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1. HISTORICAL INTRODUCTION

HK history of the problem of motion in general
relativity theory usually, and rightly so, starts

with the 1927 paper by Einstein and Grommer. ' This
showed for the first time that the equations of motion
for a test particle (with mass rn —+0) need not be added
to the field equations, but that they can be deduced
from the relativistic field equations. For many years
afterward, Einstein, and then Einstein with his col-
laborators, tackled the problem of the motion of two
particles. Their problem was to find whether the equa-
tions of motion can also be deduced from the field
equations. The answer was given in the 1938 paper by
Einstein, Infeld, and Hoffmann' in which the two-body
problem was solved for the first time.

Independently of us and a little later Fock' (1939)
also deduced the equations of motion, though only the
Newtonian ones, from the field equations. Later
Papapetrou' (1951) simplihed his procedure and
deduced the post-Newtonian equations of motion, after
Petrova (1949) had done the same thing on the basis
of Fock's theory. Petrova's and Papapetrou's results
were the same as ours.

What are the essential similarities and differences
between Einstein's theory, especially as formulated in
the two later papers, (Einstein-Infeld, 1940 and 1949)'
and the Fock-Papapetrou papers?

In general they have one essential idea in common,
but two different ideas, of which only one is essential.
The idea common to both sets of papers is the approxi-
mation method. We now take up the first difference.

In the school represented by Einstein the field equa-
tions in empty space are* in the usual notation:

T p being the energy-momentum tensor, instead of
(1.1) is somehow in bad taste, because we do not know
in (1.2) what T o is, and we mix a geometrical tensor
on the left side with a physical tensor on the right side.
This was the reason for Einstein's long search for a
unified field theory in which such a mixture of physics
and geometry would not appear.

We know that there is no solution of (1.1) repre-
senting spread-out continuous matter. Therefore, by
assuming (1.1) we represent matter by means of
singularities. The method 6.rst used by us consisted in
forming certain two-dimensional surface integrals over
surfaces enclosing these singularities. The field equa-
tions prescribed the laws by which the surfaces en-
closing the singularities, and hence these singularities,
moved. Therefore, these laws were deduced from the
field equations in the post-Newtonian approximation.

However, Fock and Papapetrou consider (1.2) and
use definite expressions for T p.

This difference does not seem to me to be an essential
one for the following reasons. We do not know the real
distribution of matter. Neither of these methods depicts
reality properly. The use of our method based on (1.1)
means: if the two bodies are a great dis'tance apart so
we may assume, approximately, central symmetry of
the field near one body, then the exact knowledge of
density distribution inside the enclosing surface is not
essential. Outside the enclosing surfaces, (1.1) is valid.

This difference between the two schools may be
characterized by an example of a simple situation: that
is, classical gravitational theory. There we have two
kinds of equations depending on whether matter is
represented by singularities or by a continuous dis-
tribution. In the first case we have Laplace's equation

G p=R p
——,'g pR=O.

Einstein always thought that to use

Gap =Rap ggap= —8x'Tap (1.2)

Qq=o;

in the second case Poisson's equation

6p= 4m.p.

(1 3)

(1 4)
A. Einstein and J. Grommer, Sitzer. deut. Akad, Kiss. Berlin

2 (1927).
'Einstein, Infeld, and Hoffman, Ann. Math. 39, 66 (1938).

A. Einstein and L. Infeld, Ann. Math. 41, 797 (1940); Can. J.
Math. 1, 209 (1949).' V. Fock, J. Phys. (U.S.S.R.) 1, 81 (1939).' A. Papapetrou, Proc. Phys. Soc. (London) 64, 57 {1951).

5 N. Petrova, J. Phys. (U.S.S.R.) 19, 989 (1949).* Greek indices run from 0 to 3, Latin from 1 to 3. Repetition
implies summation. The quadratic form for a geodetic coordinate-
system is

ds =gapdx dx; 'gpp=1& 7/pni=0& 7)mn= ~ann

The velocity of light c=1.

It is more common to write Laplace's equation when
thinking about its spherically symmetric solution in the
form

Dp= krw8(3)~ (1.5)

where m is the mass and b(3) is the three-dimensional
Dirac b function.

Let us try to use the b functions consistently in
general relativity theory. Here we have in the first
approximation, using (1.1) for empty space, the
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Laplace equation which we solve by a central sym-
metric solution. This means that a solution of (1.1) in
the first approximation valid everywhere, corresponds
to'that of (1.2) where the energy momentum tensor T s
is proportional to Dirac's b function. Thus the use of
(1.2) with T s proportional to 8&3& corresponds exactly
to our previous considerations of (1.1) with singular
solutions, just as Eq. (1.5) is only a different form of
(1.3).

Use of (1.2) with T s proportional to 8~3& functions
tremendously simplifies the entire deduction of the
equations of motion. This simplification was achieved
in my paper' of 1954, but the entire procedure can still
be clari6ed and simplified. I present here the derivation
of the post-Newtonian equations of motion with almost
no tedious calculations. t

Summarizing, though I believe in Einstein's idea of
not using the energy momentum tensor, yet I was
unfaithful to it, because I used the energy-momentum
tensor as proportional to the 5~3) function to express
the singular solutions.

The next diBerence between Fock's and Einstein's
school is more essential. Fock, Petrova, and Papapetrou
use the harmonic coordinate system; that is the four
equations

(16)

Fock considers the choice of this coordinate system
to be extremely important, claiming that its addition
to the gravitational equations (plus some conditions at
infinity) restricts the coordinate system up to a Lorentz

' transformation. Thus, for Fock, the choice of the
harmonic coordinate condition becomes a fundamental
law of nature changing the character of Einstein's

, general relativity theory into a theory of the gravita-
tional Geld, valid only in inertial coordinate systems.
Others like Papapatrou' who based their research on
Fock's work, do not go so far, but also regard the coor-
dinate condition (1.6) as essential for deduction of the
equations of motion.

In our erst paper' we used a coordinate condition
different from the harmonic one; yet we obtained the
same equations of motion lg, ter obtained by Papa-
petrou' and Petrova. ' In a few subsequent papers~' we
carefully analyzed the problem.

I maintain that the equations of motion have nothing
whatever to do with harmonic coordinate conditions;
they have much to do with the method of approxima-
tion. It is this method which uniquely determines the
equations of motion up to the post Newtonian order.

'L. Infeld, Phys. Rev. 53, 836 (1938); Can. J. Math. 5, 17
(1953); Acta Phys. Polon. 13, 205 (1954).

f Some of the ideas presented are due to Mr. Plebanski and
myself and will appear in fuller form in a book Relativity oj 3f

otiose

which we are writing.
7 A. Einstein and L. Infeld, Ann. Math. , Can. J. Math. 1, 209

(1949)
8 R. Yeisseyre, Acta Phys. Polon. 13, 47 (1954).

I will show explicitly later that violation of the har-
monic coordinate condition does not change the post
Newtonian equations of motion as long as we stick to
the approximation procedure.

2. SOME NOTATIONS AND MATHEMATICAL
PRELIMINARIES

We have a world line P(/) and a field, say a scalar
field q that depends on coordina'tes x~ and on time
x'= t and also on the P(/) and their time derivatives:

+(xk ~ Pk jk) . jk dkk/g~ (2.1)

We assume that near the line $k(t) the field becomes
singular and has the following form:

+2m, -(x' —P)(x"—8)+ (2 2)

Here

and, therefore,

Similarly
p i;;

'el
ax'& p ) .=i.

(2.3)

(2.4)

(2.5)

We must distinguish between

and p, s= ]8 (2.6)

which generally are not equal to each other.
H q were not singular on the curve tk(t) we could

have defined g in the following way:

w= J~'p~(&) (x 5 )d(3ix (2.7)

We can narrow the definition of Dirac's 8 functions so
that (2.7) remains true even if p has a singularity up
to the kth order. Such 8 functions can be constructed
(Appendix A) as limits of ordinary functions. By use
of such b functions, we get rid of infinities without
recourse to the renormalization procedure. Thus, all

8 functions used here will have the property of changing

p into p, where p is a continuous function of the P,
P, tk. Therefore, we use (2.7) as the definition of p,
where 8 is the three-dimensional Dirac 8 function,
satisfying the following conditions.

1. 5(x) can be treated formally as a spherically sym-
metric function for which all the derivatives exist.

2. 8(x)=0 for xWO.
3. For every continuous f(x) in the arbitrary region
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Q(xo) forming a neighborhood of xo, we have

d(s)x&(x —xo)f(x) = f(xo).
~ O(ss)

4. For an. arbitrary neighborhood D(0) of the point
x= 0, we have

J d(3)x5 x x 2'=0, $'or p=1, 2,
Q(p)

The fourth condition distinguishes this 6 function from
the usual one. Proof of the inexistence is given in
Appendix A. (See also Infeld and Plebanski. o)

Thus the bars mean two things: firstly, singularities
are ignored; secondly, for x" the P's are introduced.

Returning to the problem of the difference between

(o, ,= 8(o/BP and (o, „we have from (2.7)

The last two expressions under the integral sign give
zero, because they are products of symmetric 8 functions
and odd powers of (x' —('). Thus we obtain

s4 = f s4ss& ) "s4=

g gPp=g gPI&=g P (2.12)

But (2.11) would not be true if (o or f had a singularity
of order p '. Thus (2.11) is true if p appears to an odd

power in the singular parts of so and iP. Therefore, we
have to be cautious in applying the last equation.

Thus, we have vectors and tensors defined only along
the curve, like 8", T t', etc. We can de6ne the metric
tensor alolg the cur(&e g e and g~& and assuming (2.11)
we have

To such tensors we can apply tensor algebra and tensor
analysis but oddly along the curve.

Since

(2.8)p~H g

This means that g, , and y, , are equal if and only if
p, ~a=0. This is certainly so if the part of q that gives
a contribution to (o does not depend on $'.

One more formula plays an important role later and
follows from the definition (2.7):

(2.13)g ~()t)d &»~
O(3)

)t', o= = (o, o+ V, sf 0', )sf
dt

Assume two functions, e.g. , (o and P:

(where Q&s) is a small three-dimensional neighborhood
surrounding the singularity), g e will be a tensor along

(2 &&) the curve if 8&s)d(s)x is an invariant.
The four-dimensional relativistic Dirac 8 function

b(4), is a scalar density because of the invariant equation

—1~
(o=—+o+ (, .(~'—~')+s(;. ('~' —P)(~'—t")+ . ,

p
(2.10)

+ +4+4.(:s'—t')+.
p p

Now let us take

where

8(4)d(4)X= I.

8(4) = &)(4)(a —t ),

(2 14)

(2.15)

(2.16)

)Ve have in this case

(2.11)

X being an invariant parameter. Then we can form an
invariant density function

Forming (oP and ignoring singular expressions and
those that vanish for x'= $', we are left with the follow-
ing expressions of order zero in (x'—$'):

~s Qs gs gs

( 4'+ '(os, .— + '4 ()",.
p p

+—Ql'

The bars over these expressions give
x' —$'

(4)P= J~ &1(S)d(S)~ t'+()|( , (OVs+ t', ))t&)s

p

+oo +" dX d~
t) &4)dX = 5 (4& dP = 8—

&s& (2—.17).
dP dt

As far as the transformation properties are concerned,
this is the definitions of 8(3). Thus b(3) is the zero com-
ponent of a density vector. From this definition it
follows that

~

~

dX dt
I$(3)l(3)g '5(3) l(3)X

Q(3) 0 (3)

t=+Qo

=
Jl J( s) )4) )«) f s) )4) )s (s )4&=

0 (3) t=—oo D(4)

p3

' L. Infield and J.Plebe, nski, Sg,ll, head, Polon, III 4, 689 {1956);
5, Si {1957).

Thus the space integral of b(3) is an invariant.
One more remark concerning the notation: If we have

many curves we shall distinguish between them by the
index written above to the left: 'P; a= 1, 2 p. Then
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we should also write 'g, meaning:

tp = ate) 6d(q)x ~

Q(3)

where the semicolon indicates covariant diGerentiation.
Taking the integral of T &.

, p over the three-dimensional
(2.19) region surrounding the first singularity and multiplying

by dt/ds, we have:

However, for simplicity we do not write a above the
bar always understanding that it means the first (or
only) curve: (o='(o.

('
T &.

, pd(g)x=3 =0,
d$ Q (3)

(4.2)

ds'=g pd$ d(P. (3.3)

From the tensor density we now form a tensor along a
curve (the first one)

dt dt
T

ds ~Q(3) ds
(3 4)

In the next section we see that consistency of the field
equations demands the following equations (Tulc-
zy jew)0):

t P =t($ ')—P'; $
'=—$; )i=rest mass. (3.5)

ds dS

We show (Sec. 4) that not only has t"p the form (3.5),
but also that the rest mass p, is constant. For the
moment, however, we use (3.5) as an assttmPtio22,

without stipulating that ti in (3.5) is a constant.
From (3.5) follows

(3.6)

3. THE GRAVITATIONAL EQUATIONS

The gravitational equations expressed in contra-
variant tensor densities are

G p=R p ,'g—p-R= —82rT p. (3.1)

In. our case of, say, two particles moving along lines '$'
and 2P we have

2"ap —ltap )O+2tap 2g (3.2)

We introduce an invariant and finite line element,
concerning the first particle (without writing the "one"
to the left)

where A is a vector defined through (4.2) along the
first curve. Generally, we have

A =0' a=0 1 23' a=1 2 ~ p (4 3)

Let us now write out A explicitly (omitting the
"one" on the left). We start with

'faP —'fnP +
CX

ft(tv (4.5)

Introducing here (3.8) the first right-hand expression
becomes

'faP —'fas +'fa0 —(lm i/a lgs lt)) + (lm 1(a lt)) (4 6)

+similar expressions concerning other particles. We
have

dt
('m '$a'$s 't)), sd(2)z= T—; ad( s)x=20.

ds ~Q(g) ds IQ

(4 7)

This we can see even without explicit calculations by
changing the volume integral into a surface integral
which must vanish because '6 vanishes on the surface
of 'Q(2). Therefore, what remains of the integral of (4.6)
is, because of (3.6),

dt ( dt d
T, ()d(2)&=—— 'm 'f 'l)(2)d(2)x

ds '~1 ds dt Q(3)

if p is the number of singularities. Thus in (4.3) we have
as a consequence of the field equations, 4p equations
which we call the e(tuatio2is of motion of the P singu-
larities. Indeed they contain 4p unknowns:

'$'(t) and 'm(t); s=1, 2, 3; a=1, 2. p. (4.4)

p ds

'f ap —p am a)a a(p ag

a=1

(mk ) =—(t P')' (48)
ds dt

Thus because of (4.5), (3.6), and the last equation,
our equations of motion (4.2) become

The right-hand side of the gravitational equations is
uniquely determined by the condition that T & depends
linearly on the 8's.

t '5"+t ("'+t p'(v' —() (4 9)

~. THE GENERAL EQUATIONS OP MOTION

As a consequence of Bianchi's identities we always
have

We show now that ti'=dti/ds=0, so the rest mass
is constant. We assume that

G-P, ,= (R-P ', g-PR), ,= 8~—T--P,. p=o (—4.1)
"W. Tulczyjew, Bull. Acad. Polon. III, 5„279 (19/7).

=g v[pv pj. (4.10)
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Then, multiplying (4.9) by g„P', we have of (4.14) using (3.6)

I 'k"k "g:.+pl"'V'g-+ op g" 8'5"'8'= 0 (4 11)

Because of (2.9) this is equal to

( m~ (

dt's

] log—)
=

I
log-

y), o 4 dS) o

0
(4.18)

p, d
p'+ ——(g pg"'P') =0; p'=0,

2 ds

which changes (4.9) into

(4.12) or, since dt/ds= (g pj P) ":

/log( g pP P) ljo=, ',—(g-.pj &P) '(g.p& jP)o,

1
g a —$a"+

p

0!
P'5"'=0. (4.13)

$a$p (4.19)

Thus the rest mass must be constant.
If not for the bar above the Christo6el symbol, our

Kq. (4.13) would be that of a geodetic line. For each
particle their are four such equations of motion.

Let us put back t instead of p into (4.13) using (3.6).
We then have:

Therefore, the three equations (4.17) can also be
written

k
2(g —pi iP) '(g:pi 8) ot'=0 (42o)

dtÃ
+f5'

dt nP

0

d k—(mg')+m
dt

(t'=1)

L'et us write, for short

~=(g-p i-8)-:; (8=1)

Then we can rewrite (4.17) in the form

(4.21)

since

yg ( p' 0 ) dt—=exp(—
uP J ds

(4.15)

As before, we have 4P equations determining the P
and the om's. From the first equation. in (4.14) and (3.8)
it follows that

e- (ioP), oi.+ j-$ =0. (4.22)

The "zero" equation (o.=0) gives the known equation
(4.19). We multiply (4.22) by g,„and assume, that for

g p and their derivatives (2.11) is always valid, that is
the barred product is equal to the products of the
barred expressions. Then we have, because of (2.9) the
three equations of motion,

m 0 ( mq

nP E p l, o

(4.16) (g- i')o g- i'(«, g—&) o 'g . p—i-&P,=0 (4 23)

From (4.15) we see that
This suggests the existence of a Lagrangian: 2. We

wish to see whether (4.23) is equivalent to

~t 0
ds= dt exp ~~ $ j Pdt

"0 n

This connection between ds and dt follows from the
equations of motion. The normalization is such that
for t=0, both dt and ds are equal.

Substituting the values (4.16) for m/m in the last
three equations (4.14) we obtain the 3p equations of
motion for

~ ~ s
ps+ ja jp

OP

0
$' j @=0; go=1. (4.17)

This equation is not suitable for establishing a con-
nection between the equations of motion and a varia-
tional principle. To do that rewrite the zeroth equation

We And

d BZ
=0

dt olp olfe

=o& 'g p. f. foP

o7gi:

ol Zi olg~p

$ P+2g
fljo

d ol2 (olg~p
. i.~p~ 'i +(g-. l.)..-~

dtolP &olP ) o

+g.o P (Z '), o.

(4.24)

(4.25)
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Therefore the Lagrange equation (4.24) becomes Thus this leads to the following:

(g 0 P ).0
—a o P (logs), 0 '—g -p, oj co

+—
i PP 2 '

i
Z=O. (4.26)2(aj' J, O

Comparing (4.26) and (4.23) we see that 2 is a Lagran-
gian if

I et us start by calculating A t'. Because

8 0= —8
we have

dt t,

8 () A )'=—(—i '+t 0$')t), .
ds

(4.31)

(4.32)

(4.33)

~gaP ~gaP
gap, s= gap, 8

gp gj8
=0. Since /= 1, this can be written

This means: ds/dt is a Lagrangian if the relevant part
of g () does not depend on '$' or '$'. We shall see later
that the 6rst condition, that is the independence of the
relevant part of g, t) from '(' is not always fulfilled.

Thus (4.23) follows from a variational principle:

2

Zdt
Jt,

Because 0, p is arbitrary, we have

dt
A ~=—(—& )'+), Oj~)=0.

dS

Putting here n=0 we find

(4.34)

(4.35)

10p i00 jp
t2 1

(x P )g j j() 0 (4 2g) therefore, generally

t1 O(3) ]at)—(00' ag() nO jajP—
7

(4.36)

(4.37)

dt f—
J

OT"t', pd(0)x=0,
Q(3)

1

(4.29)

where 8 is an arbitrary function continuous on the
worldline $'(t). Or, again omitting the "one" over the
t t"s and b's we can write

dt r

ds 41~
( (1 ~(0));Pd(o)x=0 (4.30)

"I.. Infield and J. Plebanski, Bull. Acad. Polon. III, 4, 749
(j.9S6).

if we treat g () us function of x» only that is if, while

varying the function under the integration sign, we
ignore the possible dependence of g )) on 'g and 'f
Then, as can also be shown by a straightforward calcu-
lation, (4.28) is equivalent to (4.23). Call the result
of such variation the "geodetic line, " then (4.23) is the
equation of a "geodetic line. ""

For a test particle —that is if p—&0 and g p is not
singular and does not depend on '$ or '(—Eq. (4.23) is
that of a geodetic line and the "—"means only the
substitution of 'P for x'.

One can show (Tulczyjew)0) that the equations of
motion follow from the field equations once we assume
the linear dependence of T & from the 8's, that is the
form (3.6) for t () and (3.7) for T o is a consequence of
the field equations.

From Bianchi's identities follows:

which is the proof of the theorem. Obviously 3 =0
gives the equations of motion.

(o= 0(o+rO)+0Ã+ (5.1)

The indices written as left subscripts indicate the
order of X absorbed by the p's.

If the function p(x") varies rapidly in space but
slowly with x', then we are justified in not treating all
its derivatives in the same manner. The derivatives
with respect to x' will be of a higher order than the
space derivatives. We can formalize this procedure by
assuming

8
(((o) = (+((,0,.

Bx'
(5.2)

that is differentiation with respect to x' raises the
power of ), absorbed by the q 's, by one.

The problem now is: with what order should we start
the power development of the quantities appearing in
the 6eld equations'

The quantity t' will start (by an obvious convention)
with the order "zero." It will be an unknown quantity

5. THE APPROXIMATION METHOD

We solve the field equations and formulate the
equations of motion explicitly by means of the approxi-
mation method to be described.

Let us assume a function developed in a power series
in the parameter X= (1/c) (assume c arbitrary and not
equal to "one").
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C= 75+ 212+0 15+ ' (5.3)

To begin with, 2m is not pure convention. Indeed in
the Newtonian, approximation, which we hope to
obtain, we have in the chosen units

determined by the equations of motion; we shall for
the moment not develop g' into a power series. Thus P'
will be of the order "one" and $' of the order "two."

From this follows

6. THE NEWTONIAN EQUATIONS OF MOTION

%e try to find the equations of motion in the lowest
(Newtonian) approximation. We do it in such a way
as to make the generalization to the post-Newtonian
approximation as simple as possible.

Because of (5.6) and (5.8), the field equations of the
lowest order are in hpp

mass g mass
mass& acceleration =—

(dlstance) or

= —42r 2T"=—42r Q 2 tts '6, (6.1)

Since the acceleration is of order two, the orders of
both sides will be equal, only if the order of mass is also
"two."

In all the power developments we take into account
only even (as in 'fts), or only odd powers of X (Infeld, 0

1938).
Thus, because of the order with which we start m

and j', we have

p

2h00, „=82r Q ms'8. (6.2)

where
2hpp — 2 258 P 2 25$

a&2 &s a s &s a s

(6.3)

(6.4)

As the solution of this equation we take the New-
tonian field, that is

'f00 —'f00+ 'f00+ 'f00+. . .
'f Om 'f0m+ 'f0m+. . .
'fmn 'fmn+ Tmn+. . .

Now as to the g's we write

g =q +h gn"=qs"+hs"

From the gravitational equation follows:

(5 4)

(5.5)

(5.6)

We also write brieAy:

2hpp P (6.5)

0 =f+g
f= —2 'fts 'r ' g= —2 22ts sr—' (6.6)

and in the two-body case, which we assume for the
sake of simplicity )

whele Because of (5.5) and

we have
(6.7)

p P p 0

+ +
JMv, p pp, v p& p~

(5.7)

From the right-hand side of Eq (5.6) f.ollows: 800
and R „start with the order "2" and EO with the
order "3."The lowest order expressions on the left-hand
side are

$00 (6.8)

Bg
2)~00, s 2~00, s g, s g, $'.

s~s
(6.9)

The relevant part of p, that is g, does not depend on

P; therefore, we have

for E.00..

for E

for Epm.

Therefore,

2hpp, ss)

2hmn, as+ 2hmn no+ 2hne;me
I 1+2hpp, mn ghss, mn)

2hpm, ss+ ghPs, ms+ 2hms, ps 2hss, mP ~

hpp 2hpp+ 4hpp+ ' '
)

~pm Bhpm+5hpm+ ' ' ')

h „=2h „+4k +
(5.9)

There is no reason to assume that 2m is a constant.
This follows, however, from (4.15), or, the first equation
in (4.14).

Because of (6.9) and because in the lowest order we
do not have any products of the h's, the conditions
(4.10) and (4.27) are satisfied, this means that the
path is a "geodetic line" and can be deduced from a
Lagrangian:

(6.10)

All the functions that appear later are obtained from
the h s by summation, multiplication, differentiation.
To every component, the following rule applies: any
component having an odd (even) number of zero
suffixes has only odd (even) powers of X in its expansion.

(6.11)
r'= (5' n') (8' V')--

[Lr t There is, I hope, no danger in confusing this g in (6.6) with
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Thus the equations of motion, up to the second
order, are

1 1 1 1
2 3hpnss, +2 3hps, ns+ 2 phns, ps 2 pttss, np

=82r(2'mt ll'+22msj"l12). (7.5)

d BZ
=0,

dt 8$' 8$'
(6.12)

If (7.4) is introduced into the last equation we have

——,
'

3130 ...+-,' 3hp. . .—q, 0=82r(2'm$" 'tl+pm'lj"'tt). (7.6)

that is

('m/r).
sp

(6.13)

The Lagrangian 2**for both particles is

2**=—-' 'mpsgs —-'-'mljsljs

2m = 244, 4'm =-', 2'm$'$'+'m 2m/r.

%e also find the equations of motion directly by
going back to (4.17). We then have simply

ol

ps

00
=0

(6.14)
r

The Newtonian Lagrangian for both particles is of the
fourth order. Since (m/t4) = (Ct//ds), we hs.ve here

The solution which we adopt here is

3hp. —— 2 '—" 2grj—" (7.7)

This is not the only possible solution. Section 9 con-
siders a more general solution and its influence upon
the equations of motion.

Calculation of 4hpp is more troublesome (Appendix B).
Here we quote the relevant expressions of 4hpp, that is

those that give a contribution to 4h«and 4hpp . They
are

=g"Pt,~),

4kpp 2(2m)2(2r) '—32j'lj' 2m(2r)
—'m'r pp+2 m m(tt') '. (7.8)

Now we should like to see whether these expressions
for 2h n, 3hPn 4hPP are such that they make the equations
of motion equivalent to those of a "geodetic line, " that
is, if the conditions

$'—[00,s]= t'+-2g, =0, (6.17)

which is identical with (6.13).

'7. TRANSITION TO THE NEXT APPROXIMATION

To 6nd the equations of motion up to the fourth
order, besides 2hpp, we must also know

2h „, 3hp„, 4hpp. (7.1)

The 6rst two are easy. The left-hand side of the cor-
responding equations is written out in (5.8) and the
right-hand side is given by (5.6) and it is

for m23: —42r8„„(2'm 'l1+ 22m 2li),

for 0m. 82r(pimp™ill+ 22mljns 2') (7.2)

Therefore, for 2h we have the equations

1 1 1 1
2 2hmn, ss+g 2hms, ns+2 2hns, ms 2 2hss, mn

+2Ã, san= 2ttsnnsts, ss (7 3)

2hmn= L,ng.

The choice of these Newtonian solutions for 2hpp and
2h „must be regarded as&'part of our approximation
procedure (Sec. 9).

The Qext step is to calculate php„. Again (5.8) and
(7.2) gives

%e are looking for a solution of a Newtonian charac-
ter. Such a solution is

gap, s=gap, ss Sgap/S$"=0 (7.10)

The 6rst expression on the right-hand side does not
depend on $, $, but the second expression contains jj'.
Here we may introduce for 2msj'= —'m$', the New-
tonian value, since the mistake will be of order "6".
Thus we can put

/1'r
42= —'m pr, „sjs='m'mpr, „~ —

j'"
&rJ, ,

=Pm 2m(xs —ll') (pr) 'j(P' —2t')r '. (7.12)

This expression, differentiated with respect to x

are satisfied. Both conditions are satisfied for 2h „and
3730 . These expressions have a singularity of order 1/r,
an odd singularity; therefore, for them, (7.9) is satisfied.
In their relevant part neither P nor g appears explicitly;
therefore, for them, (7.10) is satisfied. But this is not
true of 4hpp. It has an even singularity because of the
appearance of ('r) '. Yet this does not matter, since
4hpp appears only /ieeurly in the equations of motion.
Therefore, we can disregard the condition (7.9) for 4hpp.

But is the condition (7.10) satisfied for 4hppP It is cer-
tainly satisfied for the first two expressions, that is, for
2(2m)2(2r) '—3sj'lj' 'm('r) ', since neither of these two
expressions depends on P, $. We must be more careful
with the third expression:

—2m~r 00
———2mpr „s„,ljsljr 2m ps „ijs (7 11)
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gives zero at the point x'= P. Thus Here we introduce the values

But

e =0.

a, = 'm'm(r '), «-.
gp»»

(7.13) cp= —2'mr '. h =4'mr 'j'

4h00*=2('m)'r ' —3j»j' 'mt '
—'mr, ( «j 'j "+'m 'mt '.

We have

P=2'm'm(r'r) '. (7.14)

A similar situation occurs in the last expression in
4hoo.

Remembering that up to the fourth order

(1+2o+4o)*=1+2 4++4+)—8 t+

we obtain from (8.4) and (8.5) the Lagrangian:

(8.6)

p»=2'm'mr '~ —
~

=2'm'mr '(t ') «

(11
&"),,

P =2'm'm(r ') «.

Therefore

(7.15)

Z*=tg*+4Z = ——$'j' —mr '

1 'm ('m+'m)+- —-', 'mr, ««j'tI' (8.7)
2 r2

3 2mt —1(gsg»+t)s~s)+4 2mt —lg»~s & (Ps(»)2

P, .=2P, ' (7.16)

4t«00, m 4~4'00, m. (7.17)

However, we can easily 6nd an auxiliary field which we
shall denote by boo* such that

This is supposed to be the Lagrangian for the first
particle. But we wish to find the Lagrangian for both
particles. This means first a Lagrangian which gives
the same equations of motion as the Lagrangian (8.7);
secondly, a Lagrangian which is invariant with respect
to a transformation, changing

From this it follows that such 4hoo* is 'm)~~'mtt. (8.8)

4k*00——2(2m) t —3j'j' 'mr ' Let us multiply 2"' in (8.7) by 'm. The equations of
motion will be the same. Let us add

rm«—«j 't'I"+'m 'mr . (7.18) —-', 'mj'j' ', 'm(j't—l')-'. (8.9)

8. THE POST NEWTONIAN EQUATIONS
OF MOTION

In the general equations of motion (4.17) 4hoo will

appear only orlce up to the fourth order, that is in the
expression —,

'
4hoo . This means, because of ('7.17), that

a Lagrangian up to the fourth order exists):

2*=ds*/dt,

m mf $ sg fJ

But instead of it we can write

(8.10)

Kith this addition, the equations of motion for the
first particle will still be the same, since there is no
contribution from (8.9). With these changes, the only
expression not invariant with respect to the change
(8.8) will be the last one in (8.7), that is

with —''m'mr
« (8.1 1)

ds*) '
(=go*5 8

& d~)

in which only goo*@goo»d

g00 F00+27too+ 4It00 1+P+ 47too

Therefore,

(8.2)

(83)

which is invariant with respect to the change (8.8), and
gives the same contributions to the equations of motion.

Prom (8.10) we have the following addition to the
equations of motion of the first particle:

tB mt «»«'«»tt'tt"= —
2 m mt, «»t"«»'s'tt'. (8.12)

Prom (8.11) we have the addition:

2*=(1+g+4It"oo —$'$'+ «t 5'$'+3& o 5')'. (8 4)

$ Compare I. G. I'"ichtenholz PJ. Phys. (U.S.S.R.) 27, 563
(1954)j where the Lagrangian is found mechanically from the
explicit equations of motion and not, as here, the equation of
motion from the Lagrangian. m m(t «» " »q"tl»+t «» ~q"). (8.13)

-', 'm 2m(r, «.„"j"),0
—'g'm 'mr

« „««& j"
=', 'm'm(t, «;« ti"g'+r, «-„„j'j»

+p' «»»tj" —p' «I p»)«»)t»
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But the last expression in (8.13) equals then we have the Lagrangian for the p particles:

8Z mr pyre @44—@88+ F88

Since
= —

0 2
a=i

am a js a js i. P~ am bm((ab)y) —i
a, b=i
a&b

(8.15)

we see that (8.14) vanishes and, therefore, (8.10) and
(8.11) give the same contributions to the equations of
motion.

Therefore, if we call the final Lagrangian for two
particles 2**,we have

'm 2'
g8b —pbbs+ @88— 1 lmpstcs 1 2m~s~s

0 Pr am bm((ab)y)-i(a js a js+bj s b js)
a, b=i
a&b

+2 Q' 'm 'm('"r) ' 'j' 'g'
a, b=1

a&b

i P am(a js a js)2

3 'm 2m 'nS 2'
(js]s+~s~s)+4 js~s

2 r r

—-' 'm (&'g')' —-', 'm( j'j')'
1 'm 'm('m+'m)

+ + ', 'm'mr -0;$ j". (8.16)
2

+b Pr am bm(am+0m) ((ab)r) 2

a, b=1
agb

+ P~ am bm((ab)y, „) ass bgr

a, b=1
agb

From this Lagrangian the equations of motion for
the 6rst particle are: +1 P&r am bm m[(c(ab)y (ac)y)—1

((ab)r)2 (ass bus) (ass bus) (8.19)

The equations of motion for the other particle are
obtained by replacing

'm 'm, $, p by 'm, 'm, y), $, (8.18)
respectively.

The generalization of this result to p particles is
almost trivial, if we take into account the changes
caused by the addition of these particles in h„* (Ap-
pendix B). These additional expressions are due, say,
in the case of three particles, to interaction between the
second and third particles; that is, in the equations of
motion for the 6rst particle they will give a contri-
bution proportional to 'm 2m 'm. These expressions

appear in 2** from two sources: from 4hpp* and from
00' in (8.6). If we now denote the "distance" from the
ath to the bth particle by:

9. ON THE CHOICE OF THE COORDINATE SYSTEM

The harmonic coordinate condition is

(9.1)

which in our case means

Ibran 0. $0ra + $00 0, n ) B,m 2, p (9.2)

None of these conditions are ful6lled in our coordinate
system.

The values for 2hpp and 2h „accepted by us here were
the Newtonian values. Our convention is that their
choice characterized our approximation procedure. Yet,

+ ((bc)y (ba)y) —I+ (( a)y (ccb)y)—ij (8 20)

In the case of two particles the Lagrangian (8.20)
reduces to (8.16). The only new expression appearing
in (8.20) is the last one; in the case of three particles it is
equal to

'm(-,' 4r00 —-', g&)

using the notation of Appendix 8 where 4$pp is the
change in 4hpp caused by the interaction of the second
and third particles and k is for the third particle what

f and g are for the first and second. Thus —bbgk is the
contribution to the Lagrangian of the interaction
between the second and third particles coming from
—-', qP in (8.6).
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with some justif cation, this approach may be regarded
as too formal. Instead of our values for 2h „we could
have chosen

I
2I2mn 212mn+2rkm, a+242n, m

the u's being arbitrary functions. This change from
2h~~ to 2k~~' couM also be induced by a change in a
coordinate system that does not disturb the approxima-
tion procedure. The physical meaning of the choice
2u =0 is that we assume the existence of a coordinate
system in which each of the two bodies reveals its
spherical symmetry; a coordinate system in which for
2224

—40, $~0, the field goes over into that defined by the
Schwarzschild solution in an isotropic coordinate
system. The choice of such a coordinate system is
implicitly assumed by our approximation procedure.
However this choice of 2u =0 refers only to the be-
ginning of our approximation procedure; therefore it
does not refer to 3ho . If we replace 3ho by

2~0m shsm+ DOD, m
I (9 3)

4I400 = 4i200+2 4420, 0 (9.4)

Therefore, it would seem that the Lagrangian and with
it the equations of motion would change. The expres-
sions that change in the Lagrangian (8.4) are

sas being an arbitrary function of xa, then Eq. (7.5) is
fulf lied just as well. This change in 3ho can be induced
by a change in a coordinate system which does not
disturb our approximation procedure. Such a change
also induces a simple change in 4hso (Appendix H):

cQ

,To,„d(„——,Ao =0;
Js

dt
4T ~ y d(3)X 4A Os

ds i

(10.1)

Since 2'm appears as a factor, we called these equa-
tions (after dividing them by 2'422) the equations of the
second order. But here, since it is multiplied by 2 rn, it
appears as an equation of the fourth order. For this
section, therefore, let us rename the order of the
equations of motion calling the Ãem foeioe equations of
motion those of the fourth order and the post-New
tonian equations those of the sixth order. Let us also

put generally

we found the equations of motion of the second and
fourth order. Such a general theory is of little practical
value, since there would be hardly any physical meaning
in developing the calculations one step further. More-
over, it seems —and we discuss this later —that by
proper choice of the coordinate system we can anni-
hilate all contributions to the equations of motion
beyond the fourth order. From the formal point of view
it is important to know that the procedure can be
pushed as far as we wish. Of course we do not know
anything about its convergence.

Before we formulate the general theory let us recall
what has been done here. We had the Newtonian
equations of motion:

&0,&'+2 4&00* (9.5)

dao
&&*=&0, , j'+&0, 0=—.

df
(9.6)

and the change induced by them in the Lagrangian is,
because of (9.3) and (9.4),

2n—IT; v d(3)+ 2n—1A
ds ~

dt
2m I u d(3)~ 2nA

ds ~

(10.2)

Therefore,
t2 t,2

AZ* dt=6(ag) =0.
Thus for our post-Newtonian equations of motion we

(9 7) have

ss40+ DAD =0; 4A "+6A "=0. (10.3)
This means: the equations of motion are uniquely

determined up to the fourth approximation by the field
equations and by our approximation procedure. Neither
the harmonic coordinate condition nor any other coor-
dinate condition played any role in our derivation of
the equations of motion.

Io. THE GENERAL THEORY

Now we formulate the general theory,
~~

according
to which we proceeded in our special case and in which

~~
The ideas presented here are a few years old. A. E. Scheidegger

(Revs. Modern Phys. 25, 451 (j953)j refers to them in Sec. 5
stating that they were suggested by me. I found a more explicit
formulation of similar ideas in a thesis by B. Rameswararao
(thesis, Banares IIindu University, 1955). An alternative general
theory was given in a paper by Plebansl&i and myself LBull.
Acad. Polon. III, 4, 755 {1956)].

These equations gave us

4222 4222+ 0422. ass a(s+ ass (10.4)

s40( tk+ Pk)+ +0( gk) —0.
gm(040k+ pk)+„gm( gk) 0

(10.5)

Thus 4A (0&+2/) also gives a contribution of the order

where 0 $' is the motion in the Newtonian approxima
tion. To find these equations explicitly we used the
Newtonian equation of motion in 6A, since the use of
ap instead of 0'p would give a contribution of the 8th
order to the equations of motion. We express this idea
in symbols and write instead of (10.3):
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six. The fmld was solved so as to obtain (10.4) in

223, 23 up to the order 2h (of),

0, 223 up to the order 3ko (of),

0, 0 up to the order 4hoo(of).

Suppose that we wish to go one step further. We
then have the equations of motion,

3A'(of+2f+4f)+6A'(of+2f)+2A'(of) =0,
4A (of+ 2f+ 4f)+ 6A (of+2f)+3A (f)=0.

(10.6)

In 3A, 6A, 4A, 6A, the argument in (10.6) is different
from that in (10.5); therefore, they give contributions
Np to the eighth order. But to find 3A (of) we have to
know

3A (of+ 2f+ ' ' '
2 —4f) +6A (of+ ' '

2 —6f)

+ 2, 1A'(of)=0,
(10.15)

4A (of+ ' ' ' 2r 4f)+—6A (of+ ' ' '
2r—6f)

+ . 2„A (of)=0.

This means, that we have solved the field equations in

m, e up to the order 2„4h

0, m up to the order 2„3hp„,

0,0 up to the order 2r 2hpp.

Now we wish to solve the equation of motion of order
2r+2:

3A (0f+ ' ' '
2r—2f)+ ' ' ' 2r+1A (of) = 0r

(10.16)
4A (of+ ' ' ' 2r—2f)+ ' ' ' 2r+2A (of)

4h. , 5h.o, eh.pp,

all functions of of. Thus simply denoting

Q ~= —82r(T ~—-'2g ~T)

(10.7)

(10.8)

The arguments in ~A' 2„1A', 4A 2„A are
different in. (10.16) from those in (10.15). Therefore,
they give contributions of order 2r+1 and 2r+2. But
to find 2„+2A "(of) we have to know

we have to solve the equations (omitting the a's above
the f's):

2R""(of+2f)+ 4R""(of)= 2Q""(of+2f)+ 4Q""(of),
R'"(.f+.f)+ R'"( f) = Q'"(.f+.f)+ Qo™(.f),

(10.9)
2R' (of+2f+4f)+4R (fo+2f)+6R (of)

2
00

0 2 4 4 0 2 6
00

0

This would seem to be an impossible task, since to
solve the last Eq. (10.9) we would have to know 4f,
which we wish to find by Eq. (10.6). However, this is
not so, because we have

2R"= —-', 2hoo, „———4r Q '223 6=2Q00 (10.10)
a=1

2r—2hmnq 2r—lhpm3 2rhpp.

We have, therefore, to solve the equations

(of+ ' '2r—4f)+ ' ' '2r—2R (0f)
0

~ ~ ~ ~ ~ ~
2 2 0

3R'-(of+ . 2, 4f)+ 2, 1R'"(of)
p

~ ~ ~ ~ ~ ~
p

2R"(of+ 2.-2f)+ 2.R"(of)
= 2Q"(of+ 2, 2f)+ 2,Q"(of).

(10.17)

Everywhere in these equations, with the exception
of 2R"and 2Q", we substitute the motion already known.
However, 2R"= 2Q" for an arbitrary motion. Then we

can replace the last equations in (10.17) by

In 2„2R (of) the expression 2„2b „appears, for the
first time. In 2r 1R' the expression 2r 1hp appears and
finally in 2,R" the expreSSiOn 2„hpp appearS. COlleCting
a11 the contributions of highest order in these equations
and putting them equal to zero we can find 2„2h „,
2r—lhpmy 2rhpp for 2rhpp the equation is Purely a Poisson
equation t

Looking back at Eqs. (5.8), we see that if 2„1ho„,
2„h „is a solution of (10.17), then

Collecting here the expressions of the sixth order we
6nd ohoo(of). Similarly we can find oho and 4b „.Thus
we can push the approximation one step further.

We can now formulate the general theory. In the
development of g p, E, T, we took into account arbitrary
motion. Under this assumption we developed, say

(10.12)Tmn . Pmn+ Tmn+ Tmn+. . .

for arbitrary motion. Thus we may rewrite the last 4R00(of+. . . .„4f)+.. .2„R00(of)
equation (10.9): 00 . . . , . . 00

4R (of+ 2f)+6R (of) 4Q (of+ 2f)+6Q (of). (10.11)

But, instead of arbitrary motion, let us put into the
arguments certairl, motion developed into power series: (10.18)

2r—lrrom 2r lh0m+ 2r—1430,my—
2rhmn 2rhmn+ 2r43m, n+ 2r43n, m

and write, say,
f= of+2f+4f+

2r 7 (of+2f+ 4f) ~

(10.13)

(10.14)

is also a solution.
For example, let us put r= 2; that is,

If developed properly, the above expression gives con-
tributions of the order 2s+2 and 2s+4. Assume that
we have solved the equations of motion of the order 2r

3bom 3bom+ 3430, mr 4hmn 4hmn+ 4am, n+ 443n, m.

The choice of these functions can always be achieved
by a coordinate transformation from a coordinate
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system in which the a's equal zero. Then in the equations
of motion of the 8th order, the derivatives of these four
functions will appear . Generally, they can be so chosen
as to annihilate the expressions of the 8th order in the
equations of motion. Hut it is dificult to judge whether
such a coordinate system would have any physical
meaning. In any case, up to the post-Newtonian
approximation, the choice of the coordinate system
does not play any role as long as we stick to our ap-
proximation procedure by which its beginning is deter-
mined, that is, the choice of 2A!00 and 2h

Now as to the second equation (A.1):

kr! B) o

)tb, r d-(o)x= —
I

—
I

e' &
! A(s)s' &do

k! (Be) &0

1 ( B - D =0, (A. 1)
k. ~Be~

for every integer p, if
1 &p&k.

Thus the 8i's defined by (A.5) satisfy (A.1).
This procedure can easily be generalized. We intro-

duce the modihed Dirac functions b2 from the condi-
tions

APPEND IX A g

To distinguish between ogr 5 function and Di rue's
function we shall here denote the former by b~. Our
aim is to give a "realistic" model, showing how to
construct a sequence of Bi (0) so that Bi= lim, oui (0)
and such that for every

(A.S)

where the oo are arbitrarily prescribed numbers. The
realistic 80(e) satisfying (A.8) in the limit e—)0 is the
following:

~(o—8) ( B 'l '~ (r&
(A 9)

s! EBel ) e)

t Bi(e)d(o)x= 1;
J

Bi(e)r ~d(,)x=0;

p= 1, 2 k. (A1)

(A.2) j~Be (e)r &d(o)x-
8(e)=6(e r)=e A(r/e)

Such a model can be gained from a model 8(e) of an We find
ordinary Dirac 6 function satisfying the following con-
ditions

where A(r/e) is such that

1 00

D(» = I
—g(s)s—o+'ds p= 1, 2 k (A.3)

always exists, and

~(o—.) j B

s! EB )
~(o—8) ( B

=P (D(o ') '
I I

eo "D'"' (A 10)
8=0 s! ( Be)

This is diferent from zero and finite for e—&0, only for
D"'= jl 6(e)d(»x=4njs'h(s)ds= 1. (A.4) s—k P We have.

0

If 8 (e) does not have this property, it can be made to
have it by multiplying it by (r/e)o and renormaiizing. **
Thus with such 6's we can form the model of our 8~

function in the following way

1('B)" (r)
Bi(e r) =—

I

—
I
" 'AI —

I (A.5)
k! (, B.3 &,)

j box d(o)x =(0(» +0 (e)

and for e—+0 we have (A.S).
The use of Dirac 's functions requires the prescription

for the values of co ~„)'s. The one used in this paper is
the most convenient for our purpose; it requires
0)(„)=0; p= 1, 2 k.

We have to show that such a choice of 8~, satisfies
(A.1). To do so, let us start with the first equation
(A.1):

APPENDIX 3

Roo Np to the fourth approximation equals

&00= ——', (0 ..——', 4koo„,+4ko„o,—0 40, 00

+ 0 p, s'0), s 0 Woo, sN (+ 1)4m ( B ) o

j &)d(o)x =—
I

—
I

e" ! A (s)s'ds=D(o) = 1. (A.6)
k! &Be) J,

' '
Therefore

This is an abbreviated and changed version of two papers
written in collaboration with J. Plebanski.

E.g, , Let us take 8 (e) = (27r) 4 ' exp (——',r'e ~), that is
6 (z) = (2m) & exp (——,'z') . Such 6 (z) shall be changed into

6+3
(z) =zlo (2~) '2 ('+'/') p exp (—-'z')

2

=~00(1 2koo) =Zoo (1—2s ),
(B.2)R"=2 "&—g= (1—(0)&"= ~00(1—3(o)

In (3.2) exceptionally g=
I g 4) I

. We have

0 Ã, es+ 'i) p, ss+ Q 'R s(io, 8+ 0 'p, 00 'Q 4koo„s. (&.3)
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The right-hand side of our gravitational equations

Ra)8= —8~(Ta)8——2'g.sT)

is up to the fourth order for the "zero-zero" com-
ponent: Let us now generalize 4hpp for three particles, again

looking only for expressions which give a contribution
to 4hpp, . The only nontrivial expressions of this kind
are those proportional to 'm 'm.

We denote by & ~'r, the "distance" between the a
and b particlet):

g~( 'fpp 1 (~00 ~) Tpo(~00+ y)+ 'fop

8 'fop+1 'fss) 4 ( 'fop+ 'fop+ 'fas) (8 5)

Because
'm 2m 'm 'm

'm=-' 'mp$s+ om=-' 2m)&s js+-
(8.16)((ab)r)2 (ass bus) (ass b$s)

Finally, therefore, we have

(8 4) skpp~ m y 00+2(2m)2(2y) —2 3 2m)7s)&s(2y)
—1

+2 'm 'm('rr) '. (8.15)

we have for the right-hand side:

—4)r~ 2'm '5+22m 2b j-' 'mg'g"f)+ 8'mjsj'2b

and ask: what contributions to (8.4) come from the
third particle and are proportional to 'm 'm? We now
have

20= 2hpp f+g+——k,

'm 'm 'm 'm
'b+ 2b

( (8.6)
r r )

f= —2 'm('r) ' g= —2 'm('r) '
k = —2 pm(pr)-1.

(8.17)

On both sides we take only expressions ((8) of the
order four, (b) those that give a finite contribution to
4hpp, . Thus this relevant part of 4hpp satisfies the
equation

4kpp, ss 2fg, ss+2gg, ss+g, 00+g, Itg, s

Then the additional expressions for which we look in
(8.3) are:

2 (gk), ss+ 2gk, "+-',kg, -—
2 $00, .s (B.18)

where spo denotes the additional expression in 4hpp. The
additional expressions in (8.5) because of (8.6) are

—4 'm 'm(("&r) '(28+811) (8.19)

Because

'm, 'm
~

+82r
~

—,
' 22m j'j"b+ 2t) ~. (8.7)

r )

g =82r 2m oh f= —2'm(ir) ' (8 8)

Therefore, the additional expression to 4hpp„, is:

spp„, Spy 'm 'm(("&r)—'(28+'8)+ (gk)

+gk, „+kg,„. (8.20)
From this we find

we have for the contribution of 4C to 4h coming from
the first two expressions:

so =22mpmL((28)r) '('r) '+('"'r) '('r) —'
+2('r 'r)—']. (8.21)

4C, „=—4x 9a.

Generally, the solution of

(8.9) Therefore, as we see, spp does not depend explicitly on
'P. Therefore,

is
4C„,= —kr 'Ba and

Soo, ~= Soo, ~ (8.22)

where

2(b (2y) 1

'(8=
~

(8'bd X
J ag(3)

(8.12)

—,
'

spp —88 gk=om 'mL((")r ("&r) '+("'&r ("&r) '

+ ((12)y (18)r)—1] (8 23)

The last very simple question with which we, 'shall

deal here is the change from 3hp to 3hp '.
Thus in our case:

Therefore,

4'm 2m

r2r
(8 13)

pkpsa pkpsa+ 8(bo, sa.

Putting this in (81), we have

4ko0 = 4k op+ 2 4(20, o

'm 'm ) which is identical with (9.4).
2b j. (8.14)

t'f Previously (")r=r.

(8.24)

(8.25)


