl, al, zl, ao). (33a)

If in particular the reversal symmetry holds

(f(a,a') =f(—Q', —Q)), we have if =P and Eq. (33a)
becomes

pop (Zl, ao,. sl, al)=pl/ (Zl, al,. sl, ao). (33b)

Up to this point there has been absolutely no use of
The Principle of Invariance. Equation (32) 18

generally valid. However, as Chandrasekhar' has so
fully shown, considerable further progress is possible if
we can call on this invariance. In the present context
this means Only the following theorem.

Theorem. —If c(z) is independent of s,

y~(z, a; Z, at) =y~(z —z, a; 0, at).

Proof.~+(z z, Q; 0, Q—t) satisfy exactly the same
equations and boundary conditions as P~(z, a; z,at).
The uniqueness theorem then tells us they are identical.

Berne 8 and 5 by

s(a,a') =~y (o,a; o,a'),
S(a,a') =~y (O,a; O, a'),

Rnd put zl= 0, so= z ln Eq. (32). We find

pf (z,a; O,a,)= da'S(a', Q)iP (z,a'; O,a ). (34a)

From Eq. (34a) complete knowledge of S and S can
be obtained. For example, if we put s=0 this becomes

S{a,a,)=S(a„a), (35a)

which can be used to rewrite Eq. (34a) as

[It is convenient that all "reversed" functions have
disappeared from the fundamental Eq. (34b) even
though no symmetry assumptions on the scattering law
have been made. j We note that Kq. (34b) is just
Chandrasekhar's starting point for treating half-space
problems.

Further information can be obtained from Eq. (34b)
by considering the limit boo. Since in this limit we
are far from the boundary z=0 it is to be expected that

P will tend towards an infinite medium solution of the
homogeneous Kq. (26a, b). Translational invariance
implies such a solution in as'exponential function of z
times a function of Q. The requirement f +0 —as z—+~
shows the argument of the exponential to be negative
(i.e., f~-+&~(a)s "' whe~e z&0 and P+(Q)e "*—is a
solution of the homogeneous transfer equation). Sub-
stituting in Eq. (34b) we find that

i i
j
—+—iS(a„a&)=c t da'da"f(a', —a")

~Ps Pl~

S(a„a')-
X 5o(—ao Q')+

I
p

S(a",Q,).
X S,(—a" a,)+ — . (36)

p

Here, for compactness in writing, we use the conven-
tions that integrals are over all directions and S(Q,Q')
is taken zero for p, or p'(0.

Thus, using only the reciprocity identity and the
translational invariance the nonlinear integral equation
[Eq. (36) and the condition on the solution Eq. (35b)j
are obtained. Chandrasekhar'has shown in many cases
that these uniquely determine 8.4 Given 5 the deter-
mination of f~(z,a; O,al) is well known and straight-
forward. Examples are given below.

For further applications of the reciprocity relations
it is useful to specialize f. Let us assume, as is true in
many cases of interest, that

f(a' Q")=@l(~')c'o(~")/4~

where Cl, Co are even functions. (The physical origin
of this even requirement will be seen later. ) Then Eq.
(36) becomes

tt'i I ) c
i
—+—IS(ao,al) =—&(uo) g(I l),I,) 4

(37)

4 A general proof is possible. Since it introduces many concepts
foreign to the present discussion and is applicable to a wider class
of equations it will be presented elsewhere.

~ (a)=,~da'S(a, a')y, (a'). (35b)

t

The remaining inforination needed can be obtained
by following Chandrasekhar's procedure and diGeren-
tiating Eq. (34b) with respect to z. The transfer equa-
tions [Eq. (26a, b)j can then be used to eliminate
BP+/Bz. Taking the limit z~0 and remembering that

lim i/+(z, Q; O, al) =So(a.Ql),

lim f (z,a; O,al) =S(a,al)/p,
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where

and

I
S(Q„Q')

&(~o)=C'~(uo)+) 4'~(~')nfl' (38a)

The remark at the end of Sec. III states that

1
P~(O, Q; so) = p(so,' O,p),

4m@
(45)

t. s(Q",Q,)
g (»)=4,(»)+) C g (y")dQ". (38b)

&' c'i(1')B(~')d~'
+(Po) =C'i(PO)+ —Po ~(po)

2 ~30 Po+P
(39a)

Substituting for 5 from Eq. (37) gives the coupled
integral equations

where p(so, O,p) =1'dQ'P(so, Q'; O, Q) is the density at
zo due to an incident beam in direction Q on the plane
z=0. p is obtained in the following well-known way.
Formal integration of Eqs. (26a, b) yields

p Z

4+(s Q) =s *'" 4+(O,Q)+- ' s""Q+(s',Q)«',+ t ) J +

(46a)
and

c t' e2(y") x(p")dp"
B(~~)=C"(~i)+ ~iB(~i) '

»+~"
(39b)

where

P (s)Q)=e' — e *'"Q (s' Q)ds', (46b)
p~,

These are readily reducible to a single integral equa-
tion. Let 3'.(p) =C (p)H(p), g(p) =C ( )H(p). The
coupled equations are then equivalent to

where

t' +(p )H(p )@
H(p) =1+ IJH(IJ) '—

~ 0 P+P'
(40)

+ f(~Q, —Q')P (s,Q')}dQ'+q, (s,Q). (47)

In the present instance of isotropic scattering, con-

stant c, and isotropic sources go(s)/4s. this says

+(~') =c'i(~')c'~(~') (41)

The equation for H is thus just in the standard form

discussed in detail by Chandrasekhar. '
For S we have or

c qo(s')
tA (0,~) = s-"'" —~(")+ «', (48)

4s 4s.

C POP
5'(Qo, Qi) =— 4'~( o)C'2(»)H(po)H(»), (42a)

4s. go+pi
while

C Ppgy
S(Qo,Qi) =— %(~0)c'i(~i)H(uo)H(») (42b)

4s No+pi

VI. HALF-SPACE GREEN'S FUNCTION

1 C go~ (0,1/P) = Laplace transform of —p+—. (49)
4x 4x

Applying the Fourier-Mellin inversion theorem gives

C p&+'" 1—p(so,' O,p) = ~ P(0,1/p; O,p)—e"'Odp. (50)
4s. 2vri &s—; p

For simplicity we restrict ourselves in the following

example to isotropic scattering (i.e., C ~
——C 2= 1).

Clearly' the discussion can be restricted to isotropic
sources. The problem is then to find the solution

(11',~(s,Q; sp)) of

In Sec. V it was found that

1 c H(IJ,)H(1/p)
(0,1/p; Op) =-

p 4s. P+ 1/p
where

(51)

+p — (s,Q; sp)+P„g
Bz Therefore,

c t' H(y')dp'
H(N) = 1+—pH(p, )

"o P+P
(52)

subject to

and

lim f~(s,Q; so) =0,

lim f~+(s,Q; so) =0.
Z~OO

5 For example, see reference 3, p. 122.

C
I dQ (P (,Q )+P (s,Q')}dQ'+8( —o)/4,

kr ~
(43)

H(~) I'+'" H(1/P)&""
p(so, O,p) = dp.

2% $4 s i oo P+1/p— (53)

The work of Chandrasekhar' and others' enables us to
regard H(p) (0 &p & 1) as a known function. ("Known"

here means in the sense of numerical tables. While it is

true that analytical formulas are available these are so

complicated as to be virtually useless. ) The main

problem is to express the contour integral in terms of
"known" functions. This can be done with the aid of
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the condition given by Eq. (35) which has so far been
ignored. The infinite medium form of the homogeneous
equations (26a, b) for isotropic scattering and constant e
have the unique solution which vanishes for s—+

p~(s, Q) = (constant)L1/(1w»/i) je "*,

where ~ is the positive root of the equation

1—c(tanh '«)/»= 0.

This is a "known" function with thoroughly inves-
tigated properties. ' (The normalization' chosen here is
such that/o (0)=1.)

Comparing Eqs. (53) and (59) it is apparent that

» /(so;0, /)+-
l =~-(«),

kd« /i) H(/i)

where we define q„(«) by

Hence in Eq. (35b) we have

yg{Q)= 1/(1+K/i). {54)

(d
y («)=l -»

I/ (so).
(d«

Substituting the expression for S in terms of the H
function we find from Eq. (35b) that

An elementary integration then gives

p(s 0/i) =H(/i) e *o'&+ e-" ")'"i) (s')ds' (61)/«'H(/i') d/i' 2 1 1

(/«+/i') (1 »/i') c—H(/i) (1+»/i)
(55)

The emergent angular distribution for a unit iso-
tropic plane source at zo is given by Eq. (45) in con-
junction with Eq. 61).

The density /o(s;so) resulting from an isotropic plane
source is obtained by inverting the Laplace transform
of Eq. (49). Thus

However, on decomposing into partial fractions we have
the identity

p j, p +-
I I I

(56)

e"*H(1/P)

X e n o+)I e n( ~~ )r/ (s )ds dp (62)
0/i'H(/i') d/i' 2 1 [ 1 1

. (57)
(/i+/«') (1—K/«') e 1+»/i H(p) H( —1/«) The contour integral is readily evaluated since it is

seen from Eq. (59) that
Comparing Eqs. (57) and (55) we see that H{p) has a
pole at p= —1/».

The integral in Eq. (53) can now be evaluated in the
limit of large so. Deforming the contour to the left we

scc that thc domn1ant term ln Rn asymptotic expansion
of p(«', 0,/i) is given by the singularity of H(1/p)
furthest to the right in the complex plane. This is just
the pole at p= —». Hence

S(s)=0, s&0
s&0.

(/i+P, ) (1»/i ) 1+»/i /i+/i K (1/») /i
P+soo

On substituting this into Eq. (55) we obtain integrals e/o(s~ «)+b(» so) =
readily evaluated on recalling the integral equation
[Eq. (52)] satisfied by H(/i). The result is

pH{//)
p(so, 0,/i) —+ (constant)e "'o

Z0-soo j. Q4

The reciprocity relation (Eq. 45) says then that the
emergent. angular distribution from a half-space with a
plane source far from the boundary is proportional to
H(/i)/(1 —»p). Alternatively, H(/i)/(1 —

K/i) is the
emergent angular distribution for the Milne problem
(i.e., the problem of finding a solution of the homo-
geneous transfer equation for the half-space which is

e"' for large s). Thus

Using this result in Eq. (62) it follows that

e/ (s; «) =n-(I s—sol)

/
(s+*o)/' ( ls—sol $

+) )t„l s'+-
I»—zol/& 2

Xi) l
s' — lds'. (64)'

A more convenient form of this equation is one in
which the corrections to the ininite radium plane

1
I
e+'" H(1/p)e&*

/ (s)= . dP.
21l Z]~ e—ioo p —K

(59}

6The solution of the Milne problem given in reference 3 is
LK/(& —~)']/-(K)

7 A result equivalent to this has been obtained by B. Davison
and G. Placzek, Canadian Report MT-118.
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(,
X&„/ "- /d". (65)

2

Therefore, on making a simplifying change of variable
in the additional term in Eq. (64) we have

pQO

p(s;so)=p (s—so) —— '

g (z+s)g (z+so)dz.
C~o

(6o)

If desired the angular distributions can be obtained
using Eqs. (66) and (46a, b).

source solution due to the boundary @=0 are given
explicitly. This can be obtained as follows: Let s,
so~ oo while

~
s—so ) is kept finite. The result must

certainly be the infinite medium plane source solution'
p„(s—so) i.e.,

cp. (s-so) =~-(ls-sol)

(+
/z zof/2 E 2 )

The 6rst step is then to solve the equations

S,(a a,) (69a)
~pal+"'(0, &)—4+"'(0,&)]=

0. (69b)

From the discussion in Sec. V we also know that

~p—P+(s,Q; O,Q~)+f+
Bs

c(s)
i (P~(s,Q')+P (s,Q'))dQ' (68a, b)

S(s)S,(~ ~,)
0,

where

c(z) =c~, s)0
= c2, s(0.

Denote the solutions for z)0 and s&0 by super-
scripts ' and ', respectively. Integrating Eqs. (68a, b)
from slightly less than to slightly greater than zero gives

(0,Qg, so) =p (so,.O,Q g)/4s. .

Our program will be the following

(67)

(1) We will find the emergent distribution from region

1 due to the directional source at @=0.
(2) From this emergent distribution the density at so

due to the directional source will be obtained.

(3) Using (67) the emergent distribution from "1"
due to the isotropic plane source is then known. From
this we can determine:

VII. GREEN'S FUNCTION FOR ADJACENT
HALF-SPACES

Generalizing the problem considered in the previous
section we will here construct the Green's function for
adjacent half-spaces. For simplicity we again restrict
ourselves to isotropic scattering. The media for s)0
(region 1) and s(0 (region 2) are to be characterized

by constants ci and c2, respectively. The unit isotropic
source will be at so where 20) 0.

It is useful to start with the simpler problem of a
unit directional plane source at a=0 emitting in direc-

tion Q~ into region 1 (p&) 0). The first example of a
reciprocity relation discussed in Sec. III relates the
density at so due to this source to the emergent angular
distribution at 2 =0 due to the unit isotropic source at so.

Specifically

and

S&'& (a,e')
P "&(O,Q)=) dQ' P &'&(O,D'), (70a)

S~'&(a a')
4' "'(0~&)= I d&' P "'(O,Q')) (70b)

c& H&(p)H)(p&)
P &'&(O,Q)=-

4ol p+p&

cg &' y, 'Hq(p')
+ Hi(p) P —&'& (O, O')dp',

"o p+p

co f' y, 'Ho (p')
g "&(O,Q)=—H (p) ' f &'&(O, Q')d '.

p+p'

(71)

Fortunately, these equations are readily solved. The
identity

where S('), S(" are the S functions corresponding to
cy and c2.

Eliminating P+"& and P "& from Eqs. (70a, b) by
means of the relations of Eqs. (69a, b) we obtain the
integral equations

(p+p')(p'+o) p —~ p+p' p'+o(a) The density for s)0.
(b) The emergent distribution from "2."

p'H(p')dl' 2 1
[

1 1

"o (p+p')(p'+&) c p &~H(&) H(p)—(72)
This is discussed in. detail in reference 3.

together with the integral equation satisfied by an H
(4) From the emergent distribution from "2" the function gives

density for s(0 due to the isotropic source will be
found.
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This suggests that

0-"'(OQ)={"+PH ()/H ()}/(+")
7(73

lpga (OzQ) {G2+p2H2 ()2)/Hl(12) }/()1»)y

H functions. Thus we obtain

—clc2 1 ciH1(»)H1(y)
t(1)= 1—-- (77a)

42l (Cl C2) (P+)(il) C2H2()il)H2(li) I

where (21, (22, pl, p2 are constants to be determined. '
Substituting Eq. (73) into Eq. (71) gives )P+(2) =

—clc2 1 Hl(pl)H2(p)
— —1+ . (77b)

4%(cl C2) (I —») H2(»)Hl()i)
{(21+PlH1(Il)/H2 (P) }/(I+Pl)

Hi(p) cl (22 P2cl/C2
Hi()il)+ +

(~+~1) -4 Hl( —») H2( —~1)-

p2H1 (It()Cl/C2

Inverting Eq. (49) shows the neutron density at
sp&0 due to the directional source at s=0 is given by

cl 1 ('e+'")p ' (0,1/p' 0 Q )—p(so, O, ai) = ' e&"dP, (78)
4

' ' 2i~e-;- p

() +») (~+~1)H2( )
(74)

or
p(20, O, al) =Ji+J2,{ +pH ())/H ())}/(I ))—

H2()i) nl P1C2/Cl
+

()(1 )(il) -H2 ()21) Hl ()il)-

where

and

(79)
1 Izt)+i~ e~z dP C2 e zolK1—

cl c2 22r2 e izo 1+pal c—l c2 pl

(21 plH2 ()2)C2/Cl

()
—») () —) 1)H)( )

cl Hi(») 1
t
e+'" Hl(1/p) e""dp

J2= (80)
Cl C2 H2(pi) 2)r2 ~e zzo H—,(1/p)(1+pp, )

These equations are compatible if

and

Ql (22) Pl P2cl/C2)

cy (22 P2Cl/C2—Hi()il)+ +
42r Hl( —)il) II,(—)1,)

Ql PlC2/Cl
+ =0.

H2 ()il) Hl ()il)

C2

~1=——{}
4n-

C2

o2=—{ },
4m

Solving for the constants we obtain

Cl Hl()il) C2 Hl()il) {},
4)r H, ()il) 42r H2(p))

As in Sec. VI, J2 can be related to "known" functions.
~hen so-ooo) the principal contribution in Eq. (78)
comes from the pole of Hl(1/p) at p= —Kl.

Hence
L1—cl (tanh —'K,)/K, =0.]

e "~*o H ()2)
p(s0 0 Ql) o (constant) —. (81)

1 Kl)il H2(»)

Thus, by Eq. (67), Hl ()il)/H2 ()((i) (1—K)pl) is the
emergent distribution from region "1"resulting from a
source located far from the boundary. In other words,
this is the emergent distribution for the generalized
Milne problem —the problem of 6nding the solution of
the homogeneous form of Eq. (68) subject to the con-
dition of behaving as e"1' for s~~. Let us call the
density for s) 0 corresponding to this problem )0 "'(s).
The inverse of the Laplace transformation gives

where

c/c
{ }= (75)

-H2 ()il)H2 ( )11) H1()i1)Hi( )11)-

1 te+'" Hl(1/p)e'*dp
p (1) (2) =

2vri ~e—'~ (p —Kl)H2(1/p)
(82)

1 ( e+'"Hl(1/p)

22I 2 z)e—iw p Kl

(76)=1—c(tanh 's)/r, ,
H(s)H( —2)

whi:ch follows directly from the integral equation for the
Thus, on using the integral equation for H2 in the form

The expression of Eq. (75) simplifies on using the
This can be expressed in terms of the known functions
H2 p and p 0& s . Here p &'& s is de6ned as in Eq.identity"

1 (59) b

9 This form is also suggested by the solution obtained for a
similar set of equations by S. Chandrasekhar, Can. J. Research
A29, 14 (1951)."See reference 1, p. 116.

1 c2 (' H2(g')d)i'
-=1——

H2(1/p) 2 ~0 1+py'
(83)
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it is found that

C2

/-") (z) =/ -")(z)— /
-")(s')dz'

2 ~o

due to the plane source at zo in region "1"is

I. $&2)(Q Q')
&p~(O, Q; zo) =

~I (p„(O,Q'; so)dQ'. (89)
p

,&2(/ ')d/ '

e
—(z—z') /p' (84)

p

In terms of 2/ "'(s) —= (d/dz —
Kl)/& &"(s) we can write

Eq. (80) as

Expressing S(" in terms of H2, using the integral equa-
tion for B2 and remembering that zo&0 we And

—c2 H2(/2) 1
p~(o, a; «) =

42r(c, —c2) Pl(/2) 2mi.

Cl E1(/ll) 1
J2-

Cl C2 H2(/21) /21

pZO

X . e
—zp/le+ e

—(zp z) /lo—
&&

(l) (z )ds (85)zz

Using Eq. (67) the emergent angular distribution from

region "1"due to a unit isotropic plane source at zo&0

1s

C2 ~ ZP/I I

4-(O&l zo)=
4&r (cl c2) /Ml

Hence

~ZO/P,

e "/o& (I) (s—~)dzz

P, ~ZO

e"'& H (/2)
e *'o&& &"(z')ds'

K(/) "o

X I dp. (90a)
1—/lp II2(1/p)

With the aid of Eq. (82) it is seen that

1
I

e+*'" e *o EIl(1/p)

22ri /p —'~ 1—/lp Z2(1/p)

cl El(/ll) 1 —C2 1 l

(86) $~(0,~; zp) = '
I, ez«o

4&l (Cl C2) Z2(/21) /ll

&2(/)

where ( ) is the same as in Eq. (85).
The inversion theorem gives for the density at z&0

pZQ

X e" z""&/ "'(s')dz' . (90b)

/(z «)=
c1 c2

2& (')([s—zo()

I
(z+zo)/2

Cl C2 I*—zo I /2

/j)(s; so) =
—1 1

I

e+'"

c~—c22xz ~p—;~

pzo

PZ gPZp
H2(1/p)

Hl(1/p)

"o
e"&" ")2& &" (2')ds' (z(0 sp) 0). (91)

The Fourier-Mellin inversion theorem then gives

Xg„(')
i

s' — ids'. (87)
) Changing the order of integration yields

Again considerations of s, so~~, ~z—sp) finite,

identiies the terms which describe a plane source in an

infinite medium of properties "1"(p„&» (z—so)) and the

correction terms due to the boundary. The result is

p(z; zo) =
pZO

&I
&'&(s')dz'

Cl C2 zj p 2%2

If (1/p)
el& (zo—z'—z) dP (92)

"e-'w H, (1/p)
1

p(z zo) =/-")(z —zo) — ~-")("+«)
Cl C2 0

However, it is readily shown that

1 t'e+'"H2(1/p) t'd
X„- (»("+.)d". (z. sp&0). (88) e-"'dp=~-")(s)=—

l

—Kl I/-"'(z),
22ri &e—; Ill(1/P) Edz i

(93)
LIt is immediately apparent that Eq. (88) reduces to

Eq. (66) when c2~0 and to p„(')(s—sp) when cp~cl.] where p &'&(s) is the density in region "2" in the

The emergent angular distribution from region "2" generalized Milne problem. Expressed in terms of g &'&
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Eq. (92) is it is possible to rewrite Eq. (96a) in the form

r (z;z2)= ( (z+zo) /2

Cy
—C2 ~(z—zp)/2

z —zo)

2 ) p+ (z,Q; O,Q,) =~ dQ'S(Q', Q)e+(z, Q'; O,Q,)

z —zp)
Xg "ii z'+ ids',

2
Q,Q)4 —( —,Q;0, Q ) (96b

where z&0, z2)0. [Explicit formulas for p "', anal-
ogous to Eq. (84) for p„&", in terms of H1(p) and the
solution of the standard Milne problem for a medium
of properties "2" (p "&) are readily obtained. ]

y;„,(z,Q) =y+(z, Q) =62(Q Qt),

f;„,(x+2, 0) =f(z+r, Q—)=0. (94)

Leaving the r dependence implicit, we denote the solu-
tion by +~(z,Q, z,Qt). As before we consider a solution
which coincides with 4 for z&z&z+r and vanishes
outside this region. Clearly it is necessary to introduce
the sources

q, (z,Q) =~&,(Q Qt)S(z —z)
—q%+(z+~, Q; z, Qt)b(z —(z+r)), (95)

q (z,Q)= —~e (z,Q; z, Qt)S(s —z).

Applying the identity of Eq. (28) to 4~(s,Q; z1,Q1) and
4~(z, Q; z2, Q2) where z1+2.)z2) z1 results in

p2%' (z2)Q2) z1,Q1)

dQP+ (z2 Q z2 Q2)+-+(z2 Q sl Q1)

VIII. EQUATIONS FOR A PLANE SLAB

Finally it will be shown that Chandrasekhar's equa-
tions" which determine the reQection and transmission
of a finite slab follow directly from the identity of Kq.
(28).

The problem is to determine the solution of the
homogeneous form of Eq. (26) in a region z &z &z+ r
subject to the boundary conditions

Putting 2=0 and remembering the boundary condition
of Eq. (94) one 6nds

S(Q,Q,)=S(Q„Q). (96d)

Therefore, if f(Q, Q') has the time reflection symmetry
S is symmetrical. In any event it is permissible to
rewrite Eq. (96b) as

~e (s,Q; O, Q,) = dQ'S(Q, Q')e, (s,Q', O, Q,)

—
~

dQ'T(Q', Q)4 (.—z, Q';O, Q). (96c)

(&
~

—P—~S(Q,,Q,)=c ~ dQ'dQ"{ },
(po

S(Q„Q')-
{ )=f(Q', —Q") s, (—Q, Q')+

p

S(Q",Q,)-
X &2(-Q" Q1)+

T(Q', Q,) T(Q",Q,)—f(—Q', Q") . (97)
P

DiGerentiate this equation with respect to s. Use the
transfer equations to eliminate derivatives and put z= 0.
Remembering the boundary conditions and the de6-
nitions of S and T one obtains

dQj2%'+(z1+2, Q; z1,Q1)

X4 (z1+2., Q; z2, Q2). (96a)

Assuming c independent of s we know from the
"Principle of Invariance" that

e(z, Q; z,Qt)=e(z —z, Q;0, Qt).

s(Q, Q')=~0 (0,Q; 0,Q'), s(Q,Q')=~4 (o,Q; O, Q'),

T(1Q,Q') =@% (2.,Q; O, Q'), T(Q, Q') =PC' (2.,Q; O, Q'),

"See reference 1, Chap. VII.

t The same convention is used as in Eq. (36).]
The remaining conditions to determine S and T are

obtained by comparing a solution with a beam incident
on the slab from the left to one in which the incidence
is from the right. Let C(z, Q; z,Qt) be the solution of
the homogeneous Eq. (27) for z&z&z+2. subject to
the boundary conditions

4 (2+z, Q; z, Qt) =82(Q Q&),

C,(z,Q; z,Qt) =0.

Again consider a solution of Eq. (27) everywhere which
vanishes except for z&z&z+2. where it coincides with
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C. The sources that must be introduced are and T

q+(s, Q) = —llIC+(8+I-, Q; z, Qt)b(» —(s+o-)),

q (s,Q)=@ho(Q Qt)8(» —(z+r))
—~C (s,Q; S,Qt)S(» —Z). (98)

Let fp"'=%'p(s, Q; sI,QI) and /~I'& = C~(s, Q; sp, Qo) in
the identity of Eq. (28) (where sI(so&sI+o.). The
result is

dQp++(SI, Q; SI,QI)C (Sp,Q; So,Qo)

=„dQpC (sI+r, Q; so, Qp)%'p(sI+o. , Q; sI, QI). (99)

Suppose 4~(s,Q) give a solution of Kqs. (27) with
constant c. Clearly 4'~(s, Q) =4~(—s, 0) is a solution
of the equations obtained from Eq. (27) by replacing
f(Q,Q') by f(—Q, —Q'). Let us assNIIIs f(Q,Q')
=f(—Q, —Q'). (This corresponds to invariance under
spatial reQections. It is satisded for all important appli. -
cations. Io) From the uniqueness theorem it follows that
for constant c

C, (s,Q; s,Qt) =4,(S+r—s, Q; 0, Qt). (100)

Inserting this in Eq. (99) and using the translational
invariance one concludes that

l'
dOT(Q, Q,)e+(s,Q; O, Q,)

dQT(Q, Q,)4,(s,Q; O, Q,). (1O1)

Putting s=0 gives

T(QI,Qo) = T(QolQI).

Differentiate Eq. (101) with respect to s. Eliminate
derivatives by means of the transfer equation and then
put a=0. One obtains

T(Qo, QI) T(QI,Qp)
=c)l JI dQdQ'{ ), (103)

p{)- p]
where

T(Q,QI) S(Q',Qo)-
{ )=f(Q' —Q) 8,( Q' Q,)+-

@ p

T(Q,Q,)
- S(Q',Q,)-—f(Q, —Q') s, (—Q' Q,)+

Finally, using the symmetry properties [Eqs. (96d) and

(102)j we obtain as the fundamental equations for 5
- "This is vrhy the functions C1, 42 in Sec. V are usually even.

l

—+—lS(Q„QI) =c dQdQ'f(Q, —Q'){ )„
(1 1)
~Po PI~

(104a)fi 1)
l

——lT( o )= )~]~ '{ ), (o)
~~O uI&

s(Q„Q)
{ ),= s, (—Qp Q)+

p

$(Q', QI) T(Qo, Q) T(Q', Q,)y s, (—Q' Q,)+
p - p p

T(Q,Q,) S(Qp, Q')
{ ) =f(Q', -Q) ~ (-Q' Qo)+

p p

T(Q„Q) S(Q',QI)—f(Q, —Q') ~,(—Q' Q,)+
p p

It is remarkable that Kqs. (104a) and (105) have no
explicit dependence on r (Exactl.y the same equations
hold for slabs of all thicknesses. ) Clearly some addi-
tional condition must be added to make the solution
of the problem for a given slab unique. However, Kq.
(105) tells, in essence, what the condition is. Solving
for T in terms of the integral on the right it is seen
'tllat T(Qo, QI) Is determIned ollly up to a term plopor-
tional to 5(po —pI). This must describe the direct con-
tribution of the incident beam. Thus the correct form
of Eq. (105) including the condition necessary to make
Kqs. (104a) and (105) determinate is

T(Qp, Q ) =lu 8 (Qo QI)8

CP{)Py

+ ~

' dQdQ'{ )o. (104b)
III-uo ~

Equations (104a, b) are then the fundamental equations
which determine the reQection and transmission for a
slab. To recapitulate: we have assumed c=constant
(translational invariance), f(Q, Q') =f(—Q, —Q')
(spatial inversion invariance), but we have not assumed
f(Q, Q') =f(—Q', —Q) (time reflection invariance). If
we do make this additional assumption we have also
proved that 5 and T are symmetric. The essential dif-
ference between this and Chandrasekhar's' derivation
is that we start from Eqs. (96c) and (101)—which
follow immediately from the reciprocity identity and
translational invariance. There is never any need to
consider solutions of slab problems with diGerent thick-
nesses.

APPENDIX

Since reciprocity relations are important for much
more complicated situations than those treated above
(where analytic, or semianalytic, solutions can be



found), it seems worthwhile to sketch the proof of such
theorems for the general case described by Eq. (1).

Let f;&i&(r,Q) and f;&»(r,Q) satisfy

~ VP;«&(r, Q)+0;(r)f;&'&=+ ) F; (Q Q'r)

Specializing to various point sources and incident
distribution it is possible to obtain a large number of
relations between solutions of different problems.

If we define a matrix F(Q,Q', r) by

P;;(Q,Q', r) =F,;(Q,Q', r)P;(r)

X0'i(r)4'i '(r, & )d& +I&&' (r&&)~ (Al) we might say that reciprocity in a strict sense exists
provided there is a nonsingular matrix Q(D) such that

Xa, (r)P;&»(r, —Q')dQ'+&t;&»(r„—Q). (A2)

Multiply Eq. (A1) by f,&»(r, —&), Eq. (A2) by
P;&'&(r,Q) Sub. tract, sum over i and integrate over the
volume V under consideration and all Q. The result is

dS dana Q P P,&'&(r,Q)P;&»(r, —Q)

where S~ denotes the transpose of K
Under these conditions,

and the identities implied in Eq. (A3) will relate
various solutions of the same equation. (A particular
example of this is the reciprocity relation proved by
Chandrasekhar for thc CRsc of Raylelgh scattcllng of
partially polarized light. )

"Reference 1, Chap. VII, Sec. 52.


