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T is unusual to hypothesize that the four-dimensional
~ - space-time universe of general relativity is compact
(i.e., "finite" ). But in such a case several interesting
conclusions can be drawn. In the 6rst place, if the mass
distribution is assumed to be continuous, so that the
metric tensor has no singularities, then the Euler-
Poincare characteristic of the universe must be zero. '
This implies, for example, that the universe cannot be a
four dzmen-szonal sphere It .also implies that a finite
universe cannotbe sim, ply conne-cted, in the sense that its
first, Betti number cannot vanish. (This is reminiscent
of Professor J. A. Wheeler's nonsimply-connected
models. )

In the second place, it seems to be generally known
that in a finite cosnzology there must exist a closed curve

irz space time -whose tangent vector at every point is time

like. Professor L. Markus has indicated a proof to us.
Let V4 denote the 4-manifold of the universe. Now, on
V4 construct a continuous, nowhere vanishing Geld of
time-like vectors. ' ' By Birkhoff's fundamental theorem
on the existence of recurrent orbits in compact dy-
namical systems, ' there must exist either an orbit of the

type sought or else an "almost-closed" time-like orbit
which can serve for the construction of such a closed
orbit by an obvious procedure.

A more standard hypothesis, however, is that the
universe V4 is not compact, but is the topological
product of the infinite real line (a time axis) with a
3-manifold V3. 'The manifold V~ is often assumed to be
compact, and any local (hence experimentally verifi-

able) condition which implies compactness is of much
interest. For example, if V3 has constant curvature E,
then V3 is compact if E is positive, and in this case
is a 3-sphere if its first Betti number vanishes, and
in general admits the 3-sphere as a covering space.

We wish to point out a new method for studying the
topology of manifolds such as V3 and V4. This method
consists of the construction of a continuous, nowhere

vanishing, irrotational vector 6eM on the manifold
under consideration. Once such a vector field has been
constructed, we can assert that either the manifold is

noncompact (i.e., open or "infinite"), or that it cannot

be simply connected.
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We shall prove a slight generalization of this theorem;
but erst, let us note that a similar, but much more
r'cstrlctlvc Rnd less cRslly RppllcRblc condltlon ls R

trivial consequence of Hodge's well-known theorem
that the number of linearly independent harmonic
vector 6elds on a compact Riemannian manifold is
equal to its first Betti number. For if after constructing
on our manifold an irrotational vector field (which is

nontrivial, but may vanish at more than one point),
we then ascertain that it is also solenoidal (i.e., of
vanishing divergence), then the vector field must be
harmonic. '

Theorem 1 (Hodge). Let V„be an n dimemsio-nal

Riemannian manifold (with positive definite metric
tensor), and let F demote a nomtrzvial class Cz vector field
defined on V . SuPPose that the curl and the divergence of
F both vanish identically; or equivalently, suppose that the

field F satisfie tlze generalised Laplace equation for har
monic vector fields. Then, if V„ is compact, its first Betti
nmmbt, r is not sero.

CoroHary (Bochner-Myers). If V is oriemtaMe and

has positive definite Ricci curvature throughout, them its
first Betti riumber vanishes. '

Recall that the curl tensor of a vector held is inde-

pendent of the metric tensor, and so is a nonmetric
notion. Accordingly, the following theorem applies equally

well to V4 with its indefinite hyperbolic metric as to Vz

witlzits positive definite Riemannian metric
Theorem 2. Let V„be an n dimensional -differentiable

manifold, and let F be a contzzzuous, class C' vector field

defined on V . SuPPose that I' vanishes at most once and

that its cmrl ~ambushes identica/ly on V„. The~i, either V„
is noncompact, or V„is compact and its first Betti number

does not vanish Im eit'her case., of course, if F actually
vanishes nowhere, the Euler Poimcare characte-ristic of V„
zs Mro.

For nonvanishing F this theorem is a consequence of
a more general theorem' which applies, for example,
to manifoMs with boundary, In fact, by a generalization
to arbitrary Rows of a theorem proved by Lichnerowicz
for a very special class of Rows, ' we can prove" that V
is homeomorphic to the product of the real line with
an (n —1)-dimensional space which is a connected subset
of a V 1. But in the present case, because we are deal-
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ing with a manifold, there is a much simpler proof. We
wish to thank Professor Kervaire for pointing out to us
this simpler proof during the 1957 North Carolina
Conference on Gravitation and General Relativity. The
proof runs as follows. If V is simply connected, then
the generalized Stokes theorem assures us that there
exists on V a single-valued scalar potential function of
which Ii is the gradient field. (See the survey of vector
analysis in the paper by H. Weyl. ") But if V is com-

pact, this potential function must assume both its
maximum and minimum values on M, and at these
extreme points the gradient must vanish. This contra-
dicts the hypothesis that Ii has at most one zero on V„,
and so proves the theorem.

It is possible that Theorems 1 and 2 have applications
to the study of specific cosmological models. In fact,

"H, Weyl, Duke Math. J. 7, 411—444 (1940).

there are many ways of constructing on U& or on V4

continuous vector fields which are unique once the
indefinite metric (or set of gravitational potentials)
for U4 has been specified.

Professor J. A. Wheeler has pointed out to us an
application of Theorem 2 to V4.

Theorem 3. Cols~der the combined Eiesteim-Maneell
field theory on V4. If the vector fietd u, =e,,i, iR "'R "/
R„,R"' is define every where and of class C' on V4, and

if u„does not vanish more tham once, then the universe V4

cannot be cornPact.
The vector field I;, which was defined by Dr. C.

Misner, is essentially the gradient of the ratio (in a
certain coordinate system) of the electric to the mag-
netic field strength. Dr. Misner has shown that Max-
well's equations imply that e, .

, ;—I, ;—=0. Hence,
Theorem 3 follows from Theorem 2.


