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I. INTRODUCTION

VKR since it has been realized that Newton's
~ theory of gravitation has its limitations, several

theories of gravitation have been proposed from time
to time. The aim of this paper is to discuss the various
theories of gravitation with particular attention to
Einstein's theory. We consider only the pure gravita-
tional theories, and thus do not discuss attempts to find
a unified field theory of various fields in nature.

If we leave aside all philosophical considerations, it
seems reasonable that any acceptable theory of gravita-
tion should satisfy the following requirements:

(1) It should be Lorentz covariant, because the spe-
cial theory of relativity has now been well established

by experiments.
(2) It should reduce to Newton's theory of gravita-

tion as a good approximation, because Newton's theory
is able to explain the observed gravitational phenomena
to a fairly high degree of accuracy.

(3) It should also provide a reasonable explanation
for the so-called three crucial tests.

Keeping the above requirements in mind, we first
consider some attempts to construct a theory of the
gravitational field in Rat space similar to the theories of
the electromagnetic field and the meson fields. We then
show that Einstein's theory itself can be regarded as a
theory of gravitation in Oat space, and describe the
advantages of such an approach from logical as well as
practical points of view.

In this paper we deal with tensors in Rat space as well

as in the Riemannian space. In Oat space the Greek
indices will take the values 1, 2, 3, 4, and the space-time
coordinates will be denoted as x„=(x&,x2,x&,ict). In the
Riemannian space the Greek indices will take the values

1, 2, 3, 0, and the space-time coordinates will be denoted
as x"= (xi x~ xs,ct).

II. LORENTZ-COVARIANT THEORIES OF
GRAVITATION

We follow the usual ideas of the field theory to see
whether it is possible to find a theory of gravitation in
Rat space. In order that our theory of gravitation may
reduce to Newton's theory as a good approximation,
our gravitational field on quantization should corre-
spond to neutral particles of vanishing rest mass and
integral spin. Hence, confining attention to fields of
spin 0, 1, or 2, the possible field equations for the
gravitational field are

~ Supported in part by the National Science Foundation.

O'U= ~T,

Q'U„=~T„,

O'U„„=~T„„,

(1)

(2)

(3)

where the scalar U, the four-vector U„, and the sym-
metrical tensor U„„are real field variables; T, T„, and
T„„are the source functions; and f~: is the coupling
constant. We do not here consider the more complicated
field equations corresponding to particles of spin higher
than 2.

The field equation (1) for the gravitational field was
first discussed by Nordstrom, ' and receritly a very clear
presentation of this theory has been given by Berg-
mann. ' In this theory the source function T is the trace
of the energy-momentum tensor of matter, which in-
cludes all particles and fields except the gravitational
6eld. This theory satisfies the 6rst two requirements of
Sec. I, but for the advance of the perihelion of planets
it gives a value, which is one-sixth of Einstein s value
in magnitude and opposite in sign. Since this result is
de6nitely contrary to experiments, this simple theory
of the gravitational 6eld of spin 0 is unacceptable.

The field equation (2) is of a very familiar form. It is
also well known that, in order that the energy of such a
field may be positive definite, U„must satisfy the
supplementary condition

flU„)clx„=0,

whence it follows that the source function T„must also
satisfy the relation

cl T„/Bx„=0.

The only known four-vector quantity, which satisfies
(5), is the current four-vector. It is, therefore, evident
that the gravitational field (2) will be identical with the
electromagnetic field, except that the gravitational
charge of a particle might be different from its electro-
magnetic charge. Such a theory of the gravitational
field has to be rejected, because the observed properties
of the gravitational 6eld are quite different from those
of the electromagnetic field. For instance, the gravita-
tional force between any two particles is always at-
tractive, while the electromagnetic force between like
particles is repulsive. It is rather curious that this
difficulty arises in the case of the field of spin 1, while
the fields of spin 0 and 2 both lead to a gravitational
interaction of the observed sign between any two
particles.

' G, NordstroIn, Ann. Physik 43, 1101 (1914).' O. Bergmann, Am. J. Phys. 24, 38 (1956).
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(6)cj U„./c)x, =0

on Birkho6's gravitational field. For it would follow
from (3) and (6) that

8Tsv/I9$v =0, (7)

which is not possible, because the energy-momentum
tensor of matter alone cannot satisfy the conservation
equation. In fact, instead of (7) we must have

B(T„„+t„„)
=0, (g)

BirkhoG' has suggested an interesting theory of
gravitation, which is based on a field equation of the
form (3), where the source function T„„ is the sym-
metrical energy-momentum tensor of matter. Birkho6's
theory satisfies the three requirements mentioned in
Sec. I. Nevertheless, as pointed out by Weyl, ' this
theory suffers from serious difhculties. The essential
de.culty here is that Birkho6's gravitational field does
not have a positive definite energy, and therefore on
quantization it corresponds to particles of positive as
well as negative energies. But particles of negative
energy are not permissible in the quantum theory of
fields, because otherwise the state of vacuum will be-
come unstable due to the spontaneous production of real
particles of positive and negative energies.

The above-mentioned difhculty in Birkho6's theory
arises from the fact that we cannot impose the supple-
mentary condition

where
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We now put
APv —qPy ff~Jly (15)

where ep" is the Minkowskian metrical tensor

—1 0 0
0 —1 0
0 0
0 0 0

0
0
0

We can then express the tensors gpv and g„v as infinite
series in powers of ~ as'

not only satisfies the requirements of Sec. I, but it also
possesses a beautiful mathematical structure. Usually
Einstein's theory is regarded as a theory of gravitation
in the Riemannian space, which makes this theory
strikingly diBerent from other field theories. We shall,
however, show that Kinstein's theory can also be treated.
as a theory of gravitation in Rat space.

The Lagrangian density for Einstein's gravitational
field in the Riemannian space is given by

where t„„is the energy-momentum tensor of the gravita-
tional field. This shows that the supplementary condi-
tion (6) will be compatible with the gravitational field

equation, provided that we replace (3) by

'U„,=K(T„„+t„„).

gsv —Sjlv+K( ysv+ Ssvp trycKp)

+K'( sp-pV'—V""+4p'"s-, spie'V"'
+, s&s" .pp),pyvp-y"&)+0(K')v

gpv=6pv+Kg g6pvtapg +&Ila&v@' J
ap~ apN

+K (p~vsivspp'y p'y v sp~vppvpip'r

(16)

In the absence of matter, the above field equation
reduces to

~U„y= Zt„y, (10)

which is a nonlinear equation for the gravitational field.
Moreover, when we try to derive this field equation by
the usual variational principle, we find' that the re-
quired Lagrangian density I has to be an infinite series
of the form

L=Lp+KLi+K'Lp+ +K"L„+. , (11)

where the terms in L consist of a product of (ps+2)
factors, each factor being U„„or its derivative. This
peculiar situation in the case of the gravitational field
of spin 2 is of particular interest in the next section.

III. EINSTEIN'S THEORY OF GRAVITATION

The most widely accepted theory of gravitation at
the present time is due to Einstein. Kinstein's theory

' G. D. Birkhoff, Proc. Natl. Acad. Sci. U. S. 29, 231 (1943) and
30, 324 (1944). See also M. Moshinsky, Phys. Rev. 80, 514 (1950).

4 H. Weyl, Am. J. Math. 66, 591 (1944).' S. N. Gupta, Phys. Rev. 96, 1683 (1954}.
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' For mathematical details of the contents of this section, see
S. N. Gupta, Proc. Phys. Soc, (Loudou) A65, 608 l1952).

(17)

where s„„ is reciprocal to pv", and 0(K') contains third
and higher powers of I~:.

If we substitute (15), (16), and (17) in (12), the
Lagrangian density P becomes an infinite series in
powers of a, each term of which is simply a function of
yp" and the Minkowskian metrical tensors ep" and e„„.
Thus, we obtain a flat-space expansion for 8, which can
be more conveniently expressed by using the usual Rat
space notation. In this way we find
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The above expansion can, of course, be obtained up to
any desired power of ~. It is also possible to show that
in Oat space the gravitational field equation can be
expressed as

'y„„=ii(T„„+t„,) (19)

with the supplementary condition

cl+~p/8Ãp =0, (2o)

' lt is well known that in the Riemannian space the quantity
I,„„is not a tensor. However, when we pass over to the Hat space
and confine ourselves to the Lorentz transformations, we can
regard t„„asa tensor.

where T„„and t„„are the symmetrical energy-mo-

mentum tensors for the matter field and the gravita-
tional field respectively. ' The extremely simple appear-
s,nce of the field equation (19) is rather deceptive,
because t„„ in fact consists of an infinite series in

powel s of K.

Comparing (19), (20), and (18) with (9), (6), and

(11), we find that Einstein's field in flat space has just
those properties, which a Lorentz-covariant gravita-
tional field of spin 2 has to satisfy. Thus, we have shown

that Einstein's theory can be reduced to a theory of
gravitation in Rat space by an expansion of the gravita-
tional Lagrangian density as an infinite series in powers

of the gravitational coupling constant I(:. From a mathe-

matical point of view, the theory remains unchanged

when we pass over from the Riemannian space to the
fiat space. But, from a philosophic point of view, the
above procedure implies a departure from Einstein's
ideas in some respects.

IV. QUANTIZATION OF THE GRAVITATIONAL FIELD

We have seen in the preceding section that we can
treat Einstein's theory as a theory of gravitation in Rat
space. Such a treatment has two great advantages.
Firstly, it provides us with a more uniform description
of the gravitational and the electromagnetic fields.
Secondly, it enables us to carry out the quantization of
Einstein s gravitational field by following the same pro-
cedure as we use for the electromagnetic held, as has
been shown by the author. ' On quantization, Einstein's
gravitational field corresponds to gravitational quanta
or gravitons of vanishing rest-mass and spin 2, and it is
possible to calculate the interaction of these gravitons
and other particles in the usual way. In such a quan-
tized theory the nonlinearity of the gravitational field

appears as a direct interaction between the gravitons.
An interesting application of the above theory of the

quantization of the gravitational field has recently been
carried out by Corinaldesi. ' He has calculated the gravi-
tational potential between two particles of spin 0 due
to the exchange of a graviton, and he has then used this
potential to find the two-body equation of motion under
the inhuence of the mutual gravitational fields of these
bodies. In this way he has derived in a remarkably
straightforward way exactly the same equations of
motion as obtained by Einstein, Infeld, and Hoffmann. "

Thus, the treatment of Einstein's gravitational field
as a field in Oat space and its quantization are also very
useful from a practical point of view.

It is a pleasure to thank Professor John A. Wheeler
for valuable discussions.

' S. N. Gupta, Proc. Phys. Soc. (London) A65, 161, 608 (1952).
E. Corinaldesi, Nuovo cimento 1, 1289 (1955) and 2, 168

(1955); Proc. Phys. Soc. (London) A69, 189 (1956)."Einstein, Infeld, and Hoffmann, Ann. Math. 39, 66 (1938).


