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1. STRUCTURE OF QUANTUM THEORY OF
GENERAL RELATIVITY

HIS paper reports the beginnings of the quantum
theory of general relativity based on the

Feynman' ' integral or "sum over histories. " We have
not seen a way to use the Feynman integral to solve

immediately all the principal problems. We have to
study the theory one piece at a time and to set each
fragment in place when we are able to understand it.
In this sort of approach we need not follow any logical

order, but may study the easy parts 6rst and hope to
fill in the rest later. However, some over-all picture of
what the completed puzzle may look like is necessary
in order to recognize the pieces. $

This paper describes in broad outline the principal
features of a quantum theory of general relativity and
6lls in a few details. If rigor couM be supplied we

would have a theory rather than an approach to one.
Two fragmentary but concrete contributions to

the theory based on the Feynman integral are made.

(1) We formulate an H prirrcip/e (Sec. 4), which

speci6es the relative weights to be given to different

values of the fields in the Feynman integral. This
principle —applied to the metrics of general relativity
(Sec. 5)—leads directly to an operator form of the
field equations (Sec. 6). (2) We make (Sec. 7) a partial
evaluation of the Feynman propagator. In consequence

we are able to write down immediately the state of
the held on any of a rather wide class of hypersurfaces
when we have specified the state on one hypersurface.
This evaluation is possible because the answer is

trivial. The state is essentially identical on all hyper-
surfaces of the same class. In other words, we prove the
important result that the Hamiltoriiae operator is zero

This situation is peculiar to a theory in which the metric
is quantized.

*A part of this work (Sec. 5) was done while the author held
a Charlotte Elizabeth Proctor Fellowship (1954-1955) which he
gratefully acknowledges.

$ Based in part on a thesis submitted to Princeton University,
May 1957, in partial fulfillment of the requirements for Ph. D.

' R. P. Feynman, thesis, Princeton University, 1942.
2 R. P. Feynman, Revs. Modern Phys. 20, 367 (1948).
f Note added in proof.—Two other papers meant to be read in

association with this paper, C. W. Misner and J. A. Wheeler,
"Classical Physics as Geometry, " and J. A. Wheeler, "On the
Nature of Quantum Geometrodynamics, "were completed too late
for publication in this issue and have been submitted for publica-
tion elsewhere.

2. ALTERNATIVE APPROACHES TO THE
QUANTIZATION OF GENERAL

RELATIVITY

Four approaches have been suggested to discover
the content of the quantum theory of general relativity:
(1) One considers an ideal Lorentz space, and treats
the departures of the actual metric from this Rat
condition as small —that is, one linearizes the gravita-
tional field equations, applies standard methods of
field quantization, '4 and then attempts to modify this
basically linear theory by reinstating the nonlinear
terms. ' ' All other approaches consider the 6eld
equations of general relativity in their fully covariant
but nonlinear form. (2) The canonical formalism
endeavors to investigate the noncommutative algebra
of the operators of the theory in general and the
Hamiltonian operator in particular, with a view to
finding ultimately in this way eigenvalues and transition
probabilities. ' One first sets up an appropriate
algebraic structure on the field variables by defining
Poisson or Dirac" brackets. Here "appropriate" is an
abbreviation for two conditions: (a) the algebraic
formulation of the classical theory is equivalent to
the Lagrangian formulation, and (b) the algebraic
structure admits a representation by linear operators
in Hilbert space where the brackets are represented by
commutators. The problem thus de6ned has next to
be sol'red by finding a particular operator representation.

The other two approaches deal with propagators,
(fsos~ fioi), that are natural generalizations of the
propagator,

(xsi2 [ xltl) = [its/2rri (&2 il)]'

Xexpiris(xs —xi)'/2 (ts—t,) (1)

of a simple one particle problem.
The hypersurfaces, o-2 and oi, take the place of the

time variables, t2 and t~,. and the field con6gurations
on these surfaces, fs and f,, take the place of the
position coordinates, xs and xi. (3) The action principle

'L. Rosenfeld, Ann. Physik 5, 113 (1930).
4 W. Pauli and M. Fierz, Helv. Phys. Acta 12, 297 (1939).
'A summary of such linearized quantum analyses has been

given by F. Belinfante, Revista Mex. Fis. 4, 192 (1955).' B. K. Laurent, Nuovo cimento (10) 4, 1445 (1956).' This approach has been intensively studied by P. Bergmann
Revs. Modern Phys. 29, 352 (1957), Helv. Phys. Acta. , Suppl.
IV, 79-97 (1956).

Belinfante, Caplan, and Kennedy, Revs. Modern Phys. 29,
518 (1957).

9 B. S. DeWitt, Revs. Modern Phys. 29, 377 (1957).
"P, A. M. Dirac, Can. J. Math. 2, 129 (1950);3, 1 (1951).
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of Schwinger" deals with the infinitesimal changes in
this propagator,

~(f~~2I f~~~) = (+i/&) (f2~2 I» I f~~~)~ (2)

which come about through changes in the action, I'
either by way of alterations in the position of the two
surfaces, in the configurations of the fields on the
surfaces, or otherwise. In distinction to the canonical
formalism with its use of Hamiltonian and momenta,
Schwinger's method deals with the action and expresses
itself in a manifestly covariant form. This method has
not been applied independently to general relativity,
but is used in conjunction with the Feynman method.

(4) The Feynman method focuses, not on a differential

equation to be solved for the propagator, but on a
formula for the solution:

(fa~a l fi~&) =& ' P exp(iIa). (3)

With this expression goes a formula for a matrix
element which Dyson" writes in the form,

(fg02l8l f&o&) =)V ' P 8~ exp(iIzz).

Here H indicates a field history, that is, a definite

specification of the field throughout the region between
the hypersurfaces o-& and 0&. The quantity 8 is a func-

tional of the field and 8II is its value for the particular
field history II. The sum extends only over field

histories whose boundary values on 02 and fT& are

f2 and f~. The normalization factor E depends on o2

and e&, not on f~ and fq, and is introduced to secure
the unitarity of the propagator. The (dimensionless)

action is taken in general relativity to have the value

III (e'/16'. GA)
~

——R( g) 'd4x. —

The Newtonian gravitation constant, 6, and the
quantum of angular momentum, A, appear in the
theory, never individually, but only in a combination
with the dimensions of length,

L,*=(AG/e')'=1. 62&&10-33 cm. (6)

"J.Schwinger, Phys. Rev, 82, 914 (1951).
'~ F. J. Dyson, Advanced Qmuntum 3Eechanics (Cornell Univer-

sity, Ithaca, 1954, mimeographed), p. 54.

Like the Schwinger method, the Feynman method deals
with manifestly covariant quantities. The operators
that are associated with physical quantities are defi+e
by integrals of the type (4), where every quantity on

on the right-hand side of the equation is a c number.
Another convenient quality of the Feynman method
is that it is flexible and can be applied in a limited way.
An explicit representation of an algebraa dequate to
express the entire classical theory —such as the canonical

method demands —contains a vast and indigestible
amount of information. In the Feynman theory we
need not consider all these operators at once; we may
begin by constructing just one of them, or some other
operator which we think might be simpler than the
basic operators of the canonical theory. In this way
the theory may be attacked in a succession of short
skirmishes rather than in a single frontal assault.

What of the problems of the three methods (1),
(2), and (4) that have received some detailed considera-
tion? We discuss here (1) the inappropriateness of the
linearized treatment, (2) the problem of observables
in the true theory of general relativity, and its different
immediate consequences for the (a) canonical and
(b) Feynman type of quantization, and (3) the work up
to now on the methodology of Feynman quantization.

In a linearized version of general relativity it is
easy to make calculations by standard perturbation
methods. However, the characteristic length L* is so
small compared to the distances relevant in any familiar
experimental context that such computations are not
of much interest. H gravity is to occupy a significant
place in modern physics, it can do so only by being
quaH)actively diGerent from other fields. As soon as we
assume gravity behaves qualitatively like other fields,
we find that it is quantitatively insignificant.

Classical theory contains no characteristic length L*.
There we do have the possibility to confine our attention—if we wish —to the realm of weak fields. Consider the
classical field equations,

and an initial space-like surface, 0. On it admit as
initial condition only such a metric as leaves 0. nearly
Rat. Moreover, permit only small normal derivatives
of the metric at 0.. Then the same weak field conditions
will prevail some time later. Therefore the linear
approximation makes sense.

Not so in quantum theory. We can form a state which
makes the initial surface 0. nearly Qat, even on a sub-
microscopic level. However, uncertainty relationships
will be expected to prevent our simultaneously restrict-
ing the time derivative of the metric at 0. to a small
value. Consequently large cur vatures over small
regions are to be expected. Similarly, even if there
were a "vacuum state" for the gravitational field,
there is no reason to expect that it would be a state
where the metric is nearly Rat over small regions —a
point that has been emphasized by Professor Wheeler.
In other words, a linearized version of general relativity
seems precisely adapted to throwing out just those
features which are physically new and interesting. We
therefore pass it by.

In the full nonlinear theory one meets the fundamen-
tal issue, what are the real physical observables& We
always use the word observable in a classical sense:
an observable 8 is a functional of field histories JJ for
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which there is in classical theory a conceptual experi-
ment whose outcome is interpreted as providing the
value 8~ of 8 for the unique field history II which
existed physically at the performance of the experiment.
This definition of an observable avoids using the idea
of an evert, but the simplest examples of observables
require this idea. In electromagnetic theory, for
instance, where the field in question is the vector
potential A, an event $ determines a functional St.
whose value for a field history A is Rt(A)=A(xr).
Here x~ is the point corresponding to the event P.
This functional, 0',~, is not an observable; however,
Fr(A)=F(x~) =curlA(xt) defines an observable func-
tional P~. In electromagnetic theory it is usual to
speak of F(x) as an observable when one really means
the observable F~. The fancy S~ is in fact superQuous
since every physicist knows what is and is not observ-
able (ideally) in classical electromagnetic theory.
There is nothing to be gained there by explicitly
distinguishing all distinguishable ideas. In general
relativity it is better to make the necessary distinctions
explicitly.

A fundamental distinction is that between a point x
and an event $. The possibility of making distinctions is
the fundamental fact which makes logical thinking
possible. A mathematical object is anything which
is subject to logical discussion; as such it must
satisfy one axiom —that it be distinct from every
other mathematical object. A poirtt is a mathematical
object which is an element of a set BR satisfying further
axioms; for present purposes we require 5K to be a
four-dimensional differentiable manifold. "These axioms
completely exhaust the meaning of the word "point"
as we use it.

In studying electromagnetic theory the distinction
between points and events is not interesting since we

may assume that there is a unique point x~ in the theory
corresponding to each physical event $. The event may
be thought of as a time and place where two neutral
point particles collide, or where it could have been
arranged that such a collision occur. The idea of an
event, then, need not involve electromagnetism, and
it may be assumed that the correspondence ~xr has
been established on the basis of a nonelectromagnetic
theory. Thus, before we begin a study of electromagnet-
ism, we already know that a point is a good mathemat-
ical model of an event. " The correspondence $~xt
may be called the poirtt theory of enertts, and on the basis
of this theory we may use the events $ themselves as
points in discussing electromagnetic theory.

In general relativity, a different situation prevails.
Before studying general relativity we have no notion

of a metric, no theory of distance and time. We are
therefore unable to imagine any idealized physical
theory which would provide a theory of events to use
in discussing general relativity. The theory of events
must spring up within general relativity, not logically
precede it. When a scalar such as R(x) is considered
as an observable in classical general relativity, the
point x represents an event and is in reality a com-
plicated functional of other events which the observer
used to define his location, and of the metric throughout
a region containing both those reference events and

. the event associated with x. If we were prepared to
discuss such an observable, we would use a notation
that gave fair warning of the complexity of the computa-
tion it envisages, and of the large number of quantities
on which it depends. When we write R(x) we mean a
comparatively simple mathematical object, the value
of the curvature scalar at a point x for the metric
under consideration. The point is not an observable
in the classical theory. Consequently, R(x) is not an
observable functional of the metric, nor is g„„(x), nor
is the value of any scalar or tensor function at x. If p
is any function of points defined by the metric then we
expect no corresponding operator p(x) to be construct-
ible iri the quantum theory of general relativity. For
trivial functions like &=0 we can And corresponding
trivial operators. One advantage of the Feynman
approach is that it allows us to work with functions
like R(x) without having to assume the existence of a
corresponding operator.

Bergmann' 6nds that to carry through the canonical
quantization it may be necessary to find the "true
observables" in general relativity and use them in
place of more familiar held variables. Similarly, we
expect the Feynman method will generally not provide
constructions for operators corresponding to classical
quantities which are not observables. As discussed
earlier in this section, however, a start can be made in

the Feynman theory with only one or two such observ-
ables in hand, while the canonical theory seems to
require that a large number of them be expressed in

manageable form.
Distinct from the problem of characterizing and

finding observables (which we have defined as a
classical problem) is the problem of describing the
measlrability of such observables in the light of quantum
theory. This problem has been discussed on the basis
of quantum limitations on the measuring instruments

by Osborne ' by Anderson ' and by Saleker and
Wigner. " In electromagnetic theory a satisfactory
discussion from this point of view has been given by

"Georges de Rham, Uarietes Digerentiables (Hermann et Cie,
Paris, 1955), p. 1; H. Whitney, Ann. Math. 37, 645 (1936).

'4 Convincing arguments have been given which indicate that
a point is not a good mathematical model for a quantum mechan-
ical "event. " See E. P. Wigner, Revs. Modern Phys. 29, 255
(1957).

'~ P. G. Bergmann, Nuovo cimento (10) 3, 1177 (1956);see also
reference 7.

'6 M, F. M. Osborne, Phys. Rev. 75, 1579 (1949)."J.L. Anderson, Revista Mex. Fis. 3, 176 (1954).
'8H. Salver and E. P. Wigner (to be published). See also

reference 14.
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Bohr and Rosenfeld, " but only after an analysis of
the measurability had been provided by the quantum
theory of the electromagnetic field. The two approaches—one from quantum theory of the measuring apparatus,
the second from the quantum theory of the field —are
complementary but should be consistent. A discussion
of measurability based on the quantum field theory
alone is more direct, since it requires no ingenuity in
discovering an optimal experimental arrangement.
A desire to understand the quantum limitations on
measurements of the gravitational field is therefore one
reason for investigating the quantum theory of general
relativity.

The Feynman method is the basis of our approach to
the quantum theory of general relativity, so we now
consider the techniques which have been used to
express the Feyman method mathematically. Feyn-
man's technique' ' in defining the "sum over histories"
was based on a use of Hamilton's principal function S.
In the quantum mechanics of a particle, the propagator
is

where L is the Lagrangian. To define this expression
Feynman first considered the case of a small time
interval At, and set

(x", t+at
~

~'t) =A-' exp fats(*", t+at; x', t)/0}, (9)

where S is j'L,dt evaluated for the classical path with
the required end points, " and A is a normalization
factor. An iteration of the infinitesimal propagator (9)
together with a limit At—&0 produces the "sum over
paths" of Eq. (8). The normalization factor A
is fixed by requirements inherent in this limiting
process; it may depend on x', x", t, and ht, but is
independent of x' and x" if the coefficients of the x
terms in L are independent of x, and is independent of
t if L is not explicitly a function of t. This S method of
defining the sum over paths has been applied by
Choquard" to situations where the potential is anhar-
monic. It has been extended" to Lagrangians where
the coefficients of the velocity terms are not constants.
Anderson" has pointed out, however, that this S
technique when applied to gauge-invariant theories
such as general relativity leads to an unacceptable
result: A '=0. The explanation of this failure of the
method is easy to 6nd: In a gauge-invariant theory
there are in6nitely many histories which describe the

same physical situation; and if one attempts to normal-
ize after integrating, the result is an unsatisfactory
A =0 normalization. This difficulty has been elim-
inated in electromagnetic theory by Wheeler'4 and by
Laurent' who perform an average over gauges in
place of an integration. There were, however, two
problems which the factor A was to solve. One problem
was to determine the absolute weight to be given to
a field history in the sum over histories; it was this
problem which led to the A '=0 failure, but which is
solved by using an average over gauges. The second
problem, which logically precedes the first, was to
determine, through the dependence of A on x, the
relative weights to be given diferent histories. In
Sec. 3 we formulate the II principle which states
the relative weights which are to be assigned different
field histories. It is then meaningful to speak of an
average so that a way is open to consider subsequently
the normalization of the "sum over histories. " The
averaging process, and the remaining, field independent,
normalization factor, are not investigated.

More recent treatments of Feynman quantization
may be called non-S methods. Most of these non-S
treatments are based on the work of Davison" who
introduced the technique of Fourier analyzing the
history and then integrating over the Fourier coef-
ficients. This technique has been applied by Burton
and De Horde" to several mechanical systems, and is
used by Matthews and Salam, " and by Laurent' in
fieM theory. Laurent's work is the first application of
the Feynman method to general relativity. None of
these techniques can be applied to a quantization of
the full theory of general relativity, since Fourier
analysis is applicable only to linear systems.

Wheeler" has used an essentially non-S technique to
quantize the electromagnetic 6eld. In common with
the original Feynman approach, he approximates the
space-time volume V between two hypersurfaces by a
grid of points K. A field history is then approximated
by a skeletons history where the value of the vector
potential is prescribed only at the grid points. Next
the action integral is also skeletons'ed in being approxi-
mated by a sum which is de6ned for every skeleton
history. Finally the propagator

(A 2(T2
~
A io i) J exp (—t/ &6~bc) ~P„Z'&"d4Jt bA (10)

is defined by integrating over the values of A at the
grid points II„„dA, and passing to a limit as the mesh

"N. Bohr and L. Rosenfeld, Kgl. Danske. Viden selskab,
Mat. -fys. Medd. 12, No. 8 (1933).' See for instance, H. Goldstein, Classical 3fechanics (Addison-
Wesley Press, Cambridge, 1950), p. 276.

"Philippe Choquard, thesis (ecole Polytechnique Fbderale,
Zurich, 1955).

~ Cecile Morette, Phys. Rev. 81, 848 (1951).
2' J. L. Anderson (private communication).

'4 J. A. Wheeler, Ilields and Particles (unpublished). Lectures
given at Princeton (1954-1955 and 1956—1957) and at Leiden
(1956)."B.Davison, Proc. Roy. Soc. (London) A225, 252 (1954).

26 W. K. Burton and A. H. De Borde, Nuovo cimento (10) 2,
197 (1955)~"P. T. Matthews and A. Salam, Nuovo cimento (10) 2, 120
{1955).



FE YN MAN QUANTI ZATI ON OF GENE RA L RELATI VI T Y 50i

of the grid tends to zero. The entire procedure may be
abbreviated by the phrase

bA=S '(V) Q d4A(x),

where the normalization factor X indicates both a
finite normalization factor A(K) which appears with
each skeleton integral, and the procedure of averaging
over gauges.

Polkinghorne'8 has shown how operator field equa-
tions and canonical commutation rules may be derived
in a non-S Feynman field theory. He does not require
any details of the construction of the Feynman integral,
and his work provides a justification for the use of
non-S definitions of the functional integral.

In applications of the Feynman method to field theory
considered by the British group, the states are treated
abstractly and denoted by Dirac kets26 ":

I
f'o.') is a

state for which the field f on o' is characterized by
eigenvalues f'. The Feynman propagator then is a
matrix element of the unit operator (f2oiI1I fio.i).
Wheeler'4 has introduced into his discussions of
Feynman field theory the idea of representing the
states explicitly as functionals f,(f) of the retd con
ftguratiorts. A field configuration is simply a specific
value of the field given for every point of the surface 0..
As an example of a state functional we quote from
Wheeler the ground state of the electromagnetic field:

1
I t H(x) H(y)

$0 iV ' exp———,
~

d'xd'y . (11a)
16vr4hc~ ~

I
x—y I'

Here E is a normalization factor which is independent
of the field, but which depends on the way the functional
iritegration over field configurations is defined. This
idea of a state functional is a key idea in the quantum
theory of general relativity, for we may begin with
state functionals and then later, when we know some-
thing about the inner product of two such functionals,
find the relationship between these functionals and
vectors in Hilbert space. In this way we avoid assuming
that there exists a g„„(x) operator and a normalizable
physical state which is an approximate eigenfunction
of g„„(x).In a fully gauge-invariant theory neither of
these assumptions is true.

The idea of a state functional is independent of any
idea of an inner product. The idea of a state vector is
that of an element of Hilbert space, and is therefore
stated in terms of an inner product. To distinguish the
two situations we use the notation ip„f~, for state
functionals, and Ia), I b) for the corresponding state
vectors when they exist. A state vector Ia) can be
defined by a state functional P, for which J' IP (f) I

'5f
is finite. This functional integration is over the field

"J.C. Polkinghorne, Proc. Roy. Soc. (London) A230, 272
(~955).

configurations f which are the arguments of f, (not
over field histories). It is easily possible that

I
a)=

I b)
even though iPoNiP~. In (3) and (4) the quantities
(f2&vI fioi) and (f2o2IOI fioi) are functionals of the
two Geld configurations f2 and fi Th.ey serve to define
matrix elements through the formula

{2I&I1)= "A*(fi)(f2&2I@
I fioi)pi(fi)&fi&fi, (12)

where I1) and I2) are state vectors defined by the
state functionals Pi on oi and P~ on oi. We assign no
meaning to the isolated symbol

I fo), and would wait
until the existence of an appropriate state were made
probable before writing

I fo).
Both Laurent and Wheeler employ a gauge-invariant

action, J'F„„F""d'x, in quantizing the electromagnetic
field, and suggest using J'R(—g) ~d'x in general relativ-
ity. This does not seem to avoid the use of a subsidiary
condition, but does allow one to use a gauge invariant
subsidiary condition. In electromagnetism this condition
is

f, (A) =f,(A+gradX) for all X. (13)

In general relativity the subsidiary condition on the
state functionals is similar in form: P, must be constant
over every set of field configurations which dier only
by gauge transformations.

u' o= (u o) = cpu"'v".

~ C. Chevalley, Theory of Lie Groups (Princeton University
Press, Princeton, 1946). De6nition 1, p. 85, and Def. 2, p. 80,
but read diGerentiable for analytic.

3. NATURE OF QUANTUM THEORY OF
GENERAL RELATIVITY

We now sketch an over-all view of what one is to
mean by the quantization of general relativity with a
minimum of explanation or justification:

(1) We introduce a 4 mani fold, " OR-, of points.
These points have no physical significance in themselves.
However, they serve as handles for stating the signif-
icant mathematical relationships. They act as formless
building material; no metric has yet been introduced,
nor will a definite choice of a metric for 5R ever be made.

(2) We use subsets of these points called hyper
surfaces, oi, o&, They are 3-dimensional submani-
folds" of 5R.

(3) We introduce the concept of a metric at a point x.
The metric is the inner product operation (, ),. A
particular metric is defined by giving a way of comput-
ing the inner product u n= (u,o), of every pair o—f
tangent vectors I, e at x. It is most commonly defined

by giving its components g„„(x) in a particular co-
ordinate system so that the computation of I e is
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The notation ds ' for the metric at x is more common"
than (, ), but has the same meaning. Thus we shall
always mean by ds, ' a metric (an inner product
operation) at x. In particular, the operatiort ds' may
be used to compute distance intervals, but is rot to
be understood as itself being a distance interval.

(4) We introduce a fiel history, ds' for the metric,

f for a more general field, by giving at each point of
OR a definite value ds'(x) or f(x) for the field there.

(5) If values ds'(x) or f(x) are specified only over a
single hypersurface o.i, we call this a field cortfiguration
(ds')i or f, at oi.

(6) For any hypersurface o or o.i we consider state
furtctiortats iP, or iPi (to be distinguished later from the
narrower class of physical state flnctiortats). A particular
state functional Pi at oi is defined by giving for each
field configuration fi at oi a complex number Pi(fi),
the value of iPi for the field configuration fi

A sample state functional P, can be defined by

equation, i7i8$&/Bt=Hip&, selects certain admissible
ones called states. The entire admissible family of state
functionals is determined when we give one member,
say ltp. When we represent lt by lt p we are in the Heisen-
berg picture, while when we represent P by the admis-
sible family {iP&} we are in the Schroedinger picture.

A similar situation prevails in field theory where a
state P may be represented either by a state functional

Pp at a chosen surface op (Heisenberg) or by a family

{p.} of state functionals (Schroedinger) satisfying
the dynamical principle.

(8) As dyrtaritical priitcipte we use, in place of the
Schroedinger equation, the Feynman principle: G-iven

a state functional imp at o.p, we find the other members
of the family {P.} for the state determined by leap

through the formula

lt, (ds') = exp — 'R;, 'R'&('g):d'hj

if.o is space-like for the metric ds',

P, (ds') =0 otherwise.

(14)
Here J' bfp is a functional integration over field
configurations fp at o p, and E' is the Feynman propagator
which may also be written (f.o ~

fpo'p).

(9) The Feynman propagator is to be defined by a
functional integration over field histories:

Here we assume coordinates around 0. chosen so that
o is defined by x'(x)=0. Having written the field
configuration ds' on a in the form

ds (x) =gpp(h) (ch ) +2gp„(h)ch ch~+g;&(h)ch'ch~'

we compute the three-dimensional Ricci curvature
tensor 'R;, and volume element ('g) '*d'x from the metric

g 'j g
'j defined on 0- by ds'. We do not know exactly

what physical situation this sample state functional
describes. It gives greatest probability to the field
configurations ds' for which 'E.;j=0, i.e., for which the
g;, metric makes o. flat (assuming that the topology
of o allows a fiat metric). It is assumed that ipi gives a
complete description of a physical state of the system,
so that from fi p/ tNhse machinery of the theory one can
compute the expectation value of every observable. In
a particle theory 5K is one dimensional, —~ (t& ~,
and the 0. are zero dimensional, t=T, while a state
functional lt, is an ordinary function pr(x) of the field

f=h =particle coordinate.
(7) From all conceivable families iP= {P,}",=„of

state functionals in particle theory, the Schroedinger

~ Computation methods more ei5cient than classical tensor
analysis focus attention on the quadratic differential form
ds~=g„Px"dx" rather than upon its components g„„directly,
Paj fb j.This viewpoint fcj leads to new insights into differential
geometry. An intrinsic definition of a differential Lbj I dg identifies
the differential form ds with the inner product operation (, ).
Laj C. Cartan, Let„ons sur 4 Geometric des Espaces de niemann
(Gauthiers-Villars, Paris, 1946), second edition. Lbj H. Flanders,
Trans. Am. Math. Soc. 75, 311 (1953). Lcg S. S. Chem, Bull.
Am. Math. Soc. 52, 1 (1946). I dj See reference 29, p. 81.

K(f, ,o p, fi,o i) = J~ exp Iv (f) h f,— (16)

where Ir(f)= J'vZd4h is the action integral for the
classical theory of the field, evaluated for the particular
field history f defined over the four-dimensional V
which has 0-2 and 0-j as boundaries. The functional
integration extends over all field histories f with
boundary values fp on o-p and fi on o i. We write

(17)

to suggest that the definition of the functional integra-
tion might be approached by the Wheeler-Feynman
skeletonizing process (Sec. 2). Here df, is a measure on
the space of values f(x)=f, of the field at a point.
The normalization factor 1V(V) suggests the limiting
processes and normalizations which go into the defini-
tion of the functional integration process.

In Sec. 4 we give two axioms (H) and (I.) which
guide in the choice of the measure df, to be used in
constructing 8f, and in Sec. 6 we see that the operator
field equations can be derived on the basis of these
axioms. In Sec. 5 we define the measure J' df, to
be used in quantizing general relativity, f=ds', and
the operator fieM equations for general relativity are
given explicitly in Sec. 6. The problem of defining the
functional integral has been temporarily side-stepped,
not solved.

(10) Gauge-invariance brings with it a subsidiary
condition so that not every state functional imp at op
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generates a usable state it =/, } by (15). Those leap

which do define usable states f, and the P they define,
are called physical states. The criterion which distin-
guishes physical states is called the subsidiary condi ti orl,.
The sample state function of (14) satisfies the subsidiary
condition in general relativity.

(11) Gauge invariance in. general relativity has its
origins in the topological invariance of the theory.
Topological invariance means that, given two manifolds
OR and OR' which are topologically equivalent (differen-
tiably homeomorphic), if we first perform all construc-
tions required by theory and then choose a particular
homeomorphism (differentiable 1-1 correspondence
between the points x of OR and x' of OR') between
5R and 5R', it will always be possible to extend it to a
1-1 correspondence between the elements of the
structure over 5R and those of the structure over 5K.'

Roughly, topological invariance means that nothing in
the theory changes on replacing 5R by a topologically
equivalent manifold. Thus we might let 5R be the set of
quadruples (r, z', z', z') where r) 0 is a real number and
each z' is a complex number with 1z"1=1. On the
other hand we might just as well let 5R be the set of
quadruples {s&8',8',8'} where s is any real number and
each 8"' any family {8+2irn} of real numbers (n=
—1, 0, 1, 2, ). This second manifold is customarily
called 8&(T'.

The topological invariance of general relativity has
other consequences besides the subsidiary condition.
If a pair of hypersurfaces op, oi (e.g., s=2, 1 in the
foregoing) are topologically indistinguishable from
another pair o.4, o i (e.g., s= 40, 30), then the correspond-
ing Feynman propagators X(2,1) and K(4,3) should
be equivalent. This fact we consider in detail in Sec. 7

and find that it implies that the Hamiltonian operator
vanishes. Consequently, among the members of a
state P={P,} defined by a state functional Pp on 0'p,

every time there is no topologically invariant criterion
which distinguishes the relationship of 0.

& to 5R and 00
from the relationship of op to OR and op, Pi and Pp will

be equivalent. That is Pi puts the same physics on oi
as Pp puts on oi—P, is essentially independent of
0. and the Heisenberg and Schroedinger pictures
essentially coincide. For example, (14) defines a P,
not just for a particular surface 0-, but as a is allowed
to vary it defines a family P= g,}.This family satisfies
the dynamical principle (15) for the appropriate class
of surfaces 0., e.g. those surfaces defined in E.&(T' by
s= f, (8',8',8') where f, is any differentiable (periodic)
function.

(12) The idea of Hamiltonian, Heisenberg, and
Schroedinger picture, and many other concepts familiar

in other field theories can only be incorporated in

quantized general relativity by analogy. They do not
have exactly the same meaning, for we do not have at
hand any metric, or meaningful idea of time, to use in

de6ning them. The manifold 5R started out without a

(V( ))t = 4.*(f)V(o,f)4"(f)8f,

where the functional integration extends over all
field configurations f=ds' at o.. Since the Hamiltonian
vanishes, 6(V(o))t/bo(x) =0. This says not that (V)t,
is a constant of motion, but that it is topologically
invariant. To define the time derivative of V we need a
field history, not just a field configuration. If ds' is
given everywhere over V between 0-2 and a.~ making 0-~

space-like, then we can define a function t(x) as the
length of that geodesic from x to 0 ~ which is normal to
oi. Then t(x) is well defined for all x sufficiently near
oi. Next define V(oi,ds', t) = V(o.i,ds&') where or is the
hypersurface t(x) = T, and dsr' is the field configuration
induced on 0-z by the field history ds'. Then we have

(V)e = )~4 i*(fi) —V(oi f, t)
- g=o

1Xexp Ir(f) $&(-fi)8f, (19)

where Pp, Pi are the members of P= {P.} corresponding
to o-2 and 0~, and the functional integration extends over
all field histories f ds' defined over V, including an
integration over the boundary values f„on o.„.This is
an admittedly complicated definition, for t depends on
ds'. We do not know how to evaluate such formulas,
nor how to give them a mathematically precise meaning.
This example is intended merely as an indication of how
dynamical questions may be formulated within the
theory.

metric, and never gets one. We cannot, for example,
speak of space-like surfaces, but must replace this idea
with that of a space lik-e state functional: a P, which
satisfies P, (ds') =0 for every field configuration ds'
which does not make o- space-like.

The dynamical principle (15) was likewise written by
analogy, but it turns out to be very undynamic (lt,
independent of o)—at least we hope it would be
undynamic in this sense if the constructions could be
carried out. With no metric on 5R there is little physical
signi6cance to a choice of a. so probability amplitudes
ought not to depend on this choice. The true dynamics
is the dependence of observables on time, and therefore
takes place at a point in the theory where there is
a metric with which a meaningful idea of time can be
stated. The true dynamics is an ieeer dynamics which
is to be found within the Feynman propagator, rather
than in its external action on state functionals. We
give one example: The volume V(o.,ds')= J', ('g)'d'x
is an observable (gauge invariant) functional of o

and the field configuration ds' on o.. For a state P
I such as the one defined by the state functional 1tp of
Eq. (14) with op the surface s= 0 in RX T'] its expecta-
tion value is
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4. H PRINCIPLE

We view the Feynman method as a Huygen's
principle": In forming

t exp —(action) d (field histories)
f'

(20)

the exponential by interference effects should select
for us the fields that propagate significantly. In the
integration all fields should be weighed equally,
otherwise our arbitrary choice of what weight to put
on each history in d (field histories) would compete
with the exponential in selecting the significant fields.
Of course we have yet to say what "weighed equally"
means. The phrase suggests immediately, if we look
about for suitable mathematical expression of it, the
idea of invariant integration over a group.

Can we discover an invariant group integration in a
simple problem? Consider a scalar field P(x). An
obvious group is the set of fields under addition. The
integral over values of the field p(x)=p at a point
actually used here, J' dP, to generate the functional
integration J' 8& is in fact the unique invariant
integral over the additive group of real numbers p, .
To construct f bP from f dP, normalization
factors A(X) appear depending on the grid of points
X used in the approximation of J' bg by a multiple
integral. The normalization factors are, however,
independent of P. In the Feynman propagator

K(4» '4'i i)= exp -I 8') '~&t f'
1 (16')

where V is the volume with/o. 2 and O.i as boundaries and

Ir(~t) = Zd'x

is the action integral, the functional integration
J' 8& extends over all fields P over V which reduce to
~b2 on 0.2 and $i on 0 i. This set of fields, F(V; &2,&i), does
not form a group; however the fields p over V which
are zero on o 2 and 0 i do form a group, call it G(V,bdy V),
and the functional integration is invariant under this
group. By this we mean

~
"~(e x)&~= ~~&(~)-&~ (21)

3' R. P. Feynman, reference 2, Sec. 7, p. 377.

for every functional V' of P [such as the exponential of
the action in Eq. (16')j when x is in G(V,bdyV).
This invariance condition can be stated

8(/+X) =8& for xeG(V, bdyV)

as is seen by replacing @ by x+P in the left-hand side

of (21). The functional integral is thus invariant under
a group G(V, bdyV), even though it is an integral over
F(V; &2,&i). The relationship between G and F can be
stated by saying that G is a transitive group of permuta-
tions" of F. That geG is a permutation of F means that
the transformation x of F defined by g—&P+x is a
1-1 transformation of F onto F, while transitive means
that if &0 is one field in F, every other peF is of the form
&=&0+x for some xeG.

We now state these ideas in a still more abstract
form in order to isolate certain aspects of the simple
problem (quantizing a scalar field) and state them in a
way which shows no traces of the problem in which they
were recognized. Then the statements may be con-
sidered a discussion of the simpler aspects of more
difficult problems. Were we to look immediately at
general relativity the pertinent simplicities might get
confused with difficult questions which we are not
trying to answer immediately. Thus in the theory of
an unspecified field fwe will have a Feynman propagator

K(fg, a2, fiai)= ~~ exp Ir(f) b-f (22)

defined by an action integral

f
Iv(f) = ada (23)

and a functional integration J' bf The integ. ral
extends over the set F(V; fg, fi) of fields which reduce
to f2 on 0.2 and fi on oi. We want to have a transitive
group of permutations of F(V; f~,fi); we denote this
group by G(V,bdyV).

Definition: If G is a transitive group of permutations
of F we say

32 This is identical with the idea of a transitive transformation
group, but this name is more common when topological considera-
tions also enter. D. Montgomery and L. Zippin, Topological
Transformation Groups (Interscience Publishers, Inc. , New York,
1955), Sec. 1.19, 1.26, 2.12.

F is an homogeneols set and G its homogeneity.

If ~eG is one of the transformations, the transform of
feF will be written f in order notto sugg. est that we
are necessarily dealing with a linear theory (In the.
preceding example f=@, ir=x, and f =p+x).
Successively applying two transformations, x then ~,
we get (f )~=f "where mes is the product in G. (In the
example the group was written additively and +co=x&
+x2 if n.=xi, cu=x~. ) The invariance of the functional
integration under G is expressed by

b(f.) =bf

which states that the volume element at any point f
of F is just as big as it is at f, and means that for any



functional V

"&(f ')~f= ' &(f)~f (24)

for all ~66.
This H pri&sripls is so named because of the Huygen's

principle which suggested the weighed equally" phase,
the Homogeneity"" of the fields Ii under the group G
which gives precise meaning to the phrase, and the
Hurwitz integraP4 or Haar measure" '5 which will

enter into the construction of an integration satisfying
this postulate.

As a matter of convenience, we note that an invariant
integral

A(~) = &(f)~f

8(&)= "&(fo )~w (28)

where f, is some fixed field.
Then

over F(V; fo,fr) can be defined (formally) in terms of
an invariant integral J' ~ d'or over G(V,bdyV). We
de6ne V", the transform of a functional V' under x, by
the condition that 9" have the same value at f~ as 9"

did at f, i.e.

~(f )=&(f). (26)

Then the invariance requirement (24) can be stated

ri{9" )=ri(V') for all oroG(V, bdyV). (2'I)

(17), the homogeneity group of the fun. ctional integral
is to be generated by an homogeneity group G(x) of
the point integral J'. df, over the space F(x) of
field values f,=f(x) at x. If or(x)sG(x) we write the
image of f(x) under or(x) as f(x) &~&. Let G(x) be an
homogeneity of F(x) for each x, and s. a field with
vahlCs %(x)oG(x) Rild fol' x 011 bdyV) %(x)= 1. TllCll
we define the homogeneity G(V,b&lyV) of the set of
fields F(V; fo,fr) as the group of all transformations
f~f where f is defined by

f (x)=f(x) &*' for each xoV. (L)

If s-, &o are two elements of G(V, bdyV) their product
is defined by

(s.&o) (x) =or (x)&o(x)

where the product on the right is taken in G(x) for
each xoV. Eq. (L) says that the or transformations are
Local. Thus we have reduced the problem delning
G(V,bdyV) to that of defining G(x). Since J' Bf can
be defined formally in terms' off d'or, a .point integralJ' . .ds., over G(x) can be taken as the starting point
for a construction of the Feynman propagator.

5. MEASURE ON METRICS

Applying the ideas of the preceding section, we
must define a transitive group of permutations G(x)
011 tlic spRcc F(x) of Illctl'lcs Rt, a polllt. If g~„(x) Rl'c

the components of ds'(x) we define the components
g„, (x) of ds'(x) &'& by

g„„ (x)=or„ (x)g.s(x)m, s(x),

where s (x) is a tensor satisfying

g(V'")=)t 9'"(fo )d'or= "V'(fo &")err deter = 8sro""~'7r„a—rrt rrpvr, )0

= ' &(fo)~(~~)=8(&)
The point integraP'

provided &i(K&o) =hs', l.c., lf J ' ' '8s ls R 1'lgll't 111VR1'1Rllt

integral over G(V,bdyV) This defini. tion of ri= J' 5f.
in terms of J kr appears to depend on the choice of
fo, however if f .6s is left invariant, 8(&os)=bor,
then

g(&) =
J &(fo )&~= &(fo" )&~

Thus fo~, i.e., any field in F(V; fs,fi), could have been
used in place of f, without changing the value of g(K).

Ill view of 'tllc coiistl'llct1011 of J ' ' '8f wc 1111Rglnc

J
' ' '(deter) g &for s

piv '0

is a left and right invariant integral over G(x), unique
to within a factor independent of m. YVe asslike that a
functional integral f . .87r will be generated byJ'. dor, . Since in bs =X—

'(V)g&Eor, the normalization
factor is independent of or J' her will be a left and
right invariant integral over G(V,MyV), and thus give
an invariant functional integral over F{V;fs,fr) by
(28). This J' bf is then used in (22) to define the
Feynman propagator of general rejativity. The action
integral we use in general relativity is

8' A. %eil, I'Iwkgration duns les Groupes Topologigues {Hermann
et Cie, Paris, 1940), Chap. II."E. P. Wignor, Grlppslihsoros (Edwards Brothers, Inc. ,
Ann Arbor, 1944), pp. 103-108.

86 P. R. Halmos, Measure Theory {D.Van Nostrand Company,
Inc. , New York, 1950), pp. 254, 263.

C

Irr(ds') = ~ E( I)ld4x. —
16sG" r

(32)

"F. D. Murnaghan, The Theory of Group EepreserItaÃoes
{Johns Hopkins Press, Baltimore, 1938), p. 204.
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To what extent is the choice of G(x) arbitrary?
We do not know precisely, '7 however since we have
gone to all this trouble to avoid problems raised by
gauge-invariance, it is worth noting that G(x) coincides
with the gauge group at the single point x (consider
ir„&=By&/Bx"). This criterion on the choice of G(x)—let,

G(x) be the gauge group at. x—also gives the right
answer in electromagnetic theory and determines
G(x) uniquely. The choice of G (x) should be independent
of the Lagrangian of the theory however. It is much the
same question as "Is the field f to be a scalar, vector,
tensor, or what?" which must be decided in a classical
theory before field equations are written for the theory.
If we erroneously thought of general relativity as a
theory of simply a symmetric tensor field g„„ then the
space F(x) of field values g„,(x) at x consists of all
symmetric tensors and is a vector space under addition.
The obvious choice of an homogeneity G(x) of (xI7) is
the group of translations g„„=g„,+~r„, and linear
integration

(33)

dimensional representation it is necessarily of the form"

r(A) = (detA)'

and by countin the number of factors A,& which enter
in (35) froni the transformation law for g„, we see that
k=5. This observation allows us to write down im-

mediately the integral

over I'(x) invariant under G(x), where again the choice
of the arbitrary g„„-independent factor is made in-

dependently of the choice of coordinates. The range of
integration in (36) is the connected region of g„„-space
containing g„„=diag (—1, 1, 1, 1) and bounded by
detg„„=0.

6. OPERATOR FIELD EQUATIONS

Consider the integral (22) for the propagator in the
form

is unique to within a factor independent of g„„.Using
J'E( g)id'x as t—he action integral in the Feynman
propagator, and 6 as the homogeneity we could
probably construct a quantum theory with the Einstein
equations

g„——',g„R=0 (34)

as its classical limit. However, neither the action
integral, nor the group 6, distinguishes between the
(diagonal) tensors g„„=[—1,1,1,1j and g„.*=[1,1,1,1].
Both are solutions of the (34), and neither would have
a preferred status in the classical limit of the quantum
theory based on 6, so this classical theory would not
be general relativity.

The invariant integral (31) over G(x) is unique to
within a factor independent of m. We have chosen this
factor in (31) in a definite way that is independent
of the choice of coordinates used to represent m by its
components ~",. The invariant integral (33) over
F(x) is also unique to within a factor independent of
g„„. In this case, however, had we chosen different
coordinates x"(x") we would have written

K(f,,o, ; f,,&r,) = J" exp{iIv(f )/A)5f. (37)

Using the invariance (II) of the integration we have
inserted a transformation ireG(V, bdyV) This .integral
is a functional of x which is independent of m, therefore

8K i fbIv(f ) (z0= =—
~ exp Ir(f ) fif-

~x(x) A~ Sx(x)
(38)

8f-(x) = bn (x), (39)

Eq. (38) can be written

(QF)

Here the requirement (L) that the n. 's be local trans-
formations of the field f was used, since ir must be a
field m. (x) in order to define the variational derivatives
in (38).Defining the Jacobian transformation Bf /Bx by

II dfl"=r(~) II da", (38)
p&v p&v

where 2= IlBx"/Bx"~r and r is some function of the
matrix A. It is easily seen that r defined in this way is a
representation of the general linear group. As a one-

"The problem then is: Are there two distinct Lie groups
G1, G2, which are effective homogeneities of the coset space
P=Gl(4)/L considered simply as a differentiable manifold, and
which deGne essentially diferent invariant integrals on F.
(L=Lorentz group. )

»r(f)»v(f) ~f:
S~(x) Sf(x) a~.

(4o)

'8 We thank Professor V. Bargmann for pointing out this
argument.

after setting ~=the identity transformation. These
are the Quantum mechanical form of the Field equations.
The equations
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are equivalent to the Classical Field equations

bIi.(f)=0
b (x)

(CF)

for the Jacobian is of maximum rank: any desired
change in f may be produced by a suitable change in z..
(G is transitive. )

In linear field theories equations (40) are identical
to (CF); it follows directly from f =f+m(lin. earity)
that Bf /87r=1.

In general relativity we have from (29) a representa-
tion of the Jacobian transformation by a matrix

~g ~~ =g ~X,'y8„l'+m„"g~ 5„t'

when ~ is the identity, mp
——bp" and

=g „b„+g"5J'.
4a~o. ) . ,

bI (ds') —c'
(R""-2g""R)(-g)'

bg„„(x) 16m.G
(43)

so (QF) reads

(2
l
(R ~ ——',b ~R) (—g) l

l 1)=0. (44)

Obvious linear combinations of these equations give

and
(2lR( —g):l1)=o (45)

(2lR-'( —g) I1)=o. (46)

The form of (44) depends only upon the invariance
of the integration with respect to the transformation
w, not upon the fact that we concern ourselves with the
g„„rather than g&" or some other equivalent tensor
constructable algebraically from g„„.A ~ transformation
of ds' defines corresponding transformations of these
tensors as well, and bIi/b7r(x) is independent of the
factorization (40) used to compute it.

The content of (44) is this: in the quantum theory of
general relativity there exists an operator corresponding
to the classical tensor (R ~——,'b ~R)(—g)l, and this
operator is the zero operator. There is in (44) No

statement about operators corresponding to (—g) ' nor
E„&—~5 &R; hence the order in which the factors are
written in Eq. (44) is not significant.

7. TOPOLOGICAL INVARIANCE

Conventional field theories start with a manifold
possessing a metric (usually the flat Minkowski metric)
and describe the way in which some other field is to

The field equations (CF) in this coordinate system are

y~= h~(x', x',x', x').

The components g„P(x) of (ds')" (x) are given in terms
of the components g„„ofds' by

Bh~ Bh&

g""(x)=g-o(hx)
8$8$

(48)

In a similar way a field f" corresponding under h to
a field f could be defined. A state functional hP at ho

corresponding to P at o is then defined by requiring

h0(f) =k(f") (49)

for every field configuration f at ho.
Let h be a homeomorphism which establishes the

equivalence of two hypersurfaces a.2 and a-3. A state
functional Pi at o i (see definition of equivalent) defines
a state (family of state functionals, see Sec. 3)

be assigned to the manifold. Such theories are metrically
invariant (Lorentz invariant): they are unaffected by
any transformation of the manifold which leaves the
metric unchanged. General relativity starts with a
manifold and describes the way in which a metric is
to be assigned to the manifold. In general relativity,
only the differentiable structure (frequently abbreviated
"topology" ) is fixed at the start, and the theory of
general relativity is una6ected by any transformation
of the manifold which leaves the topology unchanged.
We do not mean that every quantity in the theory
remains absolutely fixed, but that to every permissible
transformation of the manifold there corresponds a
transformation of all the other quantities in the theory
of such a nature as to leave the physical content
unchanged. A transformation of a manifold which
leaves the topology unchanged is called a homeomor-
phism. In this section we look at the transformation
of the Feynman propagator corresponding to a homeo-
morphism, and see that if every homeomorphism is a
permissible transformation (i.e., if the theory is
topologically invariant) as in the theory of general
relativity, then the Feynman propagator connecting
equivalent hypersurfaces is trivial.

We say two hypersurfaces 0.2 and 0.3 are equivalent if
(1) there exists a hypersurface o.i, a V~i with a2 and
0.

~ as boundaries, and a Vsi with a3 and o-~ as boundaries,
and (2) there is a homeomorphism h of the 4-manifold
5R which maps V3~ onto V2I, a.3 onto 0-2, and which
restricts to the identity map of 0-~ onto itself.

A homeomorphism gives not only a correspondence
between points by y= hx, but can be used to construct a
correspondence of all fields. If p is a scalar function, the
corresponding function under h is written @" and
defined by p"(x)=p(hx). The metric corresponding
under h to ds' will be designated by (ds')". If x", y"
are local coordinates around x, and around y=hx,
respectively, then h can be represented locally by
differentiable functions h&:
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we may define a Hamiltonian density operator K,o(x)
directly in the quantum theory. The Schwinger-
Tomonaga equation, "4'

ih =K.o(X)P„
bo (x)

(53)

FrG. 1. The vanishing of the Hamiltonian. The hypersurface
0.3 is obtained from 0.

& by a change 5o.(x) which consists of sweeping
a2 across V into 0.3. The corresponding change g2 in the state
functional defines the Hamiltonian density operator GC, p($)
according to the Schwinger-Tomonaga equation

82(f2) = (tl&)J (f2If OC(*)d'*Ifa)A(f2)ef2.

The state is defined by specifying a state functional 1t|I on 0-1.
Standing at tr& however, we are unable (in a topologically invariant
theory) to formulate a criterion for choosing a second hypersurface
0- which would permit the choice 0-=tT2 but which would not allow
0.=0.3. Thus $2 and P3 are equivalent, i.e. 8/2 =0. In any topologi-
cally invariant theory we therefore must have X p=0.

containing the state functionals f2 at o2 and ip2 at o2
which are defined by 1P1 and the Feynman propa-
gator over V» and V&&, respectively. In a "matrix"
notation which suppresses arguments (f ) and integra-
tions (8fi) we may write (compare (15))

hK(o2, o,)=E (ho h2o, )h,

or in the present case, since ho-3 ——o-2,

hip2= 1t 2.

(51)

(52)

In summary, let ll = ge} be a state for a topologically
invariant quantum theory, and let 0-2, 0-& be equivalent
under a hOmeOmOrphiSm h With ho 2= oi, then hp2=1pi.
The equation 1P2 1P1 is nonsens——e since F2 and $1 are
functionals with different argument domains (the
field configurations on o.2 and o.i, respectively). In a
topologically invariant theory the only distinguished
transformations which we could use to identify these
two domains are the homeomorphisms. Consequently
one does not misinterpret the equation hp2 = lt 1 by
saying that p2 is the same as lli. When ip2 is given by
an explicit formula such as (14), the equation hiP2=ll 1

says that a formula for t'ai may be obtained simply by
replacing cr2 by ai in the formula for lt2. The general
idea is that in a topologically invariant theory, a
homeomorphism is the same as an identity transforma-
tion, modulo physically meaningless mathematical
distinctions.

We have taken as the basic elements of quantum
field theory the definition (16) of the Feynman prop-
agator, the dynamical principle (15), and the formula
(4) for computing matrix elements. We did not have
any need for a Hamiltonian in the classical theory (in
general relativity it is quite difficult to find one') so

(50)

SinCe h iS the identity On o.i, hai=o. i and hei ——$1.
If h is a permissible transformation we must have

serves this purpose. I.et a pair of hypersurfaces such as
0-2 and 0-~ in Fig. 1 dier by the boundary of a small
(cellular) neighborhood V, of a point x. A comparison
of F2 and 1P2 is defined by

(54)

where h is any homeomorphism h: 0-3—+0-2 which reduces
to the identity on the common submanifolds of o-3

and 0-2. There is no structure available in a topologically
invariant theory to make a more definite choice of h,
but K p will be well defined without any further
restrictions on h. Note that the definition of hlt2
in terms of tP2 is independent of the equations of
motion. (15). Now suppose that both lt2 and ll2 are
members of a state ip defined by a state functional $1
on |T&, and that V is bounded by o-2 and o-& so V+ V, is
bounded by 0-3 and 0~. We may in this case interpret
g2 as the change in the state functional produced by
a change bo. (x) displacing the surface o.2 across V,.
Then since V is assumed to be a cell (a homeomorph
of the unit cube E4 in Euclidean 4-space) the homeo-
morphism h: 0-3—+0-2 can be extended to a homeomor-
phism h: V+ V,—+Vwhichistheidentityono i. Therefore
o2 and o2 are equivalent, hiP2=$2, +2——0, and conse-
quently K„=O. In any topologically inoariant theory,
the Hantiltonian operator oanishes For the. conclusion
BC,~ =0 to hold it is necessary that the quantum theory,
not just the classical theory, be topologically invariant.

Because of different methods of definition, our 3C p

Hamiltonian is not necessarily the operator correspond-
ing to the Hamiltonian defined in classical theory.
However Professor J. I. Anderson at the Chapel Hill
conference voiced suspicions that the classical Hamil-
tonian in general relativity would be zero.

Is the vanishing of the Hamiltonian embarrassing'
Not at all. As defined here the Hamiltonian is, so to
speak, the generator of infinitesimal homeomorphisms
and is totally unrelated to the energy of the system or
to the dynamic changes taking place in the observables.
Its vanishing is merely the local statement of the
topological invariance of the theory, and is therefore
desirable. We postulate it as one of the characteristic
properties of the Feynman propagator in quantizing
general relativity or any other topologically invariant
field theory.

SUMMARY OF CONCRETE RESULTS

It may reasonably be expected that whenever any
construction of the Feynman integral is possible,

"J.Schwinger, Phys. Rev. 74, 1449 (1948).
'0 S. Tomonaga, Progr. Theort. Phys. I, 34 (1946).
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this construction can be done in conformity with the
H principle. The H principle characterizes a property
of the Feynman integral sufficient to guarantee that
an operator form of the 6eM equations will hold.
The choice of the homogeneity of the field determines
uniquely the relationship between the form of the
operator held equations and the form of the classical
6eld equations. The homogeneity of the metric field of
general relativity has been defined, and the operator
form of the Einstein 6eld equations has been given.
In a topologically invariant quantum field theory,
such as quantized general relativity, the (Schroedinger)
state functionals on equivalent hypersurfaces are
equivalent, so that the Hamiltonian vanishes.
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1. INTRODUCTION

1

�~QUESTIONS

have been raised whether gravita-
4' tional radiation has any well-defined existence. '

Supporting this skeptical position, Rosen has investi-
gated further' the cylindrical gravitational waves first
considered by him and Einstein' as an outgrowth of a
suggestion by H. P. Robertson. A monochromatic wave,
or a pulse, of cylindrical symmetry, moves inward in
matter-free space, implodes on the axis, and moves out
again. This is the only problem of gravitational radi-
ation where one has an accurate solution of the field
equations of general relativity. The problem is special
enough not to illustrate all features of gravitational
radiation. On the other hand, all correct general
statements about gravitational radiation must ob-
viously be compatible with this problem. This problem

' A. E. Scheidigger, Revs. Modern Phys. 25, 451 (1953).
N. Rosen in Jubilee of Relativity Theory, edited by A. Mercier

and M. Kervaire (Hirkhauser Verlag, Basel, 1956).' A. Einstein and N. Rosen, J. Franklin Inst. 223, 43 (1937);
g, B,osen, BulL Research Qounoil Israel 3, 528 (19531.

therefore occupies a special position in the theory of
gravitational radiation.

Rosen finds an unexpected result. The pseudotensor
that measures the density of gravitational energy and
momentum in the cylindrical wave is everywhere zero.
The significance of this finding is the subject of this
paper. We conclude that many of the otherwise ap-
parently paradoxical properties of this cylindrical wave
can be understood by taking into account the analogy
between gravitational waves and electromagnetic
waves, and the special demands of the equivalence
principle, which rules out a special role for any par-
ticular frame of reference.

Section 2 recapitulates the expressions of Einstein
and Rosen and of Rosen for the metric of the cylindrical
wave. Two kinds of solution are of interest: mono-

chromatic waves and pulses. A pulse type of solution

is constructed that is represented by particularly
simple mathematical expressions. Section 3 reviews the

proof that the pseudotensor density of gravitational


