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I. INTRODUCTION

HERE is now a considerable body of data avail-
able about the ground and low-excited states of

nuclei. In particular, the spins, parities, and electro-
magnetic moments of the ground states of most nuclei
are known and in many cases the latter have been ob-
tained with considerable precision. This review is con-
cerned with these electromagnetic moments and their
interpretation in terms of current nuclear theories.

Experimentally it is found that the nuclear ground-
state spins always satisfy the following rules:

(a) All nuclei with Z even and (A —Z) even have
zero spin. Here, Z and A are the nuclear charge and
mass numbers, respectively.

(b) Nuclei with A odd have spin (e+-,')5, where
e=O, 1, . and A is Planck's quantum constant di-
vided by 2m.

(c) Nuclei with Z odd and (A —Z) odd ha, ve spin
ek where x=0, 1,

Now it is firmly established that an atomic nucleus
with charge Ze and mass number A consists of an as-
sembly of Z protons and tV= (A —Z) neutrons. For
such an assembly the total angular momentum (i.e., the
nuclear spin) is the vector sum of the orbital angular
momentum of the nucleons together with their intrinsic
spins. The orbital angular momentum is restricted to
integral values while the intrinsic spins are —,5 and it
therefore follows at once that for A odd the resulting
spin is half-integral while for A even the spin is integral.
However, the fact that nuclei with even numbers of
protons and neutrons )case (a)) should always have
zero spin in the ground state is not immediately ap-
parent and only follows as a consequence of the form
of nuclear forces.

It is further found experimentally that nuclei with
nonzero spin have a magnetic dipole moment given by
p= gIp, 0 where g is known as the nuclear gyromagnetic
ratio and ti0 is the nuclear magneton (n.m. ) defined as
ek/23IIc (3I is the proton mass); ti0 has the value

0429~10 '4 erg gauss
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Nuclei with spin greater than or equal to 1 may also
have an electric quadrupole moment which is a partial
measure of the deviation of the nuclear charge distribu-
tion from spherical symmetry. In addition, nuclei with
spin greater than or equal to 3/2 may have a magnetic
octupole moment and a few cases in which this has been
measured are known. Even higher electromagnetic
multipole moments for nuclei with spin greater than
3/2 exist but so far none have been measured. In Secs.
2.1 and 2.2 precise quantitative definitions of the above
multipole moments are given.

A detailed discussion of the measurement of nuclear
spins and moments is given in the book by Ramsey. '
SuKce it to say here that the methods can be divided,
into two broad groups, namely those which depend on
the interaction of the nuclear moment with internal
atomic or molecular fields and those which depend on
the interaction of the nuclear moment with an applied
external field. The former methods include measure-
ments of atomic hyperfine structure and are generally
not so accurate as the latter methods owing to un-
certainties in the form and strength of the atomic fields.
The latter methods involve the investigation of either
deQections of particle beams in a magnetic field or
resonance transitions, induced by an oscillating electro-
magnetic field, in an applied magnetic Geld; they enable
accurate values for magnetic moments to be obtained.
Atomic beam magnetic resonance methods have also
been used to obtain magnetic octupole moments. It
should also be mentioned here that in a few cases it has
been possible to measure the moments of excited nu-
clear states by investigating the perturbation caused by
external fields on the angular correlation between two
successive nuclear radiations. The external Gelds are
used to reorientate the spin of the intermediate nuclear
state between the radiations and so modiGes the angular
correlation in a way which depends on the moments of
this state and the form of the interaction (see review
article by Frauenfelder').

Use of these various methods has enabled many elec-
tromagnetic moments to be measured and it is clear
that any satisfactory theory of nuclear structure must
be able to account for these moments. At this point it is
convenient to say a little about the present philosophy
of nuclear theories. The nucleus is an exceedingly com-
plicated structure consisting of many particles inter-
acting together through the mechanism of a meson field.
Even if the detailed form of the interaction was known
present techniques would still not allow the solution
of the resulting many-body problem. In point of fact
there is little tt priori information about the way nu-

cleons interact within the nucleus. From nucleon-
nucleon scattering experiments a certain amount of

' N. F. Ramsey, Nuclear lrloraertts (John Wiley and Sons, Inc. ,
New York, 1953).

2 H. Frauenfelder, Beta aed Gamma Ray Spectroscopy, edited by
K. Siegbahn (North Holland Publishing Company, Amsterdam,
$95$), Chap. XIX,

information is available as to the form of the interac-
tion between two isolated nucleons. There is no reason
to suppose, however, that this interaction is experienced
between two nucleons when surrounded by many others
and the possibility of many-body forces cannot be
ignored. Nevertheless, it is interesting to see if nuclear
properties can be interpreted in terms of two-body
forces only. * As already pointed out, the many-body
problem still cannot be solved even with this restric-
tion. The procedure therefore has been to construct
phenomenological models from semiclassical and simple
quantum-mechanical considerations and to see to what
extent these models can account for the experimental
data. In particular any nuclear model must be able to
predict the spin, parity, and electromagnetic moments
of the ground states. This article is primarily concerned
with a discussion of the success, or otherwise, of the
various current models in this direction.

The layout of the review is as follows. In Sec. 2 ex-
pressions are obtained for the electromagnetic multi-
pole operators and those general results for their ex-
pectation values are deduced which are independent of
any particular model. Section 3 deals with the possible
contribution to nuclear magnetic moments of exchange
currents and velocity dependent forces. The nuclear
moments of H', H', and He' are amenable to more
exact calculations than those of heavier nuclei and are
therefore discussed separately in Sec. 4. In Sec. 5 a
survey of the nuclear models in current usage is given
laying particular emphasis on those points which are
relevant to the calculation of nuclear rnornents. Sec-
tions 6 and 7 are concerned with the magnetic dipole
and electric quadrupole moments of odd-A nuclei and
their interpretation in terms of nuclear models. The
magnetic dipole and electric quadrupole moments of
odd-odd nuclei are discussed in Sec. 8. In a few cases
it has been possible to obtain information about the
nuclear moments of excited nuclear states and the mag-
netic octupole moments of ground states; these aspects
are mentioned in Secs. 9 and 10, respectively. The
Appendix contains tables of nuclear moments and an
indication of the nuclear structure capable of explain-
ing them.

2. ELECTROMAGNETIC MULTIPOLE MOMENTS

2.1 Magnetic Dipole and Electric Quadrupole
Moments

An atomic nucleus consists of an assembly of neutrons
and protons confined to a region of space which is
usually approximately spherical and with radius about
10 "to 10 "cm. The electromagnetic properties could
be described completely by specifying the charge and
current densities of this assembly. Only the protons can
contribute to the former while, in addition to the proton

~ If many body forces, :e of importance this approach might
not be too unsatisfactory since the effect of the many body forces
might be represented by an eQ'ective two-body force,
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ek
(p . ) — p g

(s)L(it)
2Mt," ~=~

(2)

(3)

Here L(") and tr(") are the orbital angular momentum
and Pauli spin operators for the kth nucleon and
g&&~) and gz&~) are the orbital and spin gyromagnetic
ratios. For a proton g~ ——1 and gq ——5.587 while for a
neutron g1.=0 and gq= —3.826.

The magnetic moment is then obtained by calculat-
ing the expectation value of the s-component of p p

for the nuclear substate in which the spin is along the
s-axis. Thus, if the wave function for a nucleus with
spin I in the magnetic substate M is Nz~ then the
magnetic moment p, is given by

r*
p =gI= 0 1 (to ))i8pI dV=()tg)M r—

currents, the spin currents of both neutrons and protons
can contribute to the latter. f Such a description is un-
wieldy, however, and it is more convenient to describe
the electromagnetic properties in terms of the electro-
magnetic multipole moments.

As far as the magnetic dipole moment is concerned
there are contributions from the orbital motion of the
protons in the nucleus and from the spins of both neu-
trons and protons. The magnetic dipole operator p, ~ is
then dined by

Pop = (@orbital)op+ (+spin)opy

where

2.2 Generalized Multipole Moments

The foregoing concepts of magnetic dipole and electric
quadrupole moments can be generalized to higher multi-
pole moments in the following way. '

We define the electric multipole operator of order X as

and the magnetic multipole operator of order X as

ek 2
[py xp (0 )], g

(s) L(k)/1g (s)g(k)
23fc s=i X+1

where P), (8) is a I.egendre function.
With these definitions we then see that

)t =(Mi))ir=r,' magnetic dipole moment

Q=(2Qs)sr=r, electric quadrupole moment.

It is to be noted that the operator Q), has parity
(—1)"while M), has parity (—1)"+'.Now only operators
with even parity will have nonvanishing expectation
values for a state of definite parity. But the ground
state of a nucleus has a definite parity providing the
center of mass is at rest. This therefore implies that
only the even electric moments and the odd magnetic
moments will be nonvanishing. The first two of these
are 1t and Q which have already been discussed. Next in
order of importance is the magnetic octupole moment 0
and this has been de6ned by Schwartz as

The electric quadrupole moment operator Q,p is
de6ned by No moments higher than 0 have been measured and no

further reference to them will be made.

where gl. '~) is used formally to differentiate between
neutrons and protons. The electric quadrupole moment
is then conventionally de6ned as the expectation
value of Q,p for the nuclear state tllrr ..

(6)

Now@1'*4'I represents the density distribution of the
nucleus and it is quite easy to show that a prolate
(cigar-shaped) charge distribution symmetrical about
the s-axis will have a positive quadrupole moment while
an oblate (disk-shaped) charge distribution gives rise
to a negative quadrupole moment.

I No account is taken here of possible contributions from virtual
meson currents etc. These currents can be viewed as modifyin~
the intrinsic spin currents of the nucleons and also contributing a
spatial current. They are discussed separately in Sec. 4.

2.3 Selection Rules for Multipole Moments

Inspection of the expression for 3II) and Q), shows that
both M), and Q)t transform under the I)(") representation
of the group of real rotations of space. Further for a
nucleus of spin I, 4q transforms under the D( ' repre-
sentation. This means that the integrand as a whole in
the expression for the expectation value of a multipole
operator of order P transforms under the product
representation D( ))&D'")gD& '. But in order that the
integral shall not vanish this product representation
must contain D&') and for a given ), the condition for
this is that 2I~&X. Thus for a nonvanishing magnetic
dipole moment (X= 1), I~&—,'; for a nonvanishing electric
quadrupole moment (X=2), I~& 1; for a nonvanishing

magnetic octupole moment (X=3), I&~ sz.

' J. M. Blatt and V. F. .Weisskopf, Theoretica/ 1VucLear Physics
(John Wiley and Sons, Inc. , New York, 1952).' C. Schtvartz, Phys. Rev. 97, 380 (1955).
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3. EXCHANGE CURRENTS AND VELOCITY
DEPENDENT FORCES

3.1 Exchange Currents

According to current views nuclear forces result from
the interaction of nucleons with mesons and since
mesons are charged it follows that in a nucleus, in addi-
tion to the spin and space currents due to the nucleons,
there will also be virtual meson currents present. Such
currents will be referred to in the following as exchange
currents.

The existence of exchange currents will clearly be of
importance for the calculation of the electromagnetic
properties of a nucleus and in particular they may be
expected to modify the magnetic multipole moments.
On the other hand, as suggested by Siegert' (Siegert
theorem), exchange currents do not appreciably affect
the electric multipole moments and these depend very
largely on the proton distribution in the nucleus (see
Foldy, for example, where a discussion of this point is
given). Since so little experimental data are available
about magnetic multipole moments other than the
dipole moment we shall only consider the eRects of
exchange currents with reference to the latter.

For any given meson theory of nuclear forces it
should in principle be possible to calculate the proper-
ties of exchange currents. However, in view of the con-
siderable difhculties with which the treatment and
interpretation of meson theories are at present beset,
it is more satisfactory to consider those aspects of ex-

change currents which are independent of any particular
meson theory. That is, we consider a phenomenological
theory of exchange currents in nuclei.

3.2 Exchange Magnetic Moment Operators

Osborne and Foldy' by applying certain invariance
and symmetry restrictions on the possible forms of the
contributions of exchange currents to the magnetic
dipole operator have succeeded in considerably limiting
these forms. In addition a further limitation can be
imposed by taking account of the fact that the magnetic
moment of the deuteron can be entirely accounted for
without exchange effects (see Sec. 4 for a more detailed
discussion of this point). The basic assumptions made
about exchange eRects in this approach can then be
listed as follows. '

(a) The exchange effects can be described in terms of
nucleon variables only.
(b) Only static two-body forces exist between nucleons.
(The effect of velocity dependent forces is considered
briefly in 3.3.)
(c) The exchange effects have a short range (i.e.,

Ms —— p (rs(i) —rs( j))(e;—rr, )y, (r;;)P;;,
2Mc ', ~'

(12)

38A
)8'Z ( (') — (j))

2' c

where P;, is the space exchange operator for the par-
ticles i and j.rs (i) is the third component of the isotopic
spin operator for the particle i and has the eigenvalues
—,'or ——,

' according as z is a neutron or a proton (see Sec.
5.41). In Mr. , V(r...rr;, rr;)P,; represents the actual
charge exchange potential between the nucleons.
However, in Mt. . . M4, the g's are undetermined radial
functions of range 1/',8.

Mr, is referred to as the space exchange magnetic
moment operator since it can be shown to result from
a simple irrotational meson current Qow between two
nucleons, one nucleon acting as a source and the other
as a sink, the source and sink having the same strengths.
On the other hand, Mt. . . M4 are referred to as spire

exchange magnetic moment operators.
The spin exchange operators can be given a very

simple physical interpretation. They are all linear in
the nucleon spins so that in the expression for the mag-
netic moment of a nucleus including spin exchange
effects there will be two terms linear in o, one from (3)
due to the intrinsic nucleon magnetic moment and one
from M~. . . M4. Thus the eGect of the spin exchange

the dependence on the interparticle distance is taken
to be similar to that for nuclear forces).
(d) The exchange magnetic moment operator behaves
as an axial vector under translation and rotation and
changes sign under time reversal. This latter point is
discussed by Kynch' and Caianiello. "
(e) The exchange magnetic moment operator changes
sign under the interchange of neutrons and protons.
This is to ensure that there is no exchange contribution
to the deuteron magnetic moment.

With these restrictions there are only five possible
forms for the exchange magnetic moment operator. " "

iek
ML, —— p (7s(i) —rs(j))(r;n r;) V(r,;,rr, ,o;)P,;, (10)2' i, ~

~ A. J. E. Siegert, Phys. Rev. 52, 787 (1937).
6 L. L. Foldy, Phys. Rev. 92, 178 (1953).
r R. K. Osborne and L. L. Foidy, Phys. Rev. 79, 795 (1950).
'R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing

Company Inc. , Cambridge, 1953).

G. J. Kynch, Phys. Rev. 81, 1060 (1951).
'0 E. R. Caianiello, Nuovo cimento 9, 336 (1952).
"A. Russek and L. Spruch, Phys. Rev. 87, 1111 (1952).
"M. Ross, Phys. Rev. 88, 935 (1952).
"N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951).
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moment is to modify the intrinsic nucleon moment by an
amount dependent on the proximity of other nucleons.
In particular M3 and M4 lead to a modification of the
component of the intrinsic magnetic moment of a
nucleon in a direction parallel to the line joining the
nucleon to its disturbing neighbor. This has the e6'ect
of making the nucleon moments nonadditive.

where f(r) is a radial function and L is the single particle
angular momentum operator (see Blin-Stoyle'4 where
additional references are given).

Replacing p by p —eA/c for a proton gives an inter-
action energy

e/cf(r) (e ra A). . (16)

For a constant magnetic field H, A can be written as
A=-,'(HA r) and the interaction energy then has the
form —p'. II where

e
p'= f(r)[ r'e+ (r—o) rj. —

2c
(17)

p' is therefore the operator for the additional magnetic
moment to be associated with the motion of a proton
in a spin-orbit potential.

4. NUCLEAR MOMENTS OF H', H', AND He'

Although in general it is necessary to construct a
model for the description of nuclear properties, it is
possible to be a little more rigorous in the case of the
particularly simple nuclei H', H', and He' which con-
sist of only two or three nucleons. For this reason it is

"R.J. Blin-Stoyle, Phil. Mag. 46, 973 (1955).

3.3 Velocity Dependent Forces

If terms appear in the nuclear Hamiltonian which are
dependent on the momenta of nucleons in the nucleus,
then there can be additional contributions to the
nuclear magnetic moment. In the presence of an electro-
magnetic 6eld the standard prescription is that for all
such terms in the Hamiltonian in which a proton mo-
mentum p appears, p should be replaced by p —eA(r)/c
where A(r) is the vector potential describing the
electromagnetic field at the position r of the proton.
Such a procedure then ensures that the condition of
gauge invariance is fu16lled. Adopting this procedure
with a two-body potential of the form (e,+e,) (r;—r;)
n (p,—p, )J'(r,;), Austern and Sachs" have deduced the
resulting contribution to the magnetic moment operator.
This has a very complicated form, and so far no detailed
estimates of its importance hive been made.

However, it is possible that, considering one nucleon
in the nucleus, the "smeared out" e6'ect of such a
potential resulting from all the other nucleons may be
represented by a one-body spin-orbit potential of the
form

more convenient to treat them separately. The calcula-
tion and interpretation of their moments is discussed at
length in the books on nuclear theory' ' and we shall
therefore confine ourselves here to stressing the main
points of the problem.

4.1 Electromagnetic Moments of H'

The deuteron has spin 1 and therefore according to
the rules set out in 2.3 it may have both a magnetic
dipole moment and an electric quadrupole moment.
Experimentally it is found that p, =0.857354%0.000009
n.m. and Q= (0.00274&0.00002) &(10 ' cm'

If only central forces were operative between nu-
cleons, then the ground-state configuration of the .

deuteron would be 'S~ so that its magnetic moment
would be p(H') =p(I')+li(X) where li(I') and p(1V) are
the intrinsic moments of the proton and neutron, re-
spectively. This gives li(H')=0. 87975+0.00020 and
there is an obvious discrepancy well outside the experi-
mental error. Further, for a 'S~ state the charge distribu-
tion is spherically symmetrical and Q=O, again in
conflict with experiment. These two discrepancies can
be resolved simultaneously by assuming that, in addi-
tion to the central force, there is also a noncentral force
(e.g. , a tensor force) between nucleons. This would then
cause an admixture of the 'D~ state and the deuteron
ground state would then be 'Si+'Di. The admixture of
the 'D~ state results in a nonspherical charge distribution
and therefore a finite Q and also modifies the magnetic
moment. Indeed, an admixture of about 4% 'Di state is
sufhcient to account for the deuteron magnetic moment.
The value of 4% is calculated, however, on the assump-
tion that there are no relativistic corrections to the
intrinsic magnetic moments of the proton and neutron
and that there are no contributions from exchange
currents. Estimates of the relativistic corrections""
are in doubt both as to sign and magnitude but the
indications are that they are of the order of a few per-
cent. This means that the admixture of 'D~ state to
account for the magnetic moment cannot be set ex-
actly at 4% but rather between say 2% and 6%. On
the other hand there is little evidence of exchange
effects but they cannot be completely ruled out.

Unfortunately a better estimate of the admixture
of 'D~ state cannot be obtained from the electric quad-
rupole moment even if exchange contributions are
negligible. " The calculated quadrupole moment has
the form'

See
Q= [ciscnfs(r)fo(r) aa fn'(r) jr dr—

where ag and uD are the amplitudes of S and D states
present and fs(r) and fD(r) are suitably normalized
radial functions for these states. The quadrupole

'~ R. G. Sachs, Phys. Rev. 72, 91 (19&7)."G. Breit and I. Bloch, Phys. Rev. 72, 135 (1947)."J.Bernstein and A. Klein, Phys, Rev. 99, 966 (1955).
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moment clearly depends on the detailed behavior of the
radial functions, and since these are related to the form
of the inter-nucleon potential it is impossible to give
de6nite values to uz and aD. It seems fairly certain,
however, that it is possible to account for the electro-
magnetic properties of the deuteron in terms of a
ground state consisting of an appropriate mixture of the
'S~ and 'D~ states.

4.2 Electromagnetic Moments of I' and He'

H' and He' are mirror nuclei both having spin —,'.
They will therefore have a magnetic dipole moment but
no higher moments. Experimentally y(Ha) =2.978643
&0.000028 n.m. and p (He') = —2.127414+0.000003
n.m. Now y(P)=2.79255&0.000010 n.m. and p(X)
= —1.91280+0.00009 n.m. and the closeness of p(H')
to IJ, (P) and of p(Hea) to p(1V) indicates that the ground
states of H' and He' are predominantly 'S;. There is,
nevertheless, a discrepancy and it is tempting to at-
tribute it (as in the case of H') to the admixture of other
states. However, it turns out'"" that no reasonable
admixture of states can account for the anomalies.
Calculations with two-body forces suggest that the
ground state is primarily 'S; with a small admixture
(about 4%) of 'D;, whereas an admixture of about
40% PI state and little DI state is needed to give the
correct magnetic moment.

It is possible, however, to give an explanation of the
anomaly in terms of exchange eGects. With an admix-
ture of about 4% 'DI state the outstanding anomalies
for H' and He' are about 0.27 n.m. and —0.27 n.m.
respectively. It is satisfactory that the anomalies are
equal and opposite since this is consistent with restric-
tion (e) imposed in 3.2 as to the form of the exchange
magnetic moment operator. Considering Ml, and

Mt. . .M4 it turns out that the contribution to the
moment from the space exchange operator Mr. is

negligible since its expectation value vanishes for the
'5; state. "On the other hand, each of Mr. . . M4 has a
finite expectation value for the 'S~ state and can, either

singly or in combination, account satisfactorily for the
moment anomalies of both H' and He'."Villars" using
a more sophisticated meson theoretical approach, has
also interpreted these magnetic moment anomalies in

terms of exchange effects of the form considered here.

S. NUCLEAR MODELS

S.1 Intro dllctlon

As pointed out in Sec. 1, for all but the very simplest
nuclei, the task of obtaining exact wave functions
representing the structure of a nucleus is prohibitive
even with full knowledge of the internucleon potential
energy. The approach adopted, therefore, is to con-

"R.Avery and R. G. Sa.chs, Phys. Rev. 74, 1320 (1948).
"R.Avery and E. N. Adams, Ph s. Rev. 75, 1106 (1949).
"' F. VJlars, Phys. Re&. 72, 257 1947),' Helv'. Phy's: Act'a. 211I,

476 (1947).

struct nuclear models whose wave functions may bear
some relation to those of the nuclei they represent and
which can be used for the calculation of nuclear proper-
ties. (This point is discussed formally by Eden and
Francis. ") In the recent section a brief survey is given of
the models in current usage for the description of nu-
clear ground states. Such a survey to be complete re-
quires a separate article and the present one must
necessarily be cursory; attention is concentrated pri-
marily on those aspects of the models relevant to the
calculation of electromagnetic moments.

The models can be classified as particle models and
the collective model. In the former attention is concen-
trated on the states of individual nucleons while in the
latter collective effects are dominant.

5.2 Particle Models

The basic postulate of the particle models (detailed
reviews of these models have been given for example by
Flowers" and Pryce") is that the interaction of any
one nucleon within the nucleus with the remaining
nucleons can be mainly represented by a static spherical
potential well intermediate in shape between an oscil-
lator and a rectangular well, the transition from the
former to the latter proceeding as 3 increases. The
states of individual nucleons can then be classified by
a set of quantum numbers and determinantal wave
functions can be constructed to represent the state of
internal motion of the nucleus. The value of this model
of the nucleus was not fully appreciated until 1948 when
Mayer~ and independently Haxel, Jensen, and Suess"
proposed that in addition to the static well there is also
a strong spin-orbit coupling force of the form f(r)a L—
where L and u are the orbital angular momentum and
Pauli spin operators for a single nucleon. States of indi-
vidual nucleons can then be classified according to the
set of quantum numbers (e,l, j,nz) where n is the total
quantum number, l describes the orbital state, j=l&-,'
is the total angular momentum quantum number, and
nz takes the values j, j—1, . . . —j, the energy of a
given state being determined by e, l, and j.

In a given nucleus these (e,/, j) levels are then sup-
posed to be 6lled up by protons and neutrons according
to the Pauli exclusion principle so that the system has
the lowest energy possible. As in the atomic case, this
leads to the concept of shells and by suitably adjusting
the shape of the well and the sign and strength of the
spin-orbit coupling, it is a simple matter to account for
the so-called "magic numbers" of nucleons 2, 8, 20, 28,
50, 82, and 126. Nuclei with these numbers of neutrons
or protons are particularly stable and have distinctive
properties which can be interpreted in terms of the corn-

plete filling of certain levels. Figure 1 shows an approxi-

"R.J. Eden and N. C. Francis, Phys. Rev. 97, 1366 (1955).- Il. H. Flowers, Progr. Nuclear Phys. 2, 235 (1952)."M. H. L. Pryc~e, Repts. Progr. Phys. 17, 1 (1954).
~ M. G. Mayer, Phys. Rev. 74, 235 (1948)."Hax'el, Jense'n; and Su'es's; NaturvHss. 35, 375 (1948).
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mate level pattern for nucleons and clearly indicates
how the magic numbers arise. It is to be noted that the
sign of the spin-orbit coupling has to be chosen so that
the state j=1+-', lies below j = l

For a completely filled shell or subshell the Pauli
principle guarantees that the total angular momentum
of the nucleons in this shell is zero. On the other hand,
if the shell is only partially filled then a considerable
degeneracy exists. However the representation of the
internucleon interactions by a static potential well is
clearly a crude approximation and it is to be expected
that there will be some departure from this approxima-
tion which will manifest itself as a residual effective"
interaction between nucleons in the nucleus. This
interaction need not be identical with that between
free nucleons although it might be expected to have a
similar form. It will have the gffect of partially or com-
pletely resolving the degeneracy referred to previously.
The actual manner of resolution in practice, however, is
not always certain since, apart from the complexity of
the necessary perturbation calculation, there is also the
uncertainty as to the form of the effective internucleon
potential. Nevertheless, it has been possible, using this
particle approach, to obtain substantial agreement
between theory and experiment about the properties
of the ground and low-excited states of many nuclei.
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5.3 Extreme Sing1e-Particle Model 2p —C
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Mayer~ 26 in first postulating the ideas of the shell
model made the simple but effective assumption that
the internucleon interaction was such that an even
number of neutrons or protons in a given level coupled
to spin zero while an odd number coupled to the spin j
of that level. Thus according to this scheme, all even-
even nuclei should have spin zero and even parity
(since an even number of particles in any one state must
have even parity) as is observed experimentally. Nuclei
with an even number of protons (neutrons) and an odd
number of neutrons (protons) should have the spin and
parity of the last odd neutron (proton) and this rule is
also generally obeyed although there are a few excep-
tions. The spin of an odd-odd nucleus, however, cannot
be predicted since the separate angular momenta of
the odd neutron and odd proton can be combined to
form several different resultant spins (see, however, the
empirical coupling rules proposed by Nordheim'").

This model is particularly successful in accounting for
the spins and parities of the ground states of odd-A
nuclei and it is tempting to regard all the ground-state
properties of such nuclei as vested, loosely speaking,
in the state of the last odd nucleon; the remaining
nucleons are then assumed to couple to zero spin and
to form an inert core. The nuclear wave function can
then be regarded as having the form%', =P„~, &o where

Qo is the core function and f„~, is a single-particle

26 M. G, Mayer, Phys. Rev. 78, 16 (1950);?8, 22 (1950).
sr L. W. Nordheim, Revs. Modern Phys. 23, 322 (1951).

Yp

Protons Neutrons

FIG. 1. Nuclear shell structure /from P. F. A. Klinkenberg,
Revs. Modern Phys. 24, 63 (1952)j.

function. f Explicitly

where C(l-,' j;m —oo.) is a Clebsch-Gordan coefficient,
x'(o.=Mrs) is the nucleon spin function, f„~(r) is a
radial function whose exact form is dependent on the
shape of the potential well considered and F'P (8,&) is
a spherical harmonic. A function such as 0',™can then
be used, for instance, to calculate nuclear electromag-
netic moments. Similarly a wave function describing
an odd-odd nucleus can be constructed by combining
two single particle functions to form a state of given
total angular momentum (Sec. 8.1).

Clearly the extreme single-particle model is a con-
siderable oversimplification of the state of a nucleus.
It is nevertheless a convenient reference model and
accounts for the bulk of the spin and parity assign-

+ S&r~ctly +,™should be completely antisymmetrical, but since
we are interest, cR in the expectation values of single particle
operators no exchangt. '.elms can arise.
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ments of nuclear ground states. The fact that high
spins (e.g., 9/2, 11/2, 13/2) predicted by this model
are not generally observed as ground states can be ac-
counted for by the introduction of the additional con-
cept of "pairing energy. " The idea is that when two
nucleons in a given level are paired off to spin zero they
gain (negative) pairing energy whose magnitude in-
creases with the angular momentum of the particular
level. This means that, energetically, when the various
levels are being filled, it may be more favorable for
nucleons to be paired off in high angular momentum
states at the expense of raising a nucleon from an ener-
getically lower filled level with smaller spin. Such a
nucleus will then have the spin of the lower level.
Apart from this type of spin anomaly, there are a few
others which cannot be interpreted in terms of the
single particle model. For example Na" has 12 neutrons
and 11 protons and there are nominally 3 protons in
the 1d5f~ state so that on the single particle model Na"
should have spin 5/2. The measured spin is 3/2 which
can only be satisfactorily interpreted as the coupling
of several particles in the ds s state to spin 3/2. This
and similar anomalies can probably be accounted for
by relaxing the extreme restrictions of the single par-
ticle model as described in the following section.

5.4 Individual Particle Model

Calculations with any reasonable type of effective
internucleon potential indicate that the conditions im-
posed in the extreme single particle model are far too
restrictive. The less restrictive assumption is made in
the individual particle model that the nuclear ground
state properties are now interpreted in terms of al/ the
nucleons which lie outside closed shells. For example
Cl" has one 1dgf2 proton and two 1d5f2 neutrons outside
closed shells. The neutrons can couple to angular mo-
mentum 0 or 2 on the individual particle model)
whereas on the extreme single-particle model only the
former is allowed. Thus as far as the ground state is con-
cerned this means that perturbation procedures must be
used to obtain the lowest energy state of a number of
particles (those outside closed shells) interacting through
an effective internucleon potential. This is manifestly a
problem of some magnitude. Fortunately the labor in its
solution can be considerably reduced in many cases,
particularly for light and medium-heavy nuclei, by
introducing a system of classi6cation of nuclear states
according to various symmetry properties.

5.4.1 Classification of Nuclear States

The classification of nuclear states to be discussed is
important as will be seen, because specifically nuclear
forces have a short range and are approximately charge
independent. Because of electrostatic forces and the
neutron proton mass digerence the nuclear Hamiltonian
is not completely charge independent. However, for

$ The spin states 1 ancl 3 are not allowed by the exclusion
principle.

light and medium-heavy nuclei, Radicati" "has shown
that charge independence is a good approximation and
it is therefore convenient in the nucleus to treat neu-
trons and pro'tons on an equal footing. This is con-
veniently done by assigning an "isotopic spin" 3 =—', to a
nucleon and denoting a neutron by the substate ntt ——+-,'
and a proton by the substate m&= ——,'. Formally the
isotopic spin is then treated exactly as the ordinary
intrinsic spin and a nucleon now has associated with it
a two-component isotopic spin function as well as an
ordinary spin function. It can then be shown~~ that a
correctly antisymmetrized function representing an
assembly of nucleons is one which is completely anti-
symmetric under interchange of space, ordinary spin
and isotopic spin variables. Such a state in jj-coupling
will then be characterized by J, M, and T, 3fz where J
is the total angular momentum, 3E its s-component, T
the total isotopic spin, and My its z-component. The
importance of the concept of charge independence is
that formally this corresponds to the statement that
the nuclear Hamiltonian is invariant with respect to
rotations in isotopic spin space so that (T ),„and (T,)„
commute with it. This means that T and 35~ are "good"
quantum numbers and that nuclear states can be classi-
fied in terms of them. Even if nuclear forces are not
charge independent 3I& is still a good quantum number
since it is related to the charge Z by Z=-,'(A —2Mr)
which is necessarily a constant of the motion.

Now for two nucleons the properties of a state are
completely described by J, 3I/, T, and Mz,. for more
than two nucleons however, this is generally not so
and it is necessary to introduce other concepts in order
to classify states more completely. This further classi-
fication is particularly simple when the nucleons under
consideration are "equivalent" particles. "By "equiva-
lent" particles is meant particles which have the same
values of e, l, and j, each having a wave function

To classify the states in jj-coupling two
new quantum numbers s and 3 are introduced referred
to respectively as the seniorit cumber and the reduced
iso.'opic spin which characterize the properties of the
wave function for n particles (say) under symplectic
transformation. $ For complete understanding of these
ideas a sound knowledge of group theory is required
and reference should be made to the papers by
Flowers'~" for further details. SuKce it to restate
here that the wave function for m equivalent particles
in the states (njt) can be written as C (j "TMr, st; crJ3f)

'"L. A. Radicati, Proc. Phys. Soc. (London) A66, 139 (1953)."L.A. Radicati, Proc. Phys. Soc. (London) A67, 39 (1954).
~~

A detailed discussion of the isotopic spin formalism is given
by Sachs. '

w B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952).
$ A symplectic transformation is one which ]eaves invariant

the antisymmetric bilinear form Z (—)~ &P;(m)pz( —nr) where
P, (m) is a single-particle wave function for the particle i.

"A. R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London)
A214, 515 (1952).

"A. R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London)
A215, 120 (1952).
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where o. represents any further labels necessary to
completely classify a state.

The virtue of this classification of states is as fol-
lows. "" In the limit of short range forces the energies
of the different possible states of the e particles are
determined primarily by e, T, s, and t; that is, s and t

are nearly good quantum numbers. In particular for a
given T the lowest level will have s=0 or 1 according
as e is even or odd and this imples that J=O or j ac-
cording as e is even or odd. Thus the main feature of the
single particle model is reproduced in this more general
approach. In addition for finite range forces there is
every indication that spin anomalies of the type oc-
curring in Na" can also be satisfactorily explained.
Using such e particle ground state configurations it is
then possible to calculate the expectation values of
electromagnetic moment operators.

This system of classification, of course, is only of use
when the neutrons and protons are filling the same
shells, that is, for light and medium-heavy nuclei.
Now for light nuclei, the extreme jj-coupling approxi-
mation is not completely satisfactory (see Sec. 5.42)
and for very light nuclei it appears that the wave func-
tions are nearer the LS-extreme. In this approximation
the total orbital and total spin angular momenta L and
S are good quantum numbers and the spin-orbit coup-
ling is assumed to be small. Fortunately, as has been
shown, for example by Wigner, ss Racah, '4 Jahn, " "
and Flowers, "it is possible to classify states according
to their symmetry properties under permutation of the
component particles. The classification is again of a
complicated nature and reference should be made to the
foregoing papers for details. One can, however, state
the following general result for the ground states of
nuclei in LS-coupling. If internucleon forces are mainly
short-range signer and Majorana (i.e., ordinary plus
space exchange) then even-even nuclei should be in '5-
states and odd-A nuclei should be in the state resulting
from the addition of a single particle to a spherically
symmetrical even-even core. Thus for odd-A nuclei an
effectively extreme singe-particle model is again
predicted.

Now in the case of heavy nuclei the situation is much
more complicated. For such nuclei electrostatic effects
are important as is shown by the fact that as A increases
so does the ratio of neutrons to protons. Thus, in heavy
nuclei, the isotopic spin is no longer a good quantum
number and in addition, because of the preferential
6lling of neutron levels, the neutrons and protons out-
side closed shells are no longer equivalent particles.
A simple classification of states can therefore no longer
be given. Only in the region of Pb"' is it possible to

"E.P. Wigner, Phys. Rev. Sl, 106 (1937).
s4 G. Racah, Phys. Rev. 76, 1352 (1949).
's H. A. Jahn and H. van Wieringen, Proc. Roy. Soc. (London)

A209, 1952 (1951).I H. A. Jahn, Proc. Roy. Soc. (London) A201, 516 (1950).
'7 H. A. Jahn, Proc. Roy. Soc. (London) A205, 192 (1951).
's B.H. Flowers, Proc. Roy. Soc. (London) A210, 497 (1952).

make more than superficial individual particle type
calculations of the distribution and properties of nuclear
energy levels. "4' Lead-208 is a doubly (magic) closed
shell nucleus so that the immediately neighboring nuclei
can be described primarily in terms of one or two
particles (or holes) and the possible states are com-
pletely classified according to their angular momenta.
In addition the jj-extreme seems to be a good approxi-
mation in this region.

5.4.Z IntermeCkate Costpling and Conggmrationat
3fzxzeg

As pointed out in the previous paragraph, for very
light nuclei the LS-coupling scheme seems, if anything,
closer to reality than the jj-scheme. In the former the
single-particle spin-orbit coupling force is neglected
while in the latter the residual effective two-body inter-
nucleon forces are neglected. There is every indication
that neither coupling scheme can give a complet-. ely
satisfactory description of nuclear properties and that
the situation lies somewhere between the two moving
from the LS-side towards the jj-side as A increases.
The situation is then referred to as intermediate coupling.

To investigate the structure of nuclear levels under
these circumstances the procedure is as follows. A
basic set of states is taken and the energy matrix of the
nuclear Hamiltonian (which now contains two-body
interactions and a spin-orbit potential) is formed.
The diagonalization of this matrix then. enables the
energy eigenvalues and the structure of the various
states (in particular the ground state) to be obtained.
For light nuclei it is usual to tak.e the basic set of states
to be those for I.S-coupling (see, for example, the calcu-
lations by Lane4' ") and to express the results in terms
of an intermediate coupling parameter which measures
the relative importance of the two types of coupling.
It is found for light nuclei that many ground- and
excited-state properties can be well represented by an
intermediate coupling situation. Few calculations have
been performed for heavier nuclei but here it is prob-
ably more convenient to start from the jj-extreme, ""

We have seen that the residual effective internucleon
forces lead to mixing of the two components of a spin-
orbit doublet and the situation of intermediate coup-
ling. They will also lead to mixing of other configurations
which have the same parity and angular momentum as
the original one and this effect, referred to as configura-
tional mixing, will be of particular importance when the
configurations are energetically close to one another.

'9 M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 773 (1952).
'0 D. M. Brink, Proc. Phys. Soc. (London) A67, 757 (1954).
"A. M. Lane, Proc. Phys. Soc. (London) A66, 977 (1953).
4s A. M. Lane and L. A. Radicati, Proc. Phys. Soc. (London)

A67, 167 (1954).
43 A. M. Lane, Proc. Phys. Soc. (London) A68, 189 (1955).
4' A. M. Lane, Proc. Phys. Soc. (London) A68, 197 (1955).
4s R. J.Blin-Stoyle, Proc. Phys. Soc. (London) A66, 1158 (1953).
4 R. I.Blin-Stoyle, and M. A. Perks, Proc. Phys. Soc. (London)

A67, 885 (1954).
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For instance Elliott and Flowers" have shown that to
account for the properties of mass 18 and 19 nuclei
configurational mixing between the near lying 2s and
1d shells has to be taken into account. As the number
of possible conIigurations grows this eGect is expected
to become increasnigly important. In particular, for
nuclei far removed from a closed-shell structure the
situation becomes completely out of hand and present
techniques are quite incapable of dealing with the
problem from the individual particle point of view.

S.S The Collective Model

For nuclei in the region of closed shells it is to be
expected that the equilibrium shape of the nucleus is
approximately spherical and that the nucleons move in
an essentially spherical potential well. On the other
hand, in regions far removed from closed-shell configura-
tions this is no longer the case and the effect of the many
"loose" nucleons is that the nucleus finds it energetically
more favorable to take up a nonspherical shape. There
can then be collective oscillations about this equilibrium
shape which become increasingly important the larger
the distortion. These oscillations will modify the eGec-
tive nuclear 6eld and so be strongly coupled to the mo-
tion of the nucleons. Thus, near closed shells, nuclei
should be fairly satisfactorily described by an indi-
vidual particle approach, whereas far away from closed
shells collective motion is of importance and, in fact,
it transpires that a relatively simple description of
nuclei in such regions can be given in terms of collec-
tive coordinates (see the review by Bohr and Mottel-
son"). Such regions are, moreover, just those where the
purely individual particle description is completely
inadequate.

The most important oscillations are those of order 2
associated with an ellipsoidal type deformation. For
such a deformation the nuclear surface can be defined

by R(8) =Re(1+PIr&'(0)) where 0 is measured relative
to axes fixed in the nucleus, P is a measure of the de-
formation and Re is the equilibrium radius. p can be
expressed as 4/3(s. /5) lAR/Re, where AR is the difference
between the major and minor axes of the ellipsoid.

The oscillations of order 2 can be quantized according
to standard held theoretic treatments" and this process
leads to the concept of quantized surface vibrations
(surfons) of energy k&c and each having an angular
momentum of two units. The energy ko of a surfon can
be estimated on hydrodynamical grounds from the
known properties of the nuclear Quid evidenced in the
semiempirical mass formulas and is found to decrease
with increasing A (Are varies roughly from 10 Mev to
1 Mev between A 10 and A 250). After quantization

4r J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A229, 536 (1955).

'8 A. Bohr and B. I&. Mottelson, Beta md Gamma Ray Spectros-
copy, edited by K. Siegbahn (North Holland Publishing Corn-
pany, Amsterdam), Chap. XVII.

49A. Bohr and B. R. Mottelson, Dan. Mat. Fys. Medd. 26,
No. 14 (1952).

p is found to be linearly related to creation and annihila-
tion operators for surfons. For a small number (%&~3)
of surfons, the state of the nuclear surface is then com-
pletely defined by E and E. where R is the total angular
momentum of the surface.

Now in addition to the vibrations around the equi-
librium shape, for large deformations the system may
rotate as a whole preserving both its shape and internal
structure. The rotation, however, is not a rigid rotation
and the moment of inertia I associated with it is gener-
ally no greater than and usually much less than one-
half the moment of inertia for rigid rotation. " Asso-
ciated with this rotation is a sequence of rotational
energy levels with energies given by

where J and Jo are the spins of a given level and the
ground state, respectively. Such levels have been well
identified in the regions 150&2(190 and A&225
which are both well away from closed shells. Details
of rotational levels, transition probabilities between
such levels etc. are given in the article by Bohr and
Mottelson" where further references can be found.

From the point of view of nuclear moments we are
mainly concerned with the collective aspects of nuclear
ground states and in particular with the angular mo-
mentum coupling schemes. For their description it is
convenient to consider the two extremes of meuk and
strong coupling.

5.5.1 Weak Coup/irrg

Weak coupling applies in the regions not far removed
from closed shells where the deformation is relatively
small. Under these conditions the bulk of the nucleons
contribute only to the collective motion of the nucleus;
on the other hand the particles in the last filled levels
must be treated on a separate footing. For a deforma-
tion P the particles can be assumed to move in a dis-
torted potential of the form

for small p. dV/dr is only expected to be appreciable
near the nuclear surface and the term in p can be re-
garded as representing a particle-surface coupling. It
has the eGect of coupling particle states which have the
same parity and which differ in angular momentum by
not more than two units. In particular it couples the
two components of a spin-orbit couplet. Since P is
linear in the surfon creation operator it follows that to
first order a single-particle state can have admixed a
state representing one surfon and the same or a diGer-
ent particle state. Estimates of the amplitudes of such
admixtures can be made using the hydrodynamical

~A. Bohr Kgl. Danske Videnskab. Selskab Mat. -fys. Medd.
(to be published, 1955).
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model. "Physically this corresponds to a sharing of the
total angular momentum of the nucleus between the
particle and the surface. Odd proton nuclei Odd neutron nuclei

TABLE I. The Schmidt values for nuclear magnetic moments.

5.5.Z Strong Coupling State State State State

In the strong coupling approximation, which is
associated with large P and to be expected in the regions
150&3&j.90; A&225, the situation is analogous to
that of linear molecules. The surface will generally be
axially symmetric and the individual particles are
coupled separately to the symmetry axis in states
characterized by their component of angular momen-
tum Q, along the symmetry axis (Fig. 2 where Q =P;Q,).
It should be noted that because of the axial symmetry
the particle sta, tes +Q; and —Q, are degenerate and
that energetically particles will fill pairwise in these
states. The surface also rotates as a whole and this rota-
tion is characterized by quantum numbers I, E, and M
where I is the total angular momentum of surface plus
particles, E its projection on the symmetry axis, and M
its projection on a fixed axis in space. In the ground
state it can be shown that E=Q (Fig. 2) and that R,
the surface angular momentum, is perpendicular to the
symmetry axis."

For large P the coupling of different shell model
states to the surface may be considerable and the nu-
cleon states can no longer be classi6ed according
to their j-values. The only "good" quantum numbers
for the nucleons are now 0; and parity. A perturbation
procedure is usually no longer valid and to obtain the
forms of the nucleon wave functions, solutions have to
be obtained for particle motion in an ellipsoidal poten-
tial. Such solutions have recently been given by
Moszkowski'2 and Xilsson. "

5.5.3 Intermediate Coupling and Particle Forces

I'he situation in many nuclei will clearly be inter-
mediate between the weak and strong coupling ex-
tremes. In addition there is the further complication in
all cases of the effect of the residual effective inter-
particle forces. Many nuclei, then, require a highly
complex description and no simple coupling scheme
is available. Calculations for intermediate coupling for
particular cases have been given" but so far the situa-

$1/2

P3/2
ds/2

f7/2
g g/2

h11/2

$13/2

+2.793
+3.793
+4.793
+5.793
+6.793
+7.793
+8.793

p1/2 —0.264
d3/2 +0.124

+0.862
g7/2 +1.717
hg/2 +2.624

+3.560

Sl/2

P3/2
de/2

f7/2
g9/2

$13/2

—1.913—1.913—1.913—1.913—1.913—1.913—1.913

P1/2
d3/2

f5/2
g7/2
hg/2

$11/2

+0.638
+1.148
+1.366
+1.488
+1.565
+1.619

6. THE MAGNETIC MOMENTS OF ODD-A NUCLEI

Ke now consider the values of the nuclear magnetic
moments of odd-2 nuclei and investigate their possible
interpretation in terms of the foregoing nuclear models.
The procedure to be adopted is to show to what extent
the different models are capable of accounting for the
observed magnetic moments. Xo attempt is made to
discuss every measured moment. In the appendix at
the end of the article, however, nuclear moments are
tabulated and an indication is given of how each
moment can be interpreted in terms of one or another
nuclear model.

6.1 Magnetic Moments on the Extreme
Single-Particle Model

On the extreme single-particle model described in
Sec. 5.3, the nuclear ground-state properties are vested
in a single particle whose state can be written in the
form f„~;~. Using this wave function to calculate the
expectation value of the magnetic dipole operator (1)
as in (4) we see that only one term in the sum given
there contributes, namely the one corresponding to the
single particle. A straightforward calculation gives

l(l+1)——,
'

t .=C= lj (g~+gs)+(g~ —g8), (»)
j(j+1)—

where j=l&-,'and g& and g8 are the orbital and spin
g-factors for the odd nucleon and take the values given
in Sec. 2.1. In terms of the neutron and proton magnetic
moments I tl, (Ã) = —1.913, p(P) =2.793] Eq. ,(19) can
be written

tion in the very complicated cases can only be described
in a qualitative fashion.

IIG. 2. Coupling scheme for
strongly defornied nuclei.

odd neutron j=l+-,'-, u,.=p(Ã),

3' A. 13ohr and B. R. Mottelson, Kgl. Danske Vidensk. ab.
Selsltab. Mat. -fys. Medd. 27, No. 16 (1953)."' S. A. Moszkowsl~i, Phys. Rev. 99& 805 (1955).

53S. G. Nilsson, Kgl. Danske Videnskab. 8'elskab. Mat. -fys.
Medd. 29, No. 16 (1955).

odd proton j=l+-', , tz, = (j——,')+tz(P),
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0

I'ro. 3. Schmidt diagram for odd-proton nuclei.

The values of p, for the diferent cases are given in
Table I.

It is usual to plot curves of p, against j for neutrons,
and protons, such curves being referred to as Schmidt
diagrams and the resulting lines as the Schmidt" lines.
The Schmidt diagrams are given in Figs. 3 and 4 on
which are also plotted the measured magnetic moments
of odd-2 nuclei. Of course the Schmidt lines only have
any meaning at points corresponding to allowed values
of j, that is at half-integer values of j.

Inspection of the Schmidt diagrams shows that there
are several general points to be noticed.

(1) The moments of most nuclei deviate from the
Schmidt lines by amounts varying between about
—,'—1-,' n.m. On the other hand, lines drawn to represent
the average deviations are roughly parallel to the
Schmidt lines.

(2) Apart from H',. He', N", C" the deviations of the
magnetic moments are all inwards from the Schmidt
lines.

(3) The average deviation of odd proton nuclei is a

"T.Schmidt, Z. Phy'sik 106, 358 (I937).

little larger (about 20%) than the average deviation of
odd neutron nuclei.

(4) The only nuclei which do not deviate by more than
about 0.2 n.m. are (apart from H', N' H', He') O'" K"
K4' and all p; nuclei.

Although the Schmidt lines do not then agree in
general with the observed magnetic moments, there is
clearly a qualitative correspondence and it is possible
to associate most moments with one or the other line.
This enables parity allocations to be assigned to nuclear
ground states according to which line the nucleus corre-
sponds. Such parity assignments are almost invariably
correct. Apart from p; nuclei the others which have
moments laying close to the Schmidt lines have asso-
ciated with them a closed shell structure in which case
it is to be expected that the single particle model is a
fair approximation. In this connection, however, it is
significant that Bi"' which is a "double closed shell
plus one" nucleus deviates considerably (by 1.4 n.m. )
from the single-particle value.

The fact that in general there are large deviations
may be attributed to two possible causes. Firstly, the
single-particle model wave function is certainly not the
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FIG. 4. Schmidt diagram for odd-neutron nuclei,

correct nuclear wave function and therefore no sur-
prise should be occasioned by the lack of agreement. In
subsequent paragraphs we shall see to what extent the
deviations can be accounted for by using the more
refined wave functions implied by the other models
already discussed. Secondly, there is the possibility
that a large part of the deviations might be attributed
to exchange current effects. As pointed out in Sec.3.2 the
spin exchange currents effectively modify the nucleon
spin g-factors and if this modification is a decrease the
nucleon intrinsic moment may be quenched in the
nucleus. If this is the correct explanation, however, it is
then diKcult to explain the fact that the moment of
0", say, lies so close to the free nucleon Schmidt line.
This point is discussed in Sec. 6.4.

6.2 Magnetic Moments on the individual
Particle Model

In the individual particle model the angular momen-
tum of a nucleus is shared between all the nucleons
outside closed shells in a manner dependent on the form
of the internucleon interaction. Under these circum-
stances, although the spin is generally that predicted
by the single particle model, it is to be expected that
the magnetic moment will be different. For light and
medium-heavy nuclei when states can be classified ac-
cording to their symmetry properties, it is possible to
obtain relatively simple expressions for the magnetic
moments. ""

~"" M. Mizushima and M. Umezawa, Phys. Rev. 83, 463 (1951).
"6 M. Mizushima and M. Umezawa, Phys. Rev. 85, 37 (195Z).
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TABLE II. The magnetic moments of light nuclei on the
individual particle model.

Atom Z N A
ConfigLIra-

tion
Isotopic

spin p, e &Ind

Li 3 4
Be 4 5

B 5 6

C 6 7
N 7 8
0 8 9

9 10
Mg 12 13

Al 13 14

Cl 17 18
Cl 17 20
Sc 21 24

(p3/2)'
(P3/2) '
(p3/.)-

(p3/2) '(P//2) '
13 (p1)2)'

(p
17 (d5/2)'
19 (s1( )'
25 (d5/2)-'

(ds12) '
(4/2) (&r/2) n

(d3&2)'
37 (d3/2) '

(fv/2)'

3.79—1.91
3.79
3.79
0.64—0.26—1.91
2.79—1.91
4.79
4, 79
0,13
0.13
5.79

3.04—1.16
3.79
3.04
0.64—0.26—1.91
2 ~ 79—0.64
4.79
3.52
0.26
0.13
5 ~ 10

3.26—1.18

2.69

0.70—0.28—1.89
2.63—0.96

3.64

0.82
0.68
4.76

Thus, if a configuration has an even number cV,
of neutrons (protons) and an odd number /Vs of pro-
tons (neutrons) in equivalent states outside closed
shells, then for the ground state with isotopic spin
T= (rV, X//)/—2 and lowest seniority (s=1), the nu-
clear moment can be written pr»a=np„+Pp„where
n+P=1 and

P = iV,/(2j+ 2) (2T/2), for Eo&E„
P= (2j+1—tV,)/(2j+2) (2T+2), for

In the foregoing expressions p„and p„are the magnetic
moments which a single neutron and a single protorI
would have in the state under consideration, respec-
tively. A selection of calculated moments is given in
Table II and it can be seen that the agreement between
theory and experiment is improved and that in some
cases quite large deviations from the Schmidt lines are
prcdlctcd. FOI hcavlcr nuclei thc situation ls much Ignore

complex and so far no calculations of this type have
been reported.

In spite of the improvement brought about by the
above approach there are still many cases where these
considerations have no effect. Thus, for spin —,

' nuclei,
there can be rio coupling with an even number of par-
ticles in an un6lled shell in the above manner since, by
the exclusion principle, the even nucleons must couple
to angular momeota 0, 2, 4 etc. and only the 0 state
can couple to spin —', to give a resultant spin —,'; this i~

just. the assumption made in the single-particle mode},
On this scheme then, all spin —,

' nuclei should still have
the single-particle values. This is approximately true
for p; nuclei, but s;. nuclei, on the other hand, deviate
by large amounts (e.g., the P" deviation is 1.48 n.m.).
Further, on this scheme, since Bi20' has only one particle
outside "magic" dosed shells, it should have the
Schmidt value and this is manifestly contrary to
observation.

Thus it seems that although the agreement can be

"'rr H. Il. Flowers, PhiL Map'. 43, 1330 (1952)."G. Racah Report of the Birmingham Co'nference on Nuclear
Physics, p. 8 (1953).

improved in some cases by taking account of all
nucleons outside closed shells, there are still many
anomalies.

6.Z.I Intermediate Coup/ing and Interconfigurationat
Miring

It has already been pointed out that, certainly for
light nuclei, the angular momentum coupling scheme
appears to lie in between the jj- and I.S-extremes. For
example, Lane""" has been able to explain many
nuclear properties of the light nuclei with configura-
tions (1p)" where n= 1, 2, 3, 4, and 9 (lithium isotopes,
C" and N") in terms of an intermediate coupling situa-
tion. In particular, the magnetic moments of these
nuclei can be exactly reproduced.

For heavier nuclei the jj-extreme seems to be the
better approximation. Nevertheless, it transpires that
even a small deviation from the jj-extreme can consider-
ably affect the magnetic moment. """This deviation
from jj-coupling can be regarded as the partial mixing
of the two components of a spin-orbit doublet. If one
assumes that the mixing is small, which appears to be
the case for heavier nuclei, the nuclear wave function
for a nucleus of spin I can be written symbolically as

where XI represents a simple shell-model configuratioil
(e.g. the extreme single-particle configuration) and the
@„I represent admixed configurations, such configura-
tions being characterized by the variable p. The mag-
netic moment of the nucleus is then obtained by calcu-
lating the expectation value of the magnetic moment
operator (1) by use of this function. For small n~ the
most important contributions to the magnetic moment
will be those linear in the e„, and the condition that
contributions of this kind should occur is teat XI and
@„I differ at most by one single-particle state and that
then the orbital state is the same. Thus the only possible
type of admixed configuration which satisfies this condi-
tion is one in which a single nucleon is transferred from
a state l; ~+1 to I; ~,. Three possibilities have to be
considered.

(1) For I= I+!~nuclei, if there i-s more than one
nucleon in this state, the admixed configurations can
be formed by transferring one nuc1eon to the state

(2) For I= I—~ nuclei, if there is more than one hole
in this state, the admixed configurations can be formed
by transferring one nucleon from the state l, )~.~ to
the state(; ~,

(3) For all nuclei there can be a transfer of one
nucleon from a different state l','=~+,. to l';". ~

Using a delta-function interaction between nucl. Cons
it is found by application of first-order pcrturba. tjon

""A. Arima, arid H. Horr". , Pr'o'jr. Theor. J.Phys. 11, 509 (1954) .
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FzG. $. Deviations of the magnetic moments of odd-proton
nuclei from the Schmidt lines resulting from interconfigurational
mixing Drom R. J. Blin-Stoyle and M. A. Perks, Proc. Phys. Soc.
(London) A67, 885 (i954)g.

theory"" that in cases (1) and (2) the deviation dp,
of tIIe magnetic moment from the Schmidt value has
the form Dlz=Az'$~(gs —gz) where Az' has a known
dependence on / and I and gq and gL are the spin and
orbital g-factors of the odd nucleons. f~ depends on the
form and strength of the internucleon interaction and
on the magnitude of the spin-orbit splitting. For Bi"'
(/= 5, I=9/2) a delta-function interaction is probably
a fair approximation and Ps can be roughly estimated to
lie between —0.25 and —0.5 which gives a correction
to the magnetic moment of the required order of mag-
nitude (to agree exactly with experiment $s

———0.43
and this implies about 5% admixture of the hrrz2

state into the hszs). For other nuclei it is more satis-
factory to treat $& as a parameter, which, since it de-
pends only on /, should have approximately the same
value for I=/+ —,'and I=/ ——', nuclei and should also
be roughly independent of whether the nucleus is an
odd proton or an odd neutron type.

Considering all those nuclei whose magnetic moments
can be treated by the foregoing methods values of $&

can be chosen to fit the experimentally observed mean
deviations. The values of $~ so obtained are $r ———0.38,
$2

———0.26, $s———0.20, $~
———0.24, $s———0.43. In Figs.

5 and 6 it can be seen that the general trend of the devia-
tions is reproduced by using these parameters. In addi-
tion, the values of $~ required. are all reasonable.

In case (3) Azz =Czp&"'r)n, where Cz;;""' is again
known and depends on the interaction and spin-orbit
splitting. For the different possible admixtures C~;,,
lies between 0 and 1.2 for I= i——', nuclei and between
1.6 and 2.4 for I=/+ ', nuclei in a—greement with the
observation that the latter nuclei have larger deviations
from the Schmidt lines than the former. To explain the
observed deviations when admixtures of this kind are
responsible, values of g~~ between —0.2 and —0.5 are
required and these again are quite reasonable. An
important point emerges that for P; nuclei Cz,',"' is
identically zero so that Ap, =0. This is in agreement
with point (4) of Sec. 6.1.On the other hand s; nuclei are
predicted to have large deviations, mainly through the
admixture of configurations in which d; nucleon is
transferred to the d; state. This is also in agreement with
observation.

6E
5

E 4-
~~

VV'

0—

~/a s/z

I

'/z

gocfeal SplA

FIG. 6. Deviation of the magnetic moment of odd-neutron nuclei
from the Schmidt lines resulting from intercon6gurational
mixing Lfrom R. J. Blin-Stoyle and M. A. Perks, Proc. Phys. Soc.
(London) A67, 885 (1954)g.

Although the calculations related to the foregoing
ideas are crude, the important point emerges that
nuclear magnetic moments are extremely sensitive to
admixtures to the zero-order shell-model wave function
which contribute in erst order to the magnetic moment
(e.g. , a S%%uo admixture changes the Biso' moment by
1.4 n.m.) ~ In a few cases, however, the distribution of
nucleons among the various shell-model states is such
that no type of admixture can lead to a contribution to
the magnetic moment linear in its amplitude of mixing.
Under these circumstances it is to be expected that the
magnetic moment will lie close to the Schmidt value.
The condition for this is that the nucleus should consist
of doubly closed shells in both the I,S- and the jj-sense
plus or minus an odd nucleon. The only nuclei which
satisfy this condition (other than p; nuclei which should
have a small deviation in any case) are 0'r F'z Ca4'
Ca", K".Of these nuclei, only the magnetic moments
of 0'~ and K39 are known and the deviations of both are
particularly small being 0.02 and 0.27 n.rn. , respec-
tively. On the other hand a nucleus which has doubly
closed shells in the jj-sense only plus or minus an
odd particle can have a magnetic moment differing
considerably from the single particle value. Thus, by
an approach of this kind it is possible to account semi-
quantitatively for the magnetic moments of most
nuclei.

It should be noted that deviations from admixtures
of types (1) and (2) are larger than those from type (3)
and that in addition the deviation is directly propor-
tional to gl —g8 for the odd nucleons. Now, apart from
the g-factors, it might be expected that the deviations
are the same whether the odd group of nucleons are
neutrons or protons providing their number and total
angular momenta are the same. Taking into account
the different g-factors and denoting deviations from the
Schmidt lines by 3p, „and Ap„ for odd neutron and odd
proton nuclei, respectively, we then have for admixtures
of types (1) and (2),

I
&y, l/I &v

I

= Igz' gs"I/I gn" ga"—
I
=120. —
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This is of the order of magnitude of the observed ratio of
the deviations noted in point (3) in Sec. 6.1 and seems to
indicate that admixtures within the odd nucleon con-
figurations are indeed the most important. De Shalit"
has pointed out that if the deviations are interpreted
solely in terms of nucleons from the odd group then the
preceding relation holds generally independent of the
coupling scheme. In this connection it is a striking fact
as stressed by Schawlow and Townes ' and Uolkov
that the deviations of nuclear moments for pairs of odd-
3 nuclei with the Z of one member of the pair equal to
the 2V of the other member are in general very close.
This can again be understood if the deviations result
from configurational mixing within the group of odd
nucleons. Uolkov, "Brennan and Uolkov, "and David-
son" have discussed this point at some length.

6.3 Magnetic Moments on the Collective Model

Although many nuclear magnetic moments can be
interpreted satisfactorily in terms of simple configura-
tional mixing of the type described in Sec. 6.2.1, there
are nevertheless some moments which can only be ac-
counted for by a collective approach and indeed it will

be seen that the collective model can give an alterna-
tive explanation of the magnetic moments in many
cases. Particularly striking examples of nuclear mo-

ments which can only be explained by the collective
model are those of the two isotopes Eu'" and Eu'".
From the point of view of the shell model they diRer
only by the the addition of two neutrons to the h9~2 state
and this is not expected to affect the magnetic moments

appreciably; nevertheless, their respective moments are
3.6 n.m. and 1.6 n.m. and a satisfactory explanation can
only be given in terms of the collective model (q.v.).

Consider now a system consisting of a single particle
and a distorted core. A straightforward generalization
of (1), (2), and (3) yields for the magnetic moment
operator for this case

Bohr and Mottelson" (see also Kerman ss Foldy and
Milford, ""Davidson and Feenberg" and a semi-
empirical approach by Osborn and Klemar'), have esti-
mated the way in which (R,)sr=r varies as the coupling
of the nucleon to the surface increases and for the
nuclear ground state j=I they find that (R,)sr=r in-
creases monotonically from zero for zero coupling to
I((I+1) in the strong coupling limit. Thus, in weak
coupling the magnetic moment is little different from
the single particle value p, . On the other hand, in
the strong coupling limit

pc=a, —(gz grr)Ij/(I—+1) for I= j)ss (23)

12
=gz +grtI+I I+I (24)

For I= j= 2 care has to be taken since a degeneracy
exists between the states 0= —,', 0= —,

' where 0 is the com-
ponent of the nucleon angular momentum along the
symmetry axis Lsee Sec. 5.5.2 and also Bohr and Mottel-
son" (Appendix III)g. No simple expression for the
moment exists in this case and only an approximation
can be made.

For I=j=-,' there is no direct coupling to the surface
and p, ,=p, . The values of p, in the strong coupling
limit are plotted as dotted lines in Figs. 7 and 8
where it can be seen that for j=l+-,' nuclei the agree-
ment between theory and experiment is considerably
improved.

For j=l——, there is little change. However in this
strong coupling limit there is expected to be a strong
admixture due to the asphericity of the potential well

of the spin-orbit coupling partner which will consider-
ably modify the result, particularly as there will be first-
order contributions to the moment just as in Sec. 6.2.1.

tson= (sgsrr+grI+grrR)&
2Mc

(20)

where R is .the angular momentum operator for the
core and gg is the appropriate g-factor. If the nucleus
is uniformly charged, then"

In weak coupling when j, the particle total angular
momentum, is expected to be a fairly good quantum
number ts,„=(ggJ+grtR) and

5
2

~PIIl

9
2

pc (gJjg+ gRRz)Ill=I
=ggI (g~ g)(Rrr.),v r— —=(22)

FIG. 7. Deviation of the magnetic moments of odd-proton nuclei
from the Schmidt lines on the strong coupling mode Lirom Aage
Bohr and B. R. Mottelson, Kgl. Danske Videnskab. Selskab.
Mtat. -fys. Medd. 27, No. 16, 42 (1953)g.

'0 A. De Shalit, Phys. Rev. 90, 83 (1953).
' A. I,. Schawlow and C. H. Townes, Phys. Rev. 82, 268 (19/1).

62 A. B. Volkov, Phys. Rev. 94, 1664 (1953).
'3 J. G. Brennan and A. B.Volkov, Phys. Rev. 97, 1380 (1955)."J.P. Davidson, Phys. Rev. 85, 432 (1952).
'5 K. Way, Phys. Rev. 55, 963 (1939).

"A. K. Kerman, Phys. Rev. 92, 1176 (1953)."L.L. Foldy and F. J. Milford, Phys. Rev. 80, 751 (1950)."F.J. Milford, Phys. Rev. 93, 1297 (1954).
60 J. P. Davidson and E. Feenberg, Phys. Rev. 89, 856 (1953).
"R.K. Osborn and E. D. Klema, Phys. Rev. (to be published).
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FIG. 8. Deviation of the magnetic moments of odd-neutron
nuclei from the Schmidt lines on the strong coupling model t'from
Aage Bohr and B.R. Mottelson, Kgl. Danske Videnskab. Selskab.
Mat. -fys. Medd. 27, No. 16, 42 (1953)g.

The contribution to the magnetic moment from ad-
mixtures of this and other types can be estimated by
perturbation procedures" but it is more satisfactory
to obtain solutions directly for the wave functions of
particles moving in an ellipsoidal potential with spin-
orbit coupling. ""7' One can then obtain an expression
for go the g-factor associated with a particle state in the
deformed nucleus and Eq. (24) is replaced by

I2
gn+ gn for I=Q,AI+I I+I

For the state Q=E= —,
' the situation is more compli-

cated since the surface coupling is not a direct effect
but results indirectly through the coupling of different
orbital states (see Sec. 6.3.1).

6.3.1 Comparison with Experiment

From the foregoing discussion it is clear that the mag-
netic moment can be affected in two ways. The angular
momentum of the nucleus may be shared between the
core and the external particles and, in addition there
may be admixtures of near lying external particle
states. If there are no near lying states of spin equal to
or greater than that of the odd particle, then there will

be no appreciable admixtures and only the former effect
is important. Assuming strong coupling there is then
an unambiguous value for the nuclear moment and for
nuclei of this type (j=i+-,') agreement between theory
and experiment is generally very good. "

For s, nuclei there is a strong interaction between the
s; and the d; and d; states which may lead to a large
deformation and considerable modification of the
moments as is observed. On the other hand for p, nuclei
the collective effects are small thus accounting for the
observed small deviations of p;. nuclei.

All the deviations so far discussed can equally well

be accounted for by configurational mixing in the indi-
vidual particle model (Sec. 6.2.1) and it is probable that
to a certain extent we have two alternative ways of

7' K. Gottfried, thesis, Massachusetts Institute of Technology,
June, 1955.

looking at the same problem. The equivalence is not
complete since, for example, it is quite impossible to
explain the anomalous moment of Bi'" on the collective
model. It is to be expected, however, that in the regions
150&A(190 and A&225 the collective description is
more satisfactory. In this region the nuclei are highly
distorted as is evidenced, for instance, by their large
electric quadrupole moments (see Sec. 7.3) and there-
fore can be well described by the strong coupling ap-
proximation. The main problem then is to obtain the
value of gg. The most satisfactory method of obtaining
gg is to consider an ellipsoidal well having a distortion
appropriate to the particular nucleus under considera-
tion; this can be deduced from the electric quadrupole
moment, quadrupole transition probability between
excited states etc. The particle levels are then filled up
to obtain the lowest energy configuration subject to the
restrictions of the exclusion principle (i.e., pairwise
filling in the different Q states). This means that gn will
then be that for the last odd particle. For a given odd
number of nucleons the state of the last particle de-
pends critically on the nuclear distortion. Thus for
Eu'" and Eu'", which should be adequately accounted
for by this description, although both isotopes have the
same number of odd particles, their distortions are con-
siderably different since their quadrupole moments are
respect. ively 1.2X&0 " cm' and 2 ~X&0 " cm'. It is
thus possible to account for their magnetic moments in
terms of two very different g~'s resulting from the fact
that the wave functions for the odd particle depend
sensitively on the deformation. ' Similar calculations
have also been applied to Th

6.3.Z The Value of gn

In the strong coupling approximation the magnetic
moment of an odd-A nucleus is dependent on the two
parameters gq and gg. Now gq can be obtained from a
model as described above but the resulting value is
bound to be a little uncertain since, for instance, no
account is taken in that model of the residual inter-
nucleon forces. It is possible however, in one or two
cases, to determine g& and g& unambiguously from ex-
perimental data. A typical example is the nucleus Ta'".
The ground-state spin is 7/2 and the magnetic moment
is 2.1 n.m. so that Eq. (25) gives one relation between

gz and gz. Further, the radiation emitted by the ex-
cited rotational levels obtained by Coulomb excitation
has been studied in detail. "'4 This radiation is inter-
preted in terms of Mi+E2 admixtures and, knowing
the E2 intensities from the standard theory of collective
oscillations, the M 1 intensities can be determined. The
latter intensity determines (gn —ga)', and according to
the sign of g~ —gg two possible solutions for g~ and g~
are obtained. This analysis can be applied to both the

"B.R. Mottelson and S. G. Nilsson. Z. Physik 141, 217 (1955)."T.Huus and J. Bjerregord, Phys. Rev. 92, 1579 (1953).
74 T. Huus and C. Zapancic, Kgl. Danske Videnskab. Selskab.

Mat. -fys. Medd. 28, No. 1 (1953).
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TABLE III. Experimental values of gp and gz. if large contributions of this type are to be expected
in the case of heavier nuclei.

Nucleus
Transition

(kev) (gQ —gz)' 6.4.1 Exchange Currents
Ta'"

Au'"

2.1

0.19

137

166

0.202

0.284

0.149

0.70
0.50
0.72
0.48—0.061
0.25

0.25
0.95
0.19
1.02
0.32—0.14

transitions (11/2—&9/2 —+7/2) that occur in Ta's' and
has also been applied to Au"'."The possible values of

gg and gg are given in Table III. Now, in Ta'", the
sign of gg

—g~ can be determined from the form of the
angular correlation of the two successive radiations
since the M1—E2 interference term which occurs in the
expression for the angular correlation depends on

g~
—gg rather than on its square. The observed angular

correlation implies that the lower values of g~ are the
correct ones. Thus gg would appear to vary between

0.19 and 0.32. These values should not be taken too
seriously, but it does seem that gg is probably smaller

than 0.40 which is obtained for Ta'" by use of Eq. (21).
This discrepancy may be understood in terms of the

possible difference between the radii of the proton and
neutron distribution in the nucleus. Let us make the
crude assumption, which may be approximately valid

for nuclei having large moments of inertia, that the
moment of inertia of Ta' results from the rigid rota-
tion of a surface layer of nuclear Quid. If 8; is the inner

radius of this layer (assumed spherical) and R„and E~
are the radii of the neutron and proton distributions,
then

Z Ax' —(1—y) (Zx'+N)
gg=—

A y (Zx'+E) J
(26)

where x=8„/R„and y=I//I„s;q, I being the measured
moment of inertia and I„~;q the moment of inertia for
rigid rotation of the whole nucleus. For Ta's' I/I„s;q
~0.4 and taking R„=1.2A')&10 " cm and E = 1.4A'

)&10 "cm gives go=0.23. Thus, this rather crude cal-

culation indicates that a difference in neutron and

proton radii is capable of explaining the deduced value

of g~.

6.4 Exchange Currents and Velocity
Dependent Forces

Hitherto no account has been taken of possible con-

tributions to nuclear moments from exchange currents
and velocity dependent forces. For .H' and He' it was

found that a reasonable explanation of the magnetic
moments was forthcoming only if such effects were

taken into account and it is therefore important to see

» P. H. Stelson and F. K. McGowan, Phys. Rev. 99, 112
(1955).

Bloch" has pointed out that the general trend of
nuclear magnetic moments can be interpreted as a
partial quenching of the intrinsic nucleon moments
(see also De Shalit, 7 Klinkenberg, 7s and Candler '). In
almost every case the observed magnetic moments of
odd-A nuclei can be explained by a single-particle
calculation with the intrinsic nucleon moment lying
between the free nucleon moment and the completely
quenched moment (i.e., p(Ã) =0, p(P) = 1). However,
such an explanation, if it is to be accepted, must be put
on a sounder theoretical footing especially in view of
the fact that it seems possible to account for nucleon
moments solely by use of more refined wave functions
for the nucleus.

Attempts to do this have been made by various
authors. Miyazawa" uses a phenomenological form for
Mi the space exchange magnetic operator and deduces
the spin-exchange contribution meson theoretically.
He then calculates the exchange contribution to the
magnetic moment of an odd particle interacting with a
spherically symmetrical core, the core being represented
by a Fermi gas. Russek and Spruch" on the other hand
represent all the exchange operators phenomenologically
and use a shell model to describe the core. In both cases
it is claimed that by suitable choice of the form and
strength of the exchange operators, the deviation of
nuclear moments from the Schmidt values can be ex-
plained. Ross" also uses a phenomenological approach
but in addition makes the highly reasonable but re-
strictive assumption that the combination of exchange
operators finally chosen must also account for the H'
and He magnetic moment anomalies. With this restric-
tion it then transpires that the resulting anomaly in all
cases is always about 4 n.m. and outside the Schmidt
lines.

As Ross points out, many-body forces may become
important for heavier nuclei in which case the restric-
tion to two-body operators in the expressions for the
exchange moments LEqs. (10) to (14)g is unrealistic.
However, a many-body effect is expected to vary
smoothly from one nucleus to another, whereas the
observed magnetic moments show large fluctuations.
In addition, if exchange moments are important it is
djf6cult to understand the fact that nuclei such as 0"
do not deviate from the Schmidt lines. The general
conclusion therefore seems to be that although a small
deviation (sr n.m. ) in nuclear magnetic moments is to be
expected because of exchange current effects, the cause
of the main deviations must lie elsewhere.

r' F Bloch, Phys. Rev. 83, 839 (1951).
7' A. De Shalit, Helv. Phys. Acta. 24, 296 (1951).
r8 P. F. A. Klinirenberg, Physics 17, 715 (1951).
rg C. Candler, Proc. Phys. Soc. .(London) A64, 999 (1951).
'" H. Miyazavva, Progr. Theoret. Phys. 6, 801 (1951).
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e
tr.,'= f(r)—[ r'e +—(r rr) rj

2c
(17)

where f(r) is the radial dependence of the spin-orbit
potential. Calculating the expectation value for this
operator for a simple shell-model state [Eq. (18)J
gives for the additional contribution to the magnetic
moment for a state with total angular momentum j,

2j+1
p, '= W(r' j(r)) n.m for j=la-,'

j+1
(27)

where (r'f(r)) is the average of r'f(r) over the nucleon
orbit. From the known magnitude of the spin-orbit
splitting, Jensen and Mayer" roughly estimate the
devia, tion to be of the order %0.13(2j+1)(j+1) n.m.
The correction is in the right direction (i.e., inwards
from the Schmidt lines) but is much smaller than the
observed deviations and is, of course, not applicable to
odd neutron nuclei. A similar estimate is also given

by Marty. "
6.5 Conclusions

The first general conclusion that can be drawn from
the foregoing discussion is that the main deviations of
the nuclear magnetic moments of odd-2 nuclei from
the Schmidt lines must be attributed to configurational
mixing within the single-particle model of the nucleus.
In particular, configurations which contribute in first
order to the magnetic moment are of considerable im-

portance and by appealing to such configurations it is
possible to account for most deviations. However, in,

the regions where the nucleus is considerably distorted
the configurational mixing cannot be described ade-
quately in terms of a particle picture and one has to
turn to the collective model. This model then enables
one to account for the outstanding deviations. Contribu-
tions from exchange currents and velocity dependent
forces appear to be an order of magnitude smaller than
the observed deviations and are therefore only im-

portant in regions where the nuclear wave function is
known accurately (e.g. , for H' and He'). Taking them
into account however, and the accompanying un-

certainty as to their exact values means that it should

not be expected to estimate the nuclear magnetic

"J.&I. D. Jeiisei' s nd IVI. G. Mayer, Phys. Rev. SS, 1040 (1052).
t'" C. Marty, J. phys. ra'dium 15, 783 (1954).

6.4.Z Velocity Dependent Forces

There is the additional possibility that velocity
dependent forces will cause a modi6cation of nuclear
magnetic moments. The only calculations so far re-
ported in this connection are related to the spin-orbit
coupling associated with the shell model. '

By Eq. (17) the additional contribution to the mag-
netic moment for a neutron is zero and for a single
proton the operator for the additional moment is

moments of odd-A nuclei to an accuracy greater than
about ~

—
2 n.m.1 1

In the appendix tables are given of all known nuclear
magnetic moments of odd-A nuclei, their deviations
from the single particle value and an indication as to
the probable cause of the deviations.

7.1 Electric Quadrupole Moments on the Extreme
Single-Particle Mod. el

On this model the nuclear properties are represented
by a single-particle wave function of the form given in
(18) and the quadrupole moment is obtained by calcu-
lating the expectation value of Q, [Eq. (5)j by use of
this wave function. The calculation is straightforward
and yields

(r') for an odd proton nucleus,
2(j+1)

for an odd neutron nucleus,

(28)

where j is the total angular momentum of the single
particle. The neutron quadrupole moment is much
smaller than Q, and is a recoil effect. By (r') is meant
the average value of r' for the nucleon orbit and this is
usually replaced by 3Rs'/5 where Es is the nuclear
radius.

Now Eo varies between ~2&(10 "cm for the lightest
nuclei to ~10—"cm for the heaviest so that on the
single-particle model we expect odd proton nuclei to
have quadrupole moments varying between ~10 "cm'
to 6&10 "cm'. On the other hand the quadrupole
moments of odd neutron nucleI should vary between

8&1.0 " cm'- and 1&(10 " cm'. Inspection of the
table of quadrupole moments given in the appendix
shows that the single-part, icle model is singularly de-
ficient in its ability to account for the moments.
Rosenfeld~ has stressed the following significant facts.
First, the quadrupole moment of a nucleus having one
hole (i.e., a, shell filled apart from one nucleon) is ap-
proximately equal, but of opposite sign, to that of the
corresponding nucleus having one particle in the shell.
Second, the quadrupole moments of odd neutron nuclei
can be just as large a,s those of odd proton nuclei which

""' L. Rosezdeld, Physiea 17, 461 (1951).

'j. ELECTRIC QUADRUPOLE MOMENTS OF
ODD-A NUCLEI

We now investigate the ways in which the various
nuclear models can account for the observed electric
quadrupole moments. For electric quadrupole moments
the situation is simplified in one respect that by the
Siegert theorem (3.1) exchange currents do not con-
tribute in any important way. This means that the
experimental results must be interpreted very largely
in terms of nuclear wave functions.
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THEORIES OF NUCLEAR MOMENTS

equivalent protons (each in the single-particle state
with total angular momentum j) is calculated using a
correctly antisymmetrized wave function corresponding
to a total angular momentum j with e—1 nucleons
coupled to zero angular momentum, the following result
is obtained for Q (reference 8, Appendix IV):

tr 2e—2i
Q=l 1- . IQ~

2j—1i
(29)

and
Q(1P+2~) =Q (4j+5)/(6j+6)

Q(ln+2P) =Q, (2j+7)/(6 j+6).
In both cases Q=0.7(r') so that the quadrupole moment
"induced" on an odd neutron by two protons is about
the same as that of one proton in the presence of two
neutrons. This agrees with observations in many cases.
For heavier nuclei e8ects of this sort will also occur but
cannot be expressed in a simple fashion.

In addition, for all nuclei, there can be interconfigura-
tional mixing leading to contributions to the quad-
rupole moment linear in the amplitude of the admixture.
Such eGects have been discussed by Perks" and Horie
and Arima. "These authors point out that in addition
to the admixtures which contribute linearly to the
magnetic moment and the quadrupole moment, there
can be admixtures of other states (for which /'=l&2
where / is the orbital angular momentum of the shell-
model state) which also give linear contributions. In
fact, as far as quadrupole moments are concerned, the
former admixtures are unimportant whereas the latter
can give contributions having several times the order
of magnitude of the single particle quadrupole moment.
Thus the admixture accounting for the large magnetic
moment anomaly of Bi"' does not cause a large devia-

"S. A. Moszowski and C. H. Townes, Phys. Rev. 93, 306
{1953).

"M. A. Perks, Proc. Phys. Soc. (London} A68, 1083 (1955}.
"H. Horie and A. Arima, Phys. Rev. 99, 778 (1955}.

for 1~(n&~2j. In particular for a hole (n=2 j) we see
that Q= —Q;. For all other values of n other than 1
or 2j, Q is less than Q; and is negative for a shell less
than half-filled and positive for a shell more than half-
61led. This is only in fair agreement with observation
since there seems to be a predominance of positive
quadrupole moments. "

In the case of an odd neutron nucleus in which there
are also "loose" protons outside closed shells, it is to
be expected that the nucleus will have an appreciable
electric quadrupole moment. Thus for light and medium-
heavy nuclei whose 'states can be approximately classi-
fied according to their symmetry properties the expecta-
tion value of Q, n can be calculated at once using the
appropriate wave function. Flowers" gives as a par-
ticular example that of three nucleons in the states j
for which I=j, T= ~ and s=1. He finds

tion in its quadrupole moment from the single particle
value. This is in fact observed.

From the foregoing discussion it seems that the indi-
vidual particle model with interconfigurational mixing
can account for many nuclear quadrupole moments.
On the other hand it does not appear to give a satis-
factory account of the very large quadrupole moments
observed and these must be interpreted by the collec-
tive model.

7.3 Electric Quadrupole Moments on the
Collective Model

Q =&o(&)Qo (31)

where I'9(x) is referred to as the projection factor. x is
related to the strength of the particle-surface coupling
and the nuclear deformability. It is given explicitly by

(5 ii1 k

~16') I'*(A(0C)'

Here k is a measure of the strength of the particle-
surface coupling and is generally taken to be of the
order 40 Mev; C measures the nuclear deformability
and for a deformation of order 2 is given by

3 Zg
C=4R p'5—

10m Rp
(32)

where S is the nuclear surface tension estimated as
15.4A&/4s. Rs' Mev. For most nuclei C is taken to be
about 50 Mev. hto is the phonon energy (see Sec. 5.5).

For weak coupling, x((1 and Eo(x) =1 and then de-
creases monotonically to the strong coupling limit
I'9 I(2I 1)/(2I+1) (2I+3) t——his ex—pression being
valid for I&~.** For I=0 or —,', I'g vanishes so that

**I=3/2 has to be treated as a special case.

On the collective model of the nucleus a quadrupole
moment is to be associated both with the deformed core

(Q,) and also with the particles outside the core (Q~).
Thus

Q= Qn+Q. (3o)

and it, is with Q, that we are mainly concerned since
this term, involving so many more protons, is expected
to be much larger than Q~.

Suppose that the shape of the core is defined by
R(8) =Rsfi+PFss(8)g, where 8 is measured with respect
to axes fixed in the core. If the nuclear charge distribu-
tion is uniform, the quadrupole moment of the core rela-
tive to the above axes is given by Qo=3/(5s. )'*(ZRo'P)
The quadrupole moment Q, measured with respect to
axes fixed in space will not, however, be equal to Qs
because of the particle-surface coupling which results
in a precession of the core angular momentum about the
total nuclear spin axis. It is usual to express Q, in terms
of Qe in the following way:
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TABLE IV. The moments of odd-odd nuciei. p„&, and vv„~ are obtained from (35) using the free and
empirical nucleon g-factors, respectively.

Atom

H
Li
8
N
Na
Na
Cl
K
K
V
Mn
Co
Co
CQ
Rb
Cs
La
Lu

1
3
5
7

11
11
17
19
19
23
25
27
27
29
37
55
57
71

1
3
5
7

13
19
21
23
27
29
31
33
35
49
79
81

105

2
6

10
14
22
24
36
40
42
50
54
58
60
64
86

134
138
176

Spin

3
1
3

2

2
6
2
2
5
1
2

5
)~7

0.9
0.8
1.8
0.4
1.7
1.7
1.3—1.3
1~ 1
3.4
5.1

3.5&0,3
3.8

&0.4—1.7
3.0
3.7

4.2&0.8

Proton
state

Sl/2

P3/2

P3/2

P1/2
dsl2
d&/2

d3/2

d4/2

d3/2

f7/2
fvn
fTI2

f7/2
P3/2

fBI2

gZ/2

g 7/2

Neutron
state

S1/2

P3/2
P3/2

P1/2

dBI2

dB/2

d3/2

fZ/2
fz/2
fvvm

P3/2
P3/2
P3/2
fsnv

g9/2
d3/2
(E3/2

peale

0.9
0.6'
1.9
0.4
1.7
2.3
0.8—1.7—1.7
3.3
6.2
6.2
3.9
0.9—2.1
2.2
2.2

gemp (P)

2.0—0.6
1.5
1.5
0.6
0.3
0.3
1.5
1.5
1.3
1,3
1.5
0.5
0.7
0.8

gemp (&)

—0.8
1.4—0.3—0.3
0.7

—0.4—0.3—0.3
0
0.3c
0.4—02
0.6
0.6

Pemp

1.8
0.4
1.8
1 5b
1.3—1.5—1.0
3.6
4.8
3.9
41—0.5
107

2.8
3.7

2.7&(10 '

0.13
0.02

—0.018

3.15&0.45
8

a In LS-coupling p, =0.9.
b /rcmp obtained with configuration ( [d5/2(P) jg/23r. ds/2(&) ]5/2 I 4.' gemp(22) difFicult to estimate.

although the core may be distorted the observed quad-
rupole moment is zero as is expected from general sym-
metry considerations (see Sec. 2.3).

Qs can be estimated by treatirig the core hydro-
dynamically and finding the value of P for which the
configuration of core plus particle has minimum
energy ""

Neglecting terms higher than first order in P the
value we obtain is

(33)

For more than one particle outside the core the situa-
tion becomes confused since the way in which levels are
filled by the particles depends in a complicated fashion
on both the distortion and the internucleon forces.
Calculations by Moszkowski and Townes" neglecting
internucleon forces indicate that states with positive
quadrupole moments are lower in energy than those with
negative quadrupole moments in the regions of large
distortions. This then accounts for the predominance of
positive quadrupole moments. However, the situation
is very complicated and only rough estimates of
nuclear quadrupole moments can be made. Such esti-
mates have been given by Van Wageningen and de
Boer," Bohr and Mottelson, " and Moszkowski and
Townes" who find that there is qualitative agreement
and in particular that large quadrupole moments are
to be expected away from closed shells. However, the
indications are that the hydrodynamical description of
the core is a poor approximation to reality. Thus, in
this approximation no account is taken of the expected
rigidity of the core in the region of closed. shells and

~ J. Rainwater, Phys. Rev. 79, 452 (1950)."R.Van Wageningen and J. de Boer, Physics IS, 369 (1952).

Bi"' and 0", for instance, are predicted to have quad-
rupole moments about 15 and 30 times larger respec-
tively than their measured values.

'7.4 Conclusions

As with magnetic moments the values of quadrupole
moments can be accounted for if the condition is relaxed
that the nucleus is to be represented by the extreme
single particle model. Thus, configurational mixing
within the individual particle Inodel or weak surface
coupling in the collective model probably account for
all quadrupole moments except those ve.y large ones
that can only be interpreted as a strong collective dis-
tortion of the core. Unfortunately it does not seem at
present possible to give more than a qualitative estimate
of these latter moments. With magnetic moments in
strong coupling the measured quadrupole moment in
principle enables gg to be estimated and the magnetic
moment to be calculated. On the other hand, the
mechanism of the distortion has to be. investigated to
calculate the quadrupole moment and this is not an
easy problem since it involves detailed knowledge of the
core structure.

Tables in the appendix give measured quadrupole
moments, their ratio to the single particle value and
probable interpretation in terms of nuclear models.

8. MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE
MOMENTS OF ODD-ODD NUCLEI

8.1 Moments of Odd-Odd Nuclei on Particle
Models

The simplest particle description of an odd-odd nu-
cleus is to attribute the nuclear properties to an odd
proton and an odd neutron each in its appropriate shell
model state. If these states are denoted as in Eq. (18)
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TABLE V. Magnetic moments of odd-odd nuclei on the collective model.

Atom

3
N
Na
Na
K
K
Co
Co
Rb

5
7

11
11
19
19
27
27
37

5

11
13
21
23
31
33
49

10
14
22
24
40
42
58
60
86

Spin

1.8
0.4
1.8
1.7—1.3

~ 1
3.5&0.3

3.8—1.7

Proton
state

(p3/. )-1
P1/2

(~5/2)'
(d5/2)'
(d8/2) '
(d3/2) '
(f7/2) '
(f )'
(f5/2) '

Neutron
state

(P3/2) '
Pl/2

(d'5/2)'

(~5/2) '
fzzz

(fzzr)'
(P3/2, f5/2)'
(P3/2, f5/2)'

(a9/~)
'

3/2
1/2
3/2
3/2
1/2—1/2
7/2
7/2
5/2

3/2
1/2
3/2
5/2
.7/2
5/2—3/2
3/2
9/2

1.8
0.4 to 0,5a

1.7
1.1—1.1—0.7
3 6b
3.6o

—1.6

a Possible p8/2 admixture is taken into account.
b Value for predominantly f5/2 neutron state.' Value for predominantly p8/& neutron state.

j.(j.+1) j.(j -+1—)
j =-: (g.+g-)I+(g.—g-) I+1 , (3~)

where g„and g„are the g-factors of the odd proton and
neutron, respectively, and are given by Eq. (19).

Fair agreement between theory and experiment is
obtained if this formula is used to calculate magnetic
moments. Theoretical and experimental results are
compared in Table IV where it can be seen that the
agreement is best for light nuclei. As pointed out by
Talmi 9 jn the case of nuclei such as Lie 3' N'4 Xa
etc. in which the odd proton and odd neutron are pre-
sumably in the same shell-model states a large dis-
crepancy is not to be exprected. For these cases j„=j„
and jr= —', (g„+g„)I so that even though there may be
large deviations in g„and g„modifying the correspond-
ing odd-3 moments, these deviations are found empiri-
cally and theoretically (see Sec. 5) to be in opposite
directions and therefore tend to cancel in the odd-odd
nucleus. Inspection of Table IV shows that the larger
deviations are in nuclei in which the odd neutron and
odd proton are in different states.

Of course for a very light nucleus like Li the jj-ex-
treme is not expected to be good. In the I.S-extreme
Li' should be predominantly in the 'S~ state and the
magnetic moment will then be approximately the
same as that of the deuteron i.e., 0.88 n.m. There is
obviously better agreement with this value and Lane4'
has shown that in intermediate coupling exact agree-
ment is obtained.

For nuclei in which the neutron and proton states are
different, Schwartz" has put forward the tentative sug-
gestion that formula (35) should still be used to calcu-

's I. Talmi, Phys. Rev. 83, 1248 (1951).
"H, M. Schzvartz, Phys. Rev. 89, 1293 (1953).

by Pzz&i&z zz
z' a'nd Pzz„i„&'„", respectively, and the total

spin is I, then the nuclear wave function can be written

+r = 2 ~ (Ig razz z jit zzjiizz) lt'zzzzizz jzz gzzzzizz jzz " (34)
m pmn

Using this function to calculate the expectation value
of the magnetic moment operator LEqs. (1) and (4))
one obtains

late the magnetic moment but that g„and g„should
now represent the ejjspirical g-factors. That is, for the
nucleus (Z,1V) g„and g„are to be taken as the measured
g-factors for the neighboring odd-A nuclei (Z, 1V—1)
and (Z—1, cV), respectively, where Z and E are the
proton and neutron numbers in the odd-odd nucleus.
The success of this approach can be seen in Table IV
but it can only be justified if (a) the deviations of odd-A
magnetic moments from the Schmidt values are due
largely to interactions of the odd nucleon with the core
and (b) if jj-coupling is an adequate approximation.
Now we have already seen that it is possible to account
for the magnetic moments of odd-A nuclei by appealing
to point (a) and for heavy nuclei (b) is probably a good
approximation and it would seem that his approach
would give a fairly reliable estimate of the magnetic
moments of odd-odd nuclei. Unfortunately the g-factors
for immediately adjacent odd A nuclei are not always
known; however, Schwartz" finds that using the g-fac-
tors of nearby nuclei in the same state still gives reason-
able agreement. It seems then that, as for odd-2
nuclei, the magnetic moments of odd-odd nuclei can
also be interpreted in terms of an individual particle
approach with intercon6gurational mixing, the latter
being implied by using the empirical g-factors.

Using Eq. (34), the expectation value of the quad-
rupole moment operator can also be calculated. The
following value for the quadrupole moment of the
nucleus on the particle model is then obtained:

(2I+1)! (2j„—2)!(2j„+3)!l
e

2j„! (2I—2)!(2I+3)!.

where Qj~ is the quadrupole moment of a proton in the
state j„and 1F(j„Ij„I;j„2) is a Raca'h coefficient.
From the form of (36) it is clear that Q is always less
than or equal to Qj~.

In Table IV are given the quadrupole moments of
odd-odd nuclei and in all cases quoted there other than
Lu"6 the observed quadrupole moments are of the
order to be expected for a particle description allowing
for the possibility of a certain amount of interconfigura-
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TABLE VI. The magnetic moments of excited states of nuclei.

Nu-
cleus State Spin Parity

Refer-
ence

Cd 111
Cs134
Ta181
Pb2o4
N p237

247 kev
247 kev
128 kev
480 kev
1.274 Mev
69 kev

5/2 +
5/2 +
5/2

4 +
5/2 +

—(0.34 +0.09)—(0.31 +0.01)
0.14 +0.001
1.2 &0.12

+0.054 +0.005
0.8 ~0.2

—(0.85 +0.22)—(0.78 &0.03)
1.10&0.01
3.0 &0.30
0.22 +0.02
2.0 +0.5

a Aeppli, Albers-Schonberg, Bishop, Frauenfelder, and Heer, Phys. Rev.
84, 370 (1951).

"W, Zobel and R. M. Steffen, Phys. Rev. 98, 1186 (1955).
e V. W. Cohen and D. A. Gilbert, Phys. Rev. 95, 569 (1954);L. S. Good-

man and S. Wexler, Phys. Rev. 95, 570 (1954).
d S. Raboy and V. E. Krohn, Phys. Rev. 95, 1689 (1954).
e V. E. Krohn and S. Raboy, Phys. Rev. 97, 1017 (1955).
f V. E. Krohn, T. B. Novey, and S. Raboy, Phys. Rev. 98, 118/ (1955).

strength of the electric fields interacting with the
nucleus.

For Cd"' the magnetic moment is similar to that for
other d5/2 odd neutron nuclei and can be explained as
interconfigurational mixing. The moment of Cs" is
satisfactorily interpreted as an admixture of the
(d&/&, h»/p)8 and (g7/2 kii/&)8 configurations, the terms
in brackets representing the odd proton and odd
neutron configurations, the total angular momentum in
each ca,se being 8. Tantalum-141 probably has spin 5/2
and the moment is in agreement with those for other
d&~& nuclei. A mixture of states is probably sufhcient to
account for the moment of Pb'0' although the moment
is rather small.

tional mixing. For example the quadrupole moment of
Li' can be exactly accounted for in intermediate coup-
ling. "However, the large quadrupole moment of Lu'"
must be attributed to a collective distortion of the core.

10. NUCLEAR MAGNETIC OCTUPOLE MOMENTS

The nuclear magnetic octupole moments which have
so far been deduced are given in Table VII. The values
given there have been obtained from various sets of
experimental results by Schwartz. '

Now the values to be expected on the single-particle
model are obtained by using the single-particle wave
function (18) to calculate the expectation value of —cV~

as in Eq. (9). This has been done by Schwartz' who

obtains

8.2 Moments of Odd-Odd Nuclei on the
Collective Model

Bohr and Mottelson51 have discussed the magnetic
moments of odd-odd nuclei on the collective model and
obtain for the strong coupling moments the values
given in Table V where the configuration, defined by
Q„and 0 is also given. The moments in this table are
calculated in a straightforward fashion from Eq. (25)
in which for g~ is used

3 (2j—&) (j+2)
fl=/o I (j 3/2)g/+—gs)(r'),

2 (2j+4) (2j+2)
for '= f+-'

1
g.=-(fl-a. (~)+~1.a (p)3,

0

j 2

3(2j—1)(j—1)
(37) f1=/ o L(j+5/2)a~ ash(r'). —

2(2j+4) (2j+2)
for j=l—-',

where go(n) and go(p) are the g-factors for the odd neu-

tron and odd proton moving in an ellipsoidal potential
(see Sec. 6.3). As stressed in Sec. 6.3 these are generally
not known and the values used in Table V are those
obtained for a pure j-state. In the strong coupling
limit these will be considerably altered due to the mixing
of other j-states so that the agreement in the table
should not be expected to be too good. In general, it
seems that for odd-odd nuclei out of the rotational
region the situation is one of intermediate coupling.
Lu' ' is expected to have the strong coupling moment
but so far its configuration has not been identified or
its moment calculated. Its large electric quadrupole
moment is consistent with the fact that it lies in the
rotational region 150(A &190.

Lines similar to the Schmidt lines can be drawn for odd
proton and odd neutron nuclei by plotting 0/po(r')
against j. In Fig. 10 are given the two lines for odd
proton nuclei; also included are the values of 0/po(r')
for the nuclei given above with (r') replaced by 3RP/5.
It is striking that the observed octupole moments bear
a similar relation to the single-particle lines as that of
magnetic dipole moments to the Schmidt lines. Pre-
sumably configurational mixing of some kind can also
account for these deviations. So far, however, no cal-
culations on this problem have been made and are prob-
ably not worth while until more experimental data are
available.

TAaLE VII. Nuclear magnetic octupole moments.

9. MOMENTS OF EXCITED STATES OF NUCLEI

As mentioned in Sec. 1 it has been possible in a few
cases to estimate the magnetic dipole and electric
quadrupole moments of excited nuclear states. Those
moments that have been measured are given in Table VI.

So far only very rough estimates have been given for
nuclear electric quadrupole moments since there is
always considerable uncertainty as to the form and

Nucleus

Ga"
As"
Inlls
I127

Spin

3/2
3/2
9/2
5/2

Shell model
state

p3/2
p3/2
gg/2
d s/2

0( )&1024 cm2)

0.107&0.004
0.146&0.004
0.31 +0.01
0.17 &0.03

Refer-
ence

& R. T. Daly Jr. , and J. H. Holloway, Phys. Rev. 96, 539 (1954).
b P. Kusch and T. G. Eck, Phys. Rev, 94, 1799 (1954).
& Jacc@rino, King, Satten, and Stroke, Phys, Rev. 94, 1798 (1954).
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11. CONCLUSIONS

In this review an attempt has been made to discuss
the interpretation of the available data on nuclear
moments in terms of current theories of the nucleus.
As stressed in the introduction such theories for all but
the very simplest nuclei are theories of semiempirical
nuclear models whose wave functions may be used to
calculate nuclear moments. It is apparent from the
foregoing discussion that one nuclear model alone is
not capable of accounting for all the nuclear moments.
The following general points about the models used can
be made.

0-

vs
Go t21

~ -S9 (?
Go

I~ E -I/2

(1) The extreme single-particle model of the nucleus
in which the ground state properties are vested in a
single particle can account for the spins and parities
of the vast majority of nuclei. Although this model does
not give the magnetic dipole and magnetic octupole
moments correctly its predictions are in agreement
with their general trend. On the other hand, most
electric quadrupole moments do not agree with this
model and in many cases the theoretical quadrupole
moment is an order of magnitude smaller than the
measured one.

(2) The individual particle model with configura-
tional mixing, in which the nucleus is now represented
by several particles in states which are approximate
eigenfunctions of a Hamiltonian including residual
eRective internucleon interactions, is capable of explain-
ing all moments apart from those of nuclei lying in the
approximate ranges 150&A & 190 and A )225.

(3) It is essential to appeal to collective motion to
explain the large nuclear quadrupole moments in the
range 150&A &190and A & 225 and also to account for
magnetic moments in these regions. Further, a collec-
tive approach in many cases can furnish an alternative
explanation to that given by the individual particle
model.

Thus a combination of the collective and individual
particle aspects of nuclear motion seem sufhcient to
account satisfactorily for all nuclear moments. For
odd-A nuclei in all but the simplest cases it seems im-
possible to estimate nuclear magnetic dipole moments
to an accuracy greater than ~ to —,'n. m. owing to the

I

3/2
I

5/2
I

7/2
I

9/2
I

I I/2

FIG. 10. Magnetic octupole moInents of odd-proton nuclei
( g, =5.58; ————g, =2.00) /from Charles Schwartz, Phys.
Rev. 97, 580 (1955)].

uncertainty in the nuclear wave function and the con-
tributions from exchange currents and velocity de-
pendent forces. On the other hand, using empirical
g-factors, a fairly good estimate of the magnetic mo-
ments of odd-odd nuclei can be made. The situation
with nuclear quadrupole moments is more uncertain
and apart from a few light nuclei it is impossible to
make more than a qualitative estimate.

A final point which should be stressed is that nuclear
moments (particularly the magnetic moments) are
very sensitive to certain types of admixture in the
nuclear wave function. This means that nuclear mo-
ments cannot in general be taken as a good guide to the
purity or otherwise of nuclear states. If the deviation
in the moment is small there may nevertheless be large
admixtures of states which do not appreciably affect
the moment. On the other hand, a large deviation may
only mean a small admixture of states to which the
moment is particularly sensitive.
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APPENDIX

The electromagnetic moments of odd proton nuclei.

Nu-
cleus Spin

Shell-
model
state Q/Qi References

H
H
Ll
B
N
F
Na
Al
p
Cl
Cl
K
K
Sc
V
Mn
Co
Co
Cu
Cu
Ga
Ga
As
Br
Br
Rb
Rb
Rb
v
Nb
Tc
Rh
Ag
Ag
Ag
In
In
Sb
Sb
I
I
I
Cs
Cs
Cs
Cs
La
Pr
Eu
Eu
Tb
Tm
Lu
Ta
Re
Re
Ir
Ir
Au
Tl
Tl
Bl

1
1
3
5
7
9

13
15
17
17
19
19
21
23
25
27
27
29
29
31
31
33
35
35
37
37
37
39
41
43
45
47
47
47
49
49
51
51
53
53
53
55
55
55
55
57
59
63
63
65
69
71
73
75
75
77
77
79
81
81
83

0
2

6
8

10
12
14
16
18
20
2O
22
24
28
30
30
32
34
36
38
40
42
44
46

48
50
50
52
56
58
60
62
64
64
66
70
72
74
76
78
76
78
80
82
82
82
88
90
94

100
104
108
110
112
114
116
118
122
124
126

3
7

11
15
19

27
31 .

35
37
39
41
45
51
55
57
59
63
65
69
71
75
79
81
81
85
87
89
93
99

103
107
109
111
113
115
121
123
127
129
131
131
133
135
137
139
141
151
153
159
169
175
181
185
187
191
193
197
203
205
209

1/2
1/2
3/2
3/2
1/2
1/2
3/2
5/2
1/2
3/2
3/2
3/2
3/2
7/2
7/2
5/2
7/2
7/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
5/2
3/2
1/2
9/2
9/2
1/2
1/2
1/2
1/2
9/2
9/2
5/2
7/2
5/2
7/2
7/2
5/2
7/2
7/2
7/2
7/2
5/2
5/2
5/2
3/2
1/2
7/2
7/2
5/2
5/2
3/2
3/2
3/2
1/2
1/2
9/2

Sl/2

Sl/2

P3/2
P3/2
Pl/2
$1/2

d5t/2

$1/2

d3/2

d3/2

d3/2

d3/2

fv/2
fv/2

f7/2
f7/2
P3/2
P3/2
P3/'
P3l2
P3/2
P3/2

P3/2
P3/2
f5/2
P3/2

Pl/2
g9/2

g9/2

Pl/2
P '/2

P 1/2

P 1/2

gg/2

g9/2
d5/2

gV/2

d5/2

gV/2

g 7/2

d5/2

gV/2

gV/2

gV/2

gV/2

d5/2

d5/2

d5/2

d3/2

gV/2

gV/2

d5/2

d5l2
d3/2

d3/2

d3/2

$1/2
$1/2

hg/2

2.8
3.0
3.3
2.7—0.3
2.6
2.2
3.6
1.3
0.8
0.7
0.4
0.2
4.8
5.1
3.5
4.6
4.6
2.2

2.0
2.6
1.4
2.1
2.3
2.0
1.4
2.8—0.1
6.2
5.7—0.0—0.1—0.1—0.1
5.5
5.5
3.4
2.5
2.8
2.6

3.5
2.6
2.7
2.8
2.8
3.9
3.6
1.6

1.5&0.4—0.2
2.9&0.5

2.1
3.2
3.2
0.2
0.2
0.1
1.6
1.6
4.0

2.8
2.8
3.8
3.8—0.3
2.8

2.8
0.1
0.1
0.1
0.1
5.8
5.8

5.8
5.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
0.9
3.8—0.3
6.8
6.8—0.3—0.3—0.3—0.3
6.8
6.8
4.8
1.7
4.8
1.7

4.8
1.7
1.7
1.7
1.7
4.8
4.8
4.8
0.1
2.8
1.7
1.7
4.8
4.8
0,1
0.1
0.1
2.8
2.8
2.6

0—0.2
0.5
1,1
0.0
0.2

1.2
1.5
0.7
0.6
0.3
0.1
1.0
0.7

1.2
1.2
1.6
1.4
1.8
1.2
2.4
1.7
1.5
1.8
0.5
1.0
0.1
0.6
1.1
0.2
0.2
0.1
0.1
1.3
1.3
1.4
0.8
2.0
0.9

0.7
0.9
1,0
1.1

0.9
1.2
3.2

1.4+0.4
3.0

1.2~0.5
0.4
1.6
1.6
0.1
0.1
0

1.2
1.2
1.4

0
0—0.02&0.02
0.05
0
0
0.1
0.15

—0.08—0.06

0.3
0.5

0.5—0.16—0.15
0.23
0.15
0.3
0.33
0.28

0.31
0.14

0.3

1.14
1.16—0.5—0.7—0.8—0,4&0.2—0.4

—0.003

0.9—0.05
1.2
2.5

5.7&0.3
4.3&0.4

2.8
2.6
1.5
1.5
0.6

—0.4

0
0—0.01
0.02
0
0

0.04

—0.04—0.04

0.08

0.08—0.06—0.06
0.06
0.06
0.06
0.06
0.06

0.10
0.07

0.14

0.15
0.15—0.13—0.15—0.13—0.14—0.14

—0.14

0.15—0.13
0.14
0.14

0.18
0.18
0.16
0.16
0.11
0.11
0.12

—0.2

1

2+2
2
1

2
1,5

7
8

5
6

3&1
3

6
0
9

18

32+1
24~2
18
16
14
14
5

a
b
b
c
d
e

b, f, g
b, f, g
b, f, g
b, f, g

c
bifig
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g

b, f, g
b, f, g
b, f, g

b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
bif~g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f-, g
b, f, g
b, f, g
b, f, h
b, f, h

b, f, j
b, f, j
b, f, j
b, f, g
b, f, g
b, f, g

8 Exchange effects.
b Intermediate coupling.
& "Doubled closed (I.S) shell minus one" nucleus.
~ Probably mainly (si/2) 1/2' configuration.
e Probably (d5/2) 3/23 configuration,

f Configurational mixing.
g Weak surface coupling.
h Transition from weak-to-strong surface coupling.
' Strong surface coupling.

& Transition from strong-to-weak surface coupling.
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The electromagnetic moments of odd neutron nuclei.

Atom

n
He
Be
C
0
Mg
Si
S
S
Ca
Tl
Tl
Cr
Zn
Ge
Se
Se
Se
Kr
Sr
Zr
Mo
Mo
Pd
Cd
Cd
Sn
Sn
Sn
Te
Te
Xe
Xe
Ba
Ba
Nd
Nd
Sm
Sm
Gd
Gd
Er
Yb
Yb
W
Os
Pt
Hg
Hg
Hg
Pb
U
PU
Pu

0
2

6
8

12

16
16
20
22
22
24
30
32
34

. 34
34
36
38
40
42
42
46
48

50
50
50
52
52
54
54
56
56
60
60
62
62
64
64
68
70
70
74
76
78
80
80
80
82
92
94
94

1
5
7
9

13
15
].7
19
23
25
27
29
37
41
41
43
45
47
49
51
53
55
59
63
65
65
67
69
71
73
75
77
79
81
83
85
85
87
91
93
99

ioi
103
109
113
117
117
119
121
125
143
145
147

1
3
9

13
17
25
29
33
35
43
47
49
53
67
73
75
77
79
83
87
91
95
97

105
iii
113
115
117
119
123
125
129
131
135
137
143
145
147
149
155
157
167
171
173
183
189
195
197
199
201
207
235
239
241

Spin

1/2
1/2
3/2
1/2
5/2
5/2
1/2
3/2
3/2
7/2
5/2
7/2
3/2
5/2
9/2
5/2
1/2
7/2
9/2
9/2
5/2
5/2
5/2
5/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
3/2
3/2
3/2
7/2
7/2
7/2
7/2
3/2
3/2
7/2
1/2
5/2
1/2
3/2
1/2
1/2
1/2
3/2
1/2
7/2
1/2
5/2

Shell-
model
state

Sl/2

P3/2

P 1/2

d5/2
d G/2

Sl/2
d3/2

d3/2

f7/2

fn~
P3/2

fr(2
g9/2

P1/2

g9/2

g9/2
d 5/2

d5/2

d5/2

d5/2

Sl/2

Sl/2

Sl/2

$1/2

Sl/2
$1/2

d3/2

d3/2

A/2
f7/2
f7I2

f7/2
f7/2

f7/2
P 1/2

fGI2

Pl/2

P 1/2

Pl/2
Pl/2
P3/2

P 1/2

—1.9
2 0 1—1.2
0.7—1 9—0.9—0.6
0.6
1.0
1.3—0.8
1.1—0.5
0.9—0.9

0.5—1.0—10—11
103—0.9—0.9—0.6—0.6—0.6—0.9—1.0—10—0.7—0.9—0.8
0.7
0.8
0.9
1~ 1—0.6—0.8—0.6—0.31—0.38—0.5
0.45—0.7
0.1
0.7
0.6
0.5
0.5—0.6
0.6—0.8

+0.4
+1.4

—1.9—1.9—1.9
0.6—1.9—1.9—1.9
1.1
1.1—1.9

—1.9—1.9
1.4—1.9

0.6

—19—1.9—1.9—1.9—1.9—1.9—1.9—1.9—1.9—1.9—1.9
1 9—1.9—1.9

1.1
1.1—1.9—1.9—1.9—19

19
0.6
1.4
0.6

0.6
0.6
0.6
1 9
0.6

—0.2
0.7—0.1
0.0
1.0
1.4
0.5
0.1
0.6

0.8
1.4
0.5
1.0

0.1

0.9
0.8
0.6
1.0
1.0
1.3
1.3
1.3
1.0
0.9
0.9
1.2
1.0
1.1
0.5
0.3
0.2
0.8
1.3

1.3

1.4
0.2
2.1
0.5

0.0
0.1
0.1
1.4
0.0

0.02

—0.004

—0.06
0.06

—0.2&0.1
0.9

0.7
0,15

—0.12

10.2

3.9

0.6

Reference

a
b, c

b
d) e

b, f, g
b, f, g
b, f, g
f, g, h

b, f, g
b, f, g
b, f, g
b, f, g

b, f, g

b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g

b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g
b, f, g

b, f, j
b, f, j
b, f, j
b, f, j

b, f, j

b, f, g

b, f, j
b) f, j
b, f, j

& Exchange effects.
b Intermediate coupling.
& Recoil quadrupole moment =0.008.
& "Double closed (IS) shell plus one" nucleus.' Recoil quadrupole moment =0.001.

& Configurational mixing.
g Weak surface coupling.
h (d3/2) 3/23 configuration considerably reduces the effect of b.
1 Transition from weak-to-strong surface coupling.
& Strong surface coupling.


