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OR many purposes it is possible to consider each
nucleon as moving, almost independently, in an

average nuclear field generated by all the other nu-
cleons. The existence of such independent particle
motion in the nucleus gives rise to a nuclear shell struc-
ture which is similar in many respects to the familiar
atomic shell structure. There is, however, at least one
very important difference between the field in which the
electrons move and that in the nucleus. In the atom the
field is dominated by the attraction of the heavy central
nucleus. The fact that the nuclear field is generated en-
tirely by the nucleons themselves implies that the
nucleus will be much less stable against oscillations in
shape. Already in the early considerations about nuclear
structure, it was pointed out by Bohr and Kalckar' that
this relative instability in shape should imply the
existence of low-frequency shape oscillations as an
important mode in the nuclear dynamics. The under-
standing of most of the low energy nuclear properties
requires an analysis of the interplay between the
collective shape oscillations and the independent
particle degrees of freedom in the nucleus. '

In general, the period for the shape oscillations of
lowest frequency is considerably longer than the
period for independent particle motion in the nucleus.
One may thus employ an adiabatic approximation in
solving the equations of motion. That is, we can proceed
in two steps: first we solve for the intrinsic motion
subject to a constraint which speci6es a particular shape
and orientation. In practice we may attempt to satisfy
this constraint approximately by solving for the motion
of nucleons in a potential which possesses the re-
quired shape and orientation. The eigenvalues, E;(a),
of this 6rst part of the problem are functions of the
parameters, o., which de6ne the nuclear shape. These
functions are called the potential energy surfaces. They
play a role very similar to the potential energy surfaces
in molecules. Next, we consider the additional energy
which the system acquires when we let o, vary slowly
with time. Expanding the energy in a power series in 6
we obtain the collective Hamiltonian

II=E;(a)+-',8;(e)a'.
' N. Bohr and F. Kalckar, Mat. Fys.Medd, Dan. Vid. Selsk. 14,

no. 10 (1937).
2 A. Bohr, Mat. Fys.Medd. Dan. Vid. Selsk. 26, No. 14 (1952).D.

I .Hill and J.A. Wheeler, Phys. Rev. 89, 1102 (1953).A. Bohr and
B.R. Mottelson, Mat. Fys.Medd. Dan. Vid. Selsk. 27, No. 16 (1953).
The present talk is largely based on Chapter V of the review
article by Alder, Bohr, Huus, Mottelson, and Winther, Revs.
Modern Phys. 28, 432 (1956). This last reference also contains a
more complete bibliography and compilation of relevant experi-
mental data.
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The neglect of the nondiagonal couplings proportional
to n is justified only if there are no degeneracies or
near-degeneracies in the spectrum of the intrinsic
motion. In general it is only the even-even nuclei that
are free from such degeneracies. I shall mainly confine
myself in this talk to these even-even nuclei for which
the above especially simple collective Hamiltonian is
adequate. Unfortunately, I shall not have time, within
the scope of this talk, to discuss the many very inter-
esting sects which arise in the odd-A nuclei.

In the early discussions of the nuclear collective
properties, an attempt was made to estimate the func-
tions E(u) and B(n) by employing a liquid drop model.
Thus, E(o.) would depend on the nuclear "surface
tension" which in turn could be related to the observed
nuclear binding energies, and 8 might be calculated
from the kinetic energy associated with surface oscilla-
tions of an irrotational Quid.

We now know, however, that the functions E(a) and
B(n)are influenced in an essential manner by the nu-
clear shell structure. Let us consider, for example, the
function Eo(a) which represents the lowest potential
energy surface in an even-even nucleus. Beginning with
a closed shell nucleus, we know that the system possesses
an especially great binding energy which is associated
with the degeneracies of the nucleon orbits in a spher-
ical potential. Any attempt to distort the system from
the spherical shape is very costly in energy, and the
potential energy curve for this configuration is thus
stable at the spherical shape and rises very steeply as
we go away from this shape (curve a, Fig. 1).

Adding additional nucleons beyond the closed shell,
the potential energy curve will be a result of the com-
petition between the particles outside closed shells,
which exert a polarizing effect on the nuclear shape, and
the particles in closed she1ls which prefer the spherical
shape. The existence of this important polarizing effect
of the individual nucleons outside of closed shells was
first recognized by Rainwater. ' He pointed out that
since the orbital motion of a single nucleon is mainly
confined to a plane perpendicular to the direction of its
angular momentum vector, the particle will exert a
centrifugal force in this plane tending to distort the
nucleus.

The polarizing tendency of the particles outside of
closed shells is modified in an important way by the
residual forces which are not included in the average
nuclear field. These tend to couple the nucleons into a
state of de6nite total angular momentum J. Mayer,

' J. Rainwater, Phys. Rev. 79, 432 (1950).
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FIG. 1. Potential energy
curves for the lowest con-
figurations in even-even
nuclei. ~

FIG. 2. Coupling scheme
for the lowest rotational
band in an even-even nu-
cleus.

ym.

Flowers, Racah, and others have shown that the short
range attractive forces, which act in the nucleus, favor
a state of J=O for an even-even nucleus. Thus, in a
spherical potential (u= 0), the particles in an even-even
nucleus will have J=0, a spherical density distribution,
and no net polarizing e6ect on the nuclear shape. How-
ever, when we consider intrinsic motion in a nonspher-
ical field, J is no longer a constant of the motion, the
particles become decoupled from each other and exert
their polarizing effect.

Thus if we add a few particles beyond a closed shell
we obtain a potential energy curve which remains stable
at the spherical shape, as a consequence of the residual
interactions, but which is much softer against distortion
away from the spherical shape as a consequence of the
polarizing tendencies of the added nucleons (curve b,
Fig. 1). Continuing to add still more nucleons beyond
the closed shell, the spherical shape continues to become
less and less stable, until, if there are enough nucleons
outside of closed shells, the spherical shape may be-
come unstable and the lowest energy of the nucleus is
then associated with a nonspherical shape (curve c,
Fig. 1). With still more nucleons added, the inagnitude
of the equilibrium deformation increases and the sta-
bility of the system with respect to displacements from
the deformed equilibrium also increases (curve d, Fig.
1.).

I would like now to discuss the characteristic col-
lective excitation spectra which are associated with
these different types of potential energy surfaces.

The situation is most simple for nuclei with non-
spherical equilibrium shapes, so I shall start by dis-

cussing the spectra of the nuclei in the regions farthest
from closed shells. The regions in which nonspherical
nuclei have been observed are roughly defined by
A&24, 150&3&190, and A&220; these are just the
regions farthest from the closed shell configurations.
Such systems, possessing a nonspherical shape, exhibit
a very low energy collective motion which simply corre-
sponds to the reorientation of the nucleus in space with
preservation of the shape and intrinsic structure. Indeed
the nuclei in the above regions do exhibit rotational
spectra which for the lowest intrinsic state in the even-
even nuclei have the form

h2

F,«= I(I+1) I=0,2,4,6, even parity. (2)
2

The nature of this rotational spectrum tells us quite a bit
about the symmetry properties of the nuclear shape.
Thus the dependence of the nuclear energy on I(I+1)
implies that we have to do with the rotations of a
symmetrical top; the fact that we most often observe
only the even spin and even parity states in these spectra4
implies that usually the nuclear shape is symmetric with
respect to reflection in a plane perpendicular to the
symmetry axis and passing through the center of the
nucleus; and finally, the absence of other states in the
rotational band which would correspond to rotation.
about the symmetry axis implies that the effective
moment of inertia for such rotations is at least an order
of magnitude smaller than that for rotations about an
axis perpendicular to the nuclear symmetry axis. The
nuclear coupling scheme is sketched in Fig. 2. These
symmetry properties of the nuclear shape are related
to the nuclear potential energy surfaces. It has indeed
been shown that the nuclear shell structure will almost
always prefer such axially symmetric shapes. The
smallness of Q„ is a special case of a more general
result which we shall discuss further a little later.

The experimental evidence on the rotational spectra
of the even-even nuclei is shown in Fig. 3. This gives
the ratio of the measured excitation energies of the
excited states to the energy observed for the first
excited, 2+, states in these nuclei. According to the
above expression we would expect the second excited
state to have I=4+ and an energy 3—', times that of the
2+ state, the third and fourth states should have
I=6+ and 8+, and energy respectively, '7 and 12
times the 2+ energy. The experimental data agree quite
well with this interpretation; in the regions of the
largest deformations the energy ratio of the 4+ to the
2+ states agree with the above expression within a few
tenths of a percent. The deviations are always negative,
increase with increasing I, and with the approach to the
transition regions where the deformed shape is no
longer a stable equilibrium. Such deviations can be
interpreted in terms of centrifugal distortion, which

slightly changes the nuclear shape as a function of the
rotational frequency.

4 In some cases, especially around 2 =224, odd-spin odd-parity
rotational bands have been observed. It has been suggested by R.
Christy that these be interpreted in terms of a deviation of the
nuclear shape from reflection symmetry.
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Fip. 3. Fxperimentally observed energy ratios for excited states
in rotational bands in even-even nuclei. ~
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Fro. 4. The magnitudes of the observed moments of inertia6 are
plotted as a function of the deformation parameter P.

' D. R. Inglis, Phys. Rev. 96, 1059 (1954).

Besides the simp1e energy expression governing the
rotational spectrum, there are also intensity rules that
govern the relative strength of P or y transitions to
different members of a rotational band. These intensity
rules follow directly from the geometric nature of the
rotation, in the same way that one obtains intensity
rules for the relative strength of the transitions in a fine
structure or a hyperfine structure multiplet. The ex-
perimental evidence supports these intensity rules
within the experimental accuracy, which is about 10%
in the best studied cases.

While the relative energies and intensities in a rota-
tional band are geometrical quantities which are inde-
pendent of the detailed nature of the intrinsic motion,
the effective moment of inertia, g, appearing in the
rotational energy, is a dynamical quantity which de-
pends in an essential way on the intrinsic structure of
the system. We may attempt to estimate ~ by employ-
ing a method first suggested in this connection by
Inglis. ' He pointed out that, since ~~ represents the
additional kinetic energy which the nucleons must have
in order to follow the rotation of the nucleus, we can
estimate ~ by considering the motion of particles in a
rotating nuclear field. Due to the equivalence of a
rotation to an external magnetic Geld, this problem is

very similar to the calculation of the diamagnetism of a
gas of charged particles.

If we first consider this problem in the limit where we
may use classical mechanics we find that the moment
of inertia must have the value g„, corresponding to a
rigid rotation of the nuclear density distribution. This
result corresponds with the statement that a classical
electron gas has no diamagnetism, as was first shown

by X. Bohr and later independently by van Leeuwen.
We can see this result most easily by looking at the
system in the rotating coordinate system in which the
potential remains constant in time, but where we
must add the appropriate CorioIis forces to the Hamil-
tonian. However, the Coriolis forces do not change the
isotropy of the velocity distribution. There is thus no
net current in the rotating coordinate system; in the
space fixed system the whole nuc].eus is rotating as a
rigid body. This result is independent of any details of
the intrinsic structure such as the mean free path of the
particles in the potential.

When we consider the actual nucleus we find that
there is a very important quantum-mechanical cor-
rection to the above result, which is a consequence of
the tendency of the intrinsic structure to go into a state
of J=O as the nuclear deformation, o,, goes to zero. As
mentioned previously, this tendency is a consequence
of the residual forces in the nucleus. Since a state with
J=O has a spherical density distribution, its energy is
independent of the orientation of the nuclear Geld, and
thus it does not contribute to the moment of inertia.
Even for the appreciable eccentricities encountered in
the most deformed nuclei, this single quantum state
with J=O constitutes a significant part of the intrinsic
state of motion and thus the nuclear moments of inertia
are appreciable below the value ~„,and become smaller
as the eccentricity becomes smaller. ' The experimentally
measured moments of inertia are shown in Fig. 4 in
units of the moment ~„,. The abscissa is the nuclear
eccentricity, P, deduced from the nuclear quadrupole
moment determinations. The solid curve is obtained
from an extremely simplified model which provides an
interpolation between the small and great deformation
limits. This interpolation expression depends on the
strength of the residual interactions as measured by
the parameter v.

As we approach the closed shell conGgurations the
deformations get smaller, the moments of inertia get
smaller, and the accuracy of the simple rotational energy
spectrum gets poorer. Finally, we reach a point where
the nuclear potential energy surface no longer has a
nonspherical equilibrium and then the nuclear coupling
scheme changes in an essential manner. The nucleus
now has a spherical equilibrium shape and the system
cannot exhibit simple rotational motion; the low-fre-
quency collective degrees of freedom now correspond to

For a more detailed discussion of the nuclear moments of
inertia, see A. Bohr and B. R. Mottelson, Mat, Fys.Medd. Dan.
Vid. Selsk. 30, No. 1 (1955).
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TABLE I.Data on nuclear vibrations around a spherical equilibriuln shape. The table lists all cases in which the second excited state is
known to have spin and parity 2+ (the first excited states are all also known to have 2+ character). The second, third, and fourth
columns list, respectively, the energies of the first excited state, the second excited state, and the ratio of these two energies. The fifth
column gives the ratio of the observed cross section for Coulomb excitation to that expected for a single proton transition. The sixth
column gives the ratio of 3f1 to E2 radiation in the cascade transition between the second excited state and the first. The last column
gives the ratio of the reduced transition probabilities for E2 radiation for the crossover decay to ground and the cascade decay of the
second excited state.

Nucleus

96Fe'8
98NieP
3OZn84

Zn'8
Se76

36Kr
Kr'4

4OZr92

44Ru"'
Rum'
Te122
Te126

54Xe"'
Xe128
Ptl92
Pt"'
Ptl96

OHg198
Po914

(Mev)

0.81
1.33
1.00
1.05
0.55
0.77
0.9
0.93
0.54
0.47
0.57
0.65
0.39
0.46
0.32
0.33
0.35
0.41
0.61

(Mev)

1.62
2.18
2.27
2.40
1.19
1.45
1.9
1.83
1.36
1.10
1.26
1.40
0.86
0.99
0.61
0.62
0.69
1.09
1.38

2.00
1.64
2.27
2.29
2.17
1.88
2.1
1.97
2.52
2.34
2.21
2.16
2.20
2.15
1.90
1.88
1.97
2.66
2.26

B(L&2; 0—+2)

Bsp (B2)

15
11
44

22
45

17

(M1 jZ2)2~

0.025
small
0.05
0.7

&2

B(F2; 2'~0)
B(R2; 2' —+2)

0.01
(3y10-8)

(0 1)
(0.05)
0.1

(0.01)
& 0.1

(0,05)
(O'.05)
(0.15)
0.01
(0.004)
(0.01)
{0.01)
0.004
0.01

&4&10 '
0.04

quadrupole vibrations around the spherical equilibrium
shape. Each quantum of vibration carries two units of
angular momentum, since we are dealing with quad-
rupole oscillations. If we assume small amplitude oscil-
lation, the motion will be approximately harmonic and
the excitation spectrum of an even-even nucleus would
have the form indicated in Fig. 5. Of course, higher
order terms in the collective Hamiltonian will modify
the exact equality of the energy spacings and remove
the degeneracies.

As was first pointed out by ScharG-Goldhaber and
tItteneser, ~ the low-lying excitation spectra of the even-
even nuclei, outside of the above regions where rota-
tions are observed and excluding the few nuclei imme-
diately adjacent to closed shells, agree very we11 with
this picture. Thus the 6rst excited states all have spin
2 and even parity. The energy of this state varies in a
regular manner with A and in the sense suggested by
the qualitative considerations about the potential
energy curves. The frequency decreases regularly as we

go away from closed shells, corresponding to the de-
creasing stability of the spherical shape caused by the
polariring eGect of the nucleons outside of closed
shells.

Coulomb excitation of these first excited states has
been observed in about 6fty nuclei, and in every case the
cross section has been appreciably greater than would be
expected for the excitation of a single proton; the en-
hancement ranges between about a factor of ten to fifty.
This provides very direct evidence that we are dealing
here with an excitation mode that involves the motion
of an appreciable number of nucleons. The Coulomb

76. Schar6'-Goldhaber and J. %eneser, Phys. Rev. 98, 212
(1955l.

0Z3,4,6+

Fn. 5. Excitation spectrum
corresponding to quadrupole
oscillation of small amplitude.
Energies are shown on the left,
and spins and parities on the
right.

OZ,4+

excitation cross sections also increase as we go away
from closed shells, reflecting with the expected increase
in the amplitude of the oscillations of shape.

The second excited vibrational states have been
observed in many cases and their energy is found to
vary between 2 and 2.5 times that of the first excited
state (with two or three unusual exceptions lying out-
side this interval). The observed second excited states
have in, all cases I=0+, 2+, or 4+. The whole triplet
is not usually observed because the states are populated
in P or y decays which obey very strict selection rules on
the allowed spin changes.

The vibrational character of the second excited state
is especially shown by the y decay of the second excited
2+ states. These states may decay by Ml or E2
radiation to the first excited 2+ state or by Z2 radiation
to the 0+ ground state. If all matrix elements were oi
the order of single particle values, the Mi cascade decay
would be the strongest by factors of the order of 100.
However, the observed Mi cascade radiation is usually
no stronger than the E2 cascade and is sometimes
appreciably weaker. This smallness of the M1 transi-
tion matrix elements follows at once from the fact that
the fundamental excitation mode involved is a quad-
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FIQ. 6. Representative low-energy excitation spectra of even-
even nuclei in the region 170&A &208. The ratio of the energy
of the second excited state, E('), to that of the first excited state,
E(», is shown under each level scheme. In the region of non-
spherical nuclei the limiting expression (2) predicts that this ratio
should be 3-,'; in the region where the spherical shape isstable, the
assumption of approximately harmonic vibration implies that this
ratio should be close to 2 (see Fig. 5).

rupole motion, even though AI=O, and thus in this
description the Mj. matrix element vanishes.

The reduced E2 transition probabilities for the cas-
cade and crossover decay of the second excited 2+
states are observed to dier by an appreciable factor.
The reduced transition probability for the cascade
decay is observed to range from 10 to 1000 times greater
than that for the crossover transition. The existence of
this selection rule also follows as a simple consequence
of the above description of these states. Since the electric
quadrupole transition operator is linear in the quad-
rupole shape parameter, n, it cannot change the number
of vibrational quanta by more than one.

The empirical evidence on the vibrational spectra of
even-even nuclei is summarized in Table I. This con-
tains all the cases in which the second excited states
are known to have spin and parity 2+.

To summarize, the general picture of the lowest ex-
cited states of the even-even nuclei is as follows:

In the regions farthest from closed shells the nuclei
possess a nonspherical shape as a consequence of the
polarizing effect of the nucleons outside of closed shells.
The lowest excitations are then rotations with the
spectrum (2). As we approach towards a closed shell the
magnitude of the nuclear eccentricity decreases and the
moment of inertia also decreases. At a point which may
be still quite distant from the closed shell configuration,
the spherical shape becomes a stable equilibrium as a
consequence of the residual forces between the nucleons
and the whole nuclear coupling scheme changes. The
lowest excitations now correspond to approximately
harmonic shape osci1lation of quadrupole type. With
the further approach to a closed shell configuration the
frequency of such shape oscillations increases. Finally,
in the immediate neighborhood of a closed shell con-
figuration the collective vibrational frequencies may
become comparable to those of independent particle
motion. It is then no longer possible to employ an
adiabatic approximation as in the derivation of (1).
In such cases it is most appropriate to treat completely
all the degrees of freedom of the particles outside of the
closed shells, as has been done by Inglis, Elliott, ai)d
Flowers, Redlich, Ford, Levinson, Pryce, and others.

The general sequence of spectra is illustrated in Fig.
6. The levels of Hf'" follow the rotational spectrum
quite accurately, as is the case for all the nuclei in this
region (Fig. 3).With Os"' deviations from the rotational
spectrum (2) are about ten percent. The transition to
vibrational spectra occurs at Pt"'. All the observed
spectra from this point to the immediate neighborhood
of the closed shell configuration of Pb'" correspond to
approximately harmonic vibrations.

Finally, by the time we come to Pb"' the collective
frequencies have become higher than those of individual

particle motion. The observed low-lying excited states
of this nucleus have been shown' to correspond well

with the two-neutron excitations expected from the
known single particle levels available in this region.

M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 773 (1952);
D. E. Alburger and M. H. L. Pryce, Phys. Rev. 95, 1482 (1954).


