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INTRODUCTION

TUDY of the dynamical behavior of quantized
physical systems, since the beginning of the quan-

tum theory, has been almost exclusively restricted to
systems satisfying either the requirements of nonrela-
tivistic mechanics or, in the case of quantized fields, the
requirements of special relativity. This paper is the first
of a projected series, to appear in various journals,
which will be devoted to extending the quantum theory
to the basically broader context of general relativity.

The eventual program envisaged falls naturally into
four parts: (i) Study and development of a number of
usually neglected aspects of standard quantum me-

chanics which must be considered when attention is
focused on the eoetinear features arising from the
metric structure of the configuration space of a certain
general class of systems. (2) Specialization to those
members of this general class in which the specific co-
variant geometry of a four-dimensional continuum
plays the leading role. (3) The carrying out of a re-
formulation of the "traditional" theory, in which spe-
cialized aspects of general relativity become promi-
nently displayed. (4) A study of interacting systems,
including those of the Fermi type which possess no
classical analogs, in the context of general relativity.

In the following sections a start is made on the first
of these four parts. The prototype for the general class
of systems to be considered is the system consisting of a
nonrelativistic particle moving in a curved space of e
dimensions. The extension of standard quantum me-
chanics to this system is quite straightforward and in-
volves nothing new. However, the notational develop-
ments required for the statement of well-known
theorems in the context of curved spaces are generally
unfamiliar. Therefore it was deemed worthwhile to
begin at the beginning, and retrace familiar ground in
considerable detail.

The motivation for the general program outlined is,
of course, a desire ultimately to attack the problem of
the role played by gravitation in the quantum domain.
No apology will be made for this motivation, although
needless to say, recent experiments have nothing to do
with it t' In the author's opinion it is sufIicient that the

* Work supported by the Institute of Field Physics.' The total lack of pertinent experimental information is at once
obvious if one recalls that the characteristic length for quantum-
gravidynamical processes is (AG/c')&=10 " cm (where G is the
universal gravitation constant) corresponding to energies of the
order of 10"Bev.

problem is there, like the alpinist s mountain. Beyond
that, however, the historical development of physics
teaches a suggestive lesson in this connection, namely,
that the existence of any fundamental theoretical struc-
ture which is far from having been pushed to its logical
mathematical conclusions' is a situation which may
have great potentialities.

The present work follows the traditional path in
emphasizing classical-quantum analogies. At the same
time an attempt is made to present the material from
as modern a viewpoint as possible. In recent years a
number of formal mathematical techniques have been
developed which have a capacity for coming to grips
with various physical problems in a more direct fashion
than older methods, and which, owing to the additional
insights which they therefore bestow, may eventually
transform even the pedagogical approach to the quan-
tum theory. Chief among these techniques are the quan-
tization methods of Feynman' and Schwinger4 and
their various extensions, involving functional integra-
tion or differentiation and the analysis of the many
characteristic Green's functions or "propagation func-
tions" to which they give easy access. Since the problem
of the quantum role of gravitation may justly be re-

garded as one of the most formidable in theoretical

physics, it is well to have as many of these new methods
available for use as possible. Accordingly, special atten-
tion is devoted in the following sections to the classical
and quantum action principles, and a study of Feynman
quantization in curved spaces is incorporated. The
development presents no difficulty, but leads to a slight

surprise, a rather curious ambiguity in the definition

of the quantum Hamiltonian, involving the invariant
curvature.

Extension of Schwinger's theory to curved spaces, on

the other hand, is a diBerent matter, and there is some

doubt that it can be done at all, at least without ex-

tensive modification. Several independent serious eGorts
in this direction have thus far produced no success, '

~ E.g. , pre-Lorentzian electrodynamics, or pre-Lambian quan-
tum electrodynamics.

' R. P. Feynman, Revs. Modern Phys. 20, 327 (1948).
4 J. Schwinger, Phys. Rev. 82, 914 (1951).No attempt is made

to compile a bibliography of the Feynman-Schwinger theory.
Among the principal contributors mention may be made of
Peierls, Edwards, Salam, Matthews, Kallen, Lehmann, and
Nambu.' Private communication from P. G. Bergmann, and unpub-
lished work of the author.
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although the problem must presently be regarded as
still an open one.

Subsequent papers will deal with the important prob-
lems posed by the existence of constraints, with systems
obeying Fermi statistics in a nonlinear context, and
finally with the actual quantization procedure for the
gravitational field. An interesting fact will be noted in
the course of this development, namely, that whenever
a system possesses a classical analog, its quantum
theory is in every case essentially completely deter-
mined by the corresponding classical theory. This may
be regarded as the ultimate extension of Bohr's famous
correspondence principle.

1. CLASSICAL TRANSFORMATION THEORY

A classical dynamical system is described by means
of a set of 2rb variables q', p;, i=1 rb, which, if the
system is subject to no constraints, may at a given
initial instant be independently specified. The q' are
commonly known as coordirbates and the p, as momerbta

The fact that e may be nondenumerably infinite for
many systems of primary interest is of no importance
in the present discussion. The simplicity of the formal
mathematics for the finite case will be retained through-
out, it being tacitly assumed (as is in fact the case) that
the limiting procedures implied in the passage to con-
tinuum cases involve no difhculties of principle.

An experimental measurement performed on a phys-
ical system generally gives information about the value
of some function(al) F of the q's and p's. F is known as
a physical obserm, ble. In the classical theory any func-
tion(al) of the g's and p's is, in principle, an observable.

Of fundamental importance in the development of
the dynamical theory is the Poissorl, bracket of two
observables F and G, which is defined by

BF BG BP BG
(F G)=

ling Bp~ l9pj Bg

wave-particle dualism. This symmetry does not, how-
ever, persist in detail in the dynamical theory of actual
physical systems. ' This fact has been anticipated here
by the difference in the position of the index on the

/sand ps.
From (1.1) or (1.3) the well-known corollaries follow

immediately
(Fl F2) (F2 Fl)

(F f(F~ F2 ))
= (F,F,)8f(BF&+(F)Fg)8f/BF2+ . (1.5)

Also the Poisson-Jacobi identity

(F1)(F2+8))+ (F2) (FSP1))+(Fb, (F1+2))=0) (1.6)

may be obtained with the aid of the three-dimensional
permutation symbol e &, in terms of which the left side
of (1.6) may be written

BF 0F p O'Il,
&2aba(Fa~(Fbgc)) &abc&aP&yb

8x, cjoy, & 8x,&Ox,'
The quantity multiplying e, &, in the latter expression is
symmetric in a and b, and hence the whole expression
vanishes.

Consider a transformation in the description of a
dynamical system, from the variables g', P; (or x,") to a
set of variables $„, @=1 2rb. Consider the 2e-dimen-
sional antisymmetric matrix formed by taking the
Poisson brackets of all possible pairs P„, $.. Using the
notation of (1.3) it is not difficult to show that the
determinant of this matrix is given by

Evidently, if the Jacobian B(x)/cl($) of the transforma-
tion x, bt„ is nonvanishing the matrix (g„(„)has an
inverse. This inverse defines the so-called I.agrmge
bracket' P„,$. II, satisfying

Since

x~:g, x~ =Pg. (1.2)

In this paper, a summation is to be understood over
repeated indexes unless the contrary is explicitly stated.
For many purposes it is convenient to introduce a slightly
more compact notation through the replacements

&~v&Pv= ~~P)

the Lagrange bracket is given explicitly by

cIx; Bx&
k. &Il—= & s = —

lIE 4II (1.10)

Equation (1.1) may then be rewritten in the form

BF BG
(I',G)=—b„p-

ox, 8x;&
(1.3)

where ~ b is the two-dimensional antisymmetric permu-
tation symbol, the indexes n and P ranging over the
values 1, 2.

The notation of (1.2) and (1.3) emphasizes the sym-
metry between coordinates and momenta which is char-
acteristic of both classical and quantum transformation
theory and which has its quantum expression in the

Out of the set of all possible transformations q',
p,~t„classical dynamics focuses attention on certain
special ones known as carborbbcaf trarbsforrnatiorbs The.
set of all canonical transformations may be defined as

6 Notwithstanding the fact that the symmetry idea has been
suKciently impressive to have been invoked on at least two
occasions as a rigorous dynamical principle: M. Born, Proc. Roy.
Soc. {London) A165, 291 (1938); H. Yukawa, Phys. Rev, 77,
219 (1950).

7 Whittaker I Aealytica/ Dynamics (Cambridge University
Press, New York, 1937), p. 298j uses the symbols ( ) and L j
for the Poisson and Lagrange brackets, respectively. The symbol
L j is, however, here reserved for the commutator bracket used
in the quantum theory.
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the most general set of transformations q"', p;+q', p,
(or x,~~x,') such that

(i) there exists an essentially unique (up to trivial
modifications) differential form of the type

Ap;dq "+Bq'd p,+Cp;dq'+ Dq'd p;,

which is an exact differential for all members of
the set. '

(ii) The members of the set form a group.

It must be specified that the coefficients A, 8, C, D are
independent of the p's and q's, and trivial cases may
be excluded by imposing the conditions

A /8, CAD.

Furthermore, the trivial exact differential

2(A+&) (7i'dq*+q'de')+k(C+D) (P'dq'+q'dP'),

may be subtracted from the original form, and the result
divided by —', (A 8) to obtai—n a canonical form

17,dq' q'd p;+ 1
—(p,dq' q'd p~), — (1.12)

where t = (C—D)/(A 8) In—ord. er that a second
transformation q', p,~q', p, be canonical the expression

P*dq* q"dP'+t (7—'dq' q'd7 ~),
—(113)

must also be an exact differential. The group property
of canonical transformations may then be applied to
the result of subtracting f' times (1.12) from (1.13),
leading to the condition f2= —g, or

(1 14)

Therefore, the set of all canonical transformations may
be characterized by the statement

pqdq q d7iq Pq dq'+q dPg'
=e e(x; dxe x, dxe)=—dV, (1.15)

for some V.
An explicit form for V may depend on any or all of

the q', p, , q', p, . However, if V is regarded as a function
of the q', p, (or x; ) alone then evidently

Lagrange brackets remain similarly invariant. For many
purposes, therefore, the q', p, may be replaced by the
q', p; as equally valid canoeica/ variables.

The explicit construction of canonical transforma-
tions is conveniently carried out with the aid of gener-
ators. Four standard types of generators are commonly
considered, which may be denoted by S~~, and which
are related to the V of (1.15) by

S++= 2 (V~q'7'~q'P') (1.21)

Computation of dS~~ with the aid of (1.15) shows that
the solution of a set of simultaneous equations of any
one of the following four types,

p, = BS~~/Bq', q'= 8S++/Bp;, (1.22a)

fi'= ~S+ /~q' P-'= ~S+ /~q', (1 2—2b)-
q'= BS ~/—Bp;, q'= BS +/Bp, , (1.22c)

q'= —BS /Bp, , p;= —BS /Bq', (1.22d)

yields a canonical transformation. " Here S++ is an
arbitrary function of the p; and q' alone, S+ of the
q' and q' alone, S + of the p, and p, alone, 'and~S of
the q' and p, alone.

Three elementary but important examples of canoni-
cal transformations may be obtained immediately with
the aid of (1.22a):

Equation (1.18) or (1.19) may be used in place of
(1.15) as an equally valid characterization of a canonical
transformation.

The importance of canonical transformations lies in
the existence of their well-known invariants. ' For ex-
ample, the Poisson bracket of two observables F and G
remains unchanged if in (1.1) the q', p; are replaced by
q', p, . This is readily shown with the aid of (1.19):

BIi BG Bxp 851,~ BF BG
(P,G) =e.e — = e.e

Bx; 8x,& Bx; Bx;t' BxP 8$I,'

BIi BG
= ( x,',x, )t—= (P,G). (1.20)

BSP Bxy

BV BxI,'= E~gxIt, ~ —
6&pX&

8$;& 8$;t'

(i) The identity transformation:

S++=P~q'~ q'= q') 7i' = P*. (1.23)

O'V HxI, '= (x,',x,e)—e eon+ e,)xi,& . (1.17)

and hence
(x,' x e)= e e5"

(x,',x,~) = e.ebg.

(1.18)

(1.19)

Here the dg', dp; are to be expressed in terms of the dg', dp;
or vice versa,

The expression on the right of (1.17) can be symmetric
under interchange of the indexes i, n with the indexes

j, P if and only if

(ii) "Phase" transforrnations:

S =P;q'+C'(q), q'= q', p, =p;+ ~C'/Qq'. (1.24)

(iii) Point transforrnations:

S++=P'q'(q), q'= q'(q), I'=P (~q'/~q') (1 25)
' Using (1.18) it is not hard to show that integrals of the form

fdic'&dpi1 dItt'~dpi, m=1 n, the summation beingcarried out
in such a way that the indexes i1. ~ i are all different, are canon-
ically invariant. The case m=n yields the canonical invariance of
the volume element in phase space, or the alternative fact that
the Jacobian of a canonical transformation is equal to +1.

"The most general canonical transformation can be obtained
through a combination of these four types.
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Of special importance in the development of the
dynamical theory to follow are the inftnitesitnal ca-
nonical transformations:

q'=q'+bq', 77,=p, +bp, , or x,'=x, +bx, . (1.26)

The function V of (1.15) must in this case be an in-
finitesimal v satisfying

dv= ~—p(bx, dxP+x, dbxP) . (1.27)

An inftnitesimaf generator for the transformation is
given by

satisfying

so that

s = ,' (v+—c.px,'bxP),

dS= 6cxPdXz Res~)

(1.28)

(1.29)

Evidently
F(q, ii) =F(q,p).

bF= bF= bF =—(F,s), —

(1.34)

correct to the first infinitesimal order.

This last result may be used to rederive the canonical invariance
of Poisson brackets under infinitesimal transformations. One
writes

(F,G) = (~(V,P), 6'(&,P))

= (F(g,P)+~F (g,P), G(g,P)+~GR,P))
= (F,G)+b(F,G)+ (F,bG)+ (bF,G)
= (F,G)+ (s, (F,G))+ (F,(G,s))+ (G, (s,F)),

which leads to (1.20) in virtue of the Poisson-Jacobi identity (1.6),

Consider now a finite canonical transformation from
a set of variables x; (1) to a second set x, (2). From

Bs/Bx, = c.pbx, P, or bx, = —e.pcs/Bxg, (1.30a)

s being expressed as a function of the x, alone. In
terms of q', p; (1.30a) becomes

bq'= —Bs/ap, , bp = as/aq' (1.30b)

s= 0 gives the identity transformation; an infinitesimal
phase transformation is given by s= cp(q), where rp is
an infinitesimal function of the coordinates; and an
infinitesimal point transformation is given by

s= p;X'(q), q'= q' —X', p, =p;+p, BV/Bq', '(1.31)

where the X' are infinitesimal.
If F is a function(al) of the q', p, with fixed functional

form, then under the transformation (1.30) its value
suffers a change of amount

bF= (BF/Bx, )bx; = —(F,s). (1.32)

If, on the other hand, F is regarded as a fixed physical
magnitude whose functional dependence on the canoni-
cal variables changes under (1.30), the amount of this
change may be defined as

bF(q, p) =F(q,p) F(q p) —(1 33)
wher'e

(1.15) we have

e.p[x, (1)dxP(1)—x, (2)dxg(2)]=dV, (1.36)

where V is some function of the x, (1) and x; (2).
Suppose the variables x, (1) and x, (2) are subjected
to independent infinitesimal canonical transformations;

x; (1)=x,"(1)+bx,'(1),
bx,'(1)= —e.pcs(1)/Bxg(1), (1.37)

x, (2)=x, (2)/bx, (2),

bx, ~(2) = c.—pcs(2)/ctx, P(2) . (1.38)

Then there must exist some new function V which
di6ers infinitesimally from V, such that

dV=e.p[x; (1)dxg(1)—x, (2)dxP(2)]
= d V+ e.p[bx,'(1)dxP (1)+x,'(1)dbxP (1)

—bx,'(2)dxP (2) —x,'(2)dbxP (2)]
= d V+d(2[p(2) —p(1)1

+e p[x, (1)bxg(1)—x, (2)bxP(2)]}. (1.39)

Evidently
V= V+5V+6V, (1.40)

where
bV= e p[x, (1)bxg(1)—x, (2)bxP(2)], (1.41)

bV= 2[s(2)—s(1)]. (1.42)

The infinitesimal 6V represents a change in the func-
tional form of V which is required to characterize t:he
new canonical transformation x; (1)—+x, (2), whereas
bV simply represents the change in the value of the
original function due to the changes bx, (1), bx, (2) in
the values of the variables.

If the canonical transformation x, (1)—+x, (2) is de-
scribed by means of one of the generators S++, then it
follows from (1.21) and (1.42) that

b5„~=s(2)—s(1), (1.43)

in which s(1) and s(2) are to be re-expressed in terms
of the variables suitable to the generator in question.
We therefore have

Theorem:

The variation in the functional forte of the generator of
a ft, nite canonical transformation, due to independent
infinitesimal canonical transfortnations of its argu
meets, is equal to the dhgerence af the independent
inftnitesitnal generators

2. THE CLASSICAL ACTION PRINCIPLE

The "trajectory" of a physical system is described by
a set of functions q'(t), i=1 n, which determine the
configuration of the system at any time t. Classical
dynamical theory may be based on the following

Dynamical postulate:

The class of all trajectories q(t) of a physical system
is determined by the unfoldkng in titne of a canonic-at-
transformation.
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q*= BII/Bp p = BH/B—q' (2.2)

the dot denoting the total time derivative. From (2.2)
it follows that the time rate of change of any physical
observable F is given by

F= (F,H)+ BF/Bt

[see (1.32)], where the partial derivative B/Bt is taken
with respect to any explicit dependence on t which Ii

may have. Since the Poisson bracket is canonically in-
variant it may be taken with respect to the canonical
variables appropriate to the time in question as well as
with respect to any other canonical variables. If Ii and
6 are any two physical observables the time rate of
change of their Poisson bracket is given by

d(F,G)/dt= (F,G)+ (F,G), (2.4)

which follows from (2.3) together with the Poisson-
Jacobi identity (1.6).

The finite canonical transformation which relates the
coordinates and momenta at two diferent times, t' and
t", may generally be described by one or more of the
four types of generators considered in (1.22). In the
present context these equations become

P, (t")= BS++/Bq'(t"), q'(t') = BS++/BP, (t'), (2.5a)

P'(t") = BS+ /Bq'(t") P'(t')-= BS+ /Bq*(t') (2 5b)— —

q'(t") = BS +/Bp, (t")—, q'(t') = BS +/Bp;(t'), (2.5c)

q'(t") = —BS—/BP'(t") P'(t') = BS /Bq'(t'). (2—5d)—
Very often we wish to single out a particular value of

one of the canonical variables. This is done by affixing
one or more primes to the variable in question. The
value thus indicated will be Azdepertdertt of the par-
ticular value of the time involved. Thus,

This implies the existence, in addition to the "coordi-
nates" q'(t), of a set of momenta p;(t) which depend on
the trajectory, or which, alternatively, may help to
specify the trajectory.

The infinitesimal generator of the canonical trans-
formation q'(t), p;(t) +q'(—t+Bt), p, (t+Bt), where bt is an
arbitrary infinitesimal "displacement" in time, will have
the general form"

s= -H(q(t), p(t), t)@, (2.1)

where H is some explicit function of the coordinates and
momenta, and possibly also of the time. II is known as
the Hamiltortiart flrtction(al), or, simply, the Hamil
tommy, and its exact form depends on the system in
question. Equations (1.30b) together with the relations
Bq'=q'Bt, Bp;=j,Bt lead immediately to the familiar
Hamiltonian equations for the trajectory

BS/Bt"+H (q",BS/Bq",t")=0
—BS/Bt'+H(BS/Bp', p', t') =0

BS/Bt"+H (q",BS/Bq",t")=0
BS/Bt'+H(q', —BS—/Bq', t') =0

(2.9a)

(2.9b)

the following modification in notation will be introduced:

S++(q"(t")
I
p'(t')) =S(q",t"

I
p', t'), (2.7a)

S+-(q"(t")
I
q'(t')) =S(q'', t"

I
q', t'), (2 7b)

S (p"(t")
I
p'(t')) =S(p",t"

I
p', t'),

S (p"(t") Iq'(t')) =S(p",t" Iq', t'). (2.7d)

That is, the values of the canonical variables and the
values of the time will be separately specified in the
generating functions. On the other hand, the + and-
signs will be dropped, as indicated, since the arguments
themselves are sufFicient to indicate which generator
is meant.

The finite generators must be related in some way to
the Hamiltonian which generates the infinitesimal dis-
placements in time. This relation is readily determined
with the aid of the theorem of the preceding sec-
tion, (1.43). For definiteness, consider the function
S(q",t"

I
p', t'). Let Bq"', Bt", Bp';, Bt' be a bitrary in-

finitesimal variations in its arguments. The variations
Bt", Bt' will give rise to a change in the form of this
generator, considered as a function of the q"', p';.
From (1.43) and (2.1), the amount of this change is
s"—s'= H"Bt"+H—'Bt' where H' and H" are the values
of the Hamiltonian at the times t' and t", respectively,
for the particular trajectory specified by the arguments
q", t", p', t'. The variations Bq"', Bp', , on the other hand,
give rise to a change in value, which may be computed
with the aid of (2.5a). The total variation in the
generator is

BS(q",t'
I p, t )—p Bq"' H"Bt"+q"bp' —+H'Bt' (2.8a)

where p";=p, (t"), q"= q'(t') for the trajectory in ques-
tion. Similarly,

BS(q",t"
I
q', t') =p",Bq"' H"Bt" p',Bq"+H—'8', (2.8—b)

BS(p/ t
I

I p t )
II pp// HIIBt/I'

+q"i/p' +H'8', (2.8c)

BS(pl/
tll

I
q/ tl) ql//')PI/ HI/Bt/I

p' Bq"+H'Bt'. —(2.8d)

By expressing all the quantities on the right of (2.8) in
terms of the arguments appearing on the left, one is led
to the BamiQoe-Jacobi equations for the various gener-
ators. These are, respectively,

q" (t) =q", p', (t) =p', , independent of t (2.6).
To avoid confusion in application of this convention,

"The minus sign is arbitrary and is chosen to correspond to
convention.

BS/Bt"+H( BS/Bp", p", t")=—0
—BS/Bt'+H (BS/Bp', p', t') =0

BS/Bt"+H( BS/BP", P", t")=—0
BS/Bt'+H(q', —B—S/Bq', t') =0 '

(2.9c)

(2.9d)
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In the integration of the Hamiltonian equations (2.2)
a given trajectory is generally determined by specifying
the q' and p, at a given "initial" time. Use of the
generating functions, on the other hand, implies a
diferent determination of the trajectory, namely, by
specifying either the coordinates or the momenta (not
both) at two different times. Actually, such a specifica-
tion is not always possible. For example, if a representa-
tion is chosen (as is customary) in which the q' are
physical coordinates, the function $(p",/,"Ip', (') may
not exist (e.g. , in the case of the free particle). On the
other hand, the function $(q",t" lq', t') may be muit&-

valued (as in the case of the particle in a box) reflecting
the fact that there may be more than one trajectory
(the reflected trajectories) between the space-time
points q', t' and q", t".

The function $(q",t"
I
q', t') is of special importance in

the developments to follow, and is known as the
classical action. We now study this function in greater
detail, ignoring for the time being the possibility of its
being multivalued. Let us denote by

q*= (q",i"
I
q'(~)

I
q', ~'), (2.10)

the trajectory determined by the points q', t' and q", t".
The explicit form of the right-hand side of (2.10) may
be obtained by breaking into the trajectory at time t

and solving the set of simultaneous equations

(7$(q",t"—
I q, t)/(7q'= p, (t) = (7$(q, &

I
q', &')/Bq'. (2.11)

The action S is so far uniquely determined only up to
an arbitrary constant. In virtue of (2.11) and the
Hamilton-Jacobi equations (2.9b), this constant may
be so adjusted that for all q", q, q', t", t, t',

Equations (2.16) and (2.17) imply that $[q) may be
expressed in the form

L(q, q, t)dt. (2.18)

L is a function(al) of the q' and their time derivatives
(and also possibly of the time), known as the Lagrangian
of the system in question.

When S[qj is expressed in the form (2.18), the varia-
tional equation (2.15) is known as the pri»»cip/e of
stationary action. Performing the indicated variation,
with the restrictions q'(t') =q", q'(t")=q"', i')q'(t') =0,
tq'(t")=0, and making an integration by parts, one
obtains the familiar Lagrangian "equations of motion"
for the trajectory

OJ d OJ
0=

Bq' dt Bq'
(2.19)

()$(q",t"
I
q', t')

Equations (2.19) are of the second order in contrast to
the Hamiltonian equations (2.2) which are of the
first order.

The relation between the Lagrangian and Hamil-
tonian functions may be determined with the aid of
(2.8b), (2.14), and (2.19).Denote by l)q'(t) the variation
in a given trajectory produced by variations 5q", 6t',
bq"', bt" in its end points. Then, with an obvious
notation,

rq'(t, ') =tq" q"f/, ', bq'(—t,")=5q"'( (I"Q", (2—.20)

$(q",t"
I
q', t') = $(q', t'

I
q",t")—, (2.12)

tl /

=(1 t Ldt
-I q=(q", t//I q(t) I q', t')

S(q",&"
I

q')&') =($[qj', ~
""')»=(', ("~»«) t', ~ ), (2 14)

where S[q]» &.
»" "' is a functional of an arbitrary tra-

jectory q between the points q', t' and q", t", satisfying
the variational equation

(&S[q3', ~
""'/~q) »=(', ~-i»(~)i ', ~ ) =o, (2 13)

and the combination laws

srql', (""=$[qh.(~), ~" "+SLqj', (""' (2.16)

$[qj ' ' ' = $[q) " ~"' '. (2.17)

s(q",i" lq', &')=Ls(q" &"
lq ~)+$(q,~lq' &')] ="-, (2 13)

the instruction "q=q,„&" indicating that the quantity
in the brackets is to be made an extremal with respect
to the q'. The extremal values are given precisely
by (2.10).

By breaking the trajectory into infinitely many pieces
we see that the action may be regarded as formed in
the following way:

(" d (BL

dt (Bq ) - »=(»", ~"I»(~) I»', (')

((7L) ((7L )
I

q"'—L" t),
&aq') (.aq*i

(BL) ((7L)
I~q"+

I

E aq') (.aq'1

Comparison of (2.8b) and (2.21) shows that

p = BL/r/q'

H=p q' —L

(2.22)

(2.23)

A few tacit assumptions have been made. Firstly, it
has been assumed that the Hamiltonian function, and
hence the Lagrangian and action functions, are unique
for a given system. Actually, a slight lack of uniqueness
in these functions is allowed. The physics of a given
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system is entirely contained in the Lagrange equations
(2.19), and from their variational manner of derivation
it is evident that they are unchanged if the Lagrangian
is replaced by

L=L+d4/dt, (2.24)

3. CONSERVATION LAWS

Suppose we make a change in the representation of a
physical system at any instant from a set of canonical
variables q*(t), p, (t) to another set q'(/), 7i;(t). Consider

' P. A. M. Dirac, Can. J. Math. 2, 129 (1950).

where 4 is an arbitrary function of the q' and t. This re-
placement produces a change in the momenta, given by

7i; =P;+BC/Bq', (2.25)

which is simply a phase transformation L(1.24)]. The
corresponding transformation of the action is given by

Lq7, , "~"=SLqh. ., .."~"+C (q",e') —C (q,e), (2.26)

8(q",t"
~

q', t') =S(q",t"
~

q', t')+4 (q",t,")—C (q', t'), (2.27)

which leaves the combination laws (2.16, 2.17) invari-
ant. Phase transformations will be employed on several
occasions in the future.

Secondly, the assumption that the generating func-
tion S(q",t"

~

q', t') exists at all (at least in some canoni-
cal representation) is equivalent to insisting that the
first of the Hamiltonian equations (2.2) be solvable for
the p, in terms of the q', q' (and possibly r). The La-
grangian equations (2.19) will then be obtained by
substituting the resulting expressions for the p, into
the second of the Hamiltonian equations. If, however,
the first of the Hamiltonian equations is not thus
solvable the function S(q",t"

~

q', t') will not exist, and
the Lagrangian function and the action principle will
not exist in the usual sense. This case, the occurrence
of which implies that the "velocities" j' are not all
independently specifiable, has been considered by
Dirac" who has shown that a modified Lagrangian
theory may still be constructed for it. It is of little
practical importance, however, and will be ignored in
this series of papers.

Much more important is the opposite case in which
the momenta are not all independent, so that (2.22)
cannot be solved to express the q' in terms of the q', p,
(and t). This case has also been considered by Dirac"
and leads to various possibilities, some of which will be
carefully studied in subsequent papers of this series.
One possible consequence, for example, is that the
generating function S(q",t" ~q', t'), although it exists,
may not define a unique trajectory [implying lack of
unique solubility of (2.11)]. This would mean that
many diferent extremal trajectories could be inserted
into the right-hand side of (2.18), all leading to the
same value of the action. In the present paper, however,
such possibilities will be excluded.

the function U of (1.15) which characterizes this
canonical transformation. If the form of V, considered
as a function of q', p;, q', p, , remains constant in time
then, by (1.42), the generators of infinitesimal displace-
ments in time must be equal in the two representations.
That is, H=II where II and H are the Hamiltonian
functions for the two representations. (H and H may,
of course, have different functional forms. ) This result
also follows from the canonical invariance of Poisson
brackets, equations like (2.3) being independent of the
choice of representation.

If, however, the form of V changes with time, so
that V must be regarded as having an explicit depend-
ence on t, II and H will no longer be equal but will be
related by

2(H —H)st=—bU (3.1)

If the change of representation is described by one of
the generators 5++ this equation may be replaced by

H= H 8S~~/Bt, — (3.2)

which is a special case of the theorem at the end of
Sec. i.

It may happen that the generator is such that H=0.
From the right-hand side of (3.2) we see that this will

be the case if the generator satisfies a Hamilton-Jacobi
equation. The new variables q', p, are then constant in
time and, when expressed as functions of the q', p;,
and t, are known as constants of the motion It is .clear
that the functions S(q",t"

~

p', t'), etc. , considered in the
previous section are special cases of such generators,
which transform the canonical variables at an arbitrary
time t" back to their coestmst values at some fixed
initial time t'.

A solution of the Hamilton-Jacobi equation gives a
complete set of 2e independent constants of the motion.
Except in very special cases, however, the Hamilton-
Jacobi equation cannot be solved by finite methods, and
is therefore unsuitable for the practical determination
of constants of the motion. %e must usually be content
with a knowledge of only some of them, and for this
purpose an investigation of infinitesimal changes of
representation is more useful.

The change in the Harniltonian under a canonical
transformation generated by an infinitesimal s is
given by

H= H Bs/Bt, —(3.3)

which follows from (1.28) and (3.1). Now suppose that
H, when expressed in terms of the q', p;, has the same
functional form as does H when expressed in terms of
the q', p, . Then, from (1.32),

H (H, s) =H(q, P,t) = H (q,p, t) =—H Bs/Bt, —
or

s= (s,H)+Os/Bt=0. (3.4)

Therefore, constants of the motion may be determined
by discovering those infinitesimal canonical transforma-
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q'= q' —8q', (3.5)

where the bq' are certain infinitesimal functions of the
q' and t alone. Invariance of the Lagrangian function
implies invariance of the Lagrangian equations and
hence also of the Hamiltonian equations, so that q' is a
trajectory if q' is. Moreover, invariances of this type are
generally very easy to spot. Using the Lagrangian
equations, we have

BL
0= 8q'+ 5q'= —(p;5q'),

Bq' Bg'
(3.6)

so that the constant of the motion in this case is p,5q'.

Evidently p,bq' generates the transformation from the
trajectory q' to the trajectory q' —bq'.

If the Lagrangian function has no explicit dependence
on the time then the classical action must remain in-
variant if the whole trajectory (together with its end
points) is displaced in time by a constant fit as well as
in coordinate space by the amounts 6q' above. Using
previous results, we may express this by writing

tions which leave the form of the Hamiltonian function
invariant. A special case is provided by the Hamiltonian
itself when it has no explicit dependence on the time.
It then leaves itself invariant under its own infinitesimal
transformations and is a constant of the motion.

Since the form of the Hamiltonian function remains
invariant under an infinitesimal canonical transforma-
tion generated by a constant of the motion, the g', p,
satisfy the same equations of motion as the q', p, , and
it is evident that a constant of the motion may also be
regarded as the generator of an infinitesimal canonical
transformation which transforms trajectories into tra-
jectories. "From this point of view it is often easier to
work directly from the Lagrangian than from the
Hamiltonian. For example, suppose the Lagrangian
function remains invariant under the transformation

p p~p2 ~ ~ ~ (4.1)

The differential law for this operator has the simple form

8F= [(bF )F 1]3+[Fz(SF3) ]+ . (4.2)

4. QUANTUM TRANSFORMATION THEORY

Historically the quantum theory has been built up
by analogy from classical dynamics. Many routes may
be followed in this development, and it is somewhat a
matter of taste which is chosen. In order to parallel
the development of Sec. I as closely as possible we begin
with the construction of the quantum analog of the
classical Poisson bracket.

Perhaps the most elegant forrnal argument leading
to the quantum analog is that due to Dirac": Let us
assume, as given, the general mathematical framework
of quantum mechanics, involving linear operators, state
vectors, and their adjoints, and the probability inter-
pretation of these quantities. Real physical observables
are represented in the quantum theory by Hermitian
operators Il, 6, etc. A quantum analog for the classical
Poisson bracket is expected to satisfy identities parallel-
ing as closely as possible (1.4, 1.5, 1.6). Equation (1.4)
offers no particular difficulty. However, in generalizing
(1.5) we must discover a rule for defining functions of
several operators, and the derivatives of such functions.
Formally we may expand the classical forms of these
functions in series of products of their arguments. The
classical arguments can then be replaced by the corre-
sponding quantum operators, provided we can resolve
the ambiguity which arises in the ordering of these
operators due to the fact that they, unlike their classical
counterparts, do not necessarily commute with one
another.

In this series of papers we shall have to devote con-
siderable attention to this orderizzg problem. However,
let us set it aside for the present and suppose we have
the quantum analog of some simple classical observable
I' expressed as a product of operators P~, Ii2,

0=bs =P",t'iq"' P', l'zq" (—H" H'—)t'zt. —

Since St is arbitrary we have

and
p",5q" '= p';8q".

(3.7)

(3.8)

(3 9)

Suppose now that the variation indicated is due to an
inhnitesimal canonical transformation, whatever that
may mean in the present context. In the quantum
theory as in the classical theory we try to express this
variation in the form (1.32), the only difference being
that s is now an infinitesimal operator. Thus

Equations like (3.8) or (3.9) are known as cozzserwa;

tioe 4ms.
oF=—(F,s),

tzF, = —(F;,s), i = 1, 2.

(4 3)

(4 4)
~'This way of looking at things enables one to use a simple

argument to prove that the Poisson bracket of two constants
of the motion, F and G, is also a constant of the motion: If F
and G are finite, render them infinitesimal through multiplication
by a constant infinitesimal. Let the function G generate an in-
finitesimal canonical transformation which transforms trajec-
tories into trajectories. The change in P under such a transforma-
tion from one trajectory to another is BI&'= —(Ii,G). But since Ii,
being a constant of the motion, is constant along both trajectories,
its change bF is also a constant; q, e.d. This result can also be
obtained formally from (2.4).

(F1F2 F3) (Fi F3)F3+F1(F3F3) (4 5)

where F~, P2, F3 are arbitrary operators, the order of

"P. A. M. Dirac, The Principles of QNantum &Vechanics
(Oxford University Press, New York, 1947), third edition, $21.

Equations (4.2, 4.3, 4.4) will be simultaneously satisfied
for arbitrary s if and only if the following law is satisfied:



DYNAM' CAL THEORY IN CURVED SPACES 385

the factors being now important. Equation (4.5), com-
bined with the identity

implies also
(Fl F2) (F2 Fi) (4.6)

0= (A,C) [B,D] [A,C](B,D—), (4 9)

where [ ]denotes the commutator. Equation (4.9) can
hold for arbitrary operators if and only if, for any pair
A, B, (A,B) always stands in a constant numerical
ratio to [A,B].Since [A, B]is anti-Hermitian if A and
B are Hermitian, whereas (A,B) must be Hermitian, the
numerical constant must be imaginary. Experimental
physics tells us we must set

(A,B)= (iA)
—'[A,B], (4.10)

where A=1.054X10 "erg sec. From (4.10) it is but a
step to show that quantum Poisson brackets also satisfy
the Poisson-Jacobi identity:

(F1+2F3) = (Fig'2)F3+F2 (F1@3) . (4.7)

If one now considers a quantum Poisson bracket of the
form (AB,CD) one finds that it may be re-expressed in
two different ways with the aid of (4.5) and (4.7),
depending on which is used first:

(A B,CD) = [(A,C)D+C(A,D)]B
+A [(B,C)D+ C (B,D)] (4.8a)

= [(A,C)B+A (B,C)]D
+C[(A,D)B+A (B,D)]. (4.8b)

Subtracting one form from the other, one gets

n, =Un;U ', (4.15)

the new operators o.; will define an eigenbasis

resulting from the noncommutativity of basic operators
such as q', p, . In general the most that can be established
is a mapping from one group into the other, which

becomes one-to-one only in the classical limit h—+0.

However, in the special cases to be considered in this
series of papers, the ambiguity can be essentially re-
moved from all physically significant quantum analogs,
and a considerably stronger result can be established,
namely, that there exists a subgrolp of the full unitary
group which is isomorphic to the group of all those
canonical transformations which have any physical
significance in the classical theory. This is an alternative
statement of the fact that the classical theory in every
case completely determines the corresponding quantum
theory.

In the classical theory a canonical transformation can
be regarded from two points of view, either as producing
a change in the value of a physical observable F, as in

(1.32), or as producing a change in the functional form
of the observable, its value remaining fixed, as in (1.35).
These alternatives have their analogs in the quantum
theory. In the classical theory a change in the functional
form is caused by a change of representation from one
set of canonical variables to another. In the quantum
theory the analogous change is in the representative
(u" IF In') of F as the representation in terms of basic
vectors ln') is changed. The In') are orthogonal eigen-
vectors of a complete set of commuting Hermitian
operators n, . If the n; are subjected to a unitary trans-
formation

(F1 (F2 F3))+ (F2 (F3 Fi))+ (F3 (Fl F2))

2A 23 3.(F F3F—,+F,FbF,

F+.F3 F3F,F,) =—0. —(4.11)

(4.16)

If U is given by (4.13) then the resulting change in the
representative of F' is

F=F+»=F+ih '[F,s]= UF U ', (4.12)

Combining (4.3) and (4.10) we have the familiar
result that an in6nitesimal canonical transformation is,
in the quantum theory, simply an infinitesimal unitary
transformation:

=( "l(U 'FU —F)l ')
= —272-'(n"

I
[F,s] I

n')
= —(~"I» I

~'). (4.17)

where

U=1—ik 's,

U—i= y+zk —is.

(4.13)

More generally, a finite unitary transformation in the
quantum theory will be expected to correspond in the
classical theory to a finite canonical transformation. It
should not be supposed, however, that the group of all
unitary transformations in the quantum theory is iso-
morphic with the group of all canonical transformations
in the classical theory. Such an isomorphism is pre-
vented from existing by the ambiguity in the definition
of the quantum @nalo0;s of general classical quantities,

It is to be noted that the eigenvalues n' and n' are
identical. Therefore here, just as in our development
of the classical theory, the use of primes will have the
effect of singling out particular values of the variables,
independently of the representation.

The generators of finite canonical transformations in
the classical theory have also their quantum analogs,
vis. , in the "transformation functions"

(~"(2) I
~'(1))= (~"(1) I

U 'l~'(1)) (418a)

=(~"(2) I
U 'l~'(2)) (4.18b)

between two sets of commuting Hermitian operators,
a, (1) and n;(2), which are related by a finite unitary
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transformation

a, (2)= Un, (1)U '. (4.19)

Suppose the operators n, (1) and n, (2) are subjected to
independent infinitesimal canonical transformations:

~'(1)=~'(1)+ih 'I ~'(1)»(1)]

u, (2)=n, (2)+ih '[a, (2),s(2)].

(4.20)

The corresponding changes in the eigenvectors
I
n'(1)),

In'(2)) will be

bla'(1))= —@ 's(1) Ia'(1)) (4.22)

&
I
a'(2)) = —i& 's(2)

I
a'(2)) (4 23)

producing a change in the transformation function of
amount

b&~"(2) I~'(1))=ih '&a" (2)
I
[s(2)—s(1)]I~'(1)) (4 24)

Equation (4.24) is the quantum analog of the theorem
at the end of Sec. 1.

In the problems usually considered (4.24) has an
immediate application in the dynamical theory, just as
(1.43) is applied in the classical theory to obtain the
Hamilton-Jacobi equations. For the more general sys-
tems at which the present work is aimed, however, a
slight modi6cation of (4.24) will be necessary in order
that the normalization of the vectors

I
o.'(1)) and In'(2))

be permitted to undergo desirable variations. We simply
call attention to this fact here, postponing fuller discus-
sion to the next section.

The question of normalization arises in the represen-
tation of an arbitrary state vector

I lb) as a superposition
of eigenvectors

I
n ), which is possible owing to the

completeness condition on the operators n;.

[q',q&]=0,

[q',p,]= i7ib,

[p',p]=0,

(5.2)

(5.3)

(5 4)

corresponding to the analogous classical Poisson bracket
relations. Equations (5.2) permit us to choose the q'
as a set of Hermitian operators defining a complete
eigenbasis. A normal notation for expressing this
would be

q'(t)
I
q'(t)) =q"(t)

I q'(t)), (5.5)

where the dependence of the q' on the time is explicitly
indicated. However, since the prime singles out a par-
ticular eigenvalue of q', independently of the time, it is
more convenient to make the replacement

Dyrtami cat postulate:

The temporal behavior of the operators represerttirtg the

observabtes of a physical system is determirted by the

umfotdirtg irt-tim-e of a unitary trartsformatiou

The infinitesimal generator of the unitary transforma-
tion t—&t+bt will have the form s= —IIbt where II is
the quantum analog of the classical Hamiltonian, as-
suming it can be unambiguously defined. The time rate
of change of any physical observable will then be given
by the quantum form of (2.3).

F= (ih) '[F,H]+OF/Bt

In order to discover the appropriate quantum form
for a given Hamiltonian it will be necessary to study
the basic operators out of which it is constructed, in
particular the operators q', p; corresponding to the
classical coordinates and momenta. These operators
must satisfy the commutation relations

lq'(t))= lq', t), (5.6)

llt')= "l~')d '(~'l0» and write
q"

I
q', t) =q"

I
q', t), (5.7)

where j'dn indicates an integration and/or summation
over all eigenvalues n'. The "volume element" do,

' will

generally contain a density function which serves to
adjust the normalization. An explicit expression of the
normalization is obtained by multiplying (4.25) on the
left by (a" I, which leads to (q",t

I q t)= b (q
' q' t) (5 g)

making the dependence of q' on t explicit only when it
is necessary to avoid confusion.

Ke now assume that a rlatural metric is defined in the
space of the q', and choose the normalization of the

I
q', t)

according to

where

(n" ln') =b(u",u'), (4 26)
where

)~b(q" q' t)f(q')d q'=f(q"), (5.9)

) 8(n",n') f(n')dn'= f(n"),

for arbitrary f(a')

5. QUANTUM DYNAMICS AND THE COORDINATE
REPRESENTATION d(q'=g*(q', t)dq" dq'", (5.10)

(4.27)
for arbitrary f(q'), d&q' being the invariant volume ele-
ment. The notation reflects the fact that the metric,
and hence the normalization, may change with time.
The explicit form for dgq' is

Continuing the sequence of analogies to classical
theory, one may base quantum dynamical theory on the

"The development here follows a previous paper: B.S. DeWitt,
Phys. Rev. SS, 653 (19S2).



D YNAM I CAL THEORY I N CURVED SPACES 387

0= "((q",tip;Iq"', t)(q"', tip;Iq', t)

(5.11b)

~(q q t)=a '(q t)~(q —q)
=g '(q—', t) 5 (q" q'—), —&q",tl p lq"', t)(q'", tip'Iq'»)d q"'

8
i—ItG, (q', t) +iitG, (q",t)

gq ' Bq 2

6(q"—q') being the ordinary m-dimensional delta
function.

From (5.11) one may obtain the formal identities =g *'(q",t) It'
8q 'Bq '

where g(g, t) is the determinant of the metric tensor. of (5.4) and using (5.18), one gets
This implies

(q"'—q")5(q",q', t) =0, (5.12)
+G;(q",t)G, (q', t) —It' +iM;(q', t)

Bq 'Bq '

1 8
b(q",q', t) —— Ling(q', t) jb(q",q', t), (5.13)

8q' 28q' = —it't G, (q",t)—
I9

G'(q", t) l(q",q', t)
Bq '

iItG—,(q",t) —G (q" t)G'(q' t) &(q"—q')
Bq'

(q.
'—q') „.~(q q t)= —(q

*—q"), .~(q q, t)
Bq

8,'8 (q",q—',t). (5.14)

iIt — F,(q",t)—
gq~l i

8
F;(q",t) 8(q",q', t)

Bq '
(5.20)

From these identities it is easy to obtain the representa-
tive of the operator p; in the coordinate representation,
the representative, or matrix element, "of q' being

(q",tl q'I q' t&=q'"s(q" q' t) =q"'s(q",q', t) (515)

Taking the matrix element of (5.3), we get

ikb, 'b(q", q', t) = )f ((q",t I
q'I q"',t)(q"', t

I p, I
q', t)

—(q" tip lq"', t)(q"', tlq'lq't&)«q"'

= (q"*—q") &q",t
I p I

q', t),

which, in view of (5.12) and (5.14), implies

&q",tl p lq', t&

8
i A b(q",q', t)+F, (—q",t)8(q",q', t), (5.17)

where the F, (q, t) are certain functions of the q' and t.
Alternative forms of (5.17) are

which implies'

F;= BF/Bq' (5.21)

Ft=F+ ,'i7i ing, -

which implies that F has the form

F= —C —-'~A lng,

(5.23)

(5.24)

where C is some real function of the qi and t. The de-
pendence of the representative of p; on C may be re-
moved by performing the unitary phase transformation

77;=e "'@~P,e&'~@~=P+BC/Bq' (5.25)

or alternatively by redefining the basis vectors accord-
ing to

for some function F of the qi and t.
A final restriction on Ii is imposed by the Hermitian

condition on the p, . We must have

&q",t
I p'I q', t&*= (q' tl p'I q" t) (5 22)

Insertion of (5.17) into (5.22) and use of the identity
(5.13) yields the condition

(q",tl p lq', t)
I
q', t) = e&""&

I
q', t) (5.26)

The transformation (5.26) simply changes the phase of
the eigenvector lq', t) by the amount ft 'C (q', t). Since
this phase was arbitrary to begin with, we may assume
that the adjustment (5.26) has already been made and
write the representative of p, in the standard form

&q",t
I p'I q', t&

8
=g l(q",t) ih, +G, (q",t) —8(q"—q') (5.18a)

tlj

=g '(q",t) i~, .+G (q', t) ~(q"-q'),

where
G, =F,+2i7iB (1ng)/Bq'

(5.18b)

(5 19)

The commutation relations (5.4) will impose restric-
tions on the functions F,. Taking the matrix element

8 1$ 8N+——— — —lng(q", t) 8(q",q', t). (5.27)
4 gqiii

"There is no difficulty in defining the derivative of an operator
function of commuting variables.
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A more conventional representation of the q', p; is
in terms of differential operators acting on the repre-
sentative, or "wave function"

g (q', t) = (q', t
~ P) (5.28)

of an arbitrary state ~f). The differential form F, (t') of
an operator Ii is de6ned by

Under a point transformation the determinant of the
metric tensor transforms according to

I7=
I &q/&ql'g, (5.39)

Ing=lng+2 In~ Bq/Bq~, (5.40)

where
~ Bq/Bq~ denotes the coordinate Jacobian. There-

fore

F'(~')~t (q', ~') = (q', &'lF (I') l0),

and in particular,

P;, = iA—[8/Bq"+ ,'(Ing-') ~]

Here we use the abbreviations

f =f(q ~)

f, ;=8f/Bq', —

(5.29)

(5.33)
p, , = —if&[a /aq"+ ', (lng') -~]

(»g), '= ~(lng)/~q'+2
I ~q/~q I

~
I ~q/~q I

/~q'

= (~q'/~q*) (Ing) +2. (~q'/~q') (5 41)
(5.31)

Equation (5.41) may be used with (5.31) to obtain the
point transformation law for the momenta:

(5.32)

q'= q'(q t) = Uq'U ' (5.35)

If we now follow our usual convention, according to
which a prime singles out a particular eigenvalue inde-
pendently of the representation, we shall have q"=q"
and

~
q', I') = U I q', t'). But if we do this, a given eigen-

value will refer to diferent points of coordinate space,
depending on the representation; q' will refer to that
point whose coordinate values in the new representation
are identical with the coordinate values of the original
point in the original coordinate system. This raises
difhculties in eigenvector normalization, since the nor-
malization condition (5.8) and (5.9), depending on the
invariant volume element, is designed to be independent
of the coordinate system chosen. Therefore, it is more
convenient to regard the prime as singling out a par-
ticular point of coordinate space'r and write

q"= q'(q', t'),

Iq'~')= Iq', ~'),

(5.36)

(5.37)

q'~Iq'f)= q" ~Iq', ~') (5.38)

'7This also avoids difhculties arising from coordinate trans-
formations for which the spectra of q' and q' are not identical,

f'„=8f(q', t')/—Bq" (5.34)

where f is an arbitrary function of the q' and t. The
prime is henceforth understood as occurring on the q'
and t together unless otherwise indicated. Repeated
differentiation is denoted by additional indexes after
the comma.

The assumption that coordinate space possesses a
natural metric means that special importance is at-
tached to point transformations in this space. We pro-
ceed to examine these transformations. Here we run
into a slight notational problem. In the classical theory
a point transformation is a canonical transformation,
(1.25). In the quantum theory we may expect it to be
describable as a unitary transformation:

N(aq"—/aq") [8/8q"+ ', (lng'), ,j-
—-', zfi (Bq'&/Bq")

= 2(P ', ~q"/~q'"),

7'=k(P, ~q'/~q'),

(5.42)

(5.43)

where ( ) denotes the anticommutator. Equation (5.43)
is the quantum generalization of the last of (1.25). The
symmetrization effected by the anticommutator insures
that the transformation leaves the Hermitian character
of the p, unchanged. "

An infinitesimal point transformation is given by

U=1 ——',ik '{p. 5q')

q'= Uq'U '=q' —gq'

77'= UP'U '=P*+kfP ~q', ')

(5.44)

(5.45)

(5.46)

where the 6q' are arbitrary infinitesimal functions of the
q's and t [see (1.31), (4.13)]."The vector U(t') Iq', t,')
is an eigenvector of q'(t, ,') corresponding to the eigen-
value q". This eigenvalue refers, in the coordinate sys-
tem q, to a point which in the coordinate system q has
the coordinate values q"+5q". Therefore U(I') Iq', &')

must be proportional to the eigenvector
~

+q6 qt'):

U(t')
i
q', I') = 2'*'

i
q'+5q', t') (5.47).

The proportionality constant 3" is not necessarily
equal to unity since the operator U refers the normaliza-
tion back to that obtaining at the point q', whereas the
normalization required at the point q'+8q' will generally
be different. A' is readily evaluated by considering the

"Any other method of symmetrization would lead to the same
result. For example, one might expand Bq&/Bq' in a power series
in the q's. The operator p; could then be inserted between the q's
in any symmetrical fashion in each term of the series. The result
of commuting p; symmetrically to the left and to the right through
the q's would be to produce two terms proportional to k which
cancel each other, leaving (5.43).

"The unitary operator describing a finite point transformation
has the general form V=expL ——,'iA '{p;,h.')1 where the A' are
finite functions of the q's and t.
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representative of an arbitrary state vector
I g). We may where o& is some real function of the q's and t Se. condly,

write

2"*((q',t'
l 0 )+aq" a(q', t'

I 0 )/aq")
=~"*&q'+aq', ~'I&&= (q', &'I ~ '0'& I&&

= &q' &'I&&+l@ '&q' &'1(P',aq') I&&

= &q', ~'I 0 &+aq"a&q'f IW&laq"

+l9q"'+l (lng'), 'aq'*]&q', &'l0
& (5 48)

Comparison of the first and last lines shows that

&q",& IP'(&) I
q', t&

i AB—&*(q",t)B1(q',t)

1
+— lng(q", t+at) b(q", q', I+at)

Bg ' 4 Bg

8 1 8
+— Ing(q", t)

aq"' 4 aq"'
A =1+aq' . (5.49) x I

B(q', t) I
a(q" q' &+@)

where the dot followed by an index denotes the covari-
ant derivative. The physical meaning of (5.49) is quite
clear. If the points of any small region of coordinate
space are subjected to displacements bq', the volume of
the shifted region is increased by the factor A. Volume
is conserved only if the displacements are divergence-
less. This applies specifically to the displacement of the
invariant volume element, which is effected by the
operator U.

A similar situation exists in regard to displacements
in time. The appropriate unitary operator in this case is

V=1+ik 'H8$ (5.50)

where 8t is an arbitrary infinitesimal function of the
time. The vector U(t') Iq', t'& is an eigenvector of the
operators V(t')q'(t') V '(t') = q'(t'+St') corresponding to
the eigenvalues q"."Therefore

V(d) I
q', ~'&= B'-:

I
q', ~'+@'). (5.51)

The normalization constant is determined in this case
by the representatives (5.15) and (5.27) of the q' and
p, , respectively, and by the relation

s(q",q', t+m) =a(q",q', &)+@as(q",q', t)/at
= L1——',Ba lng(q", t)/at]a(q", q', t) (5.52)

which follows from (5.11).We have first of all

a a' lng(q", t)
B'*(q",&) la&

—
. a(q",q', &)

8$8q '

= &q" &IP'(1) I
q' 1&

+hat/Bco(q", t)/aq"']h(q", q', t), (5.55)

which implies
co, ;=0. (5.56)

lq'&'&=expl ~ ' ~« llq', &'&
f t".

(5.57)

Since co is simply a numerical function of the time, this
transformation leaves the representatives of the q', p,
unchanged, and we assume it already to have been
carried out.

The change in the representative of an arbitrary state
vector 1$) under a displacement in time may then be
expressed in the form

&q', &'+a&'l 0&=B' '(q', &'I v '(&') 14&

= [1 ', (a in—g'-/at, ')8t'](q', t'
I P&

+ (iA)-'&q', &'I H(t')
I
p)m', (5.58)

We may set ~=0 by introducing a new representation

&q" &
I
q'(&)

I
q', &&

= (q",t I
V-'(t) V(t) q'(t) V—'(t) V(t) I

q', t)
=B-*'*(q",t)B'(q', t) (q",t+ul q'(t+at)

I
q', &+8)

=B''~(q",t)B*'(q', t) q"'a(q",q', t+Q)
=

I
B(q",t) I L1—-,'ata ing(q", t)/at]

x &q",&
I
q'(&)

I
q', &&,

which implies

B= 1+I
-', a (lng)/at+ 2ico]B,

(5.53)

(5.54)

which leads to the Schrodinger equation for the wave
function,

'@4.~ (q', &') =&"(~')0 (q', ~'), (5 59)

the dot followed by a t denoting conservative differentia-
tion with respect to the time:

ah//at+ ', (a 1ng/—at)p — (5.60).

When the metric is allowed to vary with time such a
modified derivative is required in order to insure con-
servation of probability, as expressed by the time in-
variance of the integral

'0 These eigenvalues are the coordinate values of a point at the
time t'+St'. A point at the original time t' having the same coordi-
nate values ought not, strictly speaking, to be called the same
point, because (a) we have permitted the use of "moving" coordi-
nate systems by allowing our point transformations to be time
dependent, and (b) we have admitted the possibility that the
metric structure of the coordinate space may vary with time.
Under such circumstances it becomes somewhat meaningless to
compare two points at diferent times.

g )t dflg (5.61)

We may finally write down the appropriate general-
ization of (4.24) for the case of the dynamical trans-
formation function &q",t"

I
q', t') Using the sy. mbol 5 now
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to denote the operation

„bq*+.2lt 'bq* ,+p .gt, .
we have

(5.62)

~(q t Iq t)=@ '(q, t IL-(p'(t ) ~q'(t ))
—H(t")st"——,

' jp;(t'), bq*(t') j+H(t') 8']
I
q', t'), (5.63)

which has an obvious analogy with (2.8b).
It is possible to push the analogy even further by

introducing a quantum analog for the classicalaction
function. This is done with the aid of the concept of
well ordered -operator functions. "Let f(q",t" lq', t') be
an arbitrary function of the q", t", q', t'. The operator

f(q(t") t"
I
q(t') t')

equations. The derivatives on the right-hand sides must,
be taken with S in its well-ordered form.

The operator S is generally non-Hermitian, in spite
of the fact that its variation bS is Hermitian when the
displacements bq' are chosen independent of the q's so
as to commute with everything. In his development of
the theory of quantized fields from a single dynamical
principle Schwinger' assumes the existence of an Her-
mitian operator S which, when its components are
ordered in some prescribed manner, possesses the same
variation as S with q-independent 8q'. From the compo-
sition law

))dt,"q—")(d( q'
I
q",t")f(q",t" I

q', t') (q', t' I, (5.64)

is said to be the well-ordered operator form of
f(q",t"

I
q', t') . lf j(q",t" I

q', t') can be expanded as a
power series in the q"', q", its well-ordered operator
form is obtained simply by replacing the q"', q", re-
spectively, by q'(t"), q'(t') in a time ordered f-ashion.

Any operator Il may be expressed as a well-ordered
operator F(q(t"),t"

I q (t'), t'), the associated function
being simply its matrix element:

F(q",t"
I
q', t') = (q",t" IF

I
q', t') (.5.65)

In practice a given operator is generally expressed in a
form which is not time ordered to begin with. To obtain
it in its well-ordered form it is necessary to take into
account the commutation effects of permuting its vari-
ous components.

The quantum analog of the classical action is the
well-ordered operator form of a function S(q",t"

I
q', t')

defined by

(q",t"
I
q', t') = (g"g') i expl ik 'S(q",t"

I
q', t')] (5.66).

Using (5.62) one has

~(q",t"
I
q', t')

= ~7i 'L (BS/Bq" ')8q" '——',iVi5q" ', ,+ (BS/W")N"

+ (aS/aq") 8q"——,'ihbq" + (as/at') St'j(q", t"
I
q', t')

= i~ '(q t IL»(q(t ),t
I q(t ),t )

—-', ihsq'„(t") ——,'ii'tsq' (t')]
I
q', t'). (5.67)

+(q",t"
I
q"',t"')~(q"',t'"

I
q', t'))

=i& '(q",t" IL»(q(t") t"Iq(t'") t'")

+bs(q(t"'), t'"
I
q(t'), t') $ I

q', t'). (5.70)

Schwinger infers that 5 may be chosen so as to satisfy"

s(t"
I

t') =s(t"
I
t"')+5(t'"

I
t'), (5.71)

and hence may be expressed in the form

(5.72)

where I.is a quantum analog of the classical Lagrangian
function. YVhile such an operator certainly exists in the
cases Schwinger considers, namely, interacting fields
possessing a Lagrangian which never involves any one
field more than quadratically, it is questionable, because
of operator ordering complications, whether the same
is true for the nonlinear systems of primary interest in
the present investigation. The difficulties will be ap-
parent after we have constructed the explicit Hamil-
tonian operator for a special case.

6. SPECIAL SYSTEM

As stated in the introduction, the prototype for the
systems to be covered by the present analysis is the
system consisting of a nonrelativistic particle moving
in a curved space of rs dimensions. The Lagrangian for
this system has the general form

Comparison with (5.63) yields 1.—=—,'g;, j'j'+a;q' —~, (6.1)

p, (t")= Bs (q(t"),t' I
q(t'), t')/Bq'(t"),

p'(t') = —»(q(t") t"
I
q(t'), t')/~q*(t'),

H (t")= —aS (q(t"),t"
I
q(t'), t')/at",

H(t') = as(q(t"), t"
I
q(t'), t')/W',

which are the analogs of the classical Hamilton-Jacobi

"P. A. M. Dirac, reference 14, f32. This famous section of
Dirac's book has been phenomenally fruitful in its stimulation of
the modern developments of the action principle.

where the g,, (=g,~), a, , v are functions of the q's and
possibly also of the time t. In the case of an actual
particle moving in three dimensions a; and v may be the
vector and scalar potentials, respectively, describing the
eGect of an impressed electromagnetic field. In general,
however, a; and e will not have such a specialized
significance.

'2 The operator S does not satisfy a relation of this type, although
its variation does.
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The form (6.1) embraces (at least approximately) all
known physical systems which satisfy Bose statistics
and possess a classical analog. It may be regarded as an
invariant under point transformations, " p;= 81/8q*= g;,q&'+ a;. (6.13)

The momenta of the canonical formalism are given in
the present case by

q*'= q'{q,t),

provided one imposes the transformation laws

Bq' 8q'
gj= gJ r,

Bg' Bgj

(6 2)

(6.3)

q'= g" (p a—) (6.14)

The Hamiltonian then becomes

II=p'q' L= k—g"(p' a') (p— a)+—' (615)

Since (g,,) is nonsingular these equations may be solved
to express the "velocities" in terms of the momenta:

Bq' ( Bq')
( ai+gi&

Bg'0 8I ~
(6.4)

9g' Bg' Bgj
~=~—~i —ggij

BI 8$
(6.5)

The form is also invariant under phase transformations

The action function 5(q",t" ~q', t') may be obtained
either by solving the equations of motion (6.9) and
sllbstltutlllg lllto 'tllc llltcglal J Idt, ol' by solving tile
Hamilton-Jacobi equations

85 ( 85 ) ( BS
+-',g""i —a", ii

—a"; i+I"=0, (6.16)at" &aq"' ) &aq"I )

I =I.+dC/dt, (6 6)

provided a; and v are made to transform according to

85 ( ItS ) ( 85—,+lg"'i-
at' I aq" ) ( gq'1

—a', i+a'=0. (6.17)

(6.7)

(6.8)

[ik,i]=——,
'

(g;,, I,+g,l, ;—gal, '),

z,
=—~j, s

—~s, j~

(6.10)

(6.11)

These equations are evidently invariant in form under
point and phase transformations. In the cases of greatest
interest, which will eventually be studied in this series,
there exist also other groups of transformations under
which these equations remain invariant. When such
other transformation groups exist the matrix (g,;) is
generally singular. We do not consider these cases in
the present paper, but assume that (g,,) is nonsingular
and possesses an inverse (g") satisfying

g' gl j=~j' (6.12)

For a particle moving in a curved space, g;; is the
metric of the space (up to an arbitrary constant factor).
We extend this interpretation and assume quite gener-
ally that g;j is the natural metric for the space of the q',
even when the q' are field amplitudes, nondenumerably
infinite in number. Thus we may therefore eventually
be dealing with the Riemannian geometry of a space
having a nondenumerable infinity of dimensions.

2' If the point transformation is expressed in the form q'=q'I'g, t)
then the derivatives 0g'//N may be replaced by —I'Bg'jgg&) gg/gg.

The equations of motion which follow from the
Lagrangian function {6.1) are

q;,qI+[j k,i]q'q'+ (&g,;/&t f',)q'—
+tia;/N+n, ,=0, (6.9)

= (t"—t') '(kg'a(q"' —q") (q"'—q")

+1'2 (g';;, ~+g',7, ;+g'I, ;, I) (q"'—q'*') (q"& q'~)'— '

X (q"'—q'")+ (1/72) [g';,, ~I+g', ~, I,+g', I, ,I,

+g 11,II+g II, e+g Ia, a—g™([ij,m] [kt,e]
+[ik,m]'[tj,e]'+ [it,m]'[jk,e]')]
X(q ' q')(q"' —q')(q'" —q'")(q '—q")
+0 (q"—q') ')+a', (q"'—q'*')

+ l (a', ,+a' „+~q'',/~t') (q"' q'*) (q"'—q")—
—(a"a',+")(t"—t')+o(q" —q')'

+ L(t"-t') (q"—q')]+ (t"-t')', (6.18)

where a'= g'jg;.
As a preliminary to the quantum-mechanical de-

velopments of the next section it is useful to examine
thc present system frolTl a statlstlcal viewpoint. Suppose
we have an ensemble of a large number E of such sys-
tems, all identical, described by a distribution function
f(q,P,t) such that Nf(q, P,t)dq dq"dPI dP repre
sents the number of systems having coordinates in
the range dq' dq" at q and momenta in the range
dpi dp~ at p, at. thC tll11C t. SlIlcC dq ' 'dq dp 'dp
is a canonical invariant and since the number of sys-.
tems remains constant, f(q,p, t) must have vanishing
total time derivative. Written in the form

(f,H)+8f/Bt= 0, (6.19)

this statement becomes Liouville's conservation

We assume that the g;;, a;, v together with their first
and second derivatives are continuous functions of the
q' and t. The quantities appearing in (6.16) may be
expanded about the point q', 3', giving
5(q",t" i

q', t')
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theorem. '4 It may also be written in the integral form

"f(q,P,~)dq' "dq"~Pi dP-=1 (6.20)

(6.24)

Instead of asking for the number of systems in the range
dq' dq"dPi dP„, and thereby specifying the tra-
jectories of these systems by means of initial conditions
q', p, , one may also ask for the number of systems having
trajectories specified by means of certain end-point
conditions. Thus, one may work with a function
F(q",t"

I
q', t') such that 1VF(q",t" Iq', t')if, q"if& q' repre-

sents the number of systems having coordinates in the
volume element d&.q' at q', t' and in the volume element
d,"q" at q", t" From . (2.8b) and (5.10),

F(q",t"
I
q', t')

=g"-:D(q",&"
I
q', &')a' 'f(q', P'(q",&"

I

',~'),&'), (6»)
where

p', (q",t"
I
q', t') = aS(q"—,t,

"
I
q', t')/aq", (6.22)

(6.23)

with respect to q" or by observing that the p', may be
regarded as constants of the motion, i.e., the axed values
of the momenta at an initial time t . Equation (6.25)
may also be derived directly, without appeal to the
conservation law (6.27), by differentiating (6.28) with
respect to q"', multiplying by D '&' where

(6.29)

and using the theorem

I
a I-'~

I
a

I

= tr(a-VW), (6.30)

which holds for an arbitrary nonsingular matrix A. In
this way one may derive (6.27) instead of using it as a
starting point.

If the Lagrangian (6.1) is regarded literally as de-
scribing a particle subject to forces derived from vector
and scalar potentials in a curved e-dimensional space,
then the distribution function F(q",t" Iq', t') describes
the motion of an ensemble of such particles. If
F(q",t"

I
q', t') is nonvanishing only over a small range

of the variables q" and q"', then the ensemble has the
form of a cluster or "packet, " the motion of which
approximates that of a single particle. The density of
particles in the packet is Ep" where

The determinant D, which is simply the Jacobian in-

volved in changing the specification of the trajectory
from the variables q', p' to the variables q', q", was
erst introduced by Van Vleck."It satisfies an important
conservation law, namely,

aD/at" +a (q"'D)/i7q"*= 0, (6.25)

q"'—=g"*'i(p",—a",) = g"'&I (~7S/~7q"') —a",], (6.26)

p"= p(f",t")= I F(q",t"
I
q', t') if,, q',

satisfying the conservation laws

g" l 7(g"i*p")—/i7t" + (p"(q"')A);=0,

(6.31)

(6.32)

(6.33)

i7P' /Bt"+ q"'8p' /Bq"'= 0 (6.28)

which can be obtained either by differentiating (6.16)

2' I.iouville, J. math. 3, 349 (1838). Any distribution function
may evidently be used to generate an inFinitesimal canonical
transformation which changes trajectories into trajectories. The
resulting change may be described as a "rotational" displacement
of the phase-space trajectories in the regions where the distribution
function is nonvanishing. Since an actual distribution function is
never negative the "rotation" is always in the same sense.

~' J. H. Van Vleck, Proc. Natl. Acad. Sci. 14, 178 (1928). This
delightful paper extends the central idea of the WEB method and
shows explicitly how quantum mechanics with its statistical inter-
pretation passes asymptotically to the classical theory in the
Correspondence Principle limit A—+0. Van Vleck considers the
general case in which the variables g"', p"; are referred back to an
arbitrary canonical set n', P' and not merely to the g", p';. If the
a' are chosen as the action variables for a multiply-periodic con-
servative system, the asymptotic equivalence of the stationary
state matrix elements of an arbitrary operator to the Fourier
amplitudes of the corresponding classical quantity then follows
immediately from his work.

which follows from the insertion of (6.21) into the
necessary conservation law

g" le�(g"lF)/i7t—"+g" le (g"lq"9')—/iraq"'=0, (6.27)

together with use of the identity

where the dot denotes covariant differentiation with
respect to the q"', and where

(6.34)

In the next section we shall need the erst few terms
in the explicit expansion of the Van Vleck determinant.
Using the expansion (6.18) one finds

(g "+LJ~ ] (q q )
+ ', p[kl,i]', ,+Dq, z]' -„ypz, &]',
—'g""(LV,m]'L@, I']+&&,m]'LV, ~]'
+Lil,m]'L jk,n]')]
x (q""—q") (q"'—q")+ o(q"—q')'}

+ ~ (Bg';;/Bt'+ f'i;)+ o (q" q')+ o (t" t') —(6.35)—.

Then, using the matrix theorem

I~+&I = I~ I I1+~ '&I
= IA I (1+tr(A —'8)+-,'Ltr(A —'8)]'

—
2 tr(A '8)'+ . .}, (6.36)
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otrin A (6.37)

which may be obtained by replacing A by 1+3 '73 in
the integrated form of (6.30),

quantum transformation function in the limit t"~t'
Expression (7.1) is an invariant under point trans-
formations and, moreover, satisfies the relation

and expanding both the logarithm and exponential,
one finds

(q" &"
I

q' &')'*= (q' t'I q"»").

in virtue of (2.12) and (6.42). Next we show that

(7.2)

D(q",t"
I
q', t')

= (t"—t')—"g"ig'& f 1+-',8',"(q"'—q'*) (q"&—q")

+o (q" q') '+—o[(t" t') (q—"—q')]
+ o(t" t') '),—

where

R"=—g~% I, )

D. . 1/'
~~~kjl= i(g~ikt —

g,ii, kj gkjil+g, kl, ~i)

+g "([ij,m][kl, e] [0j—,m][i/, e])

(6.38)

(6.39)

lim (q",t"
I
q', t').=b( q", q', t'). (7.3)

To do this we first compare the action function
S(q",t"

I
q', t') with the action function So(q",t"

I
q', t') for

the same system with a; and v set equal to zero and

gg rendered time-independent. The expansion of
So(q",t" Iq', t') involves just the portion contained in
the curly brackets on the right-hand side of (6.18).
Therefore

The R;~;~ are the components of the niemann tensor.
We have defined R;; in such a way that the scalar

S(q",t"
I
q', t') = so(q",t"

I
q', t')

+ o(q" q')+ o (t"— t'), (7.—4)

R= g@R@ (6 40) D(q",t"
I

q', t') =Do(q",t"
I
q', t')[1+o(t"—t')]. (7.5)

g"'g"=g'Ll+g' '(g"), '(q"'—q")
+g' '(Bg'*/Ot') (—t"—t')'

+:g' '(g"), '(-q"'—q'')(q"' —q")+" ] (6 41)

and noting that g' l (g"),;= -', g'&'"g', i, ;, etc. The resulting
more symmetric form for the Van Vleck determinant
emphasizes the symmetry relation

D(q",t" Iq', t') = (—1)"D(q', t'I q",t"), (6.42)

which is a necessary consequence of (2.12). A corollary
of (6.25) and (6.42) is the conservation law for a packet
moving backwards in time:

is positive for a space of positive curvature. "
In (6.38) terms linear in (q"'—q") and (t"—t') inside

the curly brackets have been removed by replacing the
factor g', which would normally appear in front as a
result of a straightforward application of (6.36) to
(6.35), by the factor

Moreover, since the Hamiltonian function Ho ——kg'ipse pp&

is a constant of the motion for the modified system,

S,(q",t"
I
q', t') = ,'(»" t-')g"—p'„p'„.(7.6)

Therefore, noting that as t"~t' the p'i, become infinite
except when q"'=q" (for all i), we may write, for an
arbitrary function f,

lim d "q"f(q") (q",t"
I
q', t'),

= llm (2irifi) i"Jfdp'Oi dp'0 f(q")g"
g l~gl

XDO l(q",t"
I
q', t')g'--'[1+o(q" —q')+o(t" —t')]

Xexp[ik 'So(q",t"
I
q', t')]

BD/Bt'+ i7 (q"D)/dq"=0

'7. FEYNMAN QUANTIZATION

(6 43)
=[(t" t ')/2 i7iir]*'"f—(q. ')g'l

X)f exp[-', iIi—'(t"—t')g"tp'0;p'0;]

In this section we adopt an approach to Feynman's
theory due to Pauli, "which is based on Van Vleck's
work. 25 We introduce the following structure,

(q",t"
I
q', t'), = ( 2rii7i)-l" g"-& Dl( q",t" Iq', t')g'-&

Xexp[ik —'S(q",t"
I
q', t')], (7.1)

and then show that it can be used to define the exact

"This may be verified by direct computation for a spherical
surface. In defining the Riemann tensor there are nearly as many
conventions as authors. Expression (6.39) is, for example, the
negative of the tensor defined by Bergmann PP. G. Bergmann,
Introduction to the Theory of Relative (Prentice-Hall, Inc. , New
York, 1946), Eq. (11.39}j.

"W. Pauli, Peldquuntisierlng, lecture notes, Zurich (1950—
1951), appendix.

=f(q'),

Xdp Oi dp o~

from which (7.3) follows.
The next step in the identification of (q",t"

I
q', t'), is

to show that it nearly satisfies a Schrodinger equation.
Using (6.16), (6.25), and (6.38), one finds

il' (q"i,t"
I
q', t'), ,"—H„"(t")(q",t"

I
q', t'),

=l&'g" *'D '~[g"'g""~(g" 'D)/~q"']/~q"'
x(g",t"

I
q', t').

=[—,', A,'E'+ o (q"—q')+ o (t"—t')](q",t"
I
q', t')„(7.8)
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where the operator H, (t") is defined by

8 t' 8$ i eh/

H, -(t")O=—-lO'g"-' „.I g"'g"",. I+ O~"'

Therefore, from the relation

t e)lt) /B)f) Blt e)q'

I

—
I =I —I+(Bt) ~ CBt~~ Bq' Bt

(7.17)

i 'O II—,'( ll +II ') + 1-+if oil +e«'P (7 9) together with the transformation law (5.40) for lng,

J
'

one may conclude that

when acting on an arbitrary wave function P(q",t"). Bg'

gbth the help of (5.31), which can be rewritten in 4'. ~(q~t)=4'. ~(q, t)+@'—
the form

(g'P*g ')'= ~O~l~—q", (7.10)

one sees that H;. (t") is the differential form of the
operator

H= .g '(P-' -o')g'g-"(P ~)g '+' (7.11)

If it were not for the term on the right-hand side of

(7.8) this operator could immediately be identified as
the quantum analog of the Hamiltonian function (6.15)
for the system (6.1). Because of this term, however,
the quantum theory that one arrives at by applying
the Correspondence Principle via (7.1) is determined

rot by the operator H but by the operator

H+ =H+ ,', O'R—. —
That is, in virture of (7.3) and (7.8), one has

li- (t--t)- I:&q-,t" lq, t ).-&q",t" lq, t )+j

Bg' Bg' 8 g'
+—'

(lng),—+2 lt. (7.18)
O' Bt, Bq' Bq78t

The Schrodinger equation (7.15) nevertheless remains
invariant, since, as one may readily verify, the trans-
formation laws. (6.4) and (6.5) for a; and e add identical
extra terms onto its right-hand side.

The Feynman formulation of the quantum theory
follows from (7.14). If the transformation function is
broken up into infinitely many pieces by means of the
composition law

&q",t"
I

't')

= J~&q" t"
I

q"' t"')+d~ -q"'&q"', t"'I q', t')+, (7.19)

I
&q" t" lq' t'), (q" t«lq't')+] —0 (713) one may replace ( )+ by ( ), in each of the pieces and

and hence

(q",t" I
q', t'), = (q",t"

I
q', t')++ e(t"—t') 2, (7.14)

where (q",t"
I
q', t')+ is the transformation function

generated by the Hamiltonian operator H+. We shall

discuss this curious result in further detail after develop-

ing the rest of the theory.
Let us first point out that the SchrOdinger equation

tOP, , (q', t') =H, .(t')))t (q', t') (7.15)

is invariant under point transformations. This is obvious

if the point transformation is time independent, since

the right-hand side of (7.9) involves only covariant
derivatives and invariant combinations, and the extra
term r 2O'R' in (7.15) is an invariant by itself. However,

the conservative time derivative on the left of (7.15) is

not invariant under time depeedeet point transforma-

tions q'=q'(q, t). From (5.60) one has

(q",t"
I
q', t')~= lim ~l d, ( )q&')

gazoo, ttI), g—+P J

X)t dq(n )q&+)(q' t"
I
q(&) t(&))

X&q( ) t& )
I

q(l) t(») (qo) t&))
I

q& tl) (7 20)

where At=max(t" —t&~), t&» —t&», t&» —t'),"t&)"t& )tFrom the expression (7.1)
for (q",t"

I
q', t'). and the form of the expansion (6.18) for

the action, the (in the limit) infinitely multiple integral
receives significant contributions from the integrand
only when the differences g"'—q(~)' q(')' —q(')'
q&') '—q" are of the order of (Oht): or smaller. Therefore,
introducing the symbol =' to denote equivalence as far
as use in the infinitely multiple integral is concerned,
and using the easily verified relation

(B)f q 1 t'8 lngy
w. (q, t)=—I

—
I +-I

9 Bt ] q 4 4 Bt ) q .
(7.16)

L2~fA(t" —t')] i"~I d~ q"f(q")(q"'—q")(q"~ q'~)—'

XexpLiO
—'S(q",t"

I
q', t')]

=zO(t" t') g"~f(q')+ e (t— t')-:«, (7.21)
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one may write

(q",~"
I qV).

=' [2iriO(t" —t')]—i"[1+—,', R',;(q"*—q'"') (q"&—q'&)]

Xexp[iO 'S (q",t"
~

q', t')]
= [2~iO(~"—~')]—:-[1+—,', D'OR'(~" —~')]

Xexp[iO 'S(q",t"
~

q', t')]
=' [2iriO(t" —t')]—:"exp[iO —'S (q",t"

~

q', t')], (7.22)

where S is the action function for a "classical" system
with Hamiltonian function II =—II—~'~A'R and La-
grangian function I. —=L+—,', O'R:

S (q",&'"
~

q', t') =S(q",t"
~

q', t')+ —,', O'R'(t" t')—
+o[(~ —~)(q —q)1 (7 23)

The Feynman formulation now becomes

(q",&"
I
q', &')+

t/I
fog y

exp iO ' L (q, q, t)d&I 5[q], (7.24)

where the symbols on the right-hand side are to be
understood merely as formal abbreviations:

lim [2i&iO(t —t'~&)] *"d&&»q&~&
f N

N—+oo, d, t~0

X [2~iO(/&'& —t&'&)]—:"

Xd, &»q&'&[2iriO(t&'& —t')] '*", (7.25)

lim [S (q",t"
~

q&~&,t&~&)+—N—+~,6 t-+0

+S-(q'" ~"'
I
q'" &"')+S-(q'",&'"

l

q' ~')] (7 26)

The formal "functional integration" indicated in

(7.24) has been described by Feynman' as a "path
summation. "According to his interpretation the trans-
formation function (q",t"

~

q', t')+ is to be obtained by
summing a complex amplitude over all possible paths
in q, t space between the points q', t' and q", t". The
phase of the amplitude associated with each path is
obtained by integrating the classical Lagrangian along
this path. In the case of systems for which the equa-
tions of motion are linear it is found that the specifica-
tion of the path by means of intermediate points
q'", t(') q'N), t'N', together with the requirement that

the path follow a true classical trajectory between these
points [as implied by (7.26)] is actually unnecessary.
The functional integral can be evaluated purely for-
mally, without regard to its rigorous definition as an
infinitely multiple integral. The result generally contains
an unknown (infinite) normalization factor, which is
properly accounted for when (7.25) is used but which
always cancels out in the computation of any physically
measurable quantity. The situation will certainly not
be so simple in the general nonlinear cases involving
curved spaces, because of the occurrence of a variable
metric density in the volume elements d't(»q(') d, (»q(N).

The result expressed by (7.24) is even more curious
than the previous result following from (7.8). In order
to obtain the transformation function for a quantized
system having Hamiltonian operator H+ one must use,
in the Feynman summation, the action corresponding
to a classical system having Hamiltonian II . Whereas
Pauli's formalism makes use of the Lagrangian I.,
Feynman must employ I. to get the same result. When
the author first discovered this phenomenon he thought
that he had made an error in sign [e.g. , in (7.21)] and
that the occurrences of —,', O'R actually cancel each other
when one passes from Pauli's formalism on to that of
Feynman. A straightforward computation patterned
directly after Feynman's original paper, ' however,
demonstrates the reality of the phenomenon. "

Instead of stating the result in a symmetric manner
one may also state it in the following forms: If the
Lagrangian I. is used in the Feynman summation then
one obtains the transformation function (q",t"

~

q', t')++
generated by the Hamiltonian operator 8++———H+ ~A'R.
On the other hand, in order to obtain the transformation
function (q",&'"~ q', t') generated by the operator II one
must use the Lagrangian L =L+ ', O'R (correspondi—ng
to the Hamiltonian H —=H —iO'R) in the Feynman
summation. If q space is Rat then, of course, all these
alternatives coalesce into a single theory. However, in
the general case with nonvanishing R there is clearly
an ambiguity in making the traditional passage from
the classical theory to the quantum theory. The scalar
curvature R is constructed out of quantities which

already exist in the classical theory, and it has just the
right dimensions, when multiplied by A, to stand as a
separate term in the Hamiltonian operator. The choice
of a numerical factor to stand in front of O'R is unde-
termined; all choices lead to the same classical theory
in the limit A—+0. This, however, is the only ambiguity
in the quantum Hamiltonian.

That the quantum theory goes over to the classical
theory in the limit A—+0 is particularly transparent in
the Feynman formalism. Thus, for example, in (7.24)
when h is small the only paths which make in-phase

2g J. I . Anderson (private communication).
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contributions to the formal sum are those which cluster
about that path between q', t' and q", t" which makes
the action integral stationary, i.e., the classical tra-
jectory. A wave packet IP(q"/t") I' must move along
such a trajectory, the particular trajectory taken de-
pending on phase relationships in the initial wave func-
tion f(q', t'). The Pauli formalism also makes this obvi-
ous, for one may write I(q",t"

I
q', t') I'= I(q",t" Iq', t'), I'

= (2 fi) "g" 'D(q", t" Iq', t')g' l, and, in virtue of (6.25),
this structure satisfies the classical packet conservation
law (6.27), which in the quantum theory is simply the
law of conservation of probability. This particular
structure corresponds to an "exploding" packet, which

initially has a delta-function form, with all values of
momentum equally probable. However, as Van Vleck's
work shows, " there is no need to make the initial
specification in terms of coordinates q"; any complete
set of commuting variables will do as well, and hence

any type of packet may be specified.
The Feynman formalism provides a compact repre-

sentation not only of the transformation function itself,
but also of the matrix elements of arbitrary operators.
For example, let f be an arbitrary function of the q's

and t. Then, adopting the choice H++ for the Hamil-
tonian operator, which results from the use of the simple

Lagrangian I. in the path summation, we may write

&q" t" lf(q(t"') t'") lq', t')

(q",t"
I l U(q(t"') t"'),P'(t'")

& I
q', t')

d -q"'L&q",t" IP'(t'")
I

q'",t'")-
2

Xf(q"',t'") &q"',t"'
I
q', t')~+ &q",t"

I
q'",t"')++

xf(q'", t"')&q"',t'" IP*(t"')
I
q', t')

I
t11

Xexp i72 ' ) L(q, q, t)dt &)[q]. (7.29)
t' J

Here one makes use of the coordinate representation
(5.27) of the momentum operator, and the identity
(5.13). The significance of the arrows in the final ex-
pression is obvious. The momentum at the point q'", t'"
may be defined either with respect to the trajectory
coming from the past or with respect to the trajectory
going into the future:

Pl/i »( &)&1+2) tiir+2)
I

III till)(d III (7 30)

P"''=»(q"', t'"Iq' ', t' ')(~q"". (7.»)
To obtain the symmetrized form involving the anti-
commutator, one must average the two.

A 6nal example, in which the momenta appear
quadratically, is given by

d - q"'(q",t"
I

q'",t"') f(q"',t"')(q'",t"'I q', t')

q11 11.

I

f(q(t ) t )

tl1

Xexp iA 'JI L(q, q, t)dt 'b[q]. (7.27)
t'

Here it is to be understood that q'", t"' is included

among the variable points used to specify the path:

q"'(q" t"
I

q"',t"')~

X (fir///'&qlll tll/I ql tl) .)

$2JI d qlll f///&1&qll tll
I

qlll till) (qlll tll/
I

q/ t/)

P'(t"') f"(q(t"'), t"')f (t"')

Xexp ik '
I L(q, q, t)dt &)[q]. (7.32)

lim I .
JI [22ri72(t" —t&~+"))]—l"

M, N~~, ht —+0

Xd, &~+»q'~+~' .[22rih(t ~+' —t"')] **"

I

Xd," q"'[2~i))t(t'" —t&~))]—'*" . .

Xd «)q&i)[22riIt(t") —t')] '". (7.28)

Matrix elements involving the momentum may be ob-
tained in a similar manner. For example,

Here a covariant integration by parts has been per-
formed, "the dot followed by one or more indexes denot-
ing covariant differentiation with respect to the q"".

It is now possible to derive Schwinger's dynamical
principle directly from Feynman's formulation. Re-
membering that Schwinger's theory is valid in precisely
those cases in which the functional integrals can be
evaluated without regard to their rigorous definitions as

2 If one applies these procedures to the product of two or more
operators P(t"'), G(t"') which are functions of the canonical
variables taken at different times, then one obtains the matrix
elements of the tt'me ordered product LJ (t'")G(t'") j+ provided
the path summation is understood to be carried out only over
paths which contain no parts moving backwards in time.
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infinitely multiple integrals (and hence in which the
distinction between p, and p;, for example, is unneces-
sary), one may, in these cases, write purely formally

The well-ordered operator form follows from this by
the method indicated in Sec. 5. In the case of a free
particle in one dimension we have exactly

s(q",t"
~

q', t')

q",t"

q/ g/

g// g//

8 t Ldt exp ilt '
~t Ldt h[q]

g/

s(q(t"),t"
~
q(t'), t')

=
2 (t"—t') 'Lq'(t") —2q(t")q(t')+q'(t')]

+-', ih 1n[2~i7z(t" —t')]. (7.35)

The variation of this operator is given by

=i5-'~ q",t" 8 Ldt q', t' ),)
(7.33)

the I. in the 6nal expression being the operator
Lagrangian.

In the more general case it is possible to write an
approximate expression for the well-ordered quantum
analog of the classical action function. From (5.66),
(7.1), and (7.14), we obtain

s, (q",t"
i
q', t')

=S(q",t"
~
q', t') ~2ik ln[D—(q",t"

~

q', t')/(2miA) "]
+a[A'(t" —t')']. (7.34)

ti&=(t —t) 'Lq(t )—q(t)][&q(t )—&q(t)]
—-,'(t"—t')-'[q'(t") —2q(t")q(t')+q'(t')](B" —Q')

+-', ih(t" —t')-'(St"—lit'), (7.36)

which, since [q(t"),q(t')]= —ih(t" —t'), is the same as
the variation of the operator

$(t'
l
t ) =k(t —t')—'Lq(t") —q(t')]'

~//

q'(t) Itt, (7.37)

when written in the form indicated.


