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1. HISTORICAL INTRODUCTION

HE history of the problem of motion in general
relativity theory usually, and rightly so, starts
with the 1927 paper by Einstein and Grommer.! This
showed for the first time that the equations of motion
for a test particle (with mass m—0) need not be added
to the field equations, but that they can be deduced
from the relativistic field equations. For many years
afterward, Einstein, and then Einstein with his col-
laborators, tackled the problem of the motion of two
particles. Their problem was to find whether the equa-
tions of motion can also be deduced from the field
equations. The answer was given in the 1938 paper by
Einstein, Infeld, and Hoffmann? in which the two-body
problem was solved for the first time.

Independently of us and a little later Fock® (1939)
also deduced the equations of motion, though only the
Newtonian ones, from the field equations. Later
. Papapetrou* (1951) simplified his procedure and
deduced the post-Newtonian equations of motion, after
Petrova® (1949) had done the same thing on the basis
of Fock’s theory. Petrova’s and Papapetrou’s results
were the same as ours.

What are the essential similarities and differences
between Einstein’s theory, especially as formulated in
the two later papers, (Einstein-Infeld, 1940 and 1949)?
and the Fock-Papapetrou papers?

In general they have one essential idea in common,
but two different ideas, of which only one is essential.
The idea common to both sets of papers is the approxi-
mation method. We now take up the first difference.

In the school represented by Einstein the field equa-
tions in empty space are* in the usual notation:

Gop=Rop—38sR=0. (1.1)
Einstein always thought that to use
Ga5=Raﬁ——%gag= —87rTa3, (1.2)

EA. ;:)instein and J. Grommer, Sitzer. deut. Akad. Wiss. Berlin
2 (1927).

2 Einstein, Infeld, and Hoffman, Ann. Math. 39, 66 (1938).
A. Einstein and L. Infeld, Ann. Math. 41, 797 (1940); Can. J.
Math. 1, 209 (1949).

3V. Fock, J. Phys. (U.S.S.R.) 1, 81 (1939).

4 A. Papapetrou, Proc. Phys. Soc. (London) 64, 57 (1951).

5N. Petrova, J. Phys. (U.5.S.R.) 19, 989 (1949).

* Greek indices run from 0 to 3, Latin from 1 to 3. Repetition
implies summation. The quadratic form for a geodetic coordinate-
system is

dszzﬂaﬁdxadxﬂ3 7700=1; 7]0m=0; Nmn=—0Omn.

The velocity of light c=1.

T being the energy-momentum tensor, instead of
(1.1) is somehow in bad taste, because we do not know
in (1.2) what T, is, and we mix a geometrical tensor
on the left side with a physical tensor on the right side.
This was the reason for Einstein’s long search for a
unified field theory in which such a mixture of physics
and geometry would not appear.

We know that there is no solution of (1.1) repre-
senting spread-out continuous matter. Therefore, by
assuming (1.1) we represent matter by means of
singularities. The method first used by us consisted in
forming certain two-dimensional surface integrals over
surfaces enclosing these singularities. The field equa-
tions prescribed the laws by which the surfaces en-
closing the singularities, and hence these singularities,
moved. Therefore, these laws were deduced from the
field equations in the post-Newtonian approximation.

However, Fock and Papapetrou consider (1.2) and
use definite expressions for Tags.

This difference does not seem to me to be an essential
one for the following reasons. We do not know the real
distribution of matter. Neither of these methods depicts
reality properly. The use of our method based on (1.1)
means: if the two bodies are a great distance apart so
we may assume, approximately, central symmetry of
the field near one body, then the exact knowledge of
density distribution inside the enclosing surface is not
essential. Outside the enclosing surfaces, (1.1) is valid.

This difference between the two schools may be
characterized by an example of a simple situation: that
is, classical gravitational theory. There we have two
kinds of equations depending on whether matter is
represented by singularities or by a continuous dis-
tribution. In the first case we have Laplace’s equation

Ap=0; (1.3)
in the second case Poisson’s equation
Ap=4mp. (1.4)

It is more common to write Laplace’s equation when
thinking about its spherically symmetric solution in the

form
A¢=41rm6(3), (15)

where m is the mass and 63 is the three-dimensional
Dirac § function. '

Let us try to use the § functions consistently in
general relativity theory. Here we have in the first
approximation, using (1.1) for empty space, the
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Laplace equation which we solve by a central sym-
metric solution. This means that a solution of (1.1) in
the first approximation valid everywhere, corresponds
to'that of (1.2) where the energy momentum tensor 7T as
is proportional to Dirac’s § function. Thus the use of
(1.2) with T.p proportional to &) corresponds exactly
to our previous considerations of (1.1) with singular
solutions, just as Eq. (1.5) is only a different form of
(1.3).

Use of (1.2) with T,.s proportional to &3 functions
tremendously simplifies the entire deduction of the
equations of motion. This simplification was achieved
in my paper® of 1954, but the entire procedure can still
be clarified and simplified. I present here the derivation
of the post-Newtonian equations of motion with almost
no tedious calculations.}

Summarizing, though I believe in Einstein’s idea of
not using the energy momentum tensor, yet I was
unfaithful to it, because I used the energy-momentum
tensor as proportional to the &) function to express
the singular solutions.

The next difference between Fock’s and Einstein’s
school is more essential. Fock, Petrova, and Papapetrou
use the harmonic coordinate system; that is the four
equations

F
(—g¥g*0), g=——(—gig*#). (1.6)
dxP

Fock considers the choice of this coordinate system
to be extremely important, claiming that its addition
to the gravitational equations (plus some conditions at
infinity) restricts the coordinate system up to a Lorentz

‘transformation. Thus, for Fock, the choice of the

harmonic coordinate condition becomes a fundamental
law of nature changing the character of Einstein’s
.general relativity theory into a theory of the gravita-
tional field, valid only in inertial coordinate systems.
Others like Papapatrou? who based their research on
Fock’s work, do not go so far, but also regard the coor-
“dinate condition (1.6) as essential for deduction of the
equations of motion.

In our first paper? we used a coordinate condition
different from the harmonic one; yet we obtained the
same equations of motion later obtained by Papa-
petrou? and Petrova.’ In a few subsequent papers®—2 we
carefully analyzed the problem.

- I maintain that the equations of motion have nothing
whatever to do with harmonic coordinate conditions;
they have much to do with the method of approxima-
tion. It is this method which uniquely determines the
equations of motion up to the post Newtonian order.

6 L. Infeld, Phys. Rev. 53, 836 (1938); Can. J. Math. 5, 17
(1953) ; Acta Phys. Polon. 13, 205 (1954). -

{ Some of the ideas presented are due to Mr. Plebafiski and
myself and will appear in fuller form in a book Relativity of Motion
which we are writing.

(174A.)Einstein and L. Infeld, Ann. Math., Can. J. Math. 1, 209

949).

8 R. Teisseyre, Acta Phys. Polon. 13, 47 (1954).
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I will show explicitly later that violation of the har-
monic coordinate condition does not change the post
Newtonian equations of motion as long as we stick to
the approximation procedure.

2. SOME NOTATIONS AND MATHEMATICAL
PRELIMINARIES

We have a world line £%(¢) and a field, say a scalar
field ¢ that depends on coordinates x* and on time
#%=¢ and also on the £*(¢) and their time derivatives:

Y= ¢<xk:tygk7ék); Ek=d£k/dt (21)

We assume that near the line £*(f) the field becomes
singular and has the following form:

-1

¢
p=—+p+ ¢ (x*—£)

p
+Hio =)@ —E)+---. (2.2)
Here
pr= (wr— ) (x— £°) (2.3)
and, therefore,
—1
(4
o=(—) (24)
p 2=
Similarly
__ 9 e
mi=—( o) 25)
ax® o PLENTR
We must distinguish between
_ L
s and @,= =&t (26)
aEs

which generally are not equal to each other.
If ¢ were not singular on the curve £ (f) we could
have defined  in the following way:

¢=f¢5<3>(%“—58)d<3>x- (2.7)

We can narrow the definition of Dirac’s é functions so
that (2.7) remains true even if ¢ has a singularity up
to the kth order. Such & functions can be constructed
(Appendix A) as limits of ordinary functions. By use
of such 6 functions, we get rid of infinities without
recourse to the renormalization procedure. Thus, all
6 functions used here will have the property of changing
¢ into », where @ is a continuous function of the &%,
£+ £k, Therefore, we use (2.7) as the definition of &,
where 6 is the three-dimensional Dirac & function,
satisfying the following conditions.

1. 6(x) can be treated formally as a spherically sym-
metric function for which all the derivatives exist.

2. §(x)=0 for x70.

3. For every continuous f(x) in the arbitrary region
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Q(xo) forming a neighborhood of xy, we have

f dayd (x—x0) (%) = £ (x0).
Q(x0)

4. For an arbitrary neighborhood ©(0) of the point
x=0, we have

f dwd(x)|x|~P=0, lor p=1,2, - k.

20)

The fourth condition distinguishes tAis é function from
the usual one. Proof of the inexistence is given in
Appendix A. (See also Infeld and Plebanski.®)
Thus the bars mean two things: firstly, singularities
are ignored; secondly, for x* the £*’s are introduced.
Returning to the problem of the difference between

3, s=0¢/9¢ and ¢, ,, we have from (2.7)

T (2.8)
This means that @, and ¢, are equal if and only if
¢,#=0. This is certainly so if the part of ¢ that gives
a contribution to @ does not depend on £°.

One more formula plays an important role later and
follows from the definition (2.7):

dp o, .
@ V== oot =" (£=1). (29)
Assume two functions, e.g., ¢ and y:
-1
1)
o=t o E (= )T — ) (=)
? (2.10)
—3, ——]'// o
T s I DR
0 p
We have in this case
o= (2.11)

Forming ¢y and ignoring singular expressions and
those that vanish for x*= £, we are left with the follow-
ing expressions of order zero in (x°—£°):

- _x6~$8 W—Nxs_gs
V+"leg s ——+ oY
P p
) ) (e g)
+ 50 rp
p3
The bars over these expressions give
op= fats)d(s) x[@;—l- (@ W4, o)
o

(o — ) (a7 — &) (wP—£7)

+%‘P, stp ‘/’ J
0

9 L. Infeld and J. Plebanski, Bull. Acad. Polon, IT1 4, 689 (1956);

5, 51 (1957).
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The last two expressions under the integral sign give
zero, because they are products of symmetric § functions
and odd powers of (x°— £°). Thus we obtain

oY= f@%d(g)x:@i.

But (2.11) would not be true if ¢ or y had a singularity
of order p~2 Thus (2.11) is true if p appears to an odd
power in the singular parts of ¢ and y. Therefore, we
have to be cautious in applying the last equation.

Thus, we have vectors and tensors defined only along
the curve, like S¢, T+, etc. We can define the metric
tensor along the curve g.s and gof and assuming (2.11)
we have

8arg? = o =045, (2.12)
To such tensors we can apply tensor algebra and tensor
analysis but only along the curve.

Since

Lap= [ Zapdd 3y (2.13)
Jee)

(where Qs is a small three-dimensional neighborhood
surrounding the singularity), g.s will be a tensor along
the curve if §(;5)d (3% is an invariant.

The four-dimensional relativistic Dirac § function
), s a scalar density because of the invariant equation

[5(4>d(4)x= 1. (214)
Now let us take
8=y (x2—£9), (2.15)
where
ge=g2()), (2.16)

A being an invariant parameter. Then we can form an
invariant density function

A0 oo
f 0 @)@\ =f

00 —w

ax d\

8(4)“~d£0=*“*5(3). (217)
g0 di

As far as the transformation properties are concerned,
this is the definitions of 8¢3). Thus §(s) is the zero com-
ponent of a density vector. From this definition it
follows that

f 5(3)d(a>x=f
o 2@s)
t=te0
=f f 5(4)d(3)xdt=f dwdwa. (2.18)
o] 24)

(3) Vi=—w

AN dt
dy—d mx—

(3) (ll aa

Thus the space integral of §(s) is an invariant.

One more remark concerning the notation : If we have
many curves we shall distinguish between them by the
index written above to the left: ¢¢*; a=1, 2. --p. Then
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we should also write “@, meaning :

“¢=[ ¢“5d(3)x; a5=5(3)(063'-'”£s). (219)
R IC)

However, for simplicity we do not write @ above the
bar always understanding that it means the first (or
only) curve: a=1¢.

3. THE GRAVITATIONAL EQUATIONS

The gravitational equations expressed in contra-
variant tensor densities are

Gef=Ref—1gofR=—8r T, (3.1)

In our case of, say, two particles moving along lines 1£¢
and 2¢® we have

Tob = 1yaf 15f-24af 25, (3.2)

We introduce an invariant and finite line element,
concerning the first particle (without writing the “one”
to the left)

dst=gapdEdh. (3.3)

From the tensor density we now form a fensor along a
curve (the first one)

dt __dt
-— Taﬂd(g)tho‘ﬂ:-.
ds

= (3.4)
dS 2(3)

In the next section we see that consistency of the field
equations demands the following equations (Tulc-
zyjew!):

di
(0P —=pke' b
ds
We show (Sec. 4) that not only has 2f the form (3.5),
but also that the rest mass u is constant. For the
moment, however, we use (3.5) as an assumption,
without stipulating that u in (3.5) is a constant.
From (3.5) follows

a
(o8 = e = mes; fe=—(52)
at

d
g¥'=—t*;, u=restmass. (3.5)
ds

(3.6)
m di
w @
and
P
Tot =3 e oo o, (37)
=]

The right-hand side of the gravitational equations is
uniquely determined by the condition that T« depends
linearly on the ¢5’s.

4. THE GENERAL EQUATIONS OF MOTION

As a consequence of Bianchi’s identities we always

have
‘__Q_MG"‘B; p=(RP—3g*R),p=—8nT*$ =0

10 W. Tulczyjew, Bull. Acad. Polon. 111, 5, 279 (1957).

(4.1)
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where the semicolon indicates covariant differentiation.
Taking the integral of T#f,4 over the three-dimensional
region surrounding the first singularity and multiplying
by dt/ds, we have:

dt —
— Teb pd 30 =A*=0,

(4.2)
ds Q(3)

where A« is a vector defined through (4.2) along the
first curve. Generally, we have

“A%=0; @=0,1,2,3; a=1,2---p (43)

if p is the number of singularities. Thus in (4.3) we have
as a consequence of the field equations, 4p equations
which we call the equations of motion of the p singu-
larities. Indeed they contain 4p unknowns:

ags(f) and ‘m(t); s=1,2,3; a=1,2---p. (44)

Let us now write out A% explicitly (omitting the
““one” on the left). We start with

o

Tob,p="Teb, ﬁ—* }T"”. (4.5)

wy
Introducing here (3.8) the first right-hand expression
becomes

Taﬂ’ = Trxs, 8__|_Ta0‘ 0= (lm léa lés 15), s+ (lm léa 16). 0 (46)

~+similar expressions concerning other particles. We
have .

dt o di
N (lm lfoz lgs 15),3d(3)x=:

Tas' sd(g)x= 0.
ds Q(3) ds

lg

e @7
This we can see even without explicit calculations by
changing the volume integral into a surface integral
which must vanish because 18 vanishes on the surface
of 1Q3y. Therefore, what remains of the integral of (4.6)
is, because of (3.6),

di dt d ,
— f T dgr=— —[f I 1E2 10 5)d ()%
ds - 1905 s dtlJag

dtd( o) — (ug
—(_l}dtmii = (ug®')’.

Thus because of (4.5), (3.6), and the last equation,
our equations of motion (4.2) become

(4.8)

(47

“lga’_i__ué;a”_f_u: }SM'&"':O_ (4.9)

uy

We show now that u/=du/ds=0, so the rest mass
is constant. We assume that

! a
wr

=g uv,p]. (4.10)
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Then, multiplying (4.9) by £, we have

BEYE Bag Tt £ Bagt 518 £ £ E =0, (4.11)
Because of (2.9) this is equal to
wd
wt— —(gaptE)=0; u'=0, (4.12)
2 ds
which changes (4.9) into
1__ o
—Aa=ga"+{ gE =0, (4.13)
u uv

Thus the rest mass must be constant.

If not for the bar above the Christoffel symbol, our
Eq. (4.13) would be that of a geodetic line. For each
particle their are four such equations of motion.

Let us put back ¢ instead of § into (4.13) using (3.6).
We then have:

dm

0
—+'m'{ :éaéﬂzo’
dl of

— (4.14)
a kY .
~meyin| Lew=0; -1,
dt of
As before, we have 4p equations determining the *£*

and the %m’s. From the first equation in (4.14) and (3.8)
it follows that

m B0y dt
——=exp(—f { }E“Eﬂdt) =—, (4.15)
o of ds
since
0 m
—_—— éaéﬂ=(10g~—-) . (4.16)
m of /0

From (4.15) we see that

L0
ds=dt expf ' }é“éﬁdt.
o laB

This connection between ds and d¢ follows from the
equations of motion. The normalization is such that
for t=0, both d¢ and ds are equal.

Substituting the values (4.16) for m/m in the last
three equations (4.14) we obtain the 3p equations of
motion for ¢£3:

oy T
ss+| }e‘as‘ﬁ—{ ]éssas‘ﬂ=o; Pt (417)
of af

This equation is not suitable for establishing a con-
nection between the equations of motion and a varia-
tional principle. To do that rewrite the zeroth equation

LEOPOLD INFELD

of (4.14) using (3.6)

m di 0
(1og_) =(log—_—) =——( }éaéﬂ (4.18)
M7 0 ds 0 a,B

or, since dt/ds= (gap2£F):

[log(gasé=?)~1] o= — 5 (Zap€8) " (EapbEP), 0
0
af

Therefore, the three equations (4.17) can also be
written

(4.19)

}éaéﬂ.

. (R A o
Bt et (s b8 g o880, (420
[¢7
Let us write, for short
L= (gap £2E9)};  (£=1). (4.21)

Then we can rewrite (4.17) in the form

. . T

g — (log£), oE"'\L{ }5“5*":0. (4.22)

a3

The “zero” equation (c=0) gives the known equation
(4.19). We multiply (4.22) by g,, and assume, that for
2o and their derivatives (2.11) is always valid, that is
the barred product is equal to the products of the
barred expressions. Then we have, because of (2.9) the
three equations of motion,

(or &), 0~ or £ (l0g £), 0~ 38, £267=0.  (4.23)

This suggests the existence of a Lagrangian: £. We
wish to see whether (4.23) is equivalent to

) (4.24)
i 9% 9E*
We find
oL
ﬁz%oenlgaﬂ,kfasﬂ,

4L e , ., \—

. %( . Ea5ﬂ+2gak Ea)ce*ly

05’” agk

dog l(ag::ﬂ
=32

dt ot \ ok

(4.25)

z‘«z‘ﬂz—l) (G £ B
,0

+ g £2(E70),0.
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Therefore the Lagrange equation (4.24) becomes

(Zar £9),0—Zar £2(108 L), 0— $Zap, 1E*EP

1/085 . _ \ _
+—( —fa£h £~1) £=0. (4.26)
2\ 9¢k .0

Comparing (4.26) and (4.23) we see that € is a Lagran-
gian if

%% O
8ap s=8aps. T =0. (4.27)
CIS

This means: ds/dt is a Lagrangian if the relevant part
of g does not depend on £ or 1£5. We shall see later
that the first condition, that is the independence of the
relevant part of g.s from '£° is not always fulfilled.
Thus (4.23) follows from a variational principle:

t2
8 f £dt
1
¥

t2
=5f dt[ d(g)x6(3> (x’—-é’)gaﬂé"‘éﬂ] =O, (428)
1 Q(3)

if we treat gup as function of x* only that is if, while
varying the function under the integration sign, we
ignore the possible dependence of gu.s on £ and !£.
Then, as can also be shown by a straightforward calcu-
lation, (4.28) is equivalent to (4.23). Call the result
of such variation the “geodetic line,” then (4.23) is the
equation of a ‘“geodetic line.”!*

For a test particle—that is if u—0 and gu.s is not
singular and does not depend on £ or *4—Eq. (4.23) is
that of a geodetic line and the “—’’ means only the
substitution of £ for x°.

One can show (Tulczyjew!®) that the equations of
motion follow from the field equations once we assume
the linear dependence of T*# from the §’s, that is the
form (3.6) for tes and (3.7) for Tus is a consequence of
the field equations.

From Bianchi’s identities follows:

dt
— f OT“ﬁ; ﬁd(3>x = 0,
ds

(4.29)

las)

where 0 is an arbitrary function continuous on the
worldline £(#). Or, again omitting the “one” over the
t*F’s and §’s we can write

dt
l—i_-: f 0(£285 (3y); pd 3y =0. (4.30)
S

laes)

11T, Infeld and J. Plebafiski, Bull. Acad. Polon. III, 4, 749
(1956).

IN GENERAL RELATIVITY 403
Thus this leads to the following:
A+ A28 66=0. (4.31)
Let us start by calculating Af. Because
8,0=—0,:£, (4.32)
we have
___dt L
0 5 A*P=—(—1254120£)0 . (4.33)
ds
Since £=1, this can be written
— di o
0.5 A“ﬂ=:(—i“ﬂ+t°‘°$ﬂ)0, 8. (434)
ds
Because 6,4 is arbitrary, we have
ot _
A8 = (— (B0 £B) =), (4.35)
ds
Putting here =0 we find
[0B= (00£6 (4.36)
therefore, generally
1eP= (g fb=m {agh, (4.37)

which is the proof of the theorem. Obviously 4*=0
gives the equations of motion.

5. THE APPROXIMATION METHOD

We solve the field equations and formulate the
equations of motion explicitly by means of the approxi-
mation method to be described.

Let us assume a function developed in a power series
in the parameter A= (1/¢) (assume ¢ arbitrary and not
equal to “one”).

p=opti1ptapt---. 5.1)

The indices written as left subscripts indicate the
order of X absorbed by the ¢’s.

If the function ¢(x*) varies rapidly in space but
slowly with a9 then we are justified in not treating all
its derivatives in the same manner. The derivatives
with respect to «° will be of a higher order than the
space derivatives. We can formalize this procedure by
assuming

d
— (@) =1110,0; (5.2)
9x?

that is differentiation with respect to x° raises the
power of A, absorbed by the ¢’s, by one.

The problem now is: with what order should we start
the power development of the quantities appearing in
the field equations?

The quantity £ will start (by an obvious convention)
with the order “zero.” It will be an unknown quantity
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determined by the equations of motion; we shall for

the moment not develop £* into a power series. Thus £*

will be of the order “one’ and £° of the order “two.”
From this follows

“m= o"m—t g “m-+tcm+t - . (5.3)

To begin with, ¢m is not pure convention. Indeed in
the Newtonian , approximation, which we hope to
obtain, we have in the chosen units

. mass X mass
mass X acceleration =—

(distance)?

Since the acceleration is of order two, the orders of
both sides will be equal, only if the order of mass is also
((two.))

In all the power developments we take into account
only even (as in %), or only odd powers of A (Infeld,*

1938).
Thus, because of the order with which we start °m

and £, we have

Too= , T4 T4 T . . .

Tom= ;Tom4 Tomf .. .| (5.4)
Tmn= 4Tmn_{_6Tmn+ e
Now as to the g’s we write
L=+ lw; g¥=n"4h". (5.5)
From the gravitational equation follows:
Rag=—8m(Tas—3gasT), (5.6)
where
Raﬁ:Raﬂ\/—g>
P P pl{o pl[o
Ro=={" L")+ PH 11217 6
wrl , tupl, tuollpy url) Lpo

From the right-hand side of Eq. (5.6) follows: Ry
and R, start with the order “2” and Ry, with the
order “3.” The lowest order expressions on the left-hand

side are

for Roo:  —3hoo, ss,
for Ryn: —3hmn, o5t 3hms, ns+5Hns, ms
A 2500, mn—5hss, mn, (5.8)
for Rom:  —%hom, s+ 5505, mst3kms, 05— 355, mo.
Therefore,
hoo= ohoo+shoo+ - - -,
Rom= 3hom+ shom=t -+ -, (5.9)

hmn'___ thn+ 4kmn+ Tt

All the functions that appear later are obtained from
the #’s by summation, multiplication, differentiation.
To every component, the following rule applies: any
component having an odd (even) number of zero
suffixes has only odd (even) powers of A in its expansion.
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6. THE NEWTONIAN EQUATIONS OF MOTION

We try to find the equations of motion in the lowest
(Newtonian) approximation. We do it in such a way
as to make the generalization to the post-Newtonian
approximation as simple as possible.

Because of (5.6) and (5.8), the field equations of the

lowest order are in /g
— 3 ohoo, ss= — 8 (, T0—1 ,Tw)
D
=—dq TO=—47 3" y9m 25, (6.1)
a=1

or

P
ohoo, 5= 8 3, 9%m 9. (6.2)

a=1

As the solution of this equation we take the New-
tonian field, that is

ohoo=—2 gdmr =2 PmHyt—. .. (6.3)
where
ap2 — (xs__ aEs) (xs_ aE&) . (644)
We also write briefly :
2}500: (2} (65)

and in the two-body case, which we assume for the
sake of simplicity]

o= f+g,
f==2mr;, g=—=2%m% (6.6)
g=§; =n.
Because of (5.5) and
8%°8p,= 0%, (67)
we have
oh0= — o, (6.8)

The relevant part of ¢, that is g, does not depend on
£; therefore, we have

(6.9)

2h00, s = 2hoo, s =g s=——={ ¢
dE°
There is no reason to assume that s is a constant.
This follows, however, from (4.15), or, the first equation
in (4.14).

Because of (6.9) and because in the lowest order we
do not have any products of the %’s, the conditions
(4.10) and (4.27) are satisfied, this means that the
path is a “geodetic line”” and can be deduced from a
Lagrangian:

L= (Tap £289)Y; 28=(1—E849)},  (6.10)
— . .. 27/”
E=— 3 bhg=— bt ——,

r (6.11)

P (=) (=),
B T There is, I hope, no danger in confusing this g in (6.6) with
§=1gasl.
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Thus the equations of motion, up to the second
order, are

dog oL
— ————=0), (6.12)
dt 9k 9%
that is
. 9
gs=——"C"m/7). (6.13)
ats
The Lagrangian £** for both particles is
— Im 2m
4£**_ 1 IWLE“ES 1 Zmﬁsr')s—— (614)

7
The Newtonian Lagrangian for both particles is of the
fourth order. Since (m/u)= (dt/ds), we have here
om=ou, sm=3% tmEE+1mim/r. (6.15)
We also find the equations of motion directly by
going back to (4.17). We then have simply

£s+{ ’ }=0 (6.16)
00
or

~[00,s]=¢+37= (6.17)

which is identical with (6.13).

7. TRANSITION TO THE NEXT APPROXIMATION

To find the equations of motion up to the fourth
order, besides »%00, we must also know

(7.1)

The first two are easy. The left-hand side of the cor-
responding equations is written out in (5.8) and the
right-hand side is given by (5.6) and it is

thm Bhﬂm; 4h00-

for mn:
for Om:

— 4780 (o' 10+ 22m 25),

8u (st E™ 16+ Pmn™ 25). (7.2)
Therefore, for o%.., we have the equations

_%’ 2hmn, ss+% ths, ns+% 2hna, ms

+%¢,mn=

% 2hss, mn

—Lne, ss.  (7.3)

We are looking for a solution of a Newtonian charac-
ter. Such a solution is

2hmn=6mn‘ﬁ- (7 .4)

The choice of these Newtonian solutions for »%¢ and
ofimn must be regarded as}part of our approximation
procedure (Sec. 9).

The ‘next step is to calculate skn,. Again (5.8) and
(7.2) gives

IN GENERAL RELATIVITY 405
_% 3h0n, ss+% 3h03, ns+% 3hn3, 03"‘%’ 3hss, »0
=8x (mEnd+ 2mqne%).  (7.5)

If (7.4) is introduced into the last equation we have
—3% shon, ss 5 3h00, ns— @, no=8m (mE" 16+ m"25). (7.6)
The solution which we adopt here is

shon=—2fEr— 2gn". (7.7)

This is not the only possible solution. Section 9 con-
siders a more general solution and its influence upon
the equations of motion.

Calculation of 4qo is more troublesome (Appendix B).
Here we quote the relevant expressions of 4o, that is
those that give a contribution to 42 and oo . They
are

4h00~2 (2m)2(27’)‘2—— 31'73,,',.; 2 (2,,)—1

—2m 2% 00+2 'm 2m(r %)t (7.8)

Now we should like to see whether these expressions
0T 9ftmn, 3hon, 4hoo are such that they make the equations
of motion equivalent to those of a ‘““geodetic line,” that
is, if the conditions

ol
{ }=§&[ep,oj, (7.9)
Be
Gab s =8aps; O0Zap/0E'=0 (7.10)

are satisfied. Both conditions are satisfied for s#,, and
shom. These expressions have a singularity of order 1/7,
an odd singularity ; therefore, for them, (7.9) is satisfied.
In their relevant part neither £ nor £ appears explicitly;
therefore, for them, (7.10) is satisfied. But this is not
true of 4%00. It has an even singularity because of the
appearance of ('7)~% Yet this does not matter, since
shoo appears only linearly in the equations of motion,
Therefore, we can disregard the condition (7.9) for sg0.
But is the condition (7.10) satisfied for 40? It is cer-
tainly satisfied for the first two expressions, that is, for
2(2m)2(2r)—2 39%9° 2m (%)™, since neither of these two
expressions depends on £, £ We must be more careful
with the third expression:

—2m 2 0= —2m ¥y —2m ¥ p5°. (7.11)
The first expression on the right-hand side does not
depend on £, £, but the second expression contains 4°.
Here we may introduce for *mi*=—1més, the New-
tonian value, since the mistake will be of order “6”.
Thus we can put

1
a=—"m %, i ="m *m 2,,,",(_)
r/ g

== ) Oy (g = )

This expression, differentiated with respect to x™

(7.12)



406

gives zero at the point x°=£. Thus

(7.13)

a,n=0.

But

(073
@ m=—"1mm(r %) g
g™

A similar situation occurs in the last expression in
shoo:

B=2'm m(r %)L (7.14)
We have
_ 71
B s=2'm 27}17'“1(—2) =2Ym 2mr(rY), g,
Y/ s
- (7.15)
B s=2'm 3 m(r2), .
Therefore
B.=28.. (7.16)

However, we can easily find an auxiliary field which we
shall denote by %g* such that

P00, = shoo, m.- (7.17)
From this it follows that such soo* is
4h*00 =2 (Zm)zy—z —_ 3778,,')8 2pmy—1
—2mr, gy m Pmr 2, (7.18)

8. THE POST NEWTONIAN EQUATIONS
OF MOTION

In the general equations of motion (4.17) kg will
appear only once up to the fourth order, that is in the
expression % 400, . This means, because of (7.17), that
a Lagrangian up to the fourth order exists§:

C¥=ds*/di, (8.1)
with
ds*\* ___
(—> =gas* £2£P (8.2)
dt
in which only ,_g.oo_* # goo and
goo*= Moo+ ohoot shoo® = 14~ o+ shoo™. (8-3)

Therefore,
= (14 ot do— EE+ 5 EE+ha £)L (84)

§ Compare I. G. Fichtenholz [J. Phys. (U.S.S.R.) 27, 563
(1954)7] where the Lagrangian is found mechanically from the
explicit equations of motion and not, as here, the equation of
motion from the Lagrangian.
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Here we introduce the values

o=—2%mrt;  shoy=4 mr'n°;

(8.5)
:};0}17 =2(m)%2— 399" 2!
_2m 7, Eas,ﬁsﬁr_,’_lm Zmy—l.
Remembering that up to the fourth order
1420+ 4a)i=1+21(ha+ 1) — L 202 (8.6)
we obtain from (8.4) and (8.5) the Lagrangian:
EF =y QR BF = — L f— !
— % 2mr——l(és és_i_ﬁs,;)s) +4 2,’7“,—45'37']5__ 313 (E‘sés)‘z
12m('m—+2m)
— =5 Mgy (8.7)
2 7

This is supposed to be the Lagrangian for the first
particle. But we wish to find the Lagrangian for both
particles. This means first a Lagrangian which gives
the same equations of motion as the Lagrangian (8.7);
secondly, a Lagrangian which is invariant with respect
to a transformation, changing

mES2ma. (8.8)
Let us multiply £* in (8.7) by . The equations of
motion will be the same. Let us add

— % 'mii— g Pm (). (8.9)
With this addition, the equations of motion for the
first particle will still be the same, since there is no
contribution from (8.9). With these changes, the only
expression not invariant with respect to the change
(8.8) will be the last one in (8.7), that is

— 3 m P g, (8.10)
But instead of it we can write
5 g 007, (8.11)

which is invariant with respect to the change (8.8), and
gives the same contributions to the equations of motion.

From (8.10) we have the following addition to the
equations of motion of the first particle:

11

3 w2, ot = — 5 Yam P, gy, (8.12)

From (8.11) we have the addition:
3 m 2m(r, g, 0— 5 Y P, oy n oy
=3 'm Pm(r, gy £, gy
F7, i, gy £°7)

=3 2m 2w (7, gy, i) (8.13)
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But the last expression in (8.13) equals

3 'mmr gy

anr [ T T
=%lm2m(_ } (&"—n) (& n))m (8.14)
7 r3
Since (e )
m [ ——
e (8.15)

¥3

we see that (8.14) vanishes and, therefore, (8.10) and
(8.11) give the same contributions to the equations of
motion.

Therefore, if we call the final Lagrangian for two
particles £**, we have

o _ o L 2m
£**=4£**+8£** —_ __;2[_ lmésgs_% 2m,,']s7:,s__
7
3 lm 2m lm 2,
(Esés_{_ﬁsﬁs)_i_;l—gs,"]s
4

— L (EE—d (i)
1 'm 2m (Ym—+-2m)

; - (8.16)
(s

+3 m 2w, g',,'és'r']’.
From this Lagrangian the equations of motion for
the first particle are:

()

—2f -

r/ g

=2m{[ésés+zn ' —4E° —4~— 5“}( )
g

et sei—siril(0)
7 L E®
+%f.s~sfs"ﬁ*ﬁ’}- (8.17)

The equations of motion for the other particle are
obtained by replacing

‘m*m, &1 by
respectively.

The generalization of this result to p particles is
almost trivial, if we take into account the changes
caused by the addition of these partlcles in foo* (Ap-
pendix B). These additional expressions are due, say,
in the case of three particles, to interaction between the
second and third particles; that is, in the equations of
motion for the first particle they will give a contri-
bution proportional to m %m ®*m. These expressions
appear in £%* from two sources: from 4g* and from
¢* in (8.6). If we now denote the “distance’” from the
ath to the bth particle by :

( (ab)r)2= (ags_.

‘zm? lm} n, E? (8'18)

bE) (o8 — ), (8.19)
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then we have the Lagrangian for the p particles:
T

»
% Z’ ay bm((ab)r)—l
a, b=1

a#b

bm((ab)y)-—l (ués aés_’_ bés bés)

am aés aés__

Il
IS
e

3p
—§ 2
a, b

rire

Y4
+2 Z’ ap bm<(ab)7)—1 a,i;s bés
a,b=1
a#b

Y4
_% ;1 am(aés aés)z

»
+3 2 om (o) (@)
b=
aa ;ébl

?
+ %I m Pm((Dr, ) of0 PE
=1
aa#b

+% i// Gy by cm[((ab),r (ac)r)—-l

+ ((bc)f’ (ba)r)—1+ ((oa)r “’”1’)‘1]. (820)

In the case of two particles the Lagrangian (8.20)
reduces to (8.16). The only new expression appearing
in (8.20) is the last one;in the case of three particles it is
equal to

m (3 so— 1gk)
using the notation of Appendix B where 3S¢ is the
change in 4#00* caused by the interaction of the second
and third particles and % is for the third particle what
f and g are for the first and second. Thus — gk is the
contribution to the Lagrangian of the interaction

between the second and third particles coming from
—12%in (8.6).

9. ON THE CHOICE OF THE COORDINATE SYSTEM

The harmonic coordinate condition is

[(—g)tg~],=0, ©.1)
which in our case means
o™ =03 A" 1ok =0 (9.2)

None of these conditions are fulfilled in our coordinate
system.

The values for s#¢0 and s/, accepted by us here were
the Newtonian values. Our convention is that their
choice characterized our approximation procedure. Yet,
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with some justification, this approach may be regarded
as too formal. Instead of our values for o4,,, we could
have chosen

thn/= Zh'mn+ 20m, n+ 2an, m

the @’s being arbitrary functions. This change from
oMmn 1O ohtms’ could also be induced by a change in a
coordinate system that does not disturb the approxima-
tion procedure. The physical meaning of the choice
2¢,,=0 1s that we assume the existence of a coordinate
system in which each of the two bodies reveals its
spherical symmetry; a coordinate system in which for
sm—0, £-0, the field goes over into that defined by the
Schwarzschild solution in an isotropic coordinate
system. The choice of such a coordinate system is
implicitly assumed by our approximation procedure.
However this choice of sa,,=0 refers only to the be-
ginning of our approximation procedure; therefore it
does not refer to sho,. If we replace shon by

(9.3)

3@ being an arbitrary function of x¢, then Eq. (7.5) is
fulfilled just as well. This change in sk, can be induced
by a change in a coordinate system which does not
disturb our approximation procedure. Such a change
also induces a simple change in 4 (Appendix B):

shoo’ = shoo+2 sa0,0. 94)

Therefore, it would seem that the Lagrangian and with
it the equations of motion would change. The expres-
sions that change in the Lagrangian (8.4) are

RosE+% ahoo* 9.5)

and the change induced by them in the Lagrangian is,
because of (9.3) and (9.4),

3h0ml = 3h0m+ 300, m

. diy
AEF=T, £'4T00=—.
dat

(9.6)

Therefore,
ta

=0.

t1

a2
5 j ATF di=5(ay) ©.7)
t1

This means: the equations of motion are uniquely
determined up to the fourth approximation by the field
equations and by our approximation procedure. Neither
the harmonic coordinate condition nor any other coor-
dinate condition played any role in our derivation of
the equations of motion.

10. THE GENERAL THEORY

Now we formulate the general theory,| according
to which we proceeded in our special case and in which

| The ideas presented here are a few years old. A. E. Scheidegger
[Revs. Modern Phys. 25, 451 (1953)] refers to them in Sec. 5
stating that they were suggested by me. I found a more explicit
formulation of similar ideas in a thesis by B. Rameswararao
(thesis, Banares Hindu University, 1955). An alternative general
theory was given in a paper by Plebaniski and myself [Bull.
Acad. Polon. IIT, 4, 755 (1956)].
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we found the equations of motion of the second and
fourth order. Such a general theory is of little practical
value, since there would be hardly any physical meaning
in developing the calculations one step further. More-
over, it seems—and we discuss this later—that by
proper choice of the coordinate system we can anni-
hilate all contributions to the equations of motion
beyond the fourth order. From the formal point of view
it is important to know that the procedure can be
pushed as far as we wish. Of course we do not know
anything about its convergence.

Before we formulate the general theory let us recall
what has been done here. We had the Newtonian
equations of motion:

at .
e f:;TO";y d(g)x—": 3A0=0;
ds

(10.1)
— f4T"V;,, d(a)&\’):;;/i":o.

Since o' appears as a factor, we called these equa-
tions (after dividing them by o) the equations of the
second order. But here, since it is multiplied by o'm, it
appears as an equation of the fourth order. For this
section, therefore, let us rename the order of the
equations of motion calling the Newtonian equations of
motion those of the fourth order and the post-New-
tonian equations those of the siath order. Let us also

put generally

dt o
— |} 21T, dy¥=20-14";
ds
(10.2)
dt o
— § 2T, dgr=1,4"
ds

Thus for our post-Newtonian equations of motion we
have

sA%540=0; 4A"+44"=0. (10.3)
These equations gave us
=gt 4om;  CES= U y0ES, (10.4)

where ¢¢° is the motion in the Newtonian approxima-
tion. To find these equations explicitly we used the
Newtonian equation of motion in 4™, since the use of
ags instead of %£* would give a contribution of the 8th
order to the equations of motion. We express this idea
in symbols and write instead of (10.3):

340 (08F - 98%) +54°(0£%) = 0;
s A™ (085 28%) +6A™ (0EF) = 0.

Thus 44" (ot+2£) also gives a contribution of the order

(10.5)
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six. The field was solved so as to obtain (10.4) in

m, n up to the order sky,n(0f),
0, m up to the order shon(of),
0, O up to the order 40(of).

Suppose that we wish to go one step further. We
then have the equations of motion,

3A° (o0& 26+ 48)+54° (08 428) +24°(s£) =0,
sA™(of+ 2§+ 4E) +eA™ (o€ 28) +s4™(£) = 0.

In 34, 54, 44, ¢4, the argument in (10.6) is different
from that in (10.5); therefore, they give contributions

up to the eighth order. But to find s4™(o£) we have to
know

(10.6)

thomny 5Pom, ehoo, (10.7)
all functions of ¢£. Thus simply denoting
Qb= —8x(Tb—1g2fT) (10.8)

we have to solve the equations (omitting the @’s above
the &’s):
SR7 (084 28)+ R™(08) = 2Q™" o8+ 28) + 1Q™*(o8),
sRO™ (o0& 28) 4 5RO (¢ £) = 5Q°" (o4 28) +5Q°™ (o8),
SR (o4 28+ 48)+ R (E0+28) + 6R% (o£)
= Qo5+ 26+ 48) + 4Q0 (o0& 28)+6Q0 (o).

This would seem to be an impossible task, since to

solve the last Eq. (10.9) we would have to know .,

which we wish to find by Eq. (10.6). However, this is
not so, because we have

(10.9)

Y4
2RO=— 3 oo, o= —4m 3 9m 6 =1,0" (10.10)

a=1

for arbitrary motion. Thus we may rewrite the last
equation (10.9):

ARO(pE+28) 4 6RP(0£) = 4Q0 (o5 2£)+6Q% (o£).

Collecting here the expressions of the sixth order we
find ek00(of). Similarly we can find sho, and s#ms. Thus
we can push the approximation one step further.

We can now formulate the general theory. In the
development of g.s, R, T, we took into account arbitrary
motion. Under this assumption we developed, say

Tmn= Tmnt TmntgTmnt ... (1012)

(10.11)

But, instead of arbitrary motion, let us put into the
arguments cerfain motion developed into power series:

E=ok+obt+a+- - (10.13)
and write, say,

95T (of+ 26+ 4£).

If developed properly, the above expression gives con-
tributions of the order 2542 and 2s4-4. Assume that
we have solved the equations of metion of the order 2~

(10.14)
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sA% ok o+ -+ o) F5A4(0E+ - - - 0r6f)
ey 1 A9(E) =0,
+ 0 14%(0f) (10.15)

dA™ (k- - - o al)F A ™ (o0& - - - rf)
+ e A™(o8)=0.

This means, that we have solved the field equations in

m, n up to the order s—sfmn,
0, m up to the order oskom,
0,0 up to the order s._2/0.

Now we wish to solve the equation of motion of order
2r4-2:

A%k - - orm0) - - - 214%(08) =0,

sA™ (o - o)+ - 22 d™(06)=0.

The arguments in 349 - 914°% 44™, -3, A™ are

different in (10.16) from those in (10.15). Therefore,

they give contributions of order 2741 and 2r4-2. But
to find 2,.104™(o£) we have to know

(10.16)

2r—-2kmn, 2r—1h0m, 2rh00-
We have, therefore, to solve the equations

oR77 (o4 + - opab)+ - - - 2 2R™(0§)
=9Qm(of++ - - pra)+ - - 22Q™7(08),
sRO (o4 - - opab) - - - 2RO (o8)
=3Q07 (o0& - -+ gr—sb) -+ - 2m1QO(08),
sRO(o&+ - - - op0f) 4+ - - 5 R%(o£)
=9Q(of+ - - - 2pm28)+ - - -2/ Q0(8).

Everywhere in these equations, with the exception
of 2R% and 2Q%, we substitute the motion already known.
However, 2R%=,Q% for an arbitrary motion. Then we
can replace the last equations in (10.17) by

ROCoE+ o)+ o RO(ck)
= (ot ) 2 Q0 (od).

In 2 oR™(o€) the expression s._okn. appears, for the
first time. In o,_;R%” the expression o_1/0, appears and
finally in »,R% the expression s/00 appears. Collecting
all the contributions of highest order in these equations
and putting them equal to zero we can find or—2/mn,
or—1Hom, arhioo; fOr o0htgo the equation is purely a Poisson
equation!

Looking back at Egs. (5.8), we see that if 2—_1kom,
orhima 18 @ solution of (10.17), then

(10.17)

or—1R0m’ = or—1R0mt 2r—100, m, (10.18)
2rhmn, = 2rhmn+ 2 @m, n+ 2r@n, m

is also a solution.
For example, let us put r=2; that is,
3h0m,= 3h0m+ 320, my 4hmnl= 4hmn+ 40, n+ 4Qn, m-

The choice of these functions can always be achieved
by a coordinate transformation from a coordinate



410

system in which the a’s equal zero. Then in the equations
of motion of the 8th order, the derivatives of these four
functions will appear. Generally, they can be so chosen
as to annihilate the expressions of the 8th order in the
equations of motion. But it is difficult to judge whether
such a coordinate system would have any physical
meaning. In any case, up to the post-Newtonian
approximation, the choice of the coordinate system
does not play any role as long as we stick to our ap-
proximation procedure by which its beginning is deter-
mined, that is, the choice of 3400 and o/mn.

APPENDIX AY

To distinguish between our & function and Dirac’s §
function we shall here denote the former by §;. Our
aim is to give a “realistic” model, showing how to
construct a sequence of 8;(e) so that &§;=1im.,0d:(e)
and such that for every e:

f&l(e)d(3>x=1; f&l(e)r—pd(g)x=0;

p=1,2---k (A1)

Such a model can be gained from a model §(e) of an
ordinary Dirac é function satisfying the following con-
ditions:

8(e)=0(e,r)=€3A(r/e), (A.2)

where A(7/€) is such that
1 0
mD(f’)=f A()zrtdz; p=1,2---k (A.3)
dr 0
always exists, and
D(°)=f6(e)d(3)x=4arf PAGR)dz=1. (A4)
0

If 5(e) does not have this property, it can be made to
have it by multiplying it by (r/¢)* and renormalizing.**
Thus with such é’s we can form the model of our é;
function in the following way:

()]

We have to show that such a choice of &, satisfies
(A.1). To do so, let us start with the first equation
(A.1):

N AN o
f&ld(&x:——(—) e"f A(Z)Z2dZ=D(O) =1. (A6)
k! de 0

[ This is an abbreviated and changed version of two papers
written in collaboration with J. Plebanski.?

** F.g., Let us take 8(e)=(2r) de ¥ exp(—3r2%2), that is
A(z) = (2m) ¥ exp(—4$2?). Such A(z) shall be changed into

A(5) =¥ ()12~ (e3r2) [r(é;—_a) ]_1 exp(—32%).

(A.5)
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Now as to the second equation (A.1):

4,". 9 k ©
f517_pd(3)x=—(——*) ek—pf A(Z)Z2—7’d2
k!\ e 0

1 /70\%
=— —) e—rD® =0, (A.7)
k!\de

for every integer p, if
1<p<k.

Thus the 8;’s defined by (A.5) satisfy (A.1).

This procedure can easily be generalized. We intro-
duce the modified Dirac functions 6, from the condi-
tions

f327””d(3>x=w<p>; p=1,2--k (A.8)

where the w are arbitrarily prescribed numbers. The
realistic 8;(e) satisfying (A.8) in the limit ¢—0 is the

following :
k Wk—s) £ O\ 4
oS0 ()] o
5=0 s! Je €
We find

f52<6)1'_pd(3)x

o0

W(k—s) 8 s
(——) ek_T’f ZP2A(2)dz
S! Oe 0

k W(k—s) A
=3 (D) — (5—) ¢-2D®,  (A.10)
8=0 S €

k
=47 3 (DU—9)1
=0

This is different from zero and finite for e—0, only for
s=k—p. We have:

f52"_pd<a>x=w<p>+0(é)

and for e—0 we have (A.8).

The use of Dirac’s functions requires the prescription
for the values of w(’s. The one used in this paper is
the most convenient for our purpose; it requires
wp=0;p=1,2---k.

APPENDIX B
Roo up to the fourth approximation equals

1 3
Roo=—3%0,5s—% shoo, s+ sh0s, 05— 30, 00

+%¢.s§0.s'_%§9§9,ss- (Bl)

Therefore
R®= Roo(1—2hoo) = Roo(1—2),
R%®=R"/—g=(1—¢)R®=Ro(1—-3¢p).
In (B.2) exceptionally g=|g.s|. We have
RO=—3¢, ot 0@ sst30,0, 0t 50,00~ F dhooss. (B.3)

(B.2)
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The right-hand side of our gravitational equations
Ref= — 87 (Teb—Lg>8T) (B.4)

is up to the fourth order for the ‘zero-zero” com-
ponent:

=8 (GT0=3 (119~ ) STO(+ 9)+(T"

_% 4T00+% 4T“) = — 47r(2T00+ 4T00+ 4T“). (B 5)
Because
lm 2m Im *m
41m=% zlmfsfs+—'——, 42m_____% 22m,ﬁs1"a+_ ,
r r
we have for the right-hand side:
— 47(217" 15+ 221% 26-{—% 1més£s15+% 2m.':’s,r"x 28
mim  2mim
+ 164 25). (B.6)
r r

On both sides we take only expressions (@) of the
order four, (b) those that give a finite contribution to
oo, m. Thus this relevant part of 4 satisfies the
equation

P00, ss =218 55288 o8 0018, o8 s

2m
+87r(% 2mnsy® 26+~——~25). (B.7)
r
Because

€ oe=8rm%; f=—2m(r)", (B.8)

we have for the contribution of 4C to 4 coming from
the first two expressions:

iC, 5= —4m %a. (B.9)
Generally, the solution of
4C, 5s=—4m %a (B.10)
is
£=20a0r), (B.11)
where
2d=f a26d(3)x. (BIZ)
20(3)
Thus in our case:
4 m %m
L= (B.13)
r
Therefore,
L 2m
4h00, ss=g 00 8 s+81r<% 2 n® 20— 26). (B.14)
7

411

Finally, therefore, we have

4h00__)_ 2m 21,' 00+ 2 (Zm)2 (27’) f?_ 3 2m,,'78,r',3 (Zr)—l
+2'm 2m(r)~t.  (B.15)

Let us now generalize 440 for three particles, again
looking only for expressions which give a contribution
to koo, m. The only nontrivial expressions of this kind
are those proportional to %m ®m.

We denote by @y, the “distance” between the @
and b particleff:

(@)= Cp—sg)Cg—%),  (B.16)
and ask: what contributions to (B.4) come from the
third particle and are proportional to % %m? We now
have

o= sho= f+g+k,
J==2tmn; g=—2mCn)
=—2%n(%)"1

Then the additional expressions for which we look in
(B.3) are:

(B.17)

%(gk): 33+%gk, 88+%kg. 83_%500,33 (B.18)

where sgo denotes the additional expression in 4% The
additional expressions in (B.5) because of (B.6) are

— 4 2 Sy (D)1 (24-35). (B.19)
Therefore, the additional expression to 4o, ¢s 15:
00, 5s~8 2m 3m (@)1 (264-%8)+ (gk), s
+gk oo+ kg e (B.20)
From this we find
S00= 2 2 S (@)=L ()1 (@p)1(2p) 1
+20Cr )], (B.21)

Therefore, as we see, so does not depend explicitly on
£, Therefore,

Soom="S00,m (B.22)
and
} 55— 1 Fi=m (e 001 (0 ey

4 (uy a1 (B.23)

The last very simple question with which™we shall
deal here is the change from skom to 3kon’:

shom’ = shom= 300, m. (B.24)
Putting this in (B1), we have
ahoo’ = shoo+2 4a0,0 (B.25)

which is identical with (9.4).

1t Previously 2=y,



