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this construction can be done in conformity with the
H principle. The H principle characterizes a property
of the Feynman integral sufficient to guarantee that
an operator form of the 6eM equations will hold.
The choice of the homogeneity of the field determines
uniquely the relationship between the form of the
operator held equations and the form of the classical
6eld equations. The homogeneity of the metric field of
general relativity has been defined, and the operator
form of the Einstein 6eld equations has been given.
In a topologically invariant quantum field theory,
such as quantized general relativity, the (Schroedinger)
state functionals on equivalent hypersurfaces are
equivalent, so that the Hamiltonian vanishes.
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1. INTRODUCTION

1

�~QUESTIONS

have been raised whether gravita-
4' tional radiation has any well-defined existence. '

Supporting this skeptical position, Rosen has investi-
gated further' the cylindrical gravitational waves first
considered by him and Einstein' as an outgrowth of a
suggestion by H. P. Robertson. A monochromatic wave,
or a pulse, of cylindrical symmetry, moves inward in
matter-free space, implodes on the axis, and moves out
again. This is the only problem of gravitational radi-
ation where one has an accurate solution of the field
equations of general relativity. The problem is special
enough not to illustrate all features of gravitational
radiation. On the other hand, all correct general
statements about gravitational radiation must ob-
viously be compatible with this problem. This problem

' A. E. Scheidigger, Revs. Modern Phys. 25, 451 (1953).
N. Rosen in Jubilee of Relativity Theory, edited by A. Mercier

and M. Kervaire (Hirkhauser Verlag, Basel, 1956).' A. Einstein and N. Rosen, J. Franklin Inst. 223, 43 (1937);
g, B,osen, BulL Research Qounoil Israel 3, 528 (19531.

therefore occupies a special position in the theory of
gravitational radiation.

Rosen finds an unexpected result. The pseudotensor
that measures the density of gravitational energy and
momentum in the cylindrical wave is everywhere zero.
The significance of this finding is the subject of this
paper. We conclude that many of the otherwise ap-
parently paradoxical properties of this cylindrical wave
can be understood by taking into account the analogy
between gravitational waves and electromagnetic
waves, and the special demands of the equivalence
principle, which rules out a special role for any par-
ticular frame of reference.

Section 2 recapitulates the expressions of Einstein
and Rosen and of Rosen for the metric of the cylindrical
wave. Two kinds of solution are of interest: mono-

chromatic waves and pulses. A pulse type of solution

is constructed that is represented by particularly
simple mathematical expressions. Section 3 reviews the

proof that the pseudotensor density of gravitational
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momentum and energy is everywhere zero, both for
monochromatic waves and for pulses. From this it does
not follow that the energy of the gravitational wave is
zero. Rather, this energy is Nrsdefirled because the wave
is unbounded. Were the pulse imploding, not on an
infinite straight line, but on a circular line, the energy
would be expected to be finite and reasonable, according
to simple physical arguments. Section 4 returns to
the infinitely extended case where the exact. solutions are
available. The curvature tensor of Riemann, E;;I,~, does
not vanish in the region occupied by the wave; nor do
the invariants formed from the components of this
curvature tensor vanish. The disturbance in question
is real and not removable by any change of coordinate
system. In Sec. 5 inhuence of the gravitational wave
upon the motion of an infinitesimal test particle, at
rest before the arrival of a pulse, is studied. The particle
receives a velocity from the ingoing pulse, but after
implosion the pulse returns with reversed force and
reduces the velocity to zero. The analogies are stressed
with the case of a charged particle subject to the action
of an electromagnetic plane wave. There the passing
wave gives no net forward impulse to the particle in
the approximation in which the secondary wave
radiated by the particle itself is neglected. When allow-
ance is made for radiation reaction, the equation of
motion of the particle predicts a forward push. Several
predictions about the response of a test particle to
gravitational radiation are made which are in principle
subject to check. It is concluded that the cylindrical
waves of Einstein and Rosen present no real paradox;
that the apparently anomalous behavior of these waves
is completely consistent with the equivalence principle
of general relativity.

Z. CYLINDRICAL WAVES

Spherical gravitational waves, like spherical electro-
magnetic waves, can never be truly spherically sym-
metric. The polarization tensor in the one case, or the
polarization vector in the other case, cannot keep a
constRnt magnitude Rnd chRnge continuously ln di-
rection over the surface of a sphere, according to the
fixed point theorem of topology. Cylindrical gravitation
waves, like cylindrical electromagnetic waves, avoid this
difFiculty. The polarization at a point is described by a
small ellipse normal to the direction of wave propaga-
tion. This ellipse describes the distances from a central
test particle of a set of test particles which were origi-
nally at rest upon a circle before the wave fell upon
them. The principal axes of this ellipse are parallel and
perpendicular to the axis of the cylinder. As the phase
of the oscillation advances, the long axis becomes the
short one, and conversely, but the axes do not rotate.
The cylindrical waves of Einstein and Rosen make no
use of the other independent state of polarization, in
which the principal axes are turned at 45' to the axis
of the cylinder.

A typical point is designated by cylindrical coordi-

nates, p, q, and s. The product of the velocity of light
and the time is represented by the cotime, T. In these
coordinates the metric of Einstein and Rosen has the
form

de —goo —24 ( dT2+dpo)+poo 2Odpo—/$2$d$2 (I)
where the dilatation quantities, y and g, are functions
of p and T alone. The gravitational 6eld equations are
satisfied in empty space for a metric of the form (1)
provided f and y satisfy the equations,

f„+4, 4-rr =—0,
P

7o
=PLY'o +4'r 3)

vr = 24'A r

(3)

(4)

Solutions of (2) are well-known and represent cylin-
drical waves. It was originally thought that these waves
are capable of transmitting energy to unlimited dis-
tances because one can write a solution representing
progressive waves, where the first dilatation factor has
the form

I/= AJo(Glp) cosoA+BXo(Mp) sinQ&f 1 (5)

and the second factor, in the special case 8=3, reduces
to the expression

y =-',A'~p{Jo(~op) Jo'(~p)+&Vo(os)Xo'(cop)

+~pLPo(~p))'+ ('~'(~ )p)'+ (&o(~p))'

+ (&o'(~p))'j+I:~o(~p) Jo'(~p) —&o(~p)&o'(~p) j
g cos2&oT+ LJo(lop)iVo'(oop)+&o(os)&o'(lop) j

2
ysin2coT) AoooT —(6—).

The last term of (6) is aperiodic in time. It leads to a
systematic change of the metric with time which was
at 6rst interpreted as due to loss of energy. Rosen gave
arguments against this interpretation. With Rosen,
we exclude solutions that contain the irregular Bessel
fllllctloll, Xo(os), as Ilot well defined at tile ollglll.

More interesting than a monochromatic dilatation
factor f of the form (5), with 8=0, is a pulse formed

by linear superposition of such waves. ' We superpose
such waves with an amplitude factor 3= 2Ce ", thus:

$=2Cjf e Jo(lop) coscoTdoo

=C[(a i T)'+p'$ l+C[(a+i—T)'+p'5 l. (7)—
The quantity u is an approximate measure of the pulse
width. ~

Consider any value of the distance p, which is very
large compared to a. Then (7) is large only when T is

* 1Vote added ie proof, —We are grateful to W. B. Bonnor for a
reprint of his paper, J. Math. and Mech. 6, 203 (1957) where he
considers this same wave form,
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near —p and near +p. At the one moment the imploding
wave is going by; at the other moment it is reexploding
towards in6,nity.

I,et T be a large negative number, and ask for the
shape of the pulse at this time. Introduce the dimen-
sionless quantity x by the formula p= —T+ax. Then
the pulse has the approximate form

P-2C(—2gT) —l{Lx+(1+x')l]/2(1+x')):, (8)

indicated in I'ig. 1. Pulses of other shapes can easily
be constructed by combining the two terms in (7) with
constant phase factors, e" and e ", respectively. The
shape of the present pulse does not change with time
until it comes close to the origin. The strength evi-
dently grows inversely as the root of the distance of the
peak of the pulse from the origin, as expected for a
cylindrical wave. At the origin itself the dilatation
factor P has the value

P = 2Cg/(g'+ T').

-IO

2o

o +T
2aT

(T -r)~~
I

(a T)"a

2
(p'-T')'&~

2

(a + p )'i&

IO

BEHAVIOR QF

—= [(0-iT] + p2c

15

The second dilatation factor y is determined up to a
constant by integrating (3) and (4), as follows:

iC2(g 2
p2L (g ~7 )2+p2j 2 p2I (g+Q )2+p2] 2

g 2(2 2+ g2 p2)I 2 4+22 2 (g2 p2) + (g2+pR)$ ) (10)

Choose a 6xed time T and an arbitrarily smal
1

quantity e. Try to draw a sphere around the origin of
a radius E so large that the dilatations, P and y, are
less than e everywhere over the surface of this sphere.
The task is an impossible one; there is no such sphere.
The metric is everywhere regular, but it does not
become asymptotically Oat in the sense just mentioned.

3. VANISHING OF THE PSEUDOTENSOR DENSITY
OF ENERGY AND MOMENTUM

In evaluating the stress energy pseudotensor, we
consider not only the monochromatic wave (5) and the
pulse (7), not only the most general solution of the
gravitational field equations (2)—(4), for empty space,
but also the case where nongravitational energy is
present. Then the field equations (2), (3), (4) no longer
pertain. However, we limit ourselves to the case where
the stress-energy tensor, T;&, of this extra energy has
cylindrical symmetry and where a metric of the form
(1) still applies.

The pseudotensor, t;r„of gravitational stress and
energy is known not to be uniquely defined by the local
conservation law, or requirement of zero divergence:

(—g) '(a/a* )(—g)'(7'+4 ) =0 (&=1,2,3,4) (11)

We adopt the familiar Einstein choice for the stress
energy pseudotensor, formulated by Tolman' in the
following convenient language: (1) Define a Lagrange

4 R. C. Tolman, Phys. Rev, 35, 875 (1930); see C. Mgller, The
Theory of Relatkity (Clarendon Press, Oxford, 1952) for a sum-
mary. Also, see especially L. Landau and E.Lifshitz, The Classical
Theory of Fields, translated by M. Hamermesh (Addison-Wesley
Press, Reading, Massachusetts, 1951), Chap. 11.
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FIG. 1. The pulse-like cylindrical gravitational wave of Eq. (7)
is concentrated near the radius p= —T on the implosion run, for
negative values of T; and concentrated near p=+T when it
reexpands out from the axis of symmetry. The upper diagram
shows the pulse shape valid for both inward and outward runs
when p and T are large compared with the pulse width, a, The
lower diagram gives approximate representations of the pulse
valid in the selected regions of the (p, T) diagram. The symbols r
and p are used indiscriminately. The asymptotic value of the
dilatation constant y within the forward and backward light cone
is taken to be zero, from which it follows that the asymptotic value
of p everywhere in the neutral zone is the constant

'Qaym p(Pp +fT )dp.
0

density function,

( g)'g'(1'—-s"1—'. "—1' '1's ")

(2) Define the quantity

s,'"= (c4/SmG)g'"az/. ag

(12)

(13)

where g,
" is an abbreviation for ag"/ax~. Then the

divergence of this quantity gives an expression for the
total stress energy pseudotensor,

2',"+&;"= (—g)-'as, '~/ax~, (14)

that satisfies the conservation law (11).
Calculation of (12), (13), and (14) is simplified by

the diagonal character of the metric. We find

M/ag 44=0

a~/agi"= k(—g)'g"g44(g"ag»/ax'+g"ag»/ax') (15)

and thence the values of s4" and s4~. We have no interest
in the values of s4" and s4" because their derivatives
with respect to x'=0 and x'= q, respectively, are zero.
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T4i+ 34'= 0. (17)

The results (16) and (17), while impressive, are
meaningless. The quantity T;~ is a tensor, but I;I, is not.
A coordinate transformation produces no change in the
values of the four independent invariants I„of the
tensor T;q, de6ned by

'A'+X'Ii+hsIs+XI s+I4
(h+Ti') Tr' Ti' Ti'

T4s T4s (7i+ T4')

The corresponding quantities, ii, i2, i3, i4 for the
pseudotensor $,7, are not invariant; they can be given
arbitrary values at a point by suitable coordinate
transformation or by suitably altering the de6nition
(14) of the pseudoenergy tensor, consistently with the
conservation law (11) or (3) by any combination of
(1) and (2).

In physical terms, it has no well defined sense to say
that the density of gravitational energy is zero, or that
the Rom of gravitational energy vanishes. No experi-
ment could ever test whether these quantities are zero.
The density of other forms of energy can be measured

by the gravitational 6elds they produce. But gravi-
tational held energy itself does not appear as a source
term lIl Einstein s 6eld equations) so tliclc ls no un-

ambiguous way to speak of /ocalised gravitational
energy density as a source of a measurable gravitational
6eld.

Only total energy has a mell-de6ned significance, and.

even this only when very special conditions are met.
There is no such quantity as total energy, for example,
in a closed universe4; there the integrated conservation
laws reduce to the trivial identity, zero equals zero. To
define total energy it is necessary that the metric
become asymptotically Qat. More precisely, a coordi-

We end up with an identically zero value for the energy
density,

T4'+4'= ( g—) l(c4/16rrG) (8/Bx') ( g—)~gu

X (g"Bgss/rix'+gssrig /Bx')
= (~'/g~G) (~/~ p) ( 1+—~pW/~p

2—pBQ/Bp) =0 .(16)

In other words, when no matter is present, the gravi-
tational pseudoenergy density itself is zero, as has
already been shown by Rosen. ' When matter is present,
the right-hand sides of the field equations (2), (3), (4)
have to be corrected, but the calculation (16) of the
energy density remains valid. The gravitational 6eld
automatically adjusts itself so that the pseudoenergy
density of the gravitational fieM is equal and opposite
to the density of all other forms of energy. In a similar
fashion, the gravitational contribution to the density
of momentum in the radial direction compensates
exactly all other contributions to this momentum,

nate system must exist in which the metric quantities

go to the Euclidean Rat space values at least as fast as
1/(distance from origin). Then the gravitational field

falls off as fast as 1/r' or faster, and a surface integral
allows one to compute the mass or energy of the system
unambiguously. This condition is not met in the case
of an infinite cylindrical gravitational wave. t

The wave must be limited to a finite region of space
to have a mell-defined energy. Consider therefore a
gravitational wave imploding, not on a straight line,
but on a circular line. Let the thickness of the pulse e

t Pote added ie proof.—We are indebted to Professor M. Fierz
for permission to quote from his letter to us of May 14, 1957.

"So we have y(~, T)=constant, i.e., independent of T )from
Eq. (4)j. Let P(p, T) be a wave-packet fulfilling Eq. (2); we may
assume that P(p, T)=0 for p) R—naturally this is not strictly true,
but practically wc may imagine P to have a finite spread. Now
for p&&R we have

ds2= e 7 (dp2 —dT2)+p~dqP+ds~,

where y is a positive colst get, namely the 'energy' in the ordinary
sense of the wave field P:

y(~, T}= p Q~2+&T2)dp= const
0

Lwhere y is normalized to zero at the origin]. Putting p'=e~p,
T'=e"IT, q'=e "/p, we have

gS2 dTI2+gpI2+ p re +r2+g&2

This looks pseudo-Euclidean. BNt the range of q
' is not 0~2~, but

0—+e &2m.. This means that the geometry on a 'plane' T= const,
8= coiist, is the one on R 1 oÃkcl SQtfcM. Tllls llolds Rs well Rs wc
want for any T if p (or p') is big enough. So, if we assume @ to be
regular everywhere the geometry is not 'regular' at infinity
(p—+cc), that is, it is not pseudo-Euclidean though the curvature
vanishes for big p. Looking at the problem in this way, it is evident
that the deviation from LEuclidean character( is not due to the
coordinate system. This peculiar behavior is a property in the
1RigC.

This beautiful analysis of Fierz indicates that there is a subtle
sense in which one can define an energy-like quantity per unit
length of a cylindrically symmetrical gravitational wave, Rnd
indicates further that this energy-like quantity is positive definite.
There is a most interesting analogy between the conical space of
Fierz, and the curved space of the Schwarzschild metric, in the
following sense: In both cases there is a departure from a Euclidean
character, the integrated magnitude of which over a surface of
radius p or s is independent of r and measures the total energy
included within that surface. Of course, the area of the bounding
surface increases faster with r in the second case than the first;
correspondingly, the departure from the Euclidean character re-
mains constant (as measured by Ap) in the cylindrical case, and
falls o6'with r in the spherical case. See also the discussion by Fierz
at the end of reference 2.—We owe to Dr. Charles Misner an
important additional remark about the definability of energy in a
system that is not asymptotically Euclidean, and especially in a
closed universe. Landau and Lifshitz show Lreference 4, Eq.
{11—88)g that the energy-momentum four vector can be expressed
in the form of an integral over a closed 2-dimensional surface
bounding a 3-dimensional space-like volume I'&= J'k&0 d5*0 .
%'hen the three-dimensional space is closed, then the bounding
surface S can be shrunk to zero. This circumstance might appear
to argue, as indicated in the text, that the law of energy conserva-
tion reduces to the trivial identity, 0=0. Ho~ever, no closed sur-
face can be covered without singularity by a single coordinate
system. One has to use at least two coordinate patches, But h&

depends upon the gravitational stress-energy pseudotensor.
Therefore its values in the two or more coordinate patches in
the regions where they overlap are not related to each other as
are the values of a true tensor, Consequently, it is sot clear—Dr.
Misner points out —that the energy integral will vanish. The
remarks of Fierz and Misner raise the following question. Does
there exist in relativity theory for a closed space a quite generally
defined energy-like quantity that has not yet been clearly
formulated P
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be chosen very small compared to the radius, b, of the
circle. For simplicity, let the initial conditions for the
problem be formulated at the moment, T=O, of
maximum implosion. The dilatation factors at this time
we require to follow formulas like (7) and (10),

0=2C(o'+p') ' 8$/BT=O

(C2/i')((1+ii2/p2) 2 —1 O' Py/AT'=0 (19)

provided that the distance p—now measured from the
circular lin" --is small compared to the radius, b, of that
line. We now have a toroidal gravitational wave instead
of a cylindrical gravitational wave. For times before
T=O this wave implodes on the circle, and for later
moments the wave explodes out from the circle. If the
wave is weak enough (C«u), the familiar linearized
theory of gravitational waves, or even Huygens'
analysis, can be applied to discuss its behavior. It will

approach asymptotically to a spherical wave pattern
for very large values of the time. The wave will behave
qualitatively in the same way when the dimensionless
measure of strength C/u is larger, but then the analysis
will be more complicated.

The point at issue is this: will the toroidal gravita-
tional wave have any energy? By conservation laws
the answer to this question at one time will answer it
for all times. Therefore take the time 7=0 of maximum
concentration of the wave. The disturbance being con-
fined to a limited region of space, one may assume the
metric to be asymptotically Gat. This permits definition
of the total energy or mass of the gravitational wave.
But is this energy unique? May it not be assigned at
will by choosing arbitrary values for the coefficients of
1/r in the asymptotic formulas for the space part of
the metric

ds' (1+GM/2c'r)4(dx'+dy'+ds') (20)

Are not the initial conditions for the gravitational wave
at the time T=0 a matter of arbitrary choice? Does the
existence of this freedom mean that it has no sense to
talk of gravitational energy and gravitational waves?

No such complete freedom exists. 'Let g p (n,P = 1,2,3)
denote the space part of the metric at the time T=O,
and let R(@ denote the curvature invariant of this three-
dimensional space. Furthermore, introduce six quan-
tities, q p

= q p (n,P = 1,2,3), with the trace q = q p, to
measure the time rate of change of the metric,

~g-p/»= ~-p. (21)

Then the three-dimensional "stretching rate tensor, "
q p has to satisfy in the three space, T= 0, the equations
of Lichnerowicz and Foures

(y P 6Pip), p=0 (—n=1,2,3)
~'—s pw'+~"'=0 (22)

At T=O, the first'time derivative of all the metric
quantities vanishes. It follows from (22) that the

' See Y. Foures-Bruhat, J. Rational Mech. Anal. 5, 951 (1956).

three d-kmelsional clrvuture invariant of the metric g p

mist vanish everywhere at the time T=O:
R(3'=0 at T=O. (23)

This demand is automatically and accurately fulfilled

by the line element (20). But this line element is the
asymptotic form of the metric for the toroidal wave.
Thus (23) is a differential equation for the metric that
connects its asymptotic behavior (specified by the
parameter M) with its behavior in the region of energy
concentration, so (Z3) provides a means to determine the
"mass" or clergy of the gravitational waive

The most general pure gravitational wave that is
symmetric with respect to the time 2'= 0 satisfies (23).
A particular class of such solutions can be written in
the form

ds'= f4(x,y, s) (dx'+dy'+ds'),

where the Laplacian of f must vanish

V'f= 0

(24)

Apart from the trivial constant solution, all solutions
of this equation diverge somewhere, as illustrated by
(20). The everywhere regular solutions of (23) can
therefore not be written in the conformal form (24).
We have not so far found a scheme to construct and
catalog all such regular solutions. The solution of this
problem is central to further study of time-symmetric
gravitational waves.

TAmz I. Alteration in separation of nearby test particles as an
appropriate invariant way to describe the polarization properties
of the cylindrical gravitational wave.

Does separation at Nature of separation of the two infinitesimal
right change as test particles
determined by
alteration in Bs pe-&SpBp

Coordinates'
Invariant intervals?

yes
yes

no
yes

bq unchanged
yes

L. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, 1926), p. 90, Eq. (28.7).

4. THE CYLINDRICAL GRAVITATIONAL WAVE
PRODUCES A NONZERO CURVATURE

From now on we regard the cylindrical gravitational
wave as the idealized limit of a toroidal gravitational
wave, of finite and well-defined energy, when the radius
b of the torus is extremely large in comparison with all
other relevant physical dimensions.

To see that this wave is not a fictitious "coordinate"
wave in a really Oat space, it is enough to consider the
Riemann curvature terIsor, E;,&&. Were the space really
Aat, this tensor would vanish in one coordinate system
and therefore in all coordinate systems. However, by
direct calculation from the metric (1) Lwithout use of
the field equations (2), (3), (4)]we find the components
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~i i4=Vrr V—p p
k—rr+4 p p

&.+4.
xiii'= f,—yp+fp, Pr—Vr+Pr'

2142 l/IpVr+Qrp+Tr/p QrVp+fQp~i3i3=Prier

0r'—+'pv p 24'p—' 0'.u—

K'43=krv p 34'W—a+4'6'r

~23i3= p "p'L~ p' 0'r' —0''/a—J

+P P
K'4~= p "p' err 4rV r+— 0p&n+—kp'

P=f(p T)- (2')
for positive values of T. In this approximation the
velocity has the value

To treat the motion of a particle that is some distance
from the axis, we analyze the equation of motion to the
first order of approximation: (1) we neglect terms in

C, such as y and its derivatives, in comparison to terms
in C; (2) we evaluate the forces not at the new position,
but at the old position; (3) we treat dx'/ds as equal to
1; and (4) we write the pulse in the form

4=:f(a+T)
(25) for negative values of T; and in the form

Vr —4r
A'ii= p "p' fr p fred+—4r/p+ gpzr+—kA'r

p

%'43=a" "[4rvr 24r' 4—»+4—,v, 4"7—
Making use of the field equations (2), (3), (4) further

simplifies these expressions, but does not reduce them
all to zero. Existence of these nonzero components
proves that the cylindrical gravitational waves propa-
gate real curvature in space.

This departure from 'fatness produces real physical
effects; the curvature modifies' the invariant distance
between nearby infinitesimal test particles. Conse-
quently objective existence must be attributed to the
gravitational wave that produces these eGects.

S. RESPONSE OF TEST PARTICLES TO THE
CYLINDRICAL GRAVITATIONAL WAVE

An infinitesimal test particle follows the geodesic
equation of motion

'd/xsd'+ ra'(dx~/ds)(dx~/ds)=0 (26)

where the quantities F,Js' may be regarded as com-
ponents of the gravitational Geld—dependent, of course,
according to the equivalence principle, on the choice
of the coordinate system. In the coordinate system (1)
a test particle which is instantaneously at rest (dx'/
ds=0; dh/ds=1) experiences at that moment the
acceleration

dp/dT=:)t (d'p/dT')dT

(30)
(ay/aT)dT=+P(po, T) for T&0

0 0

dp=)f (dp/dT)dT=:JI pdT=C~. (31)

The particle ends up where it started. A calculation to
the first order that is really accurate does not replace
BP/Bp by BP/BT and gives for the migration, not
(31), but

0 T'

Ap=Jf Jf (8$/Bp)dT'dT=2C

dp/dT=: P(pp, T) for—T)0.
The particle experiences a sharp outward push (see
Fig. 1) at about T= —p; then a weaker inward ac-
celeration that brings the particle to rest at the time
T=O. Then the inward slow acceleration resumes, the
particle gains more and more velocity; and finally, at
about T=+p, the particle experiences a final sharp
outward acct'~eration th at reduces it to rest. The
outward migration of the particle up to the time T=o
is just balanced by the subsequent inward migration,

d p/dT = r„'= ,'—g"Bg44/8-x' 'y/'=p+—'4/'p
p' —(a iT)' p' ——(a+iT)'

C2p +
L(o—iT)'+a'7' L( +o)i'T+ 7p

p2+ g2+ g2
2
Lp'+(a — )i'T7'L +a(o+iT)'7'

(27)

for large p for the change from Z'= —~ to T=o.
The migration in coordinate gives no true measure of

the change in distance between test particle and origin.
To the first order this distance at the time T=0 is

p PO+~P Po+~P

~f(g )'da= ' " 'da='. ~" (1 0)dp—
0 0

+Cp(L(~ iT)'+p'7 '+D—'+iT)'+a'7 '*)

from the pulse type of gravitational wave. In particular,
a particle once at rest at the axis of the cylinder remains
forever at rest.

P

=po+~p — gdp

=. po+2C 2Cln(2a/u). (32)

'F. Pirani, report at Chapel Hill conference (to be published). The particle moves, not farther from the origin, but
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closer to it.f. These results warn how dangerous it is to
draw any conclusions about motions of test particles
from changes in their coordieotes. One must instead use
invariant intervals between particles to measure the
effect of the wave. We note (Table I) that the principal
axes of the polarization ellipse lie in the 2 and p direc-
tions, despite the fact that these coordinates do rot
change, while p does.

Can energy be extracted out of the gravitational
waveP Yes, because the distance bs between nearby
test particles changes with time. This change can be
used to drive an engine. Where does the energy come
from, it having been agreed that the pseudotensor of
gravitational energy density and energy Qow is zero in
the chosen coordinate systems The maximum possible
rate of absorption of energy by the engine will be
governed by the rate at which the gravitational forces
do work upon the test particles. These forces will be
proportional to the Grst power of the mass of the
typical test particle. The inward energy Aux onto the
test system ought therefore to be proportional to the
first power of the mass of the test particle. Consider
these quantities in the weak field approximation. I.et
Fb„i, symbolize the gravitational Geld of the cylindrical
wave. I.ikewise let I" „, symbolize the gravitational
field due to the moving test particles. Then the energy
density is qualitatively of the form

f back +2Pbackl test+Ptest ~

The first term, due to the background Geld, can be
given arbitrary values by suitable choice of. !the co-
ordinate system, and happens to vanish in the coordi-
nate system {1).The middle term describes the flow of
energy into the absorbing system.

Details of the energy How require elaborate analysis.
By analogy with the problem of an electromagnetic
wave working on one or two test particles: (l) response
of the particles, measured by changes in their invariant
separation, is proportional to the 6rst power of the
fieM strength in the weak 6eld approximation; (2) loss
of energy from the driving wave to the test particle
system is describable in terms of an interference be-
tween the primary wave and the secondary or scattered
wave'; (3) when there is no true absorption in the test

$ Nofe added in proof.—To the second order the velocity of the
test particle originally at po follows from integration of

d'p/d T'=: (W /~p)I + (dp/d T) (~4/~T)I o—(~v/~p)s o.

Here it is legitimate in the same order to write

(~f/~p) p =. Po +(p—po) Po ~

The integration gives for the velocity at the time T='+ ~ the
values —2C /a' and —2xC'po/a' for values of po large and small
compared to a, respectively. This 6nite velocity produces in the
course of an infinite time an infinite displacement. This circum-
stance does not affect the validity of the expansion in powers of
the wave strength, C.

g See Bohr, Peierls, and Placzek, Nature 144, 200 (1939);N. F.
Mott and H. S. W. Massey, The Theory of Atomic Collisions
(Clarendon Press, Oxford, 1949), second edition, Chap. VIII; and
N. F. Mott, Proc. Roy. Soc. (London) A133, 228 (193I).

system, but only scattering, then the scattered energy,
of second order in the Geld of the test particle, is the
same in integrated value but is opposite in sign to the
loss of energy from the primary wave, represented by
the term linear in the field of the test particle; (4) the
primary wave moves the test particle only transversely
to the first order in the primary field strength, and to the
second order in the primary Geld strength there is also
a forward and backward response of the test particle. '
A charged particle responding to an electromagnetic
wave executes a figure eight motion —without however

undergoing any net forward motion in this second
approximation. Only when the radiative reaction of
the secondary wave on the test particle is taken into
account does one find a phase lag in the figure eight
motion and a net forward impulse imparted to the
charge. Radiation pressure comes in only when the
scattering is taken into account. All these results are
consistent with the conservation laws.

Similarities between gravitational and electromag-
netic waves thus make it simple to draw a number of
reasonable inferences. The signiGcance of these infer-
ences has a much more subtle character in the gravi-
tational case than in the electromagnetic case. Neither
Geld energy densities nor test particle motions have a
meaning independent of the choice of coordinate
systems. The simple observable consequences of wave
action are instead chaeges in the separation of various
nearby test particles —changes that are related to the
covariant components of the curvature tensor R;;I,I,,
rather than to the values of the noncovariant Geld

strengths, I';I,. This more complex character of the
observation problem in gravitation physics is in full

accord with Einstein's principle of equivalence.
This principle does not deny a physical, reality to

gravitational radiation but on the contrary leads to the
only well dehned way there is to express the inhuence
of this radiation: in terms of its eGect upon invariant
space time intervals, such as the interval between two
test bodies.
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