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FIRST LECTURE: ON HOMOGENEITY,
COVARIANCE, AND RELATIVITY

' 'N my first lecture, I try to elucidate some general
~ ~ notions connected with relativity theory. I speak
on homogeneity, covariance, and relativity. My
considerations are of a very simple nature but, never-
theless, I hope that they may be of interest, because
simple notions are often the most dificult ones.

If we consider the geometrical aspect of the theory
of space and time, this theory naturally divides into
the theory of homogeneous (uniform) space-time and
that of the nonhomogeneous (nonuniform) space-time.
The former may be called Galilean space and the
latter the Riemannian or Einsteinian space. (I some-
times use the word space instead of space-time. )

The property of space-time of being homogeneous
means that (a) there are no privileged points in space
and in time; (b) there are no privileged directions, and

(c) there are no privileged inertial frames (that all
frames moving uniformly and in a straight line with
respect to one another are on the same footing).

The uniformity of space and time manifests itself
in the existence of the Lorentz group. In particular,
the equality of points in space and time corresponds to
the possibility of a displacement, the equality of
directions corresponds to that of spatial rotations, and
the equality of inertial frames corresponds to a special
Lorentz transformation. The displacements contain
four parameters, the rotation three (the three angles),
and the transformation to a moving frame also three
(the three components of velocity). This gives together
ten parameters —the maximum possible number, if
we do not take into account scale transformations
x'= Xx.

The statement that the Lorentz transformation
leaves invariant the expression for the square of the
line element is to be understood in the following sense.

If one writes ds' as

ds'= dxo' —dxz' —dx2' —dxa'

ds ='Qp, vdxftdxv

then, after the transformation from (x) to (x'), we
have

ds ='Qp, ydxp dxy

with the same matrix
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Il~"II

='
0
.0

0 0
0

0 —1
0 0

0
0
0

changes into

so that

ds = gyp(x)dxgdxp

ds =g~p (x )de dxp

Bx~ Bxp
g"'(*')=g-e

Xfs BXv

If the mathematical form of the functions g„,' is the
same as that of the g„„,that is, if

g„,'(x') =g„,(x),

then the spRce admits R transformation gloup.
For an inhnitesimal transformation

(2)

this leads to
x'=x+pt (x)

Vpq"+V"q~=0

and these equations are completely integrable if

~e=&(g~~gpe g~~g~e)~

that is, for a space of constant curvature. Galilean
space corresponds to vanishing curvature

&pv, ep= 0.

What I wish to stress is that the properties of the
uniform Galilean space-time can be expressed in a
generally covariant manner. On the other hand, the
Einsteinian gravitation theory supposes the space-time
to be nonuniform. It is just this fundamental assump-
tion, and not the general covariance of equations, that
distinguishes the gravitation theory from the theory of
the Galilean space-time.

In studying the properties of homogeneous (uniform)
space-time, the use of Galilean coordinates is con-
venient, but not essential. The property of space-time
of being uniform may be as well expressed in general
coordinates.

Let the substitution

x„'=f„(xpxgxpxp) =f„(x)—
be performed in the expression for ds'. Then,
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This distinction has not been su%ciently understood,
or in any case not suKciently stressed, by many
physicists and, paradoxical as it may seem, by Einstein
himself, although the French mathematician Cartan
has drawn attention to it many years ago. Einstein
called both theories relativity theories. But what is
relativity? This word has been misused. It is natural
to connect the notion relativity with uniformity
of space and time. The uniformity of Galilean space
with respect to positions, directions, and nonaccel-
erated motions may be as well termed as relativity
of positions, of directions, and of nona ccelerated
motions. That is the true content of Einstein's principle
of relativity of 1905. Use of the word relativity in this
sense is quite legitimate.

But, if one does this, if one connects relativity with
uniformity, the relativity has nothing to do with
general covariance, that is, with covariance in which

(1) is true hut (2) is not necessarily satisfied. This
means also that, in the theory of nonuniform syace-
time, there is no principle of relativity. The generaliza-
tion of the theory which consists in replacement of
time by a nonuniform one means a restriction and not a
generalization of relativity. If one uses the word
relativity consistently, then the general principle of
relativity is nonsensical.

In saying this, I do not want to introduce any doubt
as to the validity of the wonderful Einsteinian gravita-
tion theory, but only to stress the inconsistency of the
use of the name "general relativity" when applied to
gravitation theory.

Einstein himself proposed for his theory the name
"general relativity, " because the transformations
considered in this theory are more general than the
Korentz transformations. But he omitted to state
that, in the case of ordinary relativity, one has to
consider transformations for which (2) must also he
fulfilled, while, in the case of the so-called general
relativity, this equation does not have to be taken into
account. Thus, in the "general" theory, Einstein uses
the word relativity simply as covariance, while in the
"special" theory, the same word relativity is used as
uniformity. Since covariance has nothing to do with
uniformity, there arises a confusion which is very
harmful to the understanding of Einstein's theory.
If one uses the word relativity in both senses, then one
has to admit such statements as "in general relativity
there is no relativity" or "the Lagrangian form of
nonrelativistic equations of motion satisfies the require-
ments of general relativity, "etc.

This confusion is more harmful than it would seem
at 6rst glance. It leads to statements like "rotation is
relative" which are obviously false, because the
distinction between a geodetic and a nongeodetic is
absolute and not relative.

The general covariance of equations has been
considered for a long time as a speci6c property of the
Einsteinian gravitation theory, by which it is distin-

guished from other physical theories. But later on&

it was recognized that the covariance by itself cannot
lead to any physical consequences. The true key to
Einstein's discovery and the most difficult step was the
limitation of the functions describing the gravitational
field to geometrical ones (to the g„,'s). Historically,
the covariance requirement played a great part also,
but this is because it was combined with other require-
ments, such as simplicity and beauty of the theory.

Nevertheless, the covariance requirement is still
considered in a somewhat mystical way, as something
prohibiting the use of well-defined coordinate frames,
like Galilean coordinates in uniform space-time. The
existence of Galilean coordinate frames is a character-
istic of the inherent properties of the uniform space-time
of the "special" theory. Likewise, there may be in
"general" theory coordinate frames distinguished by
some remarkable properties and characteristic of the
kind of the nonuniform space-time considered.

In what follows, I wish to draw your attention to the
fact that, for a rather general class of problems of
gravitation theory, there exist such coordinate systems
that may be considered as generalizations of ordinary
internal systems. I mean not the local geodetic system
valid in the vicinity of a point and of an instant of
time, but the nonlocal generalization of the inertial
frames of reference, valid throughout space.

In order to investigate whether such systems exist,
it is necessary to make definite assumptions as to the
physical system considered and as to the properties of
space-time as a whole. This is necessary because of the
nonlocal character of the problem, that requires a
solution of Einstein's gravitational equations with
conditions at in6nity.

In the case of an isolated system of masses, it is
natural to consider the system as embedded in a
Galilean space-time. In a Galilean space-time, the
following theorem holds.

Let

If P satisfies the wave equa, tion /=0 and is finite
everywhere and tends to zero at infirnty like 1/r, as
well as its derivatives, and if in addition the radiation
coIidltlon

8(nP) 1 B(nP)
lim +— =0

8r c Bt

is satisfied for all values of the time 3; thee P vanishes

ideeHcu/ly. The radiation condition states that only
outgoing waves are allowed.

A similar theorem may be proved in the case that
f refers to a static Einsteinian space-time which is

Galilean at in6nity. It is to be supposed that the
theorem holds also for a nonstatic Einsteinian space-
time, though a forrnal proof may be diQicu1t.
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Let the space-time be such that the aforestated
theorem is valid. Then, one can introduce auxiliary
conditions for the coordinates in such a way that they
behave like Galilean coordinates and are determined
like them throughout the space-time (a Lorentz
transformation remains of course arbitrary).

The auxiliary conditions are of the form x.=0;
v=0, 1, 2, 3. But we have

8' 8$
Pv

~&v
where

Consequently, the condition is equivalent to

Bg""/Bx„=0.

Let the coordinates x„satisfy this condition. To find
the most general form

x.'= f (xoxix2x3)
we put

f =a +lpa pxp+q (lp ——1.; l,=l2 lg ———1)——
The linear part of this is a Lorentz transformation.
Now, rl must satisfy the wave equation v&=0,
since f and the linear part satisfy it. Further, p
must vanish at infinity (because the transformation
must reduce there to a Lorentz transformation) and
also vp must satisfy the radiation condition (this
follows from the radiation condition for the g&"'s):

q =outgoing wave at infinity.

But the conditions imposed upon g are so stringent
that, according to the theorem, p —=zero everywhere.
Thus, the whole arbitrariness of the coordinates resides
in the Lorentz transformation.

We thus come to the conclusion that, in the case of
an isolated system of masses, there is no essential
difference in the coordinate question, between the
so-called general and so-called special relativity theory.
In both cases, arbitrary coordinates are admissible,
since the equations are, or may be, written covariantly
with respect to general transformations. But, in
both cases, auxiliary conditions may be imposed upon
the coordinates in such a way that only a Lorentz
transformation remains arbitrary.

The coordinates so defined —I ca11 them harmonic—are particularly adapted to the solution of Einstein's
equatiohs, and all the solutions that I shall discuss
in the following lectures are obtained in these co-
ordinates. But the value of the harmonic coordinates
resides not only in their practical importance, but also
in the fact that they help us to understand the general
features of gravitation theory. Their existence shows
that the usual sharp distinction between the coordinate
problem in special and in general theory is somewhat

artificial. In both theories, coordinates exist that are
determined to a Lorentz transformation, but in both
theories any other coordinate system may be used.

SECOND LECTURE: SOME APPROXIMATE SOLU-
TIONS OF EINSTEIN'S EQUATIONS (MOTION

OF ROTATING BODIES OF FINITE SIZE)

The first approach to the problem of the motion of
finite masses in connection with the solution of Ein-
stein's nonlinear field equations was made in 1927 in a
paper by Einstein and Grommer, and another paper by
Einstein. More definite progress was obtained, in-
dependently and on two diGerent lines, in the years
193g—1940 by Einstein, Infeld, and their collaborators,
on the one hand, and by myself and my pupils, Petrova,
Fichtenholz, and others, on the other hand. I should
also like here to mention the work by Papapetrou
from 1951.The ideas underlying the two research lines
were widely diferent. Einstein s intention was, as it
seems, to build a theory of elementary particles as
field singularities. My aim was quite different. I wanted
to find the solution of Einstein's gravitational equations
for a problem of astronomical kind, where the moving
bodies are of finite size, and the field has no singularities
even within the bodies. I first found an approximate
solution for the case of spherical nonrotating bodies,
and then for the more general case of rotating bodies
that are not necessarily spherical. The equations of
motion for the centers of spherical nonrotating bodies
turned out to be the same as the equations for point
singularities obtained at the same time by Einstein,
Infeld, and others. But this coincidence is due, to some
extent, to good luck, because of the coordinate problem.
My solution is written in a well-defined coordinate
system (the harmonic one), while Einstein's and
Infeld's solution corresponds to some vaguely defined
coordinate system which bears a resemblance to the
Newtonian one, but is modified from step to step
(from approximation to approximation). Professor
Infeld sees even a virtue in the fact that the coordinate
system he uses is not well defined, but remains to
some extent arbitrary —a standpoint with which I
cannot agree.

The general problem is to find the solution to
Einstein's gravitational equatious, which corresponds
to the motion of a given system of masses. It is clear
from the start that, in order to reduce this problem to
a mechanical one, it is necessary to make approxima-
tions. First of all, because of the gravitation waves,
the physical system considered is not a conservative
one. But, since the loss of energy by gravitational
radiation is quite small, it is safe to neglect it and to
consider the system as conservative. Then, the bodies
themselves have in general an infinite number of
degrees of freedom even in the nonrelativistic New-
tonian approximation. Some important conclusions may
however be drawn quite generally: thus, one may write
down the integrals of the equations of motion and the
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asymptotic expressions for the fundamental tensor
without reducing the inner degrees of freedom of the
bodies to a finite number. But, in order to consider the
motion of bodies as a whole, it is necessary to express
the state of motion of each body in terms of a finite
number of parameters.

There are thus two aspects of the problem of motion:
the inner problem and the outer problem. In the
Newtonian approximation, the conditions inside the
bodies have no inhuence on the field outside them:
only the total mass and the moments of inertia are
important. The first relativistic approximations for
the field outside requires a more detailed description
of the motion inside the body, namely a description by
means of Newtonian equations of motion for the
continuous medium of which the body is built. This is
natural, since in the first relativistic approximation
one has to take into account the mass corresponding
to the inner energy, and the latter may be calculated
in the Newtonian approximation.

If, on the contrary, one considers the bodies as field

singularities, the idealization is so far-reaching that the
inner problem does not arise at all.

The formal procedure in solving Einstein's equation
is to develop the solution in powers of q/c, q being a
parameter of the order of the velocities involved. We
have then, U being the Newtonian potential,

p/c~~q'/c' and v%'~q'/c'

Since retardation is treated as a correction, the method
is valid only for moderately large distances between
and from the bodies, that is, for distances small com-

pared with the wavelength emitted. If R is a distance
and ~ a typical frequency, we must have

R&(c/(g.

This condition is not independent of the condition

q~c, since q and Eco are of the same order.
On the other hand, in order to get convenient

expressions for the potential from the bodies, we must

suppose the distances E to be large compared with the
dimensions I.of the bodies. We thus have

L&&E&&c/co

Inside the body, the quantity U/c' may attain the
value a/L, where a is the gravitational radius of the
body. Since this is to be small, we have n((l. , and thus

a(&L(&R«c/(a.

To solve Einstein's equations, step by step, we proceed
as follows. In the zeroth approximation, we consider
the metrics as Euclidean, and the coordinates as
Galilean, and we take for the energy tensor the
expressions,

1 1
Too=—p, T"=—pv, (v'=1,2,3),

C C

(p density), while the values of the other components
T'" are irrelevant t they are of the order T'~ p(q'/c')7.
The foregoing expressions satisfy the relation

since

g T00 QTOi

+
Bt 8$;

=0

~(pv~)—+ =0
Bt Bxi

and the corresponding vector potential

eV(pv')'

ir —r'f

This gives for the metric tensor the approximation

goo= c'—2&; go'= —U'
c2

2U~

c' )

from which the quantities A&"=(—g)~g&" are easily
calculated, namely

1 4U
q00 —+ . g0i—

C C

4U;
0"= —cb;g.

C

These quantities satisfy the equation,

gg00 gg0i

+ =0
Bt Bxi

In the approximation considered, the coordinates are
thus harmonic.

Proceeding to the next step, we must take into
account the corrections in the expression for the
divergence of a tensor. We have now

/TOO QTOk f U'
T00=0

at ax& c' R

gTOi gTik gU
+ — T =0.

BXlc BX

Supposing the bodies to be elastic, we may take for the
energy tensor the expressions

(it is summed from I to 3 over Latin indexes appearing
twice). To make the next step, we calculate the New-
tonian potential

'YP
U= I" dv
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1
c'Too= p 1+—(-', v'+lI —U)

c2

1
t

1
c'T"=pv, 1+—(-', v'+II —U) p—;a—~a

c2 c

c T' =p'v "vg p

These expressions are obtained by adding to that
part of mass density, which is conserved, the variable
part of the mass density and also by adding terms
corresponding to the energy Aux. The notion of energy
Qux was 6rst introduced by the Russian physicist
Umow as early as in 1874 so that the expressions
above are essentially the same as in the Umow paper.

The quantities p etc. entering into these expressions
satisfy the nonrelativistic equations of motion, namely

dn, BU Bp,k

P P
Bx Bxy

second derivatives. If one uses this expression, the
vanishing of divergence of the tensor T&" is no longer
an identity, but is only satisfmd in virtue of the
harmonicity condition. Approximately, we have

( 1 82lag" 16~~
gV„T",

c'aP) ax c'

where 6 is the Euclidean operator. In order that
Bg&"/Bx„should decrease rapidly with the distance
from the mass nz, it is necessary that

gV T""(dx)'=0; (dx)'=dxgdx2dx3
J (a)

where the integral is taken over a volume enclosing
the mass m, . This gives the equations of motion for
the centers of inertia of the separate bodies. To obtain
equations for rotational motion, one has to write

as well as the continuity equation

~(p~')
=0.

~xi

The letter II denotes the elastic energy density that
satisfies the equation

dII fBm, 8eq )= —.'p;.
i +
(gx@ gxg I

In virtue of these equations, it is easily proved that
the divergence of the energy tensor vanishes in the
required approximation.

Now, the calculations can proceed in di6'erent
directions. Firstly, one may obtain, from the Einsteinian
equations

Sxy
gyy 1 cygyg — PPV2g

c2

the next approximation for the g&"s. Secondly, one
may obtain the equations of motion for the bodies
without solving Einstein's equations explicitly. One
can also write down the integrals of the equations of
motion. Since the calculations are rather tedious, I
shall only briefly indicate their principal idea and the
results.

In a harmonic coordinate system, where the condition

Bg""/Bx„=0

g (x,V„T~" x&V T~')—(dx)'=0
(a)

I shall not write down the equations of motion in
explicit form because they are complicated. But it is
worth noting that the equations of motion for the
centers of mass can be written in Lagrangian form.

From the equations of motion, the ten classical
integrals may be obtained (namely, the momentum and
energy integral, the moment of momentum, and
the center of gravity integral). These integrals may be
deduced by integrating the previous expressions
over the whole space instead of over the region where
a single mass lies.

The integrals have the following form. Let

so that

r

W=-',
y~ p'ir —r'((dx')'

P
AW= U=y (dx')',

& [r—r')

where U is the Newtonian potential, and let Ui be, as
before, the vector potential.

%e put

4 1 82W
G'= p+—(k~'+11+3&) &' P'~x~ p~' ——p- — ——

c2 c2 c2 c2 BxBt

Then, the quantity,is satisfied, we have
r

P; = G;(dx)',
J()2gg v

g(&""--'g""&)=-'o' + "
Bx~8$p

which is to be interpreted as the momentum of the
where the members denoted by dots do not contain system, isconstantin virtue of the equationsof motion.
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If we put

M;„=Jt (x;G» —x),G~) (dx)',

The last three terms are correction terms of the order
q'/c' with respect to the main terms.

For the component g" of the fundamental tensor, we
obtain finally

then 3II,~ is the angular momentum and is also constant.
The energy integral is

M= )t p I+—(-v'+II —-U) (dx)'.1
2 2

1

All the quantities M, P;, Wig„E; are constant in
virtue of the relativistic equations of motion.

The values of these constants are essential for the
asymptotic behavior of the metric tensor at large
distances from the system of masses. We write these
expressions for moderately large distances (not in
the wave region). For the space components g'",
we have

2p
g"= —c8 p+——px x»(dx)'

c'r dt2~

2y x, d
t

y'M'
+ p (x;x;vp+x, xg v, —x;x» v, ) (dx)'+

c' r' dt~ c'r4

Introducing the generalized moments of inertia

Dj'i= p&i' 1+ & t +II & U d~
C2

and also the function

7
+ 5;,Jt pW(dx)'

2G8

p.i' r—r' dX'3

which allows us to take into account the retardation
in the vector potential, then we obtain

4y 2yx, 8' 2y cj' p2y )
go'= —~,+ '~, ,— —D, ,+

c'r c'r' Bx,R c'r Bx,Bx~ &c'r)

7y2MP'; y2MPpx, xg 4 82$';
XJ~ pv, x,xg, (dx)'+ + +-

c' BPc'r4C5f2

If one uses the Lagrangian form of the equations of
motion one can obtain the next term (with respect to
q'/c') in the energy integral also.

Finally, for the integral of the center of mass, we
have

3fX;—Pit=E, ,

where the center of mass is defined by

1
MX;= t x,p I+—(-', v'+II ——,'U) (dx)'.

C2

I ay& 4yx, 8' (2y ~
& =-+ + '~x,+

c c'r c'r'
'

ax,ax, Ec'r)

( 2y ) 7p2~2
-I —

I "'"(d )'+
ax;ax, ax, ( c'r) '

c'r2

14y23II2X,x; 4 82t'V+-
C5 Bt

All the expressions are of course approximate. It is
easy to see that A" and A" verify the relation

gg00 QAOi

+ =0.
Bt 8$i

The corresponding relation for A" and g'~ is also
verified up to terms containing c' in the denominator
(terms of higher order have been neglected in g'").
Thus, the coordinates used are in fact harmonic.

In the wave region, the foregoing expressions are
to be modified. I consider this modification in the
next lecture.

THIRD LECTURE: ON GRAVITATIONAL WAVES
FROM A SYSTEM OF MOVING BODIES

In my previous lecture, I have given asymptotic
expressions for the metric tensor, valid at moderately
large distances from the system of moving bodies.
(The distances must be large compared with dimensions
of the system, but still small compared with the
wavelength of the gravitational waves emitted. )
There are questions, however, for which the knowledge
of the asymptotic values of the metric tensor at very
large distances is required, that is, at distances of the
order of the wavelength, or even large, compared with
the wavelength. These questions are of a theoretical
nature, but nevertheless they are of interest, because,
the gravitational equations being nonlinear, it is not
so simple to establish even the existence of gravitational
waves.

In the following, I intend to show that there exist
solutions corresponding to spherical waves emitted by
the system of moving bodies. This is due to the partic-
ular structure of gravitational equations in which the
components gj"" of the metric tensor are at the same
time coefficients in the wave operator and unknown
functions to which this operator applies.

Einstein's equation in harmonic coordinates may
be written in the form

$2gp, p

g(R»" 'g» "R)= 'A.~ c'N»" =——--—
t9XrsBXP
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where S&" is a quadratic form in the first derivatives
of the g &'s. As the zeroth approximation to the wave
operator we choose

where

1 ~ 4nq 8'P |8'P 28&
V=—

I
1+—

I

—
I

+-—+c'( r ) 8t' E8r' r 8r r' )

1 8 ( 8$) 1 WP—
I

sin8—I+
sin@ 88 ( 88 j sin'8 80)'

If we write

and introduce the independent variable

r*=r+2n(lgr —lgrp)

we have approximately

1 8'f 8'f
=0.

()P gy+2

The solution that corresponds to the outgoing wave is
of the form

f=f(,n),

is the angular part of the ordinary Laplace operator
in spherical coordinates. In the coeKcients of the
operator ' only statical terms of the order 1/r are
retained.

We want to study spherical waves going out from the
system. For such waves, the term D*P/r' in the wave
operator is small as compared with other terms and
we can replace the wave equation by

1 ( 4n) O'P (8'f 28$)—
I

1+—I
-I +-—I=o

c'E r J 8t' &8r' r8r)

gOi COi

g'P= cb; —+C

where the C)'"'s are of the same asymptotic form as i)t,

so that
8ca"/8x. = k.C~".

But the derivatives of the static part of the g"'s
decrease as 1/r' and are to be neglected as compared
with the derivatives of the C&"'s. Thus, we may write

8g""/8x =k C""

Now, the harmonicity condition gives

8g""/8x„=k„C""=0

and. this may be integrated (with respect to r or to t).
We thus obtain

k„c~"=0.

The integration constant has been put equal to zero,
because the the static part of the g&"'s is considered
separately. From the last equation we have

Sk
QOi — Cik ~ COO

C

Si'P1 k
Cik

c2

we have approximately

8|t/8x =k P,

where the point indicates the derivatives with respect
to r (or to t).

In the above expression for 0$ only the static
part of g&" has been taken into account, but the non-
static part (which we denote by C&") may be of the
same order of magnitude. We may put

4n
App —+ +Cpp

c cr

where n is the unit vector in the direction from the
system, with components pt;= (z,./r) and r is the With the corrected values of g&", the exPression for the

quantity wave operator becomes

j. p yq=t-~*=t—
I

«+2 lg—I

c c E SO&

Thus, the outgoing wave has the asymptotic form

1 8'f 1 O'P
gao — 0$+ Cao

C BS BXp C BX„BXp

But, if f is an outgoing wave and satisfies (*), then

f(r,n)—
For a function of this form, derivatives with respect to
the coordinates and the time can be calculated by
neglecting the dependence of f on n and r and by
taking into account only the dependence on ~.

Putting
ka =8r/8xa)

and thus
kp=1; k;——e /c,

C ~ =k.kpC ~&=0
BS~Bxp

separately. Thus, in the wave operator applied to an
outgoing wave, the coefficients may be replaced by
their static values. This justifies the asymptotic form
of wave function used in the preceding calculations.
(This form was obtained with the static values of the
Aa"'s. )

We now proceed to the calculations of that part of
the Einstein tensor that is quadratic in the first deriva-
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Smy lgr hp(r, n)
o.p(r, n) dr+

r ~~0 r
1

kpk'(C oC.&
——,'C.W&s).

4c'

tives of the gp". Using the expression (**)for kg""/Bx Inserting this in the equation for h, we 6nd the following
and raising and lowering the indexes with Galilean asymptotic expression for this quantity
values of the metric tensor we obtain

The quantity

op = (~'~-s —p~- 6')'
32~

This may be written as

27
h= —(lgr DE+ p),

cr

is to be interpreted as the energy density of the gravita-
tional waves. We have

8~X"= ~ k~k"
c2

We may also take into account the electromagnetic
radiation. Putting

o, = (EP+H')/8pr,

we have for the energy tensor in the wave zone

T "=0. k k"

Introducing the total density

o= op+oem

of radiation energy, we obtain the Einstein equations
in the form

1 8'
Ap" = okpk".

2c c2

From this, it is clear that the correction to the g&"'s

due to the radiation terms in Einstein's equations
(to the terms 1V&" and T"") is of the form hk&k", where

h satisfies the equation

16m'

This correction modifies by the same amount the
values of C&" and it might seem that this modification
alters the value of the gravitational energy density

0, If it were so, then the integration problem would

not be solved and should be taken up anew. As a
matter of fact, it happens, however, that, owing to
the relation k„C&"=0, the expression for o-, is invariant
with respect to the transformation

C'-~~C-~+Zk-k~.

Thus, the right-hand side of the equation for A&" is
not to be modified.

The radiation energy density 0- is of the form

ap(r, n)

r2

where DE(dQ/pic. ) is the energy loss during the time
r—~0 in the solid angle dQ lying in the direction n.
Superposing a solution of the homogeneous wave
equation, we may write

27 27
Cp" =—fp" (r,n)+—(1gri1E+ p) kpk".

c'r cr

We thus have in the wave region

AM 2y 2yI"=—+ + pp rip f'"+ —(lgr DE+—p)
c c'r c'r c'r

27 27
g"= ppi f'"+. —rc;(lgr AE—+ p)

c4r c'r

since

2' , 2'
A"= cb;p+ f'"+— rp;rp—p(lgr AE—+p)

c3r c~r

nk nink
Oi i k ~ 00 — ik

C C

We now may compare the expressions just obtained
with the former expressions valid at moderately large
distances from the system.

If we introduce the moments of inertia

D;p(r) =)I px,xp(dx)P

1 47&V 2y OP D;p (r)
App —+ +

c c'r c' Bx;Bxk r

2y OP D,p(r)
AOi

c' BxkBt r

2y O'D;p(r)
g' = c8'p+——

cs gt2

and replace t by ~, then we can put

fik (dp/drp)D k(r).

Neglecting terms in hE and e that are very small
(in spite of the logarithm), we find that the formulas
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give approximately correct values for the g&"'s in the
wave zone as well as at moderate distances from the
system.

The harmonicity condition is satisfied rigorously.
I should like to add some remarks as to the energy

pseudo-tensor and the general formulation of conserva-
tion laws.

In virtue of Einstein s equations, one can introduce
the following symmetrical pseudo-tensor

This pseudo-tensor is symmetrical and satisfies the
equation,

surface integrals will be very small and thus the
volume integrals nearly constant.

But the constancy of the volume integrals may be
verified by direct calculation. The integrals themselves,
and not only their time derivatives, may be transformed
into surface integrals. If they are taken over a distant
surface, only asymptotic values of the g&"'s are to be
used. Inserting these in the integrals we obtain for
the quantities *M, *P', *3l'~, *M" just the constants
M, P;, M;&', E; entering in the asymptotic expressions,
while all other terms in g", like D;J„etc., cancel out.
We have thus a direct verification of the asymptotic
expressions for the fundamental tensor.

As to the energy loss due to gravitational radiation,
it can be calculated as usual with the help of the
energy pseudo tensor which is approximately equal to

identically.
Now consider the integrals Introducing the quantities,

*M=c' U"(dx)'

*I"=c' I Us'(dx)s
we obtain, for the rate of energy loss,

s'tiIIis —cs)I (x Us@ x' Usi) (dx)s

*M"=cs (x Uoo tUo')(dx)s

=*M X'—t*P'

taken over a finite volume V. The time derivatives
of these integrals may be transformed into surface
integrals. The surface enclosing the volume V (which
contains all the masses) is to be taken at moderately
large distances from the system of masses. Then the

which is an extremely small quantity owing to the
very large value of the constant

5cs/y = 2.10"gram/sec.

In these three lectures, I have given only a very
brief account of the problems in relativity theory
that have interested me during recent years. A more
detailed treatment of these problems, with all the
calculations involved, is contained in my book Theory
of Space, Time, assd Graeitatioss published in Russian
in 1955, and which will appear in English translation
in 1957 or 1958.


