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1. INTRODUCTION AND SUMMARY; THE
SCHWARZSCHILD-CELL METHOD

' ANY problems of electrostatics can be expressed
~ ~ in terms of the elementary 1/r potential due to a

point charge. Gravitation theory provides the analog
of the 1/r potential in Schwarzschild's expression

ds'= P g.pdx dxI'
aP

= (1 2Gm/c'r) '—dr'+r'[d8'+ si n'8d w'i]

—(1 2Gm/c'r)d —T' (1)

for the 10 gravitational or metric potentials of Einstein
for the effect of an elementary concentration of mass
in an asymptotically Rat space-time continuum. Here
G is the Newtonian constant of gravitation, 6.67)&10 '
cm'/g sec', c the velocity of light (cm/sec), and m the
mass in grams. The equations of gravitation theory are
nonlinear. The principle of superposition, so central in

electrostatic theory, does not apply. Consequently, the
Schwarzschild solution has no such far-reaching realm
of application as the Coulomb potential. Nevertheless
there exists a class of problems that receive a simple

approximate solution by way of the Schwarzschild
formula.

Ke consider a number of mass concentrations so
distributed in space and of such relative magnitudes,
that the zone of inRuence of each can be reasonably
approximated by a sphere. Inside each cell we replace
the actual gravitational potentials by the expressions of
Schwarzschild. This approximation demands that the
distribution of gravitational inRuences just external to
each sphere should depart relatively little from spherical
symmetry. Such a treatment is inspired by the success
of signer and Seitz' in analyzing electronic wave
functions in crystal lattices. They approximate the
elementary lattice cell by a sphere of the same volume.
The wave equation for a problem of nonseparable
coordinates becomes separable. Applied to a problem
where the exact solution is known —where the potential
is constant —the accuracy of this analysis has been
tested with favorable results. '

From analogy with the signer-Seitz analysis one

~ National Science Foundation Predoctoral Fellow.
' E. P. Wigner and F, Seitz, Phys, Rev. 43, 804 (1933);i'.,

46, 509 (1934); see also F. Seitz, The Modern Theory of Solids
(McGraw-Hill Book Company, Inc. , New York, 1940), Chap. 9.

'iW. Shockley, Phys. Rev. 52, 286 (1937); F. C. Von der Lage
and 'H. A. Bethe, Phys. Rev, 71, 612 (1947).

might expect that the gravitational potentials ought
to have zero normal derivative at the boundary of each
lattice cell, idea'lized as spherical. The Schwarzschild
potentials do not satisfy this requirement. The deriva-
tive (d/dr)(1 —2Gm/c'r) is proportional to the New-
tonian gravitational field, Gm/r', and does not go to zero
at a Gnite distance. This derivative measures the rate
of acceleration of an infinitesimal test body placed at
the point in question. This acceleration at the position
of the cell boundary gives the acceleration of the cell
boundary itself. Otherwise stated, the mass concen-
trations on either side of the cell boundary accelerate
towards that boundary at such a rate as to nullify the
discontinuity in matching of the normal derivative of
the gravitational potentials that would otherwise occur.
Thus the cell method in gravitation theory has an
essentially new and dynamic feature that does not
appear in the solid state problem. This new feature is
simple and important. It, expresses the equationof,
motion of the mass al the cenler of a cell as a dynamic
condition on the boundary of the cell

The rest of this paper elaborates this idea and applies
it to the problem of the expanding universe. The @hole

of the dynamics of &he exPansion and subsequent coetrac
tion is deriied from the elementary static Schwarsschild
solution (1). For simplicity attention is limited to the
case of equal masses arranged in a regular lattice in a
closed space. Special interest attaches to the case of a
very large number of masses, %=600, the largest
number that can be arranged in a regular lattice. The
calculated radius of maximum expansion, ao, for this
case agrees to 1.2% with the well-known result of
Friedmann,

ao ——(4G/37rc') (total mass), (2)

for the case of a homogeneous distribution of matter.
BrieRy recapitulated, the Schwarzschild-cell method

considers the dynamics of a lattice universe as a
consequence of the field equations. These equations are
fulfilled everywhere except at the interface between
zones of inRuence, and fulfilled even there in an average
way. Thus the held equations determine the equations
of motion of the singularities that represent matter.
In this sense we follow the spirit of Einstein, Infeld,
and Hogan. a However, our approximation method to

3 Einstein, Infeld, and Hoffman, Ann. Math. 39, 66 (1939).
See L, Infeld and A. Schild, Revs. Modern Phys, 2I, 408 (1949)
for the derivation of the equations of motion for an infinitesimal
test particle moving at arbitrary speed; also L. Infeld and J.
Plebanski, Bull. Acad. Polon. Sci., Class III, 4, 757 (1956).
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determine the equations of motion of mass singularities
from the field equations is quite different from theirs.
They demand small relative velocities, and a space that
is asymptotically Qat, but make no symmetry require-
ments on the disposition of the masses. In contrast,
symmetry alone is the demand of the method that
decomposes all of curved space into Schwarzschild
cells.

When closed space is divided up into in6nitely many
infinitely small cells one passes to the limit of the dust-
filled universe of Friedmann. Section 2 summarizes the
properties of this Friedmann solution and defines the
ideas needed in comparing this uniform model with the
lattice model. One introduces the idea of a "comparison
uniformly curved space" or "comparison hypersphere. "
The boundaries of zones are marked on it that have
the same reQection symmetries as do the zones of the
lattice universe. Section 3 analyzes the geometry of
these polyhedral zones on the comparison hypersphere.
Section 4 derives the equation of motion of the boundary
from two conditions: (1) the boundary of the Schwarz-
schild cell must be tangent to the comparison hyper-
sphere; (2) the solid angle subtended by the Schwarz-
schild cell on the hypersphere must not change with
time. To satisfy these two conditions, the radius of the
Schwarzschild cell, and the radius of the comparison
hypersphere must vary with time. The equation for the
cell radius is found (Sec. 4) to be identical with that
of a freely falling test particle. Section 5 shows that
the radius of the comparison hypersphere has essentially
the same time variation as does the radius of the ideal
Friedmann universe. Section 6 analyzes possibilities for
replacing the Schwarzschild cell approximation by an
exact treatment of the lattice universe. Section 7
considers possible use of the variational principle for
extensions of the method, and consequences of de-
partures of a cell from perfect symmetry.

(0) PURE OUST CASE
T

( b) PURE RADIATION CASE

FIG. 1. Radius of the universe, a, as a function of cotime,
T= (velocity of light) (time), for a homogeneous isotropic
universe. The system expands outward and falls back together
again under gravitational attraction, but the detailed dynamics
depends upon the equation of state of the medium. In Friedmann's
universe (case a) the pressure is zero. In the case of pure radiation
(case b) the pressure is equal to one third of the energy density,
and the circle a'+T'=a0' takes the place of Friedmann's cycloid.
The intermediate case has been treated numerically by G. Gamow,
Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd, 27, No, 10
(&9i3).

The maximum radius is

co——4GM/3m. c'. (2a)

The relation between radius, a, and cotime, T
= (velocity of light) (time), is a cycloid (Fig. 1) given
parametrically in the form

u= (ao/2) (1+cosy)
T= (ao/2) (rl+sing).

The three dimensional curved space of Friedmann at
any one cotime, T, is equivalent to the three-dimen-
sional hypersurface of a sphere in a four-dimensional
ENcl~deae space. The extra dimension has no physical
meaning; it is an imbedding dimension. Introducing
Cartesian coordinates,

N~= u sing sin8 sing,

N2= u sing sine cosy,

N3
——a sinx cos0,

N4= 8 cos+)

2. FRIEDMANN UNIVERSE AND THE LATTICE
UNIVERSE COMPARED

and letting
r=a sing, (6)

A closed universe with zero cosmological constant in
accord with the arguments of Einstein4 is assumed.
When this universe is homogeneous and isotropic, the
metric can always be written'

(3)

The radius of curvature, u(T), depends upon time
in a way that is governed by the equation of state.
In the Friedmann case, where the universe is filled
with a uniform dust of total mass M and zero pressure,
the radius satisfies the equation of energy,

Mc'+Mc'(da/dT)' (4GM'/3~a) =0. — (4)

A. Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, New Jersey, 1950), p. 107.' H. P. Robertson, Revs. Modern Phys. 5, 62 (1933).

gives the metric (3) the simple form

dS = dBy +F2 +dQg +dN4 dT .

On this sphere we mark out the vertices of a regular
figure to give a geometry that can be compared with the
geometry of the lattice universe. Particular dust
particles specify these Ã vertices. Every vertex can be
equidistant from its nearest neighbors only when
%=5, 8, 16, 24, 120 or 600.6

The case %=8 gives one of the simplest of these
arrangements. For any typical one, P, of the eight
points there is another one, 3, of the eight which may
be called its antipode. The remaining six particles are
most conveniently named as X(north), S(south), Z, W,

' See H. M. S. Coxeter, Regular I'olytopes (Methuen and Com-
pany, Ltd. , London, 1948), in particular Table I (ii) on pp.
292—293, for an enumeration of the regular polytopes in four
dimensions.
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FiG. 2. Two-dimensional analog of a closed lattice universe.
The third dimension in the drawing merely provides a dimension-
ality high enough to allow imbedding a two-dimensional space
with the topology of a sphere. The superfluous radial coordinate
has no relation to the time coordinate. There are six lattice cells:
P, E, A (antipode}, W and lV, S. Each is like a square in its count
of edges and corners but is a deformed square. The distortion is
such that the angle at a corner is 120' instead of the normal 90'.
ln terms of distances:

How is one to deal with this metric with its compli-
cated variation in space? Can one simplify the problem
by limiting attention to those parts of space that lie
infinitesimally close to zonal boundaries, with their
reAection symmetries? Xo, even the metric in these
limited regions of space does not conform to the surface
of a comparison hypersphere. One naturally chooses the
radius of this comparison hypersphere so that points
halfway between nearest neighbors will lie outside
the comparison hypersphere, and points equidistant
from three nearest neighbors will lie inside.

To simplify the metric in an individual cell we have to
simplify the geometry of its boundary. We reptace the

typical cell oJ the lattice ttnioerse by a Schwarsschild cell
that (1) has a spherically symmetric metric:

ds'= [1—(2m*/r)] 'dr'+r'[ d'It+sin'0(dq. )']
—[1—(2m*/r) ]dT' (7)

m*= mass of one singularity expressed in units of length,

All distances in terms of
radius, c, of sphere

Lattice cell of Fig. 2

Center of cell to
center of edge

=0.7854@
8

Center of cell
to corner

a sin I —=0.9553a
3

= (G/c') (mass of singularity) =Gm/c', and m= (total

mass)/(number of vertices) =M/1V; (g)

Circular domain on surface of
sphere with same center
and same area

Ratios
Square of same area in flat

space =—a2

Circle of same area in flat
space

Ratios

2c cos ' — =0.841la
3

0.9338 1.1359

c =0.7236R — a =1.0233a
6 3

a =0.8165a
3

1.25330.8862

U(up) and D(down). Proceeding from I' to any one of
these six nearest neighbors, say E and continuing on in
the same direction, then one comes next to the antipodal
mass, A; then to 8' and finally back to P. Likewise, pro-
ceeding upward from P, one comes in turn to U, A, Band
back to P; and so on. Figure 2 sketches the analog of this
lattice arrangement for a two-dimensional closed
surface imbedded in a three-dimensional Euclidean
space.

An infinitesimal test particle ordinarily lies closer to
one of the lattice centers, P, than to another. It may
be said to belong to the zone of inQuence of P, or to the
lattice cell centered on P. Between P and E lies a
two-dimensional array of points which are equidistant
from I' and E: the boundary or interface between the
domains of P and E.

From Friedmann's simple metric with its uniform
curvature we turn to the metric of a lattice universe,
where all the mass is concentrated into A centers. The
curvature of the metric, E;,~~, now varies from place to
place as indicated qualitatively in Fig. 3. However, the
contracted curvature tensor, E,~ ——g &E; J,p vanishes
throughout the mass-free space between the vertices.
Moreover the symmetry group of the vertices is
completely unchanged, as are the reAection symmetries
of the metric at the cell boundaries.

(2) has a spherically symmetric boundary whose radius
r depends on time, and (3) conformally joins at this
radius r onto a comparison hypersphere of a radius, a,
that also depends on time. This radius defines what we
mean by the radius of the lattice universe. To state in
quantitative terms this joining or tangency condition now
requires examination of geometry of the comparison
hypersph ere.

There is a second motivation to study geometry on
the hypersphere. There one can define polyhedral zones
and compare them with spherical zones to test quanti-
tatively how nearly the dimensions of the two objects
agree. Such a comparison is not possible for the lattice
space itself because its metric is not known. Therefore
the analogous comparison on the surface of the hyper-
sphere —and in Cat space —supply our only simple
means to estimate the accuracy of the signer-Seitz
approximation.

Fzc. 3. Qualitative character of the space in a lattice universe.
The space is closed up, but not by an everywhere uniform curva-
ture as in the Friedmann universe.
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3. GEOMETRY OF SPHERICAL AND POLYHEDRAL
CELLS IN UNIFORMLY CURVED SPACE

The shape of the typical lattice cell in uniformly
curved space is easily visualized by considering the two-
dimensional analog (Fig. 2) of the three-dimensional
lattice universe containing eight particles. From that
analogy, or from direct analysis, one sees that the
faces of the cube-like lattice cell meet at a dihedral
angle of 120', rather than the familiar 90' (Figs. 2
and 4). An edge is common to three cells, not to the
four expected from the familiar picture of stacked
blocks. At a corner only four lattice cells meet, instead
of the usual eight; and only four edges, instead of the
usual six. These four edges radiate from the corner at
the regular tetrahedral angles. The corner of a lattice
cell appears blunt when compared with the corner of a
cube. To approximate the lattice cell as a sphere is
expected to be slightly better than the replacement of a
cube by a sphere as done in solid state physics. This
conclusion is borne out by the comparison of distances
given in Table I.

Similar distance comparisons for the other regular
lattices in a space of uniform curvature appear in
Table II. Thus the lattice cell of a spherical polytope

FIG. 4. Shape of typical cell in case
of eight particle lattice universe, The
cell is like a deformed cube. Three cells
meet at an edge rather than the four
of Euciidean geometry, and at a
corner four cells meet rather than six.

deviates from a sphere considerably less than does its
counterpart in Oat space. This makes it reasonable to
develop the spherical cell approximation.

To obtain a measure of the size of a spherical cell,
both absolute and relative to the total hypersurface, we
imbed the curved three-dimensional space at a fixed
moment of time into a Euclidean four-dimensional
space. Denote by a the radius of the hypersphere and by
ro the radius of the spherical cell, both as measured in the
flat imbedding space. Denote by P the angular sepa-
ration of the center of the spherical cell and its boundary
as seen from the center of the hypersphere:

sin|t = ro/a. (9)
The cell subtends at the center of the hypersphere a
hypersolid angle

t d (three-dimensional volume)

TABLE I. Comparison of (1) lattice cell dimensions for the case
of eight mass centers with (2) dimensions of a spherical cell of the
same volume in curved space, under assumption of unzform
curvature of the space, i.e., uniform mass density. In the case
when the mass of each cell is concentrated at the center of that
cell, the geometry of space is changed —and changed in a time
dependent way. Then these dimensions no longer apply exactly,
and have primarily only illustrative value.

All distances in terms of radius
of curvature, a, of space

Center of
cell to

center of
face

Center of
cell to

center of
edge

Center of
cell to
corner

Lattice cell of volume
(ii8)2m'a'

Spherical domain in curved
space with same center and
volume

Ratios
Cube of same volume in

fiat space
Sphere of same volume in

fiat space
Ratios

0.785a 0.955a

0.883a
0.889 1,082

0.6768 0.955a

0.838a
0.806 1.140

1,0478

1.186

1.170a

1.396

2m 8)
the spherical cell occupies the fraction

4/%t, i,i= (2f—sin2$)/2m. . (12)

We wish to cut away the uniformly curved space
occupied by a spherical cell and replace that cell by a
Schwarzschild cell. In the Schwarzschild cell the metric
is nonuniform but still spherically symmetrical. We
want the Schwarzschild cell to have the same spherical
boundary as the uniformly curved spherical cell that
it replaces, and to be "tangent" to the hypersphere
at the point of join.

How big shall the spherical boundary be chosen)
Two alternative conditions suggest themselves for
defining the angle P:

TABLE II. Distance ratios as measures of the "roundness" of a
lattice cell in curved space. For comparison the same distance
ratios are also given for Rat space for a cell with the same number
of faces, edges and corners. The cells are most nearly spherical
when there are 120 mass centers.

Name that would
Number of be given to one

identical such cell in
cells flat space

distance to: face or corner
Ratio „"radius" of sphere of same volume
Curved Flat Curved Flat
space space space space

in analogy to the familiar formula in three-dimensional
geometry

A=2m (1—cosP)

for solid angle subtended by a cone of half-angle P. Out
of the whole hypersurface or three volume of the
hypersphere,

inside

sin'g sin8dyd9d q

5
8

16
24

120
600

tetrahedron
cube
tetrahedron
octahedron
dodecahedron
tetrahedron

0.862 0.671 1.246 2.013
0.889 0.806 1.186 1.396
0.763 0.671 1.525 2.013
0.880 0.846 1.320 1.465
0.917 0.910 1.133 1.146
0.679 0.671 1,947 2.013

=~ (2P—sin2$) (10)
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Condition I: The boundary sphere shall cut out of
the hypersphere 1/X of the total solid
angle.

Condition II: The boundary sphere associated with
one mass concentration shall just touch
the boundary spheres of all its nearest
neighbors.

Condition I is the direct generalization to curved space
of the standard Wigner-Seitz approximation. The
boundary angle f is fixed by

1 2P si—n2$

+total l lt 277'
(13)

S spherical cells, each of which will fit into 1/1Vth
the hypersurface —or three volume —of the hypersphere
will in some places overlap and in other places leave
regions of "no man's land. "When the cells are merely
cutouts from the hypersurface, they have uniform
curvature and in the regions of overlap meet every
reasonable requirement of "tangency. " Consider the
other case when the regions inside the boundary spheres
are Schwarzschild cells, adjusted here md aheays to

tarigertcy to the comparisoii hypersphere at their spherical
bourIdaries. Where the boundaries of two spherical
cells interact, the two Schwarzschild metrics are
tangent because at that point both are tangent to the
hypersphere. Where the cells overlap, the intersecting
Schwarzschild metrics depart from tangency in one
sense; and they depart from tangency in the opposite
sense wherever the intersection lies outside the spherical
boundaries of the cells. Condition I makes the metrics of
two Schwarzschild cells be tangent to each other in an
average way, it being understood that at the spherical
boundary of each cell the Schwarzschild metric has been
made tangent to the comparison hypersphere in a way
defined later.

In contrast, Condition II gives a matching only at
the one point of contact midway between neighboring
mass centers. Away from this point of contact, in the
now enlarged "no man's land" between spherical cells,
two extrapolated Schwarzschild metrics at their
intersection depart more and more from tangency.
The departure always has the same sign. Consequently,
Condition II will be a less reasonable criterion for cell
size than Condition I. Thus far, we have examined
the two criteria for cell size from the point of view of
matching of boundary conditions thinking of the metric
inside as of Schwarzschild form. Now imagine instead
a uniformly curved space inside of these boundaries.
Then the tangency requirements are automatically
satisfied. Another point of view offers itself to compare
the two criteria for cell size. Table III shows that the
polyhedral ce}l dimensions are not as well matched by
Condition II as those spheres of Condition I. One is not
in a position so easily to calculate distances when the
metric has the nonuniform curvature of the true lattice

space, but it is reasonable to believe that Condition I
continues to give the more reasonable cell dimensions,
as it also better satisfies on the average the tangency
requirement.

We have now decided that the spherical boundary
of one Schwarzschild cell is to cut out 1/Xth of the
volume of the comparison hyperspace (13). Next we
formulate the requirement that the cell be target to
the hypersphere at the point of join. Imagine a surveyor
told to find the fraction of the earth's area enclosed
within a circular kingdom, but only allowed to make
measurements on or near its periphery. His solution is
simple: Measure the circumference of the kingdom,
and compare it with that of an in6nitesimally smaller
circle also on the earth's surface. Also measure the
difference in their radii. If the earth were Rat, one would
find

d (circumference)
=2'.

d (radial distance)

However, due to its finite radius a, one finds

d(circumference) d(2ira sing)
= 2ir cos|p. (14)

d (radial distance)

1 d(circumference)
= cos|p,

2ir d (radial distance)
(15)

TABLE III. Comparison of polyhedral and spherical cells in the
closed three space that forms the hypersurface of a sphere in 4
dimensional Euclidean space.

Distance from center of cell in units of hypersphere radius
Radius of sphere that

replaces cell according to
Condition I Condition I I

Center of Center of Center of
face edge cell

5
8

16
24

120
600

0.912
0.785
0.524
0.524
0.314
0,135

1.150
0.955
0.785
0.617
0.365
0.232

1.315
1.047
1.047
0.785
0.388
0.388

1.057
0.883
0.686
0.595
0.343
0.199

0.912
0.785
0.524
0.524
0,314
0.135

The extension of this method to the problem of a
sphere on the surface of a given hypersphere requires
no essentially diGerent ideas. Choose any great circle
on this sphere, and compare its circumference with that
of the corresponding great circle on an infinitesimally
smaller one. Let d (radial distance) denote the difference
in their radii as measured im ae imvariaet marjrIer along
the sitrface of the hypersphere One is. led again to (14).
In view of the complete symmetry of the problem, one
clearly obtains the same value of f regardless of which
great circle is chosen for the measurement.

Thus there is an invariant way to say that one
Schwarzschild cell shall cut out 1/1Vth of the tangent
hypersphere, and to say this entirely in terms of
measuremeets Az aed near the cell boundary:
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where |tr is dered by

2f—sin 2$ 1

2x
(16)

4. DYNAMICS OF THE LATTICE DEFINED
BY BOUNDARY CONDITIONS

The problem of matching metrics at the boundary
between two cells has been replaced by the problem of
matching the metric in one Schwarzschild cell to the
metric of the comparison hypersphere. From this
matching condition we now derive the change with
time in the radius of the cell and the radius of the
universe —in other words, the dynamics of expansion
and recontraction —using (15), (16), and (17), which
depend only on behavior of the metric near the cell
boundary.

In the Schwarzschild metric (7), a great circle of
radius r has the circumference 2xr. A great circle of
radius r —s has the circumference 2TT(r e). Th—e
invariant infinitesimal distance between one circle and
the other is

s[1—(2m*/r) j
These two observations made near the boundary fix
the fraction of the whole hypersurface occupied by one
Schwarzschild zone:

1 d(circumference)
= [1—(2m%)]'= cosf~, (18)

2N. d(radial distance)

where P~ is 6xed by 1V, according to (16). Thus, the
radius r of the Schwarzschild cell cannot depend upon
time, and we end up with a universe that has no
dynamics at all I Obviously we have made an oversight
somewhere.

The difficulty arises because the two circles were
compared at equal values of the Schwarzschild time
coordinate. We tacitly assumed that the Schwarzschild
coordinates, r and T, are well adapted to describing the
space-time continuum inside one cell, but they are not.
Their inappropriateness appears even more clearly for
r than for T. As the size of the lattice cell grows or
shrinks, the range of the v coordinate increases or
decreases. It appears as if one has to add on or chop o6
space at the cell boundaryt It is much more natural to
think of a new pair of space and cotime coordinates, p
and r, which are functions of r and T with the following
properties. The boundary of the lattice cell is described

In addition, there is an invariant way to define the
radius, u, of the hypersphere —or what we call the
radius of the universe —in terms of measurements at
the cell boundary:

(cell radius) (circumference of great circle)
(17)

2TT sing

INATE PATCH
BODY 2

g N CQN$T

IX~ &
p CONsr ~~~ ~pla

r' ~M/Q
T, ' CONST

(/i/ ~ / /~
COORDINATE PATCH

OF BOOV I

I'zG. 5. The coordinate patches of two lattice cells merely
intersect at the boundary, p=a, and do not overlap as they
should when the surfaces in question belong —as in the 6gure —to
equal values of the Schwarzschild time, TI=T&=const. Real
overlap or tangency demands instead equal values of a new time
coordinate r, not shown. Surfaces of constant r intersect the zone
boundary perpendicularly; surfaces of constant T, like those
shown here, make oblique intersections.

by the statement that p=p(r, T)=constant at that
point. The point p —e in the "coordinate patch" of one
lattice cell is to be identified with the point p+s in
the extrapolated coordinate patch of another lattice
cell. This identification is not to be made for equal
values of the Schwarzschild time T because then the
two coordinate patches do not overlap but only intersect
(Fig. 5). This failure to overlap can be stated this way:
The coordinate surface, T=constant, does not stand
perpendicularly to the boundary surface, p= constant,
but oMiqgely to it. T'he appropriate new time variable,
T=T(r, T), has the property that the surface, r=con-
stant, does stand perpendicularly to the boundary
surface, p=constant. This orthogonality of the two
surfaces is demanded by the condition of mirror
symmetry at the zone boundary.

We later construct a coordinate system, p, r, that
satisfies the orthogonality requirement. However, for
formulation of the boundary condition at the surface
such detail is not needed. It is enough to demand that
the two circles of slightly different sizes be compared
at the same value of the r coordinate; in other words,
that the ring-like surface connecting the two circles
shall be orthogonal —in the four-dimensional sense —to
the boundary of the lattice cell. This condition, being
invariant, can also be formulated in the original
Schwarzschild coordinate system.

The boundary will move in the interval of Schmarss-
child cotime dT from r to r+dr. Describe this change by
the four vector (dr, 0,0,dT) (in contravariant com-
ponents). At this stage the ratio, dr/dT, of the com-
ponents of this vector is not known. Construct a new
vector that is (1) perpendicular to this vector, and (2)
perpendicular to the two independent vectors that lie
in the boundary (O,d8,0,0) and (0,0,des, 0). The new
vector is uniquely determined up to a multiplicative
factor, and in one convenient normalization has the
contravariant components

( grrdT 0 0 grrdr).

This vector, being normal to the boundary, lies in the
surface of constant r.
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(g"" l *

& gr") d(proper cotime)

The angle Pier and the hypersolid angle N spanned by
the cell must remain constant in time; the motion of the

boundary must, adj ash itself to this match Np recii-sircmeet

Therefore (19) determines the equation of motion of
the boundary:

or

coslgiv

d(proper cotime) [1—(2m*/r)]
(20)

(dr/d T)= & (cosP) '[1—(2ra%) ][(2m%)
—sing]l. (21)

This completes the derivation of the dynamics of
expansion from the metric match-up conditions.

The equation of motion of the boundary, (20) or
(21), is identical with the law of conservation of energy
for a unit test particle thrown out radially from the
mass, m. The expression on the left side of (20)—after
multiplication by c —gives the rest plus kinetic energy
of the test particle,

C2

[1—(ri'/c')]' *d(proper cotime)
(22)

Return to the comparison of the two circles. One
circle passes through the point with coordinates
(r,O,O, T). The other circle was previously erroneously
taken to pass through a point (r e, 0,—0, T) at the
same Schwarzschild time. Instead, we must take a
circle at the same value of ~, passing through the point
(r g"'dT—, 0, 0, T+grrdr). The measurements on the
two circles near the zone boundary now provide an
invariant measure of the fraction of the hypersphere
spanned by the Schwarzschild cell:

1 d(circumference)
Cos'lp~ =—

2ir d(radial distance)

grrdT

[g„„(g'"dT)'+grr(grrdr)']l

g""dT

[g""g"]'[g»(d2')'+g.,(«)']'

S. RADIUS OF THE LATTICE CELL AND OF THE
UNIVERSE AS FUNCTIONS OF THE TIME

Equation (21) describes a motion of the cell boundary
that changes from expansion to contraction when the
last term vanishes; that is, when the cell radius, r,
reaches a maximum value, R, defined by

r, =R=2m*/ sin'P. — (27)

TABLE IV. Maximum radius, a0, attained during expansion of
the lattice universe (as defIned and calculated by the Schwarz-
schild-cell approximation method} compared with Friedmann's
value for the maximum radius of a universe uniformly filled with
dust. The radius is expressed relative to the Schwarzschild
"radius" 2&*=2GcV/c' defined by the mass of the whole universe
and also relative to the Schwarzschild radius 2'*=2Gm/c'
=2'*/lV associated with the mass of one lattice cell.

[compare (20)], and

d'r/ds'+ 'g"-"(dg, r/dr) (dr/ds)'

,'—g"—"(dgrr/dr) (dT/ds)'=0, (25)

[compare (21)].However the content is the same: the
entire time dependence of the boundary between two
lattice cells can be described by the behavior of a
particle that falls towards both mass points simul-
taneously under the action of their gravitational
attractions.

The integrated form of the equation of motion, (21),
is less complete than the differential form because it
possesses the singular solution

r = 2m*/ sin'Pii = a constant. (26)

This singular solution already appeared (18) in the first,
improperly formulated, attempt to derive the dynamics
of the lattice cell from conditions at the boundary.
Similar examples of singular solutions are common in
classical physics, if one deals only with first integrals of
the equations of motion. For example, a particle tossed
straight up in a uniform gravitational Geld, that came
to rest at the top of its flight —meed stayed ut ~est—would
satisfy the law of conservation of energy. However, it
would violate Newton's second law of motion. Likewise
an infinitesimal test particle permanently at the
location (26) cannot satisfy the geodesic equation of
motion (23). In mathematical terms, (26) is a singular
solution of equations in the sense that it represents the
eriiielope of the trajectories of test particles which reach
the same distance of maximum excursion r at different
values of T.

and the expression on the right similarly gives the
relativistic generalization of its total energy diminished
by its potential energy in the gravitational field. This
integrated form of the equation of motion is less familiar
than the differential form, analogous to Newton's
equation of motion,

d'x'/ds'+P s'(dx /ds) (dx&/ds) =0 (23)
or

d'T/ds'+ger (dgrr/dr) (dr/ds) (dT/ds) = 0

X

5 60.59'
8 50.60

16 39.34'
24 34.10'

120 19.63'
600 11.42'

00

Condition I
ap/2~z ~

1.5126
2.1672
3.9256
5.6750

26.376
128.82

ap/2M ~

0.3025
0.2709
0.2454
0.2365
0.2198
0.2147
0.2122

52.24'
45'
300
30'
180
7.66'
00

Condition II
ap/2zzz +

2.0239
2.9293
8.0000
8.0000

33.889
406.06

ap/2M*

0.4048
0.3535
0.5000
0.3333
0.2824
0.6768
0.2122
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In terms of y,„the equation of motion of the boundary
takes the form

a [1—(2m*/R)]ldr
dT= . (2g)

[1—(2m%)][(2m%) —(2m*/R)]'

Direct integration leads to a closed formula~ connecting
the cell radius with the Schwarzschild cotime T:

u) &
~ illo~
C m4

Xi po
~, N

(R—2m*) (R r)r—' '
T=

2m*

R—2ns* (y ~k
(R+4m*) arc cos) —

(
2m*

[r(R—2m*) ]'*+[2m*(R—r)]'
+2ns' ln (29)

[r(R 2m~)]' —.[—2m*(R —r)]*

More interesting is the connection between the cell
radius and the proper cotime 7 measured on an in6ni-
tesimal test particle that sits at the zone interface,
falling simultaneously towards both mass centers:

(dT/dr)

[(2m*/r) —(2m*/R) )l
(30)

a connection which integrates to

r= (R/2m )'[r'(R r)*'+R arc cos(r/R)'—]. (31)

This is the equation for a cycloid, as appears from the
parametric representation

r = —',R (1+cosri) = (M"/S sing~) (1+cosil)
r = ,'R(R/2-m*) l (g+ sing)

= (M*/X sin'P~) (q+ sing) .

The radius of the universe,

(32)

a= (radius of cell boundary in the imbedding
Euclidean space)/ sing~

= (1/2~) (circumference of great circle about this
sphere)/ sing~

= r/ sing~ (33)

is also obtained as a function of proper cotime in
parametric form directly from (32),

a= (M*/1V sing~) (1+cosy). (34)

The Schwarzschild-cell method predicts a cycloidal
relation between radius of the universe and proper
cotime which is identical to that found by Friedmann
(5), except for the connection between maximum
radius and mass. When the mass is distributed

Mr. Nicola N. Khuri kindly independently calculated this
integral for us, which presumably also appears somewhere in the
extensive literature of general relativity.

Fio. 6. Maximum radius of E-particle lattice universe, defined
and derived in the Schwarzschild-cell approximation, compared
with maximum radius of a universe filled with the same uniformly
distributed mass.

uniformly, as in Friedmann's model, the maximum
radius has the value

ao =4GM/3mc'= 4M*/3m (33)

When the mass is concentrated into E centers, and
when the concept of "radius of the universe" is identified
with the concept of "radius of the hypersphere tangent
to a Schwarzschild cell at a zone boundary" then the
maximum radius has the value (34)

ao= 2M*/Ar sin'f~. (36)

Table IV lists the maximum radius calculated from (36)
for the six regular lattice universes, using the two
prescriptions discussed in Sec. 3 to de6ne the size of
the sphere that bounds a typical lattice zone. Condition
I predicts a maximum radius that steadily approaches
the Friedmann value with increasing S (Fig. 6) and
that is only 1.2%%uo above the Friedmann value for
A=600. Thus, the Friedmann universe is the natural
idealization of a universe containing a very'large number
of very small masses.

These results do not depend upon any particular
choice of coordinate system. However, there is a
coordinate system (p,8,&,r) especially suited to describe
dynamics within a Schwarzschild cell. Consider not
merely one test particle that reaches its maximum r
value, r=E, at T=7.=0, but a whole collection of
radially moving test particles that reach different
maximum y values, R~, R~, . , at T=v-=0. Require
that the geodesic of a test particle which is momen-
tarily at rest at any point r=E, in a Schwarzschild
6eld at time )=7-=0 shall be given by dp, =0. Thus p;
is to be interpreted as a "labeling coordinate" which
distinguishes between the several test particles, and
which depends on the value, E;, of their maximum
radii but not on their subsequent dynamics. For
simplicity we choose the undetermined function
pi(R, ) to be R, itself. Also define the new cotiine
coordinate, 7, to be proper cotime measured along the
appropriate test particle geodesic from the moment
of maximum expansion. Then (29) and (31) define
the transformation of coordinates (r,T)~(p, r) on
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A class of solutions of the initial value problem has
recently been found by Faures and Misner, "under the
assumption that Bg„„/BT=O, that is, that all mass
centers are momentarily at rest on the initial surface
T= Tp. These solutions provide an accurate description
of the E-particle universe at the moment of maximum
expansion. In isotropic coordinates, Misner s solution
in the absence of charges is given by the expression

Fio. 7. Qualitative plot of the test particle geodesics p= const
and the space-like geodesics r=const as functions of r and T.

N 1 ~i
d' =1~1+ ~ f

(d" +dy+d')
'=-i fr j (4o)

(p' —")«")'= . . . ,

(3p' —i') l,
. 4r'p'(p' —1)3 L p' —r' j

(r'ql '
+3p' arc cosl —

f
(dp')'-

+ (r')'[d9'+ sin'0d y'j —(dr')', (39)

where r' is to be expressed in terms of p' and 7' from
(38). The literature contains other coordinate systems,
adapted to the study of other features of a Schwarzschild
singularity. ' The present coordinate system is well
adapted to description of the expansion and recontrac-
tion process (Fig. 7).

6. RIGOROUS FORMULATION OF THE INITIAL
VALUE PROBLEM

In principle, the problem of the dynamics of a
closed E-body universe could be solved rigorously by
first solving the I.ichnerowicz' initial value equations,
and then using the field equations to determine the
metric at later times. This would provide a solution to
the dynamical problem at least for a finite length of
time. "

' G. Lemaitre, Ann. soc. sci. Bruxelles 53A, 51 (1933); J. L
Synge, Proc. Roy. Irish Acad. A53, 83 ()950); A. Einstein and
N. Rosen, Phys. Rev, 48, 73 ('1935).

A. Lichnerowicz, Theories relativistes de Ea gravitation et de
l'electromagnetisme (Masson et Cie, Paris, 1955).' A. Raychaudhuri, Phys. Rev. 98, 1123 (1955); A. Komar,
Phys. Rev. 104, 544 (1956).

replacing E. by p. In the dimensionless units

r'= r/2m' p'= p/2m*
T'= T/2m* r'= r/2m*,

the transformation equations take the implicit form

T'= L(p' —1) (p' —r')r'jI

+(p' —1)l(p'+2) arc cos(r'/p')'

(r') I(p' —1)I+ (p' —r') I
+ln (37)

(r')"(p'-1)'- (p'-r')'
and

r = (p')ll (r')'(p' —r') +p' arc cos(r'/p') ]. (38)
In the new dimensionless coordinates, p' and r', the
dimensionless metric, ds'=ds/2m*, takes the form

where fr, f
is the distance from the ith particle and

n,)0. The Eth particle is located at infinity; in effect
one is looking in through its Schwarzschild singularity
at the rest of the universe. By comparing this expression
with the standard Schwarzschild form in isotropic
coordinates,

( tS
1+ f

(dg2+dy'+ds')
2r j

f BZ ) tt'

(41)
2r j & 2r j

as the distance
f
r,

f
shrinks to zero, one finds the mass

of the ith particle is given by

nz
m;*=2o., ~ l

1+
I

for i,j =1, 2, , Ã
fr,, f

j
m~* ——2 P,n, . (42)

The location of the Schwarzschild singularity surround-
ing each particle can be defined as the surface of mini-
mum area.

We have analyzed this metric in detail only for the
five- and eight-body universes. To illustrate we deal
only with the five-particle case. Take four masses at
the points

(1,1,1), (1, —1, —1), (-1, 1, —1)

(—1, —1, 1).

The requirement of symmetry, and the condition that
all five masses have the same value, gives the unique
result

n, = 2V2; m;*= 1642 for all i.
Hence a possible choice of metric for the moment of
maximum expansion is

ds'=
f

1+2v2 P f
(dx'+dy'+ds') (43).=i fr;f j

which rigorously satisfies the initial value requirements.
One can use this metric to estimate the validity of

"Y. Faures-Bruhat, J. Rational Mech. Anal. 5, 951 (1956);
C. W. Misner (to be published).
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the two approximate match-up conditions (Conditions
I and II) of Sec. 3. The most convenient quantity to
compute for comparison with the rigorous solution is
the invariant distance 2d between two Schwarzschild
singularities, as measured along a geodesic between
them. For the case of a pure Schwarzschild field this
distance is given by

TABLE V. Distances along a geodesic, at the moment of maxi-
mum expansion, from the Schwarzschild singularity to the
boundary of a zone, in units of the Schwarzschild radius, 2m~
=2Gm/t', , of one of the masses.

Number of particles in lattice universe

Distance in Schwarzschild metric from
singularity to spherical boundary, where
radius of sphere is determined by Condition

I 1.187 1.812
II 1.694 2.295

] r 21$ $ ( 2rgo)

2m* 2ris*"s * ( r
Distance in Schwarzschild metric from one

singularity to point halfway to a nearest
neighbor (center of interface between two
zones), using Condition

I 0.961 1.599
II 1.694 2.295

I

t'+(5 —1)'
= (P—[)'+- ln

2 I, P'- (&-1)l.
44

Distance in rigorous metric (43) from one
singularity to point halfway to a nearest
neighbor 0,925 1.609

The radial coordinate, r = 2ris*g, of the interface
between two zone boundaries may be defined in two
ways: (a) as the radius of the boundary sphere, or (b)
as the radial coordinate of the midpoint between two
mass particles, i.e., the center of the interface between
two nonspherical zones. For Condition II both defini-
tions are the same; the maximum radius is determined
by

$s= 1/ sin iks. (45)

For Condition I one finds

pi = 1/ sill t'ai, (46a)

using the alternative (a), but a more complicated
expression:

calculation may become practicable in the future.
Recently progress has been made at Livermore, Los
Alamos, and Princeton in treating problems of hydro-
dynamics where the velocity, pressure, and density
depend on two space coordinates and one time co-
ordinate. In the present problem the metric quantities
depend upon one more space coordinate. It would be
easier first to treat the problem of two mass singularities
in an asymptotically Oat universe. This problem
idealizes the head on collision of two masses in a closed
universe by assuming that the two masses in question
are very far away from all the other masses that curve
up the metric into a closed space.

$, cotit s ——3 cotikr+ cot'lt r
—2 ($i—1)i (46b)

with

t
""4

~-, , „,E r —v3 l )

P=8/3+ (r+v3/3)'.

(47)

Evaluation of this integral gives

2d= 83.70

or, in dimensionless units,

with alternative (b).
With the rigorous metric (43), symmetry shows that

a radial line drawn from one singularity at r=v3
+0.844 to the Schwarzschild radius of the fifth
particle at 11.314 will be a suitable geodesic. Therefore

7. POSSIBLE GENERALIZATIONS

Variational Formulation

Can the problem of a lattice universe be formulated
in a way that does not make such heavy demands on
the symmetry of the elementary lattice cell? An
analogous familiar problem is to solve

v'it+k+=0, (49)

in a two-dimensional region subject to the condition
that P vanish on a boundary of unsymmetric shape,
such as a triangle. One approximate method of solution
uses the variation principle,

(vp)'dhdy

d/2m" =0.925. k'= minimum of— (50)

Values of this dimensionless ratio, as determined from
the Schwarzschild cell approximation and from the
rigorous metric, are given in Table V for the five and
eight-body universes. Once again the Schwarzschild-
cell treatment gives more reasonable results using
Condition I, which allows the spheres of inhuence to
overlap slightly.

Given the rigorous metric (43) at a reasonably fine
lattice of points, an electronic computer can in principle
calculate the metric at ensuing time intervals. Such a

For example, from the center of gravity of the triangle
lines are drawn to the three corners to divide the
triangle into three zones, I, II, III. In zone I a trial
solution is defined by

sin (k distance from outer edge to a, y)
/trial i = (51)

sin(k distance from outer edge to center)
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similarly in II and III. The trial solution is everywhere
continuous and satisfies the boundary conditions; it
also satisfies the differential equation (49) everywhere
except at the boundaries between zones. This permits
one to express the right-hand side of (50) in terms of
integrals taken exclusively along zone boundaries. In
each such integral there enters the jump in the normal
derivative of P across the boundary. These jump
integrals are easily evaluated, giving a simple approxi-
mate eigenvalue for the wave equation in the region
in question.

In analogy one can try to use the variational
principle of general relativity,

5 ~R( g)'dx'd—x'dx'dx4=0, (52)

where the coordinate x4 may be either space-like or

"S. O' Brien and J.L. Synge, Jump Conditions at Discontinuities
in Genera/ Re4tivity (Dublin, Institute for Mvanced Studies,
79,52),

to formulate the Schwarzschild-cell method more
precisely. The trial metric is constructed by joining
together E-Schwarzschild metrics into an over-all
metric of the appropriate symmetry. The boundaries
are defined by the intersections of the Schwarzschild
cells. They are not spherical. They are perhaps most
easily visualized in the appropriate Euclidean im-
bedding space. The trial metric is uniquely determined
by a single unknown function. It can be considered to
represent the radius of the universe as a function of
time, or the separation of nearest neighbors as a
function of time. The variational integral (52) can be
expressed in terms of the properties of this unknown
function. The variational principle leads to a differential
equation for its determination. This procedure gives the
best possible Schwarzschild cell approximation to the
accurate solution, "best" in the sense of the variational
principle. We see no reason to expect from this method
results substantially better than or different from those
that come from a more intuitive formulation of the
Schwarzschild cell method.

The dependent variables do not match smoothly at
zone boundaries in the variational formulation of the
problem, either of the lattice universe or of the wave
equation (49). The variational principle minimizes the
discrepancy only on the average, not locally. Therefore
one cannot expect the spherical lattice cell approxi-
mation to satisfy the boundary conditions of O' Brien
and Synge exactly. "

These authors deduced the boundary conditions that
must be satisfied by the metric and its derivative at
any three-dimensional surface of discontinuity in
space-time. If this surface is defined by

time-like, the quantities

~gatv ~ tv Bg;, ( 4, j=1, 2, 3
g,„, , and

I i (53)
BX BX BX2 4lx4 &ii, 4 =1, 2, 3, 4~

must all be continuous. Thus one can only permit jumps
in the four derivatives

Bg4~/ax (54)

The variational treatment gives up the continuity
requirements on the quantities (53) locally, but
satisfies them on the average.

Coalescence of Schwarzschild Singularities

What happens to the lattice universe at late stages
of the contraction'? The interface between two lattice
cells is specified in the Schwarzschild-cell approximation
by the motion of an infinitesimal test particle falling
towards one Schwarzschild singularity; but it is well
known that the test particle will arrive at the singularity
in a finite proper time" [compare (30) or (32)] even
though the necessary interval of Schwarzschild time is
infinite. It will no longer be reasonable to approximate
a lattice cell as a spherically symmetric region when the
separation of two lattice cells becomes comparable to
the radius of the Schwarzschild singularity at the center
of each. From Table IV it appears that this degree of
approach will be attained relatively soon in the case of
the 5-mass system, and relatively late for the system
of 600 mass centers. The surface of singularity will be
deformed from its normal spherical form, r = 2m*.
This deformation might trigger oG an exponentially
growing disturbance in the singularity, causing it to
become violently disturbed and possibly to explode.
Such an outcome seems unlikely in view of considera-
tions in another paper on the stability of a Sehwarzschild
singularity. '4

If stability obtains, three alternatives suggest them-
selves for the manner of approach of the singularities:
(1) Approaching faces flatten more and more. The
remaining space continuum has the character of a
thin film separating polyhedral dice from each other.
Ultimately this film is pressed to nothingness. (2) The
film becomes ever thinner but never disappears. (3)
Approaching faces bulge out to meet each other. On
contact they join. The regions interior to the E-
Schwarzschild singularities suddenly become connected
to each other. Equidistant from neighboring singu-
larities there are still regions of space. Moreover, there
still remain channels between these regions. However,
a little later these channels are pinched o6 and the
regions of space become islands. The islands continue
to shrink in size and eventually disappear.

To analyze by way of the field equations the limiting
analytical forms for the metric near a point or surface

"See reference 8. Synge cites there H. P. Robertson's announce-
ment of the same conclusion in 1939.

'4 T, Regge and J, A, Wheeler (to be published).
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of coalescence is a fascinating problem for the future,
the answer to which might help to decide between
these alternatives or some other possible outcome.

When the disposition of the Ã-mass centers in the
lattice universe is almost but not quite symmetric, a
situation arises much like that in a Freidmann universe
when the mass distribution departs slightly from
uniformity. Unless the initial conditions are very
special, the magnitude of the disturbance will grow.
When underwater bubbles undergo dilatational oscil-
lations, and when the surface departs slightly from
spherical symmetry at the phase of maximum expan-
sion, then the magnitude of the disturbances ordinarily
grows. In this case one can follow the phenomena far
enough visually to see that prongs and spikes form. The
impression is gained that the bubble changes over from
contraction to expansion, not everywhere simul-
taneously over its surface, but more after the fashion of

a glove being turned inside out one finger at a time. If
the analogy is any guide, the not quite symmetrical
lattice universe will be expected to show a similar
behavior. One will expect first a few Schwarzschild
singularities to amalgamate and then break apart, then
others to fall in, amalgamate, and break apart again,
and so on, with some parts of the system therefore
still contracting while others have already begun
reexpansion. To show the beginnings of such a behavior,
a perturbation theory analysis of the regular lattice
universe should suffice. To follow the later and more
interesting phases of the turnabout would demand a
much more elaborate scheme of analysis.
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1. INTRODUCTION
' 'N any general-relativistic theory the field variables
& ~ necessarily carry some information that relates to
the choice of frame of reference rather than to the
physical situation. Two manifestly different fields of
gravitational potentials may describe one and the same
gravitational field, merely in terms of two different co-
ordinate systems. General relativity differs from special
relativity in the degree of freedom inherent in the choice
of coordinate system. Whereas in a Lorentz-covariant
theory the frame of reference may be chosen at one
instant in time and then remains fixed (the whole
freedom of choice reducing to the determination of ten
parameters once and for all), the freedom in a general-
relativistic theory amounts to the determination of four
arbitrary functions throughout space, anew at each
instant in time. As a result of this vast freedom of
choice, general-relativistic dynamical laws cannot be
expected' ' to permit the integration of the field equa-

* Work leading up to this paper was supported at various times
by the Once of Naval Research, the National Science Foundation,
and the Air Force 0%ce of Scientific Research.

t This paper contains the results of a doctorate dissertation by
one of us (E.N.), which has been accepted by the Graduate School
of Syracuse University.

f. Now at University of Pittsburgh, Pittsburgh, Pennsylvania.
' P. G. Hergmann, Phys. Rev. 75, 680 (1949).
~ P. G. Hergmann and R. Schiller, Phys. Rev. 89, 4 (1953).

tions in the sense that suitable initial-value conditions
at one time fo predict the value of any component of
the metric tensor g„„, or, for that matter, of any other
conventional field variable, at some space point x' at a
different time t. Nevertheless, Einstein's general theory
of relativity is quite deterministic. Its field equations
do determine the gravitational field from initial-value
conditions for all times to come. The metric potentials
are simply not the quantities that are determined com-
pletely by the physical situation.

Failure of the mathematical theory to predict the
value of a field variable at a given world point corre-
sponds to physical unobservability. It is impossible to
devise an experiment that will measure some field at
the world point with the coordinates x&, because the
values of the coordinates by themselves do not identify
that world point. In actual practice, a world point at
which some measurement is to be made is always
identified in some othe' manner, such as the con-
vergence of a beam of light or the location of a material
component of our instrumentation. The determination
of a gravitational potential at a world point and in
directions that are defined by the values of specified
electromagnetic quantities represents, of course, some-

thing different from the determination of that same

potential at a world point specified by nothing but


