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I. INTRODUCTION

OSSIBLE physical consequences of general rela-
tivity for the elementary particle problem have
usually been assumed to be negligible, due to the weak-
ness of the gravitational coupling constant. It has been
felt that since the effects of the new particles and the
energies at which current theory becomes invalid occur
very much below the domain for which gravitation be-
comes significant, a correct future theory will obviate
the necessity of considering relativity in this context.
It is presumed that, in any case, such a correct theory
will differ so radically from current ideas, that argu-
ments based on these will lose their validity. Further,
general relativity is sometimes thought to be purely
macroscopic in applicability, and to lose its meaning in
subatomic regions where the concept of metric (or
possibly metric operator) is not very transparent.

To these classic objections, several levels of reply may
be given. Thus, it may be pointed out, for example,
that the effect of a theory is not always felt first through
its gross direct dynamical contributions. Also, general
relativity provides the most natural definition of the
stress-energy tensor of matter and, in that sense, under-
lies any theory dealing with masses and energies of
fields and particles. The gravitational field is the only
one which by definition is coupled to all matter fields,
and always in the same way. The principle of general
covariance on which the general theory is based is in
no way restricted to macroscopic considerations (ele-
mentary particles are affected by gravitational fields),
and it is thus necessary to explore its effects on all fields.
The fact that an interval or metric component may not
be simply measurable ‘“within,” say, an elementary
particle is no more an argument against the relevance of
relativity there than is the complex definition of elec-
tron position in an hydrogen atom an argument against
the use of coordinates. It appears feasible to extend
the usual quantum mechanical measurement theory to
cover gravitational couplings also.

The relevance of the general covariance principle
to the elementary particle domain has long been rec-
ognized by O. Klein, from whose program in this con-
nection derive many of the arguments of this section.!

Such general arguments may be supplemented with
very considerable quantitative ones. The whole scheme of
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10. Klein, Kosmos 32, 33 (1954); Helv. Phys. Acta Suppl.
4, 58 (1956); and Niels Bohr and the Development of Physics
(Pergamon Press, London, 1955), p. 96.

current Lorentz-invariant field theory is plagued with
divergences occurring because there is no limit to the
energies involved in it, while the relevant functions do
not decrease rapidly enough with energy to make the
integrals exist. No satisfactory cutoff method is known
which preserves the basic requirements of physical
meaningfulness, and there is now strong doubt as to
whether any can be found within a Lorentz-covariant
framework. At this point, general relativity may be in-
voked. Classical considerations indicate that for any
kind of matter coupled to the metric field in the Einstein
way, there are limitations on the energy densities and
masses which can be concentrated or built up in a given
region.? In all such investigations, space-time loses its
physically meaningful character beyond such limiting
densities (or alternately, below such limiting dimen-
sions), singularities then appearing in the solutions.
Similarly, a lower bound exists on the size of wave
packets built up from linear wave equations, below
which gravitational self-effects enter. This bound is
independent of the specific field involved ; for an energy
E, and a packet of linear dimension d, E<c*d/2v, while
E=%c/d, so that® d>1ly=(2hck):. Thus, below this
fundamental length l,~10—%2 c¢m, the packet can no
longer be taken to be linear.? Although this distance is
very small, it does correspond to a finite energy, and its
effects may well be felt earlier. That /y is a universal
constant independent of the parameters of particular
fields is due to the fact that at these energies the actual
masses are negligible, as will be seen below; the ad-
junction of k to 7 and ¢ defines a length or energy auto-
matically.

Still more significant is the following. As is well known,
under very wide assumptions, theories of coupled fields
lead, near the light cone, to singularities in the propa-
gators of the clothed particles and to the existence of at
least some infinite renormalization constants, inde-
pendent of perturbation theory.* All known Lorentz-
invariant couplings are of this type, in particular elec-
trodynamics and the renormalizable meson theories.

2 The Schwarzchild solution of the field equations for a perfect
liquid, for example, sets limits on the mass of a sphere of given
radius and size for given density. General considerations as to
requirements on matter to keep nonsingular metrics may be found
in_A. Lichnérowitz, Théories Relativistes de la Gravitation et de
VEléctromagnétisme (Masson et Cie, Paris, 1955).

3y is the Newtonian, « the Einstein gravitational constant.
Henceforth natural units, #=c¢=1 will be used; «* has then dimen-
sions of a length.

4 G. Kaillén, Physica 19, 850 (1953); H. Lehmann, Nuovo
cimento 11, 342 (1954).
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It is just in the basic conditions for the proofs of such
“pessimistic” theorems that the gravitational field and
its coupling differ profoundly from the matter field inter-
actions. First, it is necessary that there exist an energy-
momentum vector, P,, such that the usual commuta-
tion relations hold for any operator 0(x),

9,0 (w)=1[0,P,]. (1)

This is not the case in the general theory, and is very
significant there; a P, can only be defined for a closed
system in such a way as to be independent of the choice
of inner coordinates,® that is, in terms of over-all
properties of the system, and therefore cannot yield
values (or derivatives) of quantities which are connected
with inner properties or regions. The nonlinearity, and
consequent lack of simple translational properties, of
parts of the system by themselves are here brought out;
attempts to fix precisely the position of an arbitrary
component of a “clothed” electron, for example, would
clash with the energy density bounds mentioned
earlier. Further, matter and gravitational energies are
not invariantly separable.

A second, related, departure from usual theory lies
in the form of the interaction terms. Contrary to the
assumption always tacitly made there, the matter
Lagrangian simply has no free-particle part any longer;
gravitational coupling enters in the kinetic energy, in a
multiplicative fashion, and one cannot really disentangle
a noninteracting particle here. The equal-time matter
commutation relations also depend on the position in
space-time involved (and therefore on the matter
distribution itself) by way of the now dynamical
metric tensor.® The differences due to this funda-
mentally different mode of coupling will occur most
critically at high energies, and forbid any approxi-
mations from “free-particle’” just at the point where
difficulties now exist. In particular, then, matter fields
will no longer be representable by linear wave equations
in the high-energy domain.” The free motion varies
with the geometry of the space involved, which is in
turn conditioned by the matter and its motion. It will
be seen in Sec. IIT that the results inferred in this
investigation as to the nonsingularity of propagators
are based in good part on just these characteristics of
gravitational coupling. It may well be that a more
adequate future theory of particles will incorporate
some of these aspects of the nonlinear gravitational
interaction. Certainly, if it be a field theory, it must
escape the pessimistic conclusions for current theory
by some such channel. If so, it may be all the more

5W. Pauli, Encyklopidie der M athematischen Wissenschaften
(B. G. Teubner, Leipzig, 1921), Vol. V2, pp. 539-775.

8 For a given nonflat geometry, the situation would essentially
be the same as the flat space-time one. That is, by suitable
modification, the content of Eq. (1) could still be maintained.

7 It might be thought that by writing gu, =8,,+0(x) such a free
part would be obtained. However such expansions in « are invalid
at high energies. The limiting process as « approaches zero will

itself be seen to proceed in a more subtle way than such an expan-
sion of gravitational quantities in powers of .
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instructive to see how an improvement seems to emerge
here; in any case, the gravitational cutoff may remain
as a backstop to such possible convergent future
theories.

II. QUANTIZATION

Once gravitational interaction is introduced in the
microscopic domain, it is necessary that the correspond-
ing field be quantized; from the fact that the stress-
tensor is an operator, it follows that the curvature
tensor must be one as well.® While it is conceivable that
a classical approximation for the metric quantities may
suffice to secure convergence of field theory (through
the above mentioned classical consideration), it is
important to verify that the full quantized theory is
also finite. It is outside the scope of this paper to
discuss the quantization problem and the difficulties to
which it may give rise when applied to the gravitational
field. The method to be employed here to effect the
quantization is that of Feynman.’ It is known to be
equivalent to the canonical one for the usual (quadratic
Lagrangian) fields, and seems to avoid at least some
of the difficulties encountered by extensions of the
canonical method to this highly nonlinear problem.
Whether or not the two procedures differ somewhat
in this case, the Feynman method appears to pro-
vide a consistent approach. The question of which com-
ponents are dynamically independent and which fully
determined by the matter quantities need not, in a
certain sense, be known beforehand.® This prescrip-
tion has the further advantage, for our purposes, of
exhibiting explicitly the crucial differences, stressed
earlier, between matter and gravitational interactions.
The general framework is as in ordinary theory: the
vacuum expectation value of the operator of interest
is the functional integral (suitably weighted and
normalized) of a corresponding ¢-number quantity over
all classical configurations of the system. It may be
expected, roughly, that the contributions of the “scalar”
and “transverse” parts of the gravitational field,
though not really separable, will be to limit the density
of matter in a given region for the former, and to “smear
out the light cone” for the latter. This phrase refers to
the expectation that the summation over all possible
Riemann spaces corresponding to the various classical
possibilities will average away the uniqueness of the
Minkowski light cone, and with it the singularities of
the propagators on such a cone. Such an effect would

8 While such “self-consistent” approaches as starting from
Ryy=—«(Ty) may be considered, they are only approximate in

nature.
9 For a recent discussion of the functional integral procedure,

see P. T. Matthews and A. Salam, Nuovo cimento 2, 120 (1955).

10 Some of the possible difficulties of Feynman quantization of
general relativity have lately been resolved: C. Misner, Revs.
Modern Phys. 29, 497 (1957), discusses the proper choice of inte-
gration variables; B. Laurent, Nuovo cimento 10, 1445 (1956),
considers the invariance of the integrals under general coordinate
transformations. Laurent also has clarified other aspects of the
choice of variables and of the quantization problem (private
communication).
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realize a possibility also remarked on by Pauli at the
Bern relativity conference in 1955.11

The usual field theory is known to be fully determined
by knowledge of all vacuum propagators, that is,
vacuum expectation values of all powers of the various
field operators. From these, the various S-matrix
elements are directly obtainable. In our case, the strong
nonlinearity makes the relations between propagators
and physical quantities more complicated (so that
their physical significance is less immediate) ; however,
they still determine the theory, and their singularities,
if any, are still the relevant ones.

III. MATTER PROPAGATORS

We are interested in comparing the one-particle
Green’s function G, corrected for both electromagnetic
(or mesic) and gravitational self-effects, with S7’, the
flat space electromagnetically corrected one. The latter
behaves at least as singularly on the light cone as the
free propagator, Sr(p)= (yp+m)™; this is sufficiently
singular to yield infinite constants. It is shown below
that near the cone, G’ reduces to SF”, the propagator
corrected for gravitation only. Therefore it is sufficient
to show that SF” is less singular than Sr. The complete
problem, as represented by G', can then be expected to
remain nonsingular, the omitted terms not being
relevant in this connection. Alternately, the use of
electrons and photons clothed by gravitation as the
noninteracting elements of electrodynamics seems a
sufficiently good approximation to bring out the finite-
ness brought into the problem by gravitation. Many-
particle Green’s functions are expected to display
similar features at high energies, with the possible
additional display of a bias against too close approach
between the various particles (also to be expected on
classical grounds). The self-effects constitute the main
problem in any case. Gravitational field propagators
can also be constructed, and should also behave
nonsingularly; Schwarzschild-type singularities ought
not to appear, since matter is now ‘“regularly’” distrib-
uted, while the “transverse” propagators should also
be well behaved (since the gravitational self-interaction
acts in the same way as it does on matter). We restrict
ourselves to matter Green’s functions here.

There should not appear any gravitational coupling
renormalization, as the mass m plays the dual role of
charge and (inertial) mass and the two types of re-
normalization, if any, must be equal by the equivalence
of these two masses. Since there is only one type of
‘““charge” here, no vacuum polarization is expected ; the
mass renormalization should also vanish in view of the
absolute definition of mass and energy in the general
theory, and of the fact that the observed mass is
automatically defined from the coupling term between
gravitation and matter, and through this by the value
of Py for the system.

1'W. Pauli, Helv. Phys. Acta Suppl. 4, 69 (1956).
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We first examine the usual Lorentz-covariant theory,
to bring out the inevitable singular behavior of the
Green’s function of any field on the light cone, regard-
less of coupling. As a concrete example, we consider
neutral scalar meson theory. Here the one-nucleon
propagator, Sy’, is given by?

Se' (x—a")=1(0] (Y (@)P(x))+]0)e(x,x") /(0] 0)
—N f V@I exp(ALY, e Doooisd, (2)
where the action 4 is

A= f F (@) (—imd, - mpp () +g f P ()6 (@)

+ f o) (= O (3)

and the normalizing factor N corresponds to the
vacuum-vacuum transition amplitude,

N= f exp(i4)6 ooydy. 4)

¢ is a sign factor, and the “+4” sign a chronological
ordering operator corresponding to outgoing wave
boundary conditions. Integration over the nucleon
variables can be performed, giving

Sp'(x—x’)zN_lfG(x,x’; o)explidu+AoLoe  (5)

[—ivudutmtge(@)]G(wa’; ) =b(x—2"), (6)

where A is the free meson field part of A4, 4, an
additional contribution due to closed loop effects; this
term is a functional of ¢ but does not depend on the
coordinates explicitly. The problem is thus resolved
into two parts: obtaining the solution of Eq. (6) for G,
and performing the integral in Eq. (5) with this result
for G. The rigorous solution for G may be written!?

G5 @) =Sr® (x—a")F1(x2"; @)+ Fa(aa’; ¢). (7)

F,is a function everywhere regular in x,x” and approach-
ing unity at the origin, x=a'. Sp® is the simple
uncoupled Dirac propagator Sy with mass equal zero.!
Fy is holomorphic everywhere but on the light cone,
(x—«")?=0 where it may display a logarithmic singu-

12 The analysis used here of solutions of (6), (11), and the more
general equation (14) was developed by J. Hadamard, Lectures on
Cauchy’s Problem (Dover Publications, New York, 1952). His
work was improved by M. Riesz, Acta Math. 81, 1 (1949). The
method of Riesz was adapted to the Dirac equation by H. Malm-
heden, Comm. Lund 8, 1 (1947). Since the relevant results are the
same for our purposes, we deal mostly with the second-order
equation for simplicity.

13 The mass m can also be reinstated in Sz, the difference being
absorbed in the definition of 7.
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larity ; in some cases F; is null. The functional depend-
ence on ¢ enters only in the F;; further, we neglect F,
here, since we are interested in the leading singularity
on the light cone, and Sy is worse than logarithmic
there.

Upon inserting (7) for G in the functional integral,
we see that the singular Sp(x—2’) can be taken outside
the integral. The integral of F, as (x—x')>—0 may
either converge absolutely in which case it represents a
constant coefficient, the so-called Z; renormalization,
on the cone, or, if it is illegitimate to interchange this
limit with the integration, G’ has an even worse singu-
larity than Sr on the cone. At the origin G’ is just
equivalent to Sr©®, since F1=1 there."* This theorem,
proved earlier by other methods,* applies to a wide class
of couplings, including all usual field theories. It
expresses the fact that, as the arguments of any field’s
Green’s function approach the light cone, the effects of
its couplings can never result in smoother behavior
than the free particle one, and probably cause a more
singular variation.

In the parallel problem of interaction of a matter
field (chosen here as scalar for simplicity) with the
gravitational one, the total action is

A= f (— [ R { — pOhg) ('),

where
2= (—g)'du(g"(—g)'d,), ®)

where R is the scalar curvature. Interaction between
the two fields arises through the metric dependence
of the matter part of the action. Again we wish to
compute

Ar" (w,0")=1(0] ((x)¢(x"))+0)/(0] 0)

—yt f 6 (@) ()exp (i4) (5¢)39,
where

N= f exp(id) (68)56. )

The functional integration includes a summation over
all possible Riemannian spaces preserving the signature
(+++-), the (8g) representing the appropriate
variables with respect to which the integral is taken.
We do not need their precise form; they might, for
example, be the product of the 16 Vierbein variables at
each point of space-time.® The arguments x, x" of A”
may at this stage be thought of as two quadruples of
numbers representing two arbitrary points in a four-
dimensional manifold, the integration over all possible
Riemann spaces being an average of the two-point

14 The singularity of present field theory may be restated by
the fact that in principle, at x=2a', G’=Sr, but that the limit
x—x’ yields an infinite proportionality constant between the two
functions.
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function over all possible ways of imposing a metric
structure on this manifold, consonant with the signature
and possibly certain topological requirements. Elimi-
nating the matter variables by performing the ¢
integration (which corresponds to the ¢ integration
in the previous case), we get

A" () =N [ B )
Xexp(id ,+ido,) (5g)  (10)
(— O u)A (x5 g)=58(xa") (11)

where, in analogy to the previous case, 4, is the pure
gravitational action, 4o, an addition to it due to the ¢
integral. Once again we must insert into (10) the
rigorous solution A of (11). Here,

Ax,x'; g) =557 (w0 ) Fi(aa’; @)+ Fa(wa’; g). (12)

s, is the inverse square of the geodesic distance
between the two points x and &’ in the space represented
by the metric g.(x) (there is a geodesic between two
sufficiently close points in any Riemann space), F; is
again a regular function everywhere, equal to unity at
the origin, while F, has a logarithmic singularity on the
light cone in the space (that is along all null geodesics
issuing from ') if w70, and is again not of interest.
The crucial difference between our previous examples
and gravitation appears here: while the leading factor
is, in strict analogy with the earlier problem, just the
inverse square of the interval between x and #/, it
depends now on the dynamical variables of the metric
field, and therefore cannot be removed outside the
functional integral. There is no free particle propagation,
since this factor also interacts with the metric. This
is obviously true whatever the matter field is; all are
coupled to g... Had we considered G, that is, included
other interactions as well, we would have obtained at
this stage for the totally corrected propagator G'.'®

G (xx)= N‘lf (8g)exp (14 ;414 o,)

% f (6x0explid 01 (a's g, (13)

where x stands for all these additional interactions
(electromagnetic, mesic, etc.) and

(— O +ax 10X DG (x5 x,8) =8 (xa’). (14

The x dependence enters only through the g, and #, the
coefficients of the second derivatives being the same
as in (11), that is, only gravitational quantities. The

16 The two-particle propagator would have another G(y,y"; g,x)
in the integrand, the meson-nucleon one x (£)x(¢’) there: in either
case there appear to be no new singularity problems. It might
even be expected that the distance between two-particles must
exceed Jo.
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general solution of (14), however, has its singularities
determined entirely by the second derivative structure.
That is why s%(x,x’) is always the leading term, and in
usual theory can be moved out of the x integral, but
not past the gravitational integration. Incidentally, the
equivalence of A” and G’ for purposes of investigating
the effect of gravitation on the singular behavior is
‘thereby established ; at high enough energies all usual
couplings become unimportant compared to the
gravitational. Returning therefore to our result, (12),
for A(x,x"; g), we must now perform the functional
integral, that is average over all spaces, with weight
expi(A,+A¢,) and measure (8g). We may again
neglect F; and concentrate on s—2, which has the same
sort of singularity on the cone of the Riemann space
that (x—«’)~2 has in Euclidian space. The average of
this quantity, (s—2), will give the leading behavior for
all fields, since the details of other couplings, as well as
masses, etc. are absorbed into the F’s. Thus, if a cutoff
appears (and Jo is the only length now left) it will
endow all particles with about the same ‘“‘structure.”
Evaluation of the integral is not explicitly feasible. How-
ever, the following qualitative argument is in favor of its
being nonsingular. Consider the two points x and &’ to lie
on each other’s light cones in some given Riemann space,
say, flat space. Then there exist, for any two such points,
“almost” no other spaces for which this is simul-
taneously also true. “Almost” none means here that
very stringent integrodifferential equations must be
satisfied by the metrics of such other spaces. Further,
the singularities of s72 as a functional of the metric
variables are not very strong. In analogy to the usual
theory of integration, any measure in the function
space which gives meaning to /" (8g) will be such as to
have no contributions from these “isolated” spaces.
They will have measure zero. Conversely, if the two
points are not joined by a null geodesic in flat space,
there will be “almost” no other spaces in which they
are so connected, and no new singularities will be
brought in. The weight factor of the gravitational
action, having magnitude unity, can only help in
rendering the integration finite; it will also act (as the
corresponding factor does in normal theory) to oscillate
away the contributions from spaces very far away from
the classical solutions, which make the phase large in a
random way. A rigorous proof of our conjectures would
seem to require a better developed mathematical theory
of measure in functional integrations. Certain over-all
properties of G’ (or A”) can be obtained from corre-
sponding ones of A; in particular, under interchange of
x and &’ and of boundary conditions, these Green’s
functions remain invariant; they are not, however,
functions of (x—=x’) since the spaces involved are not
isotropic and homogeneous, unlike the flat one.

If we wish to consider effects near the light cone due
to one of the ordinary interactions, whose contributions
vanish at the cone, as we have seen, we may try to
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expand in powers of the interaction in question. For
example, in the case of a scalar particle coupled to
another, we have

G'=N- f (sg)exp(id,)
% f b exp(id YA’ 0,g) (15)

(—O*+u+ge)A=0(xx"). (16)

Then we expand the F; entering in the solution for A,
and particularly F,, since it comes in with the s2
dominant term. Thus,

A~sg—2<x,x'>[m<x,x'; o +ef @

=0

X (d2) () ¢ (2)8°F1/3¢(3)d¢(2)

+] (17)

The ¢ integration can be performed, and ¢(y)¢(z)—
A(y,z;g). It may be thought that the infinities of
perturbation theory (or indeed of local field theory in
general, since its infinities first appear at this stage)
will still arise in the integration over the intermediate
points, because in any Riemann space (of the sum)
overlapping singularities on the light cone still occur.
However, the integration over the gravitational
variables is to be performed first in order to include
their averaging effect, before the intermediate integrals
are done. Only then would the expansion be expected to
make sense, since these apparent new singularities will
have been smoothed out by the same argument as that
given for (s, ?) above. Equivalently, the fluctuations
of the matter field at a point may no longer be infinite,

so that!é
lim (¢ () e(a"))=lim(s; (4")) <. (18)

po

In principle, the renormalization constants of, say,
electrodynamics, are now presumably rendered finite
by general relativity and can therefore be evaluated.

16 J. Schwinger (unpublished lecture notes, Stanford 1956)
relates the inconsistency of local field theory with the infinity
arising at this stage, due to (¢ (%) ¢(2)}— « as x—a’. The gravita-
tionally corrected theory is radically different from the usual one,
so that care must be taken to use the now proper forms of such
quantities as the physical mass or the equal time matter com-
mutators (which now depend on the metric). As Schwinger has
pointed out, the inconsistency of the usual theory results from the
fact that it permits arbitrarily small space-time measurements,
which, however, turn out to yield inconsistent (infinite) results
because the interaction effects are always felt, however short the
interval employed ; while the equal time commutators require that
no interaction effects be felt for sufficiently small times. When
gravitation is taken into account, such arbitrarily short measure-
ments cannot be made, as they would clash with the bounds
established by general relativity; thus, the vacuum fluctuations
at a point or the overlap of light-cone singularities of two-fields
may no longer contribute to make results infinite for physical
quantities.
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The main effects of relativity, in fact, being high
energy in nature, will enter into these constants,
which absorb the asymptotic contributions in the
theory. Asymptotic expansions of the functions of the
theory could also be made, if everything were con-
vergent, as this type of cutoff would be, by its very
definition, physically acceptable. It is likely that the
correct relation between the bare and physical charge
and the cutoff depends strongly on the bare charge,
which now, however, would be a finite parameter.!”
Of course, one could not attempt such expansions by
transcribing directly into flat space-time language the
form of the propagators obtained from general rela-
tivity, as they would then seem to violate some proba-
bility conservation or other physical requirements,
since the very concept of cutoff in flat space-time
violates them. Unfortunately, even the generally
covariant form of the finite propagators seems difficult
enough to extract from the functional integrals.!8

The flat space theory is expected to emerge in the
limit of wvanishing gravitational coupling constant;
however, since the latter appears in the total action
as k4, this limit is quite different from the usual
adiabatic shutting off procedure. In fact, x—0 is
equivalent to #—0 in this term, that is, the classical
limit ; as is well known, the latter corresponds to having
the phase stationary, in this case, 64,=0, ie. the
empty space field equations

R,,=0.

These equations become equivalent to the conditions
for Euclidian space-time since we are dealing with
closed systems, and asymptotically flat metrics accord-
ingly. The S (6g) then acts to replace the metric
wherever it occurs in the matter action or in the
integrands by its Minkowski values. This decoupling
procedure brings out the significance of the background
flat space-time which serves as basis for classical
measurements on the system. The flat space is thus
analogous to the “in” and “out” quantities defined by
means of the corresponding adiabatic decoupling in
usual field theory, but in addition, the gravitational
decoupling turns the metric quantities into ¢ numbers.

IV. CONCLUSIONS

We have seen that a qualitative estimate of the
gravitationally corrected matter propagators does

171,. D. Landau [Niels Bohr and the Development of Physics
(Pergamon Press, London, 1955), p. 527 discusses an approxi-
mation to usual field theory which would imply a breakdown of the
latter below a cut-off distance of about /.

18 Practical evaluation of such functional integrals as Eq. (10)
is beset by the difficulties that any tractable expansion loses
some vital features of the full theory, such as nonlinearity, general
covariance, self-interaction, etc. Thus the linear approximation to
the gravitational field corresponds to reinstatement of the privi-
leged character of the Minkowski metric, since gravitation now
propagates like any linear field in flat space-time. Further, this
approximation on the metric entering in the matter part is prob-
ably invalid just at the high energies of interest. It is hoped to
treat some of the approximation methods in a future publication.
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indicate that singularities corresponding to point
particles and interactions disappear. A corroborative
argument, mentioned in Sec. I, comes from considera-
tion of the energy-momentum vector, P,, and its
commutation relations. In a flat space-time, and
effectively (by suitable extension) in a nonflat but
externally given geometry, Eq. (1) holds. P, determines
the translation properties of the system, and because
of the homogeneity and isotropy of the space, of any
part of the system as well. In a space-time which
interacts with matter, however, this relation ceases to
be purely kinematical, and in fact no longer holds. P,
does have, as a canonical conjugate, the center-of-mass
coordinate, X,, of the system with respect to a flat
background frame. However, P, cannot be used to
locate closely any component of the system. The proof
that any component field, if focused upon sufficiently,
behaves as if uncoupled, which forms the basis of the
difficulties in Lorentz-invariant theories, here becomes
invalid, since it requires a P, with all the usual proper-
ties. It may be argued that the propagators themselves
lose some of their meaning by the same argument, since
they deal with localized effects of fields. This is true only
to the extent that physical quantities always involve
space-time integrals of such functions. The non-
singularity of the A” and G’ is an expression of the
fact that one can never force such concentration of
energy of a field that its gravitational couplings cease
to matter—the induced geometry would cause a
repulsion before such a stage could be reached.

Thus, a quantum field theory including gravitational
effects seems to rid itself of point-singularity difficulties
which neither part alone could avoid; classical rela-
tivity did tolerate point singularities in its solutions,
which this more complete framework has no place for.
Nonsingular matter distributions and nonsingular
metric go hand in hand. This can be ascribed partly to
the intimate coupling of geometry and kinetic energy,
leading to limitations on energy concentrations, partly
to the indefiniteness of the line element: the “smearing
of the light cone” due to the appearance on an equal
footing with Euclidian space of all other suitable
Riemann spaces.

Even if the infinities are thus removed, the physical
problems of obtaining correct dynamical descriptions
of the interactions of observed particles (to say nothing
of explaining their existence) are left untouched at
this stage of the theory. However, it seems comforting
that inclusion of the total, unmutilated general covar-
iance avoids the formal difficulties to be found in
Lorentz-invariant theory, and it may be that in the
question of the values of the observed parameters, /g

will play a significant role.

Since within the framework of flat space-time one
could consider theories with interactions built into the
kinetic energy terms, it is an interesting question
whether finiteness can be achieved merely by such an
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extension, or whether the free parts of those fields
which play such a role need, in addition, to be nonlinear
in some specific way, or whether only general rela-
tivistic coupling will work. Equation (1) would still
hold for such extended theories, being a purely kine-
matical property of homogeneous space-time, but the
usual local commutativity properties would be lost;
that is, the commutator of a field component with its
time-derivative would, even at equal times, depend on
other fields. Alternately, the conjugate momentum
would be a function of such other fields as well as of
the time derivative of the corresponding component.
The assumption that this is not the case appears to be
implicitly required in the proofs of the pessimistic
theorems. The commutation relations are closely
related to the creation and annihilation of particles;
if they now depend on the other fields present, it might
happen that the contributions, as the thresholds of
higher and higher creation processes are passed with
increasing energies, are damped thereby. These contri-
butions from new creation processes seem to be the
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cause (or another expression) of the divergences in
field theory, in which cases the new couplings might
yield convergence. Such couplings arise, for example,
in quantum hydrodynamics.” Saturation might be
expected to occur with some of these couplings; that is,
the presence of many quanta, or high energies, may
damp further creation.?
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19 A. Thellung, Helv. Phys. Acta 29, 103 (1956). In this case the
kinetic energy has the form p?/2, both p and v being fields. This
form may be very different, however, from one in which several
variables p;; multiply v;0;.

2 Landau'” has also remarked that at high energies field theory
might go over into a quantum hydrodynamical scheme.
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1

LTHOUGH some of the arguments relating to
negative mass are fairly elementary and well
known, it will nevertheless be of advantage to rediscuss
the meaning of this term. In the first instance, without
fully specifying a theory, we can distinguish between
three kinds of mass according to the measurement by
which it is defined: inertial, passive gravitational, and
active gravitational mass. Inertial mass is the quantity
that enters (and is defined by) Newton’s second law*;
passive gravitational mass is the mass on which the
gravitational fields acts, that is it is defined by F=—m
gradV; active gravitational mass is the mass that
is the source of gravitational fields and is hence the
mass that enters Poisson’s equation and Gauss’ law.
In Newtonian physics the law of action and reaction
implies the equality of active and passive gravitational
masses, but the equality of inertial mass with these
other two is a separate empirical fact. The sign of both
these masses can take either value and it is an additional
empirical result that it is always positive. Four cases
accordingly arise, if this empirical fact is left out of
account.

* A mass-independent force (say, of electromagnetic nature)
has to be used here, for obvious reasons.

(1) All mass is positive; this is familiar.

(ii) Inertial mass negative, gravitational mass is
positive. A body consisting of matter of this kind will
respond perversely to all forces whether gravitational
or of other kinds, but will produce gravitational forces
just as a usual body does.

(iii) Inertial mass positive, gravitational masses
negative. In this case we would have normal behavior
relating to all nongravitational forces, but gravitational
behavior involving masses of this type and of type (i)
would be governed by a negative Coulomb law; i.e.,
like masses would attract and unlike masses would
repel.

(iv) All mass is negative. This would be a combina-
tion of (i) and (iii). Matter of this kind responds
perversely to nongravitational forces, responds like
ordinary matter to gravitational forces, but produces
repulsive gravitational fields.

In general relativity the situation is quite different.
The principle of equivalence is not a separate fact but
is basic to the theory. Accordingly the ratio of inertial
and passive gravitational masses is the same for all
bodies. The relation between active and passive
gravitational masses is not fixed by anything like
Newton’s third law as this would require integrals over



