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The density of the air in the atmosphere, or of the water in the ocean, is a function of altitude or depth.
Linear equations for the motion of such stratified fluids have been derived by many authors. Many have
introduced simplifying assumptions into their derivations, with the result that it is dificult to compare one
paper with another. The present review is a collection of the major systems of equations, in a uniform nota-
tion. The derivations given are those which bring out the interrelations of the various systems, and are some-
times quite different from those of the original papers. The solution of the equations is not discussed, so that
the relative merits of the various systems cannot be evaluated.

INTRODUCTION

HE most obvious fact about the earth's atmos-
phere is the variation of its density and tempera-

ture with altitude. This stratification gives it a stability
that strongly infIuences the motion of the air. Although
it is not so obvious, the earth's oceans and lakes are also
stratified, and it is known that their stability (at least
in the thermocline layer) is comparable to, or even
greater than, that of the atmosphere.

Through the years, a very considerable but scat'tered
literature on the motion of stratified fluids has accumu-
lated. This includes the theory of convection as well as
the theory of waves in the geophysical media. There
has been little eGort to systematize these theories, so
that a typical paper will begin with a derivation of the
equations of motion, at the same time introducing
simplifying assumptions, and proceed to the discussion
of special approximate solutions. The comparison of
different papers is rendered dif6cult both by differences
in the basic equations and by differences in notation.

The objective of this review is to collect the major
systems of equations that have been derived, in a
uniform notation, and to discuss the relations between
them. It is clear that this requires the formulation of
the physical assumptions from which they follow. No
attempt is made to compare these assumptions in terms
of validity, nor is any attempt made to preserve the
arguments advanced by their original proponents.
Neither is there any attempt to describe the solutions
of the equations. Such attempts would have caused this
review to grow beyond reasonable bounds; the inter-
ested reader must consult the original papers on these
matters.

In Sec. III, the most general system of differential
equations is discussed in somewhat more detail than
the others. A transformation of dependent variables is
found which exhibits their essential mathematical
structure. This is rather simpler than has been supposed.

I. THE MOST GENERAL EQUATIONS

A. Thermodynamics

The thermodynamic properties of a pure substance
are completely determined when its internal energy e

(erg/g) is given as a function of the specific volume v

(cm'/g) and the entropy z (erg/g deg). Then the pres-
sure p (dyne/cm') and temperature tt are calculable
from the equations

p= BE/85& B=Be/Bri

. In differential form, these are equivalent to

Bp= —XR+ Fbg,

BB=—VBv+ZBg,

X, Y, Z, being the second derivatives of e, taken with
appropriate signs.

These coefFicients are also expressible in terms of the
following four quantities:

c=velocity of sound,

a= coefficient of thermal expansion,
I

s= speci6c heat at constant volume,

y= ratio of the specific heats;

with p= 1/v, the expressions are

X=p'c'

I"=t (v —1)/a,

Z=H s.

The four quantities are not independent, but are re-
lated by the equation

7(7—1)s=a'c'B,

~ ~
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B. Hydrodynamics

The hydrodynamic equations are'

Du/Dt+vVp+gV7t= f,

Dv/Dt vV—' u=0

Drt/Dt = q/8,

where

(7)

(8)

(9)

C. The Zero-Order Solution

Following the standard scheme of perturbation
theory, ' we shall derive the linearized equations by
considering the first-order perturbations of a zero-order
state. This zero-order state will be one of rest in all that
follows. Some of the references cited use other zero-
order states' ' and the present discussion assumes that
the equations of these references have been appro-
priately simplified.

The zero-order state of rest is specified when the
pressure is given as a positive, monotonically decreasing
function of the gravitational potential y.'

Then the density is

p= po(X). (10)

t =t o(X) = —po'/a,

' C. Eckart, Phys. Rev. 58, 207 (1940).
2 V. Bjerknes and Colaborators, Physikalische Hydrodynamik

(Verlag Julius Springer, Berlin, 1933), Chapter VII.
3 D. Blokhintzev, The Acoustics of an Inhomogeneous and

Moving Medium, Translated from the Russian by R. T. Beyer and
D. Mintzer, Providence, Research and Analysis Group, Physics
Department, Brown University (1952).

4 B. Haurwitz, Pertgrbution Equations in Meterology (Com-
pendium of Meterology, American Meteorology Society, Boston,
1951),p. 401.

s P. Qneney, Theory of Perturbations irt Stratifted Currents with
Applications to Air Flow Over Mountain Barriers, University of
Chicago, Department of Meteorology, Misc. Rept. No. 23, (1946).

u= velocity (cm/sec),
gx =gravitational potential (cm/sec)',
g= 980 cm/sec' (by international convention),
f= resultant of all nongravitational forces (dyne/g),
q=net accession of heat, (erg/g sec),

D/Dt=8/8t+u V'.

In laboratory applications, the forces f are primarily
viscous; in large scale geophysical applications, they
are primarily the Coriolis force due to the earth' s
rotation, and the tide producing forces of the sun and
moon. If the transfer of heat occurs only by conduction,

q=vV (kV8),

k being the thermal conductivity of the Quid. In meteor-
ological applications, the transfer of heat is primarily
by radiation, and the expression for g is more elaborate
Many of the references discussed below either ignore
f and q, or adopt specific forms for them. Such special-
izations will be mentioned only when there is a definite
reason to do so.

where the accent indicates differentiation with respect to
X. Equations (1), (2), and (3) combine with these to
determine 00 and po, also as functions of y only.

It then becomes possible to express all other zero-
order quantities, such as X, Y, Z, as functions of x.
Strictly, these functions should be distinguished by a
subscript zero, as in the case of po etc. , but no confusion
will result if this subscript is omitted. With this under-
standing, Eqs. (2) and (3) yield

po' = —Xvo'+ I'rt o',
(12)

8o' ———7'vo'+Zs) o'.

D. The First-Order Equations

In the perturbed state, v =vo+ v&+ ~, p =p,
+p&+, u =us+, and the linearized equations are
to be obtained by neglecting all terms indicated by dots,
as well as squares and products of quantities carrying
the subscript one. Equations (1) and (2) then yield

pl = Xvl+ Frtl
(13)

8r = —F'vr+Zrtr.
With

(=VX

Eqs. (7), (8), and (9) yield

(Bllr/Bt)+po vr(+voVpr=fr, (15)

(Bvr/Bt)+vo ur. (—VoV us=0, (16)

(8rt&/Bt)+st o llr (=qr/8o. (17)
These equations suQice to determine all first-order
quantities. For many applications, it is desirable to
consider two other equations, obtainable from Eqs. (16)
and (17) by using Eqs. (12) and (13):

(8Pr/&t)+Po'Nr f+XvoV Nr = &qr/8o, (18)

(881/8t)+ 80 ttr'f + I voV'll Zql/80 (19)
Except for notation, these equations are identical

with those derived by Bjerknes, Bjerknes, Solberg,
and Bergeron' and Blokhintzev. ' If the Quid is a perfect
gas, y is a constant and

c'=V~8o=Vpo/t o,

a= 1/8o, (20)

s =2/(7 1)—
Using these special values of the thermodynaro. ic
parameters, we find Eqs. (15), (16), and (17) are essen-
tially identical with equations derived by Lamb. ''
They have also been used by Pekeris, '~" Wilkes, "

' See reference 2, Sec. 84.' See reference 3, p. 17.
8 H. Lamb, hydrodynamics (Cambridge University Press,

New York, 1932), sixth edition, p. 547.' H. Lamb, Proc. Roy. Soc. (London) A84, 551 (1890)."C. L. Pekeris, Proc. Roy. Soc. (London) A158, 650 (1937)."C.L. Pekeris, Proc. Roy. Soc. (London) A171, 434 (1939).' C. L. Pekeris, Phys. Rev. 73, 145 (1948).
» M. V. Wilkes, Oscillutions of the Earth's Atmosphere (Cam-

bridge University Press, New York, 1949).



50 C. ECKART AND II. G. FERRIS

Haurwitz, ' Gossard and Munk, " and others. Some of
these writers introduce the assumption that the vertical
acceleration is zero, before proceeding to the solution.

The Laplace-Rayleigh theory of sound is obtained
from Eqs. (15) and (18) by neglecting pe' and setting
rti ——0 in Eq. (13)."Bergmann'e and Blokhintzev have
considered the effect of the terms in pe' and ve' on the
propagation of sound.

The older Newtonian theory of sound is obtained
from Eqs. (15) and (18) by setting oi=0 in Eq. (13)
and eliminating p&. This theory has been used by
Laplace" and Rayleigh" for the discussion of atmos-
pheric and oceanic tides, with the further assumption
that 80 =0. These classic researches have strongly
inRuenced later work. "

Margules" attempted a theory of the thermal
atmospheric tide, based on Eqs. (15) and (16) with

fi ——0 and the assumption of gi as a specified function of
time and position. Most later work on this problem is
based either on equations to be developed in Sec. II
or on the unsimplified equations (15) to (19).

The simplification vi ——0 does not seem to have been
investigated in connection with stratified fluids. It is
always combined with po'=0, and then leads to the
classical theory of the homogeneous incompressible
Auld.

Neither is the simplification pi ——0 discussed in the
literature. Instead, there is a series of papers whose
apparent objective is the avoidance of this assumption
while achieving some of its consequences. These will

be discussed in Sec. II.

0 (Drt/Dt) = (Vs/pa) (Dp/Dt) .

Equation (9) then becomes

(Dp/Dt) = —pay/ps,

(22)

(23)

and when this is combined with Eq. (8), the latter
becomes

V' u= aq/ys. (24)

'4 E. Gossard and W. Munk, J. Meteorol. 11, 259 (1954).
'~Lord Rayleigh, Theory of Sound (Dover Publications, New

York, 1945), Vol. II, p. 18."P. Bergmann, J. Acoust. Soc. Am. 17, 329 (1946).
'7 Laplace, Mecanique Celeste (English Translation by N.

Bowditch, Boston, 1832), Book 4, Chapter 5.
' Lord Rayleigh, Phil. Mag, 29, 173 (1890).
"G. I. Taylor, Proc. Roy. Soc. (London) A156, 318 (1936).

) M. Margules, Wien. Sitzber. Ak. Wiss. 99, 204 (1890).

II. LOVE'S EQUATIONS AND THEIR VARIANTS

A. The Assumption of Incompressibility

Equation (2) implies

F (Drt/Dt) = (Dp/Dt)+ p'c'(Dn/Dt),
= (DP/Dt) c'(Dp/Dt) — (21)

Since c' is a large number, many writers neglect the first
term on the right. With this approximation, Eqs. (4)
and (5) lead to

When Eqs. (7), (24), and (23) are linearized as in
Sec. I.D the result is

(r)ui/r)t) +vpgpi(+ vel Pi = f

7 ' ui= a/i/'ys,

(BPi/Bt)+Pe'ui (= Pea—gi/Vs,

(25)

(26)

(27)

use having been made of the equations po'= —pog,
&ipo= —pPO.

These equations were derived by Love" and have
been used by Lamb, " Groen, "Fjeldstad, "and others.

or

B. Oberbeck's Equations

Equations (2) and (3) also imply
—Z8p+ FM= XZ5n/y, (28)

PO&1 ~1 %Pl/POc q (29)

(3o)po&o = a()o —'ypo /poc

Following the idea of Love's approximation, many
writers neglect the second terms on the right of the
last two equations, obtaining

po&s &ops

po&o = —popo =0 ~ (32)
When these approximations are substituted into Eqs.
(23) to (27) they become

(r)ui/r)t) —gaei(+ pe% pi = fi, (33)

|7 ui ——
ain't/ys, (34)

(r)t)i/dt)+t)p ui' (=gi/'ys. (35)
Overbeck" introduced equations similar to these into
the theory of convection. However, he simplified them
with two further approximations:

(1) Terms proportional to ga are to be retained, but
terms proportional to a alone are to be neglected.

(2) In Eq. (35), Oe'ui ( is to be neglected.
Babcock~' and Pekeris" have also used these simplified
equations. Rayleigh" has used equations that diBer
from Oberbeck's only in the retention of the term in 80',
but he refers them to Houssinesque. "These equations
are still widely quoted, e.g. , by Jeffreys, ae Pellew and
Southwell, "and Chandrasekhar. '"-

"A. E. H. Love, Proc. Math. Soc. (London) 22, 307 (1891).
"See reference 8, p. 378.
2' P. Groen, Contribution to Theory of Internal S'aves (Koninklijk

Nederlands Meteorlogisch Institut De Bild, 1948), No. 125.
'4 J. E. Fjeldstad, Geofys. Publikasjoner 10, No. 6 (1933)."A. Oberbeck, Ann. Physik 7, 271 (1879)."R.W. Babcock, Phys. Rev. 35, 1008 (1930).' C. L. Pekeris, Monthly Notices Roy. Astron. Soc. Geophys.

Supplement 3, 343 (1935).
Lord Rayleigh, Phil. Mag. 32, 529 (1916)."J.Boussinesque, Theoric Analytique De I.a Chaleur (Paris,

1903).
"H. Jeffreys, Phil. Mag. 2, 833 (1926).
"Anne Pellew and R. V. Southwell. Proc. Roy. Soc. (London)

A176, 312 (1940)."S. Chandrasekhar, Proc. Roy. Soc. (London) A217, 306
(1953).
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second-order energy equation cannot be derived from
Eqs. (15) to (19), which do not involve the second-
order quantities.

Equations (15), (16), and (17) do imply the equation

C. Jeffreys' Equations

Jeffreys" has proposed a modification of Oberbeck's
equations. The derivation starts from the general
equations (15) to (19) rather than from Love's equa-
tions (23) to (27); moreover, Eqs. (30) and (31) are
used instead of Eqs. (31) and (32). Equation (15) then
reduces to

(BE/Bt)+V (piui)

I=po ui. fi+pl/1 'glgl y (42)
ep gp'XHo

p
IP'

Pio Po'I"
opoui + opo'gl

2ppc gp X
(43)V ui=a(B8i/Bt)+(a8o'+yg/c')ui (

Now, the adiabatic temperature gradient is defined as
The quantities E and ppW2 are not identical, though
they have some terms (e.g. , —,'pouP) in common; neither
is Eq. (42) the second-order energy equation. Neverthe-
less, Eq. (42) is very important in the theory of Eqs.
(15) to (19) and can often be used much as an energy
equation would be used.

It would be desirable to have a simple terminology
that preserves this distinction; in fact, this is essential
if paradoxes are to be avoided. No such terminology
has been invented, and E (or some similar expression) is
usually called "energy. " This misnomer is convenient
in many applications, and is used in acoustics without
causing confusion, but only because certain funda-
mental problems are ignored. The expression E may
be called the quadratic integral of Eqs. (15) to (19),
though this is clumsy, and does not indicate the physical
importance of this quantity. Some adjectival phrase,
like "external energy, " would be desirable.

8-'= —(v- 1)g/ac' (37)

so that this may be written

V u& ——a{(B8&/Bt)+ $8o' &8,'/(p—I)fu&. (—). (38)

If this is substituted into Eq. (15), the result is

(B8 /Bt)+ (8o' —8,')u (=q /p . (39)

Jeffreys uses Oberbeck's principle (1) to simplify
Eq. (38), but retains the term in (8o' —8 '). In many
applications, the quantities Op' and 8 ' are of comparable
magnitude. Other writers give Love's or Oberbeck's
derivation, but substitute ep' —0 ' for Op' without at-
tempting a formal justification. In meteorology, the
potential temperature, 0~, is often used. It may be de-
fined by the equation

Op' ——Oo' —8 ',

(8ui/Bt) —ga8i(+ aoV'P &
=f» (36)

which is identical with Eq. (33). Equation (16) be- with
comes

Equations (1), (7), (8), and (9) imply that

p(DW/Dt)+V (pu) =p(f u+tt), (41)

which is known as the energy equation. If u=u&+u+, p= po+p&+p, +,etc., theenergy W=Wo
+W&+W&+ ~ ~, and Eq. (41) can be resolved into a
set of equations, of zero, first, second. . . orders. The
zero- and first-order equations, thus derived, are identi-
cally satisfied because of Eqs. (11) and (15) to (19).
The expression for Wo involves uo, po, as well as
squares and products of u&, p&, Therefore, the

"H. JeGreys, Proc. Cambridge Phil. Soc. 26, 170 (1930).
34 Th. Hesselberg and H. U. Sverdrup, Die Stabilitatsverhaltnisse

des Seemasses bei vetikalee Verchiebuegee (Bergens Museums
Aarbok, 1914-1915),No. 14.

and this notation is frequently employed in writing
Eq. (39). The corresponding modification of the equa-
tions for oceanographic purposes is discussed by Hessel-
berg and Sverdrup. '4

III. THE FIELD EQUATIONS

A. Energy and the Quadratic Integral

The energy of the fluid, in erg/g, is

W =—',u'+ o+gy.

1P=poggo'&/&
=go'g(y —1)/ac'= —go'8, '.

Equations (15), (17), and (18) become

(BU/Bt)+c(V+I'()P N'Q(= F, —

(BP/Bt)+c(V I'() U=G-
(BQ/Bt)+U (=H, .

(47)

(48)

(49)

(50)

B. The Field Equations

Equations (42), (43), and (15) to (19) are much
-simplified by the following transformation of variables:

U=ui(poc)&, F=fi(poc)&,

P=p.(")-', G= (~ I'/8. )(.")-:—,

Q=(~ /')(" )', H=(V/. o'8.)(po )'.
Similar transformations are to be found in references 5,
14, and 16.Equations (44) are not uniquely determined,
and modifications may be desirable for special purposes.

Equations (42) and (43) then become

(BE/Bt)+V (PU) = (F U+GP+N'HQ)/c, (45)

Z= (U'+P'+NoQ')/2c, (46)
where
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where

These will be called the held equations, and have a
considerably simpler form than Eqs. (15) to (19),
to which they are equivalent. In particular, their left
sides depend only on three parameters, c, Ã', and F.
These are generally functions only of the vertical co-
ordinate (i.e., of x); in the particular case of an iso-
thermal ideal gas, all three are constants.

Equations (48), (49), and (50) are essentially self-

adjoint, and if E &0, their quadratic integral is posi-
tive definite. These are important physical facts. Most
of the simplifying assumptions discussed above destroy
one or both of these properties of the equations. An
exception is the acoustic assumption, g~=0.

The literature does not contain a systematic account
of the solutions of these equations, although special or
approximate solutions are frequently implied.

C. The Parameters of the Field Equations

The parameter, c (cm/sec), is the Laplacian velocity
of sound, and requires no further discussion. The
parameter I' (radians/cm) has very small values, and
does not affect the qualitative character of the solu-
tions of the equations. In the case of the oceans, 2s/I'
is so much greater than their depth that its quantita-
tive inQuence is completely negligible. In the case of

the atmosphere, the quantitative inQuence of F be-
comes appreciable only at altitudes greater than about
50 km; however, it does determine the behavior of the
solutions at infinite altitudes, so that the approxima-
tion 2=0 may introduce paradoxes.

The parameter X (radians/sec) is sometimes called
VKisala's frequency. "The sign of S' is that of the en-
tropy gradient, pp

.
, when this is positive, the stratifica-

tion of the Quid is stable, and small disturbances have
an oscillatory character. When gp +0, E is imaginary,
and the stratification is unstable. Vaisala established
these facts by simple physical considerations; they can
also be derived from a study of Eqs. (48), (49), and
(50). They are frequently used by meteorologists; the
limiting case X=0 is called convective equilibrium.

Using Eq. (12), one obtains the following alternative
expressions for E':

=ga(00' —0.').
(52)

(53)

The last expression should be compared with the formu-
las of Sec. II.C; the appearance of the combination ga
also relates it to Oberbeck's principle (1), but not in

any consistent fashion.

'5 Vilho Vaisala, Uber die Wirkung der Windschwankungen auf
die Pilotbeobachtungen. Soc. Sci. Fennica, Commentationes Phys. -
Math. II 19, 37 (1925).


