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1. INTRODUCTION

N ITS mathematical aspects, Einstein’s theory of
gravity is based on two fundamental assumptions:
(1) the four-dimensional space-time manifold is Rieman-
nian; (this implies existence of a symmetric metrical
tensor gix) ; (2) the fundamental Lagrangian of the action
principle islinear in the curvature components : L= R;g*.
The resulting field equations R;;=0 gave full account of
the gravitational phenomena but failed to include the
electric and quantum phenomena. They also failed to
furnish new viewpoints for the structural problems of
matter since they did not allow singularity-free solu-
tions which could have been correlated to any of the
elementary particles realized in nature.!

Later attempts at generalizing the gravitational
theory subjected the fundamental postulates (1) and
(2) to close scrutiny. Einstein, and many other scientific
workers following his lead, was unwilling to depart from
the linear Lagrangian of the gravitational equations,
since any other choice of the Lagrangian leads to field
equations of fourth order, in contradiction to the fact
that the basic field equations of mathematical physics
do not surpass the order two. A further difficulty was
that departure from Einstein’s Lagrangian seemed to
put the equivalence principle in jeopardy. Hence, it
seemed advisable to maintain Einstein’s fundamental
invariant but to abandon some of the limitations of
Riemannian geometry. One could base the geometry
of nature on the T' quantities of an “affine connection”
(Eddington, Einstein, Schroedinger), or on a combi-
nation of the I';;™ and the gix, without demanding their
symmetry with respect to 4, k; (Einstein).?

The author’s own attempts are characterized by a
different departure? He endeavored to leave the
Riemannian geometry unchanged and replaced
Einstein’s linear invariant by an invariant which is
quadratic in the curvature components. A similar
attempt was made earlier by H. Weyl, but in conjunc-
tion with a modification of Riemannian geometry in
favor of a more general infinitesimal geometry.* The

1 A. Einstein, Rev. Univ. nac. Tucuman 2, 11 (1941).

2 For a brief account of the very extensive literature and a
condensed bibliography see Sir E. Whittaker, History of the
Theories of Aether and Electricity (Nelson and Sons, London,
1953), pp. 188-192; see also, Cornelius Lanczos, Nuovo cimento
Suppl. 2, 1193 (1955).

3 Cornelius Lanczos, Phys. Rev. 39, 716 (1932); 61, 713 (1942);
(subsequently quoted as I and II); Revs. Modern Phys. 21, 497
(I?g()n’*mann Weyl, Math. Z. 2, 384 (1918); Ann. Physik 59, 101
(1919); Physik. Z. 22, 473 (1921); see also W. Pauli, Enc. math.
Wiss. V19, 759 (1920). In later years, under the impact of wave

mechanics, Weyl lost confidence in his theory ; see Selecta Hermann
Weyl (Birkhduser Verlag, Basel, 1956), p. 192.

author showed that integration of the field equations
obtained from the (purely Riemannian) quadratic
action principle gives rise to a vectorial function which
has the classical properties of the electromagnetic
vector potential. However, the ensuing mathematical
difficulties frustrated all advance beyond the linear
approximation, and the theory remained in a rudi-
mentary stage.

Recent advances in the general Hamiltonization of
field equations led to a new mathematical method which
is now fully adequate to the investigation of the
quadratic action principle. It can now be demonstrated
that Riemannian geometry, without any encroach-
ments, contains the entire edifice of classical electro-
magnetism, together with the interrelation of gravi-
tational and electromagnetic forces. The additional
non-Maxwellian terms shed new light on the nature of
elementary particles, conceived as static and singu-
larity-free solutions of the fundamental field equations.

2. HAMILTONIZATION OF FIELD EQUATIONS

In every Lorentz-invariant variational field theory
the fundamental conservation laws of momentum and
energy appear in the form that the Minkowskian
divergence of a certain symmetric tensor of second
order, the “stress-energy tensor,” vanishes, in conse-
quence of the field equations.® We have to assume that
the basic Lagrangian does not contain the field quan-
tities in higher than first derivatives. In two funda-
mental cases; namely, Maxwell’s equations and Dirac’s
equation of the electron, the basic Lagrangian is even
linear in the first partial derivatives. The resultant
field equations are then of not higher than first order,
in analogy to the Hamiltonian equations of dynamics.
In both cases the resulting system is linear in the
derivatives, with constant coefficients. Since in the
dynamical case any arbitrary Lagrangian can be
transformed into the Hamiltonian canonical form,
should it not be likewise possible to transform an
arbitrary set of partial differential equations, deducible
from a Lagrangian, into a normal form, corresponding
to Hamilton’s canonical form?

To answer this question, we first interpret Hamilton’s
procedure in a manner which is somewhat different
from the traditional approach, based on Legendre’s
transformation.® The new formulation has the advan-
tage of much greater flexibility and is directly applicable

5 See, e.g., G. Wentzel, Quantum Theory of Fields (Interscience
Publishers, Inc., New York, 1949), pp. 10 and 217.

6 See C. Lanczos, The Variational Principles of Mechanics
(Toronto University Press, Toronto, 1949), p. 161.
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to the realm of partial differential equations, which is
our present concern. The “momenta’ p; appear in this
formulation as Lagrangian multipliers.

Considering the Lagrangian Lg(¢;§:?) of a dy-
namical problem, we want to conceive the ¢; as a
second set of independent variables, let us say w;. This
is permissible, provided that in the variation we do not
violate the condition

Thus we have the Lagrangian Lo(¢;,w;?) with the »
auxiliary conditions (2.1). According to the usual
procedure we multiply every auxiliary condition by an
undetermined multiplier p; and add it to the given
Lagrangian. We thus get the modified Lagrangian

L= Pz (Qz"‘ wi) +L0 (qi;wiat) .

The auxiliary conditions can be dropped since they
appear as the consequence of the variational principle,
varying with respect to the p;, which are full-fledged
new mechanical variables. The original Lagrangian
problem is thus replaced by a new Lagrangian problem
whose variables are p;, ¢;, w;. The new Lagrangian has
the “canonical form”

(2.2)

(2.3)

where

H=paw;— Lo(gswi,t). (2.4)

This H is free of all derivatives. Moreover, the variables
w; appear solely in H. Hence they are purely algebraic
variables which can be eliminated without any inte-
gration. The Euler equations applied to these variables
give

pi— (0H/dw;)=0. (2.5)

Although these equations hold only for the actual
motion, while their use for the elimination of the w;
means that we impose them also on the varied motion,
this move is actually justified. The elimination involves
no derivatives. Hence, the condition of ‘varying
between definite limits” is not violated.

Eliminating the w; from (2.5) we now obtain them
as some explicit functions of p;, ¢;, ¢:

wi:f‘i(Pj)ijt)~

We introduce these functions into (2.4) and arrive at
a new form of H which is purely a function of the p;,

iy t:
H=H (p:,q:1) (2.7)

This construction of H is exactly the traditional one,
except that the ¢; have been replaced by the w; which,
however, is irrelevant since the final H does not depend
on the w;.

This method is applicable to ordinary as to partial
differential equations. With the help of it any system of
field equations derivable from a variational principle
can be brought into a canonical form. Our present aim
is restricted to the field equations of general relativity.

(2.6)
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We thus start with a Lagrangian shaped to the demands
of general relativity. We wish to see how the general
canonical process operates under these circumstances.
In Einstein’s case the fundamental Lagrangian is
Lo=R;,g"*. However, we do not want to restrict our-
selves to this special case since our aim is to study a
Lagrangian which is formed of the curvature quantities
in a guadratic rather than linear manner; (see Sec. 5).
We thus leave the specific form of the Lagrangian free
and assume that it is some function of the R;; and the
gik:

Lo= f(R, g%). (2.8)
The tensor Ry is a complicated differential operator
of second order of the basic variables g;;. We replace,
however, R;; by the algebraic variables w;;, considering
the equation

Ri—wi,=0 (2-9)

as an auxiliary condition of the variational problem.
This gives the new Lagrangian

L= p*(Rip—wir) — Lo(wir, g%). (2.10)

Furthermore, we conceive R, as a differential operator
of only first order by introducing the new field variables

Pikml

Ol e® O™ ) R
Rik:%( ; ) 9
K

(99610 (3,1’11'

—I~I‘¢aﬂ1‘w‘*-—l‘ikﬂI‘aga. (2.11)

This is permissible, provided that we add as auxiliary

conditions the equations which establish the I';;™ as

functions of the gé:
——4Tan'g®*+Tanfgri=0.
% m

(2.12)

At this stage our Lagrangian appears in the following
form:

) ariau
L

Ol ke I2) A 6g“‘
—2 )+’Y e

X 0x; 0%y X
—H,—Hy, (2.13)
where
H1=Pik (Pikﬂrﬁaa—riaﬂrkﬁ“)
— Y™ (Cam'g®*+Tan®g®®)  (2.14)
Ho=p*wi— f(wir, g*). (2.15)

The field quantities of the variational problem are the
g%, p* Tu™ va™ and the wy, all quantities which are
symmetric in 4, k. However, the w;; can be eliminated
with the help of the equations
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Substituting the result of this elimination in (2.15) we
obtain H, as a function of g, pé*:

H():Ho(P“c,gik). (217)
Hence our field variables are: the 10 gi* and 10 p; the
40 T';™ and 40 v,™, altogether 100 variables. In terms
of an abstract “configuration space’” we could conceive
these variables as the components y1, ¢s, -+ ¢y of a
“vector” in a space of N=100 dimensions.

The canonical integrand (2.13) contains the partial
derivatives of the field variables in a particularly simple,
namely purely linear form. The highly nonlinear
character of the relativistic equations is thrown com-
pletely into the Hamiltonian function H=H+H,,
but even here H; is of not higher than t4ird degree in
the field variables.

In terms of the abstract vector ¢, the canonical
integrand may be written in the following homogeneous
fashion:

i
L=a/ziam3———H(¢1,¢z,~ %) (2.18)

Xom,

where the a;™ indicate a set of numerical matrices.
The lower indices 4, £ belong to the configuration space
of the y;, while the upper index m belongs to the space
of the %,,. The term in which the «;™ appears is vari-
ationally equivalent to

Y, s
sagm™| Yi——u )
0%, OXm,

This shows that the matrices a™ can be conceived as
anti-symmetric in , k. If the operator d/9x,, is replaced
by the self-adjoint operator 9/i9%., the matrices ia;™
become purely imaginary. Addition of a real symmetric
part would not change anything since we have added
not more than a pure divergence which is variationally
deletable. Thus generally we may conceive the matrices
oty + v+ dagt as 4 given numerical Hermitian matrices.
In Dirac’s case of the electron they become 4 by 4
matrices while in the case of general relativity we get
a system of four 100 by 100 matrices; (although in a
given particular problem great simplifications can take
place, of course).

Even such a highly complicated system of nonlinear
field equations as the field equations of general rela-
tivity may still be written in the form of a Dirac
equation, if the four special Dirac matrices are replaced
by a much more elaborate but still purely numerical
set of matrices.”

(2.19)

7The analogy is still more pronounced on formulating the
canonical system in terms of 50 complex field variables p*+igik,
and N
Porm i (van™ — §via®06™ — §Yka®8:™).
The 100 real ¥; components are thus reducible to 50 complex y;,
in harmony with the complex nature of wave-mechanical field
variables.
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3. FIELD EQUATIONS OF GENERAL RELATIVITY
IN CANONICAL FORM

In view of the fact that the I';™ quantities do
not form a genuine tensor, one might think that the
Lagrangian multipliers p%* and 4™ will likewise lack
tensor character. However, the determining equations
for these field variables are deduced by varying the
g* and the I';;™ and we know that variationally the
T';x™ do behave like a genuine tensor, covariant in 4, &,
contravariant in . For this reason the additional field
variables p% and v, become genuine tensors of second,
respectively third rank. Variation with respect to the
T';x™ is particularly interesting since it does not involve
the unknown function H(p%,g**) which is free of the
Ta™.

From now on only covariant operations appear in our
deductions. For the purpose of denoting a covariant
derivative we follow Einstein’s procedure, although
replacing his “‘semicolon” by a simple ‘“‘comma,” since
a distinction between ordinary and covariant differ-
entiation is not necessary. (In the few cases when
ordinary derivatives are encountered, the usual nota-
tion 9/dx; will be used.)

Variation of the I';™ yields the following 40 equa-
tions:

D=3 oSk pFe o8,0)

FYma'8¥* - Ymagi=0. (3.1)
To this we add the 40 “conjugate” equations, obtained
by varying the v,,™:

__+ I‘maigak—'}"rmakgai =().
OXm,

(3.2)

So far we have obtained 80 equations of the canonical
system. The remaining 20 equations are obtained by
varying with respect to the g% and the p®. The former
variation yields

0H,
—Yir,a=———3H ogir- (3.3)
ag’Lk
The latter variation yields
(aria"‘ Ok Ol
1 ! -2 )
2 T
ka 6xz axa
0H,
FTig*— Tl =—. (3.4)
a?ﬂc

All these equations are linear in the derivatives, with
constant coefficients. The nonlinearity enters only
algebraically, in the terms which do not contain de-
rivatives, in conformity with the canonical equations
of ordinary dynamics. -

4. EINSTEIN’S LINEAR ACTION PRINCIPLE

We first encounter the canonical system in a 1925
paper of Einstein®, when he became interested in the

8 A. Einstein, Sitzber. preuss. Akad. Wiss. 414 (1925).
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theory of ‘““affine connection,” as advocated by A. S.
Eddington.® Einstein proposes® not to discard the
metrical tensor in favor of the I';s” quantities, but to
determine both the g; and the T';™ from a common
variational principle in which the gy and I';™ are
treated as independent field variables, but not assuming
their symmetry with respect to ¢, 2. He remarks that
for the case of pure gravity (i.e., symmetric g; and
T'.1™), one obtains the most satisfactory derivation of
the ordinary gravitational equations R;=0. Einstein
does not use any Lagrangian multipliers and his system
(for the case of symmetry) contains only 50 instead of
100 field variables. Why is it that in his case the addi-
tional variables do not come into evidence?
Einstein chose the action principle

In this case
Sf(wir, g%) =wairg® (4.2)
and

In view of the linearity of Hy in w;; we do not succeed
now with the elimination scheme. Nor is that necessary
in the present case. Addition of Hy to the Lagrangian
can be conceived as a tool to maintain the auxiliary

condition
(4.9

pib=gik,
By introducing this condition in (2.13) we dispense
with the field variables % and also with H, although
the Lagrangian factors ;™ still remain. But now (3.1)
yields for the present case a complete vanishing of the
™, since the covariant derivatives of the g, are zero.
By maintaining the condition v4™=0 during the vari-
ation we lose the Lagrangian multipliers and (3.2), but
we are entitled to do so because (3.1) take over the role
of the equations (3.2).

From the standpoint of the general theory the case
of Einstein’s linear action principle represents a
degenerate case in which the 50 conjugate field variables
become tautological. The objection that any other
choice of the action principle leads to differential
equations of fourth order for the g;x, obtains a different
meaning on viewing the problem from the vantage
point of the canonical equations. The canonical equa-
tions remain of first order under all circumstances, and
it is only the vanishing of the conjugate variables which
characterizes the Einsteinian system. Since, however,
the 100 field variables of the general scheme are re-
placeable by 50 complex field variables,” we can regard
the action principle of Einstein as that extreme case
in which the generally complex field variables are
reduced to real variables.

9 A. S. Eddington, Proc. Roy. Soc. (London) A99, 104 (1921).

10 The general program of this paper is remarkably close to the
last efforts of Einstein toward a unified field theory; see Albert
Einstein, The Meaning of Relativity (Princeton University Press,
Princeton, 1955), fifth edition, p. 154.
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5. QUADRATIC ACTION PRINCIPLE
We now depart from Einstein’s linear action principle
and introduce the following Lagrangian!!
Ly=3%(RuR*+BR?
=3 (waw®+puw?),
where 8 is an unspecified numerical constant. We have
to eliminate w;;, from the Hamiltonian

(5.1)

Hy= pwy— % (wikw+Buw?). (5.2)
The elimination yields
Hy=3(p*pa+op?) (5.3)
with
B
o= —— (5.4)
1448

We do not use the full canonical scheme of Sec. 2,
in order to facilitate comparison with the classical
results of general relativity. We allow differential
operators of second order by conceiving R;; as a direct
function of the g;;, without interjecting the T';;” as an
additional set of independent variables. Then also the
conjugate ;™ will not appear. Our action variables are
solely the 10 g;, and the 10 p#. The Lagrangian (2.13)
will therefore simplify to

L=p*R;—H,
=p*Ru—5(p%pur+op?),
where R;;, is defined by (2.11) on substituting for the
T';x™ the usual expressions in térms of the g;; and their
first derivatives. Hence from now on Ry will be re-
garded as a second-order differential operator of the
&k

In order to perform the variation with respect to
the g, and the p;, we need a certain invariant differ-
ential operator of second order, generated by variation
of R;:. This expression has been derived previously®
and may be written as follows:

(5.5)

Eu(v) =0Riu=%(Avik— Y% ka—Y4% iatYa%ir) (5.6)

where v;x=6g: and A denotes the invariant Laplace
operator

(5.7)

We also need the adjoint of this operator, likewise
given before [see I (2.10)]:

Di(p) =5 (Apit— Pi® ka— Pr% ia~t PP, apgi).
In terms of this operator the variation with respect to
gir yields:

At y=g%U;...p, ap-

(5.8)

D¥(p) = (pputtopp™)+iLg*=0  (59)
while the variation with respect to p* gives
Riy=pu+topgir. (5.10)

1 Concerning the uniqueness of this choice see II, p. 714.

12 See I (2.6) and (2.12). The present E corresponds to 3D, the
present D to $F of the previous paper.
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In consequence of (5.10) we may put

L=H,. (5.11)

On the basis of this relation (5.9) may be written as
follows:

D () — (pope— 1P pesgis)
—op(p—ipg*)=0. (5.12)

The 20 equations (5.10) and (5.12) are the fundamental
field equations of our problem.

With the help of these equations we demonstrate
two fundamental consequences of the quadratic action
principle, obtained earlier by different tools; [see II
(2.13) and (2.15)7]. Replace the notation pu by Pik
and put

Dik= pirtNgir. (5.13)
Then Eq. (5.10) changes to
Riy= (1440)\gix+pint+opgin (5.14)

while the modification of the left side of (5.12) is only
the addition of the following term:

— 2\ (1420) (5~ 3pg™).

The inhomogeneous part of the substitution drops out
completely of the (5.12) and pu=0 is still a possible
solution of the field equations. This means that the
so-called “‘cosmological equations”

Rip= (1+40)\gi

with an arbitrary constant A represent an exact solution
of the field equations. Any solution of (5.12), [corrected
by the term (5.15)7], which is not zero but small, can
be conceived as a small deformation of the fundamental
cosmological solution (5.16). The constant A, usually
considered as completely negligible and modifying only
the structure of the world in cosmic dimensions, will in
our later discussions play the role of a fundamental
atomic constant ; (see Sec. 9).

As a second consequence, multiply (5.12) by gu.
We get

(5.15)

(5.16)

Ap+2p28 ,5=0. (5.17)

On the other hand, taking the divergence of the di-
vergence condition for the “metrical matter tensor”

Ti=Rix—3Rgir (5.18)
we obtain the relation
Reb s=1AR (5.19)
which means, in view of (5.10)
p°8, ap=3(1+420)Ap. (5.20)
Substitution in (5.17) gives
(1+0)Ap=0. (5.21)
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which may also be written in the form
140
AR=0. (5.22)
1+40

We see that R=const is an exact first integral of the
field equations. The special choice = —1 of the free
constant ¢ leads to a degeneracy. We lose one of the
determining equations of our system and thus the
solution becomes under-determined; (cf. Sec. 7).

6. FREE VECTORIAL FUNCTION ¢;

In problems of Hamiltonian dynamics the theory of
canonical transformations is frequently of paramount
importance.”® Instead of trying to integrate the dy-
namical equations directly, we solve them indirectly
by performing transformations of the dynamical
variables which retain the normal form of the dynamical
equations but simplify the Hamiltonian function H.
The canonical nature of the transformation demands
that the differential form p.j; shall change by a com-
plete derivative only. In this case the canonical equa-
tions are preserved but the transformation modifies the
form of the Hamiltonian function H.

In our present problem the derivative part of the
Lagrangian (5.5) is contained in the first term. A
canonical transformation of the variables p; and gg
should have the property that it should change the
term p*R;; by a pure divergence. The new Lagrangian
will then be of the same form as the original one, but
with a modified Hamiltonian H. We will now take
advantage of the fact that the divergence of the metrical
matter tensor (5.18) wvanishes identically. We denote
once more the original p;; by Pix and apply the fol-
lowing transformation :

(6.1)

A simple calculation shows that the added terms con-
tribute to L a pure divergence which can be omitted.
Hence our new Lagrangian becomes

L= p’kR,k— H,

Din= P+ 3 (@i s O i— 0% afik)-

(6.2)

where H, compared with the previous Hy, is augmented
by further terms, partly linear and partly quadratic in
¢;. First consider the guadratic terms only. They
amount to the following addition H, to the previous
Hyv:

Hy=%(0i 1+ 014 ("4 o) +30(0%2)2.  (6.3)
The first term can be transformed as follows:
3 (@5 1+ or, 5) (04 0% ) =1 (@i 1kt on, i) ©>"
=1(ir— 010 "3 on, i0""
=3PuF it (6.4)

18 See reference 6, Chap. VII.
14 The notation ¢** refers to ¢? 4g2*.
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where
) dep; Joy
Fo= @i r— @r,i=———. (6.5)
dx,  O0x;
Moreover,
o *or = ("% or), i— o™ ipx
= (¢*er), i— ¢ o+ Ruopie”
= (@ roP— ¢ 10", i+ (0% >+ Rirpie*.  (6.6)

Omitting a divergence, which is variationally zero, we
can write
Hy=%F il %45 (140) (0% o *+3Rire'o".

The last term contains once more the differential
operator R;; which should be united with the first term.
Hence, our final transformation will not be (6.1) but

(6.8)

6.7)

D= P+ 5 (@it 06 i— 0% agirt vir).

We know in advance that the term p*R;; will remain
unchanged. The Hamiltonian H,, however, has to be
augmented by further terms which will be partly linear
in the p% and partly independent of them. Those terms
which are linear in the p*, can be combined with the
first term of the Lagrangian by introducing a modified
differential operator R;*. Then the Hamiltonian H,
has to absorb only those terms which depend on ¢;
alone. Carrying through the calculations, we arrive at
the following result:

L=p*Ry*— (Ho+H), (6.9)
where
Rix*=Ri—% (i v+ or, i+ ©ior)
+3[(1420) 0% a— 00 0algir  (6.10)
and
Hy=3F P45 (140) (0% a—3¢%¢a)*  (6.11)

while H, is still defined by (5.3).

The transformation (6.8) correlates to any P a new
pir, considering ¢, as an' arbitrarily prescribed (al-
though continuous and differentiable) vector function.
Varying with respect to the p,, and the g., considering
the ¢, as given, we obtain the previous field equations,
although now expressed in the new p;,. What happens
if we include the ¢; among the field variables by adding
their free variation to the free variations of p;; and g:x?
The transformation equation (6.8) shows that if we
keep pq. constant but vary ¢, arbitrarily, we obtain a
certain special type of variation for the p;. The field
equations guarantee the vanishing of the first variation
of our action integral for amy variation of the pg.
Hence addition of the ¢; to our field variables merely
adds four more equations which are tautological since
they are satisfied in consequence of the field equations.
Thus we do not lose in generality if we add the ¢; to the
field variables of our problem. The 24 field equations
thus derived do not yield in fact more than 20 inde-
pendent equations, obtained by varying the p; and
the gix.
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7. THEORY OF WEYL

We now discuss a remarkable relation between our
purely Riemannian action principle and the theory of
Hermann Weyl,* developed on the basis of an infinitesi-
mal geometry which is more general than Riemann’s
geometry. Weyl constructed a geometry which enlarges
the Riemannian line-element g;; by a further vectorial
quantity ¢;, which in physical interpretation becomes
the electromagnetic vector potential. The fundamental
field equations of this geometry are developed from an
action principle which is quadratic in the curvature
quantities, in full analogy to the assumptions of the
present theory. The general quadratic action principle
was considered by W. Pauli,' who developed all the
relevant mathematical and physical consequences of
Weyl’s theory. It is composed of a linear superposition
of four terms, with three arbitrary constants, and may
be written, according to Pauli, in the following form
[see Pauli’s Eq. (32), p. 4627:

R
Ly=— —[ BRanR+ bRAR R

+-}1«‘ik]?i’°], (7.1)

where

Ra=Ru—%(0i st on it vivn)

—3(¢%a— ¢%0a)gir.  (7.2)

In fact it is unnecessary to include the term with Rz
since one can show!® that variation of the first invariant
is equivalent to that of a certain linear combination of
the other three invariants. Hence, it is permissible to
put in advance k=0, retaining only the two essential
constants k. and k3. In the Riemannian case, where a
similar reduction takes place,'” only one essential
constant remains, viz. the 8 of (3.1).

To faciliate a comparison between our purely
Riemannian Lagrangian (6.9) and Weyl’s Lagrangian
(7.1), we now eliminate the p;; from our action prin-
ciple, thus returning once more to the Lagrangian
instead of Hamiltonian formulation of action. The
elimination gives the new Lagrangian

Lo’ = % (Rik*R*ik_*‘ﬁR*z) —H,

in which only the g, and the ¢, remain as field variables.
Comparison of the R;* [see (6.10)] with the R, of
Weyl’s theory shows a remarkable analogy. The
general structure of the terms is exactly the same in
both cases, except that the numerical coefficients
within the last term do not agree. For the special choice
o=—1 the two expressions become exactly identical.
But even for other values of ¢ the difference is of second
order only, if we assume the customary ‘Lorentz

15 W. Pauli, Physik. Z. 20, 457 (1919).
16 See R. Bach, Math. Z. 9, 110 (1921).
17 See C. Lanczos, Ann. Math. 39, 842 (1938).

(7.3)
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condition” for the vector potential:
(7.4)

And yet, the origins of R;;* and Ry, are widely different.
The first expression came about as the result of a
canonical transformation (with ¢;=arbitrary),
second on the basis of a certain type of non-Riemannian
geometry. Discarding for the moment the small dif-
ference between the two kinds of curvature quantities,
Weyl’s modification of Riemannian geometry appears
tautological, except for the fact that Weyl’s action
principle permits fwo free constants k; and ks, while the
Riemannian case leads to the single free constant 8.
This greater freedom of Weyl’s geometry is not neces-
sarily an advantage since the two free constants &, and
ks cannot be correlated to definite physical constants.
Pauli arrives at a decision on the basis that the results
of Einstein’s gravitational theory should be maintained
for the case of vanishing ¢;. He thus makes the choice
ki=ky=0; [see his equation (50), p. 465]; Weyl subse-
quently adopted this choice.!®

In the Riemannian case we do not have the freedom
of k. The comparison of (7.3) with (7.1) shows that
here

0% =0,

ko=—1 (7.5)
while the constants k; and g8 are in the relation
ks=—28=2¢/(14+40). (7.6)

Although (7.5) prohibits the choice k;=0, we can
interpret Pauli’s choice as the limiting case

ko/k3=0 (7.7

which means

B= 0, (7.8)

There exists a deep-seated difference between the
theory of Weyl and the theory here advocated. In
Weyl’s geometry the “principle of gauge-invariance”
invokes a certain pre-established harmony between the
gi and the ¢; chosen in such manner that at every
point of the manifold a proportionality factor of the
ga must remain undetermined; correspondingly, the
¢; can also be determined up to a scalar function only.
Einstein' found Weyl’s theory unacceptable on account
of the arbitrariness of a common factor of the g;;. He
pointed out that the tremendous consistency of the
spectral lines throughout the universe demonstrates
the inevitability of an absolute measuring rod. The
present theory is not affected by this criticism of
Einstein since the g are in our case completely de-
termined. On the other hand, the vector potential ¢,
remains completely undetermined. This shows that the
limiting case o= —1, i.e.,

ﬁ=_?1§; k1=0, k2=_1’
18 See H. Weyl, Space, Time, Matter (Methuen and Company,

London, 1922), p. 295.
1 Albert Einstein, Physik. Z. 21, 651 (1920).

o=—1.

ks=3% (7.9
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which is a point of tangency between the two theories,
must be singular from both the Riemannian and the
Weylian approach. From the Riemannian standpoint
we must lose one of our equations in determining the
metrical tensor, from the Weylian standpoint we must
lose the determining equation for the vector potential.
Closer examination corroborates these predictions.
We have seen in Sec. 5 that ¢=—1 is a singular case
for which the determining equation (5.22) of the scalar
curvature R is lost. This is in harmony with Weyl’s
geometry in which R remains undetermined on account
of the freedom of an arbitrary factor of the gz Let us
see, what we get for the vector potential in Weyl’s
theory. Variation of the vector potential in Pauli’s
action principle (7.1) yields the following relation®:

dgiFie
3(1+42k1+ k)

820%,
= (krtkot§Rs) (R, g+ Rep).

For the case k;=0, ky= —1, the left side of the equation
disappears. The right side would then demand the
complete vanishing of ¢;, except if the choice k3=% is
made, which makes the right side vanish too. This
choice corresponds exactly to our singular case o= —1,
as (7.6) demonstrates. For other values of ¢, the left
side of (7.10) is still zero but the right side is now cor-
rected by further terms because of the modifications
which have to be applied to the quantities of Weyl.
The exact relation between R;* and Ry is given as
follows:

(7.10)

Ru*=Rau+ (1+0)Qga, (7.11)

where the scalar Q is a certain non-Maxwellian quantity
which plays a characteristic and fundamental role in
the present theory

Q=¢a,a_%§0a‘{7m (712)
Moreover, our Lagrangian (7.3) and Pauli’s Lagrangian
(7.1) (for the case k=0, ky=—1, k3= —20) are in the

following relation to each other:
=L,+(1+38)Q(R+3¢). (7.13)

The correction term on the right side is such that its
variation with respect to ¢; exactly counteracts the
right side of (7.10) and once more we obtain the empty
equation 0=0 which leaves ¢; undetermined.

8. VECTOR POTENTIAL AND METRICAL TENSOR

The vectorial function ¢;—interpreted in Weyl’s
theory as the vector potential of the electromagnetic
ﬁeld-appears in our investigation as a quantity which

20 See Eqgs. (26), (29), (30), and (32) of Pauli’s paper; Pauli’s
equation c%26) should on the right side contain the factor
(14-2¢1+cs). The error_is caused by the identity (B) on p. 460,
which in fact holds for B*¢ and not for R*s. At the author’s request
Professor Pauli kindly rechecked his calculations and corroborated
the author’s findings.
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originates in a certain canonical transformation. The
inner meaning of ¢; does not reveal itself by this
method. We now approach the same problem differently
to obtain further clues concerning the true significance
of the vector potential.

One of the earliest investigations of Einstein? brought
already to light a peculiar feature of the contracted
curvature tensor. Integration of the gravitational
equations succeeds in a natural way only if one nor-
malizes the reference system in a very special manner,
in spite of the general covariance of the fundamental
equations. Einstein’s normalization for infinitesimal
fields was afterwards extended by the author? to fields
of arbitrary strength. The normalization condition takes
the form .

1 ogigi
il =0. (8.1)

gt O

The effect of this normalization is that the differential
operator R;; becomes reducible to a greatly simplified
operator By which has the merit that its essential part
(which contains the second derivatives) is separaled in
the components g;. Moreover, this operator is free of
any inner identities. It can be prescribed freely, without
having to satisfy any conservation laws,—in marked
contrast to the original operator R;.

The general expression of B;; can be written down as

follows:
’ agaﬂ agaﬁ
g“ﬁ-f“%l’as"( g,,¢+———g,,k)
oxy 0x;

g

1
By=3

0%, 0%

—TiaTrs gpog™®.  (8.2)
Without restricting our reference system by any special
condition we can say quite generally that the operator
R;; may be split in a definite noncovariant manner into
the simplified operator B, plus the symmetrized
gradient of a certain vectorial quantity. We can put

Riy=But+3(Vir+ Vi) (8.3)
where
1 aglgi=
e . (8.4)
gt 0%,

(The operation ‘“comma’” is taken in the usual in-
variant sense, although V,= Vg, is not a true vector.)
We introduce this B;; in our discussions, replacing
R;i, by the expression (8.3). We substitute (8.3) in our
quadratic Lagrangian (5.1) and take into account the
divergence-free character of the matter tensor (5.18).
By a similar procedure as that employed in Sec. 6 we
transform Ly as follows:
Ly=3[B#*By+BB*+ (1+28) BV — ViV*B,,
—IWEW s +BVHEVVV ], (8.5)
21 Albert Einstein, Sitzber. preuss. Akad. Wiss. 688 (1916).

22 Cornelius Lanczos, Physik. Z. 23, 537 (1922); Z. Physik 13,
7 (1923).
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where we have put

V="Ve, (8.6)
aV; aVy
Wg=—"—— (8.7)

We now proceed to the canonical method by replacing
By and V¢ by the algebraic variables w;; and ¢% This
gives rise to the Lagrangian multipliers p%* and p; and
we obtain the new Lagrangian

L=p*(Bir—wa)+pi(Vi— ¢*)+ Lo, (8.8)

where L, is the above expression (8.5), but replacing
B by w® and V; by ¢;. We recognize that L is purely
algebraic in the variables w;; which can thus be elimi-
nated. (The same is not true for ¢; which enters in L,
with its first derivatives.) By putting the partial
derivative of L with respect to w; equal to zero we
obtain the equation

pr=wBuwg*+5 (1+268) eg™* — s oo

from which w;;, can be eliminated. After the elimination
the final Lagrangian becomes

L=p*By*— (Ho+Hl)+pi(

(8.9)

dgig

1

0%y

—-W') (8.10)

where
Bi*=Ba—5oiort3[ (14+20) 0% a—00%¢a g (8.11)

while H, and H, are again defined by (5.3) and (6.11).

On comparing the new Lagrangian (8.10) with the
expression (6.9) found in Sec. 6, we see the close re-
semblance. The last term of (8.10) was not present in
the earlier treatment. Moreover, the definition of R;*
according to (6.10) contains, if compared with (8.11),
the additional term —% (s 5+ ¢, i), but then this term
is absorbed by B as (8.3) shows.

Variation with respect to ¢; gives an equation which
can be interpreted as the Maxwellian equation for the
vector potential, augmented by certain correction
terms:

dgiFi

1

£20%

+L(A+0)0—3(1+20)p] ag*'+ (140)Q ¢
— (p*topg™) pa=p"

1
2

(8.12)

How does the variational principle determine the
right side of this equation, the ‘“electric current”?
Variation with respect to p; gives the condition

dglg=

¢ (813)
§'0%a

which says that the normalization vector, usually put
equal to zero, [see 8.1)7], should in actual fact be
equated to the vector potential. But what can we say
about p; which enters the Lagrangian in a linear way
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only? It so happens that p; is determined in an indirect
way.

Let us express in the Lagrangian (8.10) the operator
B in terms of Ry, with the help of (8.3), then perform
an integration by parts. We arrive exactly at the
invariant (6.9), augmented by a term which has the
form of the last term of (8.10), except that p; is replaced
by a p; which is related to p; as follows:

pi,=pi+Pia, - (814)

This Lagrangian satisfies the condition of general
covariance, except for the single term

$pia
,98%8 .
g},

p (8.15)

Let us vary with respect to g*. The variation of the
completely covariant part of L yields a certain sym-
metric tensor A4;;. Adding the variation of the term
(8.15), the resulting equation becomes

A; -—-l(api +
ik 2
axk

ap)c’ apa'

ax,;

gﬂﬂgik) ~0.  (8.16)
ax,g

We take the covariant divergence of this equation.
The divergence of A vanishes identically from the
general principles of tensor calculus. We thus obtain
for p/ a linear and homogeneous partial differential
equation of second order. We can assume that this
equation has no solution which is regular throughout
the space-time manifold and vanishes at infinity.
Hence we can put p;=0 and we obtain
pi=_Pia,a- (817)

The current vector p? is thus uniquely determined.
We return to our Lagrangian (8.10) and vary with
respect to p%*. This gives the equation
Ba*=patopgn. (8.18)
Then we vary with respect to the g;z. We obtain a linear
differential operator of second order in the p* which
becomes equal to quantities guadratic in the ;. Inte-
gration of this equation establishes the p% in terms of
the ¢;. The quadratic dependence has the consequence
that for weak ¢; fields the p* become infinitesimal of
second order. This leads to the conclusion that the
non-Maxwellian terms of (8.12) drop to quantities of
second and third order. Hence, for weak fields the
determining equation of the vector potential becomes

ag%Fi(x
—0, (8.19)

240x,

in harmony with the Maxwellian equations of empty
space. If in (8.18) we go to the same degree of approxi-
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mation, we obtain for weak fields the simplified equation

Bi,=0. (8.20)

Let us consider an electrostatic field. Here the
vector potential is reduced to the scalar potential which
decreases to zero with 71, Integration of the field
equations offers series difficulties. Integration of the
fourth equation of (8.13) would demand that the gy
(1=1,2,3) go to infinity with the order x;/7, in contra-
diction to the boundary condition that they have to
vanish for r=c. Moreover, the corresponding B,
quantities do not become zero and thus (8.20) are not
satisfied. On the other hand, if we consider the centrally
symmetric and static solutions of (8.20), we find that
¢4 vanishes identically. Existence of a free electric
charge is thus in contradiction to the demands of
infinitesimal fields. This difficulty was recognized by
the author at a very early stage of his speculations
(compare I, page 735). It was baffling that on the one
hand the quadratic action principle seemed to offer the
vector potential as a free gift, on the other it took it
away by denying the possibility of a free charge. The
proper explanation of the puzzle could not be found as
long as the adequate mathematical method for the
treatment of strong fields was missing. Discovery of the
canonical method puts us in the position to see the wider
implications of the problem. The proper role of the
vector potential ¢; in relation to the structural prob-
lems of matter can now be established.

9. ATOMISTIC STRUCTURE OF MATTER

Up to now the quadratic action principle shows
little relation to the classical results of general rela-
tivity. In general relativity the problem of matter
appears in the following context. Any generally co-
variant Lagrangian has the following property. It
contains the components g; of the metrical tensor.
Varying with respect to the g, we obtain a symmetric
tensor whose divergence is zero. This tensor we call the
“physical matter tensor.” If for example L is identified
with Maxwell’s fundamental Lagrangian — F;,F#, the
variation with respect to g#* yields Maxwell’s “stress-
tensor” Si, also called the “energy-momentum tensor”
of the electromagnetic field. If matter is conceived in
purely electric terms, this tensor in itself can be equated
to the physical matter tensor. Generally L may be
composed of further terms, in which case S will be
complemented by additional tensors. The sum of these
tensors represents the physical matter tensor which
we wish to denote by Pjy.

Einstein discovered the purely metrical origin of
gravitational forces and established in the “metrical
matter tensor” Ty [see (5.18)] a symmetric tensor of
second order whose divergence vanished identically.
It could be derived variationally by varying the scalar
Riemannian curvature R with respect to the gi. The
equivalence principle demanded that all forms of energy
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act also gravitationally. The mathematical formulation
of this principle takes the following form:

Tip=—«Pi.

It expresses the equilibrium between gravitational
energy and all other forms of energy. The constant «
is a dimensioned scale factor by which energy density
can be reduced to curvature. Its numerical value in the
cm gram system is (the time being measured in natural
units, i.e., ¢! sec):

8wk
K== 1.863-107% (cm/g).
¢

(9.1)

(9.2)

From the standpoint of an action principle Einstein’s
fundamental equation should be written in the form

The significance of this equation is that the original
physical Lagrangian L, is changed to

L=Lo+(1/ck'R).

Moreover, the metrical tensor gy is added to the pre-
vious physical variables as additional variables of the
field. However, such a purely external coupling of
“metrical” and ‘“‘physical” quantities never satisfied
Einstein. He tried to find some geometrical interpre-
tation of the ‘““physical” part L, of the Lagrangian
in order to conceive the entire L as one unified quantity.

Looking at our Lagrangian (8.10), deduced from an
action principle which is quadratic in the curvature
quantities but free of any external additions—except
for quantities which are dictated by the mathematical
nature of the problem—we are at first sight at a loss
to see any relation to a Lagrangian of the form (9.4).
Our Lagrangian contains the surplus variables p.
which make a direct comparison difficult. We now make
use of the fact, deduced earlier in Sec. 5 [see (5.16)],
that in the absence of the potentials ¢,

(9.4)

Dik=Ngix 9.5)
is an exact solution of the field equations. At variance
with the usual concepts we equate X to an excessively
large constant by considering it as the reciprocal square
of a length of subatomic dimensions. Under these cir-
cumstances p;; changes but little by the presence of
the ¢; and we obtain a good approximation of our
Lagrangian by considering (9.5) as an exact law, al-
though in reality it holds only in approximation. We
now introduce this solution into our Lagrangian (8.10)
and thus reduce our Lagrangian problem from the
original 10+4-10+4-4=24 variables to a problem of only
10+4=14 variables, vz. the 10 g;; and the 4 ¢;. Now
a direct comparison with Einstein’s action principle
becomes possible.

Our new Lagrangian is composed of a number of
parts which we write down and analyze separately:

CORNELIUS LANCZOS

Li=\R
Ly=—2\(1+440)
Ly=—}F b

Ly=—1(1+ a‘a__AL 2p)?
4 2( (7)(@ 2¢ 90) (9.6)

A
Ls= —5(1'{‘40) 0" Pa

aglg'
Lg= Pi( - @’) .
2402,

The first invariant appears originally in the form
ABug®™ but this differs from AR;g®* by a divergence
only and is thus replaceable by AR. Hence Einstein’s
linear invariant comes into strong focus. The largness of
A causes a practical linearization of our originally quad-
ratic action principle, thus bringing it in harmony with
demands of the equivalence principle.

The second invariant represents the traditional
“cosmological term.” If we wanted to adhere to the
traditional view that the cosmological constant is of
practically negligible dimensions, demanded only for
cosmological purposes, we would choose ¢ as exceedingly
near to —i, i.e. B as excessively large. This means an
overwhelming emphasis of the invariant R? compared
with the invariant R;R®*. We are then back at the
choice of Pauli and Weyl; [see (7.8)]. In this case we
lose not only L, but also L;. We deprive ourselves of an
entirely essential building block for the construction of
material particles of atomic size. Furthermore, we once
more experience the above discussed difficulty concern-
ing the free charge of an electrostatic field.

We depart from the traditional theory by assuming
that the “effective cosmological constant”

uw=—N\(1440) (9.7)

is not small but excessively large (although possibly
much smaller than X\ itself) by considering it as the
reciprocal square of a length of atomic dimensions. (We
assume u to be positive which puts ¢ to the negative
side of —%.) This means that the metrical substructure
of the world, characterized by the equation [see (5.10)]

(9.8)

Ry= —Mugik

is very far from being flat, owing to the presence of a
tremendous negative pressure which is uniformly
present throughout the universe. The implications of
this assumption will be discussed in the following
section.

We now come to L; which is Maxwell’s invariant.
The standard theory which recognizes electricity and
gravity as the two fundamental phenomena of nature,
operates with L; and L; only. As we know, no stable
particle can be constructed on this basis. But in our
present considerations we have also L; and Ls at our
disposal. What kind of forces are generated by these
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invariants? Varying with respect to g#*, we obtain a
tensor of the following form:

(9.9)

Interpreting ¢; as a velocity field® we recognize in this
matter tensor the action of inertial masses, coupled
with a pressure which is § of the matter density. The
forces thus generated are of a mechanical nature. We
can thus answer the age-old puzzle : what kind of forces
balance the tremendous electrostatic repulsion inside
the electron which should lead to its explosion? The
answer is that these forces are of a mechanical kind.
Let us write down the equation which determines the
vector potential [see (8.12)7]:

Ou=0c(pivr—% 0% Pagir).

dgiF i

1
2

+ut+ (1+0)QJe'+ (140)Q, ag**=0. (9.10)
g20%,

Let us examine this equation from the standpoint of
static and spherically symmetric solutions, paying
particular attention to the equation ¢=4 which de-
termines the ‘scalar potential” ¢, The scalar Q
becomes negligibly small in weak fields (i.e., small ¢;);
near the center =0, however, it becomes very large.
Moreover, we can conceive the equation (9.10) for
i=4 as a homogeneous linear differential equation for
@4 which contains, however, an adjustable constant
because of the amplitude factor of Q which is freely
disposable. We obtain a regular eigenvalue problem of a
nonlinear type.?* Apart from the realm of very small »
we obtain the solution

pr=e—CW' [y, (9.11)

and see that instead of the Coulomb potential we
obtain a potential of the Yukawa kind.?® But the
singularity at the origin is avoided, due to the coopera-
tion of the scalar Q which puts a very strong negative
mass near the center of the particle, thus balancing the
strong forces at the center.

We come to the conclusion that we are able to con-
struct a spherically symmetric and static electric particle
which has no singularity anywhere. The physical matter
tensor generated by this particle has an entirely tnsular
character. Matter is concentrated in little lumps of
very small extension and a direct interaction between
matter and matter is not possible. The Lorentz force
is traditionally derived from the Maxwellian matter
tensor, on the basis of the conservation laws. Hence it
represents a matter-matter interaction. In the present

2 This is strictly speaking incorrect, because even in a static
field the components ¢; (:=1,2,3) are not zero. Since, however,
the particle is small and we can average over the ¢;, the average
values of the space components vanish and what remains is ¢4
which is tangential to the world line of the particle.

2¢ The author’s computations are not yet completed and will be
reported at another occasion. The symmetry of the basic
Lagrangian with respect to == ¢4 holds only if the metrical action
of the ¢; is neglected. The mass-inequality of positive and negative
electricity is not outside the scope of the present theory.

25 See reference 5, p. 45.
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theory an influence from particle to particle can only
occur through metrical signals. Hence the electromag-
netic vector potential must be of metrical origin and
the Lorentz force must represent a matter-metric and
not a matter-matter interaction.

This is foreshadowed by (8.13) which shows that the
vector ¢; cannot be of the nature of a generating
function since it is itself obtained from other field
variables by differentiation. In fact this equation closely
resembles the equation of Lorentz which connects the
electric field quantities with the electric current vector:

dgiFe

" =pt, (9.12)
8'0%a

The difference is that g is a symmetric, F% an anti-
symmetric tensor. The analogy goes still deeper. The
significance of (8.13) is that we normalize our reference
system in a suitable way. This normalization will
involve a proper coordinate transformation. Assuming
that the ¢; are small, the transformation assumes an
infinitesimal character. Such a transformation is char-
acterized by the law

Za=ga—e(AiwtAr )

where € is a small parameter. Thus the essential change
demanded by our reorientation is that the role of the
customary antisymmetric combination Fy=A4; r— A+
is taken over by the symmetric combination

Gik= Ai, k+Ak, e

(9.13)

(9.14)

The customary “nabla equation” between vector
potential and current vector remains essentially un-
changed, except that the continuity equation for the
current vector is not a consequence of the connecting
equation since the left side of the equation is free of
any identities.

This reclassification of electric quantities within the
framework of general relativity leads to surprising
results. The vector ¢,, previously treated as the electro-
magnetic vector potential, becomes in actual fact the
vector of the electric current. It is surprising to see that
it is not the vector potential 4, but the electric current
¢; which has a direct influence on the matter tensor by
replacing the vector potential in the Maxwellian stress
tensor. This tensor is complemented, however, by
additional mechanical terms. In the theory of Lorentz
the electric current is a purely extraneous quantity,
foisted on the field without any organic relation to the
basic field quantities. It is not more than an “asylum
ignorantiae,” in the words of Einstein. In the present
theory the electric current becomes a basic field
quantity, organically related to the field and deter-
mined by an eigenvalue problem. The electron, before
a “stranger of electrodynamics” (Einstein?®), appears

26 See A. Sommerfeld, Electrodynamics (Academic Press, Inc.,
New York, 1952), p. 236.
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with a well-defined structure in which all infinities are
avoided.

The reorientation of the electromagnetic quantities
that is here advocated leads to a modified formulation
of the dynamical law of the electron. The equation
“time rate of change of momentum equals moving
force” is retained but the “moving force” cannot be the
Lorentz force since the antisymmetric combination
A, x— Ay, ¢ has no significance. Its place is taken by the
symmetric combination (9.14) according to the law
d el

:Fize(Aa, z+Az, a)_;
ds ds

7

9.15)

where A; is the vector potential of the external field.
The “momentum” of the electrically charged particle
is defined as follows:

da

?isz—gm—*‘ZeAi. (916)
ds

If the correction term is transferred from the left to
the right, the sum 4,44 « changes to the difference
A i—Ai o« and the Lorentz force is once more restored.

The field momentum (9.16) differs from the cus-
tomary expression?” by the factor 2. The celebrated
Einstein-de Haas ¢/m experiment which directly meas-
ures the correction to which the mechanical momentum
is subjected in an external magnetic field, gave twice
the expected value, in agreement with the law (9.16).%8

10. METRICAL SUBSTRUCTURE

The most radical, though inevitable, departure of
the present theory from the traditional views lies in the
assumption that the material particles represent not
more than a weak superstructure on a metrical sub-
structure which is exceedingly strong. It is character-
ized by the equation

Rip=—uga, (10.1)

where u is an exceedingly large constant. We have here
a development somewhat analogous to Einstein’s
famous theoretical prediction® in 1907 that the tra-
ditional “kinetic energy’ of Newtonian physics is not
more than a very small modification of an exceedingly
large energy source of the amount ¢, connected with
the very existence of the mass mo. This enormous
energy-source remains latent under ordinary circum-
stances because our measurements involve energy
differences only and under such conditions the rest-
mass usually drops out, due to the great stability of the
atomic building blocks of the universe.

Equation (10.1) similarly assumes that all physical

%7 See, e.g., H. Goldstein, Classical Mechanics (Addison-Wesley
Press, Cambridge, 1951), p. 49.

28 The customary explanation refers the discrepancy to the
“spin” of the electron. The spin action of the electron is deeply
interwoven with the here discussed re-evaluation of electric
quantities. The deeper analysis of this problem transcends,
however, the limitations of the present paper.

» Albert Einstein, Jahr. Radioakt. 4, 411 (1907).
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events are only small modifications of a fundamental
structure which could be compared to a huge “rest-
mass” of the universe. But is such an assumption not
preposterous when we know that our ordinary geometry
is so nearly Euclidian? Would not a law of the form
(10.1) lead to a tremendous explosion of the universe?
In actual fact this would only happen if the matter
maintaining this tremendous curvature would act in a
coherent way. But we can conceive the picture of a gas
of very high temperature whose molecules fly around
in all directions with practically light velocity and
which create a huge uniform pressure, apparently due
to the action of some very large force, but in actual fact
caused by the statistical kinetic action of a large number
of molecules. An explosion of tremendous power would
occur only if by some miracle all the molecules could
be directed into parallel paths.

We carry over this statistical picture in order to
demonstrate that a metrical substructure of the form
(10.1) is actually feasible, in spite of the apparently
almost Euclidian character of our metric. We utilize
a statistical device used by Lorentz to show that the
macroscopic equations of Maxwell can be explained
on the basis of electron theory, if we allow the sta-
tistical interaction of a huge number of electric charges
in a region which is macroscopically small but yet large
compared with the dimensions of atoms and molecules.
Using a similar picture we want to calculate the average
values of the curvature components, assuming that the
metric is far from stationary. In fact, we want to
assume that there exists a metrical radiation which is
composed of exceedingly high frequencies and which
propagates irregularly in every direction. We will now
cut out a four-dimensional cube at some point of the
world and evaluate the average values of the curvature
components within the cube. The edge of this cube is
chosen large compared with the wavelengths of the
radiation. These wavelengths are so small that the
cube can be of subatomic size.

For present purposes we depart from the previous
real line-element of the signature (—1, —1, —1, +1)
and introduce Minkowski’s Euclidian line-element
gix=~0ii, considering x4=1/ as an imaginary variable.
We consider a metrical tensor which differs from the
Euclidian values by small amounts only

gikn="0i+ir. (10.2)
However, although the deviations themselves are small,
the I' quantities can become very large because the vy
are composed of a spectrum of very high frequencies.
We start with Riemann’s curvature tensor R;mz, which
can be written in terms of an auxiliary tensor A;xmn
defined as follows:

(10.3)

Rimpn=A4 ikmn A inmi
62gik azgmn ik mn
| [ e 0a
6x¢6xk a ﬁ

4 ikmn = % (
Xm0y,
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The terms which are derivatives, cannot contribute to
the average values since the derivative of a periodic
function is once more periodic and its average value
zero. It is sufficient to consider the last term of (10.4),
and this again can be written with practically sufficient
accuracy in the form

k[ mn
Cikmn= .
a @
We now make the statistical assumption that the
various components of the tensor quantity

ik
Pik,m=[ ]
m

are statistically uncorrelated, so taking the average
values of products involving two different components
gives zero. Average values of the squares of components
cannot give zero since the average of both sin’wx and
cos’wx is 3. (In a purely Euclidian world these averages
would be composed of a sum of squares and be neces-
sarily positive. In a Minkowskian world some of the
terms become negative, because of the differentiation
with respect to the imaginary x4.) In consequence of
this statistical behavior average values of @gmsn Will
become proportional to 8;mbxn+08inbrn. We assume that
the factor of proportionality is a universal constant C':

Gikmn=C (BimOnt0:indrm). (10.7)

(10.5)

(10.6)

This gives

The constant C is of the order of magnitude (ew)? and
can become very large, in spite of the smallness of e.
The inhabitants of this world, who cannot measure
local values but only averages—since the elementary
particles which they can use as measuring rods are
themselves large compared with the basic wavelength—
will find that their metric is nearly Euclidian and yet
the curvature of their world uniform but exceedingly
high. This would not be possible in terms of local
values, of course. However, the conlracted curvature
tensor R,; may come out as proportional to g; (with a
very high proportionality factor) even in the local
sense. Hence, it is not absurd to assume that the sub-
structure of the world is characterized by the law (10.1)
and yet the g, are of the nature of constants, modified
only by oscillatory variations of exceedingly high fre-
quencies but small amplitudes.®

11. SUMMARY

The present paper investigates the possibilities of a
Riemannian geometry characterized by an action
principle which is not linear in the curvature compo-

% For another approach to the problem of the substructure,
based on a Fourier analysis of the metrical manifold as a whole,
see the author’s earlier paper “Matter waves and electricity,”
reference 3, II, where the idea of a cosmological constant of
subatomic dimensions was discussed for the first time.
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nents, as the choice made by Einstein, but quadratic.
Such a Lagrangian is advocated by the property that
the basic action integral remains invariant not only
with respect to arbitrary coordinate transformations
but also with respect to an arbitrary choice of the scale
in which lengths are measured. Hermann Weyl advo-
cated such an action principle at an earlier date, but in
connection with a proposed generalization of Riemann’s
geometry. The author’s aim—spreading over a span of
more than 25 years—was to draw all the possible logical
conclusions from the quadratic action principle, without
abandoning Riemann’s geometry.

Mathematical analysis of this problem was carried
out by a new mathematical method, based on the
method of the Lagrangian multiplier, by which
the problem is reduced to a set of field equations of
first order in an increased number of variables. This
demands 100 variables. It seemed more convenient,
however, to admit differential operators of second order
and formulate the problem in 20 variables. The results
can be summarized as follows.

(1) Einstein’s field equations R;=0 are included
among the solutions but so are the more general
“cosmological equations” R;z=MNgx. The merit of the
latter solution is that it introduces a dimensioned
quantity X which normalizes the lengths of the universe.
To assume that the normal length of the universe is of
cosmic magnitude means that we miss the opportunity
for the explanation of atomism. The present theory
assumes that the fundamental unit of length is of
subatomic dimensions. This makes the cosmological
constant exceedingly large which means that the sub-
structure of the world is not flat but highly curved.

(2) Weyl’s generalization of Riemann’s geometry for
the purpose of introducing the vector potential turns
out to be unnecessary since the vector potential appears
in the action principle quite naturally as the result of a
canonical transformation. Later, a purely metrical
interpretation of the vector potential is found, on the
basis of splitting the contracted curvature tensor R
into a simplified operator B, which is free of all identi-
ties, and a second part which involves the symmetrized
gradient of a coordinate-dependent vectorial quantity
Vi, It is found that this vector, in the ordinary gravi-
tational theory normalized to zero, should actually be
equated to the vector potential .

(3) In view of the largeness of A we succeed with an
approximate linearization of the action principle and a
direct comparison with classical relativity becomes
possible. A deeper analysis of the determining equation
of ¢, reveals that ¢; was wrongly interpreted as the
vector potential of the electromagnetic field. It is in
actual fact the electric current vector. At variance to
the theory of Lorentz in which the current vector. is
foisted on the field as an extraneous quantity without
definite structure, the vector ¢; is determined by a
differential equation of second order which possesses
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static and spherically symmetric eigensolutions. A
static and stable electron can thus be constructed, free
of all infinities. The forces which counteract the strong
repulsion of the electrostatic forces, are of a mechanical
kind.

(4) The matter tensor is reduced to very small
portions of space and does not have that diffused
character that the Maxwellian stress tensor attributed
to it. The role of the vector potential in the Maxwellian
tensor is taken over by the current vector. Matter
becomes strictly insular and the dynamical influence
from particle to particle occurs purely through the
medium of the metric. The Lorentz force loses its pri-
mary significance and comes about by the interaction
of two terms on opposite sides of the equation of motion,
the one belonging to the momentum of the particle, the
other containing the symmetric combination 4, x4+ A4y, ,,
instead of the traditional antisymmetric combination
A x—Ar, s, which in the present theory has no primary
significance.

(5) The superstructure of the metric in the form of
material particles is a weak modification of the sub-
structure which represents a tremendous reservoir of
momentum and energy in potential form. That under
ordinary circumstances the weak modification becomes
of paramount importance and the much stronger
substructure remains latent, finds its explanation in the
fact that the superstructure is of a static character
while the substructure represents a statistically dis-
tributed radiation field of exceedingly high frequency
which is comparable to a capricious sequence of constant
seismographical “‘tremors,” too small to be observable
under ordinary macroscopic circumstances but of
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paramount importance for the question of radiation,
i.e. the interaction of particle and field. It seems thus
justified to call the metrical substructure, composed of
a seething cauldron of ultra-high-frequency oscillations.
the “tremorfield.” Figure 1 gives a schematic illustra-
tion of the general modification of ideas that the present
theory suggests, compared with the traditional con-
cepts. In the traditional view we have a smooth back-
ground, almost completely flat, except for a very slight
curvature, demanded by the cosmologically closed
nature of the universe. Erected on this background we
find the material particles, growing to infinity near the
center (or at the center) and decreasing in strength
toward the periphery, but the decrease is mild enough
to make a direct matter-matter interaction possible;
(the Lorentz force obtained from the conservation law
of the matter tensor). The second picture illustrates a
highly agitated “rippled” background and the material
particles grow out of this agitated background as little
humps, completely isolated from each other. The signals
emanating from a particle and reaching another one
are of a purely metrical nature and belong thus to the
realm of gravitational action. The motion of a particle
takes place due to the response of the particle to the
external metric which does not occur according to the
geodesic principle.

The tremendous complication which comes into the
picture due to the presence of the substructure demon-
strates that our conceptual understanding of physical
action cannot be brought down to a simple and ele-
mentary level. The problem of radiation is much more
than a secondary interaction between field and particle,
induced by the energy loss accompanying the accele-
rated motion of a particle. The momentum-energy
exchange between substructure and superstructure
opens a new perspective for the deeper understanding
of the mysterious quantum phenomena and it seems
possible that Heisenberg’s uncertainty principle is
deeply interwoven with the statistical nature of the
tremorfield. To find the solution of these problems on
the basis of the fundamental field equations may be
far in the future. The author’s aim in this investigation
was only to outline a new solution of the problem of
general relativity which may finally bring gravity,
electricity and quantum physics into one unified
structure, based on the immortal thought constructions
of Albert Einstein.



