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HE present article gives a general discussion of
the problems arising in a theory of elementary
particles, together with a survey of papers'-® that have
been published on this subject in German periodicals.
These papers deal with a special model for the theory of
elementary particles that has been constructed to show
some of the main features of such a theory; the author
believes that the model does in fact represent a system
of elementary particles and their interactions in a
manner qualitatively suitable also for the real system
of particles.

1. GENERAL REMARKS ON FIELD THEORY
AND ELEMENTARY PARTICLES

Any attempt to construct a field theory of elementary
particles must from the outset meet the well-known
difficulties arising from the combination of the space-
time structure of special relativity with quantum
theory. Whenever one applies the normal rules of
quantization to a differential equation that is Lorentz-
invariant and represents interaction between fields,
one seems to get divergent results. It may be difficult
in the present state of the theory to give a rigorous
mathematical proof that these difficulties cannot be
completely avoided; but hitherto no solution has
been presented. For a time the process of renormaliza-
tion seemed to offer such a solution. But in the only
case where the mathematical structure could be
analyzed completely, the Lee model,” Killén and
Pauli® showed that the process of renormalization leads
to the implicit introduction of so-called “ghost-states”
which destroy the unitarity of the S matrix and
thereby violate the rules of quantum theory. To get
convergent schemes within the framework of quantum
theory one has therefore been forced to introduce the
interaction as a nonlocal one,® for instance by means

1 W. Heisenberg, Nachr. Akad. Wiss. Géttingen 1953, p. 111.
2 W. Heisenberg, Z. Naturforsch. 9a, 292 (1954).
( $ Heisenberg, Kortel, and Mitter, Z. Naturforsch. 10a, 425
1955).
¢ W. Heisenberg, Z. Physik 144, 1 (1956).
® W. Heisenberg, Nachr. Akad. Wiss. Gottingen 1956, p. 27.
( 6 R.) Ascoli and W. Heisenberg, Z. Naturforsch. 12a, 177
1957).
7T. D. Lee, Phys. Rev. 95, 1329 (1954).
( 8 G.) Killén and W. Pauli, Dan. Mat. Fys. Medd. 30, No. 7
1955).
9 Compare H. Yukawa, Phys. Rev. 76, 300 (1950) and 77, 219
(1950) ; P. Kristensen and C. Mgller, Dan. Mat. Fys. Medd. 27,
No. 7 (1952); C. Bloch, Dan. Mat. Fys. Medd. 27, No. 8 (1952).

of a so-called “cutoff-factor.””® This however implies
deviations from the kind of causality' that follows from
the space-time structure of special relativity. It is still
an open question how serious the deviations from
relativistic causality must be in order to ensure a
convergent mathematical scheme. But complete local
causality seems not to be compatible with quantization.
Therefore any field theory of elementary particles or
of matter must start by offering some solution to the
central mathematical problem: how to combine
quantization with a certain greater or lesser degree of
relativistic causality. Judging from the experiments,
the deviations from causality can scarcely exceed
space-time regions of the order of 10~ cm.

The next important problem concerns the funda-
mental quantities that appear in the mathematical
formulation of the theory of elementary particles.
Nearly all conventional theories start by introducing
some field operators representing the wave fields
connected with some specified elementary particles,
e.g., meson field or electromagnetic field operators.
This procedure, however, requires a definition of the
concept “elementary particle.” Is there any criterion
by which we can distinguish between an elementary
particle and a compound system? Is it any more
justified to introduce a meson field into the fundamental
equations than, e.g., a hydrogen field or an oxygen
field?

The author believes that it is essential for any real
progress in the theory of matter to recognize that such
criteria do not exist.’? If one asks physicists how they
would like to define the nature of an elementary particle
as distinct from a compound system, one frequently
gets the following answer: an elementary particle is a
particle for which one introduces a separate wave
function in the fundamental equations. Sometimes one
gets the different answer: any particle with spin <1,
charge <2, isotopic spin <% is elementary; all other
particles are compound systems. Obviously both
definitions contain elements of complete arbitrariness.
Any careful investigation into the properties of atomic
particles shows that there may be quantitative differ-

10 Compare G. Wataghin, Z. Physik 88, 92 (1934) and 92,
547 (1934), and G. Wentzel, Helv. Phys. Acta 13, 269 (1940).

1t Compare M. Fierz, Helv. Phys. Acta 23, 731 (1950), and
E. C. G. Stueckelberg and G. Wanders, Helv. Phys. Acta 27, 667

954).
12 Compare W. Heisenberg, Naturwissenschaften 42, 637 (1955).
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ences between different particles which suggest that it
might be convenient in a given experiment to call one
particle elementary and the other a compound system;
but no qualitative distinction between elementary
and compound can be made. A proton certainly looks
like an elementary particle for energies <100 Mev,
but it may be considered as composed of a A particle
and a 6t particle in collisions of much higher energies.
One might argue that the A° particle and the 6% particle
are unstable while the proton is stable, that therefore
the proton cannot be composed of A° and 6+. The
fallacy of the argument is, however, seen at once from
the case of the deuteron, which is stable but usually
considered as composed of proton and neutron, the
latter being unstable. For an understanding of matter
and of the atomic particles it is essential to realize
that the question whether the proton is elementary
or a compound system has no answer. This result should
not prevent us from using the term ‘“elementary
particle’” whenever it is convenient to disregard its
inner structure. But it should not be misunderstood as
making some specific statement about the nature of
the particle.

To avoid the two fundamental difficulties which
have been put here at the beginning of the discussion,
the efforts of many physicists have in recent years been
concentrated on the S matrix.’® The S matrix is the
quantity immediately given by the experiments. It is
not difficult to construct S matrices which fulfill the
requirements of Lorentz-invariance and unitarity
without encountering any divergent terms. At the same
time the problem of the ‘“elementary” particles does
not occur immediately in the S matrix, since any
incoming or outgoing particles are here characterized
by their wavefunctions ¥in or you, irrespective of
whether they are compound or not.

The S-matrix formalism does not by itself guarantee
the requirements of relativistic causality. Therefore
many recent investigations have dealt with supplemen-

tary conditions to be put on the .S matrix to ensure

relativistic causality. The best known example is the
treatment of the dispersion relations.* Insofar as these
conditions state relations between observable quantities
they will serve as a very useful tool for the interpretation
of the experiments. If, however, their mathematical
formulation makes use of an extrapolation of the S
matrix into regions of momentum space, where the
relations p?>4-«*=0 for the respective particles are not
fulfilled, their value might be very limited, since it is
difficult to see what the momentum vector pu of, say,
a hydrogen atom in its normal state can mean when the
relation p>4«2=0 (where « is the total mass of the atom
in its normal state) is not fulfilled. In other words:

8 Compare J. A. Wheeler, Phys. Rev. 52, 1107 (1937), and
W. Heisenberg, Z. Physik 120, 513, 673 (1943); Z. Naturforsch.

1, 608 (1946); C. Moller, Kgl. Danske Videnskab. Selskab. 23,

No. 1 (1945); 24, No. 19 (1946).
14 Compare :Gell-Mann, Goldberger, and Thirring, Phys. Rev.

95, 1612 (1954).
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the extrapolation into these regions of momentum
space requires eventually the distinction between
elementary particles and compound systems which
cannot be more than a more or less suitable convention.
It is perhaps not exaggerated to say that the study of
the S matrix is a very useful method for deriving
relevant results for collision processes by going around
the fundamental problems. But these problems must be
solved some day and one will then have to look for a
mathematical formalism that allows one to calculate
the masses of the particles and the .S matrix at the same
time. The .S matrix is an important but very compli-
cated mathematical quantity that should be derived
from the fundamental field equations; but it can
scarcely serve for formulating these equations.

As a result of the foregoing discussion we can try
to state some general principles for a theory which
attacks the problem of the fundamental field equations
for matter.

1. The field operators necessary for formulating the
equations shall not refer to any specified particle like
proton, meson, etc.; they shall simply refer to matter
in general.

2. The particles (elementary or compound) should
be derived as eigensolutions of the field equations.

3. The fundamental field equations must be nonlinear
in order to represent interaction. The masses of the
particles should be a consequence of this interaction.
Therefore the concept of a ‘“bare particle” has no
meaning.

4. Selection rules for creation and decay of particles
should follow from symmetry properties of the funda-
mental equations. Therefore the empirical selection
rules should provide the most detailed information on
the structure of the equations.

5. Besides the selection rules and the invariance
properties, the only other guiding principle available
seems to be the simplicity of the equations.

The empirical spectrum of elementary particles
looks very complex. All hitherto observed particles
have lifetimes > 1075 sec; for most of them the lifetime
is >10"" sec. The natural lifetime for elementary
particles that can decay into others would, however, be
of the order 102 to 10~ sec. This comparison shows
that the observed particles represent those rare cases
where the selection rules provide an exceptionally long
lifetime. When one compares in the optical spectra of
atoms the number of levels with the natural lifetime
of the order 10~8 sec with the small number of meta-
stable levels where the lifetime is longer, say by a factor
of 108, one gets an idea of how complicated the real
spectrum of elementary particles may possibly be.

Under these circumstances it seems advisable first
to study a simplified model, which may be constructed
in accordance with the foregoing principles. The model
to be discussed in the following sections is certainly
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too simple to represent the real spectrum of elementary
particles. But it shows the main features of an adequate
theory inasmuch as it represents a world consisting of
elementary particles with qualitatively similar prop-
erties to our own.

2. MODEL FOR A THEORY OF MATTER

(a) Wave Equation and Quantization

The model which has been studied in detail in the
series of papers mentioned above'=® starts from the
equation™®

oy
v—— YY) =0. M

Xy

¥(x) is defined as a spinor wave function representing
matter. The equation has been chosen according to the
principles 1, 3, 5 of the foregoing section. Equation
(1) is certainly too simple to represent the real particles
since it does not contain the isobaric spin variable.

Equation (1) defines a quantum theory for matter
only if commutation relations for the operator ¥ (x)
are added. At this point one meets the difficulty
mentioned in the beginning. This difficulty will be
discussed in some detail.

To get some information on the possible assumptions
for the commutation relations and on the eventual
connection between ‘“commutator’” and ‘““‘propagator,”
it is convenient to consider the operator:

Xa (') = exp{ —i{ st (&) +conj. Ja(®)
Xexp{+ilan* () +coni.T}.  (2)

(“Conj.” in the exponent means the Hermitian con-
jugate.) @, is an arbitrary constant spinor that anticom-
mutes with ¢(x) and ¢+(x) everywhere. xq(x,x'),
considered as a function of x, satisfies the wave Eq. (1).
If the components a, are chosen as very small, x.(x,x")
can be expanded as

X (#,8) = e () — i@, [ (W) (&) 5 (' () ]
— 10" [Wa (@) @+ () "4 (5 () Wa()
+on @)

(The star *denotes Hermitian conjugation.) To preserve
relativistic causality, one usually assumes the anti-
commutators to be zero for space-like distances
(x—a’)?>0. This assumption means that x.(x,x")
corresponds to a solution of (1), in which a secondary
wave starts from the singular point #=1" and fills the
cones of future and past. The amplitude of this wave
will be very small everywhere except in the immediate
neighborhood of the lightcone, if the a, are very small.
In all conventional forms of quantum theory it has been

* The original papers start from an equation that differs from
Eq. (1) by the sign of the second term. But—as has been pointed
outé—if one wants to use conventional formalism, one should say
that the calculations actually refer to Eq. (1).
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assumed that the anticommutators (or commutators)
are singular c-number functions in the immediate
neighborhood of the lightcone. If this assumption is
taken over into Eqgs. (2) and (3), one can put

Xe (x>x’) =Xa (x;x/>+ca (x—x/)y (47)

where co(¥—«’) is a ¢ number function (except for a
sign function occurring in the a,) and contains the
singularities at the lightcone, while x.0(x,2") is smooth
at the light cone. One may further assume in defining
ca(x—2") that the vacuum expectation value of x,°(xx")
vanishes. By inserting (4) into (1) and taking the
vacuum expectation value, one finds for ¢, as function
of x an equation of the type

ad
'y,,—c— Beo(cte)—x(s) - c=PQ x|,  (5)
Ixu

where s= (x—x)% and «(s) is essentially given by the
vacuum expectation value of |x°(x,x’)|%. The right
side of (5) vanishes in the neighborhood of the light-
cone.

To study the possible assumptions for the anti-
commutator

Sar(28") =a (@)Y (2) +¥0 (W (2), (6)

one has therefore to look for the solutions of the
classical nonlinear wave equation (5) where the right-
hand side can be put equal to zero, since we are only
interested in the neighborhood of the lightcone. In this
region S, (x—2') should behave as c,(x—2") for small
a,; or more accurately : one should study the continuous
group of solutions of (5) that corresponds to different
values of @, and should finally assume

Ses(5—2")~— lim (M) (7a)

ay—0 aay

near the lightcone. For the second anticommutator it
is plausible to assume as usual

Ya ()W (o) 0 (2 )Wa () =0

near the lightcone.

For the definition of a quantum theory for matter
it will be sufficient to state, besides (1), the commuta-
tion rules only near the lightcone, since their value in
other parts of space and time will then follow from (1).
The equations (S) and (7a) state the required connec-
tion between “anticommutator’” and ”propagator.”

Mathematical analysis of (5) shows that its solutions
exhibit infinite oscillations in the neighborhood of the
light cone.? This is entirely different from the behavior
of Sa, in a linear wave theory, where S, (x— ") behaves
like the derivative of the Dirac & function.

At this point we meet the difficulty mentioned in
the beginning of Sec. 1. If we are primarily interested

(7b)
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in the vacuum expectation value
Sav (@) = (@ Ya @)t (o)) +F (0" )a() | 2)
=§<ﬂl¢a(x) |2)(@ [yt (2") |2)
+§<ﬂi'//v+(x’) |2} |Ya(2)|2), (8)

each group of intermediate states &, belonging to a
definite mass eigenvalue , contributes an ordinary
Schwinger function Se,*(xx’) belonging to that mass;
and the 8 and &’ functions of the different intermediate
masses all add up with the same sign. Therefore the
sum over ® in (8) can never lead to the behavior of
ce(x—%"), the infinite oscillations near the light cone,
since the integral contribution of the oscillations
vanishes near the lightcone, while that of the § functions
does not vanish.

At a finite distance from the lightcone the sum over
® in (8) can very well represent a solution of (5) for
small a,, since here the nonlinear term ¢(ctc) can be
neglected and the variable coefficient «(s) in (5) corre-
sponds to the different mass values of the states .
But near the light cone the rules of quantization must
be changed in order to avoid the contradiction between

(5) and (8).

(b) Hilbert Space II and the Unitarity of
the S Matrix

The only feasible way of getting rid of the § and &'
functions on the lightcone in (8) seems to be an
extension of Hilbert space by the introduction of new
intermediate states ®, which change the metric of
Hilbert space into an indefinite one. This extra group
of states, called Hilbert space IIin the papers mentioned,
is chosen so as to cancel the § and & functions on the
lightcone in (8). They do not contribute to S(xx’) in
other parts of space-time. But they will then contribute
to the functions S;(xx’) or Sr(xx’) also in other parts
of space-time, if the normal Schwinger relation

1 o
Syt =- f S(ei—)dl )t ©)

is taken over from conventional theory.

If, in a first approximation, one considers in Hilbert
space I (which comprises all physical states of the
system) only one group of intermediate states &,
belonging to a single mass «, the corresponding part
of the S function in momentum space would be

puyutik

. (10)
p*«*

DOt

S(p)

The subtraction of the 8 and §’ functions on the light

cone can then be performed by putting, in this same
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approximation,

_imw-i—ix puyptix , pryuk?
= — f .
P+e P ()’
The contributions from Hilbert space II appear to

belong to a mass value 0. But by writing the contribu-
tions in a different way, namely,

pryp-it 1 1 )

35(p) (11)

Cpuvn  puyptic .

= lim —
(p2)2 p2 €—0 € p2 p2+ €
ipuyn P
x(1- =), 12
K K2

one sees that the extra states of Hilbert space II can be
considered as “dipole” states, composed of one normal
state with mass 0 and a “ghost state” with mass
4/e—0. (“Ghost state” on account of the negative sign
in the metric.) As a result of the dipole character of
these states, their representatives do not depend
simply exponentially on space-time as do the representa-
tives of states in Hilbert state I. A simple calculation of
the representatives on the basis of (11) and (12) shows
that either the covariant or the contravariant represent-
ative has the space-time dependence (in a suitable
coordinate system)

(t+const)eirx (13)

while the other representative has the usual exponential
form efrx,

This is an important result, because it shows that the
states of Hilbert space II—contrary to the ‘“ghost
states” of Killén and Pauli®%—do not destroy the
unitarity of the S matrix. In fact if in a collision
problem all incoming waves belong to Hilbert space I,
the total wave function depends exponentially on space-
time in both representations. This behavior cannot be
changed by collision [on account of the invariance of
Eq. (1) for the inhomogeneous Lorentz group ], therefore
also the outgoing waves cannot contain contributions
from Hilbert space II, since they would destroy the
exponential form of the total wave function. Therefore
the extension of Hilbert space, which was necessary
in order to avoid contradiction between (5) and (8),
does not destroy the unitarity of the S matrix and
may therefore be compatible with the experimental
results. (Introduction of Hilbert space II has in this
respect some resemblance to the method of Guptal®
in quantum electrodynamics.) Of course this extension
does mean a certain deviation from local relativistic
causality. The local behavior of ¢(x) cannot be
interpreted in the usual manner, since y(x) contains
contributions from Hilbert space II, and their conven-

155, N. Gupta, Proc. Roy. Soc. (London) 63, 681 (1950); 64,
850 (1951); K. Bleuler, Helv. Phys. Acta 23, 567 (1950). Compare
P. A. M. Dirac, Proc. Roy. Soc. (London) A180, 1, (1942).
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tional interpretation would, on account of the negative
sign in the metric, lead to negative probabilities, which
have no meaning.}

Actually these contributions from Hilbert space II
change the form of Si(¥2’) and Sr(xa’) fundamentally.
For large values of (x—«")2>0 these functions decrease
more slowly (like (x—«'),v,/(x—«')?) than the usual
Schwinger functions and this behavior leads to long
range forces between the particles. It will be shown
later that it is through these contributions that Eq. (1)
contains quantum electrodynamics with a specific value
of the Sommerfeld fine-structure constant.

(c¢) Methods of Integration

The equations (1) and (11) should be sufficient to
define a quantum theory for matter. Since Eq. (11) is
only a first approximation, it should generally be re-
placed by its precise form:

v . .
1S(p) = f” © dK[Puw 3 Puw+mJl Puwuc] (14a)
p2_|_K2 p2 (p2)2

[otae=1,

where p(x) is the mass spectrum of fermions. p () should
be derived from Egs. (1) and (14).

On account of the infinite oscillations on the light-
cone, one can simply put

Say(xa’)=0 for

with

(x—«")2=0. (14b)

The only method of integration that has been used so
far for Egs. (1) and (14) is what is sometimes called
the new Tamm-Dancoff method.'® One considers =
functions of the general type

Tagy (2102 05) = (@] Tha(w1)¥s (w2 (5) | ) (15)

as covariant representatives of the states ®. (7" means
the time-ordered product.) By means of Eq. (1) one
can find differential equations, which connect the
derivatives of one = function with another r function
with a number of variables larger by two. This differen-
tial equation can be integrated by means of the Green
function Gr(»x’) of the Dirac equation for mass zero.
(The Feynman functions Gr are chosen in order to
satisfy the boundary conditions.) By repeating this
process a connection can be established between the

t Note added in proof—A mathematical analysis of this method
of quantitization can be obtained from the Lee model. The con-
stants go and m, of the Lee model can be adjusted to let the energies
of the normal V particle and the “ghost-state’ coincide. In this
case the two states form a dipole as in (12), the renormalized wave
functions ¥, commute on the subspace {=const and the two parts
of Hilbert space are distinguished by the asymptotic behavior of
the wave functions. The details will be published in Nuclear
Physics.

18 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951);
Freese, Z. Naturforsch. 8a, 776 (1953).
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original 7 function and another one, where the number
of variables is larger by any even number. This latter
7 function is then expressed in terms of the so-called
¢ functions through the process of contraction:

(%2 | Y2 )= @ (@a- + [y1ya- +) — 35Sk (w1y1)
X (e |yer )=+ - +1Sr(wry1)Sr(22y2)
X(p(xs"\ys")'f‘ ....... ,

and finally all those ¢’s are neglected, the number of
variables of which is larger than that of the original
7 function.

In this way a linear integral equation for the 7
function is established that can be used for the deter-
mination of the mass eigenvalues or the S matrix.
This integral equation can be represented by a Feynman
graph, consisting of two types of lines, one representing
the Gr function, the other representing the Sr function.
From (1) and (16) one can easily derive the following
rules for these graphs:

(16)

1. In every point of the graph four lines meet. The
initial and the final points of the graph are considered
as identical, or the graph is repeated as a periodic
pattern.

2. The numbers of Sr and G lines in the graph are
equal.

3. Every point is connected with one of the final
points through one sequence of G lines.

4. The connection of two lines at a point means
matrix multiplication of the respective operators.

5. The kernel of the integral equation is given, when
the points of the graph and the pattern of G lines are
given. One has to sum over the contributions from all
possible .S line patterns belonging to the given G line
pattern.

This scheme differs from conventional formalism by
two characteristic features. The contraction is per-
formed by the function Sy, which is nof identical here
with the Green function Gr; and there are no § terms
in the equations, which in the usual theory arise from
exchange of y-factors ¢¥(x1) and y*(x;) at the point
t1=1,. Here all Y (x) functions anticommute on a given
subspace {=const. Therefore, quantization is introduced
only by the contractions.

This last difference is a significant consequence of
the nonlinearity of the equations. If in a linear theory
the commutator vanished on a given subspace {= const,
it would, by virtue of the wave equation, vanish
everywhere. Therefore one must start with a 6 function
at the point x=x" on the subspace ¢=const. In a
nonlinear theory the commutator can vanish every-
where on ¢=const and still be different from zero at
other times. It is a well-known property of nonlinear
equations—the fact that a solution sometimes cannot
be continued—which has to be used here in the defini-
tion of quantization.
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The contraction function Sy can, in a low approxima-
tion, |be represented by (11), and the eigenvalue « is
to be obtained from the integral equation. In higher
approximations one may consider several eigenvalues
or, finally, the form (14).

Whether this whole procedure will, by going from
low to high approximations, converge to a final solution,
is still an open question. It does give finite results in
any approximation. But it may be necessary to define
the integral equations by averaging over certain
groups of G-line graphs, in order to obtain convergence.
This problem has been treated in detail by Matthews
and Salam for conventional formalism.'” It may also
be necessary to replace the ¢ functions by slightly
different groups of functions, as suggested by Maki.1®
The procedure has been studied in detail in the example
of the anharmonic oscillator. But whatever the results
of such mathematical investigations will be, one will
probably get some—though inaccurate—information
on the solutions of (1) and (14) by using the rules
described in this section for the low approximations.

(d) The Lowest Eigenvalues

The lowest eigenvalues of (1) and (14) have been
calculated along the lines described in the foregoing
section.® For the eigenvalues of the fermion type all
graphs of the type of Fig. 1 have been combined to

Fic. 1.
/
]
|
\

S’

N/

define the integral equation. (The G lines are given
as full, the S lines as dotted lines.) Only r functions
with one or three variables have been used.

The result was that there exists—in this approxima-
tion—only one eigenvalue for the mass « of a fermion:

k=7.426/1. 17)
The spin of this particle is 1/2.

The bosons have been calculated from the graph
given in Fig. 2. Only 7 functions for two variables [ ()

\
\' Fre. 2.

/

and ygt(x) with equal space-time coordinates] have
been used. Four different bosons with nonvanishing

7P, T. Matthews and A. Salam, Proc. Roy. Soc. (London)

A221, 128 (1954).
18 Z. Maki, Progr. Theoret. Phys. 15, 237 (1956).
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masses were found, with mass values, spins, and

parities as shown in Table I.

Tasre L.
Mass
«b Spin Parity
0.33 1 —1
0.95 0 1
1.74 0 —1
3.32 0 1

It is interesting that (1) and (14) give for the boson
masses values which are considerably smaller than the
mass of the fermion. This fits well with the empirical
fact that the masses of = meson and 6 meson are
considerably smaller than the mass of the nucleon.

It may be useful at this point to compare the proper-
ties of the model, given by (1) and (14), with the general
principles laid down at the end of Sec. 1.

The wave function y¥(x) in (1) refers to matter in
general, not to a specified particle. The particles do
actually come out as the eigensolutions of the equations.
Since ¥ (x) has been chosen as spinor, while the com-
mutation relation states the value of the anticom-
mutator, all particles with half quantum spin obey
Fermi statistics, all particles with integer spin obey
Bose statistics. States of the first kind are obtained when
one applies an odd number of ¥(x) operators on the
vacuum state, the Bose states are created by applying
an even number of y’s.

The nonlinear term in (1) is multiplied with a
coupling constant with the dimension of a length. A
variation of / will simply change all mass eigenvalues
by a constant factor. The ratio of the eigenvalues
depends only on the general form of the nonlinear
term. The masses of the particles are entirely a product
of interaction, namely of the nonlinear term. Therefore
their interactions are given simultaneously with their
masses; the concept of a bare particle has no meaning
in this theory.

Besides the bosons given in Table I analysis of (1)
reveals the existence of still another group of boson
states belonging to the rest mass 0 (which had not been
expected in the papers!?). Their existence can be seen
as follows.? When one applies the integral operator
represented by the graph of Fig. 2 on a = function
belonging to a total momentum vector J, with J,2=0,
one gets generally an infinite result. But there are
special forms of the 7 function

70(x] 2) = @IVales* (2) ) = vor,

for which the divergencies disappear. These special
7 functions can be used to satisfy the integral equations.

As conditions for the cancellation of the infinite
terms one finds

(18)

Jwyu(r—spurr) =0,
(r— Spur"')];ﬂu =0,
YurYu=0.

(19)
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F16. 3.

If one introduces two four-vectors A4,, which satisfy
A,J,=0 and are linearly independant of each other
and of J, (there are just two such vectors), one can
solve the equations (19) for 7 by putting

(20)

(21

There are two independent solutions, since there are
two independent vectors A,. Another equivalent
solution would be

T=JuA Y
where
Y= (1/2) ('Yu'Yv_'YV'YM)-

7=Ju A Vurys (22)

and actually this solution has been discussed.? But it is
easily seen that the solutions (22) are not linearly
independent of (20); they can be obtained from (20) by
a linear transformation. Therefore there are just two
independent solutions for each vector J, characterized
by the “vectors of polarization’ 4,. It has been shown?
that these bosons of rest mass 0 have all the transforma-
tion properties of light quanta and belong to the spin
spin values =4=1 (the axis of the spin being parallel or
antiparallel to the direction of propagation).

Existence of these bosons is closely connected with
the existence of long range interactions between
particles, which in turn are a consequence of the dipole
states in Hilbert space II.

(e) Interaction between Particles. Electrodynamics
and the Fine Structure Constant

The interaction between particles in collision proc-
esses can be treated by essentially the same method
as the mass eigenvalues. To give a graph-picture of the
interaction one can represent the incoming and outgoing
particles by infinite tails, which are just periodic
repetitions of the elementary graphs used for the
calculation of their masses.® The interaction is then
represented by a pattern of S and G lines connecting
the periodic tails. A typical example is shown in Fig. 3.

It follows from rule 3 in section 2(c) for the graph
patterns that there must be a break in the G lines
connecting the two particles, which can be filled by
two S lines, as is shown in Fig. 3. The two S functions
vary for large space-like distances of x and ' as
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(x—a')yy,/(x—a')?, their product varies roughly as
(x—«")~% Therefore the two S functions, connecting
the inner endpoints of the G lines, show together a
behavior similar to that of the Dy function of quantum
electrodynamics, and produce long range forces between
the particles qualitatively similar to Coulomb forces.

Of course the multitude of graphs of the general
type of Fig. 3 contains many different interactions,
produced by all the different fields that belong to the
different particles, bosons, and fermions. Actually
the interaction will be a mixture of contributions
from all particles that cannot be disentangled. Only in
the case of bosons of rest-mass 0 can one separate their
influence by studying the long range forces, since all
other particles would produce only short range forces.

Calculation of the exact form of the long range forces
is, however, rather complicated. One may for instance
try to derive the cross section for collisions in which
very little momentum J, is transferred from one
fermion to the other:

P,O—pP,0=],=P,&—P,®; |J2|<Kk (23)
In this case it is necessary to take into account very
long tails of the type of Fig. 4 in between the fermions,

- -—— - —
A ORI

because for very small J, the tail means bosons (of rest-
mass 0) that are nearly free; and for free bosons the
tail could be infinitely long. Therefore the calculation
has been carried out in two steps. In the paper cited in
reference 3, the summation over all tails of different
lengths was performed and led to an operator connecting
the two fermions, which was composed of the eigenfunc-
tions (20) or (22) of the light quanta [(104) of the
paper cited], thereby showing that the long range
forces are actually transferred by means of the field
corresponding to the light quanta of Sec. 2(d).
Then the operator O% (page 440 of the paper), which
connects as a kind of vertex part the former operator
with either of the fermions, had to be calculated.
08 is represented by a graph of the general type of

F1c. 5.
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Fig. 5. From arguments of symmetry and invariance®
08 has the general form

Ju
Ouglpov = C0n5t_2 (Yur)aB (V) po- (24)

The constant factor could be calculated only rather
inaccurately, since its determination required the use
of special methods of approximation the accuracy of
which is somewhat doubtful. Finally the transition
matrix element for the collision turns out to be

con

L (PO POY T POy (P®)]

]2

O (PW—PpW' pA— P@")—exchange term. (25)
[u(P) is the eigenfunction belonging to a fermion of
momentum vector P.]| This is exactly the form for the
transition element in quantum electrodynamics. The
value of the fine structure constant ar was determined
[using the inaccurate value of the constant in (24)]
with the result

ar=1/267. (26)
This shows that quantum electrodynamics with a
special value of the fine structure constant is contained
in the Egs. (1) and (14) of our model for a theory of
matter. One could not expect that the value of the
fine structure constant should just be the empirical
value 1/137, since the model theory is not yet the
correct theory. But the fact that one gets a definite
value of this constant of the right order of magnitude,
seems to indicate that the model is in this respect not
too far from the truth.

Equation (25) is perhaps not sufficient to show that
(1) and (14) contain the complete scheme of quantum
electrodynamics. Actually (25) has been supplemented®
by proof that the conservation of charge holds generally
and that one can construct field operators F,,, which
obey the Maxwell equations. These field operators are
closely connected with the operators ¥ (x)vu¥+t(x)
which have the same transformation properties under
the Lorentz group, but they are not identical with
them. The operators ¥ (x)v.¥t(x) represent, besides
the fields F,,, other properties of matter, for instance
the spin density of the fermions. Conservation of charge
follows essentially from the identity 8%F,,/dx,dx,=0
and is not primarily connected with the invariance of
the fundamental equations (1) and (14) against the
transformation y—pe@. Since all particles can be
considered as combinations of fermions, their charge
can only be an integral multiple of the elementary
charge of the fermion. The charge of the antifermion is
opposite to that of the fermion. The bosons calculated
from the graph [Fig. 2 in Sec. 2(d)] are neutral.

A few remarks may be added concerning the smallness
of the fine structure constant. This smallness certainly
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has nothing to do with the value of the coupling
parameter J. It is primarily a consequence of the
mathematical form of the two functions Gr and Sr
which are combined in the graph of Fig. 2. Their form
leads to the conditions (19) which are very restrictive
with respect to the possible solutions for 7.4. In calculat-
ing the operator connecting the two fermions one has
to make use of the relation:

27)

Baﬁapvzi % VavNVﬂpN,

where the sum is to be taken over all 16 elements of
the Dirac algebra. Of this sum only the tensor terms
(Yur)as (vur)gs contribute to the interaction on account
of the conditions (19), and only three of the six tensor
terms contribute to the electromagnetic forces on
account of the properties of the operator O in (24).
These reasons for the smallness of the fine structure
constant would therefore remain even if the form of
the nonlinear term in (1) were altered.

If one were to define a corresponding coupling
constant for the short range forces, its value should be
of the order unity, since there are many bosons of
different symmetries and the restrictive conditions
(19) do not appear. This result fits well with the
empirical fact of a large coupling constant for the
Yukawa interaction. But one should remember that it
should not, according to the graphs of the type of Fig.
3, be possible to single out a special short range interac-
tion for a given boson from the rest of interactions.

(f) Nonlinear Integral Equations for Sy

The form of the function S has so far been derived
from the assumed existence of fermions together with
the assumption of the states of Hilbert space II.
Since Sy is identical with a 7 function of two variables
it should also be possible to derive Sy from integral
equations in the same manner as is done with the other
7 functions. There is only the one essential difference

F16. 6.

- ——

e e

that the integral equations for Sy would be nonlinear,
since Sp enters twice into these equations, once as
the initial = function and again as the function of
contraction. For instance, a graph of the type of Fig. 6
would lead to an integral equation of the general type

dSF
Yi—~GpSF.
0xy

(28)

An integral equation of this type would probably,
on account of its similarity to (1), lead to oscillations
near the light cone, which do not show up in the
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approximate solution (11). Therefore one could not
expect to derive the solution (11) from an approximate
integral equation like (28); still the exact form (14)
could quite well be a solution of the exact integral
equations. Actually it should be possible, at least in
principle, to determine the spectrum p(x) of the
fermions from this integral equation.

An attempt® was made to use differential equations
corresponding to the integral equations of Fig. 6 for a
determination of the asymptotic behavior of Sr at
large space-like values of x and «’. There were two
differential equations, one connecting Sp(xx’) with
7(xx|x2’), the other connecting 7 (vx|xa’) with 7 (xax’|
xx'«’) and by means of three contractions again with
Sr(xa’). Kital® has pointed out that these equations?
contained an error of sign and that, after the cor-
rection of the error, the equations do not lead to the
correct asymptotic behavior of Sr. But a closer
investigation has since shown that actually the whole
procedure for the calculation cannot be justified,
since 7(wx | xx") is identical with ¢ (xx|%x’), on account of
(14b), Sr(0)=0. The evaluation of 7(xxa’|xx's’) by
means of contractions, however, is only possible if the ¢
functions of four variables can be neglected. The second
differential equation would therefore use the ¢ function
of four variables on the left-hand side while it would
neglect it on the right-hand side. This cannot lead to any
reasonable approximation.

It has so far not been possible to improve this
calculation and to get information on the form of the
Sp function from the nonlinear integral equations,
since the construction of the ¢ functions with four
variables would require very complicated mathematical
investigations.

3. EXTENSION OF THE MODEL TOWARDS A
REALISTIC THEORY OF MATTER

(a) Introduction of the Isobaric Spin

The model of (1) and (14) cannot represent the real
system of elementary particles since the isobaric spin
has not yet been introduced into the equations. (One
could of course argue that the isobaric spin should not
be put into the equations, but that it should come out
of them, since the isobaric spin is closely connected
with the charge. It may be that a careful study of the
way in which the charge is attached to the particles will
lead to a deeper insight into the nature of isobaric spin.
For the time being however it seems necessary to
introduce the isobaric spin into the equations.) To
extend the model by its introduction to a more realistic
one, it will not be sufficient to define the wave function
¥ as spinor both in ordinary space and in isobaric spin
space; for then all particles with half quantum spin
would also have half-quantum isobaric spin, and integer
spin values would be connected with integer isobaric

19 H. Kita, Progr. Theoret. Phys. 15, 83 (1956).
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spin. But the selection rules put forward by Pais,?
Gell-Mann,2 Nakano and Nishijima? and others seem
to show that, e.g., the A® particle has the spin 1/2 and
isobaric spin 0. Therefore one needs at least two
fundamental fields (as has been suggested by Gold-
haber®), say ¢ and x, the one of which is a spinor in
ordinary and in iso-space, while the other, x, may be a
spinor in ordinary space, but a scalar in iso-space.

One may of course choose other combinations for
the two fields, but these assumptions are the simplest
ones and allow one to construct a theory very similar
to the model (1) and (14). We have now to investigate
how far one can come with two such functions in
describing the real system of elementary particles.

In the system of the real particles one usually
distinguishes three types of interactions: the strong
interaction, for instance between nucleons, = mesons,
and hyperons; the electromagnetic interaction; and the
weak interaction which for instance produces the decay
of the A® particle or other radioactive processes.

The coupling constant for the weak interactions is
extremely small compared to normal nuclear constants
of the same dimension. They will certainly not play
any appreciable role in determination of the masses.
Therefore it will be convenient first to neglect the
weak interactions all together and to introduce them
later as a very small perturbation.

The electromagnetic interaction cannot, if we follow
the model of (1) and (14), be separated from the strong
interaction, since it is one of its consequences. On the
other hand from the empirical selection rules one is
inclined to think that the strong interactions are
invariant against any rotations in isobaric spin space,
while the electromagnetic interaction is only invariant
against rotations around the z axis of this space.

Such a result may possibly be achieved by making
the fundamental wave equation invariant against all
rotations in iso-space, but assuming a commutation
rule which is only invariant for rotations around
the z axis of this space. This procedure may possibly
lead to the intended result, since the electromagnetic
interactions are connected with the constant « in the
commutator, which does not appear in the wave
equation. If the sign of k is coupled with the z direction
of iso-space, this direction would have been introduced
into the electromagnetic interactions, but the influence
on the mass values might be comparatively small.

The program indicated has not yet been followed in
detail. Just as an example of how it might possibly be
Tarried out we quote the two equations®:

oy i}
L=ytyp—+xtvu—x+P@H) ) (29)
. 9%y 4

% A. Pais, Phys. Rev. 86, 663 (1952).

2t M. Gell-Mann, Phys. Rev. 92, 833 (1953).

(12925%‘). Nakano, K. Nishijima, Progr. Theoret. Phys. 10, 581

( 2 M. Goldhaber, Phys. Rev. 92, 1279 (1953) and 101, 433
1956).
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and
Lo (P)ijw-l—ixrs puyptinrs  puypd (30)
2 ?2_*_ K2 p? I (P2)2
L is the Lagrangian for the wave equation and =3 is
the z component of isobaric spin. The brackets in (21)
are spinors in iso-space, but their product is an iso-
scalar. The quantitative consequences of (29) and (30)
have not yet been worked out. But it is easy to see
what the qualitative consequences of these two equa-
tions would be with respect to the selection rules
(compare Goldhaber?).

Besides the wusual conservation laws of energy,
momentum, and parity one has in (29) and (30)
invariance for the transformations y—ye and x—xe®.
One of these invariances may be interpreted as con-
servation of the baryonic number (which is 1 for
nucleons and hyperons, —1 for their antiparticles,
and 0 for mesons and leptons). The rotational symmetry
of (29) and (30) around the z axis of iso-space provides
conservation of the z component of the isobaric spin.
There will be no conservation of the total isobaric spin,
since 73 appears in (30). But the transitions involving
changes of the total isobaric spin may be somewhat
less frequent than the others. Finally one has the
conservation of electromagnetic charge which is
connected with the introduction of the states of
Hilbert space IT and the conditions (19).

These selection rules together provide the existence
of the “strangeness-quantum number”” and its conserva-
tion. It is not necessary to invoke any new symmetry
for the interpretation of this quantum number, as had
been suggested by Racah? and Espagnat and Prentki.?

Therefore two rather simple equations such as (29)
and (30) do actually account for all the known selection
rules between baryons and mesons. Before we discuss
the role of the leptons in this scheme it may be useful
to form a general idea of the possible form of the weak

interactions.

(b) Weak Interactions

The most characteristic feature of weak interaction
between baryons and mesons seems to be the fact that
it changes the z component of the isobaric spin by 1/2
without changing any of the other quantum numbers.
Therefore one might think of interactions of the type

const [ (¥"x) @)+ conj.]. (31)

2 G, Racah, Nuclear Phys. 1, 301 (1956).
25 B. d’Espagnat and J. Prentki, Nuclear Phys. 1, 33 (1956).
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Such expressions in the Lagrangian are scalars in
ordinary space but spinors in iso-space. The constants
would therefore play the role of a spinor in iso-space.
This situation would lead to an interesting consequence.
If one performs a rotation in iso-space by 360°, the
expressions (31) change their sign, since a spinor
changes its sign under this transformation. Therefore
one should have written (31) with an indefinite sign =+,
because one cannot distinguish between the two signs.
If this is true, however, one could also allow instead of
(31) interactions of the different type

= const[ (¥ x) (WHysy)+conj.].

Such an expression would not violate the invariance of
the Lagrangian for reflections in ordinary space. Still,
if one combines the expressions (31) and (32), one
would not expect the conservation of parity in weak
interactions. Actually one of the two expressions could
produce radioactive decay of the 7 meson into three
m mesons, while the other could cause the decay into
two 7 mesons. Therefore this discussion favors the idea
of Yang and Lee? that parity is actually not conserved
in weak interaction. For interactions of spinor type in
isobaric space [as in (31) and (32)] the invariance of
the Lagrangian under reflections in ordinary space
does not guarantee the conservation of parity.

(32)

(c) Role of the Leptons in the Scheme

While it is comparatively easy to combine all
qualitative features of baryons and mesons in two
simple equations like (29) and (30), it is difficult to
see what place could be occupied by the leptons in
such a scheme. The leptons are connected with the
other particles both by electromagnetic interaction and
by the weak interaction. Even if the weak interaction
is neglected the mass spectrum of leptons should not
be changed; but in this case all transitions from =
mesons into leptons, 8 decay, etc., should be stopped.
Therefore one should have a selection rule which
forbids all transitions from the heavier particles into
leptons except pair creation. So far no reason for such
a selection rule can be given. It may be necessary to
introduce a third wave function into the fundamental
equation in order to account for the leptons or it may
be that a closer investigation of the states in Hilbert
space IT would lead to a basis for such a selection
rule without new wave functions. For the time being
no solution for the problem of the leptons can be given.

26 T, D. Lee and C. N. Yang, Phys. Rev. 102, 290 (1956).



