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' ' AM sorry that Professor Landau was unable to come
~ ~ for two personal reasons. The 6rst is that I have
worked on this problem of helium upon which he has
also done so much, and I would have liked to have
spoken with him about it. The other reason is that I
wouldn't have had to give this lecture.

Quantum mechanics was developed in 1926, and in
the following decade it was rapidly applied to all kinds
of phenomena with an enormous qualitative success.
The theories of metals, other solids, liquids, chemistry,
etc. came out very well. But as we continued to advance
the frontiers of knomledge, we left behind two cities
under siege which mere completely surrounded by
knowledge although they themselves remained isolated
and unassailable. The first of the two very similar
phenomena for which we still lacked a qualitative
explanation is the superQuidity of helium. I may remind
you that the discovery that helium Qows without
resistance through very thin tubes was made as far
back as 1911. The second phenomenon is the super-
conductivity of metals. The fact that electricity Qows

through some metals without any resistance at low
temperatures was discovered, I believe, in 1905. Of
these two phenomena, I think we now understand
qualitatively the superQuidity of helium, but we do not
yet understand qualitatively the superconductivity. I
propose to give a brief summary of views on liquid
helium insofar as they may give some clue as to the
kind of thing that is involved in superconductivity. It
is clear, however, that the solution of the superQuidity
problem does not give us a very good clue because we
have solved the 6rst problem but not the second.

First, I make some semiphilosophica1 remarks about
the kind of problem facing us, and the kind of view that
I take toward it. I do not want to discuss all of the
aspects of superconductors and of superQuids. I mant
to discuss only the interesting qualitative features, i.e.,
the curious problem of how does it work more or less.
In other words, we would like to make an analogy
between the problem of, say, superconductivity and
the problem of friction. After all, horn is friction
explained on the basis of the Schrodinger equations
No one has ever computed the coefIicient of friction of
two blocks of copper, but qualitatively we feel that,

somehow when we rub the atoms together we can
understand, more or less, how friction arises. But we do
not understand, more or less, how superconductivity
works and I would like to address my attention to this
problem of understanding it more or less, not of under-
standing the details of a lot of special phenomena. In
other words, I would like to concentrate here on the
problem of interpretation from first principles. We
would like to connect the Schrodinger equation directly
to some experimental facts. There are many interesting
things that happen when one works on a problem in
this way. For example, if one makes some approxi-
mations, they cannot be justified by comparing them
with experiments. It is necessary to justify the approxi-
mations directly in terms of arguments from the
equations as a mathematical problem.

In the first stage of the development of such explana-
tions there is an enormous amount of phenomenological
explanation made which is of great value, and I don' t
mean to say anything against it. That is just not what I
want to speak about. This phenomenological develop-
ment is vital in combining various experiments together
and is helpful in giving us hints as to what to try to
explain. If we were any good, however, we wouldn' t
need the experiments and we wouldn't need the hints.
We could simply calculate everything directly from the
Schrodinger equation. So I will assume some familiarity
with the wide range of experimental properties and will
only make a very brief mention of the salient points.

First we will discuss the properties of liquid helium.
As a function of temperature, the specific heat appears
something like Fig. 1 experimentally. The details near
the transition are unknown. There is a certain tempera-
ture at which there is a transition, the so-called ) point,
and the properties of the liquid below the transition
are very peculiar. First, helium remains a liquid all
the way down to absolute zero, which we know is due
to the zero point motion of the atoms. The reason for
the existence of the transition is undoubtedly the same
as for the transition in the corresponding Einstein-Bose
gas neglecting interaction between the atoms. The
Einstein-Bose transition for an ideal gas, however, has
quite a different shape. It looks something like Fig. 2,
and the problem of why the actual transition looks like

Fio. 1. Specific heat of
liquid helium as a function
of temperature.

Fzo. 2. Einstein-Bose 0„
transition for an ideal gas.
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Fn. 3. Coefficient of vis-
cosity of liquid helium
versus temperature as deter-.
mined by rotating two
concentric cylinders relative
to one another.

Fig. j. when there are forces involved is not yet com-
pletely solved. The detailed behavior near the transition,
however, is a very delicate and diTicult proposition. One
is convinced that the transition is due to an Einstein-
Bose condensation, but exactly how interatomic forces
modify the Einstein-Bose specinc heat is not yet
thoroughly understood.

To discuss superQuidity, I would like to discuss the
properties of helium near O'K, far from the transition
region. If one measures the viscosity of the liquid as a
function of temperature by rotating two concentric
cylinders relative to one another, the coefficient of
viscosity behaves as in Fig. 3. Near the transition
temperature nothing in particular happens.

On the other hand, if one measures the viscosity by
making the liquid Qow through a very narrow tube,
the liquid Qows through such a tube with an apparent
viscosity above the transition temperature, but below
the critical temperature it Qows with apparently no
viscosity. Incidentally, if one measures the resistant
force to push the liquid through a tube at diferent
velocities then above a certain critical velocity a
resistance does arise but below the critical velocity the
resistance is zero. A relatively thick tube has a lower
critical velocity than a thinner tube as is shown approxi-
mately in Fig. 4. The explanation of these things at
least in a qualitative way, has come essentially from
Landau. He pointed out that we should imagine that
the liquid at, say, absolute zero is a perfect Quid for
some reason (or rather it is a perfect liquid when the
flow is potential flow and has zero curl). As we heat
the sample up, the energy goes into local excitations
of some kind, for example, quantized sound waves
called phonons and excitations of higher momentum
and energy called rotons. If, as the temperature rises,
the excitations are few and far between (a fact directly
indicated by the very small specific heat), then they
will be localized inside the liquid and bounce around
within it. The local excitations behave very much like
a gas, and the system behaves in many respects like a
mixture of two Quids. Thus we have a basis for the
two-Quid model, which was a phenomenological model.

THICK

FIG. 4. Coe%cient of vis-
cosity versus velocity in thin
and thick tubes.

VELOCITY

The energy of the excitations required as a function of
their momenta to produce the speci6c heat and general
properties seems to be a curve of the general nature of
Fig. 5. The curve is linear for smaller momentum,
meaning that at long wavelengths sound waves are
excited. But the states of higher momentum excitations
are of some other kind. At any finite temperature one
excites states mainly in two regions; small p near where
the curve is nearly straight, and near the bottom of the
concave part of the curve. The lower states are called
phonons and the higher states are called rotons.

The reason why the Qow is perfect, from the point
of view of Landau, can be seen in the following way.
Put a little ball inside the liquid at absolute zero and
try to make it move through the material, allowing the
liquid to Qow around it. How can the ball lose energy
to the liquid? Only by exciting states inside the liquid,
and if the aforementioned states are the only ones
available, it is easy to show by the conservation of
energy and momentum that a very high velocity is
needed before we have the necessary energy at the
given momentum transfer to produce such a state. The
ball must have a velocity e high enough that the straight
line E=pv intersects the curve in Fig. 4. Actually, the

FIG. 5. Energy of exci-
tations required to produce
specific heat and general
properties of liquid helium
in the two Quid model as
a function of their mo-
mentum.

resistance sets in at a very much lower velocity by a
factor of about 100, and this fact has to be explained.
%e have to explain not the superQuidity, but why it is
not quite so perfect a superQuid as it should be from
this point of view.

The essential feature of the liquid is that there are
very few states of low energy, a fact directly shown in
the specific heat and one which also explains the super-
Quidity ultimately. So the question is, why are there so
few states of very low energy? Why in this liquid, for
example, can't we get a very low energy quantum state,
say, by letting some portion of liquid slowly rotate?
The portion of liquid could have a big moment of
inertia and one unit of angular momentum would have
a very low energy. Or alternative'ly, say, one of the
particles inside the liquid decides to drift slowly
through the liquid while the others remain stationary.
The explanation of why there are no such low energy
states in the liquid has been worked out and published
in diGerent places. ' ' Time does not allow me to describe
it here.

' R. P. Feynman, Phys. Rev. 91, 1301 (1953).' R. P. Feynman, Phys. Rev. 94, 262 (1954).
3 R. P. Feynman, Progress ie Low temperature Physics (North

Holland Publishing Company, Amsterdam), Vol. I, p. 17.
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But there is a point that isn't discussed very often:
the question of how is it that we do get some resistance
even at a velocity lower than the velocity required to
create an excitation directly. We must discuss the
character of the wave functions representing the liquid
in various states of Qow. 0 the wave function for the
ground state of the liquid is represented simply by C,
then it is very easy to represent the same system in
motion at a uniform velocity in a straight line. The
wave function for the moving system is simply

c exp(iP R /h) =C exp(im+, V.R;/h), (&)

where P=XmV is the momentum of the whole liquid
of 1V atoms moving with velocity V, and Ro=g;R;/E
is the position of the center of gravity of the atoms
whose individual positions are R;. This wave function
represents a whole system moving at a uniform velocity,
but we would like to represent something more compli-
cated. Suppose the liquid Qows in some more elaborate
fashion in which the velocity is not the same everywhere.
H the velocity is a very slowly varying function of
position V(R), and does not change appreciably in an
atomic distance, we can try to represent the wave
function by simply making the velocity of the previous
formula dependent on position. The wave function
now becomes

C exp(in+, V(R;) .R;/5)

which has the mathematical form

@=4expiP;S(R~)/k

where S(R) is some function of position. We have said
it is mV(R) R but this is not quite right. The mo-
mentum for a wave of slowly varying wavelength is the
gradient of the phase, not the phase divided by the
coordinate, so the correct relation is

V= vS/ra.

This implies that the curl of the velocity is zero. We
have thus only accomplished the description of Qow
which has zero vorticity by such a method, and the
problem of how to describe the Qow of the liquid with
vorticity becomes very serious. There is no structure
in the liquid with which we can tie down the atoms in
any given region; they are all the same and identical.

I have already published some work on this problem
and Onsager eight years previously4 also published the
same type of discussion. So for variety I'll give a
slightly different argument, the 6rst one that I thought
of. It is not a good one but it gives us a clue as to
what's going to happen. I tried to force the liquid to
have vorticity, to have some kind of nonpotential Qow.
I imagined that the liquid in region I of Fig. 6 is Qowing
to the right with the velocity ~ and that. some kind of
barrier or sheet of in6nitesimal thickness separates
region I from region II. In region II the velocity is

' L. Qnsaser, Nuovo pimento Suppl. 2, 6, 249 (1949).

FrG. 6. Sketch show-
ing different fluid mo-
tions separated by an
infinitesima sheet.
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FrG. 7. The sheet
of Fig. 6 is erased at
those points where
the wave func-
tions can be joined
smoothly.
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zero. In region I the wave function should look some-
thing like Kq. (1), and the wave function in II is just C.
If such a separated Qow has been progressing for some
time, what happens if all of a sudden I pull out the
sheet? It's got to do something. In spite of the fact
that the velocity according to formula (2) always has
to have the form of a gradient of S, it cannot be a
gradient in this case. I have to make a rule that the
atoms in the upper section are in a diferent state than
the atoms in the lower section. If I simply restrict the
motion so there is no Qow across the boundary I will
get a possible kind of motion. There must be a layer
here with an associated surface tension where the atoms
in I can't wander into II or vice versa. Hence, there is a
certain energy associated with relative Qow with a
sheet of surface tension in between.

Suppose that the velocity in I becomes smaller and
smaller. Is it reasonable that, even with a very small
drift in I, the surface energy per unit area is still the
same no matter how small this velocity is? Why
can't the atoms from I go into II? If they can' t, then
I need the surface tension, but if I can allow them to
mix, I don't need that surface tension. They can't mix
because the wave function must vary from one position
to another. Suppose an atom moves along just above
the interface of Fig. 6.The phase must change according
to formula (I), from 0 to s and so forth as sketched
in Fig. 7. At points where the phase is m, the wave
function cannot be smoothly connected with the
constant wave function in I, while at those points
where the phase is zero, or 2m, etc., the wave function
can be connected smoothly. The cosine wave and the
constant 1 have places where they are equal. In those
places I can erase the surface locally without any
eGect. What I imagine in the next approximation is
that there are certain slots of surface tension with Qow
around the slots. What is the best length of slot? There
is a certain energy of motion around the slot, and so on.
If I continue the distortion further I probably lower
the energy in every case until I come down to something
like a string of holes instead of slots. The velocity
distribution then is sketched in Fig. 8 and the wave
function changes by 2x when it goes around one of the
holes, as it went around the slot. But it is now con-
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Fro. 8. Velocity distri-
bution when the slots of
Fig. 7 distorted into a
string of holes.

tinuous everywhere except at the holes. The curl of
the velocity is still zero, but S is a multiple-valued
function of position (and is not defined in the holes).
Thus the integral of the velocity around a circuit is
2m'. In this way I was led to the idea that when liquid
He Qows, the vorticity is quantized and all the vorticity
is along certain lines of one unit each. And when I was
all finished I found a reference to a remark made by
Onsager in a meeting in Italy, to a lecture on a diGer-
ent subject, in which he mentions the same solution.

What happens is this. If the object moves too quickly
through the liquid vortex lines are formed. If the
velocity is too slow there is not enough kinetic energy
in the motion to create even one vortex line. For a
very thin tube, for example, there is not enough kinetic
energy to construct a vortex line. Before a vortex is
made, there is no resistance and the whole system
coasts together. With thin tubes and velocities that
are not too high, we have not enough energy to create
even the first line so the material maintains its super-
Quidity. There remains a theoretical problem to
establish these lines firmly as they have not been
established very mell theoretically so far. The argument
used is not very good so it is desirable to make a better
theoretical argument about the quantized lines. In the
meantime Iwould like to see an experiment to show that
the lines of vortices really exist directly. The resistance,
for example, would be irregular when it first starts if it
comes in quantized units. How the vortex lines actually
form from a surface has defied my analysis. This, with
the omission of the part about why there are no excited
states, is all that I have to say about helium.

Problems associated with this field still remain.
There are no problems of understanding the phenomena
qualitatively any more, but there are problems of
quantitative understanding. For example, we need more
details about the exact wave functions for the rotons
and phonons and their properties. We would like to
calculate the cross section for the collision of two rotons.
The collisions determine, for example, the viscosity and
absorption of second sound, as was pointed out by
Khalatnikov and others. They use an arbitrary cross
section to 6t the experiment, but the question is how

to calculate the cross section from 6rst principles. A
much more interesting problem probably is the behavior—statistical mechanically, or otherwis- very near the
transition.

~ Experiments by Hall and Vinen on the attenuation of second
sound in rotating helium give strong evidence for the existence of
the lines. H. E. Hall and W. F. Vinen, Conf. de Phys. des basses
temperatures, Paris (September, 1955), Paper 22.

Today we do not have a good description of what
happens within a few tenths of a degree on either side
of the transition. We have approximate views about
the shape of the curve, but whether it has a vertical
tangent or contains a jump in speci6c heat is not
known.

Another problem is the problem of what is the ground
state energy. Here we have a strongly interacting system
of particles with known interaction and the problem is
to find the energy, or other properties of the system in
the ground state. It is a quantum mechanical problem
and has never been solved, but it mould be interesting
to work that out from 6rst principles. The energy of a
roton has been worked out now. The curve of energy
against momentum has been calculated experimentally
with the data and also been computed theoretically.
The energy of the roton theoretically is 11.5 deg and
experimentally is 9.6 deg. To make the theoretical
calculation we had to use some properties of the ground
state, namely the correlation function of the ground
state. To put everything on purely first principles, it
would be necessary to calculate the correlation function
of the ground state by solving the Schrodinger equation,
and I don't know how to do that.

Another liquid of great interest is liquid He'. I do
not believe that liquid He' is a superQuid. I think that
there are an enormous number of states reaching to
absolute zero. I believe that the speci6c heat would
be proportional to the temperature as it is for an ideal
gas and that the forces would not modify it. I have no
reason to believe all these things; I have thought a lot
about He', but I find it too dBFicult to analyze accurately
from first principles. If there is a high density of states
then He' will not be a superQuid in the same sense as
He4. I think that the same thing will happen in nuclear
matter, so that superQuid is not a very good term to
apply to the nucleus. It is a quantum Quid but I don' t
think it is a superQuid.

Another interesting problem is the following example
from He'. The particles interact with strong forces in a
Fermi system. The problem is to determine the tem-
perature dependence of the viscosity of the system as
T goes to zero. There are a large number of similar
interesting problems in He', and it would be fun to do
them before the experiments, for the 6rst time. I don' t
think anybody has ever computed anything in solid-
state physics before the experimental result was out,
so we have consistently predicted only what we have
observed I

Now we turn to the unsolved problem of super-
conductivity and again talk from the point of view of
what we will have to do from 6rst principles to solve
this problem. The first thing that is troublesome is that
the metals that become superconducting are always the
complicated ones near the middle of the periodic table.
Superconductivity depends on the crystal structure,
some metals undergo the transition in one crystal form
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and not in another. Also, some alloys are superconductive
even though neither of the constituents is by itself super-
conductive. The simplest metals, the alkalis and alkaline
earth metals, are not superconductive. The temperature
of the transition corresponds to an energy kT= 10 4 ev,
while the electron energies are of the order 10 v or so.
Hence, we have a very delicate problem here. It is not
like the case of helium, where the energy of the transition
is comparable to the thermal energies involved. In the
helium case, when the thermal wavelengths, or the de-

Broglie wavelength corresponding to a temperature of
the transition, becomes equal to the spacing of the atoms
then all the excitement occurs. On the other hand, in
superconductivity the effect is very small and therefore
quite subtle. I have to make some excuse, you see, for
not having immediately solved the problem.

The specific heat of a superconductor looks something
like Fig. 9. According to the theory of an ideal electron
gas, the specific heat should be proportional to T.
Experimentally, there appears to be a discontinuity in

the specific heat at the transition, and the electronic
specific heat at very low temperatures may be ex-
ponential. The curve is certainly not linear with T;
it is much, much less.

FIG. 9. Sketch of specific
heat of a superconductor
verses temperature.

It is possible to maintain the material in the norma1

state with a suSciently large magnetic Geld. If one
applies a magnetic field for diBerent temperatures the
stronger magnetic field for lower temperatures, the
curve of the transition temperature against magnetic
Geld looks like Fig. 10. Even at absolute zero, the
superconductive state can be destroyed by an appli-
cation of a sufficiently strong magnetic 6eld, and the
specific heat of the normal state behaves linearly right
down to zero temperature.

The electromagnetic properties of the superconductor
have been studied in great detail and summarized in a
very simple way by London, at least for low frequencies.
London deduced that the law stating that the current

density is proportional to the vector potential correctly
describes all of the properties. I have to omit all the
details of the experiments and the arguments which led

London to this law. It is necessary that the vector po-
tential A be in such a gauge that the normal component
of the current density at the surface be zero everywhere.

London also gave a kind of explanation of how this

may have come about. The formula for the current
density of the electrons in the quantum mechanics is

given by

where %' is the wave function of the electrons and the
integration is carried out over all electron coordinates.
Now suppose that for some reason a small electro-
magnetic 6eld A changes the wave function @very lit tie.
For the wave function without the potential of course,
the mean value of the current would be the expectation
value of Pq5(x —xq)(eA/mi)VI„alone and would be

zero. If the wave function does not change much, this
term is still essentially zero. Then all one has is the
vector potential at the point x averaged over all the
electrons. In other words, one has J(x)= —ee'/mcA(x).
London would then explain his law on the assumption

that the wave function does not change much when a
small magnetic field is applied.

Now what is it that we would like to explain about
superconductivity and with what are we going to
explain it) There are a whole set of properties such as
the specific heat, the London equation, etc. to be

explained in terms of the Schrodinger equation. The
6rst question is, which property shall we choose first

to try to explains The next question is whether we need

the full Schrodinger equation, or can we take an

approximate Hamiltonian that is simpler to work with

as a reasonable model of the actual situation.

,
I would like to maintain a philosophy about this

problem which is a little diGerent from usual: It does

not make any diGerence what we explain, as long as we

explain some property correctly from 6rst principles.

If we start honestly from first principles and make a
deduction that such and such a property exists—some

property that is different for superconductors than for
normal conductors, of course, —then undoubtedly we

have our hand on the tail of the tiger because we have

got the mechanism of at least one of the properties.
If we have it correct we have the clue to the other

properties, so it isn't very important which property
we explain. Therefore, in making this attempt, the

first thing to do is to choose the easiest property to
handle with the kind of mathematics that is involved

in the Schrodinger equation. I want to summarize some

thoughts on this question, although they do not
represent a solution. They represent a statement of the

problem and a little bit of a personal view.

FIG. io. Transition tem-
perature versus magnetic
field.
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I decided it would be easiest to explain the specific
heat rather than the electrical properties. In the case
of the electrical properties we have to consider both the
temperature and the magnetic field, which is more
complicated than the temperature alone. But we do not
have to explain the entire specific heat curve; we only
have to explain any feature of it, like the existence of
a transition, or that the specific heat near absolute zero
is less than proportional to T. I chose the latter because
being near absolute zero is a much simpler situation
than being at any finite temperature. Thus the property
we should study is this: why does a superconductor
have a specific heat less than T? Let us say that the
specific heat is essentially zero. Thus the density of
states above the ground state is very much less than
that of the ideal gas. It is orders of magnitude of
infinity less, to get a diferent power of T. The property
to be explained for superconductors is that the ground
state is separated from the higher excited states by a
region where the density of states is low. The simplest
thing would be that there are no states in between and
in fact it may be that that is the case. The specific heat
curve looks like it. Let us suppose that the density of
states is very low just above the ground state. All we
have to do is to explain why the excited states have a
definite separation energy from the ground state, or
that there are only a very few states near the ground
state.

I have not got much further and this conclusion is
well known to many others, but I would like to make
some remarks on some work in that direction. I tried
to state this property directly in terms of some property
of the Hamiltonian. First why is the density of the
excited states so high in the ideal gas, and how could
it fail to be so high in a superconductor?

The ideal gas is easily represented in momentum
space by drawing a Fermi sphere with a lattice of
momentum that is very fine. The lattice spacing
depends on the size of the container and the spacing, e,
is inversely proportional to the cube root of the volume
of the container. If one calculates the excitation energy
of the system at temperature T, one realizes that all
the states within a range of kT of the Fermi surface
are excited. Thus the number of states excited is
kT/e times the number of states around the sphere,
which is the square of the radius times 4n./e'. All of these
states are excited on the average by the energy kT, so
this total excitation energy is proportional to the volume
and to T' so the specific heat is proportional to T.
Now where did this enormous specific heat come from?
Essentially, 'it came from the fact that there is a state
in any direction from the center of the Fermi sphere.
It seemed to me likely that here is the feature that
fails in the real situation. How can we define this
failure? In order to define one of these states, and to
distinguish one from the other, we have to be able to
locate points on the sphere. That is to say if we expand
our functions in terms of angular variables we must be

representing states of enormous angular momentum of
very low energy.

Consider a big box, the metal. If one excites a
particle, that is, takes it out of one state and puts it
somewhere else, then this excitation has a tremendous
angular momentum around the center of the box,
because it has finite momentum (the Fermi momentum)
and is a long distance from the center. It takes practi-
cally no energy to create this large angular momentum,
according to the ideal gas picture. One hardly has to
lift it out of the shell. Thus just above absolute zero,
with an infinitesimal energy, one can create very high
angular momentum. If the distance required to get
superconductivity in small grains corresponds to 10'
atoms or so, then this means that in a normal conductor
in order to create 10'k units of angular momenta
requires infinitesimal energy.

Therefore, in the superconductor we probably have
the following property. The diGerence between the
energy of the lowest state with large angular mo-
mentum and the ground state, must approach a finite
number as the volume of the box goes to infinity. This
is the property that the superconductor has that I now
look for. But the angular momentum of the electrons
does not commute with the Hamiltonian. Let J be the
operator representing the angular momentum of all the
electrons, the s component of which is P, (x~p;„—Y,p; ).
Take Eo to be the ground-state energy. If f is any
normalized wave function, for which the expected value
of L is greater than 10' (the exact value is unimportant),
then

~f (B Eo)fdic)g,—

for

~f*Lfdv) 10',

where g is finite as the volume goes to infinity. This is
not true of an ideal gas, but I believe it is true of the
Hamiltonian of the superconductor.

I don't know if I have made any progress over the
simple remark that the density of states above the
ground state is very low. That is as far as I was able to
get with the speci6c heat problem. If one assumes the
truth of the previous equation one cannot necessarily
explain all the properties of superconductors. But if
one can find the correct explanation of one of the unique
properties of a superconductor, one can then see the
mechanism for all the other properties. Actually, we
can almost see how the electrical properties will come
out of such a procedure. If one considers a cylindrical
piece of metal with a field along the axis of the cylinder,
then the Hamiltonian of the system with the field is
related to the Hamiltonian without the field by H'
=8e/c BL. That is, the 'A —p term is equal to 8 L
for such a cylinder. Let p be the ground-state wave
function. In the ground state the expected value of H is
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the lowest energy, Eo. (p,Hp) =Eo. The expected value
of the angular momentum is zero. For any other state,
which has a reasonable amount of L, we get

If 8 is not too big, this energy is larger than Eo, so
with a small enough Geld, we would get the lowest
state, which would be the ground state not the new
state, and therefore the wave function would be the
same as it was before. States with smaller angular
momenta do not aGect the argument since 8 has little
eGect on these. Thus, London's explanation of super-
conductivity would result. This argument is not very
good. It must be more complete, since one has to show
that if we took other states where L is larger than 10',
the energy rises fast enough for a suKciently large L.
When we do finally understand the reason for this gap,
we will understand how the energies will vary with
the angular momentum of the states that are created.

Now the next part of the problem is with what do we
make this explanations That is, what approximate
Hamiltonian should we users The question is, have we
included enough junk in the model to include the eGect
of superconductivity' The Grst and simplest model is
the model of the ideal gas of electrons. There we know
we do not get superconductivity, because we do not
get the right specific heat. The next thing to be added
that seems to be very important is Coulomb interaction.
Sometimes it has been thought that a Coulomb inter-
action would make some kind of lattice of electrons
which would move through the material. However,
everyone argues, and I think correctly, that this cannot
produce the small efFect, because it is too large. That
is, the Coulomb interaction energies in a material are
of the order of a volt or so per electron, while the
energies we are looking for amount to 10 ' v per
electron. We have all kinds of other eGects, such as
spin-orbit couplings, spin-spin couplings, magnetic
interactions, and so on. Because we have factors v /c'
in these cases, we get the right order of magnitude.

But there is one little piece of experimental in-
formation of vital importance, which shows that we will
not get superconductivity even if we include all these
eGects. That fact is that the transition temperature
depends upon the ionic mass. Or better, the energy
difference between the superconductive state and the
normal state, depends upon the mass of the ions. If these
v'/c' effects were the cause of superconductivity, it
would not depend upon the mass of the ions.

Could it be that the superconducting state depends
upon the mass, not because the phenomenon which
produces the energy depends upon the mass, but
because when you heat the material up, the shaking
of the lattice breaks the state down at a temperature
that depends upon the massP I think this approach is
wrong. Since the diGerence in the energy even at
absolute zero depends on the mass, I think that the

energy must involve dynamically the motion of the
lattice. So we have to include lattice interactions. Now
the hope is that if we include lattice interactions, we
will not have to include these other interactions.

One of the most popular models of a Hamiltonian to
explain superconductivity is the one used so much by
Frohlich and Bardeen. Their model consists of a jelly
of positive charge, an elastic continuum which can
vibrate, in which the band structure of the electrons is
neglected. In the jelly of positive charge, one considers
a gas of electrons of the same density as the charge
density of the positive charge. The electrons do not
interact with each other, but they all interact with the
vibrating jelly. It is the simplest Hamiltonian which
has been proposed that would seem to be able to
represent superconductivity.

A lot of people have tried this model. However, they
are not absolutely satisGed. Some still worry whether
the band structure has something vital to do with the
phenomenon. Perhaps superconductivity does not
occur in the case of sodium etc. , because the band is so
very simple and it occurs only for the complicated
metals, because their band system is complicated.
There may be small regions in momentum space, for
instance, where the electrons behave as positively
charged particles, that is, places where the conductivity
is by holes and other regions where they behave
normally. There is some indication that this is the
case because it has been noticed that the Hall eGect
is very small when the material has a tendency to be
superconductive. The Hall eGect is very small when the
positive and negative carriers cancel. Thus some people
think that this, in conjunction with the lattice vibra-
tions, may have something to do with super-
conductivity. Of course, that makes the problem more
complicated, because it would mean that if Frohlich
and Bardeen could solve their model exactly, they still
would not find superconductivity, since it would still
involve only negative carriers.

As long as one makes a list of such things, one can
always add a few things which might have something
to do with it. In case they do, at the end then people
can say, "Qh, he thought of it," but I don't believe
the one I will mention has anything to do with it. The
closed shells have been treated adiabatically and
forgotten about and they might have something to do
with superconductivity. I just do not think that the
closed shells have much to do with it.

I also tried the same thing as Frohlich and Bardeen,
which is to solve the Frohlich and Bardeen model
with such precision that the estimated errors in the
calculation are less than the diGerence in energy one is
looking for. I made diagrams and loops. When one is
working with partition functions, it turns out there are
all kinds of wonderful tricks that one can do with the
diagrams. I calculated the specific heat to enormous
precision, and the speciGc heat was still proportional
to T. However, a student of mine, Michael Cohen,
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pointed out that the series expansion which I was
carrying out may not lead to the lowest state at all.
Suppose, for example, that one has a harmonic oscillator
and considers the effect of a small perturbation, ex',
on the ground-state energy. Regardless of how small e

is, one can never derive the answer from perturbation
theory even though the series appears to be nicely
convergent. The reason, of course, is that if one goes
far enough from the origin the potential becomes
arbitrarily large and negative, and hence no lowest
state exists. In other words, what happens is that one
starts with a function which is qualitatively diGerent
from the correct function and the right answer lies in a
qualitatively different place. Thus when one starts with
a simple kind of wave function to make a succession of
approximations, one cannot produce the qualitative
features of the isolated lowest state of the real system
with the original wave functions. Nor can one be sure
that the qualitative difference does not exist just because
one computes so accurately. Thus, even if one treats
this model very carefully and accurately, as long as it is
done by a series method one can never be certain that
the model does not lead to superconductivity. That
is, we may simply be calculating the normal state
speci6c heat very carefully. It is going to be very hard

to show that the phenomenon does not exist in this
model. It is also going to be hard to show that it does
exist.

I am now brought to the same position as Casimir,
who first told me about this problem. He said, "There
is only one way to go about working this out. It is
simply to gless the quality of the answer. " I think I
have come unfortunately to the same position, what
we must do is not compute anything, but simply guess
what makes the ground state isolated at a lower energy.
That is, guess what kind of correlation exists at long
distances. Why haven't we theoretical physicists solved
this problem yeti We have no excuse that there are not
enough experiments, it has nothing to do with experi-
ments. Our situation is unlike the field, say, of mesons,
where we say, perhaps there aren't yet enough clues
for even a human mind to figure out what is the pattern.
We should not even have to look at the experiments.
Every time we look at another experiment, we make
the problem easier. It is like looking in the back of the
book for the answer, which is slowly being unveiled
by the details of the various experiments. There is no
reason to require the experiments. The only reason
that we cannot do this problem of superconductivity
is that we haven't got enough imagination.


