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Electromagnetic Structure of Nucleons®
D. R. Yennig, M. M. LEvy,T aND D. G. RAVENHALL, Stanford University, Stanford, California

The theoretical implications of various experiments relating to the electromagnetic structure of nucleons
are examined in the light of current field theory. It is concluded either that the nucleon core is about three
times as large as would be expected from intuitive considerations of meson theory, or that there is some in-

consistency in the present field theory.

1. INTRODUCTION

NFORMATION about the internal structure of
individual nucleons is contained in the results of a
variety of experiments performed in recent years.!
Those experiments in which the interaction with the
nucleon is electromagnetic (or is thought to be so) are
susceptible of a considerably more precise and unam-
biguous interpretation than those involving meson
interactions. Of the former type (which alone will con-
cern us here) the best known is that involving neutron
scattering by atoms, which, when analyzed, gives in-
formation about the electron-neutron interaction (to be
specific, its volume integral). The Lamb shift and the
hyperfine splitting can also give such information, al-
though much less precisely. The fact that the anomalous
magnetic moments of the nucleons are equal and oppo-
site has important implications for a meson model of the
nucleons, of course. Recent experiments on the scatter-
ing of high-energy electrons by hydrogen and deuterium
now give considerably more detailed and complete
information about the proton and, to some extent, about
the neutron. The aim of this paper is to examine the
extent to which the results of the separate experiments
can be combined into a consistent picture of nucleons as
charge-current distributions. We make no claim for the
originality of most of the theoretical ideas presented
here; they have all appeared in various forms in the
literature, and we have brought them together for the
purpose of discussing these experiments. In Sec. 2 we
present the phenomenology of the electromagnetic
interaction of electrons and nucleons. This is interpreted
in Sec. 3 in terms of a simple meson model of nucleon
structure in which it is assumed that the “physical”
nucleon is made up of ‘“bare” nucleons and pions inter-
acting in a charge-symmetrical manner. In Sec. 4 other,
more speculative, ways of interpreting these results are
suggested, and the implication of these ideas, and their
effects on the interpretation of other experiments, are
commented on. The Appendix, due to one of us (D. R.

* This work was supported in part by the U. S. Air Force
through the Air Force Office of Scientific Research, Air Research
and Development Command.

1 The work was completed while this author was at the Uni-
versity of Paris.

1 Some of the topics we shall discuss have been reviewed in
Bethe and de Hoffmann’s book Mesons and Fields Vol. II (Row,
Peterson and Company, Evanston, 1955), pp. 289-299. In many
cases we shall refer the reader to this excellent book for biblio-
graphies.

Y.), gives a general treatment of the charge-current
density of particles of general spin.

2. PHENOMENOLOGY OF ELECTRON-NUCLEON
INTERACTION

The scattering of an electron from a nucleon caused
by their electromagnetic interaction? is represented by
the Feynman diagram of Fig. 1. We write the matrix
element for the process as

—dmig» ™ (P,P)(1/¢")jue (K k), 2.1)

which includes both the Coulomb interaction and the
effect of the exchange of transverse photons.® The
interpretation of this expression is as follows: the factor
(1/¢?) represents the propagation of a virtual photon of
four-momentum g, between the electron and the nucleon
where g, is the recoil momentum,

(Iu:Pu}—Puz—(kul_ku)- (2.2)

In the center-of-momentum frame (go=0), ¢*is given by
¢*= (2k, sin}0.)?, (2.3)

where k. and 6, are the electron’s momentum and scat-
tering angle in this frame. The factor j,° is the electron’s
charge-current density, which, assuming no internal
structure, is given simply by

Ju* (B k) = —iea (R yy,u(k), (2.4)

where u,i are Dirac spinors for the electron. The charge-
current density of the nucleon j,»'»(P',P) (proton or
neutron) includes all of the effects of the internal struc-
ture.* The purpose of the experiments we are discussing

p' q K Fic. 1. Feynman diagram
of the scattering of an elec-
- tron by a nucleon caused by
P K the exchange of a virtual
photon.
NUCLEON ELECTRON

2 Scattering due to nonelectromagnetic interactions is discussed
later in this Section.

3 R. P. Feynman, Phys. Rev. 74,939 (1948). Our notation differs
from Feynman’s somewhat, in that e, the electric charge, is given
in unrationalized units, and the four-vector product a¢+b means
a-b—aobo. Usually we put i=c=1.

4 Technically this is the vertex operator evaluated between free
nucleon states.
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ELECTROMAGNETIC STRUCTURE OF NUCLEONS

is to determine information about this charge-current
distribution beyond what is already well known from
static experiments (the total charge and magnetic
moment).

The problem has been simplified by Foldy,® and
later, in more generality, by Salzman.® They show that
the nucleon charge-current density must have the form

JuP (P, P)=1ied(P) [yl 17" ()
+ (k?"/2M)0uq,F 22" (g) Jo(P).  (2.5)

The assumptions are (i) relativistic covariance, which
means that 7,7 transforms as a four-vector; (ii) a
differential law of current conservation, which in
momentum space is expressed as

(P'=P)ju»(P',P)=0; (2.6)

and (iii), that the nucleon is a Dirac particle.® In Eq.
(2.5), the quantities 9,5 are Dirac spinors for the nu-
cleon, «?* is the anomalous magnetic moment of the
nucleon in nuclear magnetons, and the rest of the sym-
bols have their usual meanings. The functions Fy, 2" (¢?)
describe the internal structure, and in the static limit
(¢>—0) take the value unity, except for F17(0), which is
zero. As regards the uniqueness of the form of Eq.
(2.5), it should be mentioned that there are other co-
variant expressions satisfying Foldy’s assumption, e.g.,
the convection-current term (P’'+P), (P’ )v(P). How-
ever, such terms always can be expressed in the form
(2.5) by the use of the Dirac equation,

(VuPu—M)v(P)=0,

(2.7
9(P") (vuPi' — M) =0.

The functions F; and F, are relativistic generaliza-
tions of the form factors characteristic of finite exten-
sion occurring in other experiments, for example, in the
scattering of electrons from nuclei.” There, the form
factor is simply the Fourier transform of a radial density
function,

F(@)= [ 10) explia- . (2.8)

The function f(r) comes from the product of the
initial wave function of the scatterer at rest and the final
wave function of the scatterer after it has absorbed the
recoil momentum q. For heavy nuclei, where the recoil
velocity is negligible compared with ¢, nonrelativistic
wave functions are sufficient, and f(7) is just the static
charge or magnetic-moment distribution. For the scat-

5L. L. Foldy, Phys. Rev. 87, 688 (1952); G. Salzman, Phys.
Rev. 99, 973 (1955). An even more general derivation has been
given by A. C. Zemach, reference 35. We thank Dr. Zemach for
informing us of this work.

6 This last restriction can be relaxed, as is shown in the Appendix
so that Eq. (2.5) holds for any spin one-half particle, e.g. C3, The
Dirac spinors are used merely for convenience in representing ju
in a covariant form.

7 Hofstadter, Fechter, and McIntyre, Phys. Rev. 92,978 (1953);
L. L. Schiff, Phys. Rev. 92, 988 (1953).
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tering from a nucleon, however, the situation is quali-
tatively different, in that for values of q large enough
that the finite nucleon size may be detected, the recoil
velocity is comparable with ¢. It should be emphasized,
however, that it is always possible to analyze the experi-
ments in terms of the invariant functions Fi(¢?) and
F3(g?), and for intuitive convenience to define structure
functions j(r) as their Fourier transforms.8 An accurate
calculation of f(r) from some theory would require a
correct relativistic description of the internal state of the
nucleon. Physically, f(r) would contain the overlap of
two wave functions, each Lorentz-contracted, but in
different directions. (Actually the structure will be
described by a relativistic many-body wave function, so
the problem is in fact more complicated than this.)
Thus, in relating f to the nucleon wave functions, effects
of order v*/¢* (or ¢*/M?) are introduced. Consequently
there will be a dependence of F on ¢* which is in a sense
kinematic in origin, in addition to that coming from the
finite extent of the internal wave functions. The essen-
tial point is that measurement of structure to within a
distance d requires values of |q| of order 1/d, and if
absorption of this momentum causes relativistic recoil
(ie., if |q|>Mc/%) then intuitive concepts of static
charge and current distributions are no longer vaild.
Since we expect nuclear structure to extend a distance of
order 7/uc, there should be a range of |q| values
(uc/h<|q| <Mc/h) for which the interpretation in
terms of static distributions has some validity. A correct
relativistic theory for nucleon structure would, of
course, avoid these difficulties by allowing a direct cal-
culation of F as a vertex operator.

To the extent that it is possible to interpret F in
terms of static charge-current distributions, it is in-
structive to make a nonrelativistic reduction of (2.5).
This is done in the usual way by expressing the small
components of the nucleon spinors in terms of the large
components ¢, which are independent of momentum.
In the center-of-momentum frame, and for |q|<<Mc/%,
the components of 7,7» become

Joze(E/M)ps b1 F1— (¢¥/8M?) (F1+2«F») ], (2.9a)
i~ (P'+-P)/2M Jops*¢1F1
+ (e/2M)¢o* (i0 X Q)1 (F1+«Fs).  (2.9b)

In (2.9b), the first term represents the convection cur-
rent, and the second the effect of the magnetic moment.
In the expression for jo, in (2.9a), there is, in addition to
the expected term F;, a kinematic term of order ¢
arising from the overlap of the two spinors. The im-
portance of this term in connection with electron-
neutron scattering was noted by Foldy.?

8 We mean here the three-dimensional Fourier transform, ob-
tained by inverting Eq. (2.8).

9 L. L. Foldy, Phys. Rev. 88, 693 (1952). It might seem natural
to define the spatial distribution of charge as the Fourier trans-
form of the expression in square brackets in jo. This is not unam-
biguous, however, as can be seen from Egs. (A-22) and (A-23).
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For convenience, the functions I can be expanded in
powers of g% The coefficient of ¢? is simply related to the
mean-square radius of the distribution!:

P@)d— @) /64, ()= f ~f(dr. (2.10)

Because of the relativistic complications discussed
previously, there may be contributions to the coefficient
of ¢* other than those coming from the finite extension.
If this extension is of order 7/uc, they will not completely
invalidate intuitive considerations based on static
models. With these limitations in mind, we note that
the mean-square radii of charge and moment distribu-
tions of the nucleons are, from Eqs. (2.9),

(P)on= ()1t (3/4M*)[F17"(0)+2«],
() =L nFx(r)2 ]/ (1+x).

In Fig. 2 are shown the usual concepts of the proton and
neutron charge densities, and the interaction potentials
between those particles and an electron. The quantities
8V represent the departure of these potentials from their
values for point nucleons, and they can be related to the
mean-square radius by Poisson’s equation,

f oVddr=(2me/3) f 7’ (r)d%

= (2w€*/3){(r*)on.

Electron-Neutron Interaction

(2.11)

(2.12)

Aside from the static limits, the first information
about nucleon structure was obtained from experiments

10 Except for fi, . (7), all of the f’s have unit volume integral be-
cause the corresponding (0) is unity. Because Fy, ,(0) =0, the
quantity (%), » depends on the amount of charge displaced as well
as on its radius. For reasonable distributions (#%),, , will be negative,
and the other quantities positive.
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on the scattering of neutrons by atoms. Analysis of the
results yields the volume integral of the electron-
neutron interaction potential, Eq. (2.12). This quantity
is conventionally represented by a constant potential, of
strength V), extending out to a radius 7o=e?/mc?, the
classical electron radius. (This convention is rather con-
fusing since 7o has nothing to do with this particular
interaction.) Hughes ef al' find for V, the value
—3860+370 ev, and more recently Melkonian et al.’?
report the value —41654-265 ev. Using the mean of
these two results, and expressing it in terms of a radius
by means of Egs. (2.11) and (2.12), we find that
(r)en, n=—(0.35X 10" cm)2. This is accounted for
completely by the magnetic term of Eq. (2.11), so that

()1, »= (0.000£0.006) X 1026 cm?. (2.13)

Expressed in terms of potentials, as is customary, the
magnetic contribution, first calculated by Foldy,® is
—4070 ev, leaving for the ¥, associated with (#%);, , the
value 04200 ev. Had the neutron structure been com-
parable in extent to that found for the proton, a value of
about 0.7X 107 cm would be obtained for (%), ,}, or for
Vo about 16 000 ev! The conventional interpretation of
this very surprising result is either that the radius
associated with the Dirac term is very small, or that the
structure, if extended, is almost neutral. In the light of
our previous remarks on the meaning of f(r), it is also
possible (although perhaps unlikely) that the static
charge-current distribution is extended, but that its
contribution to f(#) has been canceled fortuitously by
relativistic corrections.

Another method for examining neutron structure has
been suggested, and is being carried out, by Hofstadter.!?
In the inelastic scattering of electrons from the deu-
teron at high energies and large angles, binding effects
are unimportant, and the neutron and proton scatter
independently. Since the electron-proton scattering has
been measured separately, the electron-neutron cross
section can be deduced. This method can give informa-
tion about F,», and possibly also about F,.

Electron-Proton Scattering

The extensive experiments on the scattering of high-
energy electrons by hydrogen of Hofstadter e/ al,'#1%
have given much detailed information about the struc-
ture functions of the proton. The analysis uses the for-
mula, first derived by Rosenbluth,!¢ for the cross section
for the scattering of a relativistic electron by a proton.

11 Hughes, Harvey, Goldberg, and Stafne, Phys. Rev. 90, 497
(1953).

12 Melkonian, Rustad, and Havens, Bull. Am. Phys. Soc.
Ser. 11, 1, 62 (1956).

13 R, Hofstadter, Revs. Modern Phys. 28, 214 (1956).

4R, N. McAllister and R. Hofstadter, Phys. Rev. 102, 851
(1956).

15 E, E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454
(1956).

16 M. Rosenbluth, Phys. Rev. 79, 615 (1950).
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In the laboratory frame this can be expressed as

7 (0)=ons(0){ (F1?)+ (¢*/4M»)[2(F\2+kPFyr)?
X tan’30+ (< F3?)*]},

where ox s is the cross section for scattering by a point,
spinless particle of mass M :

ons(0)=e* cos?30/ {4k 14 2(k/M) sin?s07] sin*36}.

The terms in the square bracket in (2.14) arise from the
magnetic moment of the proton. The interesting fact
that one term involves the total moment while the
other contains only the anomalous moment is related to
the mixing of /', and F, in the expressions for charge and
current density (2.9).

At the present experimental energies Fy* and
(F1+«F,)?are the dominant terms of Eq. (2.14). Since the
dependence on angle and energy of the quantity in the
curly brackets cannot be expressed in terms of ¢(= 2k,
sinif,) alone, it is possible to separate the contributions
from F; and F; by performing experiments at various
energies and angles. If finite size effects are ignored, so
that Fi=F,=1, the first term has the very strong an-
gular dependence and £72 energy dependence character-
istic of scattering in a Coulomb field. In contrast, the
second term is approximately a constant, independent
of energy and angle. Thus the charge scattering and
hence the effect of finite charge extension is seen at
small angles, while the magnetic moment size is
apparent at large angles. The situation is illustrated in
Figs. 3. and 4. The “total form factor” &(6,k) defined by

a(0)=0opoint(O)[F(0,k) I, (2.15)

where op0ins 18 given by Eq. (2.14) with Fi=F,=1, is
plotted as a function of ¢ The three different proton
models used for illustration assume either equal charge
and moment radii, or else that one of these radii is zero.

McAllister and Hofstadter¥ have measured the elec-
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F16. 3. A plot of the square of the total form factor &, defined
by Eq. (2.15), vs ¢?, at 200 Mev. Three different proton models are
illustrated, corresponding to the following choices for the values of
()1, pt and (%), p*, in 1078 cm: (a) 1.00 and 0.00; (b) 0.70 and
0.70; (c) 0.00 and 0.85.
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Fi1G. 4. A plot of 32 vs ¢ at 600 Mev,
for the same cases as in Fig. 3.

tron-proton scattering cross section at 100, 188, and
236 Mev, while more recently experiments at 200, 300,
400, 500, and 550 Mev have been carried out by Cham-
bers and Hofstadter.!® The detailed analysis of the ex-
periments in terms of F; and F,, and their associated
distributions fi(r) and f.(r), has been carried out by
Hofstadter and his colleagues, and here we shall quote
from their results. A feature which makes the fitting
with theory a little more flexible than Figs. 3 and 4
might indicate is that the absolute values of the experi-
mental cross sections are not known, although the rela-
tive normalization of results for the various energies is
known for the latter series of runs. In their analysis, the
above authors use the simplifying assumption that the
analytic forms of f1(#) and f,(r) are identical. The best
agreement is found to occur for shapes which are not
singular at the center, and which drop off fairly rapidly
at large radius. The best fit is then given for equal radii;
their actual value depends a little on the choice of shape,
but an average value is

(7)1, p)¥= ({3, )= (0.77£0.10) X 108 cm.  (2.16)

It is possible to have slightly different radii, but neither
can be less than about 0.6X 10~ cm, or greater than
about 1.5X107% cm. For the case of equal radii the
results are illustrated in Fig. 5, where 4m72f(7) is plotted
against 7. Chambers!” has also considered the possi-
bility of different analytic forms for f1(r) and fo(r). He
finds that it is still not possible to relax the above limits
on the radii. The general conclusions are that the proton
radii are as given in Eq. (2.16), and that there is no con-
centration of charge or magnetic moment at the center.

There are possible corrections that might be made to
the above analysis, but they are quite unimportant. By

7E. E. Chambers, Ph. D. dissertation, Stanford University
(1956) (unpublished).
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F16. 5. Graphical representation of proton distribution func-
tions, from the analysis of Chambers and Hofstadter.!® For the
assumption that fi(r) = f»(7), these authors find that the Gaussian,
exponential and hollow exponential models all give a good fit to the
experiments. The Yukawa model, which is suggested by the
theory of scalar mesons weakly coupled to nucleons, is given for
comparison only; it is in fact inadmissible as a fit to the data.
What is plotted vs radius 7 is 4m7%f(7), so that these curves have
equal area.

comparing with the results of a partial wave analysis of
the scattering process,’® it is found that the Born
approximation used by Hofstadter ef al. gives cross
sections accurate to about 0.259,. The effect on pre-
dicted radii is completely negligible. A complication
which might influence the interpretation of the form
factors F arises from the possibility of virtual excitation
of an isobaric state of the proton, corresponding to the
resonance in the cross section for photoproduction of
mesons. Drell and Ruderman® have estimated that the
effect of this on the predicted radii is less than about
half a percent. The radiative correction of. Schwinger®
has of course been taken into account by Hofstadter et
al. in their handling of the experimental data.” Through-
out the analysis it has been assumed that the functions
F(g?) are analytic and “smooth” over the regions of ¢
examined. The electron-proton and electron-neutron
experiments are made over completely different ranges of
q. It is conceivable, therefore, that the functions F are
so peculiar that extrapolation from the one range of ¢
to the other in the simple way that has been assumed is
unjustified. A theory that would predict such functions

18 Yennie, Ravenhall, and Wilson, Phys. Rev. 95, 500 (1954),
and unpublished calculations.

1S, D. Drell and M. A. Ruderman, Phys. Rev. (to be pub-
lished).

2 T, Schwinger, Phys. Rev. 76, 790 (1949).

21 As in other electron-scattering experiments, the radiative
correction is quite large (~20%) but its variation over the angular
range used is small (~3%), so that it is not an important correc-
tion. The physical situation is different from that considered by
Schwinger, in that the proton can emit and absorb photons; but
the extra contributions due to this, even that arising from inter-
ference with the electron contributions, are negligible.

LEVY, AND

RAVENHALL

would itself be very peculiar, and we do not consider the
possibility further.

Electron-Deuteron Scattering

There exists at present no relativistic theory for the
binding of nucleons of finite size to form a nucleus. In
the nonrelativistic limit, the solution of the Schrédinger
equation describing the interaction of a group of point
nucleons is presumably to be interpreted as giving the
distribution in space of the centers of mass of the ex-
tended nucleons. A difference between this calculated
distribution and the measured charge distribution could
then be ascribed to finite nucleon size. Use of the non-
relativistic theory unfortunately forces us to ignore the
relativistic effects discussed at the beginning of this
section.

Experiments on the elastic and inelastic electron-
deuteron scattering have been carried out by McIntyre
and Hofstadter.??® Following the analysis of Schiff*
Jankus?® has made extensive calculations of both pro-
cesses, investigating the effect of various assumptions
about the neutron-proton potential, and taking into
account the effects of magnetic dipole and electric
quadrupole moments. Calculations of elastic scattering
for particular potentials have been carried out by
MclIntyre,® Bernstein,?® and Ravenhall.?” For the
detailed comparison of the experiments with these
calculations, we quote from the work of McIntyre. He
finds that even with the most favorable choice of po-

tential, the experimentally observed charge distribution
is significantly more extended than that given by the
above calculations. His results are illustrated in Fig. 6.

In the nonrelativistic approximation these calcula-
tions give the distribution in space |¥p(r)|? of the
centers of mass of the neutron and proton. Neglecting
distortions of the nucleon structure due to the binding,
the observed deuteron charge density is then

p0)= [Tl D unllr=r'1)]
X |y () [*d*.
The form factor for electron-deuteron scattering is thus
F(@)=[F? () +F () (),  (218)

where Fp(¢?) is the form factor calculated directly from
|¥n(r)|2. The factor contributed by the nucleon struc-
ture is for small ¢ just

[ I1=(@/6) (P ot () oo 1.

On the basis of the naive meson theory discussed in the
next section, it was expected that the proton and

(2.17)

(2.19)

22 J, A. McIntyre and R. Hofstadter, Phys. Rev. 98, 158 (1955).
23 J, A, McIntyre, Phys. Rev. 103, 1464 (1956).
24 I, I. Schiff, Phys. Rev. 92, 988 (1953).
2V, Z. Jankus, Phys. Rev. 102, 1586 (1956).
26 J, Bernstein, unpublished calculations. We thank Dr. Bern-
stein for communication of these results.
27 Unpublished calculations.
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neutron contributions to the ¢* term would cancel,
leaving no correction to (2.18) due to the nucleon struc-
ture. On the other hand, use of the results of the experi-
ments on the free nucleons means that Eq. (2.19)
reduces to the proton form factor. In fact, the analysis
of McIntyre strongly favors the latter choice, and can
thus be regarded as confirming the difference in size of
the neutron and proton. Alternatively, the assumption
of nucleon sizes as obtained from the other experiments
would give valuable information about the deuteron
wave functions.

A possible source of error in the above treatment,
associated with the use of the first Born approximation,
has been studied by Schiff.?8 In the second Born approxi-
mation there is, as well as the usual contribution in
which the nucleus stays in its ground state, also a dis-
persion contribution associated with the possibility of
virtual excitation. He shows that the sum of these two
effects is of order 1/137 of the elastic scattering, and so
is quite unimportant. For the special case of the deuter-
on, a more exact calculation has been carried out by
Volk and Malenka,® which confirms his result for the
total second Born contribution.

At present, little is known about the accuracy of the
nonrelativistic approximation, and of the effect of
binding on the nucleon structure. A start to the calcula-
tion of relativistic corrections has been made by
Blankenbecler,® who has treated the deuteron pheno-
menologically as an elementary vector particle, in
analogy with the electron-proton calculation of Rosen-
bluth.!® Estimates of mesonic corrections by Bernstein®
will be discussed in the next section.

28 T,, I. Schiff, Phys. Rev. 98, 756 (1955).

2 H, S. Volk and B. J. Malenka, Phys. Rev. (to be published).
% R. Blankenbecler, unpublished calculation.

3t J, Bernstein, Phys. Rev. (to be published).

Hydrogen Spectra

There is known to be a discrepancy of 0.6 Mc be-
tween the experimental and theoretical values of the
Lamb shift for the 2s; and 2p; levels of hydrogen and
deuterium.?>3 Part of this can be ascribed to the finite
proton size: according to Egs. (2.11), (2.16), and (2.12),
this produces a shift in the 2s; level of 0.1 Mc,* reducing
the discrepancy to 0.5 Mc. In deuterium most of the
effect of finite size has already been taken into account
with a term corresponding to Fp(g?) of Eq. (2.18).%
Because of the small neutron size, the finite proton size
gives an additional shift of 0.1 Mc in deuterium, the
same as in hydrogen.

According to Zemach,® the hydrogen hyperfine struc-
ture can be used in combination with other experiments
to determine a mean electromagnetic radius {#)em of
the proton: present experimental values lead to the
result that (7)em<0.5X107% cm. This mean radius
depends on both the charge and the moment distribu-
tions, the relationship among the distributions being

(Mom=(r")ent .

For the shapes predicted by the electron-scattering
experiments, which are not peaked at the center,
(r)em should not be much smaller than ({(**)em)}. The
electron-scattering values for the radii predict, how-
ever, that ({r?)em)? is approximately 1.0X107%¥ cm.
There is an apparent disagreement between these two

2 Triebwasser, Dayhoff, and Lamb, Phys. Rev. 89, 98 (1953);
this paper contains references to the earlier work of Lamb and
co-workers in this field.

#® E, E. Salpeter, Phys. Rev. 89, 92 (1953).

% The reliability of the perturbation theory has been confirmed
by considering exact solutions of the Dirac equation containing a
potential of the kind shown in Fig. 2.

3 A, C. Zemach, Phys. Rev. (to be published). We thank Dr.
Zemach for informing us of this work.
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determinations of the proton size. We regard electron
scattering, however, as an inherently more accurate

method for examining nucleon structure.

Nonelectromagnetic Interactions

The preceding discussion, and in fact all previous
analyses of electron scattering, have assumed a purely
electromagnetic interaction between the electron and
the scatterer. Although the agreement between experi-
ment and this theory is remarkably close,? it is still
desirable to consider the possibility of nonelectromag-
netic interactions. As is well known, there are five
possible nonderivative interactions,

anl® (scalar),

Wy uV? (vector),

@ysy,uVt  (tensor), (2.20)
WysyuV?  (pseudovector),

WysulV P (pseudoscalar),

where the potentials V are of short range. The presence
of the vector interaction would not modify the pre-
ceding phenomenological analysis, since the finite size
effects appear in just this form. For example, the po-
tentials 8V of Fig. 2 are @y V? in this notation. It
would alter, however, the interpretation of Fy and F,
in terms of nucleon structure; we shall return to this
point later. An example of the tensor interaction is given
by the electron’s anomalous magnetic moment; the
Schwinger radiative correction to scattering includes it
automatically. For simplicity we will consider first the
scalar interaction.

The scalar interaction differs from the interaction
with an electrostatic potential by the factor of the Dirac
matrix 8. For low energy electrons 3 is effectively unity,
and the two interactions will have the same effect. For
example, a change of 0.5 Mc in the Lamb shift, men-
tioned earlier, would require a volume-integral for V* of
8X10~% Mev cm?. At high energies (E>>M¢?) it turns
out that there is no interference between the two inter-
actions, and the scattering cross section can be written

7 (0) =0em(6)+0s(0),
oo(8)= [ f Vsdsr/z;wha] PIF()]

X[1+2(kk/Mc) sin?3012, (2.21)

where F(g?) is the form factor for V*. By comparing
(2.21) with (2.14), we see that o, has the same form as
the term in cem involving the total moment, except for
an extra factor of g% Thus the effect of o, is to reduce
the observed magnetic moment size. For example, a
scalar interaction with the above volume integral would
reduce ()m by (1.7X 1071 cm)?! If, more plausibly, we
were to assume that (#2), is really (1.0X 107 cm)?, then
the fact that the phenomenological analysis has given
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its value as (0.8X 107 cm)? could be ascribed to the
presence of a scalar interaction with volume-integral
3X10~% Mev cm?.

It is probably true that all of the interactions (2.20)
behave similarly, i.e., they would all have effects on the
cross section indistinguishable from those coming from
the finite electromagnetic sizes. It seems clear that there
is no interference between the vector interaction and
any of the others. Thus, except for a possible anomalous
vector interaction, the effect of the interactions (2.20)
is to increase the cross section, and, therefore, to reduce
the apparent electromagnetic size. From a theoretical
point of view, such interactions would be very unpleas-
ant, and we do not regard the possibility very seriously.

3. MESON-THEORETICAL IDEAS ABOUT
NUCLEON STRUCTURE

The discussion of this section will be based on the
assumption that ‘‘physical” nucleons are made of
“bare” nucleons and pions interacting in a charge-
symmetrical manner. The results of the phenomeon-
logical analysis of the previous section will be examined
from this point of view in as general a way as possible.
Various calculations of nucleon structure, based on
particular meson theories, can then be compared with
these conclusions. Some effects associated with the
presence of K mesons will also be discussed. .

The assumption of charge symmetry implies a rela-
tionship between proton and neutron structure. Some of
the component states of physical nucleons are repre-
sented pictorially in Fig. 7. Charge symmetry requires
that, whenever a proton state contains a charged meson,
there is a corresponding neutron state with a meson of
the opposite sign of the charge. (If the interaction is
also charge-independent, the amplitudes of the states

Physical proton

Physical neutron

-’ro
,, 1r+
z
Fic. 7. A pictorial representation of some of the component
states of physical nucleons, following the ideas of weak-coupling

meson theory. The bare proton is indicated by the black dot, the
bare neutron by the open circle.
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containing neutral mesons are related to those for the
charged mesons.) This is clearly true not only for those
component states containing one meson, but for all
states. Following Sachs,®® we can use this result to
eliminate the meson part of the nucleon charge density;
if we add the proton and neutron charge densities, the
meson part cancels completely. The resulting charge
distribution, which is a combination of the bare nucleon
parts of the proton and neutron charge densities, is
called the core distribution;

pe(r)=pe, p(r)+pe, a(7)
=Pp (r) +Pn(r) .

It includes nucleon pairs as well as single nucleons.
From (2.11), the mean square radius of p, is given by

(P)e= () ot (1t B/4MH[14-2(:7+47) ] (3.2)

There may be some doubt about the treatment of the
Foldy terms, but fortunately they tend to cancel each
other. The experimental values discussed in Sec. 2 then
give

(3.1)

@) d=0.77X10"13 cm. (3.3)

For comparison, the nucleon compton wavelength is
0.21X107* cm, and the charge radius of the proton
calculated in the above way is 0.84X 107 cm. Thus
the core radius is three and one-half times the nucleon
Compton wavelength! The results of Chambers and
Hofstadter'® on the shape of the proton charge distri-
bution, which indicate no concentration of charge at
small distances, are consistent with this result, and
would be inconsistent with a small core radius.

It is very difficult to understand this result. The
picture we are considering for nucleon structure would
attribute core size to the recoil of the nucleon upon
emission of mesons, since the bare particles are assumed
to have no intrinsic extension. If the momenta of the
emitted mesons are small compared with M¢, by a
simple velocity argument the core size will be about
one-seventh (1/7>~u/M) of the size of the meson cloud.
Under these circumstances the meson cloud extends a
distance 7%/ uc, so that the core should be no bigger than
#/Mc. Tf, on the other hand, the virtual mesons are
emitted with momenta comparable with Mc¢, then,
because of the relativistic increase in the meson’s mass,
the core and the meson cloud will be about equal in size,
this size being, however, around #%/Mc. For the states
with more than one meson present, the situation is not
clear to us. From a semiclassical standpoint, there seem
to be a number of possibilities, of which we give two ex-
extremes. As a starting point we assume a recoilless
theory in which all of the mesons have the same wave
function, centered about the fixed source. A possible
approximation to the problem with recoil is to neglect
its effect on the state function, and to calculate the core

% R. G. Sachs, Phys. Rev. 87, 1100 (1952).
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radius by assuming the relation
MR+ p(ritrot- - -+r,)=0, (3.4)

where R is the coordinate of the bare nucleon, and 7 is
the coordinate of the sth meson, all measured from the
position of the center of mass. It is then easy to show
that

<R2>=ﬁ(“/M>2<’2>mesom (3-5)

where 7 is the average number of mesons present.
Clearly this result cannot be correct if 7 is large. It
seems to us that a more reasonable assumption is that
the meson wave functions are centered on the instan-
taneous position of the bare nucleon. The result is to
replace 7 of Eq. (3.5) by the average value of

n/ (1+nu/M)*. (3.6)

Since this quantity has dan upper limit of about M/4u,
(R?) is close to (#/Mc)?. Although these semiclassical
arguments are difficult to justify, the second seems to us
the more valid. A correct quantum-mechanical version
of Eq. (3.4) will contain field operators, which may link
states containing different numbers of mesons, so that
the final result may differ from what we have given here.
A similar situation with regard to the meson cloud has
been pointed out by Sachs.?® On the other hand, many-
meson effects on the meson cloud in the Chew-Low
theory do not change the one-meson results qualita-
tively,® and the same result may hold with respect to
the core.®® :

37 S. B. Treiman and R. G. Sachs, Phys. Rev. (to be published);
S. Fubini, Nuovo cimento 3, 1425 (1953); H. Suura (private
communication) . We are informed by Dr. F. Zachariasen that, due
to a computational error, the numerical values given in his cal-
culation [ Phys. Rev. 102, 295 (1956) 7, which are in disagreement
with those of the aforementioned authors, are incorrect.

3 A different opinion on the size of the nucleon core has been
put forward by Tamm [I. Tamm, International Congress on
Theoretical Physics, University of Washington (1956), reported
by N. N. Bogoliubov] and is as follows. In strong-coupling theory
the spatial distribution of nucleon-antinucleon pairs will be closely
the same as the meson distribution. If a pair annihilates again, it
will not contribute to the nucleon core. Those processes in which
the antinucleon of the pair annihilates with the original nucleon do
contribute, however, and the large cross section for antiproton
annihilation in nuclei observed at Berkeley suggests that they can
happen even for pairs created relatively far out in the meson dis-
tribution. Thus the presence of many bare-nucleon pairs in the
physical nucleon can explain a core distribution which is as large as
the meson distribution. These qualitative arguments are, we think,
open to question on several counts. That the pair distribution
follows the meson distribution will only be true for very strong
coupling, where there are so many virtual mesons present that an
additional amount of many times 2M¢? added to the energy
denominator is inappreciable. Yet the work done on the Chew-Low
theory would suggest that the coupling is weak. The application of
the experimental results relating to physical nucleon pairs to the
annihilation of bare nucleons is not obviously justifiable. Also, it is
difficult to believe that the pair contribution can be so closely the
same as the meson distribution that the electron-neutron inter-
action cancels from an expected 10 000 volts down to 200 volts.
To settle these questions, it is very necessary to make reliable
calculations of the core size. As a final note of comfort, it can be
pointed out that if Tamm’s suggestion is correct, the true theory
is a strong-coupling theory involving the emission of many nu-
cleon pairs, and all meson calculations which have neglected pairs
are of little value.
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From a theoretical point of view, the correct proce-
dure would be to calculate the appropriate vertex
operator with a relativistic field theory, taking account
of renormalization. The resulting form factor would in-
clude all of the relativistic effects discussed in the last
section, and which the above physical arguments ignore.
Unfortunately, present techniques allow calculation
only in the lowest orders of perturbation theory. A
summary of the results of such calculations is contained
in Sec. 46 of reference 1. Fried® has examined the elec-
tron-neutron interaction using pseudoscalar coupling in
second order perturbation theory. Using g%/%c=13.5, a
“reasonable” value, one finds his formula gives 1300 ev
for the specific interaction. Combining this work with
Rosenbluth’s calculations of electron-proton scattering
using the same theory and approximation,! one obtains
for this value of g2/%c a core radius of 0.38X 10~ c¢m.
Thus the theory to this approximation predicts a not
unreasonable value for the electron-neutron interaction,
but the core radius is too small by a factor two. The
reliability of such calculations can be gauged by looking
at their predictions for the anomalous nucleon magnetic
moments. There the second-order calculation gives for
the ratio —pun/(up—1) about seven, instead of its ob-
served value close to unity. Although the fourth-order
calculations improve the situation somewhat, the results
are so different from those in second order as to indicate
that no valid conclusions can be drawn from such low-
order calculations. It is conceivable that if a correct
calculation could be done the results would agree with
the experiments. We feel, however, that this is unlikely,
and that either the physical model used is basically

wrong, or the phenomena can be explained in some other.

way.

\};arious calculations of neutron and proton form
factors have been made using current cut-off meson
theories. In these theories the bare nucleon is treated
as a fixed source, and the meson-nucleon interaction is
modified to include a cut-off function which suppresses
the high momenta. Because the mesons, being pseudo-
scalar, are emitted into p states, their wave function
falls off rapidly outside the source, and its size depends
sensitively on the source or cut-off distribution. The
cut-off function found by Chew* to give agreement with
other meson experiments (e.g., meson-nucleon scattering
meson photoproduction, etc.) leads to a meson cloud of
reasonable size (~0.7X10~ cm). In order to obtain
agreement with the observed nucleon sizes, Salzman?
has assumed arbitrarily that the core extends as far as
the meson cloud. As our previous arguments suggest,
it seems unlikely that present meson theories can lead to
such a large core. A very necessary improvement, which
has not yet been made to our knowledge, is the calcula-

3 B. D. Fried, Phys. Rev. 88, 1142 (1952).

% G, Chew, Phys. Rev. 95, 1669 (1954).

4 G, Salzman, Phys. Rev. 99, 973 (1955); Phys. Rev. (to be
published).
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tion of the core size with this theory. As a first step it
may be sufficient to treat the nucleon nonrelativistically.

It has been assumed previously that these static
theories do not include the Foldy terms. A proof of this,
given by Salzman," involves a two-component re-
duction of Dirac spinors, taken in the limit as M tends
to infinity, but with the anomalous nucleon moment
held at its observed value. A different treatment of the
charge-current density, given in the appendix, con-
siders charge and magnetic moment as independent
quantities. From this point of view the static calculation
of the charge density should give all of the interaction,
including what from the other viewpoint are called the
Foldy terms. It seems to us that all nonrelativistic
theories are ambiguous in their treatment of these
terms.

An interesting suggestion about the effect of heavy
mesons on nucleon structure has been made by Sandri.*?
Because of the ‘‘strangeness” selection rule, the K-
meson cloud surrounding the nucleon will contain only
positively-charged and neutral particles. Thus in adding
proton and neutron charge densities to make the core
distribution, the K-meson contributions do not cancel.
As Sandri points out, s-state mesons extend further
than p-state mesons of the same mass. However, the
relatively large K-meson mass together with the small
coupling constant lead to only a small addition to the
core size [about (%/Mc)? to (%), ].

The conclusions about the nucleon core are confirmed
by the electron-deuteron scattering. In fact, from Egs.
(2.18) and (3.1), we see that the elastic scattering is a
process which, so far as its dependence on nucleon size
is concerned, automatically measures just p,. Of the
various corrections to this simple nonrelativistic
picture, Bernstein®® has considered the fact that the
binding is due to the exchange of mesons, rather than
to an instantaneous potential. He identifies the state of
two physical nucleons, with no mesons being exchanged,
with the phenomenological wave function. The addi-
tional contribution to the scattering comes from the
state in which one meson is being exchanged. The
scattering from the exchanged mesons vanishes by
charge symmetry; the effect comes from scattering by
the nucleons in this state. The nucleon distribution in
the one-meson state is much more peaked at the center
than for the no-meson state, and as a result the cross
section is enhanced for large g. Bernstein calculates the
effect to be more than 109, at the largest ¢ values
shown in Fig. 6. It is not clear to us what the phe-
nomenological Schrédinger wave functions are an
approximation to, and even if the identification with
the no-meson state is valid, the calculation has neglected
the effect of states containing two mesons on the one-
meson state, which is presumably as important as the
effect Bernstein has examined. There may well be an
effect of this kind, however.

@ G, Sandri, Phys. Rev. 101, 1616 (1956).
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4. ALTERNATIVE INTERPRETATIONS OF
THE EXPERIMENTS

Since it is not clear that orthodox meson theory will
be able to explain the experimental results, we consider
in this section possible alternative interpretations.

Charge Symmetry

Present experimental evidence for belief in charge
symmetry and charge independence is discussed in
Sec. 30 of reference 1. Charge symmetry is a very
plausible hypothesis that, according to experimental
results, is clearly true to a good approximation, although
it is impossible to make a very accurate quantitative
check. A possible solution to the dilemma about
nucleon structure is that charge symmetry holds for
interactions over large distances, but breaks down
completely for short distances. This would imply that
the fundamental interaction is not charge symmetric;
that the large distance effects are charge symmetric
is then difficult to understand. The stronger assumption
of charge independence contains charge symmetry.
It is used in all current theories of phenomena involving
nucleon and pions, and plays a fundamental role in
theories of the strange particles. It would be a pity to
throw out such a beautiful and simplifying hypothesis
if any other way can be found out of the difficulty.

Current Conservation

In deriving Foldy’s result, Eq. (2.5), it was necessary
to assume a differential law of current conservation.
Now we might imagine that, since the nucleon has a
complicated structure, charge may not be conserved in
small regions, but only as a whole. Although such a
modification is objectionable because it violates gauge
invariance, for the sake of completeness we consider
it briefly.

Current conservation is expressed by Eq. (2.6),
which in momentum space says that j, should be
orthogonal to the momentum transfer g,. The simplest
and most general charge-current density which violates
this condition is

Ju' = —ieqd(P")v(P). (4.1)

In the static limit this implies a radial current flow, but
gives no contribution to the charge density. If (4.1) is
inserted into the matrix element (2.1), the result is
zero because of the conservation law obeyed by the
electron. Thus, in order to obtain an electron-proton
interaction, we must assume that the electron also
violates current conservation. Following this through,
we arrive at an additional cross section of the same
form as ¢,(f), shown in Eq. (2.21). Thus, as with the
anomalous interactions discussed in Sec. 2, violation of
charge conservation will not help in interpreting the
experiments.
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Electromagnetic Interaction

We can easily explain all of the experiments in terms
of a modification of quantum electrodynamics at small
distances. The high-momentum cutoffs introduced into
the theory by Feynman® to suppress the ultraviolet
divergences have just this effect. Following Feynman,
we may introduce this cutoff as a modification in the
photon propagator,

1/¢—C(¢*)/ ¢ (4.2)

From Egs. (2.1) and (2.5), the effect on the phe-
nomenological analysis is seen to be the replacement of
any form factor F by CF; hence these experiments
cannot be used to separate finite size effects from those
of a possible modification in the Coulomb law. The
physical reason for this is that the scattering involves
not the charge distribution, whose extension is charac-
terized by F, but its electromagnetic potential V,
which depends also on the force law; with the modifi-
cation (4.2), even a point charge could give a potential
of the form shown in Fig. 2.

Because the observed form factors CF; and CF,
in the electron-proton scattering are essentially the
same, it is possible to ascribe all of the effects to C,
although we expect some intrinsic nucleon size. (If
the form factors had been unequal, the two effects would
be to some extent distinguishable, in that an upper
limit could be put on the radius associated 'with C,
and a lower limit on the actual finite extension.) The
modification does not affect the results for the neutron
charge radius, since the product C(g¥)Fy (g)? is still
approximately (1/6)¢*(r?)y,» for small g. For the other
experiments—electron-deuteron scattering, Lamb shift,
and hyperfine splitting—the effects of finite nucleon
size can be reinterpreted as being caused partly or
entirely by a modification in the Coulomb law. Such
an interpretation makes the reconciliation of the various
nucleon properties much easier. With the assumption
that, for example, the meson cloud extends only to
about #/Mc, it is quite plausible that the core and
meson distributions are similar enough that theelectron-
neutron interaction can be as low as 200 ev, especially
since the effect of K mesons can be important at this
small distance. At the same time the meson clouds in
the neutron and proton are charge symmetric, so the
near equality of x? and —«™ is maintained.

It is hard to devise experiments which would clearly
distinguish between a modification in quantum electro-
dynamics and the effect of finite nucleon size. The most
obvious possibility is high-energy electron-electron
scattering, but the laboratory energy required to obtain
a center-of-momentum energy of 100 Mev is 40 Bev!
Processes which involve only real photons, such as
Compton scattering, are not affected by a change in
the photon propagator [since C(k?=0)=1], although

4 R, P. Feynman, Phys. Rev. 74, 939 (1948).
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particle structure will alter the process. Other electro-
dynamic processes, such as bremsstrahlung and pair
production, usually involve such a small momentum
transfer that nuclear size itself is unimportant. In
estimating the electromagnetic effects in proton-proton
scattering, and in the properties of light nuclei, the two
alternatives have slightly different effects, but they
would be masked by the greater uncertainty in our
knowledge of nuclear forces.

A modification in the Coulomb law would alter
slightly the results of other experiments. For example,
the radii of nuclear charge distributions deduced from
mu-mesic atom level structure and high-energy electron-
nucleus scattering would be reduced slightly. For mean
square radii the effect is given by

<72>obs = <7'2>charge+ <72>c-

There would also be some alteration in the nuclear
surface thickness.*

The theoretical implications of such a modification
in quantum electrodynamics have been discussed by
Feynman,* in an article reviewing the present situation
in fundamental theoretical physics, and we will re-
capitulate some of the points discussed. The renormali-
zation view of the theory regards the cutoffs as mathe-
matical devices to eliminate divergences, with no
physical consequences. In contrast to this, Feynman’s
viewpoint is that they are the manifestation of effects
not included in the present theory, which we do not
know how to describe in a more fundamental way.
According to the former view the theory cannot be used
to calculate quantities which depend sensitively on
the cutoff—the neutron-proton mass difference, for
example. From the latter view, such quantities can be
used to give information about the cutoff. Feynman’s
results for the N— P mass-difference correspond to a
cutoff of the same order of magnitude as that required
for the electron scattering.

Vacuum polarization affects the photon propagator
in the manner indicated by Eq. (4.2), but in the
opposite direction to that of a finite size. Feynman
brings about the finite size modification described by
Eq. (4.2) by introducing “heavy photons.” Because
their potential must at short distances cancel the
Coulomb potential, it is unfortunately necessary that
their coupling constant be imaginary. As has been
discussed by Feynman, this leads to very fundamental
difficulties with regard to conservation of probability.
In fact it seems to be impossible to obtain the finite-size
effects required from a consistent, point-interaction
theory. General arguments lead to an expression for

4 For the nuclei examined in Hahn, Ravenhall, and Hofstadter
[Phys. Rev. 101, 1131 (1956)], the nuclear surface thickness is
decreased by about 139, while the value of ¢ (the point where the
charge distribution has dropped to a half of its central value) is
increased by about one percent.

4% R. P. Feynman, Anais acad. brasil. Ciénc. 26, 1 (1954).

YENNIE, LEVY, AND RAVENHALL

the renormalized photon propagator of the form?

-1

Dp<q2>=q-2{1~q2 [ oterepaiera]

0

(4.3)

where ¢(x2)>0. The form factor must then be of the
general form

®

f o () di/i

Yo

C(q2)=[1—

+ f () () @

Even though it may not be possible to expand the
integral of Eq. (4.4) in ascending powers of ¢ it is
clear that the whole expression is an increasing function
of ¢, and so cannot represent a finite-size effect.

Thus, unless it is possible for pion-nucleon theory
to explain the large core size, it seems necessary to
make a fundamental revision of present electrodynamic
theory. Theoretical arguments concerned with the
consistancy of the theory have been advanced by
many authors? for such a revision, and the nucleon-size
experiments may be the first experimental manifestation
of this need. It may be necessary to describe nucleons
by nonlocal fields, or even to alter our usual concepts of
space at small distances.}

Finite Electron Size

As can be seen from Eq. (2.1), the experiments could
also be explained in terms of a finite electron size.
Most of the remarks made in connection with the
modification of the Coulomb law apply here also. In
particular, electron-electron scattering at ultra-high
energies would distinguish this possibility from the
others. The main objection to this explanation is that
there is no reason why the Dirac electron theory should
break down at this particular wavelength, since it is
clearly valid to wavelengths considerably shorter than
h/me, its natural length. We do not regard it as a very
likely explanation of the experiments.

46 Section 25c of reference 1; G. Kiillén, Helv. Phys. Acta 25,417
(1952) ; H. Lehmann, Nuovo cimento 11, 342 (1954) ; J. S. Schwin-
ger, Lectures at Stanford, 1956. We would like to acknowledge the
clarification of these points produced by Professor Schwinger’s
stimulating lectures.

47 G. Killén, Proceedings of the CERN Symposium (Geneva,
Switzerland, 1956), Vol. 2, p. 187; L. Landau and I. Pomeranchuk,
Doklady Akad. Nauk. U. S. S. R. 102, 489 (1955) [a review of
the work of Landau and colleagues on this subject is given in
Pomeranchuk, Sudakov, and Ter-Martirosyan, Phys. Rev. 103,
784 (1956)7; J. S. Schwinger, reference 46.

1 Note added in proof —A recent determination of the electron’s
magnetic moment by P. A. Franken and S. Liebes, Jr. [Phys.
Rev. 104, 1197 (1956) ] gives the result that (ue/pmo)exp= 1+ (a/21)
+(0.742.0) (a2/7%). The value of the third term predicted by
quantum electrodynamics [R. Karplus and N. Kroll, Phys. Rev.
77, 536 (1950)7 is —2.973 (o?/x%). The discrepancy may perhaps
be another indication of the breakdown of quantum electro-
dynamics.
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5. SUMMARY

An examination has been made of the present
experimental situation regarding the electromagnetic
structure of nucleons. It is difficult to understand the
remarkable difference in charge radius between the
neutron and the proton. Relativistic effects are not
expected to be too important, and current meson
theories which are charge symmetric seem to us unable
to explain the difference. It may be that our physical
considerations have leaned too heavily on weak-
coupling concepts and results, but a calculation which
does not make this approximation, and which at the
same time does not neglect recoil, has not yet been
made. Apart from this, there seem to be two relatively
simple explanations: (i) that charge symmetry does not
hold for very small distances; or (ii), that quantum
electrodynamics fails at high energies—in other words,
that the interaction between two charges is not (1/7)
at very small distances. The first alternative would
destroy the simplicity of present charge-independent
field theories. The second would require a fundamental
alteration of present field theory.
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APPENDIX. GROUP-THEORETICAL TREATMENT
OF CHARGE-CURRENT DISTRIBUTIONS
OF RELATIVISTIC PARTICLES

There are well-known group-theoretical arguments
that nonrelativistic particles of definite spin and
parity can possess only certain electric and magnetic

. multipole moments. In this appendix those arguments
will be extended to relativistic particles, and it will be
shown in particular that for a spin one-half particle
the most general expression of the current density is
given by Eq. (2.5).

We shall be interested primarily in matrix elements
of the current-density operator between states of
definite momentum and spin projection

Ju(P';m’; Pm)d (P'— P—q)=(P';m|ju(q) | P;m). (A-1)

The physical states of the particle, |Pm), |[P'm'),
include all of the effects of the interaction which
produces its internal structure; here we need use only
the information that these states form a basis for a
representation of the inhomogeneous Lorentz group
corresponding to a definite spin. The operator j,(g) is
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the Fourier transform of the current-density operator

Ju(@) = 2m)* | ju(x)e~inndty. (A-2)
The & function representing energy and momentum
conservation arises from the fact that j,(x) may be
expressed

Ju(®) = €PA2 5, (0) e PraA, (A-3)

where Py is the energy-momentum operator for the

system. In momentum space, charge conservation is
expressed by

uju(g)=0. (A-4)

This imposes a condition on the matrix elements of j,

’ (P'—P),J,(P'm’ ; Pm)=0. (A-5)

Under a homogeneous Lorentz transformation the
state vectors |Pm) and the operators j.(¢) transform
in a definite way (which fortunately we need consider
explicitly only in special simple cases). Thus a knowl-
edge of J,(P'm'; Pm) for one pair of momenta P, P’
and all m, m’ will determine J,, for all other Pm, P'm’
that can be reached from the first set by a Lorentz
transformation. The totality of such pairs is given by

(P'=Pp=(P'—Pp=¢. (A-6)

Thus, for a given ¢% the current density is charac-
terized by at most 4(2s+41)? independent constants:
in fact, as we shall see, the actual number of such
constants is (2s41). For a given value of ¢ it now
seems appropriate to study the properties of the current
density for some particularly simple values of P, P’.
The simplest choice seems to be

P'=—P=1q. (A7)

For simplicity we orient the z axis along q; then since
go necessarily vanishes for this combination of momenta,
Eq. (5) reduces to

(A-8)

It will also be convenient to take the direction of spin
quantization along the z axis. Then under a rotation
about the z axis through an angle ¢, the states and the
operators 7, will transform according to

Jz (%qu'l y %q)m) =0.

R.(¢)| £3q,m)=e""é| L3q,m) (A-9)
R.(9)70(@R:(¢)=70(q) (A-10a)

R.(9)[7=(9)=£1, () JR:(8)
=% j,(q)=£1j,(9)]. (A-10b)

From this we can easily deduce that (displaying only
the m dependence)

Jo(m' m)= A (m)8mm (A-11a)
J:!: (m,’m) =Js (mllm):*:i]u (m,ym)
=B:E (m)am:,,&l, (A"llb)
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Further information can be obtained by making the
following combination of transformations: (i) space
inversion, which leaves m, m’ unchanged, but reverses
the sign of q and the spatial components of 7,; (ii)
rotation of 180° about the y axis, which reverses the
sign of m, m’, but restores the original sign of q and
the x component of j,. Since this combination of
operations must leave the matrix element unchanged
(the specific effect of the parity operation on the states
of the particle cancels out because the particle has
definite parity), we find the relations

A(m)=A(—m)=A(|m|) (A-12a)
By (m)=— Bx(—m). (A-12Db)

The minus sign arises from the fact that R,(w)|3q,m)
=(—1)*t"| —%q,—m), according to the usual con-
ventions. The reality properties of the operators

jo*(@=s(—a); *(@=i(—a), (A-13)

in combination with a space inversion, lead to the
further relations

A*(m)=A(m) (A-14)
B, *(m)=—Bx(m+1). (A-15)

Thus the A’s are real. The reality properties of the B’s
are not fixed by the present considerations alone, but
it can be shown by time-reversal arguments®® that
B, (m)= B[ (m+1) for the usual choice of phase of
the angular momentum states. When this is combined
with Egs. (A-12b) and (A-15), it is seen that the B’s
are also real. No additional information can be obtained
by considering rotations about the x and y axes since,
in contrast to the situation in the nonrelativistic case,
a preferred axis (q) enters the definition of the spin
states.

We may now illustrate these results for the few
lowest spins.

Spin Zero

The m label may be omitted, and for the special
choice of momenta we have simply

Jo=A(g?), (A-16)
J=0.
These may be expressed in covariant form,
Ju(P'; P)=(1/2M) (P+P"),F (¢, (A-17)
where
F(g)=[M/ (M +ig)t]A(). (A-18)

This is just the form for the current density of a Klein-
Gordon particle modified by a form factor F(g%),

48 This possibility was suggested by Professor S. D. Drell. For a
discussion of time reversal, see S. Watanabe, Revs. Modern Phys.
27, 40 (1955). See also F. Coester, Phys. Rev. 89, 619 (1953).
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which may represent possible internal structure. We
emphasize again that it is not necessary to assume the
particle to b a Klein-Gordon particle, but only that
it is a spin-zero particle.

Spin One-Half

The nonvanishing matrix elements may be written
out explicitly

Tos H=To(—}; —H=A4(@),
Ti(=5D=—J_G; —D=B(@.

(A-19)
(A-20)

In order to write these in covariant form, it is convenient
to introduce Dirac spinors which transform in the same
way as the states |Pmy); these are the usual quantities
¥pm, Which for convenience we take to have the rela-
tivistic normalization

D m'l)pm=1. (A-21)

The form of current density given in Eq. (2.5) has the
right transformation properties and the arbitrarines
necessary to fit the two functions 4 and B; it is therefore
one possible way of writing Egs. (A-19) and (A-20)
covariantly. Any other covariant forms can always be
reduced to Eq. (2.5); this analysis shows also that the
most general covariant expression for a current which
is not conserved is given by Eq. (4.1). The relation
between 4, B and Fy, Fy is

A(g) = e[ F1(¢") —x(g*/4M*)F2(g) ],

(A-22)
B(g")=2¢(| gl /2M)[Fr(¢)+xF3(¢") 1.
We may: also define a ‘“‘charge” form factor by
Fon(@)=[M/(M*+3¢")* ]
X[F1(¢)—x(¢?/4AM*)F(¢")].  (A-23)

The factor M/ (M?+%¢?)? is the reciprocal of the usual
E/M factor in the relativistic charge density [see
Egs. (A-17) and (A-18)7].

We can now see why there is an ambiguity in calcu-
lating the nucleon’s charge distribution according to a
fixed source meson theory. In the limit M—c0, there
is no distinction between A4(¢?)/e, F1(¢*) and Fon(¢®;
however, for finite M we do not know with which
quantity the static charge distribution is to be associ-
ated. The difference between the first and second
possibilities is just the Foldy term, which is not negli-
gible. The difference. between the first and third
possibilities is associated with the Lorentz contraction
of the charge and it is comparatively unimportant for
the analysis of the present paper.

Spin One

A new feature arises in the case of spin one in that
it is now necessary to specify two constants in order to
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determine the charge density completely. The new
constant is clearly associated with the possibility of an
electric quadrupole moment, so we write the charge
density in the form

Jo(m';m)= A1(q")0nm+As(g?) (M*—3)0mm.  (A-24)
The second term has been so chosen that it vanishes
upon averaging over . Only one constant is needed
to specify the current density in the special Lorentz
frame.

This result has applications to electron scattering
from deuterium. R. Blankenbecler® has performed such
a calculation by expressing the current density in a
covariant form using the f-matrix formalism.

Spin Three-Halves and Higher

One new constant is needed to describe the current
density of a spin three-halves particle. It is associated
with the possibility of a magnetic octupole moment
and occurs explicitly because J,(%,3) and J;(3, —3)
are not related to each other by group-theoretical
considerations. In this way, every increase of the spin
by one-half will result in the possible addition of an
electric or magnetic multipole moment.

Cross-Section Formula

In practical applications we often have to evaluate
quantities of the form

(J *J V> v = >
T s
X T (Pm; P'm’)T,(P'm’ ; Pm).  (A-25)
In the special Lorentz frame it is easy to see that
(Jo*fo)nv‘:fp,
(JO*]'L'>AV=O,
_ (A-26)
BZ(L' iy i=x,y,
(J* = ’
y 1= z,
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where
1

2541

A= 2 |Am),

(A-27)

1 1
B'=———3% | By(m)|>.
22541 m

Defining P,=P,+P',, Eq. (A-26) may be expressed
in the covariant form

(Ju*Ji>Av=fI2[PM?V/(—P2)] .= =
+BY 6~ (qu9,/¢)— (P.P,/PY)].  (A-28)

In order to calculate the cross section, a similar sum
must be carried out over the electron spins; the result is

(]n*] V)AV<J W Tom= (et/ zmz){ ({1—2';"B22 _
X[—¢— (P-k)*/P*]+2B%"}, (A-29)

where k,=k,+#,’. From this the cross section may be
obtained directly in any coordinate system by inserting
the proper expressions for incident flux, density of
final states, etc.

Possible Extensions of the Method

The same method may be applied to the matrix
elements for pair production with only changes of
detail. In this case ¢?<0 and it is convenient to choose
the frame in which q=0. Then the matrix elements of
7o vanish, while those of j, do not. Because the range of
¢* is different from that for scattering, group theory
seems to impose no relationship between pair production
and scattering. However, if these matrix elements are
used directly in higher order perturbation calculations,
the result will not usually be gauge invariant (in spite
of charge conservation!), and it will be necessary to
introduce extra terms to maintain gauge invariance.
At present the method seems fruitful only in lowest
order perturbation theory.

We may also employ these techniques to calculate
the form of the matrix element for systems making
a transition (for example, a nuclear transition or
photoproduction of pions). For any specific case the
procedure would be quite clear, so we shall not present
any general rules. Suffice it to say that the result is the
relativistic generalization of the usual multipole
description of radiative transitions.



