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(1) The gravitational field is static and spherically
symmetric; i.e., in appropriate coordinates the element
of proper distance, ds, or proper cotime, dr, has the
form~

l. INTRODUCTION AND SUMMARY

HE well-established classical theory of fields
with zero rest mass has rich consequences, many

of which still stand unexplored today (Table I),
forty years after Einstein's formulation of the general
relativity theory of electromagnetism and gravitation.

One new consequence appeared in a recent investiga-
tion. ' An electromagnetic field, or a neutrino field, or
a mixed field, of appropriate character and sufficient
energy density can hold itself together, it was calculated,
by its own gravitational attraction for a time long in
comparison with the characteristic periods of the field
oscillations. Or a the gravitation field, sufficiently
strong, can guide an electromagnetic or neutrino wave
and confine its energy to a bounded region of space.
When the energy of the standing wave is great enough,
it has enough mass to provide the guiding gravitational
field all by itself. The wave holds itself together.
Thus the gravitational and electromagnetic field
equations of general relativity admit self-consistent
solutions of great variety, many of which describe a
reasonably stable concentration of energy. Such a
"gravitational electromagnetic entity" or "geon" is
endowed with mass, has a characteristic decay rate in
the free state, moves through space like a, Newtonian
"body" when subjected to fields that vary sufficiently
slowly in space and time, and under the inhuence of
stronger fields undergoes transmutation. Geons of
mass greater than 1038 g and radius over 10" cm are
subject to classical analysis. Smaller geons, even very
much smaller geons, presumably exist, but are specif-
ically quantum objects. Their properties have not yet
been investigated. The large, classical geons have no
known connection with observational science. Their
interest lies in what they tell of the richness of a pure
field theory. The pure classical field theory, it would
perhaps be better to say: the only well tested theory
that one has for fields of zero rest mass; the theory
elementary fields, not fields associated with particle
that are themselves complex; the only field theory ion
established in its own right, not invented to accoun
for selected particles or for special features of nuclea
forces.

From the pure field theory of the fields of zero res
mass, and the geon concept, this article aims only a
a detailed analysis of one particular kind of geon,
thermal geon, with the following properties:

(ds) = —(dr) =g,edx dxe=e~(dr)

+r'L(d8)'+ (sin0dg)'] —e'(dT)' (1)

where X and v are functions of r alone, found by
numerical integration.

(2) Each independent mode of vibration of the
electromagnetic fieId is idealized to fall into one or
other of two sharply separated classes. The energy of
modes of the first class remains trapped for all time.
The second class of vibrations carry energy freely to
infinity. The one class corresponds (in the language
of photon orbits) to bounded null geodesics, the other
to null geodesics that lead to infinity (Fig. 1). In
actuality the energy of the "bounded" modes leaks o6
to infinity at a nonzero rate through a refractive index
barrier, after the manner of alpha-particle penetration
through a nuclear potential barrier. The rate of leakage
falls o6 exponentially as the ratio of the dimensions of
the geon to the wavelength of the disturbance in
question. In a thermal geon the wavelength of the
average mode is so small in comparison with the geon's
radius that the leakage rate is electively zero for all
but a very restricted class of vibration modes. These
few modes on the orbit picture belong to geodescis
close to the crossover from bounded orbits to free
orbits. The outward transport of energy resulting from
such modes is relatively small and is legitimately
neglected in a first analysis of a thermal geon.

(3) All free modes are assigned zero energy. Each
bound mode of circular frequency Qc is idealized to
have an excitation

mac'=Ea hcQ) 1+——exp(hc—Q/T) j ' (2)-.

' J. A. Wheeler, Phys. Rev. 97, 5l1 (1955).

of All properties of the thermal geon are specified by the
s single parameter T, which has the dimensions of energy

g and which we call the temperature. Occurrence of the
t quantum of angular momentum, IE, in this formula
r makes assignment of boundary conditions no diA'erent

in principle from that in any classical problem: It is an
t act from outside, it may or may not have a quantum
t origin, but it alters in no way the purely classical
a character of all the rest of the analysis.

It is easy to compare and contrast thermal geons with
other gravitational-electromagnetic entities. In all
such objects effective confinement of the energy

480



THERMAL GEONS

TABLE I. Qualitative comparison of the present state of charge- and mass-free gravitation and electromagnetism with hydrodynamic
theory showing how many features of the Einstein-Maxwell field still remain to be explored.

Hydrodynamics

1. Divergence condition; pressure-density relation; and equa-
tions of motion.

2. Formulation in terms of a single action principle.
3. Descriptions in alternative coordinate systems related by

tensor analysis.

4. Hedlund and others have made a beginning at representing
the laws of mechanics in an abstract coordinate-free form. '

5. Two alternative formulations of equations, according as
one analyzes the time change of the hydrodynamic quantities
at a given space point or at a given mass point

6. Degree of arbitrariness in specification of initial conditions
well understood.

7. Expansions for hydrodynamic quantities near a typical point
8. Behavior of fluid near a stagnation point or a triple point

or.a vortex center.
9. Fluid motion generated by an elemental source or sink.

10. Expansion of density, pressure and other quantities near a
point in a series of spherical harmonics.

11. Sound waves; radiation pattern related to source geometry;
radiation damping.

12. Shock waves; Mach triple point; slip stream. b

13. Vortex ring moving in quiet fluid maintains its identity
and integrity for a long time.

14. Law of motk ~ for the center of a vortex follows from the
hydrodynamic equations themselves. '

15. Turbulence under appropriate conditions describable in
statistical terms.

16. Generation of sound waves by turbulence partly studied. "

17. Many special solutions of the hydrodynamic equations are
known from similarity arguments or group theory or other
special methods of analysis.

18. Many types of hydrodynamic instability have been analyzed,
among them Rayleigh-Taylor instability and Holmholtz
instability and Bernard cells. '

19. One has developed a set of secondary concepts adequate to
describe many derived properties of the hydrodynamic field:
turbulence; vorticity; acoustic impedance; radiation flux, etc.

Gravitation plus electromagnetism

1. Maxwell's source-free equations in curved space and Maxwell's
stress-energy tensor as source term in Einstein's gravitational
field equations.

2. Formulation in terms of a single action principle.

3. Description has same form in all coordinate systems, much
as in group theory the laws of multiplication of the matrices
that represent group elements are independent of the special
choice of representation.

4. Nothing known to have been done to represent the Maxwell-
Einstein theory in a coordinate-free form as abstract as the
abstract theory of groups.

5. Coordinate system employed, x', may be arbitrary, or may
be given an invariant significance (A. Komar) by identification
with four of the fourteen invariants, I„of G6heniau and
Debever. '

6. Cartan-Lichnerowicz equations must be satisfied by initial
conditions, but means are not yet known to generate the
general solution of these initial value requirements. &

7. Expansion for g, I, and Ii;l, and R;;z& near a typical point.
8. Behavior of electromagnetic and gravitational field near a

point of special symmetry.

9. Schwarzschild and Reissner-Nordstrom solution. "
10. Similar expansion in spherical harmonics for small departures

from a condition of spherical symmetry seems not yet to
have been given. '

11. Electromagnetic and gravitational waves in small amplitude
approximation and their radiation pattern as related to the
geometry of the source. Radiation reaction analyzed for
electromagnetic but not for gravitational radiation.

12. Behavior of waves of high amplitude not yet known, even
qualitatively, except in very special cases.

13. Collections of electromagnetic or gravitational waves or
both under suitable conditions hold themselves together
gravitationally for long periods of time ("geons").

14. Law of motion for a geon follows from the field equations
themselves; the law of motion along a geodesic does not have
to be introduced as a separate postulate.

15. Radiation —isotropic or not —under appropriate conditions
also describable in statistical terms.

16. Gravitation-induced interactions between electromagnetic
waves, gravitational waves and geons, and cross sections for
elementary types of encounter between these objects, hardly
analyzed at all so far.

17. Problem of homogeneous isotropic closed radiation-filled
universe and its expansion and subsequent contraction, and
a few other special problems have been analyzed. Field
largely unexplored. &

18. One does not know how small departures from sphericity
grow with time in the problem of the expanding universe,
nor in the Schwarzschild-Reissner-Nordstrom solution, The
problem of stability analysis is practically untouched. '

19. Terminology for the electromagnetic field, with its six
components, is extraordinarily rich; but for the gravitational
field, with twenty R;;&&, the present secondary conceptual
structure is very rudimentary, having as yet no terms
analogous to dielectric constant, permeability, Poynting
vector, radiation pressure, Thomson scattering cross section,
inductance, etc.

& G. A. Hedlund, Bull. Am. Math. Soc. 45, 241 (1939); also G. A, Hedlund and M. Morse, Am. J. Math. 60, 815 (1938), and W. H. Gottschalt and
G. A. Hedlund, Topological Dynamics, Am. Math. Soc. Colloquium Publ. 36 (Providence, Rhode Island, 1955).

b See, for example, W. Bleakney and A. H. Taub, Revs. Modern Phys. 21, 584 (1949);Fletcher, Bleakney, and Taub, Revs. Modern Phys. 23, 271 (1951).
& See, for example, H. Lamb, Hydrodynamics (Cambridge University Press, London, 1953), sixth edition, Chap. VII.
~ M. J. Lighthill, Proc. Roy. Soc. (London) A211, 564 (1952); ibid. , A222, 1 (1954).
& See, for example, reference c, Chap. XI; also Lord Rayleigh, The Theory of Sound (MacMillan and Company, Ltd. , London, 1896), second edition,

Chap. XXI; H. Bernard, Rev. gen. sci. pures appl. 12, 1261 (1900); Ann, chim. phys. 23, 62 (1901).
& A. Komar, Proc. Natl. Acad. Sci. U. S. 41, 758 (1955); and Ph. D. thesis, Princeton, New Jersey, 1956 (unpublished); T. Y. Thomas, Proc. Natl.

Acad. Sci. U, S. 31, 306 (1945); J. Geheniau and R. Debever, Acad. roy. de Belgique 42, 114 (1956).
& A. Lichnerowicz, Theories relatikkistes de la grakjitation et de L'electvomagnetisme (Masson et Cie, Paris, 1955), Chap. II."H. Reissner, Ann. Phys. 50, 106 (1916); G. Nordstrom, Proc. Amsterdam Acad. 21, 68 (1918).
& emote added in proof.—The Schwarzschild solution has been shown stable against small perturbations in a paper submitted for publication by T. Regge

and J. A. Wheeler. The stability of the expanding universe against small departures from sphericity has been partially treated by E. Lifshitz.
& See for example, L, Landau and E. Lifschitz, The Classical Theory of Fields (Addison-Wesley Press, Cambridge 4, Massachusetts, 1951); Chap. XI.
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FIG. 1. (a) Schematic diagram of null geodesics or ray orbits in
the gravitational field of a thermal geon. Smooth curves: bound
orbits. Dashed curves: orbits that come from or go to infinity.
Dotted curves: inner and outer boundaries of the active region
of the geon; i.e., limits between which all bound rays circulate.
{b) A ray which is to reach to the point r must have an impact
parameter less than 7r(r). Here 7r(r) (=re "~2) is plotted as a
function of r in dimensionless units. Rays that are bound must
have impact parameters between E'1=0.518~ and P2=0.62Ez,
where R& is a unit of length uniquely determined by the tem-
perature.

demands localization of each mode of electromagnetic
oscillation in a region where the dimensionless measure,
—

g44, of gravitational potential (=1—2 GM/c'r for
Schwarzschild's point mass solution) is small compared
with unity, and orientation of the Row of field energy
in each mode normal to the gradient of —g44, or in
a direction not too far from normal. In contrast, a
photon that travels outward along a radius vector in a
spherical geon can always escape.

That region of space where —
g44 is small compared to

unity, or where the rate of ticking of a standard clock
is greatly slowed, is in some ways analogous to the
closed container of the theory of blackbody radiation.
There every mode is confined, while here only the
bounded modes —or modes of semitangential energy
transport —properly belong to the interior of the
container. Except for this difference the varieties of
geon are as numerous as the states of electromagnetic
field disturbance in a hohlraum. In the general case
many modes of oscillation of the field are excited,
each with an amplitude of its own. Then the gravita-
tional field resulting from the average energy distribu-
tion has no particular symmetry, and the mathematical

energy/volume Mc'/R' bT4/fi, 'c'. (3)

The linear extension, R, of the active region is set by
the requirement that —

g44 deviate substantially from
unity inside:

GM/c'R 1. (4)

From (3) and (4) the size is of the order

R Rr =(A'c'/87rbGT4—) ',

where the factor Sm has been included for later con-
venience; and the mass is of order

M Mr = (A'c"/S~bG'T4) -:. (6)

Higher temperature corresponds to geons of greater
energy concentration, and of smaller mass and size.

There is a maximum temperature, and a smallest
size, for which geons are free from electron pair creation
and annihilation phenomena. (1) Thermal energies

2 F. J. Ernst, Phys. Rev. 105, 1662 and 1665 (19S7).

analysis is complex. There are at least three particularly
simple types of geons. (i) Toroidal geons. Here the
electromagnetic energy is concentrated in the equatorial
ring where the gravitational potential has its extreme
value, The energy Rows around the ring in equal or
unequal measure in the positive and negative senses.
The ratio of the Quxes in the two directions is unity or
zero in the two special subcases of zero angular momen-
tum and maximal angular momentum. Toroidal geons
presumably have the greatest stability of all geons of a
given mass and angular momentum. They have received
partial mathematical analysis by F.J.Ernst. ' (ii) Simple
spherical geons. Here the gravitational field has nearly
spherical symmetry. The electromagnetic energy is
localized in a single mode of field oscillation with no
radial nodes and has a large but definite number, l,
of nodes in the angular variation of the field quantities.
More accurately, the energy is divided over a nearly
degenerate system of modes, corresponding to different
spherical harmonics of the same / value but diferent
m values. Such geons' require for specification two
parameters: the mass and the azimuthal index number,
/. The electromagnetic fields are intense in a relatively
thin spherical shell, or active region. In the course of
time nonlinear couplings build up the strength of
originally unexcited modes, and the energy distribution
slowly becomes more diffuse. (iii) Thermal geons.
Here the gravitational field is again spherically sym-
metric, but the available electromagnetic energy is
distributed over all confined modes according to the
most natural of statistical laws. A thermal geon is in
many ways the simplest to discuss because all its prop-
erties are fixed by a single parameter, the temperature.

Orders of magnitude and scaling laws for thermal
geons are readily discussed. Let the energy density of
blackbody radiation be denoted by bT4/A'c', where
b=7r'/15 The ener.gy density in the active region is of
the same order
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M=0.099 My, (10)

must be insufhcient to creat pairs, or the temperature
T must be significantly less than 2mc'. (2) The electric
field 8 acting on an electronic charge over the character-
istic localizability distance for an electron, k/rnc,
must be insufFicient to raise the particle to a state of
positive energy:

8&8„;&=—m'c'/efi=4. 41X10" (g/cm sec')'
(=4.41X10"gauss). (7)

Consequently the energy density of the field must be
limited to values less than h„;t2/8+ to permit a simple
analysis:

(x'/15) 7'/5'c' & (rn'c'/ek)'/8m.
whence

T&L(15/7r')(137/8m)]'mc'= 1.70mc'(1.01X10"'K)

Corresponding to the limit T mc' on the temperature
there are limits

(mc')'/h'c'= 1.41X 10"erg/cm' on energy density

m'c'/A'= 1.57 X 10' g/cm' on mass density

~(A'/Grn4c)'=9. 25X10" cm on size
(8)

~(k'c'/G'm') '*= 1.25 X 10"g on mass.

All analysis in this article confined to geons on the
high mass side of these limits.

In the realm of sizes that are free of electron physics,
geons satisfy the simple scaling law implied by (5)
and (6): when one geon is hotter than another by a
factor or two, it has a mass and radius four times as
small; but apart from this difference of scale it has the
same law of fall off of activity as does the cooler geon.
For this reason the calculations are carried out in terms
of the dimensionless scale independent variable

(9)

where Rr is the characteristic distance of (5). It is
found that the mass has the value

Qc, and is therefore assigned by Planck's formula a
definite amount of energy. Distribution of this energy
in space follows from the form of the field eigenfunction.
Summation over all characteristic modes then gives the
total energy density —and similarly the total stress —in
the field at any specified point in space. The stress-
energy density so found —or its time average value—
constitutes the entire source for the original static
gravitational field. One arrives at a coupled system of
equations, for the gravitational field and for the
characteristic vibrations of the electromagnetic field.

In practice the number of characteristic modes of
appreciable excitation is so enormous that a statistical
treatment of the characteristic modes is more appro-
priate than any detailed solution of Maxwell's equations.
The Fermi-Thomas picture of electrons in an atomic
field bears a relation to the Schrodinger equation like
the connection between the statistical analysis of
optical rays and the solutions of Maxwell's equations
in a gravitational Geld. In both cases the JWKB
approximation method links the wave point of view
to the particle or ray picture. In Sec. 2 Maxwell's equa-
tions in a spherically symmetric metric are separated
into an angular and a radial part. The solution of the
radial part in the JWKB approximation is found to
depend upon a single constant, the impact parameter P.
For a ray which can escape to infinity this distance is
defined as the asymptotic separation of the ray and a
parallel ray which comes straight through the center of
the geon without deQection. For a trapped ray, the
concept of ray provides an idealized description of a
mode of vibration of the electromagnetic field. The
amplitude is large and oscillatory in the region of
trapping, falls off exponentially outside the zone of con-
finement, but with still greater distance starts again to
oscillate, corresponding to a weak leakage wave that
runs o6 to infinity. This leakage wave, described in ray
language, has an impact parameter, P, that is a property
of the mode of vibration as a whole. Bound rays in a
thermal geon have impact parameters between the two
limits (Fig. 1),

where Mr is the characteristic mass value of (6).
The total mass M(r) out to the distance r, and the
dimensionless measure of this mass,

rn(x) =M (r)/M,

Pg= 3'GM/c'=0. 51Rr

P2= 0.62R.z,

and move always between the limits

(12)

are dined by

e "=1—2GM(r)/c'r= 1—2m(x)/x (11)

The dimensionless measure of mass, m(g), is shown
in Fig. 2, along with the metric quantities —grr(x) = e"

and g„„=e". Figures 1 and 2 contain the principal
results of this paper.

The analysis is simple in outline. If the gravitational
field is temporarily assumed known, then the informa-
tion is at hand to set up Maxwell's equations for
characteristic vibrations of the electromagnetic field.
Each solution has a well-determined proper frequency,

R;„=0.14Rr and R,„=0.30Rr. (13)

Every point in space is characterized by a critical
impact parameter,

(14)

No ray with impact parameter greater than 7r(r) can
arrive at r. Trapped rays are associated with the
shaded region in Fig. 1. Among these, the bound null
geodesics, there is exactly one which is circular. Its
radius is

R„„i,=0.19Rg
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FM. 2. Self-consistent solution of the problem of the thermal
geon. The circles represent the results of numerical integration for
the trial value of the eigenvalue parameter closest to giving a
function m(x) having the proper analytic behavior, as given by
(86) and (89), at the two limits, and the smooth curves represent
an estimate of the course of the functions for the correct eigenvalue.
The quantity e" can be regarded as a measure of the gravitational
potential that binds the photon in the orbits of Fig. 1. The ordi-
nates in graphs (b) and (e) are Q2 and e", respectively.

and its impact parameter is

7r (R.;,.i.)=P.;„7.=Ps ——0.62Rt (16)

Circular motion at the radius R=R „ is also possible,
but is unstable. On receiving small disturbance the orbit
spirals inward or outward from the circle, slowly at
first and then with steeper pitch. This orbit, with
impact parameter P=Pi, marks a boundary between
orbits that can be trapped (P5&~P &~Pi) and those
that can not.

The impact parameter P=Pj gives the bound orbit
with the greatest possible range of excursion in r,
from r=R;„ to r=R, . The bound orbit with the
maximum possible impact parameter, P=P'2 has the
minimum radial excursion: none at all.

It is easy to discuss the behavior of rays of impact
parameter P=P~ near the outer limit, r=R, of
the region of trapping. All the mass M of the system
lies within the radius R, and the total angular
momentum of all the radiation mass-energy is zero.
Consequently the metric from the point r =R „
to infinity has the Schwarzschild value,

e"=e "=1—(2GM/c'r)

and throughout this same region the critical impact
parameter associated with any point r is

7r(r) = r[1 2GM/c'r] '*—
The minimur6 value of this quantity and the value of
r at which it occurs have to be identified with the
coordinates of the critical turning point, P~, R, , in

Fig. 1. Thus, a ray coming from outside with this
critical impact parameter, like a ray coming from
inside, must approach the point r=R,„without ever
reaching it, in the manner of a spiral asymptotic to a
circle. 3y differentiation of (18) we find

R, =3GM/c'
I'7 7r(R,„)=3IGM/c——'.

The comparison between the two extreme bound orbits
is striking (Fig. 1). One is exactly a circle of radius
r=R„;„.The other, starting as a straight line tangent
to the smaller circle R;„, moves out to larger r,
gradually curving as it goes, crosses the circle r =R„.;„,
and ends up at the circle r=R, after an infinite
number of convolutions.

Let one describe a sphere of a specific radius r between
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d (proper distance ~[r)

=rdg/e"~ d =[s. (r)/P' 1] 1;—
sinn =P/m (r).

(20)

The bundle of bound rays has, at the point r, angles of
inclination that range from

n= arc sin[Pi/vr(r)] (21)

for outgoing rays of the minimum impact parameter Pj,
through n=n/2 for rays of the local extremal impact
parameter m. (r), to

a= m. —arc sin[Pi/m-(r)] (22)

for returning rays of the minimum impact parameter,
Pj. The allowed rays fill a fraction of the entire solid
angle given by

,d/4ir= cosa= [1—Pi2/~2(r)]'* (23)

Normal blackbody radiation would have the energy
density

bT4/A'c'= (m /15) T4/fi'c'. (24)

The actual energy density is less because only a portion
of the solid angle is filled with blackbody radiation

E; and E, and ask which of the bound orbits cut
this sphere. Not all of them, unless r happens acciden-
tally to equal R„„,i,.A typical trapped ray (Pu &&P ~& Pi)
will or will not reach the distance r according as its
impact parameter is less than or greater than the
critical impact parameter, ~(r), associated with the
point r. The extremal ray P=m(r), that can barely
touch the sphere moves at (hut part of its orbit perpen-
dicular to the axis. A ray of a slightly smaller impact
parameter cuts across the sphere of radius r both on
its outward excursion and on its return, both times
with only a small velocity component normal to the
surface. A bound ray of minimum impact parameter
P&, cuts this sphere closer to normality than does any
other bound ray. Rays of this impact parameter
observed at the point r will have all azimuths. Including
both outgoing and reQected portions of orbits, these
rays define a double cone. This double cone bounds
the bundle of directions filled out by all the trapped
rays (~(r) ~& P &~Pi). This bundle embraces the largest
solid angle when r=R„„i,, i.e., when s (r)=~m~ bouna

=P2. The bundle narrows down to a Rat disk perpen-
dicular to the radius vector when r approaches either of
the limiting values R;„orR,„;i.e. n. (r) =Pi.

For a quantitative measure of ray direction we
define an angle of inclination, cx =0, for a ray (unbound!)
that travels parallel to the radius vector. For any
other ray the inclination, n, depends upon the impact
parameter P that characterizes the whole course of
that ray and the point r at which that ray is observed:

d (proper distance J r)
tano. =

't/'p =krop, (28)

where q is Newtonian potential and p is the mass
density.

The field equations of general relativity give the
second derivatives of the g;A, in terms of the ten source
strengths T;~, of which the component, T44, divided
by c' is the mass density. The metric tensor, g;I„ is
completely known except for the two dilatation func-
tions, X(r) and v(r). Consequently, two of the ten
equations are sufhcient to determine the potentials i'
terms of the source strengths:

R &[e i(g idp/dr+r &) —r 2]= (8sGRr2/e4)T ~

= (-', ) (co/ n.4)'e '", (29)-
Rr [e "(r ad)/dr) —r ~]= (8m—GRr /e )Trr

= —((a/4n)e (30)

Here the expressions (26) and (27) for the energy stress
tensor in terms of the solid angle have been used.
In terms of the dimensionless independent variable,

.
' R. C. ToIman, Relativity, Thermodynamics and Cosmology

(Clarendon Press, Oxford, 1934), p. 318. T corresponds to
Einstein's "wahre Temperatur"; Te &" to Khrenfest's "Taschen-
temperatur. "

(23) and because the effective temperature at the point
r is not T, but

T/( g44)—~= Te &"&"', (23)

according to Tolman. ' Thus the energy per unit volume
ls

Trr (bT——4/A'c') (s&/4s)e ' (26)

The same result is obtained from first principles in $3
by evaluating the energy density of each individual
bound mode of vibration of the electromagnetic field
and summing over all bound modes. The JWKB
approximation is used, together with the wave-ray
correspondence. All summations are replaced by
integrations in view of the enormous number of proper
vibrations of appreciable energy content. A similar
calculation gives for the radial component of the
electromagnetic stress energy tensor

T„"=(1/3) (bT4/5'c') (~/4s)'e '" (27)

The circumstance that one has in principle to deal
with a practically infinite number of eigenvalue
problems in treating the trapped modes of vibration,
far from causing difhculties, helps to express the stress-
energy tensor in terms of purely geometrical quantities.

In Sec. 4 the self-consistent system of equations of
the geon is analyzed and solved. Thus, (26) and (27)
with (23) and (14) give the source of the gravitational
field—the electromagnetic stress energy tensor —in
terms of the gravitational field itself. In addition we
require only the law to find the gravitational field from
its sources —Einstein s generalization of the equation of
Newtonian theory,
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e"= i; dv/dx=3**(2/xi),

e'= 3; dX/dx= —3l(2/xi).

(34)

At the inner join point, x=x;„, the boundary condi-
tions are

(xe l") at x; = xi (definition of x; )

d v/dx= dX/dx= 0. (35)

For convenience in numerical integration of the
self-consistent equations these boundary conditions on
X(x) were expressed as boundary conditions on a
variable, m(x) —the effective mass up to a distance x,
de6ned by the question

e ~=1—2m(x)/x. (36)

At x,„=xi/3' we have m(x,„)= (—',)x,„and (dm/dx)
=0; at the inner point both m(x) and (dm/dx) are
zero. The differential equations were integrated with
an electronic digital computer starting at a specific
inner join point and proceding outwards until either
m(x) = x/3 or dm/dx=0. In the former case the devia-
tion from fatness was noted, the inner join point
made larger, and the integration repeated from the
start. When m(x) became fiat before reaching the
value (—,')x, , the inner join point was made smaller
and again the integration repeated. Figures j. and 2
report the results of the integration for the best
value of x~ found with the limited machine time
available

xg= 0.51. (37)

x=r/Rr, these are

e "(x 'dv/dx+x ') —x '= (—')(~/4m. )'e '"
= (-')(1—xi'x 'e")le '" (31)

e "(x ' x—'dX/dx) x—'= —(I/4~r)e '"
= —(1—x 'x 'e")le '" (32)

These are the two di8erential equations for the self-
consistent solution of the thermal geon problem.

In (31) and (32) the quantity xi is an eigenvalue
parameter which measures the critical impact parameter
I'~ in dimensionless units. Also it determines what
mass M is required to give stability to a thermal
geon of temperature T:

x,=P,/Rr—(3'GM——/c')/(GMr/c') =3lM/Mr. (33)

This parameter has to be chosen in such a way as to
yield a solution that is acceptable in the following
sense:

(1) The metric dilatation parameters must join on
smoothly to the Schwarzschild values at the outer
boundary of the active region; (2) The metric must
become Qat at the inner boundary of the active region.
Specifically, from Eqs. (17), (18), and (19), the condi-
tions at the outer join point, x=x, , are

xmax =xi/3 '~

Details of the present analysis of thermal geons
follow.

2. THE PROPER VIBRATIONS OF THE
ELECTROMAGNETIC FIELD

Analysis In Spherical Harmonics

The electromagnetic field F,v(F23~H„Fi4 F.,)
satisfies the eight source-free Maxwell equations

( g) —'(8/Bx )( g)~—F =0

(inl3y) BF p/Bx =0

(38)

(39)

Here the numbers (ijkl) are defined by (1234)= 1 and
by (ijkl) changing sign on reversal of any two indexes.
Also g is the determinant of the g,~. g= —r4sin'0

&&exp[X(r)+v(r)]. In the static spherically symmetric
gravitation 6eld the Maxwell equations are invariant
with respect to a group of transformations built from the
following elementary operations: (1) rotation of the
space frame of reference; (2) translation of time; (3)
inversion of the space frame in the center of symmetry;
(4) reflection in a plane through this center; (5) reversal
of time; (6) interchange of the roles of electric and
magnetic 6elds, according to the substitution

F,~ 2( g)'(—z—knP—)g g "Fv„(40)
such that E»» II» H»» —E» For a Rat space time
continuum one knows the irreducible representations of
this group of transformations and the basic set of
functions on which these transformations operate, 4

and it is very easy to modify the results for the present
spherically symmetrical curved static space time
continuum. The basic solutions are characterized by a
circular frequency, 0/c, by two angular momentum
quantum numbers, l and m, and by the statement
that the disturbance is of electric or magnetic multipole
character, as the case may be, in the following sense:
(1) Magnetic multipole field: the electric field is
everywhere exactly perpendicular to the radius vector;
the parity of the electric field with respect to space
inversion is (—1)'; the parity of the magnetic field is

(—1)'+', and the field is expressed in terms of a four
potential A;

F,k
——BA &/Bx' BA,/Bx"—, (41)

which lies always on the surface of a sphere with
center at the origin, and points always in the direction
of the electric field. Thus A„=Az ——0, and the space
vector A is a function of r multiplied by rXV acting
on a spherical harmonic. The normalized spherical
harmonic4 is denoted by Yi' & (8,&). We write

g—= Yi' &(8,$) exp( —inT); (42)

then the nonzero components of the vector potential

4 See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical
Euclear Physics (John Wiley and Sons, Inc. , New York, 1952),
pp. 799 ff. for formulas and references to the original literature.
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F„r=l(l+1)Q'r 'e""+""b(r)Q+c.c.

Fer Qe "~ +——"~ (db/dr) (8Q/88)+c. c.
Fyr Qe ""+""(db/d——r)~mQ+C. C.

Fgp=0

F&„e"~ "~'b (r)mQ+ c.——c.
Fe„=e"" ""b(r)i,(8Q/88)+cc.(45)

Radial Function

The radial factors a(r) and b(r) in the field expres-
sions (44) and (45) satisfy a common differential
equation, '

d' f/dr*'+ LQ' 1(l+1)e"/r'] f=0—

for the mode in question have the form

Az= a(r)imQ/sin8+ complex conjugate,
Ae= —a(r) sin88Q/88+complex conjugate, (43)

where the radial function a(r) has the dimensions

(g cm'/sec')' or gauss cm' or cm electrostatic volts.
The field itself, Ii;I„ is expressed relative to the coor-
dinate system that appears in the metric (1).However,
the field is more easily visualized in a local orthonormal
coordinate system that is aligned along the r, 8, @, T
axes. In this frame we shall call the field (E,H). From
(43) we derive

g"/+~~ gT=PTZ ——0

re""Fe Fir = ——Qa—mQ/sin8+ cc.
r sin8e""F~ =F~r = Qa—i sin8 BQ/88+ c.c.

r' sin8H„= Fgq 1(l+1)a si——n8Q+ c.c.
r sin8e""Hg ——F = (da/dr) sin8 8Q/88+c. c.

re"'~H~ F„g (——da/dr——)i Qm/ ins8+ cc.
(2) Electric multipole field: the magnetic field is

everywhere exactly perpendicular to the radius vector;
space inversion multiplies the electric field by (—1)'+',
the magnetic field by (—1)'. This type of field is
obtained from the magnetic multipole field by two
steps: (a) replace a(r) in (43) by b(r) and call the field
F so calculated "F'" (b) substitute this field into (40)
and calculate the field "F'." This is the desired
electric multipole field:

Beyond this point the quantity

l (l+ 1)e"/Q'r' (47)

falls below unity, the square bracket is positive, and
the solution is oscillatory. With further increase in r
there are two possibilities which are familiar from the
closely analogous problem of alpha decay: (1) The
quantity (47) never rises above unity again. In this
case the solution remains oscillatory to infinite r,
ultimately approaching the behavior

f(r) ci sin(Qr+c2). (4g)

Such a solution represents an electromagnetic wave
that runs freely to infinity (analogous to an alpha
particle with energy that exceeds the potential barrier).
Since such a wave carries energy away from the geon,
it is not of interest in constructing a relatively stable
object. Such modes of oscillation of the electromagnetic
field are assigned zero energy. (2) The quantity (47)
rises above unity again at a point r = r2 (analogous to
inner radius of potential barrier for an alpha particle
with energy below the top of the barrier). A sufficiently
great increase in r will result in (47) once again falling
below unity at some point, r=r~. The solution, f(r),
of (46) rises monotonically from the origin to ri,
oscillates from r~ to r2, behaves between r2 and r3 as a
linear combination of a function that falls roughly
exponentially and another function that rises roughly
exponentially, and resumes an oscillatory character
from r3 to ~. The wave in this outer region transports
energy away from the geon. The rate of transport is
the smaller, the less is the ratio of the amplitudes of
oscillation in the outer and inner regions. This ratio
has a minimum value for certain characteristic values
of 0, designated as Q„~. At such a value of 0 the solution
f(r) decreases monotonically and roughly exponentially
all the way from r2 to r3. For such characteristic
solutions the region from ri(Q~i) to ri(Q„i) is called
the region of activity. As a first approximation expo-
nential fall-o6' is supposed to continue indefinitely
beyond the point r2.

Eigenvalues, Eigenfunctions, and Averages
The characteristic values, Q i, of Eq. (46) in the

sense just defined, are given in the JWKB approxima-
tion by the implicit equation,

where
~x/2 —v/2'

f$ T2

L1—l(l+1)e" /„QrP']& Qidr*= (I+-',)~. (49)
Y$

We demand a solution of (46) that is regular at the
origin. Near the origin X and v are constant, and X

is zero. ' Consequently, f varies as r'+' near the origin.
At larger r, f increases roughly exponentially until
the first zero of the square bracket in (46): r=ri

~ Reference 1, p. 520, See also A. Eddington, The Mathematical
Thoery of Relativity (Cambridge University Press, 1923), p. 175,
where the vector wave equation is written in the form QA~
+R~ A =0, with OP=—g &P. ~p (equivalen& &o our (8/8x~)
X(—g)&P" =0)

The solutions themselves' in the same approximation
have the form

f„i(r)=C„(L1—l(l+1)e"/Q„Pr'] '
T

7r
sin

~

~ $1—l(l+ 1)e"/Q„Pr']'Q„idr*+ — . (50)
Tg 4

'See, for example W. Pauli, Handbuch der I'hysik (Verlag
Julius Springer, Berlin, 1933), second edi, &ion„Vol. 24, Par& 2,
p. 171,
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The value of
I f I

', averaged over a region appreciable
in comparison with one wavelength, but very small
relative to the size of the region of activity, is

inside the active region, and practically zero outside.
This measure of intensity, like the limits of activity,
depends, not upon / and 0 individually, but only upon
these two quantities in the single combination of an
impact parameter,

For a typical mode of the form (43) and (44),

((Fggpg&)) =P'e "/r' ' times
((F Fg"+F gF"g))= (1 P'e"—/r ) IC„~I (l(1+1)/4grr )

((Fgrpg&+Fgrpg&)) = —1 0'e "[1—P'e"/r'] &.

The sum, —,'Il pF &=EP—E', of the quantities on the
left represents the action invariant for the field oscil-
lator. The action disappears on the time average for
this oscillator as it does for every harmonic oscillator. ~

3. ENERGY-DENSITY STRESS-DENSITY TENSOR
P—=[l(i+1)/0']' Radial Stress and Energy Density of One Mode(52

At a given point in the active region of the geon this
quantity can have any value between the minimum
value Pi for binding (Fig. 1) and the maximum value,
gr(r) (=re "t'), appropriate to that point.

The number of bound modes of vibration that
contribute to the electromagnetic field intensity at the
point r in the active region is obtained by taking the
product of the following factors and summing:

2

2l+1,
N)

ds)

for polarizations

for values of m

for values of /

for values of N.

and consequently the total number of modes within
specified limits of 0 and I' is

dQ —(2/gr)Q2dQd(P2)~t [1 Pser/rsvp
—adrs (53)

It is of interest to have not only the local average
(51) of

I
fl', but also the local average of the square

of its derivative

& I
df/dr"

I

s)=' r
sI C»Iso is[1 l(l+1)e "/Q—„Prs5' (54)

The symbol (( )) denotes an average with respect
to time and with respect to position over a spherical
shell of thickness large compared to a typical wave
length ( 10 "cm) but small compared to the dimen. -
sion of the active region () 10"cm). We note

Summations over l and e are replaced by integrations
and then by integrations over all the relevant values
of the impact parameter P between Pi and gr(r) and
over the circular cofrequency 0 by virtue of equations
(30), and (33). One finds that

8 (l,gg)
dldn= =gr '0~I [1 P'e"/r'j 'dr*—dpdQ,

B(P,Q)

((Trr (one mode)))
= (87r) '((F„rp"r+Fgrpgr+F rpgr

Fggpgg Fg„pg—& P„gp~g—))—
= —(0 /16gr r )e "l(l+1)IC„~I'[1—Pse~/rsj —

&

((T„' (one mode)))
= (Sgr) '((Fg„pg"+F gP"'+F rp"r

Fg Fgg Fgrpg& —P Fgr)—)
= (0' 1/r6'gr') e "l(l+1) I C~t I

'[1 P'e "/r'jg—
Many Modes; Total Mass

(58)

The electromagnetic stress energy tensor being
bilinear in the 6eld, the fields of all individual standing

The source of the gravitational fmld is the stress-
energy tensor of the electromagnetic field, with compo-
nents

T'= (4gr) 'F F' (16gr) '8 "—F epee (56)

so that in flat space time Tgg T—g' ———(E'+——H')/Sgr.
In a geon with a negligible rate of leakage of energy
we can assume time symmetry as well as spherical
symmetry. In the r, 6I, P, T system of coordinates, all
o6'-diagonal elements of the stress energy tensor
vanish. Among the diagonal elements there exists the
equality Te' ——T&&, and also a general relation expressing
these two tangential tensions in terms of the radial
tensions —in terms of T„", Trr, and dT„'/dr. This
knowledge of Tg' and T~& does not help in the determina-
tion of the gravitational field from the Field equations

G,'= (8grG/c4) Tra (57)

because there is an identity between G&', G~& and
G„", Grr, and dG,"/dr, which makes them automatically
satisfy the same radial-tangential equilibrium condition
as the corresponding components of the T's. For this
reason it is enough to consider only the two remaining
components of the stress-energy tensor, T„"and Tp~.

The intensity of the particular mode of field oscilla-
tion characterized in (55) results in this mode contribut-
ing to the energy density and radial stress:

7 The integral of E'—H' over all space for a field that is a
superposition of two modes gives zero for the integral of the
cross term in virtue of the orthogonality that follows from the

&/ glg+ s . s I+ t & ls)) i(i+1)/~ (55)
eigenvalue equation (46) for radial functions of the same t and
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waves must be added before commencing the evaluation.
For the time average value of the energy density,
wc assume that the elementary disturbances are in-
coherent': the average contrlbutlon from cross terms
between modes vanishes. Thus, we write

n, t„m, y

e "=1 2GM(r)/cs—r (60)

as a definition of the effective mass, M(r); insert this
expression into differential equation (30) to derive an
expression for dM(r)/dr; integrate from r= 0 to
r= ~; and And

Mc'=c'M(r= oo) =—
modes

&(({Trr(one mode)))4trrsdr. (61)

(2) Write down the expression for the local density
of grasiluliorsal Pigs electromagnetic energy; integrate
over all space; use the fact that the gravitational part
is expressible in terms of a surface integral; usc also
the fact that this surface integral docs not involve any
details of the gravitational Acid when the metric is
asymptotically Qat; Anally, use the fact that the trace
of thc clcctlomagnctlc stI'css-cnclgy tcnsol ls zclo:

where the sum goes over all values of the angular
index, l, Rnd t@; ovcl' Rll the values of thc lQdcx number
e of the radial proper function j„t associated with the
confrequency Qel; and over both types of polarization:
p=electric or magnetic multipole. There is a similar
expression for the radial stress.

There are two simple ways to get to the total mass. s

(1) Write

I~ods= —2 t {{Trr(mode)))e""+""4rrr'dr. (64)

(see qualification below). On this basis we compare the
geon before,

(66)Mc =Ione+2 Iothers
and after

AMy
(M—dM)cs=0+Qi 1+ iIothers, (6"/)

the mode is stilled. Subtraction gives

This would be wrong. As the radiation in question
leaks out of the geon, less pressure is available to
sustain the geon against gravitational forces. Con-
sequently the geon contracts. Thus every other mode
6nds itself more tightly con6ned. Its frequency rises.
Accordingly by the principle of adiabatic invariance
there is a proportional immerse in energy. Therefore,
the mass of the geon will decrease by an amount less
than given by (63).

The fractional change in mass due to stilling of a
single mode is fantastically small. For a 6rst primitive
analysis the cGect on the geon is primarily a scale
tx'RnsfoI'DlRtlon to sIDallcl slzc. Mass Rnd 1mllus

transform in parallel. Frequency goes up inversely
as radius, and therefoxe inversely as mass. The same

Rppllcs —Rccordlng to RdlabRtlc lnvax'lance —to the
contrlbutlon) Imode) to thc cIlcl gy froIQ evcl y Inodc
except the selected mode:

/t. Imode (increase) hM (decrease)

Imode

Mc = ~ I ~~{T„"+Tss+Te4' Trr)( g)'drd—8drP—
c'AM= = gIone.

1+(1/Mc') QIoths-
(68)

{(Tpr(one mode)))e"Is+"is4rrrsdr. (62)
modes

Expression (62) is more convenient than (61) because
the radial integral is easier to calculate.

Contraction Effect

To dedne the energy of one mode, one can think of
measuring the gravitational 6eld far away from a
geon before and after the stilling of that particular
vibration. One might be tempted to write for this
chaQgC ln Glass

(63) (wrong)

' R. C. Tolrnan, Phys. Rev. 35, 8'/5 {1930);see also L. Landau
and K. Lifschitz, The Classical Theory of Iljelds, translated by
M. Hammermesh (Addison-Wesley Press, Cambridge, Mas-
sachusetts, 1951),pp. 309 and 323.

We are considering a classical geon that has a great
many proper modes, s=1, 2 ~ ~ where s stands for
the quartet (n, l,m, p). Each mode has a reduced action
variable I, (=action/2s) associated with it. The
energy consists of two parts: electromagnetic energy of
individual modes and gravitational energy of interaction
between modes. The sum of both energies (61) is a
function of the action variables of all these oscillators:

c'M= c'M (Jt, I„).
The circular frequency of a given oscillator is given by

BM(J)
cQ, (J)=c'

If a particular action variable decreases slowly from its
normal value to zero, during this change all other
action variables keep their original values, according
to the principle of adiabatic invariance.
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Then the change in mass is

c2AM=cQ', (I)dI, = ,'I, —

T„(chosen mode s)))e")'+vl'42rr'dr (70)

QI thoer (i3nCreaSe) AM (deCreaSe)

Iothers
(71)

The question about correctness of (71) could be
answered by an appeal back to first principles:

A weakness in the foregoing reasoning is that it
assume that stopping of the given vibration produces a
change in the field of gravitational force that is rep-
resented with sufhcient accuracy simply by a change
of scale. Perhaps the change in metric field will act in
different ways on different modes, raising some in I
value less than others. It is at least conceivable that
such a differentation might take place. Since the
quantity of interest is not the I value of one mode, but
the sum of the changes in I values of all the modes,
we need, not (65) for every mode individually, but only
a weaker equation for this sum of changes:

(7) Compute the change in mass of the system as a
whole due to stopping one vibration.

Test of Adiabatic Analysis against
Ehrenfest-Tolman Formula

For thermal geons there is an extra simplification
with which we can check the correctness of (68),
without the more detailed analysis just outlined.
Considering blackbody radiation in equilibrium in a
gravitational field for an asymptotic temperature T,
we know from Ehrenfest and Tolman' that the energy
density has the value appropriate to the temperature
T(—g44) &, rather than T itself. Here this means an
energy density proportional to T4e '", multiplied by
the fractional solid angle filled by trapped rays. This
result comes from the normalization (70).

The energy leaked out of the geon by quenching one
mode is equated to the )hermal energy of a harmonic
oscillator, as given by Planck's formula:

kcQ„t[—1+exp(ItcQ„)/T)) tc AM2=-', I,

t ((Trr (chosen mode)))e"~2+v)2krr2dr

= (Q'/42r)l(l+1)
~

C„l{'J~[1 P2e"/r') ld—r*. (73)

Solving this for the amplitude
~
C, l ~, and inserting

this value of ~C„t~ into Eqs. (38) we find the energy
density and radial stress die to one normalized mode:

((—Trr(or+T„")))=kcQ„t[ 1+exp()2cQ—.)/T)) '

, [1 P2&v/r2){ —32(or+23)) (&
—v/4 r2)

—1

Jt [1—Ptc "/r2] vdr* . (74)

We multiply (74) by the number of modes, de, as
in (53), in the interval dQdp, and sum over all modes

by integrating over the wave number 0 and the
equivalent impact parameter I'. This gives the local
value of the total energy density and radial stress:- —1

C )=D tQ l
'

JI [1 P2c"/r2) ldr*—
(( Tr (Or+T "))) )taottal

(723 T

(1) Determine the effect on a single mode of an
adiabatic change in the metric field. (a) Insert in the
action principle of the electromagnetic field a trial
function of the product form (43), where however
the time factor, exp( —iQT), is replaced by an arbitrary
undetermined function of cotime, P(T). (b) From the
variational principle derive the second-order differential
equation for this function. (c) Solve by the JWKB
method. (d) This gives a general expression for proper-
ties of a single mode under arbitrary adiabatic changes
in the Schwarzschild metric, containing one arbitrary
amplitude constant, independent of both r and T.

(2) Calculate the stress energy associated with this
mode, and find all over again the expressions (57),
with the difference that not C„~, but D„~, is constant
under adiabatic changes, where

(3) Write down the equations (29) and (30) of the
self-consistent geon field for two problems: (a), with
all modes s excited to specific metric-independent
amplitudes D„and (b) with all modes but one so
excited.

(4) By differencing these two sets of nonlinear
equations derive linear equations for the small changes
Q. (r), {)v(r), produced in the metric by quenching one
Inode.

(5) Derive expressions for these changes in the
metric.

(6) Find how these changes alter the I value of
each mode individually and hence

= J~kcQ[ 1+exp(AcQ/T)) 'Q2dQ—(2'e "/r')

-V/2

[1 P2Cv/r2) {—$(or+{))d(P2)
Jp,

(2r2T4/15I23c3)c —2v([1 P 2cv/r2)v

(or -', [1—
P22e "/r']l)). (75)

In terms of the solid angle, cu, spanned by the trapped
rays, the complete stress energy tensor has the form

' R. C. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791 (1930);
see also Tolman, reference 3, p. 318.
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4. NUMERICAL SOLUTION OF THE
DIFFERENTIAL EQUATIONS

In the dimensionless variable x= r/R& the equations
for the geon field are

e—"(xdr/dx+1) —1= (x'/3) (1—xi'e "/x') &e-'" (78)

e "(1—xdX/dx) —1=—x'(1—xi'e "/x')'e '". (79)

Let m(x) represent the effective mass, in units Mr,
out to the distance r= xRr, as dined by

m(x) =x(1—e—')/2.

Thus the mass of the geon is

M=m(~)Mr.

(8o)

Also define a scale factor, Q, by the equation

Q2 eX+v (81)

These variables behave as follows (Fig. 2). From
x=0 to the radius x=x;„, the dimensionless mass
variable, ns, is zero. Then it increases up to

m=m(~) =x .„/3=xi/3&

at the outer boundary

x =xi/3'*

(82)

(83)

of the active region. Here x~ is a measure of the critical
impact parameter for trapped rays:

*i=&i/Rr. (84)

Thereafter it remains constant at the value m(GO).
The curve for m as a function of x has a horizontal
slope at x=x; and x=x, . A similar description
applies to Q, with these exceptions: Q is not zero, but
has a constant value between 0 and 1 for x(x;;
and Q has the constant Schwarzschild value of unity

((Tp'))i„,] „2,]= (2r2T'e 2"/152r'c')

—',((o/42r)'

2 (~/4~) —
e (~/4x)'

X —,
'

((o/42r) —-', (cu/42r)' . (76)
—((o/42r)

The stress-energy tensor calcllated here by consideratioe
of individual modes agrees with the usual blachbody

value, corrected properly as demanded by the Ehrenfest
Tolman argument and by the solid angle factor No .such
agreement would have resulted if the factor -', in (70)
for the loss of mass on stilling of one mode is left out.
Thus the contraction efI'ect is essential.

Expressions (76) as derived here were used as
described in the introduction to set up (29) and (30)
for the self-consistent thermal geon field.

To restate the results of the present analysis, the
total mass of the geon is given by the superficially
paradoxical formula,

~t'Planck formula for energy)~
of one mode, as in (2) )

'

e"=e "= (1—2xi/3'x).

Near the inner limit, for x x;„,write

x=x; (1+u).
Then

m(x) = (2'/3) (xi'/x; )ul+
Q'(x) = (x;„2/xi2)+ (2&/3)xi2ut+

e-"=1—(2-:/3) (xi4/x;„')u&+
e"= (x '/xi')+ (22t2/15)x 2u2"+

&o/4r = 2'u*+ ~ ~ .

and) foI x& ~~ xm in'

e "=1; ev=(x~ '/x') m=0.

(89)

(90)

It is reasonable to assume a trial value for the
eigenvalue parameter x~, and start a numerical integra-
tion working inward from x, =xi/3' with the starting
series (88). The solid angle will first increase, then
decrease. When it goes to zero, one wants e " to be
unity. This condition is not satisfied in general. Accord-
ingly, a new choice for x~ is made. One proceeds by
trial and error until e ~ goes to 1 as the solid angle
goes to zero. This procedure was not adopted because
the series expansion (88) was not available when
the numerical work was done.

In the procedure that was used the coupled Eqs.
(85) and (86) were integrated from the interior bound-
ary x;„although the initial value of Q' depends not
on a chosen value of x~ alone, but also on the value of
x; . To make the integration depend on a single
parameter, the invariance of the equations to scale

for x&x,„. Between these limits these quantities
satisfy the equations

dm/dx =x'[1 —xi'x 'Q'(1 —2m/x) ]'
—:2Q4(1 —2m/x)' (85)

dQ'/dx =x( [1—xi'x-'Q'(1 —2m/x) ]l
+[1—xi2x—'Q'(1 —2m/x) j-'*/3)

—:Q'(1 —2m/x)'. (86)

Near the outer limit, x,„=xi/3', of the zone of
trapping, write

x=x . (1+s), (87)

where s is understood to be a small megathere quantity.
Then, from the differential equations and the boundary
conditions the following behavior follows for the
physically relevant quantities:

m (x) = (xi/3'*) —(3xi2/4) s'+
Q'(x) = 1—(3t/2) x,'s'+

e "=(l)+(l)s+(l)[(3'x '/4) —1]"+. (88)
e"= (3)+(-;)s—(-;)s'+

co/42r = —3'*s+

The power series expressions for e " and e" join on
smoothly to the accurate exterior values,



492 E. A. POWER AND J. A. WHEELER

change, similar to that used in reference 1, was utilized.
Defining x, m and Q2 and c by the relations

x=bx Q'=bQ' m=bm gP=bc' (92)

one has for m and Q'

dm/dx = (x2/2Q4(1 —2m/x) 2(co/4r)

dQ'/dx= (x/Q'(1 2—m/x)')(( /4 )+( /4 )'/3),

where
(g/42r = [1—c'x—'Q'(1 —2m/x)]l. (93)

The choice b= g22/x;„2 or, equivalently, c=x;„,
gives the simple boundary conditions at x;„;

Q'(c) =1, dQ'/dxi. =0,
m(c) =0, dm, /dxi, =o; (94)

and the integration can be carried through for any c.
At the outer boundary, x, =I', the correct boundary
values, following from (88) are

Q'(I') —3(I'/c)' dQ'/d
i

=0
m(1') =I'/3, dm/dx ) r ——0;

(95)

but in general these will not be satisfied for a particular
choice of c. Starting at an arbitrary c the equations were

integrated, on a punched card programed electronic
computer, using the Kutta-Runge method; m was

plotted as a function of S. If a c is chosen smaller than
the actual eigenvalue then, when m(x) =x/3, the slope

(dm/dx) will not vanish. In such cases the integration
was stopped at the point where m(x)=x/3 and the
slope examined. A larger c, still less than the eigenvalue,
will reduce the slope at the critical point. If c is chosen

greater than the eigenvalue then dm/dx vanishes before

m(x) has decreased to x/3. Thus, the correct eigenvalue

for c can be approached both from above and below.
With the limited machine time available the nearest
value of c to its true eigenvalue for which a numerical

integration was carried out was 1.875: the corresponding
values for I' and m(~) are I'=4.05 and m(~) = 1.35.
In Fig. 2 m(x) and Q'(x) are plotted, by a dotted line,

for this value of c, for which b=0.071 (and therefore
g;„=0.134 and x, =0.289). The smooth curves

represent an estimate' of m(g), Q'(x), e "~*', e"'*& and

u(g)/42r for the correct eigenvalue.

potentials Aj. Similarly, one can derive the differential
equations of the simple spherical geon, '

d2&/ dg2+ jk4b =0

dk/dx+&2= 0 (99)

dj /dg =3 [1+(—de/dg)' j/k'
from the variational principle

8I=0
I=J'Z(24)d24

dg= k —dX
(100)

2= k '+3k+j kdk/dl+j qP k (d—p/d—N)2

as recently shown by Ernst. ' Encouraged by this
result, we found that we could derive the equations for
the thermal geon from the principle

&I=0

(101)

[(sLQ) 2+V/2]dg

=minimum) (1o3)

into which we can substitute any well-behaved trial
function and obtain an upper limit on e.

Correspondingly, we take for variation principle

I=J'Z(g)dg

Z(x) = (1—gdh/dg)e"" ""—e"»+»2

(g2/3)ex»(e —v g 2g—
2) —',

However, here the eigenvalue parameter x~, which we
would like to know, already enters the variational
principle. The situation resembles that in which we
would find ourselves if we tried to express the content
of the Schrodinger equation in a variational principle
built upon the function

~( )= (&f)'+(~ )P — (102)

We will always find the trivial solution p(g) =0 for
this variational problem unless e happens to be ail
eigenvalue: not a very happy way to find eigenvalues J

Much more appropriate is the more familiar Ritz
variation principle

S. VARIATIONAL PRINCIPLE FOR THE
THERMAL GEON b(&*8*)=0, (1o4)

(96)

All the differential equations of the Maxwell-Einstein

theory, can be derived from the action principle

6I=O,

I
~*=g" e'"+"*»(dldy) [y(1—e "")]dy, (105)

b

where

g —
g —:dx'dx'dx'dx4 (97)

I3*=) (y'/3) e"""(e "'—3y ') idy. (106)

and where
162rcZ = c'/GR Fe& e—(98)

and where the independent variables are the ten
metric quantities g'~ and the four electromagnetic

The independent variable here is y:
x= sy; h(x) =V(y); p(g) = v~(y);

e
—"*=1—2m*/y; s=g .„=gg/3l;

&min $ym, j~= $6.

(1o7)
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The boundary conditions are

e
—"~=m*=e"*=-', at y= 1 (108)

e"*=1 ra*= 0 e"*=b'/3
at =S. ~&09~

dX*/dy= 0, dm*/dy= 0 y . (

From the variational principle (104) follow differential
equations for V and v* as functions of y vrhich are
identical in form to Eqs. (78) and (79) for X and v as
functions of x except fol the introduction on the right-
hand side of (78) and (79) of an extra factor

s'= A*/8*. (110)

The logic proceeds so: (1) Introduce into (105), (106)
trial functions X*(y) and v*{y) that satisfy {108),(109)
and that contain one or more adjustable parameters,
among them the lower limit b (2) .Calculate (2~8*)
and extremize with respect to choice of these param-
eters. (3) From (110) calculate s' and hence x, and the
geon Inass

M =Mrx, /3'= Mrs/3. (111)
If instead the quantities ) and ~ are calculated as func-
tions of x by solution of dhgereetial equations (78) and
{79) for a trial eigenvalue xq, an improved. estimate of
the eigenvalue is given by

xg/Bl= s= (AB)',
where A and 8 are the analogs of (105) and (106) for
X(x) and v(x).

6. PHOTON-PHOTON COLLISIONS IN A
THERMAL GEON

(solid angle/4m) =: 0.59

and vrhere the effective temperature is

Tgff —Te 3 3T (113)
Here the number of photons Q~ per unit volume in the
interval of circular vrave number dQ~, and in the
interval of solid angle des (within the allowed cone)
vrill be

(112)

der ——(ko/4s)QPdQqL —1+exp(AcQq/T, fg)] '. (114)
The collision between two photons" of wave numbers
Q~ and Q2 whose directions of motion make an angle 8
vrill look like the collision between tvro photons of
equal vrave number Q* and opposite direction, in a
suitably selected local Lorentz system, vrhere

Q*= (QqQ2) & sin~8. (115)
'0 G. Breit and J. A. Wheeler, Phys. Rev. 46, 1087 (1934).

The electromagnetic energy content of a thermal
geon decreases slowly not only by the monomolecular
process of barrier penetration but also by bimolecular
processes in vrhich tvro photons collide, either to
produce a pair of electrons, or to go o6 as photons in
new directions. ' %e vrish to estimate the rate of
these two processes in a very active part of a thermal
geon: at the radius of the stable circular orbit (Fig. 1),
vrhere the solid angle occupied by bound rays is the
largest,

The total collision cross section, integrated over all
angles of the emergence of the pair (for process 1) or of
the scattered photons (for process 2) will be

0 = sin'-,' 00*(Q*), (116)

where Q* is the cross section calculated for equally
energetic but oppositely moving photons. For the
pair process the cross section 0* vanishes below the
threshold, Q*=nsc/A, and reaches a maximum value of
the order (e'/mc') for a wave number that is a small
multiple of this threshold value. For temperatures
small compared to mc' it follovrs from the Planck
formula that the number of pair production processes
is exponentially small, with an exponential factor
qualitatively of the form

exp —(pic'/T), (117)

where p, is of the order of unity.
The cross section for elastic photon-photon collisions

also reaches a peak for wave numbers, Q*, of the order
mc/A. The peak value of o~ for this process is of the
order (e'/Ac)'(e'/mc')', much smaller than that for
the pair production mechanism. However, the cross
section has no threshold and varies at low wave
numbers in accordance with the formula"

0*= (52/1125s) {e'/Ac)'(s'/mc')'{Q*A/mc)' (118)

For low temperatures the effective cross section for
collision between tvro photons consequently varies
as T', and therefore dominates over an exponentially
small factor of the form (117).For this reason we can
disregard pair production processes, relative to elastic
collisions, so long as the temperature is considerably
less than est,"~.

Not all photon colhs~on processes result ~n loss of
photons from the system. In some cases one or both
of the new quanta still move in bound orbits. Only
those are lost whose directions are thrown outside the
cone of trapping angles. In particular a new photon
escapes from the system if it is moving along a radius.

For an order-of-magnitude estimate of the rate of
loss of energy vre disregard details of the differences
betvreen trapping and escaping directions and consider
the product of the following factors:

number of photons
Qi per cm' T'/A'c'

number of photons
Q2 per cm'

collision velocity
cross section
energy loss from

geon on collision T

T'/A'c'

(e'/Ac)'(e'/mc')'(T/mc') '

(119)
product, energy loss

per cm' and per sec (e'/Ac)'(mc2/A)
X (mc')4A 'c '(T/mc')"

' "H. Euler and B. Kockel, Naturwissenschaften 23, 246
I'1935); W. Heisenberg and H. .Euler, Z. Physik 98, 714 I'1936).
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APPENDIX ON RAY-WAVE EQUIVALENCEIn contrast, the energy on hand per unit volume is of
the order T4/A'c'. This quantity, divided by (119),
fixes a characteristic scale of time, v-, for depletion of
the geon by photon-photon collisions:

There is a close correlation between the field theory
solutions of (44), (45), and (50) and the motion of a
classical corpuscle of light or "pseudophoton" along a
geodesic in the same gravitational 6eld. Superposition
of standing waves of slightly different Q &, l, and m
values allows one to build up a wave packet. This
concentration of energy will remain the better defined
in space and time the larger are the relevant values of
l and e—that is, the shorter the wavelength of the
disturbances of signi6cant amplitude in comparison
with the scale of distances over which the gravitational
field changes appreciably. The correspondence betweeiI
waves and pseudophoton orbits in the idealized limit
which disregards the spreading of a wave packet may
be analyzed this way: (1) We pass from the wave itself
to its phase,

(energy loss/cm' sec)

(energy/cm')

~ (e'/kc)'(mc'/5) (T/mc') '

—(10"sec ') (T/mc')'

For a characteristic time as long as a year it is sufFicient
to have a temperature of the order

T~10 "~'mc'~10 'mc'

corresponding to a geon mass of the order

3fz 1044g

g,-10~6 cm.
slowly varying '

(vector potential)= vector function'ye"""' (A1)
of position

and 1adlus

As the energy loss continues, the thermal geon shrinsk,
grows denser and hotter, and loses energy at a rapidly
increasing rate. As the temperature rises to the neigh-
borhood of mc', pair production processes rapidly
increase in importance. Then the physics of the system
takes on quite a different character which we do not
analyze here.

where e' ~""' varies rapidly with position; (2) we
approximate the di6erential equation for the phase by
neglecting the slow change of the amplitude with
distance in comparison with the rapid change of the
phase with distance. Thus we pass from the accurate
phase of (A1) to the pseudophase (or eikonal) —the
central concept in William Rowan Hamilton's method
of treating problems in geometrical optics as well as
in mechanics. * The equation for the pseudophase has
the Hamilton-Jacobi form

'T. ZERO-POINT ENERGY

(A2)g s(BC/Bx )(84/Bx&)=0

LInstead of deriving this from the wave equation by
the substitution (A1), one can. start directly with the
picture of a surface propagating parallel to itself with
the speed of light. The surface and its propagation with
time can be expressed in the form

C (x' x4) =17.2. (A3)

I.et x4 be one value of the cotime, and x', x', x' the
coordinates of one point on the surface at that time.
I.et x'+dx' denote a neighboring point on the same
moving surface, C =17.2, at a slightly later time. The
space and time separations of the two points are
connected by the relation

(A4)

The requirement that the surfaces of (A4) move with
the speed of light leads directly to (A2).7 (3) We
recognize not only single solutions, C (x&' x') of the
pseudophase equation, but also a typical family of

* See, for example, J. L. Synge, Geometrical Mechanics and de
Broglie 8'aves (Cambridge University Press, 1954), Chap. II; or
L. Landau and E. Lifschitz, The Classical Theory of Fields,
reference 8, p. 271.

We have consistently disregarded quantum effects,
or rather have consistently attempted to choose
conditions where quantum effects are unimportant,
in all except the considerations of very hot geons in

the last section. However, at all temperatures one has
to reckon with zero-point fluctuations in the electro-
magnetic field, as well as with the fluctuations due to
the thermal radiation itself. One can formally associate
these zero-point fluctuations with a zero-point energy,
—,'hcQ, that goes with each 6eld oscillator. Usually this
energy is left out in the bookkeeping of the energy of
the electromagnetic field. The subtracted density of
zero point energy of the vacuum is in6nite. Normally
one deals with field physics at the level of special
relativity, where such an infinite quantity can be
disregarded. However, in general relativity there is no
such thing as an arbitrary additive constant in the
density of field energy. Energy density curves space,
and an increase in energy density produces an increase
of curvature. Our analysis of thermal geons is based on
the tacit assumption that the zero-point energy does
not have to be counted, either as energy or as a source
of curvature. We hope this point of view is correct,
as it gives reasonable results in familiar situations.
Nevertheless, a deeper approach to the problem of
zero-point energy is needed —a problem whose overrid-

ing importance to all of field physics Niels Bohr has
often stressed.
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or

c(*( ) O',O',O' O'(O', O',O'))

=~( (.); P'+dO', O',O'; P'(P'+dO', O',O'))

=I/I(x(g) ~ Pi O2+ dO2 O& P4(Pi O2+dpi P3))
=C (x(o) O',O',P'+dP' P'(O', O',P'+dP'))

8C'(x; P)/8P'+ (8C'/8P') (8P'/8P') =o (=1» 3).

These three equations connect the three position
coordinates of the pseudophoton with the time, and
therefore suKce completely to determine its motion.
From (A2) and its first derivatives with respect to the
P's, this motion proceeds along a null geodesic,

d'x'/do'+1'„„'(dx&/do) (dx "/do )
,(undetermined &,

&function of o &

as expected. As an illustration how one gets all details
of the pseudophoton motion from (A6), one can ask
for the velocity components of the motion. For this
one differentiates (A6) once with respect to o and solves
for the dx'/do by the method of determinants, finding

dx'/do =f(o ){iXpv) (8%/8x'8P') (O'C /8x"8O')

X (O'C/8x"8O'). (A7)

Here the arbitrary functions f(o)in the solution.
appear because a. itself represented an arbitrary
parametrization of the path of the pseudophoton.
The same method gives the acceleration and other
details of the motion.

For the spherically symmetric metric of the thermal

geon the pseudophase propagation equation takes the

pseudophase functions,

C = function of (x' x' O'O' P')+O4(O', O',O'), (AS)

where each number of the family is characterized by a
speci6c set of values for the three numbers O', O', P'.
These numbers might correspond in the case of physical
optics to components of the wave vector for a mono-
chromatic wave, but need not have such an immediate
interpretation. The fourth constant of integration O',

represents an additive phase constant, always allowed
because (A2) contains only derivatives of the pseudo-
phase, never C itself. (4) We impose the requirement
of constructive interference. Several neighboring solu-
tions of the wave equation of the form (A1) are super-
posed in such a way as to build up a wave packet.
To make this requirement clean cut, we go to the
pseudophase picture, and enquire how a pseudophoton
must move in order that it shall always lie at the point
where four pseudophase functions of nearly identical

O values have a common value. The pseudophase need
not be constant along the path of the pseudophoton.
It is only required that at each point of the path,
x'(a), the four pseudophase functions should have a
common value:

~ dmin
p8

+ [t(/+1) —m' sin'8)&d8
~min

+W ftT+—P'(O', O',P') (A9)

Here the three constants of integration, O', O', O',
have been expressed in the form 0, 1, and m to bring
out the identity between the pseudophase and the
phase of the JWKB approximation to the solution of
the wave equation. We can superpose waves of differ-
ent l, ns, and 0 values to build up a wave packet that;
will trace out the designated geodesic.

The nature of the geodesic curve is independent of
its orientation; consequently it is sufficient to consider
m values close to zero, corresponding to motion in a
meridian plane. Which meridian can be speci6ed in the
wave picture by the relative phase or O' values with
which one superposes waves of slightly difterent m
values; in the eikonal formulation, by setting equal to
zero the derivative of the pseudophase with respect to
m; thus 8C/8O'=8C/8m=0 gives an equation for P.
However, as there is no interest in this angle, it is
appropriate to overlook this relation, and set m equal
to a fixed value: no=0. Likewise the first equation of
stationary pseudophase, 8C/8O'=8C/8Q =0, is also
irrelevant for our purpose; we do not care whee the
pseudophoton arrives at a given point in its orbit. We
are left with the second equation of constructive
interference, 8C/8O'=8C/8t=0, to determine the shape
of the geodesic:

rr
0= —

~
[r'/e "P' 17'*e""dr/r—+8+const. (A10)

dmin

Here the quantity P is an abbreviation for the expres-
sion [l(l+1)]i/0 and represents the impact parameter
of the pseudophoton —the distance of closest approach
in the absence of gravitational forces. Evidently this

sixie cortstartt determirtes the shape of the geodesic, not
0 or t individually. From (A10) we derive the properties
of the geodesics already discussed in the main text and
pictured in Fig. 1.All the information gained about geo-
desics carries over to the characteristic solutions of the
wave equation. The limits of motion, ri(P) and r2(P), of
the rays correspond to the points where the field ampli-
tudes change from oscillation to exponential fall o8.Incli-
nation of the nodal surfaces of the Geld is closely related
to the inclination of the rays; and the energy carried
by the rays or the wave fields has to supply the gravitat-
ing mass that holds the geon together.

e '(8C/8r)'+r '(-8C/88)'

+ (r sin8) '(8C/8&)' e—"(8C'/8T)'=0 (AS)

which possesses separable solutions of the form


