
LATTICE UNIVERSE D YNAMICS

of coalescence is a fascinating problem for the future,
the answer to which might help to decide between
these alternatives or some other possible outcome.

When the disposition of the Ã-mass centers in the
lattice universe is almost but not quite symmetric, a
situation arises much like that in a Freidmann universe
when the mass distribution departs slightly from
uniformity. Unless the initial conditions are very
special, the magnitude of the disturbance will grow.
When underwater bubbles undergo dilatational oscil-
lations, and when the surface departs slightly from
spherical symmetry at the phase of maximum expan-
sion, then the magnitude of the disturbances ordinarily
grows. In this case one can follow the phenomena far
enough visually to see that prongs and spikes form. The
impression is gained that the bubble changes over from
contraction to expansion, not everywhere simul-
taneously over its surface, but more after the fashion of

a glove being turned inside out one finger at a time. If
the analogy is any guide, the not quite symmetrical
lattice universe will be expected to show a similar
behavior. One will expect first a few Schwarzschild
singularities to amalgamate and then break apart, then
others to fall in, amalgamate, and break apart again,
and so on, with some parts of the system therefore
still contracting while others have already begun
reexpansion. To show the beginnings of such a behavior,
a perturbation theory analysis of the regular lattice
universe should suffice. To follow the later and more
interesting phases of the turnabout would demand a
much more elaborate scheme of analysis.

ACKNOWLEDGMENTS

We are indebted to Charles Misner for many dis-
cussions of the problem of the lattice universe and for
his help in constructing the special metric of S|.'c. 6.

REVIEWS OF MODERN PHYSICS VOLUME 29, NUMBER 3 JULY, 1957

0&serva&. .es in Singu. ar '. . .ieories vy Systematic
Approximation*t

EzRA NzwMAN) AND PETER G. BKRGMANN

Syracuse Uei~ersify, Syracuse, %em York

1. INTRODUCTION
' 'N any general-relativistic theory the field variables
& ~ necessarily carry some information that relates to
the choice of frame of reference rather than to the
physical situation. Two manifestly different fields of
gravitational potentials may describe one and the same
gravitational field, merely in terms of two different co-
ordinate systems. General relativity differs from special
relativity in the degree of freedom inherent in the choice
of coordinate system. Whereas in a Lorentz-covariant
theory the frame of reference may be chosen at one
instant in time and then remains fixed (the whole
freedom of choice reducing to the determination of ten
parameters once and for all), the freedom in a general-
relativistic theory amounts to the determination of four
arbitrary functions throughout space, anew at each
instant in time. As a result of this vast freedom of
choice, general-relativistic dynamical laws cannot be
expected' ' to permit the integration of the field equa-
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tions in the sense that suitable initial-value conditions
at one time fo predict the value of any component of
the metric tensor g„„, or, for that matter, of any other
conventional field variable, at some space point x' at a
different time t. Nevertheless, Einstein's general theory
of relativity is quite deterministic. Its field equations
do determine the gravitational field from initial-value
conditions for all times to come. The metric potentials
are simply not the quantities that are determined com-
pletely by the physical situation.

Failure of the mathematical theory to predict the
value of a field variable at a given world point corre-
sponds to physical unobservability. It is impossible to
devise an experiment that will measure some field at
the world point with the coordinates x&, because the
values of the coordinates by themselves do not identify
that world point. In actual practice, a world point at
which some measurement is to be made is always
identified in some othe' manner, such as the con-
vergence of a beam of light or the location of a material
component of our instrumentation. The determination
of a gravitational potential at a world point and in
directions that are defined by the values of specified
electromagnetic quantities represents, of course, some-

thing different from the determination of that same

potential at a world point specified by nothing but
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coordinate values. The theory may be expected to
predict (from initial-value conditions) the former, but
not the latter.

A quantity that can be predicted by the theory and
that is not trivial (such as the value of a numeric) will
be called an obserw, hie. ' In a Lorentz-covariant theory
all dynamical variables may be observables in this
technical sense (though in electromagnetic theory only
gauge-invariant quantities are observables); in a
general-relativistic theory usually none of the ordinary
fields are. But if a field variable cannot even be pre-
dicted in t,-number theory, then surely it cannot have
an expectation value in a quantized version of the
theory, either. Hence the construction of observables in
our sense is a necessary preliminary for quantizing any
theory in which the original variables of the theory do
not have that property.

If the dynamical laws of a theory have the form of
partial diRerential equations and if the theory is to
predict observables at a time t from suitable initial-
value conditions at a time to, then knowledge of the
values of a sufficient number of observables at any
intermediate time t', between to and t, must permit the
same prediction. We shall call such a set of observables
at a time t' that permits prediction at. other times a
comP/ete set of observables The cons.truction of a com-
plete set of observables is the central theme of this paper.

Mathematically, the failure of a general-relativistic
theory to permit prediction of ordinary field variables

by integration expresses itself in the ", singular" char-
acter of its action principle. If, as is usually the case,
the Lagrangian of the action principle is a function of
the field variables themselves and of their first partial
derivatives, the resulting Geld equations will be of the
second order. If we now separate the derivatives in a
particular direction (say with respect to x') from the
remainder and focus attention on the second "time"
derivatives, it turns out that the field equations cannot
be solved with respect to them. Even though the num-
ber of field equations equals the number of field vari-
ables, (at least) four linear combinations of the second
"time" derivatives are completely unrestricted by the
field equations, whereas (at least) four independent
combinations of the field equations contain no reference
to the second "time" derivatives at all. In a canonical
(Hamiltonian) formulation, "singular" action principles
lead to Hamiltonians that are only partially determined
and to constraining algebraic relations between the
canonical field variables. 4 Exactly the same situation is
also met with in electrodynamics, where it results from
the arbitrariness of the gauge frame.

Complete sets of observables are fairly easily obtained
in electrodynamics and in other linear and quasi-linear
theories. ' ' Because of its much greater complexity, the

'P. G. Sergrnann and I. Goldberg, Phys. Rev. 98, 531 {1955).
4 P. A. M. Dirac, Can. J. Math. 2, 129 (1950); 3, 1 (1951).' P. A. M. Dirac, Can. J. Phys. 33, 650 (1955).' P. G. Bergmann, Nuovo cimento 3, 1177 (1956).

general theory of relativity has so far not permitted
the construction of any observables, much less a com-

plete set. In this paper we develop a systematic method
of construction by means of successive approximations,
the lowest nontrivial stage corresponding to the linear-
ized theory. As in other methods of successive approxi-
mations in physics, the question of convergence remains
unanswered. Likewise, we have developed our scheme
as a procedure "in the small, " leaving all questions of
topology aside for the time being. What we have ac-
complished is to formulate a procedure that at every
stage leads to solvable problems. Both the method as
such and its products, variables that approximate ob-
servables, lend themselves to intuitive interpretation.

The strategy of our procedure is primarily adapted
to a general-relativistic theory, or more particularly to
Einstein's theory of gravitation (general relativity), but
is applicable to any theory whose singular character is
the result of invariance properties. We shall assume that
there exists a known trivial solution of the field equa-
tions (corresponding to the Minkowski metric), which
consists of a constant field. The expansion is in terms
of deviation from this trivial standard solution. The
lowest nontrivial equations are then the linearized field

equations. They correspond to an action principle that
is singular (in the sense used above) and invariant with

respect to a transformation group that has some simi-

larity with the group of curvilinear coordinate trans-
formations. At each successive stage we construct a
more complex Lagrangian (nth order Lagrangian) that
is singular and invariant with respect to a transforma-
tion group that increasingly resembles the group of
coordinate transformations. Solving the Euler-Lagrange
equations of the nth order involves correcting the
(e—1)st-order solutions by solving a linear problem.
Likewise, once we have constructed the observables
corresponding to the first-order problem, constructing
the observables of the next stage requires corrections
that are obtained from x linear conditions. All of our
work will be carried out by means of Hamiltonian
(rather than Lagrangian) techniques.

Because the notation gets quite involved, we present
the method in terms of a problem involving a system
with a finite number of degrees of freedom, in other
words a contrived "mechanical" system. Also to sim-

plify the presentation, we assume that only first-class
constraints are present.

2. INVARIANCE PROPERTIES OF THE
APPROXIMATE THEORY

We assume that the exact equations of motion are
derivable from an action principle, with a known La-
grangian 1.(q;, q~). The coordinate variables are then
written as a power expansion in some small parameter:

2 &q(~~)
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The zeroth-order variables q; 0 are taken to be constant.
They are, for example, the components of the Min-
kowski metric in gravitational theory. This method of
approximation is very similar to the Einstein-Infeld-
Hoffmann (EIH) method. The equations of motion for
each variable of diferent order are linear nonhomo-
geneous equations. The nonhomogeneous part contains
the variables of the previous orders. For convenience
we shall call this hierarchy of equations the KIH equa-
tions. The immediate problem is to find a Lagrangian
that will yield the EIH equations, to any order, as
Euler equations. We shall show that when the full
Lagrangian is expanded in powers of e, the ath order
Lagrangian will yield the first a KIH equations. To
prove this write the total action

S= I'Ldt,

and vary the total q s. This gives

bS= 'IbLdt= t L'bq;dt,
J

(2.2)

L'= P e I'., bq, = Q ~'&q(;, b), (2 3)

where L', are the EIH equations, (2.2) yields

where I.' stands for the total Euler equations and the
repeated index i denotes summation (Sums over indices
denoting different orders will be indicated explicitly. )
Since

where I,&' ') are the Euler equations of the LagrangianI, corresponding to the variable q(; b). By comparing
the coefFicients of e in (2.4) and (2.5), we have the
identity

a—1 f a—1

,

~ L' b(q(, . ),)dt= P L. i" "bq(; (,)dt. (2.6)
b 10

Since the variations in the q(;, b) s are to be taken inde-
pendently, the coefIicients in the integral must be
identical giving

„=I (,b+ ) =I &, b+~+ ) (2.7)

bq;=F q, $—q,$. (2.8)

This means that the (a—b)th EIH equation is equal to
the (b+1)st Euler equation of the ath Lagrangian, L„.
For a fixed u we can get the first a EIH equations by
letting b go from zero to u —1.

According to E. Noether's theorem, a theory which
possesses an invariance group depending on arbitrary
functions also possesses differential identities among the
Euler equations, which we may call the generalized
Bianchi identities. We derive the generalized Bianchi
identities with an assumed transformation law, and by
expanding them in a power series, show that the Euler
equations of the ath Lagrangian possesses Bianchi
identities as well. It will also be necessary to derive the
transformation law under which the ath Lagrangian is
invariant.

Assume the total Lagrangian to be invariant under
the infinitesimal transformation

6S= t Q P e+'L' &q
J a~i b=l

L',t)q(. . .) dt
c=2 a=1 aJ

Instead of first varying the action and substituting
the expanded variables as in (2.2) and (2.3), substitute
the expanded variables and then vary the action. If

i7L (tL d $(tL
bL= q= bq+ —bq =-L'bq+

~
bq; ~. (2.9)

()q, Bq, dt ) (tq; )

The bar distinguishes an infinitesimal transformation
from an arbitrary variation of q;. This transformation is

(2 4) the analog of the gauge and coordinate transformations
in electrodynamics and relativity, respectively. We get
the Bianchi identities by noting that'

L=Q e+'L
1

(here we make the assumption that the Lagrangian is at
least quadratic) then the action integral reads

S=P ('+' L dt
J

The variation of S gives

bS=Q g~+' ~~BL,dt= Q e'+' ~3 Q L, ('~)bq(; ()dt

Substituting (2.8) into (2.9) and differentiating once by
parts we obtain

Since the $'s are completely arbitrary, we have

(2.11)(I.'F 'g )+L'q =0— —

BI
q L'+ (F'L'q) $=———bq; Q+F' qL'$ (2.10—)'

dt dt Bj;

7 P. G. Bergmann and R. Schiller, Phys. Rev. 89, 4 (1953).

the Bianchi identities of the full theory. The power
(x) a-1 series of these identities is obtained by straight sub-

= Q e Q L i(' "ttq(;, ),)dt, (2.5)
2 b 1 «J
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stitution from (2.3)

d
j",'—(L'tqi, ; si) —=O,

tA

(2.12)

the correct new ranges of summation, then because the
$,'s are arbitrary, we obtain

P.i—(L, i', ))qi. si
——O

c c—1

F; P —(L*.qi, . . .i)+P I-'.q(,. . .i
—=0, c& 2.

~-1 dt a=1

To discuss the Bianchi identities of the approximate
theory, we derive the transformation law for the q(, , ) of
different order. By writing

e'$„
a=0

(2.13)

and by replacing q, and j, by their power expansion in
(2.8), we get.

6q;= P e'Bqt, , ,&

=F ' 2 "qi~..) 2 ebkb 2 2—e +'qt', .iEb (2 14)
b=—0 a 1 b=0

Reordering terms in the sums and equating the different
coefficients of e we obtain'

bqi;, .) =I',' p qi~;g b)&b —p qi, , ~ b)(b. (2.15)

a b

Z 2 i "—(I-."'"q&; b-.i) 5
b=1 c=1

a b—1

+2 2 I-."'"q&', b- &5 =0 (216)
b=l c=l

If we now interchange the sums, being careful to use

'By showing that the Jacobi identity is satisfied, the group
property of the transformation (2.15) can be verified.' The fact that the Bianchi identities imply the invariance of
the theory can be seen by replacing Q by P in Eq. (2.9). Continuing
in the same manner as in the text, we get an equation similar to
(2.11).If the quantities called the Bianchi identities are identically
zero, the F must be equal to Q, which is the condition for an in-
variant transformation.

The requirement that q(,, 0) equal a fixed constant re-
sults in $s being a constant. In general relativity,
likewise, the g(„, 0) will remain Minkowskian only if
the zeroth-order coordinate transformations are Lorentz
transformations.

We can establish whether the transformation law
(2.15) will leave a particular Lagrangian I.b invariant.
To do so we assume that the Lagrangian is in fact.
invariant under the law (2.15), and then show that the
resulting Bianchi "identities" are actually identically
satisfied by virtue of (2.12).'

We perform the identical operations that we used to
obtain. (2.11), except that we replace 1. by I.„and the
transformation law (2.8) by (2.15):

a J, Cl

(I"—' "'qu, ))+-2 ~." "'qi', —.) —=o
b=c b=c+1

(2.17)

After use of (2.7) and some relabeling of the indices,
(2.17) reduces exactly to (2.12). This completes the
proof that the approximate theory possesses the same
invariance properties as the full theory to any order in
the approximation. Although in the full theory there is
only one Bianchi identity for each (, in the "truncated"
theory to order a, there are a identities. The reason for
this is that the transformation group now depends on
the a arbitrary functions, e„ instead of just one.

O'L,
L (, )(j,b)=

~9'(', )~9'(~, b)

Since the Lagrangian L, is invariant under e trans-
formations, the equation

I (&&)(7b)~ . —{) (3.1)

must have at least e solutions. The question arises as to
whether the approximation procedure introduces addi-
tional solutions to (3.1), that is, whether it introduces
second-class constraints. We will prove that this is
not the case.

Because the original Lagrangian is assumed to be
quadratic in the velocities, and because the expansion

' Bergmann, Janis, Goldberg, and Newman, Phys. Rev. 103,
807 (1Ã6).

3. ABSENCE OF FALSE CONSTRAINTS

The matrix 1."=r7'I/r7q—,r7q, is singular in all theories
that possess an invariance group depending on arbitrary
functions; the converse, however, is not true. L'& may
be singular and possess no invariance group; in that
case the singularity corresponds to second-class con-
straints (constraints having nonvanishing Poisson
brackets with each other) in the canonical formalism.
With our assumption of only one arbitrary function in
the invariant transformation law and the existence of
only first-class constraints, the equation L'&I;=0 has
only one independent solution and there are exactly
two first-class constraints. "The first constraint (called
primary constraint) expresses the fact that the ve-
locities are not uniquely determined by the q's and p's.
The second constraint (tecotbdary constraint) arises
from the consistency requirement that the time deriva-
tive of the primary constraint must vanish. The matrix
corresponding to L'& in the approximate theory is



was written I.=g e~'l., the matrix 1.,(' '(& ~) takes (3.4) in the following form

the form

noix.e~
APL,~ Lf—a+b+e—1 —L (i, b) (~",e—f+a—b+1)

e )

~9'(', »~9'(~; ) ~V(', b)~9'(~, -S+.-b+»

we obtain
(3.2)

p I (i&)U, ~ f+—~ H—&)ii-. ))
—()

a=0
(3.9)

where every element stands for a,n ng n ma, trix,
&q J= 1 ' 's. Accord)ugly) (3.1) can be written

By relabeling the indices and setting f) equal to a+1,
we obtain exactly (3.3). The arbitrariness in the choice

of b yields, for example, the following e linearly inde-

pendent null vectors of L
0

p I, (j, e—c+&)(id)N(, ~) 0
d=l

(3 3)

Ke now express L'&Ni in a power series in e, and equate
the coe%cients to zero. These coeS.cients will equal

(33);because of the uniqueness of the power expansion
of I;. Before we can perform this derivation, we need a
lemma, which is also important in the next section.

If we consider $ as a general variable, standing for g,
(f', or p and write x=p e'x„ then any function of x can
be expressed as a power series in e, f(x)=P ~ f, (x )b.

Our lemma can be stated in the form

()fe aft+a ~fc+d

8$e (g 8$b 8$e
(3 4)

The proof is simple. We write f(x) =f(P c x„) and note

()f Bf ()f
~
—b ~

—e

~$ ~$b $c
(3.3)

The mdrcated di6erentsahon operations are then per-
formed on the expanded f(x), and the coefficients of
different powers of e are compared; hence (3.4).

%e are now ready to expand the equation L'&I =0. If

S,= P 6 Q(;, ~i))
a=0

(the form of the summation is just for convenience) and

(3.10)

+(i, e) +(i, e—1)

4. CANONICAL FORMALISM

Construction of a Hamiltonian formalism from the

Lagrangian L.proceeds along lines indicated by Dirac.
It diGers from the usual procedure in that the Hamil-

tonian is not a unique function of the canonical vari-

ables; a linear combination of primary constraints can
be ad.ded. Though construction of the Hamiltonian is

easy, it must be shown what relationship it bears to the

expansion of the complete Hamiltonian formalism.
First write the expansion of the exact p; in the form

The matrix (3.2), being of order (' can have at most ('

independent null vectors; if there were other null vec-

tors, they would have to come from the @ by e sub-

matrices. Since the power expansion of L.is unique and

there is only one Ni which is a null vector, there can be

only one of each type of the e vectors (3.10).This proves

that there are only e null vectors of L,(i ) (&' b) and since

the most general transformation of the "truncated"
theory to order e contains e arbitrary functions, there

can be no second class constraints.

a+ b+L"=
~V(', b)~9'V, )

= P e'1.,~~, ((*' "(&' ' I), (; arbitrary, (3.7)
a 0

where we have used the power expansion of I.and (3.5)
twice, then

pi=2 ~ p(i, ~))
1

and try to connect the p(;, ,)'s with the

e(i, a)

This can be done as follows

(4 1)

I i)'I,.= Q Q ~~+&i~~+ )(i, &)(i,~)N(.
d=o a=o

oo f
=& "Z I)-.+~+ -)' ""'ii(*;.+)) (3g)

/=0 a=o

After equating the coef6cients of ~ to zero and using

BL,=P e'
~g(i, e—c+1)

& pe(i, e—c+))~

BL oo &La '@ ~Lb+e—1

p P &s b+) P—&e

gg a=b gg (. b) c1 gg (i b)
(4 2)
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using (3.4) and (3.5). Hence from (4.1) and (4.2)

p (ea) , pe ((, e—a+1) ~ (4.3)

In the power expansion of any function A(&t,p), the
I&(;, ,)'s must be replaced with the aid of (4.3) in order
to obtain the variable or variables in the approximate
theory which are equivalent to the A in the full theory.
It is easy to show that the eth term in the Hamiltonian
constructed in this manner is equal to the Hamiltonian
formed from the eth Lagrangian,

By relabeling the indices we obtain

BA BB ~ BA BB

()&t (lp '=' "=' (IVd (Ipa(d)
(4 11)

(A.,B()'=—(A.,B~))'+'=—(A.~„Bb)'+', c& a, b (4.12. )

After antisymmetrizing with respect to g and B, (4.5)
results.

Another relation which is important in the next
section is

This can be proven simply by a direct calculation. It
must be emphasized that the coefficients of the ex-
panded functions of the &t's and p's, though unique func-
tions of the q

's and p, 's, are not unique functions of the
unbarred p, &,&'s; the subscript e being arbitrary; (4.12)
is to be understood as an identity in the p 's.

The consistency of our approximation method with
the full Hamiltonian theory can be tested. From the
Poisson bracket (q,p) =1, it should be possible to derive
the relations ((I„P,((,))'=t&, (,. That this is true can be
seen from (4.5) and (4.12). When A and B are replaced
by q and p in (4.5), we get the result

(4 4)~~e Q Pe(i, a)(I((a) I, e

a=1

We must obtain a connection between the Poisson
bracket of two functions in the full theory and the
Poisson bracket in the approximate theory. This rela-
tionship may be stated in its simplest form by the
equation

(4.5)(ff,B)=g e'-'(A B )'
I

where the bracket with the superscript e means the
Poisson bracket of A, with B, using the variables

&t(,, 1& q(;, ,) and P, &;, 1& P.(;, .&. In the proof of (4.5)
we suppress the coordinate index i.

Using (3.5), we can write

(ql pl)'= (ql pl(1))'=1

(&J)e)'= (0 ~Pe(1))'=0e
(4.13)

where we have used (4.3) to eliminate the barred p's.
With the aid of (4.12) applied to (4.13) we can obtain
the entire system of Poisson bracket relations.

BA 8A, 8A ~,
~a—b ~e

a- b gq~ ~0 gq~

8B, ~ BBd+f
~c—d Q df

c&p c=d QI&d f 0&)pd=
When a classical theory contains a general invariance

group (depending on arbitrary functions rather than
arbitrary parameters), the velocities cannot be solved
as unique functions of the canonical variables from the
equation

from which follows

0 BA Q+(, BBd+g
gg

8&t C)P C=O e=o &)(t(, BPd
(4 "t) (5.1)

(4 6) S. INVARIANTS IN THE APPROXIMATE THEORY

With the aid of (3.4), this can be rewritten

BA 8B a BAt, BBg

8(I c&P a=0 e=o ()&(Ig e ()(td
(4 8)

BA BB ~ a BAg BBg

()P a=0 e O b ()e(()Pa( (d+—gaeel)—(4 9)

Since the b, d, and a are arbitrary, we choose them to be
equal to g+1, with the result

BA g+g BBg+g

'=0 ~qg+&—c ~Pe+&(0+'I—e)

(4.10)

The p's can be eliminated by the equation p&,+,
=p, &, d+, e+», obtained from (4.3), yielding

The velocities can be eliminated from some of them
yielding relationships between the canonical variables
that must be satisfied if the Hamiltonian formalism is
to be equivalent to the Lagrangian formalism. These
relations, called primary first-class constraints, are de-
noted by C, (q,p) =0. The number of these constraints
is equal to the number of arbitrary functions in the
invariant transformation law. For consistency, the time
derivative of these constraints must vanish when the
constraints themselves are satisfied. If this does not
happen automatically then additional constraints must
be imposed, (C„H)=0. These are called first class-
secondary constraints. It is assumed here that no ter-
tiary constraints appear. When we deal with the t,th-
order Lagrangian L„e primary constraints and e
secondary constraints (if the full theory possesses one
primary constraint) will appear.
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According to Bergmann and Goldberg' the canonical
variables are not the most appropriate variables for
constructing the Hamiltonian formalism and trans-
formation theory; the "observables" are the (maximum
number of) independent functions of the canonical vari-
ables that have vanishing Poisson brackets with the
constraints. They do not change their value or form
under the invariant transformations of the theory. All
quantities of physical interest can be expressed as
functions of the observables. Their number in a given
theory can be calculated readily to be (2N —2n, o), 2ii
being the number of canonical variables and /zp the
number of constraints (this is not true if some of the
constraints are second-class). In our case, due to our
assumptions, the full theory possesses (2ii —2) observ-
ables and the eth approximation (2e—2)e.

The purpose of this section is to show how to con-
struct the (e+1)th observables of the (e+1)-st approxi-
mation if we know the e observables of the eth approxi-
mation. If we write the observables as 0 ", a going from
1 to e and N going from 1 to (2e—2) and the constraints
C ', s going from 1 to 2, we shall show that the 0,'s are
the power expansion of the full 0's. By replacing A and
8 in (4.5) by 0" and C' and remembering that the full
observables and the constraints must commute, we
obtain

(0.",C.')'=0, a=1 e. (5.2)

Repeated application of the identity (4.12) to (5.2)
yields

(0 "C ')'=0 (5.3)

BO,+g" BO," BO,+g" 80,

~q(i, a+1) ~q(i, a) p (i, a+1) ~p (i, a)
(5.4)

These expressions indicate that the dependence of 0,+j"
on all the q 's and p 's except for a=1, is uniquely
determined. In other words, we now determine a func-
tion of q(i &), and p(;, &), which must be added to the
already determined part of 0~& . %e can narrow the
possibilities further by noting that 0~~" are the coeK-
cients of e'+' in a power series, and hence the function
we are seeking must be homogeneous of the (e+1)st

This is just the condition for the 0 "'s to be observables.
The first e observables of the (e+1) approximation

are just the e observables that we already know, the
only difference being that all p, &,&

are to be replaced
by p,+i&,+». That they commute with the constraint
C,+i' is proven by applying (4.12) once to (5.3) and
taking b=e.

The problem that remains to be solved is how to
construct the (e+1)st observables. In what follows we
consider all functions as functions of the p's to simplify
the notation. From (3.4)

degree in the q(;, &) and p(, , &). Thus we see that only the
numerical coeScients are not determined. They, how-
ever, may be determined by the requirement

(0 «C s)e+i 0

6. CONCLUSION

(5.5)

In the present paper we have developed an approxi-
mation procedure that purports to lead to the solution
of the following purely abstract problem. Given a 6eld
y~ of several parameters x, with an (infinitesimal) trans-
formation law under a group of transformations whose
elements depend on one or several arbitrary functions
of the x; find a complete set of functions (or functionals)
of the yz(x) that are invariant. with respect to the
transformation group. An invariant, in this sense, diGers
from a scalar field in that its value is to remain un-
changed if the transformed functions of x, y~(x) are
substituted into its law of formation instead of the
original ones, whereas a scalar retains its numerical
value at a fixed point P (whose coordinates x will change
their values as a result of the transformation). To the
extent that the law of formation of an invariant makes
any reference to the values of the parameters x at all,
the same numerical values are to be inserted in both
cases.

If the x are invariant under the group of transforma-
tions (as they are, e.g., in the gauge group), invariant
and scalar are equivalent. But if the transformation
group involves coordinate transformations in x space,
they are not.

In this paper we have developed our approximation
procedure within the Hamiltonian formalism. Originally
it had been hoped that the approximation procedure
would lead directly to a prescription for quantization,
so that one could also speak of a quantum theory correct
up to the ath order. Our discussion of the Poisson
bracket in the c-number theory shows that such a pro-
cedure is not automatic. YVe shall endeavor to develop
such a theory, either with the help of our approximation
procedure in the canonical formalism or by Lagrangian
quantization.

The motivation of this paper is closely related to work
by Komar, " Geheniau, " and Janis. " Komar and
Geheniau have proposed to construct invariants with
the help of ideas specific to Riemannian geometry.
Their ideas appear to apply primarily to pure gravita-
tion theory, where they may be particularly useful;
they do not represent a general physically oriented
search for observables in singular theories. Janis, on the
other hand, proposes to exploit a generalized Fermi-
type approach involving subsidiary conditions, whose
innocuous character is explicitly demonstrated.
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