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HE question as to whether a material system can
radiate gravitational waves, on the basis of the

6eld equations of the general theory of relativity, does
not appear to have been answered conclusively. The
present work is intended as a 6rst step in looking for
the answer.

To investigate the possibility of a physical system
radiating gravitational waves it is desirable to choose a
simple system, one with axial symmetry. If the field
of such a system is described by means of a spherical
polar coordinate system (x',x',x',x4) =—(Tp9, )p,t),then
by a suitable choice of coordinates one can satisfy
two conditions: (a) the metric tensor g„„is independent
of the angle 22, (b) it is diagonal.

The 6eld equations in the empty space surrounding
the system, '

()Gtt v= ~tt, v 2 g&&~

ds'= —(1+p) dr2 T2(1+a)dl'—t2.
—T' sin'8(1+ r)dy'+ (1+I4)dt', (2)

give a set of 7 equations, since G„„vanishes identically
if (tl, v) = (1,3), (2,3), (3,4). These equations serve to
determine the 4 diagonal components of g„„.Among the
equations there exist 3 identities, the contracted
Bianchi identities, except for the one with index 3,
which is trivial.

The 6eld equations are nonlinear and dif6cult to
solve exactly. It is proposed to solve them by the
method of successive approximations. As a beginning,
the first approximation is obtained here. I,et us write
the line element in the form
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Differentiating (4a), one obtains an equation which can
be put into the form

p24+ T24 C tg8 (IT4 —T4) =0. (3g)

Integrating (3f) and (3g) with respect to t and taking
the functions of integration to vanish, we get

where p, o, ~, and p are functions of r, 8, and t and
are considered (along with their derivatives) to be
small of the first order. The linear approximation of
the field equations has the following form (indexes
denoting partial differentiation):
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while differentiating (4b) gives
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Subtracting (5b) from (3e) and integrating with
respect to 8 (with the function of integration taken to
vanish), one gets
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(5c)' H. Dingle, Proc. Natl. Acad. Sci. U. S. 19, 559 (1933).

and from this by di6'erentiation one gets a relation
which can be written
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Finally, by combining (3a), (3b), (3c), (3d), (5a), One obtains
and (5c), one gets T'„=—-', pS(r), (14a)

2 1 ctg8
Pll+ Pl+ P22+ P2 P44

r r2 r2
(6) i B(r)

T 34= GDP

Bs
(14b)

that is, a wave equation for p.
The general solution of (6) is, of course, well known.

It can be expressed, for example, as an expansion in
spherical (zonal) harmonics. We limit ourselves here
to the term of lowest order that can be expected to give
a nontrivial result, that corresponding to an axial
quadrupole source at the origin. The method can be
extended to multipoles of higher order. We also take the
solution to be sinusoidal in time and to represent an
outgoing wave. Using the complex form (in the end
the real part will be taken), the solution can be written

cos28
Tll ————oPp= h (r),

4m. r2
(15a)

cosP sing
Tl2 ———cu2P —5 (r), (15b)

Transforming the components to the polar coordinate
system and also expressing the three-dimensional
delta function 8(r) in terms of the one-dimensional
delta function 5(r), one gets the following nonvanishing
components:

P=Ch(2) j'2(cos8)e ' ' (7)

where the frequency or and C are constants, x=~r, and

(8)
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Tl4 i(oP——— b(—r),

r'
(15c)

with J (2:) denoting the Bessel function of order 22.

Once p has been found, the remaining unknowns can
be determined by means of the field equations.

The constant C is to be determined in terms of the
strength of the source. For this purpose we take a very
simple model of the source, in the form of an inhnites-
imal system consisting of two massive particles situated
on the Z axis and connected by a nearly mass-less
spring. We assume that the energy-momentum-stress
tensor has for its nonvanishing components in the
Cartesian coordinate system T'», T'34, and T'44, with
x3=s. Representing the mass density of a particle
by a Dirac delta function and neglecting the static
part of the tensor, we take
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T44 2p
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T22 ———(u2P sin24M (r),
4m
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To take account of the source, (1) should be replaced
by

(16)

in units such that 82rk/c2=1. If one follows through
the steps previously used in obtaining the wave
equation for p, (6), one finds that now the corresponding
equation has the form

where
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0 (10) (17)
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~'p+~'p= p —+f(r) ~(r), —
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and g(r) is the three-dimensional Dirac delta function.
From (9) it follows that where f(r) is an arbitrary function. On the other hand,

the solution for p previously obtained, as given in~(l7),
for small values of r can be written in the form

Tl'p v 0
2 V

which in 6rst approximation have the form

(12)

The remaining components of the tensor are determined
by integrating the equations of motion
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from which one gets
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Comparing (17) with (19) and using the expression
for p given by (10), one finds that

'EM

C= — po.
6~

(2o)

The solution for all four unknowns, expressed in
terms of real functions, is found to be given by

t = po—[j—2(x) sincot+ j—~(x) cosset&P2(cos~),
6~

(21a)

o.= — po{[(3k~(x)+j2(x)) sincot+ (3k ~(x)
127r
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—(k ~(x)+j 2(x)) coscot), (21b)
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12'
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u= ——po[(2g2(x)+ j,(x)) sin&et+(2q 2(x)
6~

+j 2(x)) coscot]P&(cos8). (21d)

p, tc, and a+r are of a form corresponding to a quadru-
pole wave, i.e., they depend on the angle through
P2(cos8). On the other hand, the dependence of o ro—n
the angle is given by sin'0.

We see then that, in the linear approximation, the
field equations admit a solution describing gravitational
waves emitted by an oscillating physical system. A
calculation sho~s that these waves are real, that is,
the Riemann-ChristoGel tensor is different from zero,
so that they cannot be removed by a coordinate
transformation.

To calculate the rate of emission of energy by the
material system, one can make use of the gravitational
energy-momentum-stress pseudotensor tp. For this it
is desirable to go over to a Cartesian coordinate system,
since in that case the first-order terms in the metric
tensor will give second-order terms in t„~, which will be
the terms of lowest order, and these will not depend on
terms of higher order in the metric tensor. The calcula-
tion is somewhat tedious, and the final result for the
rate of energy emission is

1
'V= co po,

120m

in the present units, or

k
&V =—-co'pp',

15c'

Here
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1
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in the usual units. This result agrees with that obtained
by others. '

It is planned to use the above solution as the starting
point for a more accurate calculation. The interesting
question is whether the exact equations have a solution
going over into the above for sufficiently weak fields.
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c7„(x)=x u 'j.(u)du. (22c)

In the limit of a static system (co=0) one finds that tc

is proportional to the Newtonian potential, as is to
be expected. It will be noted that in the above solution
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ness to Professor G. Racah for helpful advice and
discussion.
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