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I. INTRODUCTION

' '~ 'HE success of general relativity as a physical
theory has made it necessary to investigate

further possibilities of taking over more of the geo-
metrical concepts for the description of natural phe-
nomena. In its present form (Einstein's 1915 theory)
general relativity is an expression of field concepts in an
incomplete sense. It describes (i) gravitational phe-
nomena in the large, and (ii) it gives the equations of
motion of singularities in an external 6eld; it does not
say anything about (i) gravitational phenomena in the
small, and (ii) electric charges and their interaction
with fields.

The most important consequence of the nonlinearity
of the gravitational 6eld equations is the fact that they
contain the law of motion. In this sense general rela-
tivity together with 3~Iaxwell's held constitutes a well-

de6ned but an incomplete theory. In this paper the
incomp1eteness of the theory is not taken in the sense
of its as yet unquantized state. Ke believe the non-
linearity of the theory is more important than its
possible quantized forms. It is somewhat dificult to
understand the principle of equivalence in the quantized
version of general relativity. The quantum nature of
all atomic phenomena may be expected to result from
an unquantized nonlinear theory obtained by a con-
sistent and well-defined generalization of general rela-
tivity.

In order to test the internal consistency of a gener-
alized theory of gravitation one can advance a corre-
spondence argument like in quantum theory. One
anticipates the reduction of the total fieM. to general
relativistic field equations on which the generalized
theory is to be based. The trivial alternative in the cor-
respondence argument is to abolish the electromagnetic
6eld in the equations of the generalized theory that
results in the free field equations of general. relativity
without Maxwell's field. The second alternative is
obtained by means of a fundamental length in the
generalized theory, the vanishing of which results in the
held equations of general relativity in the presence of
electromagnetic field. Of the two alternatives the latter
is certainly more satisfactory in that it does not end up
with a pure gravitational field which it wanted to unify
with electricity from the beginning. In terms of uni-
versal constants the special relativity is based on the
constancy of the velocity of light c and quantum theory
on the finite value of Planck's constant h. By making c
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tend to in6nity one obtains the nonrelativistic laws and
making h tend to zero one gets classical description. In
addition to the universal constants c and y (gravita-
tional constant) in the generalized theory a third
constant is needed to formulate a correspondence
argument for the theory. The latter role is played by
a fundamental constant ro in the author' s' version of
the generalized theory of gravitation, which in the
following will be referred to as (I).

In the limit of r0=0 we obtain the equations of
general relativity with the electromagnetic 6eld as the
source of gravitation plus Maxwell's equations for
charge free fields. The existence of charges is linked up
with a nonvanishing fundamental length just as the
existence of spin arises from a finite h.

II. DISCUSSION OF THE FIELD EQUATIONS

The total field is described by a nonsymmetric
tensor g= c p+ p p. The physical interpretation of sym-
metric and antisymmetric parts will result from a cor-
respondence argument. The metric of the total 6eld
contains both symmetric and antisymmetric variables
and it can be measured by using standard measuring
rods and clocks. In (I) the metric was defined by
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where ) is a scalar. The most important significance of
the X invariance lies in its exclusion of complex 6eld
variables g,p and complex I' p~. As we shall see (in
the next section) the complex g p would lead to a
velocity of light exceeding the constant c.

The field equations are
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of a comparison of the theory with general relativity
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The electric current is defined by
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The covariant metric tensor can be obtained from
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defining the displacement field I'~p, and make p tend
to infinity, the field equations reduces to

T-p=f- fp. ra-pf""f"—

(II.7)q= pc'/(») '= c'/ro(») '
pap, y+ 'ppy, a+ '@pa, p 0
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We may interpret the geometrical entity g p as a
physical tensor by introducing a critical field q (see I) The equations jII.11' lead to
given by
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The theory is invariant with respect to the sign of rp.
Both g p and gp =a p ro(2y)~/c'q p sati—sfy the same
set of equations. Another important invariance of the
theory refers to the A. invariance defined by

which expresses the vanishing of free electric charges in
the limit of rp=0. Thus the existence of free charges is
linked up with a finite fundamental length rp. We can
apply the correspondence argument to the conservation
laws of the total fieM

+ v v vI' p=I' p+5 X, p, (II.9) (II.19)
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has a positive energy. Under these circumstances if we
contemplate the origin of mass as being from the elec-
tromagnetic field then the field must create positive
and negative charges simultaneously. In this sense the
electromagnetic field creates pairs of particles and does
not allow for single acts of creation of particles. This
interpretation makes it possible to think of the existence
of negative mass along with the positive mass. The
vanishing of ro is one reason for general relativity
leaving the sign of the mass quite arbitrary.
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If we make p tend to infinity
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III. LIGHT CONE

The signature of the total field as in the theory of
gravitation is defined by the symmetric part of g p so
that the presence of the electromagnetic field does not
spoil the invariance of the propagation of light but
introduces an anisotropy in the form of the light cone.
Because of the result Det(b p) = u the requirement that
Det(b p) is everywhere different from zero and b be
negative is satisfied. The propagation of light, i.e., the
interval dx for two neighboring events shall satisfy

and
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which is the energy momentum tensor of general rela-
tivity in the presence of electromagnetic and gravi-
tational fields.

There is no way of obtaining Einstein's version of
the theory from the present one without loss of internal
consistency and the physical interpretation that follows
from the correspondence argument. To make p=0 is
as meaningless as making c=0 in special relativity or
h= ~ in quantum theory. However, one can also
introduce a critical field strength q in Einstein's theory
and consider the limit of q tending to infinity in which
case the resulting equations are two sets of disconnected
equations for gravitational field in empty space and an
unfamiliar set for the antisymmetric field. One does
not get Maxwell's equations.

The critical field strength is responsible for the non-
linearity of the theory. The constant ro implies an
extended charge distribution of elementary particles and
nonexistence of point charges. That the electron has an
extended charge distribution can be observed experi-
mentally with electron scattering of wave length ro.
For ra=10 " cm the corresponding electron energy is
about 600 Mev. Some experiments on electron scat-
tering do actually imply an extended charge distri-
bution.

Invariance of the theory with respect to the sign of
ro introduces the concept of negative length. Measure-
ment of negative length may be compared to saying
that there is a fictitious space where moving clocks go
faster and moving measuring rods get longer ~ In actual
case the measured length is still positive just as an
electron moving in the direction of negative time arrow
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Thus in the absence of charges the tensor
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is conserved covariantly with respect to b p. The metric
bap is not independent of the fundamental length ro and
in this sense the zero interval in (III.1) is one between
two "extended events" and not between two point
events. This can best be seen by choosing a local co-
ordinate system in which the mixed tensor 6,"&bp„ is
represented. by a diagonal matrix p 6p. From the trans-

.@which proposition is compatible with the correspondence
argument since for vanishing fundamental length it
reduces to the law of propagation of light in the presence
of a purely gravitational field. The motivation behind
choosing b p as the metric of the total field can also be
understood from the Bianchi identities
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From (III.5) and (III.6) we get
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we would like to find a transformation which will result
in

so there will be an electromagnetic extension of the two
neighboirng point events. Because of the algebraic
invariants involved in the definition of the metric it is
not possible to choose a local frame in which the metric
tensor will take the form of the metric of the Rat space
time. This is the same as saying that the principle of
equivalence would not hold in the presence of an electro-
magnetic field.

It is convenient to express the metric b p in terms of
f p. We use the antisymmetric tensors P s and )t p to
record the invariants
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p and the transformation 4lx /BxP. The eigenvalues are
found from the condition
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The equation (III.9) can be written as

By applying the methods of Sec. II, we obtain the
equation
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The metric takes the form
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which shows that the metrical properties of the total
field is the same with respect to p p and p t2 fields. The
electromagnetic field is described by four vectors

(8223) 8231) 'P12) ) ~ ()P41) )P42) 3)43))

II= (I/23)i/31)I/12) ) 'g —($14)424)4'34)

that reduce to two vectors in the correspondence limit. f
The metric can be written as
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The other two roots are obtained by noting that the
equation (III.9) is also satisfied by 1/p. Thus the eigen-
values are where
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In the local frame as chosen, the space-time interval
1S

tIn connection with the recent observation on parity non-
conservation, it is interesting to note that the existence of the A.

term (where A=/. B) in (III.13) and (III.14) implies diferent
field strength in the reflected coordinate system. The parity con-
servation must also be violated for very strong fields such as at
a charged particle itself.
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This can be written
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The result (III.18) is in complete agreement with
Schrodinger's' calculation obtained under certain as-
sumptions about the P field from the equations (11.12)
and (II.16). Schrodinger's calculation is based on a
special frame where u„p assumes a Galilean form. He
chooses the principal directions of the three-dimen-
sional part of T of Tp as the coordinate axes and
takes T,4 parallel to the x~ direction, in which case
(III.18) assumes a simpler form. In (III.18) we can
regard the P field consisting of two parts: an infinitely
weak, rapidly oscillating part that represents the light
wave whose propagation is to be investigated, and a
beckground field with no restriction on its magnitude.
For the special case of Galilean a the equation (III.18)
1s

p'C4
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In the case of a purely electric field h the D field is
given by

(III.21)0= ffoS,
where
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can be regarded as a dielectric constant for the back-
ground 6eld. The velocity of light m in the direction of
the wave normal in the background field, independently

O. Hittmair and K. Schrodinger, Commun. Dublin Inst.
Advanced Studies, Series A, No. 8 (1951'I.

Det(cp") =1.

Because of the form (III.16) the signature of the metric
will remain unchanged by coordinate transformations.
But there exists no local frame in which the measuring
rods and clocks will operate without being contracted
and retarded. These facts about b p make it clear that
we can take over the concept of light cone from general
relativity to study the propagation of p p waves. By
using the form (III.15) of the metric we find that the
distortion of the light cone due to the finite value of
the critical field is given by

c~pdx dÃP= q f fplldx dxP.

of its polarization and frequency, is

C2
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If the background field h is very small compared to the
critical field q, we have

@~=c'i(g sin g+cos g) (III.23)

where 0 is the angle between the wave normal and 8.
Another simple case is obtained for a background field
with parallel h and 8 fields. Both results agree with
Schrodinger's calculations. For complex field variables

g p the result (III.22) would have a denominator smaller
than I, so the velocity of light would exceed the
constant c.

IV. CONCLUSION

With the physical interpretation proposed in this
paper, the concept of generalized theory of gravitation
may be taken more seriously than it has been looked
on in the past. The correspondence argument used in
this theory puts great emphasis on the validity of the
general relativity as a physical theory. The latter is
either a virtue or an undesirable basis for a theory
aiming at a unified description of the natural phe-
nomena. However, one thing is quite clear now, that
general theory of relativity with all its tested conse-
quences, is the only genuine field theory in physics. It
is a field theory that is independent of any mechanical
constants like mass and charge, where masses are
singularities in the field. The generalized theory is
expected to account for electric charge and mass. One
of the necessary conditions for the generalized field to
represent mass and charge must come from the regu-
larity of the field everywhere. Particles may be repre-
sented as stationary solutions of the field equations
with large fluctuations con6ned to regions of the dimen-
sions of ro. Unfortunately, we have not yet been able to
get exact solutions of the held equations to verify the
above conjectures. One of the most important reasons
for requiring exact solutions lies in the fact that the
critical held may be approached at places where par-
ticles are situated. In this case we cannot disregard the
nonlinearity of the theory. Strong gravitational and
electromagnetic interactions may be expected to take
place in regions of high Quctuations. The concept of
negative length may be linked up with negative mass
(or antimatter). The shape of the universe would be
like a dipole with repelling poles consisting of matter
and antimatter. The poles of the dipole should be
rotating around the center of the dipole to maintain a
steady state universe against gravitational repulsion of
the poles.

It still remains to be seen in what way Planck's
constant will appear in the theory, without which it
would be empty of any physical content.


