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1. SPECIAL RELATIVITY

1(a) Basic Principles

HE theory of relativity cannot be separated
from the rest of physics, for every physical theory

is supposed to conform to the basic relativistic
principles, and any concrete physical problem involves
a synthesis of relativity and some specific physical
theory.

To mention one historically important example:
When Sommerfeld first derived the fine structure of
the hydrogen spectrum, his success was widely con-
sidered to be primarily a confirmation of relativistic
dynamics. Today we know that the relativistic basis
of his analysis was much more secure than the quantum
theoretical one. After all, ten years were to pass before
the electrionic spin was discovered, not to mention wave
mechanics or Dirac's theory of the electron.

I shall concentrate here on some of the basic principles
relevant to all applications, and on some instances
where relativity was crucial for the development of new
physical theories.

Special relativity originated from electrodynamics.
But only the rudiments of electrodynamics, namely,
the fundamental laws of light propagation, were
actually used for its foundation. This was the strength
of Einstein's position compared to that of Lorentz and
Poincare. Both Lorentz and Poincare put electro-
dynamics very much into the foreground, on the
assumption that in the last analysis all interactions
are electrodynamic interactions (with the possible
exception of gravitation). The development of rela-
tivity, however, has shown that the theory is in no way
restricted to electrodynamics and that it is quite
independent of our views on the ultimate nature of the
interaction between elementary particles.

For the purpose of this talk, I define the postulate
of special relativity as the assertion that in the absence
of gravitation the laws of physics have the same form
in all inertial frames of reference and that any two
inertial frames are connected by a linear coordinate
transformation (inhomogeneous Lorentz trans-
formation) As is well known, three other Lorentz traTisfor-

mations may be adjoined to the restricted Lorentz
group:

x"= a"+X 'x' (z, g = 1, ~, 4)

which leaves the Minkowskian metric

ds'= —(dx')' —(dx')' —(dx')'+ (dx')' (x'= cz) (1.2)
(A) x"= —x' (zx4);
(8) x"=x' (i/4) .

x"= x4 (reflexion)

x"= —x4 (time reversal)
invariant.

To make this statement unambiguous, several
remarks must be added.

(C) x' = —x' (i= 1, ,4). (total inversion)

Note that C is the product of 2 and B.
16i

(1) Einstein s de6nition of the space-time coordinates—in particular, his definition of simultaneity —is
explicitly assumed. Thus the postulate contains the law
of light propagation in free space as well as relativistic
kinematics.

(2) In a given inertial frame, E, the 'state of a
physical system must be given by a well-defined set
of quantities, say, fi, , f„(which may or may not be
functions of space-time), and the transformation law
of the f must be explicitly stated. This means that in
a second inertial frame, E', the same state is described
by zz similar quantities f which are related to the
original f by I equations

f'-=F-(fi, ,f-), (1.3)
where the form of the functions F is determined by the
Lorentz transformation connecting E and E'. (Dirac's
equation shows how intricate the transformation law
may prove to be.) I list here indiscriminately all
quantities describing the system, such as hydro-
dynamical and electromagnetic ones, and the equations
(1.3) imply in no way a close relationship between the
various f .

(3) Passive and active Lorentz transformations. The
transformations considered so far—relating the descrip-
tions of the same physical situation in two diferent
frames E and E' may be te—rmed passive Lorentz
transformations. Since the laws of physics have the
same form in E and E', it follows that the f' describe
also a possible situation in E, diferent, in general, from
that described by the f This leads t.o an interpretation
of (1.3) as an active transformation. If, in a fixed frame
E, {fi, . ,f„} is 'an admissible state of the physical
system in question, so is {f'.. .f'„}

(4) Finally, not all Lorentz transformations need be
admitted. The minimal requirement is that a theory be
invariant with respect to the "restricted" Lorentz
group, i.e., the group of all transformations which
involve neither time reversal nor spatial reAexions.
[In terms of the coeKcients in (1.1) these are defined
by: (i) X44)0, (ii) the determinant of the 'A,'is equal
to 1.]
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The distinction of the diferent possibilities is
particularly important for the "active" interpretation.
Thus invariance with respect to time reversal expresses
the reversibility of the phenomena described by a
given theory. In the past one has considered at least
the group of all transformations that do not invert the
time (i.e., the "restricted" group together with A),
but the recent observations on "strange" particles have
led to the suggestion of dropping' —tentatively —the
spatial reflexion A.*

1 (b) Experimental Verification

Regarding the experimental verification of rela-
tivistic lanematics, I refer to Robertson's analysis of
the observational basis of the Lorentz transformations. '
It concerns tlircc basic optical experiments, Rnd lt ls in

my opinion, a particular virtue of this analysis that it
depends as little as possible on any specific physical
theory. As in the definition of the Lorentz group only
the basic laws of light propagation are involved. The
three experiments are (1) the Michelson-Morley
experiment, (2) the experiment by Kennedy and
Thorndike' (whose arrangement is similar to that of
the Michelson Morley experiment, with the distinction,
however, that the two arms along which the light is
propagated are as different in. length as feasible), (3)
the experiment by Ives and Stilwell on the transverse
Doppler effect, which exhibits the time dilation required
by the Lorcntz transformation. Robertson has shown
that under very modest assumptions one can deduce
from the results -of these experiments —to the extent
that such a thing can be deduced at all—the validity
of the Lorentz transformation (and, hence, of rela-
tivistic kinematics) including terms of order a'/c'.

Apart from these optical experiments, application
Rnd verification of special relativity have, of course,
been mostly connected with elementary particles. This
hoMs in particular for relativistic dynamics as distin-
guished from relativistic kinematics.

~ See C. N. Yang's report on new particles.
~ Pote added in proof. —In the meantime the nonconservation

of parity has been brilliantly and successfully demonstrated. By
themselves, however, the experiments do not prove that spatial
reflexion must be omitted from the invariance group of special
relativity, because —as was pointed out. in the previous remarks—the invariance of a theory with respect to a given Lorentz
transformation can only be adequately discussed if the trans-
formation laws (1.3} are explicitly stated for ujtl physical quan-
tities. According to the highly satisfactory interpretation of the
recent experiments by Lee, Oehme, and Yang (to appear in
Phys. Rev. } the theory remains invariant if spatial reflexion is
coupled with charge conjugation. Thus the change in our the-
oretical views does not lead to the omission of spatial reflexion
from the list of 'admissible Lorentz transformations, but it rather
leads to a radical alteration of those transformation laws (1.3}
which correspond to spatial reflexion, an alteration involving the
transition from particles to antiparticles. Since heretofore charge
conjugation by itself had been considered a symmetry operation
of the theory the total number of symmetry operations has been
cut in half,

2 See reference 12 (bibliography}.
3 See H. P. Robertson's remark in the discussion following this

'

talk, p. 173.

A most impressive confirmation of the kinematic
CGect of time dilation is provided by a comparison of the
decay time of m mesons in Right with that of + mesons
at rest. '

Today there is no longer any need to stress the
experimental verification of relativistic dynamics.
Particles of extreme relativistic energies are an everyday
occurrence in physical laboratories, and no failure of
relativistic dynamics is known. This applies specihcally
to the most important consequence of relativity, namely,
the equivalence of energy and mass.

1(c) Significance of Relativity for
Quantum Theory

Let me mention a few instances where relativity has
been crucial for the development of quantum theory.
I might start with the very notion of a photon, for the
relation 8= cp between the energy and the momentum
of a particle can certainly not be understood on the
basis of Newtonian mechanics. (Planck's book on heat
radiation contains a proof that light cannot be assumed
to consist of pRrtlclcs~ bccause such Rn Rssumptloll
would be incompatible with the relation E'= 3N between
the radiation pressure I' and the density of radiation
energy, e. Planck's analysis rests, of course, on the
Newtonian formula E=p'/2m. )

The second instance I want to mention is the dis-
covery of de Broglie's relation. It was the requirement
of Lorentz invariance that led from Planck's equation
E=he to the relation p= h/X.

The third is the inauguration of relativistic quantum
mechanics by Dirac. Not only did Dirac's equation
provide the correct description of the kinematics and
the dynamics of the electron, but it also led to the
concept of antiparticles and to the prediction of the
creation and annihilation of pairs, thus turning the
apparent paradox of negative energy states into the
most remarkable success of the theory.

Finally, all of quantum 6ekl theory belongs here,
because relativity has played an increasingly important
role in its development, particularly during the last ten
ycR1s.

In addition to these instances, where relativity has
been of vital importance for the discovery or the
formulation of new laws of physics, there are some
general results which give a deeper insight into the
structure of quantum theory. Firstly, the connection
between Lorentz invariance and conservatioli laws.
Conservation laws follow whenever the 6eld equations
are derived from a Lorentz invariant Lagrangian.
(Admittedly, this connection is not specifically quantum
theoretical, but is equally valid for a classical field

theory. ) Secondly, Pauli's analysis of the relation

spin and stat jstjcs 5 which is based on Lorcntz

' See reference 13 {bibliography}. Here the factor (1—P2} & is
of the order 1.5.' See reference 14 (bibliography}.
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invariance, and thirdly Wigner's investigation of the
representations of the inhomogeneous Lorentz group,
which resulted in the classi6cation of all free relativistic
systems that obey tHe basic laws of quantum theory. '

Relativity did not start out as a specifically atomic
theory, but it has survived the transition from classical
to quantum theoretical concepts. This, I believe, is not
a coincidence, for those laws of physics which express
a basic "invariance" or "symmetry" of physical
phenomena seem to be our most fundamental ones.
(Even in Newtonian physics Euclidean geometry-
and, consequently, also the group of orthogonal trans-
formations —plays a much more important role than
the traditional expositions seem to indicate. )

The present difhculties of relativistic quantum theory
are familiar, and it is not known how they will be
resolved. If we shall have to abandon the Minkowskian
description of the space-time continuum the notion of
Lorentz invariance will no longer be directly applicable.
But there is no doubt that even then the basic rela-
tivistic postulate of the equivalence of all inertial frames
will remain valid in some suitably modified —form.

2. GENERAL RELATIVITY

This second part is concerned with the classical theory
of general relativity as originally formulated by
Einstein. Various attempts to go beyond this theory are
surveyed in Parts III and IV.t

I shall analyze the logical and mathematical structure
of general relativity in much greater detail than I did
in the case of special relativity in Part I. For one thing,
special relativity is an every-day working tool of many
theoretical physicists, whereas general relativity is not.
For another, many of the details are relevant to the
discussion in Parts III and IV.

Familiarity with the elements of Riemannian
geometry is assumed —to the extent that they are
treated in Einstein's "Meaning of Relativity. " I also
follow Einstein's notation.

ds =g;gdx'dx (g'g=@') (2.2)

the components g;~ of the metric tensor being functions
of the coordinates. 7 Here is the origin of the Riemannian
structure of the space-time continuum, which is
fundamental for general relativity.

Secondly, in a Lorentz frame the world line of a test
particle is a time-like straight line in the absence of
external forces, so that d' /xs'd=0. For a general
coordinate system this leads to the principte of the

geodesic Lime: In a purely gravitational Geld, the world
line of a test particle is given by the equations

simplest cases shows that coordinate differences are no
longer directly measured by clocks and measuring rods.
Thus, one is led to the introduction of general coordinate
systems for the local description of the space-time
continuum.

General relativity rests, then, on the following
assumptions:

I. GeneraL corn, riance. The laws of physics have the
same form in all coordinate systems.

II. Local validity of special relativity Th. e laws of
special relativity hold locally in a coordinate system
with vanishing gravitational field.

To these must be added

III. The prerise form of thegeld equations

Let me begin the analysis with assumption II.
First of all it is meant to imply the existence, in the

neighborhood of a given point in the space-time
continuum, of a frame of reference in which no gravi-
tational field is present. In this Lorentz frame we have
a Minkowskian interval

ds'= —(dx')' —(dx')' —(dx')'+ (dx')' (2.1)

which is measured by "ideal" clocks or measuring rods
according as ds'&0 or ds'&0. In an arbitrary coordinate
system this interval takes the form

2(a) Basic Principles
d x' dS~ dSp

+P a'
ds' ds ds

(2.3)

General relativity starts with Einstein's equivalence
principle. It follows from the equality of inertial and
gravitational mass that for purely mechanical phe-
nomena a uniformly accelerated frame of reference is
equivalent to a frame at rest which carries a uniform
gravitational field. ("Acceleration" and "rest" are
taken here with respect to an inertial frame of
Newtonian mechanics. ) Einstein. 's principle postulates
the equivalence of such frames for aLL physical phe-
nomena and thereby makes gravitation an integral
part of general relativity. The analysis of even the

6 See reference 15, also 16(a), (b).
f Note added in proof. —The July issue of the Reviews of Modern

Physics will contain a number of papers on various aspects of
general relativity, in particular on the quantization of covariant
theories, a question which is only briefly discussed in part IV
of the present article.

4$ dS
(2.3a)

Here, I;~' are the coef5cients of the alone connection
de6ned by the metric tensor,

1 /Bg~; Bg~q Bgzq't
P .„g gim~

2 ( ax" ax~ ax")
(2.4)

and s/c is the proper time of the particle. In a given
coordinate system, the gravitational 6eld (which
determines the motion of a particle) is determined by

7 In a very interesting paper C. Mgller discusses the question
to what extent real physical systems may approximate "ideal"
clocks (reference 17, bibliography).
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the coefficients F and, hence, by the derivatives
Bg;,/Bx~ T. he g;k themselves act as the potentials of the
gravitational field and thus appear in their dual role
describing both the metrical properties of the space-time
continuum and the dynamical action of gravity.

In the neighborhood of a given point Pp of the space-
time continuum a coordinate system ("geodesic"
coordinate system) can be introduced such that at I'o
(1) the line element has the Minkowskian form (2.1)
and (2) all coefficients I', i' vanish (i.e., the g;i are
constant in first approximation). This well-known
mathematical fact clearly demonstrates the dependence
of the gravitational field on the frame of reference,
and it also permits us to express the "local validity"
of special relativity in a precise mathematical form. The
coordinate system referred to in assumption II is such
a geodesic coordinate system, for which the gravitational
field vanishes at Pp.

With the help of the principle of gene-al covariance
the equations of special relativity can then be "trans-
lated" into general relativity in an unambiguous way
if we assume the general relativistic equations to
contain no higher than first-order derivatives of the
g;~, and if no new quantities, in addition to the metric
tensor, are introduced to describe the system in
question. '

Examples are Maxwell's equations, the equations of
hydrodynamics; furthermore, the equations of motion
for a charged particle in an external electromagnetic
field, which are obtained by inserting the relativistic
Lorentz force on the right-hand side of (2.3). (One
might also mention the world line of a light ray, which
is a null geodesic as follows from Maxwell's equation. )

g44 1+24'/4 (2.5)

where p is the classical potential of Newtonian gravi-
tation. The general relativistic equations ought to be
obtained by generalizing Poisson's equation

(y =Newtonian gravitational constant, p =mass density
of the sources of the gravitational field). In view of the
special relativistic principle of the equivalence of mass
and energy p must be replaced by the total energy
density of the sources, or rather by the total (sym-
metric) energy-momentum tensor T;, of the sources.
Hence, we are led to a tensor equation of the form

Hty Tsp~ (2 6)

80nly if such a qualification is added does the principle of
general covariance have an unambiguous meaning. )See also the
discussion in 1{a).g

2(b) Field Equations of Gravitation

To establish the 6eld equations we must go beyond
special relativity. In the case of a weak static gravi-
tational field, (2.3) go over into the Newtonian equa-
tions of motion if one sets in first approximatiori

where the components of the symmetric tensor II;,.
are universal functions (i.e., the same in every co-
ordinate system) of the g;& and their derivatives. To
maintain the analogy with Poihson's equation the
following —very modest —assumption is added: H;,.
contains no higher than second-order derivatives of
the g;I„and it is linear in. the second derivatives. The
mathematical analysis shows that II,; has then neces-
sarily the form

IJ;,=a&E;;+aC;,R+asg;, ,

where R;, is the contracted curvature tensor, E the
curvature scalar, and the a; are constants. '

In a Lorentz frame the energy-momentum tensor
satisfies the conservation law,

41 T"/Bx'= 0

which implies for a general coordinate system

(2.7)

(2.8)

Here, and in the sequel, the semicolon indicates
covariant differentiation. In view of the assumed field
equations (2.6) we must then have H'~', ,=0, which is
generally true if and only if a2= ——,'a&, for in every
Riemannian space the curvature tensor satisfies the
"Bianchi" identities

(G'i =+4i 2g'i+) (2.9)

Dividing by a&, we obtain finally

G;,+kg, ,= KT,;— (2.10)

(with A = a4/Qi, K= 1/44i). Comparison with Poisson's
equation for a weak gravitational field (produced by a
mass distribution of low density) shows that

K= 84I 'r/C

if T;, has the dimension of an energy density.
This completes the derivation of the field equations

to the extent that they are determined by the assump-
tions made. The cosmological constant A—which has
the dimension 1/(length)' —remains undetermined.
Einstein introduced it—reluctantly —in 1917 in order
to account for a static universe on the basis of general
relativity, but later, particularly when the idea of a
static universe had to be abandoned, he strongly
advocated discarding it. I believe that many physicists
share this view today. Although the astronomers will

probably have the last word on this question, I may
indicate some of the objections: (1) A universal length
A ' is introduced whose value is in no way determined

by the theory. (2) Even in the absence of any sources
(T,;=0) the Minkowskian metric form is no longer a
solution of the field equations. —In any event, the
length A & has cosmic dimensions so that A may be
disregarded in all applications outside of cosmology.
Accordingly, I shall omit it throughout most of the
following discussion.

~ See Pauli, reference 2 {bibliography) art. 17, p. 598.
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In a complete description of a physical system, T;;
will depend on other field variables (electromagnetic,
hydrodynamic, etc.) which in turn satisfy an additional
set of 6eld equations (Maxwell's, Euler's etc.)

2(c) Consequences of the Covariance of
the Field Equations

The covariance of the relativistic field equations has
striking consequences. I shall confine myself to the
gravitational equations, but what I have to say holds—
with minor modifications —for any covariant set of
equations, in particular for any general relativistic
unified field theory.

values of x4. Little is known on the very diKcult
question of how far the g;& may be continued free of
singularities.

Identities md Coeservafioe I.azv s"

The covariance of the field equations, by itself, does
not insure the existence of the necessary identities.
But if the field equations are derived from a covariant
variational principle, the identities as well as the
conservation laws may be deduced. This fact demon-
strates the importance of a variational principle for
covariant field equations.

Einstein's gravitational equations (2.10) are obtained

Corttinuati oe pro pertiesio

Consider a pure gravitational field (T,,=O) with
vanishing cosmological constant. Then

G,;=0.

Given the "initial values" g;i, and Bg;i/Bx' on the
hypersurface S which, in a suitable coordinate system,
has the equation x4=0. To what extent do the field
equations determine the continuation of the g;I, in the
x4 direction? The covariance of the equations implies
immediately that the continuation cannot be Neigletty
determined, for if g,q(x) is a solution with the given
initial values, so is any field g,&(x) obtained from

go, (x) by a (continuous) change of the coordinate
system outside S.

If, everywhere on S, g&440 (geometrically: if S
nowhere touches the local light cone g,idx'dx"=0) the
covariance of the theory may also be utilized as follows:
Assuming the x4 direction time-like, we may introduce
a coordinate system in which

g44=g"=1' g =g"=0 (&=ii 21 3).

Then we are left with ten equations (G;&=0) for only
six unknown functions g e(n, P = 1, 2, 3). One finds that
six equations (vis. , G e=0) determine the continuation
in the x4 direction, i.e., they may be solved for the
derivatives 8'g e/(Bx4)', while the remaining four
(G4 =0, G44 ——0) are conditions to be satisfied on a
section x4= const.

Finally, once the conditions G4„=0, G44= 0 are
satis6ed for x4=0 and the g p are determined from the
six equations G &=0, the 6eld equations must insure the
validity of G4 =0, G44=0 also outside the hypersurface
S. That this is indeed the case follows from the Bianchi
identities G",,=0 Lsee Eq. (2.9)] which, in the co-
ordinate system we have chosen, imply BQ&,/Bx4=0,
B(944/Bx'=0, where 0"= lgj&G"&' (g=determinant of
the g;i,).

It should be emphasized that these are purely local
considerations. Strictly speaking, they hold for a
suKciently small part of S and for su%ciently small

' See reference 3 (bibliography), Chap. II, in particular pp.
31-32.

(2 11)

Here, g is the determinant of the go„ l gl its absolute
value, 5= lgltR, and P.. is the nongravitational part
of the Lagrangian, the subscript s referring to the
sources of the gravitational field. For pure electro-
magnetism,

(2.11a)

The quantities to be varied are (1) the components g,&

of the metric tensor and (2) whatever additional 6eld
variables are contained in 9, (e.g. , the four components
of the vector potential in the electromagnetic case).
Variation of the g;A, yields the gravitational equations,
variation of the other variables the remaining 6eld
equations (for example, Maxwell's equation). As usual,
the variations of the field variables (and, if necessary,
of some of their derivatives) are supposed to vanish
at the boundary of the fixed four-dimensional region
over which the integration is extended.

I shall illustrate the procedure for the derivation of
identities for the pure gravitational field, i.e., for
g=g (setting A=O), the essential fact being that g
is a scalar density. "

We first de6ne the following transformation of fmlds.

(1) Assume that with every point x of some region in
space-time a point y is correlated by the equations

(2) This point transformation induces a corresponding
transformation of scalars, vectors, etc. : A scalar field

» See reference 2 (bibliography), art. 23.
"While the essential features of the method are correctly

described here the particular form (B), (C) of the conservation
laws is obtained if we follow the customary procedure of replacing
Q by a Lagrangian Q' which contains only first-order derivatives
of the g;&. Q' is formed by subtracting from 5 a suitable divergence:
Q'=% —BQ'/Bx'. (See reference 2, art. 23 or reference 4, p. 196
(bibliography). j P' is no longer a scalar density, but the variation
BP induced by (2.14) is still a divergence. The comparison of
(2.14a) and (2.14b) remains the crucial step, but the variation of
'R must now be expressed by the variation of Q' and of Q'.
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p(x) is transformed into

a covariant vector field v;(x) into

yak
v, '(x) = v. (y(x)),

8$s
(2.12)

(2.14a)

(Q'&' are the left-hand sides of the field equations, 8'
are expressions linear in the variations bg;, and their
derivatives. ) On the other hand, since 5 is a scalar
density I see (2.13)j,

(8$' BR ) 8
8%=

E~ 5+ &'
~

= e (g%). (2.14b)
lax' »' ) ax'

The last two expressions for W coincide for every
choice of P if the variations (2.14) are inserted in
(2.14a). Equating the coefficients of the P and of their
derivatives of various orders in (2.14a) and (2.14b)
one obtains, therefore, a series of relations which hold
identically, i.e., whether or not the field equations are
satisfied.

contravariant vectors and tensors of all ranks and types
being transformed accordingly.

R is a universal function of the g, ~ and their deriva-
tives. If the "transformed" values g',7, (x), Bg';q/»' etc. ,
are inserted, one obtains

&'(x) =&(g'~', ~g''k/»', ")=~ I'(y(x)) (2 13)

(J is the Jacobian 8(y', ,y')/8(x', ,x4)) because
is a scalar density. Incidentally, it is precisely at this
point that the covariance of the theory is used.

Introducing a family of transformations

y'(x, e) =x'+ e&'(x),

we find that, for a given choice of the functions g', the
transformed field variables are turned into functions
of x and e. Their variations are the first-order terms
of their expansions in powers of e, thus Lfrom (2.12)j

8 (8$" Bv
hvar

——e—v (x,e)(, 0——e( vi+
a~ L»' »" )

(2.14)
(g(k g(k

g + g'+
&»; »~ »& )

Tlie variation of R may now be expressed in two ways.
On one hand,

&R &
t ag,;)

~g,,+ (~g,,)+ "
Rgb Bg'ij, i » (» )

or, using the standard device of variational calculus,

In the case of Q these relations may be reduced to
the following three sets:

aN;~ 1 ag, i,

(A) @";,—=
,
——

.@~'—=0 (@"=
I
gl'@*')

Bx 2 8$

t9

(B) (I,'—U )=0.
Bx~

(C)

jIv

8 —11,'=———
8x'

8
(a"a""—q'-a").

I turn now to the interpretation of these relations.
(A) are the Bianchi identities whose significance for
the field equations 1 have discussed already. The
equations (B) constitute coiiservatioe laws for energy
and momentum. (The U, ' are quadratic in the gravi-
tational field)."Using the gravitational field equations
(with A=0)

8 '= —KZ &= —
x~g~ T„&

we may rewrite (8) in the form

8
=0; 8,'=Z +t, (2.15)

where Z, ' is the energy-momentum density of the
gravitation producing field, while t, '= —K 'Q, & may
be considered the gravitational part of the total energy-
momentum density. The t,& form a "pseudo-tensor"
density, i.e., they transform like the components of a
tensor density only under /ieeur coordinate trans-
formations. (At any given point in space-time, the t,'
vanish in a geodesic coordinate system, in which the
gravitational field vanishes. )

Regarding the equations (C) we see, first of all, that
the conservation equations (B)follow from them, in view
of the antisymmetry of 5,'" in j and k. Furthermore,
they greatly facilitate and clarify the transition to the
conservation laws for total energy and momentum.
These may be defined for an isolated system whose
metric is "asymptotically Minkowskian, " so that, in a
suitable frame of reference, the g, l, approach the special
relativistic values sufficiently fast as r=((x')'+(x')'
+ (x')') &~.Then the integrals

J,= Jt @~4d'x

(extended over a three-dimensional section x'=const)
exist, and in virtue of the local conservation laws
BS,'/Bx&'=0 they are independent of the "time" x'.

"Explicit expressions for 0;& in reference 2 (bibliography),
p. e22, Zq. (&85).
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It follows from (C) that then

(S, is the "sphere" r =a, and ne are the components of
its outward normal. ) These last integrals are, in many
cases, easy to evaluate, and they show explicitly that
total energy and momentum are uniquely determined
by the values of the g;I, for large r, irrespective of the
specific nature of the system considered. "Likewise, if
we apply a coordinate transformation which does not
change the asymptotically Minkowskian character of
the metric and is thus asymptotically (for large r) a
Lorentz transformation, the J; themselves undergo
this same Lorentz transformation. "

2(d) Problem of Motion

Of the later developments in the theory of general
relativity proper (i.e.; excluding for the present the
attempts at constructing a unified field theory) I
shall mention only the analysis of the problem of
motion, which is of considerable interest.

This problem concerns two related, but separate,
questions. The first is the motion of a test particle
(a particle of vanishing mass) in a given gravitational
field. The second is the e-body problem where the
task is to Gnd both the gravitational Geld produced by
e particles and the motion of these particles. I shall
briefly review some of the more recent work in this
direction.

Motion of a 2'est Particle

We have seen that the principle of the geodesic line
is one of the assumptions of the theory, adopted from
special relativity. Rather early the question was raised
whether it could be derived from the field equations.
Infeld and Schild' treat this problem as follows:
Given a gravitational Geld g;~ free from singularities.
The world line Lo of a test particle is regarded as a
limiting case (for m~0) of the world line 1.

& &
of a

particle of mass m, which is treated as a singularity
of the field. Thus, no energy-momentum tensor (2';,)
need be introduced, and outside L( ) the free Geld

equations G,,=O (or R,;=0) are satisfied. Both the

Geld and the world line L( ) depend on m. As m—4,
it is assumed that the Geld converges to the given Geld

g;~, and that the world line approaches a limiting
position Lp the test particle's world line. Infeld and
Schild show that Lo is necessarily a geodesic lime of the
metric g;I,.

n-Body Problem

This problem, which is considerably more compre-
hensive and also more dificult, has been investigated
by two groups: By Einstein and his co-workers"
(in particular Infeld), and by Pock" and some of his
students. Both groups use approximation methods
adapted to the assumption that, in a suitable frame of
reference, the velocities are small compared to the
velocity of light and that the gravitational field. is
relatively weak (so that the Minkowskian metric may
serve as a starting point for the approximation pro-
cedure). In addition, both assume an asymptotically
Minkowskian metric, hence treat the n bodies as an
isolated system.

Einstein treats the e bodies as point particles, i.e.,
as singularities of the gravitational field and has,
therefore, merely to satisfy the free field equations
(R;i——0) outside the singularities, so that he can avoid
the introduction of a specific energy-momentum tensor.
In addition, it is explicitly assumed that each singularity
has the character of a pol- not that of a dipole or
higher pol- and that no spontaneous radiation is
emitted. The masses of the particles appear as inte-
gration constants, and it follows from the analysis
that they are time independent. The first approximation
yields the Newtonian potential and the Newtonian law
of motion. The second approximation yields additional
terms, from which, for example, the advance of the
perihelion of a planetary orbit may be derived.

Pock works from the start with extended bodies
described by a suitable energy-momentum tensor T;;
and deals thus with a combined gravitational and
hydrodynamical problem. H the linear dimensions of
the e bodies are small compared to their mutual
distances, he obtains the same results as Einstein. He
has, however, gone further by allowing not only
translatory but also rotatory motion, and has also
investigated the (gravitational) radiation problem in
detail.

'4For a static field whose metric form coincides with the
Schwarzschild line element for large r one finds J4=mc',
J;=0(i/4). Here m is the mass constant that appears in the
Schwarzschild line element.

"The connection between the covariance of the field equations
and the identities and conservation laws was recognized very
early. The method described here was developed and studied by
Einstein, Hilbert, Klein, Lorentz, and others. LFor full references
see Pauli, art. 23.) But it was not until 1939 that an explicit form
for (C) was first derived (by Freud, reference 18 {bibliography). j
The particularly simple expressions used here are due to Landau
and Lifschitz treference 5 (bibliography), Eq. (11—78)j.—For
recent investigations on this subject see references 35a, 19, 20, 33
(bibliography)."See reference 21 (bibliography).

2(e) Mathematical Investigations of the
Free Field Equations

Since the gravitational field equations are obtained
by generalizing Poisson's equation

V'Q= 4~yp

the energy-momentum tensor replacing the material

» See reference 22 (bibliography)."The whole Chapter VI of Fock's book (reference 6,
bibliography) is devoted to the problem of motion.
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density p, one may expect similar results for them, in
particular, that for vanishing T;; no stationary gravi-
tational field exists. I refer, of course, to a field free of
singularities. This has been proved under very general
assumptions. The strongest results are due to
Lichnerowicz. " They relate to a field which, in a
suitable frame of reference, is independent of the time
like variable x4. The assumptions on the three-dimen-
sional space S of the coordinates x', x', x' are of two
kinds: Either S is closed, in which case no further
conditions are needed; or S is irifiviite (topologically
Euclidean) and, in addition, asyespkolically 3finkow
shia'. In both cases the Riemann curvature tensor
vanishes, and the space-time continuum is (at least
locally) Minkowskian, although for a closed S it is, of
course, topologically diferent from the Minkowskian
world of special relativity.

Very little is known on the nonstationary case.
(The classical analog would be the wave equation—
instead of Laplace's equation —which does admit
solutions with the proper asymptotic behavior. ) This
question certainly deserves further study. It would be
highly interesting to know what kind of solutions, if

any, are possible.
In this context I should like to mention Wheeler's

work. ,
"which deals no longer with the pure gravitational

field, but with the Einstein-Maxwell theory, the
combined gravitational and electromagnetic equations
for a field free of charges and currents. Wheeler con-
structs solutions, his "geons" (short for gravitational-
electromagnetic entities), which have the properties of
"bodies": The electromagnetic field remains confined
to a finite region under the gravitational attraction
produced by its own energy density. The mathematical
analysis is partly based on approximations, but it has
been made highly probable that rigorous solutions of
this kind exist.

Due to the "weakness" of gravitational interaction
the ratio of the linear dimension E and the mass M of a
geon has the uncomfortably small order of magnitude

y/c'=0. 74X10 "cm/g

so that either the extension or the density of a geon
is tremendous.

2(f) Verification of General Relativity
by Astronomical Observations"

There are the three classical astronomical eGects.

(1) The observations on the advance of the Mercury
perihelion are now in very good agreement with the
theory. (2) As to the deflection of light in the gravi-

tational field of the sun, it is generally admitted that an
eGect of the predicted order of magnitude exists, but
there is no unanimity among astronomers as to whether

~9 See reference 3, Chap. VIII (bibliography).
» See reference 23 (bibliography).
~~ For this whole section compare Ginsburg's excellent survey,

reference 24 (bibliography).

the theory is quantitatively confirmed. " (3) Finally,
there is the gravitational shift of spectral lines. The
theory predicts

Here, u, and vo are emitted and observed frequencies,
respectively. The emitting light source and the observer
are assumed at rest in a static gravitational field. p,
and po are the corresponding values of the Newtonian
potential, which provides an excellent approximation
in all cases of interest. For a star, P, = —yM/&
(M=mass, A=radius of the star), while the terrestrial
&0 is negligible. Thus we have the red shift

(vp —v, )/v, = yM/Ec'—

which for the sun has the order of magnitude 2&(10 '.
For rays coming from the limb of the solar disk, the
observed red shift has the theoretical value, but it is
smaller for all other rays from the sun. Although an
explanation for this behavior may be given, this is still
an inconclusive result. The theory seems best confirmed
for some stars of very high density (e.g. , the companion
of Sirius), for which the red shift should indeed be
considerably bigger than it is for the sun. Unfortunately,
in these cases M and E are not very accurately known.

It may be that in the not too distant future terrestrial
experiments will, at long last, become possible. For an
observer on the earth, and the emitting light source
at rest at height h, we have a "violet" shift

(vp —v, )/v. =gh/c'

(g=gravitational acceleration on the earth's surface).
If h= 1 km, this shift is of the order 10 ", still outside
the range of the most accurate detecting devices. Here
the artificial satellites" may provide the solution in
magnifying the effect by a factor 10P. (The Doppler
eGect due to the satellite's motion changes the shift
into a red shift, as long as h is smaller than half the
earth's radius, but does not appreciably alter the order
of magnitude of the effect. )

Unfortunately, I do not have the time to talk here
about the field of cosmology, the field on which general
relativity has had by far the most fruitful and stimu-
lating eBect and which is now advancing so rapidly,
due to the recent extraordinary achievements of
astronomy. Let me stress just one fact. For a long time,
as you know, the observed value of the Hubble constant
was very disquieting because the age of the universe
appeared smaller than the age of the earth's crust as
determined from radioactive measurements. During
the last few years, however —mainly through Baade's
work'~the distance scale of distant nebulae has more

22See R. Trumpler's report to the Berne conference, refer-
ence ff (bibliography). Trumpler considers the observational
data in good agreement with the theory.

"See references 24 and 25 (bibliography).
'4 See W. Baade's report to the Berne conference, reference f f

(bibliography).
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than doubled. According to recent determinations of
the Hubble constant, 1/H is of the order of 5X10'
years. If this is confirmed, then the main diKculty
will have disappeared.

Outside of cosmology, the impact of general relativity
on the rest of physics has not been nearly so great as
that of special relativity. One of the reasons is un-
doubtedly the smallness of the observable eGects
predicted by the theory and, generally speaking, the
weakness of gravitational interactions, particularly in
comparison with other interactions between elementary
particles. The smallness of direct gravitational eGects,
however, does not prove that the principles of general
relativity are unimportant even for microscopic
phenomena. If all frames of reference are equivalent
with respect to the laws of macrophysics, it is hard to
believe that this equivalence has no counterpart in
microphysics, even though the mathematical form in
which the equivalence is expressed may greatly diGer
from the customary one.

To quote Klein'&: "In atomic physics there has been
a tendency to neglect the importance of general
relativistic invariance on account of the small influence
of gravitational forces on ordinary phenomena. Quite
apart from the fact that gravitation will probably be
important at very small distances" such a point of
view would seem no more justi6ed than would be the
neglect of atomic spin in atomic structure because in
most problems the direct action of spin magnetic
moments is very small. "

3. UNIFIED FIELD THEORIES

I shall now take up the attempts to go beyond the
theory of general relativity in its original form. There
are two main trends: on one hand, the search for a
unified 6eld theory, on the other, the attempts to
quantize the gravitational equations.

Throughout the years many uni6ed theories have
been suggested and investigated. It is not my intention
to consider them in any detail; I shall rather try to
characterize some of the main ideas and procedures
which have been developed.

General relativity, as we have seen, leads in an
essentially unambiguous way only to a theory of the
gravitational field. Accordingly, in the field equations,

Gg= —~Tg,

only the left-hand side is determined. General rela-
tivity can accommodate virtually any additional field
and its energy-momentum tensor, but it provides no
method for choosing among the various possibilities.

When Weyl, in 1918, developed the first unified field

~5 Reference 32, p. 17 (bibliography).
'6Landau points out that for this reason quantum electro-

dynamics may not be considered a closed system, because for very
high cut-off momenta (i.e., for very small distances) gravitational
effects can no longer be neglected. See reference 26, p. 60
(bibliography).

theory" the uni6cation of various fields of physics had
progressed very far. The study of atomic phenomena,
in particular, had revealed the predominance of electro-
magnetic interactions, and it seemed probable that
in the last analysis all physical forces could be reduced
to electromagnetic and gravitational ones. It was
therefore very tempting to complete the synthesis by
combining gravitation and electromagnetism in a more
comprehensive entity. The uni6cation was to achieve
two things: (1) to deduce, at least in principle, all
physical interactions from one law, (2) to modify the
field equations in such a way that they would admit
solutions corresponding to stable charged particles.

In the course of time, specifically after the advent of
quantum mechanics, the program which I have sketched
has undergone many changes and has been interpreted
in many different ways. There was the possibility of
interpreting the "particles" either as part of the field
or as genuine point singularities; there was the possi-
bility of interpreting a unified field theory either as a
c-number theory later to be quantized or as a fieM
theory which implicitly contained the quantum laws
already. Also the view that the gravitational and
electromagnetic fields were the only fundamental ones
was no longer generally accepted.

So far, none of these theories has actually attained
the objectives of the original program. To a large
extent the work has been concerned with the search for
a mathematical structure —more comprehensive than
the four dimensional Riemannian space on which to
base a uni6ed or generalized field theory, even a theory
that would effect only a partial unification.

While in general relativity the equivalence principle
and the principle of general covariance lead directly
to the metric structure of space-time and also to the
explicit form of the field equations, no such general
principles are available to guide the search for a more
comprehensive structure. As a result, the search has
proceeded in quite diGerent directions.

I shall discuss here only two types of theories, both
of which have been actively investigated in recent
yeal s.

3 (a) Five-Dimensional Theory of Kaluza-Klein"

This theory starts from the following observation,
which is far from trivial. The fourteen 6eld variables—
namely, the ten g, I, and the four components p; of the
electromagnetic potential —and the fourteen 6eld
equations that describe the gravitational and electro-
magnetic 6elds in a four-dimensional space-time
continuum 54 may be interpreted in terms of a suitable
Pve dimensional Riem-annian space Sq.

Ss is characterized by the following property: In an
appropriate coordinate system all components g p of

"See ref erence 7 (bibliography). This theory was later
abandoned by Acyl and will not be considered here.

"The original papers are references 27 and 28 (bibliography).
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its metric tensor" are iridependent of the fifth
coordinate x'.

Through every point P of S5 passes a curve C:x'
=const (i=1, ,4), and any vector o at P may be

decomposed into two vectors u~ and a, t which are,
respectively, parallel and perpendicular to C, For their
lengths l» and l~ one obtains

I„'= (g.,a )'/g»,

h'~ =g'i g'4~ 5/g»'

The correspondence of the field variables in S4 with

the metric in $5 is then defined by

g;;=h,; (', j=1, , 4),

2'4'=g ~/g» (i=1 " 4)
(3.1)

This identification30 is justified by the following facts:

Traesforrnalioe Properties

There are two types of coordinate transformations in

S5 which leave the curves C unchanged:

x"=F'(x', ,x4); x"=x'; (3.2a)

x~'=x'+f (xi,",x4). (3.2b)

Under (3.2a), h;, , P;, g» transform respectively like a
tensor, a vector, and a scalar in four-dimensional space.
Under (3.2b), h;; and g» are unchanged, but p; is

subjected to a gauge traesformatioe

y, '=y,—2-'af/ax'.

Field Equations

In the original form of the theory Kaluza added the
condition

g65

thus reducing the number of independent g p to fourteen,

the number of 6eld variables. Under this assumption

one finds for I gI'*8 (8 the curvature scalar of S5, and

g the determinant of the metric tensor) the expression

I g I
'~=

I g I'(~ kf'~f*")- (3.3)

(f;i, Bp;/Bx~ 8——&i/Bx'), i.—e., precisely the Lagrangian

5—8, of the Einstein-Maxwell theory I see Eq. (2.11a)]
in units where ~=1. The field equations themselves

may be expressed by the contracted curvature tensor

of S5. The gravitational equations read

G'i G*i+T'=i=0

(where T'& is the Maxwel'lian energy-momentum

tensor), and Maxwell's equations are

Gg'=2 &f".,;=0.
~9In Sec. 3(a), barred quantities refer to the metric in 55.

Greek indices run from 1 to 5, Latin indices from 1 to 4.
3 Kaluza identified the metric of 54 with g;; (i,j=1,. . . ,4) and

therefore obtained the Einstein-Maxwell equations only as a first
approximation for weak fields. The equations (3.1) are due to
Klein. —The sign of g„.5 must be so chosen that the curves C are
space-like.

The world line of a charged test particle in four-
dimensional space-time corresponds to a geodesic in 55.
Such a geodesic intersects each curve C it meets at a
fixed angle which is determined by the specific charge
e/rii of the test particle.

So far the "five-dimensional" theory merely provides
a reinterpretation of the Einstein-Maxwell theory in

quasi geometrical terms without changing its content
in any way. "Nevertheless, the relations discovered by
Kaluza and Klein have repeatedly attracted the atten-
tion of mathematicians and physicists, and they have
suggested genuine generalizations.

The theory of Jordan Theory-"IfK.aluza's assumption
g55= —1 is dropped a fifteenth variable, say, y= —g55,

which is a scalar in four-dimensional space-time, is
introduced into the theory. What is its significance?
The expression for the curvature scalar 8 changes
from (3.3) to

kxf'—~f*'+g*'(x'/x. );~ (3.4)

3' This holds also for the mathematically more elegant versions
of the theory. The "projective" theory is described in reference 8
(bibliography), Chap. III."See Jordan's book )reference 8 (bibliography) j and reference
29 (bibliography).

33 See reference 30 (bibliography).
"See reference 31 (bibliography).

(x;=Ox/Bx'), which suggests the interpretation of y
as a variable gravitational constant. On this basis
Jordan has developed an extensive theory. It is based
on a variational principle whose Lagrangian is slightly
more general than

I gI &8 and contains two adjustable
constant parameters. In addition to the fourteen
Einstein-Maxwell equations —which are, of course,
modi6ed —there appears a fifteenth field equation for y.

Dirac" first advanced the idea of a variable gravi-
tational constant. He argued, roughly, as follows. For
two electrons the ratio of the Coulomb force and the
Newtoniaii gravitational force is the dimensionless
number e'/ym' of the order 10".It is highly unlikely
that a constant of this size may be explained by any
theory.

on the other hand, numbers of this order are obtained
if astronomical magnitudes are expressed in atomic
units (for example, rwo= proton mass, lo =electron
radius, to lo/c). Thus, w——e find 104' for the present

age of the universe (of some billion years), ~10 4' for
the average material density in the universe, etc. The
difFiculty of explaining the value of e'/ym' disappears,
therefore, if p is not a constant but inversely propor-
tional to the age of the universe, while the atomic units
remain unchanged. This argues for a time dependence
of the gravitational constant, and in a relativistic theory

y must then be treated as a function of space-time.
In a very interesting critical analysis Fierz'4 has

pointed out that Jordan's theory in its present form

(which includes only the pure electromagnetic field)

does not yet lead to an unambiguous interpretation of
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either x as gravitational constant or g,, as the true
metric tensor. For an unambiguous interpretation it
would be necessary to make specific assumptions about
the action on material particles. Depending on these
assumptions also the ratios of diferent atomic units of
length may or may not be constant.

Apart from any particular theoretical views it would
be very worthwhile to attack the question of the time
dependence of y by experiment comparing "astro-
nomical" and "atomic" times. "

Eleie's theory. "—O. Klein has generalized the
original Kaluza-Klein theory in an entirely different
way. He drops the condition that the field quantities be
independent of x', and develops a truly five-dimensional
theory. The fifth coordinate has a quantum theoretical
significance.

As I have mentioned, the world lines of charged
particles correspond to geodesics in Kaluza's S5. These
may be obtained from the Lagrangian

L=g~x x~ (* =dx /'dr)

(r is an auxiliary parameter), and in suitable units the
specific charge e/ni of the particle equals the momentum

Pi, BL/Bx' ——The fift.h coordinate is thus conjugate to
the charge, and in view of the quantization of charge
Klein assumes x' to be an angular variable, or, in other
words, he assumes the field variables to be periodic in
x'. Expanding each field variable in a Fourier series in
x', one obtains a sequence of Fourier coeScients which
are functions of the space-time coordinate x'. They
presumably refer to different particles and are to be
quantized. Particles with half-integral spin may also be
incorporated in the theory.

3(b) Nonsymmetric Theories of Einstein
and Schrodinger'"

In contrast to the theory of Kaluza and Klein, these
theories operate in the ordinary four-dimensional
space-time continuum.

While the basic element of the mathematical struc-
ture of general relativity is the Riemannian metric ds'
of the space-time continuum, the mathematical re-
investigation of infinitesimal geometry —'which was

greatly stimulated by Einstein. 's theory —has revealed
the more fundamental structural element of the aS.ne
connection (or "affinity" ) or the parallel displacement
of vectors defined by the equations

8Q'= —F&g'G~dx .
3~The feasibility of such an experiment was discussed by

G. M. Clemence and R. H. Dicke at an astrophysical seminar at
Princeton (April, 1955)~

36 See reference 32 (bibliography) and Klein's report to the
Berne conference.

37 For the 6nal version of Einstein's theory see reference 33
(bibliography), and "Meaning of Relativity, " Appendix II. For
Schrodinger's theory see reference 34 (bibliography) and his
book, reference 9 (bibliography). An excellent account of the
nonsymmetric theories is given in M. A. Tonnelat's book Lrefer-
ence 10 (bibliography)), which contains also an extensive
bibliography.

In the hands of Levi-Civita and of his successors this
new concept has, indeed, led to a very remarkable
mathematical progress. It is more fundamental because
it remains applicable if no metric is defined. The
curvature tensor, in particular, is directly defined in
terms of the F's.

Quite generally one finds that the symmetric part

(3.5a)

of an affinity is itself an affinity, while the antisym-
metric part

(3.5b)

is a tensor. Accordingly, the symmetric and anti-
symmetric parts transform separately. In a Riemannian
space an affinity is uniquely defined by the requirement
that it be symmetric and that the length of a vector
remain unchanged by parallel displacement [see Eq.
(2.4)).

The first who based a unified field theory on the
affinity —instead of the metric —was Eddington. (The
affinity was assumed symmetric. ) Both the metric and
the electromagnetic field appeared as derived quantities.
Eddington did not postulate specific field equations.
This was done, in 1923, by Einstein, who derived the
field equations from a Lagrangian depending only on
the components E;I, of the contracted curvature tensor.
Soon after, however, Einstein abandoned the theory
because the electromagnetic field equations appeared
to lead to inadmissible consequences (for example,
the vector potential was proportional to the current).

For many years this theory lay dormant until it
was revived, about ten years ago, by Einstein and his
co-workers and by Schrodinger. The most significant
change was the introduction of a nonsymmetric
affinity and of a nonsymmetric metric tensor.
Schrodinger introduced only the F's as primary field
variables (obtaining the g,, as derived quantities);
Einstein, on the other hand, used both the F,~' and the
nonsymmetric g'& as building stones for the theory.

For a nonsymmetric g;, the equations

define g'& and g'&. The symmetric and antisyrnmetric
parts of g'& are given by

(3.6)

In the following, I shall mainly report on Einstein's
form of the theory. Since the symmetric and anti-
symmetric parts of the F and of the g'& transform
separately under coordinate transformations the objec-
tion might be raised that no genuine unification is
achieved, and that the field equations will not be
unambiguously defined by the covariance group of the
theory. To the extent that it applies to the amenity
Einstein has met this objection in the following way.

Iniiarianoe under ) transfortnations It is postulate. —d
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that two affinities F and F' describe the same field if

(3.7)

where X is an arbitrary coordinate function. This X

transformation, which resembles the gauge trans-
formation of electromagnetism, mixes the symmetric
and antisymmetric parts of I',.&', these lose therefore
their independent character if the X transformations
are combined with ordinary coordinate transformations
to form the full covariance group of the theory. The
symmetric and antisymmetric parts of g'&, however,
remain independent.

The X transformation has a simple geometrical
significance. Under two affinities, F and F', the ratios
a':a&' of the components of a vector change in exactly
the same way if and only if

Presumably, this expresses the symmetry of the theory
in positive and negative electric charges. The trans-
position invariance of 8 implies that the field equations
admit, together with a 6eld g, U also the transposed
field g, Uas a solution.

Einstein's choice for the Lagrangian is

9=A*'sZ "

It satisfies the conditions of transposition and of X

invariance, and it is a natural generalization of the
Lagrangian of general relativity to the nonsymmetric
case.

The fieLd eq24aLioms V—ariation of the g" and of the
U;~' yields the two sets of field equations

(A) E;;=0

where l 8 is an arbitrary covariant vector. If we require,
in addition, that under F and F' parallel displacement
along closed paLL2s is the same for the vector components
themselves (not only for their ratios) we find as a
necessary and sufficient condition that f'8 is a gradient,
i.e. , 12 Llh/B——x', as in (3.7).

Since the curvature tensor measures the change of a
vector by parallel displacement along in6nitesimal
closed paths it follows immediately that the curvature
tensor as well as its contractions are unaffected by X

transformations.
In order to facilitate the formulation of the theory

Einstein and Kaufman replaced the F;I,' by the
combinations

which, by a 'A transformation, change into

BA, N,
& 1"=& 2'+& *

t9$1r, 8$~

Xo direct geometrical interpretation has been given
for them.

Tra28sposiLio28 i2821ariance The fiel.—d equations are to
be derived from a variational principle

Qd42;= 0.

The Lagrangian is a scalar density iemriaek NrIder X

tra28sfor228ations, which is a function of the ll'&' and the
V, l, '. The A'& and U, I,

' are to be varied independently.
In order to narrow down the choice of the Lagrangian,

Einstein introduced the postulate of transposition
invariance: Q remains unchanged if ll'&' and V,2' are
replaced, respectively, by their transposed

U,

(A) consists of 16 equations. (B) consists of 64 equa-
tions, which immediately imply

8'fl'"/Bx" =0 (3.8)

Einstein's original equations for a pure gravitational
6eld (T;,=0) follow from (A) and (B) for symmetric

g and F. The set (B) is then equivalent to Eq. (2.4),
and the set (A) reduces to ten equations, because E,;
is then symmetric.

Comparis028 with Schrodinger's theory. In Schro-—
dinger's theory the primary field variables are the I',&',

the Lagrangian 8 is a function of the R;,, and the g"
are de6ned as

g"=aP/aR, ,
Schrodinger chooses 8= (2/A)( —3,)*. A is a constant,
and 6 is the determinant of the R;,. The resulting field
equations are similar to Einstein's. The set (B) is
unchanged, and (A) is replaced by

(A')

so that A. plays the role of a cosmological constant.
Coete22L of the theory. —While the mathematical basis

of the theory has been perfected, and may now be
presented in a simple and transparent form, very little
can as yet be said about the content of the theory.
Even the interpretation of the field variables is difficult;
it cannot be totally separated from the analysis of the
field equations and of their solutions. "

A few clues, however, are available regarding the
symmetric and antisymmetric parts of the tensor 0'&.

The first is furnished by the equations (3.8). These
coincide with the second set of Maxwell's equations
if we put

E—42(all28 aA81 ag12) . Q —&(aA14 ao24 all84)

'8 The assumption II of Sec. 2(a) is no longer applicable, and
presumably the gravitational and electromagnetic fields, for
example, can only be clearly separated in the limit of very weak
fields,
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with some constant n. Hence, Einstein suggests
identifying A'7' with the electromagnetic 6eld.

Secondly, Lichnerowicz has shown what corresponds
to the local light cone of relativity, as far as the propa-
gation of waves (or disturbances) is concerned. " By
an analysis of the continuation properties of the 6eld
equations he finds

l;,dx'dx '= 0,

where '&~7'l;;=8;~. Note that, in general, 1,; is not
proportional to the symmetric part of the covariant
tensor g;;. Note also that the light cone defines only
the ratios of the l;; and hence only the ratios of the
Sg 'b7

Being derived from an invariant variational principle
the field equations satisfy the necessary identities and
lead to conservation laws Lsee Sec. 2(c)]. Because ot
prohibitive mathematical diIIiculties, it has not been
possible to derive much more than that from the field
equations.

A number of explicit solutions (with special sym-
metries) have been found, but all of them are singular.
According to Einstein's program, however, the 6eld
equations (A) and (B) must be considered complete,
and their solutions must be free of siegularities. So far
no such solution (for reasonable boundary conditions)
has been found, nor has it been shown that no such
solution exists.

Einstein has made it quite clear that he regarded the
variables of this theory as classical field variables which
were not to be quantized.

4. REMARKS ON THE QUANTIZATION
OF COVARIANT THEORIES

There have been, of late, a number of investigations
on the quantization of covariant field theories. The
most extensive work has probably been done by P. G.
Bergmann and his students. "For details I refer to his
report to the Berne conference.

Since the mathematical analysis is rather complex, I
shall be quite brief, and shall con6ne myself to pointing
out the speci6c dif6culties which have their root in the
covariance of the theory to be quantized.

In applying the Heisenberg-Pauli method of field
quantization the 6rst step—still on the c-number
level —consists in transforming a theory from its
Lagrangian to a Hamiltonian form. This leads to
diKculties whenever the momenta are not independent.
The best known example is Maxwell's theory, where
m-4, the momentum conjugate to the scalar potential,
vanishes identically.

Any covariant theory leads to four independent
relations between the momenta, the "primary" con-
straints in Bergmann's terminology. These are obtained

~ See reference 3, p. 288.
~ See reference 35 (bibliography).

by the same method which furnishes the identities
and conservation laws for a covariant 6eld theory and
which has been sketched in 2 (c)."The. condition that the
primary constraints, if satisfied at some initial time,
remain valid in virtue of the Hamiltonian equations of
motion yields four additional, the "secondary"
constraints.

The situation has been su%ciently well analyzed,
so that it is known, at least in principle, how to proceed.
The difhculty remains, however, to express the relations
which have been derived —notably for the gravitational
6eld—in a tractable form.

There still remains the possibility of by-passing the
Hamiltonian formalism and of working, instead,
directly with the Lagrangian, in analogy to Feynman's
method of quantization. Attempts in this direction
are being made.

The experience with quantum electrodynamics would
seem to indicate that, in any event, a thorough knowl-
edge of the solutions of the classical field equations is
indispensable, which makes the investigation of non-
stationary solutions (mentioned in 2e) all the more
important.

Since the work, so far, has been preparatory to an
actual quantization it is not known to what extent
speci6cally quantum theoretical difhculties may arise.

REMARK BY H. P. ROBERTSON IN THE DISCUSSION

I would like to know if any of you or your experi-
mental colleagues know of any attempts at the repe-
tition of the Kennedy-Thorndike experiment. It seems
to me that the time may be ripe for the retest of this
experiment which is radically di6'erent in principle
from the Michelson-Morley. I think the other two
experiments are adequate.
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&THIN the framework of a short review it is
impossible to discuss all outstanding problems

in nuclear physics. I therefore restrict myself to the
problem of nuclear structure and stability. The main

problem can be formulated as follows: Given 2 nu-

cleons, what can we conclude from our present incom-

plete knowledge of nucleon interactions, in regard to
the structure and properties of the nucleus which they
formk

Our knowledge of interactions is, in fact, extremely
limited. The properties of the deuteron and the nucleon-

nucleon scattering experiments contain much informa-

tion about the interaction between nuclear pairs. %e
have deduced phase shifts as functions of energy from

many scattering experiments, but so far it was not pos-
sible, to explain these phase shifts as arising from a
well-defined potentia, l. Hence, it is hard to apply this

knowledge to the situation within nuclei which is so

diferent from the scattering of free and isolated
nucleons. Because of the proximity of many scattering
centers within one wavelength inside the nucleus, the
conditions of scattering are fundamentally altered; any
definite conclusions from the two-body scattering can
be drawn only with a knowledge of the scattering

potential and not from the mere phase shifts. As an
example, let us look at a slow nucleon whose wavelength
A. is large compared to the radius r* of the scatterer.
The scattered wave P„will then be an S wave
(P„=t sin(hr —8)]/r). If it hits a second scatterer at a
long distance d)&X from the first scatterer, the wave will
be essentially constant over the second scattering
region, and there will again be mainly 5 scattering.
However if the second scatterer is near the first (d« lt),
the scattered wave f.. is far from constant over the
scattering region because of the preponderance of the
1/r dependence, if d«X. In this case, p scattering will
be quite important in spite of the low energy. In the
usual mathematical terminology, this condition is ex-
pressed by saying that the elements of the scattering
matrix between states of difI'erent energy are also
important in our problem. This makes our problem
rather dBFicult since the scattering phase shifts only
determine the scattering matrix elements between
states of equal energy.

Apart from the incomplete knowledge of the inter-
action between two free nucleons, our problem is
complicated by the fact that we do not know whether
this interaction is changed considerably when the two
nucleons are surrounded by other nucleons. The


