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Cmr TER I. Dt TRODUCTIom

A LREADY in the early stages of the study of
nuclear reactions, the possibility was discussed'

of producing nuclear excitations by the long-range elec-
tric interactions with bombarding particles. ' Particu-
larly for incident energies so low that the Coulomb
repulsion prevents the particles from penetrating into
the nucleus, such excitation processes can be studied
without interference from the more complicated nuclear
interactions. Following these early theoretical sugges-
tions, the possibility was discussed that an isomeric
activity in ind&um, observed in charged particle bom-
bardment, might have been produced by processes of
this kind. '

In subsequent years, the theoretical description of the
"Coulomb excitation" reactions was considerably de-
veloped. 45 In particular, it was found that in many
cases of interest a classical treatment of the trajectory
of the bombarding particle is justiGed and leads to
simple quantitative expressions for the excitation cross
sections. '

At the same time, it was recognized that such experi-
ments were a particularly appropriate means for in-
vestigating certain features of the nuclear structure.
The nuclear states most strongly produced in the
Coulomb excitation reactions are the low-lying collec-
tive excitations which are induced by the electric
quadrupole Geld of the impinging particles. Such experi-
ments, thus, appeared as an especially promising tool for
the exploration of the nuclear rotational and vibrational
spectra. ' ~

Nuclear gamma rays which were later identified as
resulting from Coulomb excitation of tantalum were
6rst seen as a background radiation in experiments on
proton induced reactions in light nuclei, in which target
backings of tantalum were employed. ' About a year

See, e.g., the discussion in Rutherford, Chadwick, and Ellis,
Radhatsorts from Radhoaotvve Ssshstamoes (Cambridge University
Press, Cambridge, England, 1930), p. 247 ff. and the later work
by L. Landau, Physik. Z. Sowjetunion 1, 88 (1932) and V. F.
Weisskopf, Phys. Rev. 53, 1018 (1938).

~ We shall, in the present article, con6ne our attention mainly
to electric and magnetic excitations produced by bombardment
with nuclear particles. A brief review of the theory of inelastic
electron scattering is given in Sec. IIE.3.' S. W. Barnes and P. W. Aradine, Phys. Rev. SS, 50 (1939);
Risser, Lark-Horovitz, and Smith, Phys. Rev. 57, 355 (1940).

4 C. J.Mullin and E. Guth, Phys. Rev. 82, 141 (1951);R. Huby
and H. C. Newns, Proc. Phys. Soc. (London) A 64, 619 (1951).

'K. A. Ter-Martirosyan, J. Exptl. Theoret. Phys. (U.S.S.R.)
22, 284 (1952).

6 A. Bohr and B.Mottelson, Report of the International Physics
Conference, Copenhagen, June, 1952; Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 27, No. 16 (1953).

s It has also been suggested PN. F. Ramsey, Phys. Rev. 83, 659
{1951);Breit, Hull, and Gluckstern, Phys. Rev. 87 74 (1952);
Malenka, Kruse, and Ramsey, Phys. Rev. 91, 1165 (1953)j that
the polarization of the nucleus as a whole, as well as of the pro-
jectile, could be studied in reactions where the energy of the
bombarding particle was insufhcient to enable it to surmount the
Coulomb barrier (see Sec. II D.3).' R. B. Day and T: Huus, Phys. Rev. 8S, 761 (19S2); C. L.
McClelland, S. M. thesis, Massachusetts Institute of Technology,
August, 1952.

after these 6.rst observations, the origin of the gamma
rays and the mechanism of their production were clearly
established. ' "It was also shown" that the yield of this
radiation as a function of the proton energy was in
agreement with the theoretical expression for electric
quadrupole Coulomb excitation' "and that the absolute
cross sections and excitation energies could be inter-
preted in terms of rotational excitations.

Since these first investigations, the Coulomb excita-
tion reaction has been extensively employed in many
laboratories for the study of nuclear levels. Apart
from furnishing new information on previously known
nuclear states, a large number of new levels have been
identified. "

The scope of the experiments has been extended by
the utilization of alternative methods of detection.
Thus, additional information has been obtained from
measurements of the internal conversion electrons" and
of the inelastically scattered proton groups. '4 While
most of the experiments performed so far have employed
protons, deuterons, or n particles as projectiles, the use
of still heavier ions" may in certain respects provide
additional advantages. The Coulomb excitation reaction
has so far been used for the study of rather low-lying
states (excitation energies up to about one Mev), but
with the use of higher bombarding energies it should be
possible also to explore excitations of somewhat higher
energy.

Extensive experimental investigations of the Coulomb
excitation process itself have also been performed and
have tested the adequacy of the theoretical description.
Thus, the excitation cross section as a function of the
energy, charge, and mass of the projectile has been found
to be in good agreement with the classical theory, when
the latter is appropriately modiGed to take into account
the energy loss of the projectile. ' On the other hand,
the accurately measured angular distribution of the p
radiation from Coulomb excitation revealed'~ significant
deviations from the theory, and stimulated the develop-
ment of a complete quantum-mechanical treatment of
the process. '8

v C. L. McClelland and C. Goodman, Phys. Rev. 91,760 (1953).
'e T. Huus and L Zupancic, Kgl. Danske Videnskab. Selskab.

Mat. fys. Medd. 28, No. 1 (1953)."K.Alder and A. Winther, Phys. Rev. 91, 1578 (1953).
'~A special reference should be made to the extensive and

systematic survey performed by N. Heydenburg and G. Temmer,
Phys. Rev. 93, 351 and 906 (1954); 94, 1399 (1954); 95, 861
(1954); 96, 426 (1954); 98, 1308 (1955); 100, 150 (1955)."T.Huus and J. H. Bjerregaard, Phys. Rev.' 92, 15'79 (1953).

r4B. Elbek and C. K. Bockelman (submitted for publication).
~5 Recently, Coulomb excitation studies have been made em-

ploying cyclotron accelerated nitrogen ions LAlkhazov, Andreyev,
Greenberg, and Lemberg, Nuclear Phys. 2, 65 (1956)j.

K. Alder and A. Winther, Phys. Rev. 96, 237 (1954).' F.K. McGowan and P. H. Stelson, Phys. Rev. 99, 127 (1955).
Biedenharn, McHale, and Thaler, Phys. Rev. 100, 376 (1955);

K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab Mat.
fys. Medd. 29, No. 19 (1955).Numerical results have been given
by K. Alder and A. Winther, reference 11;Biedenharn, Goldstein,
McHale, and Thaler, Phys. Rev. 101, 662 {1956),and 102, 1567
(1956). A WKB approximation which yields results in essential
agreement with the detailed quantal treatment has beep given
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In the present review article, we begin in Chapter II
with a discussion of the theory of Coulomb excitation,
and give in tables and 6gures the numerical results
necessary for the analysis of the experiments. Chapter
III deals with the experimental techniques which have
been employed in Coulomb excitation measurements„
and also contains a discussion of the main background
sects in these experiments. Chapter IV contains a
compilation of results obtained in Coulomb excitation
experiments and also a comparison with the theory of
Chapter II. Finally, in Chapter V, we outline the theory
of collective nuclear excitations, which makes possible
an interpretation of many of the observed, transitions.

We wish to acknowledge the benefit we have derived
from contacts with experimental and theoretical physi-
cists working in the field of Coulomb excitation, many
of whom have kindly communicated to us the results of
their investigations prior to publication. Ke are also
indebted to the members of the Institute for Theoretical
Physics, Copenhagen, as well as to Dr. N. P. Heyden-
burg, Dr. G. M. Temmer, and Dr. G. Breit for valuable
discuss1ons.

CHAPTER II. THEORY OF ELECTROMAGNETIC
EXCITATIONS

The excitation of nuclei by impinging nuclear par-
ticles with energies well below the Coulomb barrier
proceeds only through the electromagnetic interaction
between the projectile and the nucleus.

The motion of the projectile in the Coulomb field of
the nucleus is essentially characterized" by the dimen-
sionless quantity p defined by

ri =ZtZse'/As, (II A.1)

where Z~ and Z2 are the charge numbers of the pro-
jectile and the nucleus, while ~ is the velocity of the
incident particle. The parameter q measures the effec-
tive strength of the interaction. Thus, for g&(1, the
Coulomb 6eld produces only a small distortion of the
incident wave, and the collision process can be treated
by Born approximation. For the particle velocities
involved in Coulomb excitation, however, the inter-
action must be strong to prevent the projectiles from
entering the nucleus. Under such conditions, we al-
ways have p&&1, and the collision may then be ap-
proximately described by considering the particle as
moving along a classical trajectory. For inelastic colli-
sions, it is a further condition for the application of a
classical description that the energy loss of the particle
is small compared to the bombarding energy, so that
the eGect of the excitation on the particle motion can
be neglected.

In such a treatment, the nuclear excitation is a result
of the time dependent electromagnetic field of the

by Benedict, Daitch, and Breit, Phys. Rev. 101, 171 (1956);
Gluckstern, Lazarus, and llreit, ibid 101, 175 (1956.); F. D.
Benedict, ibid. 101, 178 (1956).'9¹Bohr, Kgl. Danske Videnskab. Selskab Mat. fys. Medd.
18, No. 8 (1948).

projectile acting on the nucleus. In most cases, the
e6ect of this field is small and may be treated by first-
order quantum-mechanical perturbation theory. The
excitation probability can be expressed in terms of the
same nuclear matrix elements as determine the radiative
transitions between the nuclear states.

In the following we shall first consider, in Sec. A, the
Coulomb excitation process in terms of such a classical
treatment of the projectile. We shall describe this
simplified method in some detail, since it illustrates the
main physical features of the process, without involv-
ing the more complex mathematical formalism of the
quantum-mechanical theory.

The more rigorous treatment of the excitation process,
in which the particles are described by the Coulomb
wave functions, is given in Sec. B. At the end of this
Section, we also consider the application of the WEB
approximation, which is intermediate between the
classical and the exact quantum-mechanical treatment.

In Sec. C, the final formulas for the excitation cross
sections and the angular distribution of the emitted
nuclear radiation are collected. These depend on the
collision parameters through certain functions which
have been evaluated numerically and are tabulated and
given in figures.

In Sec. D, we briefly consider some of the effects
associated with the higher order excitation processes,
while Sec. E has the form of an appendix, which contains
partly results appropriate to certain limiting cases and
partly a discussion of certain processes related to
Coulomb excitation, such as bremsstrahlung and nuclear
excitation produced by fast electrons.

II A. Classical Theory

In the classical treatment of the Coulomb excitation
process, ' we consider the projectile as moving along a
hyperbolic orbit in the repulsive Coulomb field of the
target nucleus (see Fig. II.1).The diGerential scattering'

Fro. II.1.Classical picture of the projectile orbit in the Coulomb
6eld of the nucleus. The hyperbolic orbit of the projectile, P, is
shown in the frame of reference in which the nuclear mass center
is at rest. The focal coordiriate system employed in the evaluation
of the orbital integrals (II A.24) is indicated. The position and
velocity of the projectile are denoted by p„,r„,and v„, respectively,
and the total deQection angle by 8.



COULOM 8 EX C I TAT ION

cross section is given by the Rutherford law

datt ——sttt' sin—4(tt/2)dQ, (II A.2)

where
Zje Zye

(II A.9)

where 8 is the scattering angle in the center-of-mass
system, and

ZyZ2e

escn
(II A.3)

is half the distance of closest approach in a head-on
collision. The reduced mass of the projectile and the
nucleus is denoted by mo.

Since we have assumed that the orbit of the particle
is not appreciably aGected by the excitation, the diGer-
ential excitation cross section is given by

da=Ida g, (II A.4)

where I; is the spin of the initial nuclear state, and where
M; and Mf are the magnetic quantum numbers of the
initial and final states.

Under most experimental conditions the probability
for excitation in a single encounter is very small. Thus,
by 6rst-order time dependent perturbation theory, ~'

we obtain

where P is the probability that the nucleus is excited
in a collision in which the particle is scattered into the
solid angle dQ.

The probability I' can be expressed in terms of the
amplitudes b;f for a transition from the initial nuclear
state i to the various final states J. If we ask for the
probability for excitation of a given energy level, irre-
spective of the orientation of the initial or 6nal nuclear
state, we have

(II A.S)

and p„(r) is the nuclear charge density operator. The
projectile is considered as a point charge and its position
vector ro(t) is measured from the nuclear center of mass.
In (9)*we have subtracted the interaction between the
mass centers, which is responsible for the scattering and
does not contribute to the excitation.

In order to evaluate the matrix element in (6) we
expand the potential (9) in multipole components,
whereby one obtains

OR(EX tt)=~ r"Yx„(8$)p„(r)dr (II A.1.1)

The polar coordinates are referred to a coordinate sys-
tem with origin in the nuclear center of mass and with
a Axed direction of the polar axis. The Fx„(8,$) are the
normalized spherical harmonics "

The multipole operators (11) are the same as those
responsible for the emission of electric multipole radia-
tion with wavelength large compared with the nuclear
radius. "If we assume that the nuclear charge density
can be described in terms of point charge protons
we have

p. (r) =P each(r-rs), (II A.12)

8Ctt(t)=4srZte P g r„
x=& o—x 2K+1

X &g„(8o,&o)OR*(E)t.,ts), (II A.10)

which holds if the projectile remains outside the nucleus.
The electric multipole moments of the nucleus are
de6ned by

where 3!(t) is the interaction energy and

(II A 6) where es and rs are the charge and the position vector
of the kth nucleon. The multipole moment can then be
written in the familiar form

OR(EX,tt) =Q esrg, "Fx„(8g„rlss). (II A.13)AE Ef—E;
M=

A
(II A.7)

Inserting (10) into (6) we get for the transition

is the nuclear frequency associated with the excitation
energy hE. 4mZ~e 1

IIA.1. 8/ectric Excitatioes iVi &o 2K+1

X(f ~
I OR(E~)ts)

I IfJld f)+EX, o, (II A.14)For particle velocities small compared with that of
light, the main interaction is the Coulomb energy *In each chapter we have referred to the equations in that

chapter without adding the chapter or section designation. For
example, this reference is to Eq. (II A.9)

We use the phases employed by K. U'. Condon and G. H.
Shortley, Theory of Atomic Spectra (Cambridge University Press,
New Vork, 1935).

'~ See, e.g., J.M. Slatt and V. F.Weisskopf, Theoretical Eucle gr
Physics (John Wiley tk Sons, Inc., New York, 1952).

(II A.S)Xe(t) = p„(r) tp(r, t)dr,

'o p. A. M. Dirac, The Prirscsples of Qtsarsttsm Nechalics (Oxford'
University Press, New York, 1947), third edition, p. 172.
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where we have introduced the notation

Ao7 -7l-1
4~2Z12ts2

S»,„—— e'"7I'&„(8,(t),y, (f)) [ r„(f)g-1-'Ch (II A.15) d~ „=
IXI A2

for the orbital integrals, and where we have speci6ed
the nuclear states by their total angular momentum I
and magnetic quantum number 3E.

Since the multipole moments are tensor operators,
we may write"

(I~;[OK()1,13) I IIMI)

B(E)I,)
X»n 4— Q [Sisg, „I

sdD (II A.21)
2 (2K+1)s n

The evaluation of the integrals Szz, „ is most easily
performed if the coordinates (r„,8„,&„) are given in the
focal system of the hyperbolic orbit (see Fig. II.1). In
this system, a convenient parametric representation is

I;) Izq=(—1)" "'I [(I'[[~(~)[[II) (»A «)
~ —M; fs MI)

where the last factor is the reduced matrix element. We
use the Wigner notation for the vector addition coegi-
cients, which is related to the notation employed by
Condon and Shortley" by

x77 =8 (coshw+ e) 7

y„=a(e' —1)& sinhw,

s„=0,

r„=7s(e coshw+ 1),

8
&=-(e sinhw+w).

(II A.22)

47731 m 2 77ss) The eccentricity e is related to the deQection angle 0 by
( 1)71 73 733

(jijs7v3177ss I jljsjs —sns). (II A 17)
(»+1)» sin(8/2)

(II A.23)

Further, we introduce

3(E)l; I;-+II)

= 2 l(1'M'I~(», f) IIIMI) I'

SinCe 0„=3r/2, the Ssh, „take the fOrm

(sr 5 f'" (~3+st'~)"
sish. n=I 1 I

—,0 [
i' e'"3dt

(2 ) 0 7 &+n+1

= (2I'+1) ' l(1'Il~(~) I[If) I' (II A 18) =& ""I'1.
[

—o [11.(+,5),
E2

(II A.24)

which represents the reduced transition probability
associated with a radiative transition of multipole
order EA..

By inserting into (4) Eqs. (2), (5), and (14), and
using the orthogonality relation, '4

( I; )1 IIq ) I; )1' I&q

3fis!o (—Mi l3 MI) l —M3 p, MI)

I'h
I

—o [=-
~z' )

and where

(2)1+1) '[:(&—f ) (&+i ).g'*

(—1)&"+»»
47r ) ()t—fs)!!()i+f3)!!

(II A.25)
()1+f3 even)

()l+p, odd)

= (2K+1) '8 8„„(IIA.19)
(39 $) — I ply(3 3inh73+73)

for the vector addition coefBcients, we get for the
differential excitation cross section

(II A.20)

3' G. Racah, Phys. Rev. 62, 438 (1942). In the following we
assume the phases of the nuclear wave functions to be chosen in
such a manner that the matrix element (II A.16) is real. In this
case, one finds (I;[[mt(h) [[I7)= (—1)37 7'(ll [[SIt (h) [[I;).

24 A. R. Edmonds, Angular Momentum in Quantum Mechanics,
CERN 55-26, Geneva, 1955. The notation is also employed by
A. de Shalit, Phys. Rev. 91, 1479 (1933).

Lcoshw+ e+s (es—1)& sinhw j»
X dw. (II A.26)

Pe coshw+ 1]1+"

The dimensionless quantity $'is defined by

@ATE ZgZgg2 5E
(II A.27)

33 We have used the notation (2N)!!=2 4 6 ~ 273 and (273+1.) I I

=1 3.3 (2N+1).
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with E=-r2mee'. The product $e represents the ratio
between the collision time and the nuclear period, and
is thus a measure of the extent to which the process is
adiabatic.

The properties of the integrals Iq„are discussed in
Secs. II E.4—7.

The differential excitation cross section (21) may
thus be written

1 f

x(t) = —— j„(r).A(r, t)dr,
c~

(II A.32)

where j„(r) is the nuclear current density and

IIA.Z. Magnetic Excitatioms

To lowest order in the particle velocity, the magnetic
interaction is contained in the expression

with

(Zye )
do s), i i a '"+'B—(EX)df~),(8,&), (II A.28)

Eht i
Zge v, (i)

A(r, i) =
c (r—r„(1)

~

(II A.33)

4a'
df»(&, k)= Z Y~. l

—0
I

(2lw, +1)' ~ 2

X ~Iq„(8,&) ~' sin ~dQ. (II A.29)
2

The total excitation cross section of order EA, , obtained

by integration over all scattering directions, is given by

(Zre)
I

a "+'B-(EX)f&~(&), (II A.30)
( fthm i

where

is the unretarded vector potential produced by the
projectile. We measure j„and A in the nuclear rest
system, and thus v~(t) is the instantaneous relative
velocity of projectile and nucleus.

In (33) we have neglected the contribution from a
possible magnetic moment of the projectile. This effect,
however, is usually small compared to the magnetic
effect of the orbital motion, since, for g)&1, the main
contribution to the ~citation arises from collisions with
large orbital angular momenta /. For (&1, the order of
magnitude of the eGective / is given by lk& moue = gA)&A.

Expanding in spherical harmonics we obtain for the
vector potential (33)

4x Z~e
A(r)=g '

v r —"—'
&~ 2lw, +1 c

X Y),„(0„,&~)r"Yy„*(0,$). (II A.34)
16m'

(2K+1)' I (2

cos—
2

d8.

sln—
2

In this potential the terms involving r" contain, besides
the magnetic multipole component of order X, also
electric multipole components of order X&1.These con-
tribute a small relativistic correction to the electric
excitations, and will here be disregarded. 27 In order to

(II A.31) extract the magnetic part of (34) we take the com-
ponent of A along the direction of L (see expression
(II 3.6) below), where

The excitation processes considered so far, which are
produced by the electrostatic interaction (8), are sub-

ject to the usual parity selection rule for electric multi-

pole radiation. Thus, an excitation of order X involves
a parity change of (—1)".

Excitations of opposite parity can be produced by
the magnetic field from the projectile. "Such magnetic
excitations usually have very small cross sections, since
for bombarding energies below the Coulomb barrier the
projectile velocity is small compared with that of light.
Still, in cases where electric transitions are forbidden,
or in the case of y-ray angular distributions where there
are interference terms between electric and magnetic
excitations, it may be possible to observe the magnetic
effects.

~' The classical treatment of the magnetic excitations was first
given by M. Jean and J. Prentki, Compt. rend. 238, 2290 (1954).

Thus, one obtains

L= —iLrXP). (II A.35)

4~Zre L(L v„)
(r) — Q rxr —k—1

c & (2K+1)X (X+1)

XQ Y),„(8„,&~) Yg„*(8,&), (II A.36)

since

(L'—X(X+1))Y),„(8,y) =0. (II A.37)

~7 The complete relativistic interaction is derived in Sec. II 3.1,

The sum over y in (36) depends only on the relative
angle of the vectors r and r~, and the operator L acting
on this sum can therefore be replaced by L~, where L„
acts on the projectile coordinates.

For the magnetic multipole part of (32) we thus
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obtain tude is related to the deAection angle 8 by

Kjr(t) =4' Zge —(L„v„)r~ " '
c &~ X(2K+1)

M„=am~a cot—.
2

(II A.45)

where

X Yg„(8~,$~)BR*(3EA,p), (II A.38) It is convenient, as for the electric excitations, to
evaluate the orbital integrals in the focal system (22).
In this coordinate system we have

BR(3A,p) =—,(j„L)r"F&„(8,y)dr (II A.39)
c(X+1) ~

is the nuclear magnetic multipole moment, which is
associated also with radiative transitions of order 3fX."

If we describe the nuclear current in terms of a con™
vection current of point charge protons and a mag-
netization current associated with point dipole moments
of the nucleons, we have

j„(r)=p e~(vt, S(r—r,)),„

1„~, =t,r„
0&——~/2 80& 0&—~/2

and, by employing the formula

(II A.46)

(2K+1) &

I C(~+1)'—p'j'*I'~+i. .l
—,y. l, (11A.4&)

&2K+3)
eA

g ~~X»g(r r„) (IIA40) we may express the orbital integrals (43) in terms of
2M those involved in the electric excitations (15).By means

of (45) and (24), one obtains

X I'),+x, „l —,0 l»~|,„(8,P) cot—. (II A.48)
(2

where s~ and g, ~ are the spin-vector and the spin-
gyromagnetic ratio for the kth nucleon, while 3f is the 1 (2&+1) '*

proton mass. The subscript "sym" indicates a sym- ~~" I'= '~ "
I I l (~+1)'

metrization of the factors in the parenthesis. With the
X E2X 3)

expression (40) for j„we obtain the multipole moment
(39) in the familiar form

eh ( 2
on(M. ,p,)= p l g, 1,»+ g(1,1~

l

2Mc & 4 1+1
~ ~(r~"Yg„(8g,@1,)), (II A.41)

In complete analogy with the derivation of the cross
sections for electric excitations we thus obtain

(II A.49)

where g~r, is the orbital g factor for the kth nucleon. with
Inserting (38) we get for the transition amplitude (6)

4xZle

(Z
I

o "+'~(half&)d f~~(+,g), (11A.50)
&Ac j

where

4m'
~ 2K+1

(X+1)'—p,
~

x(I,iv, lmyn, &) [I,lid:,)s~,, „, (IIA.42) d ~~ ~ =, , I'.+i, , l
—,o

)

1 A

S~g, l~ ) V„r,
X mac

X &y„(&,P )e'"'dt. (II A.43)

We have used the relation Lsee (35)g

iA
L„v,=—I, x„

mo
(II A.44)

where hl„ is the relative orbital angular momentum,
which is a constant of the motion. This vector is
perpendicular to the plane of the orbit and its magni-

X l »+&, „(8,$) l

~ cot'—sin «dQ. (II A.51)
2 2

We have here introduced

&(~)= P [(I;m; led(m~, p) (1,~ ) l
II,Mf

= (2I'+1) 'l(~'ll~(~) ll&r) l' (II A.52)

in analogy to (18) and have employed the relation (16).
The total excitation cross sect~on of order 3A, is

given by
(Zyep

"+'~(~&)f~.(t),-(II A.53)
E Ac]
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16m-' (X+1)'—p' (m
f~i(()= P — I'i+i, , l

—,o
l

(2K+1)' ~ ~'(2) +3) &2

cos—
2

d8. (II A.54)

sin3—

l(—1)" for EX,

l(—1)"+' for MX,

(II A.SS)

where x; and xf are the parities of the initial and final
nuclear states.

There is therefore also a simple relation between the
excitation cross section and the lifetime for the radiative
decay of the excited state by the corresponding multi-
pole transition. The probability per unit time for such
a transition is given by"

8m (X+1) 1 (a) ) "+'
BP, ; I~I,), (II A.56)

l [(»+1)iijP &&c&

II A.3. Discussionof Cros, s Sectiols

The electromagnetic excitation cross sections, derived
above, are expressed in terms of the reduced nuclear
transition probabilities and the functions f($) and

8 f(8,$). The orbital integrals I centering in these func-
tions are defined by Eq. (26) and can be expressed
in terms of conQuent hypergeometric functions of two
variables (see Sec. II K.4). In the special cases of X= 1
or )=0, the Ii„reduce to simpler functions (see Secs.
II E.S and 6). The integrals have also been evaluated
numerically, and the results are given, for ) =2, in
Sec. II E.4. The numerically evaluated f and df func-
tions are given in Sec. II C for E1, E2, E3, E4, Mi,
and M2 excitations.

An important feature of the functions f($) is the
exponential decrease for large values of $ (see, e.g.,
Fig. II.4). This is a consequence of the approximately
adiabatic character of the collisions for P) 1, for which
the collision time is large compared to the nuclear period
[see (27)j. In the opposite limit of $~0, all the f(P)
approach a Gnite value except for the Ei and Mi
excitations. The functions fst($) and f~i($) increase
logarithmically for small $ (see Sec. II K.5) in analogy
to the well-known logarithmic dependence of the atomic
stopping power on the atomic excitation frequencies.

As already mentioned, the electromagnetic excitation
involves the same nuclear matrix elements as the radi-
ative transition of corresponding multipole order. Thus,
the excitation process is subject to the usual selection
rules

I I; Ill &7 &I~+Is—

where the reduced transition probability B(X;I~I;)
for the decay is related by

2I;+1
B(X; Ig +Ir) = B(X;I,—+Ig) (II A.57)

2If+1

to the reduced transition probability B(X;I, +I~) e—nter-
ing into the expression for the excitation cross section.
The relation (57) is equivalent to the fact that the
magnitude of the reduced matrix elements (I; llOR(lw) llIq)
is symmetric with respect to interchange of initial and
final state" (see (18)).

The electromagnetic Geld acting on the nucleus in a
collision with a charged particle differs, however, in
various respects from that involved in the emission or
absorption of a photon, and this implies certain essential
diGerences between the two processes as regards the
relative contributions of the various multipole corn-
ponents. Thus, while in the radiative Geld the electric
and magnetic Geld strengths are of equal magnitude,
the magnetic field of the bombarding particle is only of
order w/c as compared with the electric field. Magnetic
excitations therefore are reduced, with respect to elec-
tric ones, by a factor (v/c)', apart from differences in
the nuclear matrix elements. Moreover, while, in radia-
tive processes, the relative intensities of consecutive
multipole orders involve a factor [(cp/c)Rp]', where Rp
is the nuclear radius, the corresponding factor in
Coulomb excitation is (Rp/a)P [see (30) and (53)g. The
latter factor is much larger than the former since,
according to (27), we have (aI/c)a= (p/c)$. Therefore,
the cross section for Coulomb excitation does not de-
crease as rapidly with increasing multipole order as does
the intensity of radiative processes.

A convenient unit in which to measure the nuclear
transition probabilities BP,) is the "single-particle unit"
deGned by"

e'( 3
B„P.)= (2~+1)—l l

Rp'i
4s &3+X)

(II A.58)
10l l

for MX,
(McRp)

where M is the proton mass. %'e have included, some-
what arbitrarily, a statistical factor 2K+1, since the
Coulomb excitation usually, and always in even-even
nuclei, involves an increase in the nuclear spin.

Figure II.1a gives the excitation cross sections for
proton bombardment of a medium heavy nucleus
(Zp ——50, Ap ——120), assuming B(X) equal to the unit
(58) with Rp ——- 1.2 A & 10 "cin.' The excitation energy
is taken to be 200 kev.

~8 This value for the nuclear radius seems the most appropriate
in connection with the interpretation of evidence regarding the
nuclear charge distribution (see Chapter V).
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FIG. II.1a. Excitation cross sections for nuclear transitions of
single particle strength. The curves give the total Coulomb exci-
tation cross sections of various multipole orders for proton bom-
bardment of a nucleus with Z2=50 /see (II A.30) and (II A.53),
and Fig. 11.4$. The excitation energy is taken to be 200 kev, and
the reduced nuclear transition probabilities to be given by the
single particle units (II A.58) with Ro= 5.9 10 "cm.

The empirical values of the nuclear transition prob-
abilities obtained from lifetime determinations of y
transitions show major departures from the single-
particle unit (58)." Thus, the relatively few electric
dipole transitions, which have been observed in the low-

energy nuclear spectra, have in most cases transition
probabilities many orders of magnitude smaller than
(58). In contrast low-energy electric quadrupole trans-
itions, which occur with great frequency, are often found
to be strongly enhanced as compared with single-
particle estimates. Thus, E2 transitions with a strength
of 10—j.00 single-particle units occur systematically in
most regions of elements (see Chapter V).

For these reasons, the electric quadrupole transitions
are of special importance in the Coulomb excitation,
and in fact it appears that the overwhelming majority
of the excitations so far observed are of E2 type (see
Chapter IV).

As seen from Fig. II.ia, the cross sections for mag-
netic excitation are very much smaller than for electric
excitations; thus, even in cases where the radiative de-
excitation process takes place by a mixed M1+E2
transition, the excitation will almost always be of rather
pure E2 type.

Denoting the nuclear state to which the de-excitation
takes place by ff, the angular distribution of the emitted
p radiation is given by"

lf'o, .(fl.)= 2 l & b's(lffMff lHv(or a')
l IfMf) l

0 3fsMyy 3'
(II A.59)

where H~(Q ro.) is the interaction Hamiltonian for
emission of a 7 quantum in the direction Q~, and with
polarization 0-. We have assumed unpolarized target
nuclei and have summed over the polarizations of the
y quantum. The distribution (59) refers to a definite
orbit of the projectile characterized by the polar angles
8, p of the scattered particle.

We erst consider the case in which the excitation
takes place by a transition of pure multipole order A

which may be either electric or magnetic. Using the
expressions (14) and (42), and the relation (16), we get
from (59)

I; )t It q
lite. .(fir) =Z

I

& —M tt Mr j
I; )t It

0—M; p,
' Mr'j

X(laMa I Hv(or &) llrMr)

X(IrrMrt l H„(Q~,o) l
IrMt')*, (II A.60)

where we have left out constant factors. The summation
in (60) is to beextendedoverM;, Mt Mf tr p Mff,
a11d 0'~

The distribution (60) may conveniently be expressed
in terms of the correlation function for a hypothetical
y~ cascade in which the first transition is a pure 2"-pole
radiationst (see Fig. II.2). This latter correlation func-

II A.4. Angmlar Distribution of De Excitation p Rays-

The nuclear states populated by Coulomb excitation
decay by emission of 7 radiation or conversion elec-
trons. The angular distribution of this radiation can be
obtained from the excitation amplitudes b,~ given above.

"For a survey of these data, see M. Goldhaber and A. W.
Sunyar, Chapter XVI of Seta- and Gamma-Ray Spectroscopy,
edited by K. Siegbahn (North Holland Publishing Company,
Amsterdam, 1955).

FIG. II.2. Hypothetical transitions involved in describing
angular distribution of gamma rays following Coulomb excitation.
The ground-state spins, the spin of the state excited by Coulomb
excitation, and the spin of the final state populated by the gamma
ray are denoted by I;, Iy, and Iyy, respectively, The figure on the
right then gives the hypothetical y —y cascade employed in
obtaining the angular distribution of the gamma rays following
Coulomb excitation.

30 D. L. Falkotf and G. E. Uhlenbeck, Phys. Rev. 79, 323 (1950)."L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953).
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X kixE (—1)"l, ls~,s~, *. (II A.68)
BIJOU kg fi K)

The normalization of u~, " is then such that aoo"——I. As
in the cascade, only terms with even k occur in (66).
It is noted that boo~ reduces to

f L, )tL, ~~ L; )'L,'y
sr; (—M; fi Mf) E —M; p,

' Mr' )
boo'=P lS (II A.69)

fX X' kq
p ( 1)sx'+sr +s+-jr'''(2k+1)

l

kff EP, —fi' ir j and is thus directly related to the di6erential excitation
cross section (see (21)).

The coefficients Ai, in the y-y correlation '(65) are
given by"

( Lf Lr' k) lX (II A.61)
L, —Mg M~' ir) lIi' Ig I;

tion divers from (60) only in the replacement of Sz„by with
the rotation matrix D„.."((R), where (it denotes the (X X ky
rotation from the fixed coordinate system to a system b&~"= (2k+1) 'I
whose z axis points in the direction Q~' of the first y
quantum. The polarization index 0-' refers to circular
polarization.

As in the usual treatment of angular correlation, we
employ the relation'4

where we have introduced the Wigner notation for the
Racah coeKcient W() ) 'IrIf

l
kI,) through the definition

3„&"'=F„(g)IIf) Q l5rbrlFIC(LL Lfflf), (II A.70)

where 41.' is the intensity of the 2 -pp].e radiation in the
y transition I~I&~. With the present definition of the
multipole operators, the relative values of gl,
given by

21 22 23

~3

= (—1)" '+'s+siW(ji jslsh lgsts). (II A.62)
q~ ~L+1y &

In this manner, we obtain an expression for W(Q„) br &' '
I I (Lrfll~(«)IA)| (II A 71)

(2L 1)!!& L iwhich involves the S» only in the combination

kqg (—1) l lS,„S,„*. (II A.63)
fji P —p s)

with
for ELtL

s(L)= '

l L+1 for ML.
(II A.71a)

ky 4~ q
f fined by

l FJ,„*(Q ') (IIA.64) F (LLLL)E1 —1 0 &2k+1j
= (—1) '+ 'L(2k+1) (2Is+1)(2L+1)(2L'+ 1))f

L,' k
xl I, (IIA.72)(1 —1 0) I I~ I,

after summation over the polarization index 0-'.

Thus, if we write the angular correlation in the y-y
cascade in the usual way

In the p~ correlation the corresponding expression The product br&i is always real since (—1)'(r) =& (the
reduces to parity). The coe%cients Fi, are geometrical factors de-

Wn„(Q,)=Q Asi"'Pi, (cos(Q„',Qr))

4m.

=P A s&M — Yi,„*(Q„')Fi,„(Q„), (II A.65)
s. 2k+1

where (Q I,Q,) is the angle between the p rays, it is
seen that the angular distribution function (60) may
be written

W, „(Q,)=P a„„"(D,q, ])A,i»F&„(Q,). (II A.66)

&~."(+,e, 5) =b""/bM", (II A.67)

The coeScients ug„~, which are independent of the
nuclear states involved, and of the de-excitation process,
may be expressed in the form

Fs(LIiLs) = Fi,(LLIiI2),

and are tabulated" in references 31 and 33.
The orbital integrals Si„ in (68) are most easily

evaluated in the focal system (see Fig. II.1) in which
they are given by (24) and (48). One thereby obtains
the angular distribution coe%cients bk„" in the focal
system. It is, however, often more convenient to express

3' L. C. Biedenharn and M. E. Rose (reference 31) have given
the interference terms (for LQL') in the form

GI, (LL'IgIg)
= (—1)ra r| 'f(2I2+1) (2L+1)(2L'+1)g &Fi,(LLV,f,).

The coefBcients Af, are tabulated in Table II.11 for some cases
often encountered in Coulomb excitation.

33 M. Ferentz and N. Rosenzweig, Argonne National Laboratory
report, ANL 5324.
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)X
bye "(r'f, g, &)

= —(2k+1)—&
I

1

tr7

X p (-1)s!
PIJ! ff Ep

X ky-'
!—1 0)

X k~!I,„I —,o!—p' s'J "!2' i
(s.

XI''I —,o II „(a,()1,„.(a, g)

the angular distribution of the y quanta in a coordinate
system with the s axis in the direction of the incident
beam of particles. This may be obtained by a simple
transformation which, in the case of electric excitations,
gives

where the Eulerian angles" (m/2+8/2, s/2, y) repre-
sent the rotation from the coordinate system of the inci-
dent beam to the focal system of the orbit in question.

The distribution function (66) applies to a measure-
ment of 7 rays in coincidence with particles scattered
inelastically in a de6nite direction. The total angular
distribution of the j's, irrespective of the scattering
angle of the projectile, is obtained by multiplying (66)
by the differential excitation cross section (28) or (50),
and integrating over 8 and q. This gives

~(rl', ) =Q us" (P)As&"'Ps(cos& ), (II A.74)

where 8r is the angle between the direction of the inci-
XD„„

I

—+—,—,p !, (II A.73) dent beam and the y quantum. The coeScients u&" (p)
E2 2 2 &

'

a eg by

with
s" (5)=4"j&s" (II A.75)

kq -'
(X X kq

&""(~)=-(2k+1)-'I Z (—1)"I
E 1 —1 ol vs'~ (!u —p' s p

and

cos-
(a s 6y 2xI ~„I —,o!I ~'I —0 I

!" Ig„(8,$)I (~,P)I'"I —,-+-
I d+, (IIA.76)(2 ) (2 ) Js !22 2i
sln—

2

X k~
—' ky

k.M" (~)=-(2k+»-'I Z (—1)"I IL((l!+1)'—~')((~+1)'—I ")3'
(1 —1 0) ~s" ~ p —p' xi

cos—
2

X I x+1 sl 0 !I &+1 s'I —o
I 1~+1 N(ri 8)I!+1s'(0 k)Fs, I

—,—+—
! cot — d'e!. (II A.77)

2 ) (2 s k2 2 2J 2
sine—

2

The coefficients as~" ($) have been evaluated numeri-
cally for Ej and E2 excitations. The results are shown
in I ig. II.8, where they represent the limiting values for
v—+0 of the corresponding quantum-mechanical expres-
sions. In the case of M1 excitations, where (77) only
contains terms with!u =p,

'= s= 0 (see (25)), one obtains

g Ml(g) —
1 (II A.78)

independent of $.
If the polarization of the decay p ray is measured,

one may obtain the correlation functions in a similar
manner as above by comparing with a y-y cascade in
which the polarization of the second quantum is
measured. Thus, the probability for emission of a y ray
at an angle 8~ and with a given direction of polarization
is again of the form (74) with the only difference that

the functions Ps(cos8„) are to be replaced bysr

(Ps(I.L'; r'f,f„)
=& ( o &.)+(—1)""'

(k+2)! I 1 1—2)
(I I' k)

X I ! cos2$„Ps'(cose!~), (II A.78a)
E1 —1 0)

where it7 is the angle between the electric vector and
the plane determined by the direction of the incident
projectile and the y ray. The phase (—1)&& '& is +»f

is an electric radiation, and —1 if it is magnetic.
The functions I'I,' are the associated Legendre p»5'-
nomials. If the decay radiation is of mixed multipole

'~ We have used the same definition of the Eulerian angles as
that used in reference 6 (see also reference 24).
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type, each term in the coefficient As&"' (see (70)) is to
be multiplied by the appropriate angular function
(Pi, (LL').

If the excitation is of mixed multipole type, the
angular distribution of the y rays, in contrast to the
excitation cross sections, contains additional inter-
ference terms.

In order to derive the general expression for the
angular distribution, we write the transition amplitude
b;f in the following form (see (14), (16), and (42))

4rrZie t' I; X If )
!b;f= Z (—1)" "'(2~+1) 'I

@her ti Mf l

where the bs "are given by (76) and (77). Furthermore

(II A.84)

The most important case where interference terms
appear is that of a mixed electric and magnetic excita-
tion, for which the bz """'($)are given by

k)
b e"Mi ~ (g = (2

E1 —1 0)

X(~;I;jldIt(sX) jjmfIf)S y„, (II A. '79)

where x, and xy indicate the parity of the initial and
final nuclear state, while + is the parity of the excitation
process, i.e., s.=s.,~f. The S z„are defined by (15) and
(43) for electric and magnetic excitations.

By following the same procedure as above, it is
readily seen that the angular distribution (66) now
takes the form

Wo, „(n,)=g P c,.-~ -'~'(~, ~,~)F,PX'I;If)
kt~ &x) '~'

X Q bf &r. Fz(LL'Ifflf) Ya.(Q~), (II A 80)

x r,„(~,p)1, „.„(~,p)

X Ys.j
—,—+—lcot-

cos-
2

d8.

sln—
2

(n' ) (m'
X Y~.I

—o
I Y~+i 'I —0

I

&2 ) '
2

(II A.85)

with

LLI

c „" '"'(8,y, &)

Y kg-'
= —L(2k+1)(a +1)'(2&'+1)sj 'I

(1 —1 Oj

x&~;I;jl~(~~) jl~flf&(~XII~(~'~') jl~fff)

t'X X' kg
xQ (—1)&l ls i,„s i „*. (II A.81)

gati

tr K

For k= ~=0, the coo " " are proportional to the diGer-
ential excitation cross sections. For ) /V, the. 'c00 ~

vanish.
In order to obtain the total angular distribution of

the y quanta, we multiply (80) by the Rutherford cross
section (2) and integrate over 8 and p. One thus obtains
the angular distribution in the form

W(a,)=P P ,-a~ (~P)(o.,)i(o, )iF,(u.'r, rf)
k XX'

X Q t'if bf, Fi,(LL'Ifftf)Pi, (cosi'f, ), (II A.82)
LL'

where 0 ~ is the total excitation cross section of multi-
pole order mX and where the sign of the square root is
the same as that of the reduced matrix element,
(erg'IIK(~X) jj~fIf). These latter are the same as those
occurring in the radiative decay I~I, (see (71)).The a
coefficients in (82) are given by

a wx3'v(g) ff„exes'v/(b mx)-', (b m'v)i (II A 83)

The decay of the excited nuclear level may also take
place by emission of internal conversion electrons. The
angular distribution of these electrons is given by ex-
pressions similar to those applying to the y distribution,
with the only diGerence that the Ii & factors for the decay
are to be multiplied by appropriate coefFicients depend-
ing on the parameters of the conversion process. '4

II A.5. Symmetrisatiom of Classicat
Cross Sections

The classical treatment of the excitation process
neglects the e8ect of the energy loss on the motion of
the projectile. It may be expected, however, that im-
proved expressions for the excitation cross sections may
be obtained by substituting for the particle velocity e
entering in these expressions, some mean value of initial
and final velocity e; and ey, rather than the initial
velocity assumed above.

While the choice of ~ leading to the best approxima-
tion for the cross sections cannot be decided within the
scope of the classical treatment, it follows immediately
from the general character of the quantum-mechanical
formalism, considered in the next section, that when the
probability for excitation in a single encounter is small
the excitation cross section is symmetrical in e; and nf,
except for a factor nf/v, . In fact, the cross section is
inversely proportional to the fIux of the incident par-

34 See Biedenharn and Rose, reference 31, which contains tables
of the coefficients (denoted in this reference by ti) involved in the
correlation with E-shell conversion electrons, calculated for a
point charge nucleus.
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ticles, and thus to v;, while proportional to the density
of 6nal states, i.e., to vy. In addition, the cross section
involves the square of a matrix element which is sym-
metrical in the initial and 6nal [state Lsee (IIB.25
and 26)).

A straightforward way of symmetrizing the classical
cross sections is first to introduce symmetrized parame-
ters a and $, given by

and

S205gVy

(II A.86)

I e, e, )
(II A.87)

to replace (3) and (27), respectively. It is readily seen
that the expressions (86) and (87) for c, and $ are equal
to (3) and (27), respectively, to lowest order in AE/E. 's

Although (87) changes sign when s; and sr are inter-
changed, the f functions are not affected, since they
are even functions of $.

Appropriately symmetrized expressions for the exci-
tation cross sections may thus be obtained by replacing
(28) and (50) by

(Zte) '
dom I

——
I

a '"+'B(H) df~q(8, $), (II A.SS)

and similarly for the total cross sections. In these ex-
pressions a and P are given by (86) and (87). Likewise,
symmetrized expressions for the angular distribution of
the emitted p rays are obtained by employing, in the
formulas in Sec. IIA.4, the symmetrized expression
(87) for f

It is found, by comparison with the quantum-
mechanical results (see Sec. II B.6), that the sym-

metrized expressions represent an essential improve-
ment over the unsymmetrized. In fact, the symmetrized
total cross sections reproduce the quantum-mechanical
to within a few percent, for values of g as low as 3, and
even for $ as large as 2 (see Fig. II.6). This corresponds
to a collision in which the particle loses more than half
its energy, and for which the unsymmetrized cross sec-
tions would be in error by more than a factor hundred.

The angular distribution of the emitted. y radiation is
found to be less accurately given by symmetrized
classical formulas, except for very large values of rI (see

's Arguments for the speciai choice (87) for $ have been given
by K. A. Ter-Martirosyan, reference 5, and by Sherr, Li, and
Christy, Phys. Rev. 96, 1258 (1954).

and

irZte) sy
ddsc/=

~

.
~

ct '"+'B(m—)dfsr), (a,g), (II A.89)
&Ac& s;

Table II.9). Similarly, the differential excitation cross
section may be expected to be fairly sensitive to quan-
tum corrections.

&1f
Ev =AEi I+—cosl i,

E c )
(II A.90)

where v&~ is the velocity of the projectile at the time of
emission (measured in the laboratory system) and tt the
angle between the scattered projectile and the direction
of the y ray. Even if (90) is averaged over the direction
of the scattered projectile, there will remain some de-

pendence of the average E~ on the direction in which
the p ray is observed.

II B. Quantum-Mechanical Theory

In this Section we consider the quantum-mechanical
treatment of electromagnetic excitations of nuclei. In
the 6rst part (Sec. II 3.1) we give a relativistic deriva-
tion of the excitation cross section, considering the
interaction as arising from the exchange of a photon
between projectile and nucleus. This method is equiva-
1ent to the use of the retarded Greens functions for the
interaction. " In most applications it is sufhcient to
include only the leading term in the projectile velocity
in the expressions for the electric and magnetic excita-
tion cross sections (Sec. II 3.2).

These cross sections can be expressed as sums of
terms referring to the different angular momenta of the
incoming and outgoing projectile (Sec. II 3.3). Each of
the terms involves a radial matrix element which can
be evaluated in terms of known functions, and expressed

3'See M. Jean and J, Prentki, reference 26; Biedenharn,
McHale, and Thaler, reference j.s.

II A.6. Exct',tatioe of Projectile

If the projectile is a composite particle, the collision
may also lead to the excitation of the projectile. This
process is entirely analogous to the excitation of the
target nucleus, and corresponds merely to the inter-
change of the roles of nucleus and projectile. The inter-
action is now proportional to the nuclear charge and to
the projectile transition matrix element, and the excita-
tion cross section is thus obtained from the cross section
for target excitation by simply replacing the factor Z&'

in (88) and (89) by Zss and the quantities AE, P, and
B(X) by those appropriate to the projectile excitation.

The angular distribution of the emitted p rays follow-

ing projectile excitation is the same as for excitation of
the target nucleus. However, the y energies may be
somewhat shifted by the Doppler eGect if the stopping
time for the projectile is longer than the lifetime of the
excited state. To first order in the projectile velocity,
the p energy is given by
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in a form convenient for numerical computation (Sec.
II 8.4). Similarly, in Sec.II 8.5 the angular distribution
of the de-excitation y rays is expressed in terms of these
radial matrix elements.

Approximate values for the radial matrix elements
can be obtained by means of the WEB method (Sec.
II 8.6) which in most cases of interest is found to yield
a high degree of accuracy. In this section we also discuss
the transition of the quantum-mechanical cross sections
to the symmetrized classical expressions for large values
of the parameter g.

ZyZg8
3Cs=0C~+K +BC„a+ (II 8.1)

where the three first terms represent the free Hamil-
tonians of projectile, nucleus, and radiation Geld, re-
spectively. In (1) we have also included the static point
charge interaction between the projectile and the
nucleus. In the relativistic treatment we shall neglect
the nuclear recoil, so that the nuclear center of mass may
be taken as the fixed origin of the coordinate system.
The recoil eGects may be reintroduced in the non-

relativistic part of the cross sections (see below), and
thus the only essential approximation involved here is
that of neglecting the effect of the recoil in the rela-
tivistic corrections.

It is convenient to divide the electromagnetic Geld

into a transverse part described by a vector potential A

for which divA=0 and a longitudinal part. The latter
contributes the instantaneous Coulomb interaction, "
and the total interaction Hamiltonian is thus

C;,= —— ('j,(r)+j„(r)) A(r)dr
G

+seoul
ZyZ28

(II 8.2)

where

r p (r)p„(r')
Xeo„&=

J
dvdr, '

lr —r'l
(II 8.3)

and where p„and j„are the charge and current density
operators for the projectile.

The vector potential is expanded in multipole com-

'~See, e.g., W. Heitler, The Qgultgm Theory of Radiation
(Oxford University Press, New York, 1944), second edition,
Sec. III.10.

II I3.1. Der& ation of Excitation Cross Sections

For the system consisting of projectile, nucleus, and
the quantized electromagnetic Geld, we take as the
zero-order Hamiltonian

ponents according to"

A(r) =P P P {a(EZ,tt, q)A(EX, tt, q)

+a(MX,tt, q)A(MX, tt, q)+compl. conj.}, (II 8.4)

where the electric and magnetic multipole Gelds are
given by

Srrc
A(Eh, tt, q) =

l l
E—

&z&&L(j&(qr) I'&„(e,p)),
) (~+1)) (II 8.5)

(8 rrcq' )*
A(~)t,t,q) =il

l
~ '*L(j.(q~)I'"(flA)) (IIB 6)

EX(X+1)

The angular momentum operator L is defined by
(II A.35), and jq(qr) represents the spherical 'Bessel
function. "The multipole fields (5) and (6) are associ-
ated with 'photons of angular momentum P, magnetic
quantum number tt, wave number q, and parity (—1)"
and (—1)"+' for the electric and magnetic multipole
fields, respectively. The Gelds are enclosed in a large
sphere of radius R.

The coeflicients tt in (4) and their conjugates are the
photon absorption and the emission operators. With the
normalization (5) and (6) the nonvanishing matrix
elements of these operators are given by (see refer-
ence 37)

fh(n+1) q &,

(n [tt in+1)=(n+1 [tt*l n) =
l l, (II 8.7)

2qc

where
l n) represents a state with n photons of the type

in question.
The eigenstates of the Hamiltonian (1) are repre-

sented by a wave function p, for the projectile moving
in the point Coulomb field of the nucleus multiplied by
a nuclear wave function. it, and is further specified by a
number of free photons. We consider a transition from
an initial state i with the nucleus in the ground state
to a final state f where the projectile has transferred
an energy AE to the nucleus. In initial and Gnal state
no photons are present. To Grst order in the charge of
the projectile this transition receives partly a Grst-order
contribution from the Coulomb term in (2) and partly
a second-order contribution from the first term in (2)
corresponding to the emission of a photon by the
projectile, and its reabsorption by the nucleus (or
vice versa).

To this approximation the transition matrix element

"See, e.g. , W. Franz, Z. Physik 127, 363 (1950); B. Stech, Z.
Naturforsch. 7a, 401 (1952).

39 We use the same notation for the spherical cylinder functions
as employed in L. I. Schiff, Quantum Mechanics (Mc'Graw-Hill
Book Company, Inc., New York, 1949).
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is thus given by

s'3 3 33('E»rr g)d s" '6 3 dt test'sg)dr 33')
~

~

(f[5(""Ii&=Z
&ac 2gc —AE—Acq

f.
ttr ) A3E»ts, rd)d 33; er ) 3, .A (E»mg)d e;)

+megcetic terms +(ttrer gc„ i—
ZyZ28

33 e') (33 E g)

The summation over q may be replaced by an integral and the continuity equation

"a x'
(II 8.9)

Z

(f[divj [i&=—(&t—&;)(f[p[i&. (II 8.14)
A

in which the path of integration is to circumvent the
pole by passing below the real axis.

The integrals over q can be evaluated by using the
formulas4'

t
"j),(qr) jp(qr') i7rtt

q'dq= j),()gr&)hqt') (tgr&), (II 8.10)
g' —K 2

and

7I r(
(II 8.11)

2)g'(2)3.+1)

Since the photon field contains no components with
X=0, the cancellation is only complete provided the last
terms in (8) contain no resulting monopole component,
which is the case if the projectile does not penetrate into
the nucleus. While this condition is fulfilled in Coulomb
excitation with projectile energies below the barrier,
there may, for instance in electron scattering, be an
important electric monopole interaction causing nuclear
excitations. 4'

In the following we shall neglect the eGect of pene-
tration so that r„=r&. Specifying the nuclear states by
the quantum numbers I and M, and the scattering state
of the projectile by its momentum fik at infinity, we

may express the transition matrix element in the
following form

4n-
where r& and r& denote the greater and smaller, respec- {f[5(ir)[i& p ( 1)o((k
tively, of r and r', while h), (') is the spherical Handsel ) o 2)).+1
function of erst kind. With

X{IrMr [OR(M, —tg) [I;M;)
AB

K=
Ac

(II 8.12)
—(kr [OI, (M)t, ts) [k;)

X{IyMf [OR(3EA3 —tg) [I;Ms))3 (II 8.15)

—i (2)3,+1)!!
j„L(j),()gr) Y),„(o,y))dr,

tg"c )g+1
(II 8.17)

OR (MX,tg) =
~XL(rsY),„)=i(J't+1)V (rsY),„)

(t'e =)). or —)t—1), (II 8.13)

the integrals (10) and (11) occur in the magnetic and
electric part of (8), respectively. with the notation

It is now seen that the last term in (11) leads to
a contribution from the electric multipo e photons to
the transition matrix element (8) which just cancels the z"+'c()t+1) "
corresponding multipole contribution from the Coulomb (118.16)
terms. This result may be obtained by using the relation

go G. ¹ Watson, Theory of Besse/ FNggctiodos (Cambridge IIni-
versity Press, New York, 1944), second edition, p. 429.

4' See L. I. Schiif, Phys. Rev. 9S, 1281 (1955) and Sec. II E.3
following,
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and

x(EX,t )= j, v&&L(h„i»(~r) Y&„(e,y))dr,
cX(2X—1)!!~

(II 3.18)
gX+1

X(Mlt, p) = j„L(hi&» (~r) Yi„(e,y))dr.
clt (2X—1)!!"

(II 8.19)

It is often convenient to transform the electric multi-
pole transition operators by means of the identity

~&&L(fi(zr) Yq„)=-i&I —(re(~r)) Yi„ I

ter
' ")

+i~'r fi (ar) Yi,„, (II 8.20)

where fi(~r) is a spherical Bessel or Hankel function.
Performing a partial integration and applying the con-
tinuity equa!.ion (14) one obtains

alt &Eh,ti)

(2l~+1)!!
I

8
p„(rj &(rr)) Y)—,„(e,y)dr

s"(it+1) & er

i(2K+1)!!
+ j„rji(~r) Yi„(8,&)dr, (II 8.21)" 'c(X+1) ~

The differential cross section for excitation with
unspecified orientation of the initial and final nuclear.
state is given by

mf vf
do = —(2I;+1) i g I(f IXIi) I

sdQ (II 8.25)
4X'A4 V; Ms'

where mf is the relativistic mass of the outgoing pro-
jectile. The scattering states in (15) are eigenstates in
the Coulomb field ZtZses//r~, which for large distances
behave as distorted plane waves plus spherical waves.
While in the initial state these are outgoing, the final
state should contain only incoming spherical waves. 4'

The scattering states are normalized at infinity to one
particle per unit volume. Using (15) and (23) and the
relation (II A.16) the cross section may be written

4m'' ef B(Elt)
P I(krlx(El~, ti) Ik;)I'

A4 e, ~ (3+1)' "

B@n)
+ & l(kt l&(~»t ) Ik'& I' dfl (II 8 26)

(2lt+1)s ~

II B.Z. Nortrelatiuistic A pprox&eatiort

For projectile velocities small compared to that of
light the product ~r~ may be treated as a small quantity
so that we may apply the asymptotic expansion

and

x(EX,ti)

8
p~ (rhea, &» (Irr)—Y),„(e,y) dr

lt(2X —1)!!~ er

(2X—1)!!
hgt» (~r) = i-

(gr) i+i
In fact, we have

V r„v
~r ———co &—

C V C

(II 8.27)

j„rhett» (Irr) Y&,„(8,$)dr. (II 8.22)
clt (2X—1)!!~

The nuclear transition operators (16) and (17) are
precisely the same as those which determine the emis-
sion probability for electric and magnetic multipole
radiation. If the radiative transition probability is
written in the form (II A.56), the reduced transition
probabilities B(X) are given in terms of the transition
operators through the definition

Bg)= 2 I(lt~tl~( t) II'~')I'. (II823)

This equation is identical with the definitions (II A.18)
and (II A.52), and in fact the transition operators
approach the electric and magnetic multipole moments
(II A.11) and (II A.39) in the limit ~Re((1, in which
one may employ the asymptotic expressioo

since for d„/v larger than unity the interaction becomes
almost adiabatic.

If we furthermore consider the projectile as a point
particle with charge Z~e we get to leading order from
(22) and (19)

x(n, ,t)=z, „-"-'Y,„(e„y,),
Zye@

FL(3A, ,ti) = 1~ ~~(r, "'Yi„(8~—,$~)), (II 8.29)
mcus

where we have used the relation (II A.44). The terms
neglected in (28) and (29) are at most of the order (%)'.

If the projectile possesses a spin with associated mag-
netic moment, the current density contains a contribu-
tion similar to the second term in (II A.40). The mag-
netic transition operator then becomes

(1&(~,t)=l -v~+I I &.(r. " 'Y"(8.,4.)) (II8.3o)
)

j),(~r) =
(2lt+1)!!

(II 3.24)

~ If the projectile possesses a spin the scattering states must
also be specified with respect to spin indices, and the cross sections
will involve appropriate averages over these indices.

48 G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954).
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d&ei+d&MXy (II B.31)

with

where p~ and p, are the orbital and spin magnetic
moments of the projectile. For q))1, where large angular
momenta are involved in the scattering, the effect of
the spin moment is expected to be relatively small. 4'

The magnetic moment also contributes to the electric
excitation through the magnetization current and its
associated charge density (cp„;„=(v/c) j,v;„), but the
effect is again at most of the order (v/c)' as compared
with the leading term (28).

As was to be expected, the interaction (15) with the
nonrelativistic transition operators (28) and (29) for
the projectile is identical with that assumed in the
classical treatment Lsee (II A.10) and (II A.38)j. It is
thus also evident that in the nonrelativistic approxima-
tion the nuclear recoil may be taken into account as in
Sec. II A simply by replacing the projectile mass by the
reduced mass @so of projectile and nucleus.

The excitation cross section obtained from (26),
(28), and (29) may now be written

and

(Zie )ver=
I I

a '"+'B(E))fEi,(7f,,(), (II B.37)
(Av;i

fZie~ ' v,
ri —'"+'&(M.)fsri, (rf;, p), (II B.38)

(Ael
where

r df(&, n k)
f(v, , P) = )I df)l.

dQ
(II B.39)

The scattering states to be used in (34) and (35) are
the nonrelativistic Coulomb wave functions, which at
large distances behave as distorted plane waves with
appropriate in- and outgoing spherical waves. With the
normalization employed, these wave functions are
given by

which is identical with (II A.87). As may be expected,
the functions df(r'f, if;, $)"'approach the classical f nc-
tions df(t'), $) for rf,—+en (see Sec. II B.6).

For the total excitation cross section one obtains, by
integration over the direction of kf,

and

(Zrey '
d~E.=

I I
a '"+'~(E) )de~(~ ~' 5) (II B.32)

&Av, )
I'& )=e &~i@«T(1+i' )e~"'r

XiFi(—ir);, 1; i(k,r—k; r)), (II B.40)
and

2"'I ",— +B(~))gf „(g„,() (IIB33) I r)= """' ( —~r) '"'
E ac) X,Fi(ir)r, 1; i (kfr+—kq r)), (II B.41)

where a is given by the symmetrized expression
(II A.86).

We have here introduced the dimensionless functions

XP I(41r. ' 'I'"(t)vA. ) lk) I'nfl, (» B 34)

and
4g2X—2

df~~(&, n*, 5) =
)~'(2)~+1)'

XXI(kf Il &,(r. " 'I'. (tl„4,)) Ik;) I'do (II B.35)

in analogy with the notation used in the classical
treatment Lsee (II A.88) and (II A.89)j. Prom dimen-
sional considerations it follows that (34) and (35) for
given deQection angle 8 may be regarded as functions
only of rf; and r)y defined by (II A.1) for v equal to v;
and ~J, respectively. To stress the analogy with the
classical case we consider (34) and (35) as functions
of rf; and the parameter $

6= nr n', —(II B.36)
" The expression for f~I with the inclusion of spin effects has

recently been given by L. C. Biedenharn and R. M. Thaler
refer enc e 62a).

where ~F~ is the conQuent hypergeometric function.
It may be observed that the approximations involved

in the cross sections derived in this paragraph only in-
volve to the neglect of relativistic effects in the motion of
the projectile; thus, the nuclear matrix elements enter-
ing into the B()) may be taken to be the fully relativistic
expressions I see (16) and (17)]which are identical with
those appearing in the radiative transitions.

The matrix elements involving the scattering states
of the projectile can be evaluated explicitly in the special
case of electric dipole excitations. In fact, these matrix
elements are equivalent to those involved in the
bremsstrahlung process (see Sec. II E.1), and can be
expressed in terms of hypergeometric functions (see
Sec. II K.5).

For excitations of higher multipole orders the matrix
elements are of essentially more complex character.
They may be evaluated, ""however, by expanding the
Coulomb wave functions in partial waves; the radial
matrix elements may then be expressed in terms of
hypergeometric functions of two variables.

44 See, e.g., A. Sommerfeld, Atombau nld Spektrallinien (Fried-
rich Vieweg R Sohn, Braunschweig, Germany, 1939). In the
following we leave out the index p for the coordinates of the
projectile.

4~ Siedenharn, McHale, and Thaler, Phys. Rev. 100, 376 (1955).
4'l K. Alder and A. Kinther, Kgl. Danske Videnskab. Selskab

Mat. fys. Medd. 29, Nos. 18 and 19 (1955).
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II8.3. Eedgction to acadia/ Matrix Elements

The expansions of the Coulomb wave functions (40) and (41) in partial waves are given by44

and

!k)=P 4pr( —1)"i'e' '«"Fi, m(k;)Pim(8$)(k;r) 'Fi(kr),

!kf)=p 4pr( —1) i'e '"'"»Fi, (kf)Y im(8,$)(k rf) 'Fi(kfr),

(II 8.42)

(II 8.43)

where a.i(rf)=argl'(l+1+irt) is the Coulomb phase shift, and where Fi(kr) is the regular solution to the radial
wave equation for orbital angular momentum l. For large values of r, the function Fi(kr) has the asymptotic form

1( 7r
Fi(kr) sin! kr l rf—ln—2k—r+oi!. .

2 )
The angular integrations may now be performed by means of the relation'~

((2lr+1)(2ls+1)(2lg+1) ) & (lr ls ls) (lr ls ls )
FirmrVis sFismsdQ=!

4x ) t0 0 0) (rlr ms ms)

and one thus obtains, for the matrix elements involved in electric excitations (34),

(k. l
"-'I'. (8,~)lk'&=«)' Z "-"(-1)""''

lslymsmf

(II 8.43a)

(118.44)

Pl; lf X) (l, lf
XP(2l;+1)(2l,+1)(2)+1)g! !! !I i„.,(k,)Vi, , (kf)Mi, i;~-r, (» 8.45)

LO 0 0) Em; —mf P,)

where the radial matrix element M is defined by

~00

Mi if " '= Fif(kfr)r " 'Fi;(k;r)dr.
k,kf ~P

Inserting (45) into (34) one obtains

16m.

df (8 rf. $)= k k a'" ' Q (2l;+1)(2lf+1)(2l +1)(2lf'+1)i" 'f "'+'f'(—1)"+'f+'f'
(2K+1)'

(II 8.46)

~l; l, X~~l l,' Xq
Xexpi(«;(n )+«f (nf) «; (p;) —~«(rff)}—! !! !Ml if Mi if''

&0 0 0) EO 0 0)

l; l l (l; l ly ]if lf' ly
XP (2l+1) I I! IFi(«s~), (» 8.47)

l lf' lf X 0 0 0) EO 0 0)

where we have used the notation (II A.62) for the Racah coe%cient. 'r'
From (47) one obtains by integration over 8 (see (39))

64m'

Similarly, for the magnetic excitations one obtains from (35)

(l; lf
fz), (rf;, &)

= k;kfa'" ' p (2l;+1)(2lf+1)! ! !Mi if'
(2&+1)' &0 0 0)

(II 8.48)

(kfl 1 p'(r "—'F»(8,p))!k;)= (4pr) l p (—i)" 'f( —1)&e"'t '+'»2l;(2K+1) [X(X+1)(l;+1)(2l~+3) (2lf+1)g&
l half mesmer

(l; lf Xl (l;+1 lf &~ & & 1
xi I lfmf(kf)I i,—m, (k;)Mi, if ) (II 8.49)

(yg, —mf P,) & 0 0 0 l; l;+1 lf
'~ See, e.g., reference 24 or reference 22, p. 793.
4"For the numerical evaluation of df, it would be advantage". us to compute (45) and insert afterwards into (34).
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64&r' X+1)
a'"—' p (2l;)'(2l;+1) (l,+1)(2lf+1)

lsd
(l+1 lr X)' X X 1!'

xI I Mt;tt "-'
I

—'. (II 8.50)
0 0 0) l; l;+1 lt I

fiiri (qr, P) =
X(2K+1)

The evaluation of the excitation cross sections is thus reduced to the problem of computing the radial matrix
elements and performing the summation over the angular momentum components contained in the scattering states.

II 8.4. Et&aleatiol of the Radial Matrix Flernerlts

The radial wave function in (42) and (43) can be expressed in the form~

II (i+1+i&) I

Fi(kr) = e—(»/P)» (2kr)'+'e ' a' iFi(l +1 irt, 21—+2; 2ikr),
2I'(2l+2)

which may be seen from (II E.90) to be a real function.
The radial matrix element (46) and even the more general matrix element

(II 8.51)

OO

Fif(ktr) " 'e «Fi;(k,r)dr
&;&f ~o

(II 8.52)

can be evaluated explicitly' by employing an integral representation of &Fz and carrying out the integration over
r first. The result is I see (II E.91) and (II K.100)j

with
Xe &»i" «'+»» (k,—kf+iq)" 'F&(l;+lr X+2, l;+1+—i»i;, it+1 —

i»I&&& 2l;+2, 2lt+2; x, y), (II 8.53)

2gf
f

g+iqrt~/kf g+iq»I;/kr
(118.54)

The function F2 is a generalized hypergeometric function of two variables, one of the so-called Appell functions,
and is de6ned in the neighborhood of x=y=0 by the series expansion (II K.93). The function is multivalued and
the branch which is of interest in the present context is determined from (52) in the limit q

—+0.
The conservation of angular momentum and parity in the excitation process implies (see (45) and (49)) that the

only matrix elements occurring in the cross sections are those for which

l,—it= —X, —
)&.+2, ~, ). (II 8.55)

In the special case of )&, =0, the Fp function in (53) reduces to an ordinary hypergeometric function according to
the reduction relation (II E.96). One thus obtains for the monopole matrix elements"

( s ) ""'+""
I
I'(1+1+i~')

I II'(i+1+inf) IM„=(k,—k,) I

(2l+1)!

)&e &»i'i&( xp) 'F—(i+1 i—rt;, l+1 irtr—
&
21+—2; xp) & (II 8.56)

with

(II 8.57)

Although these matrix elements are of no direct importance for Coulomb excitation, they are useful in expressing
higher multipole matrix elements by recursion relations (see following).

The series expansion (II E.93) of the function Fp is valid only for
I
x I+ ly I

(1 and, since in our case x+y=2,
an analytic continuation must be employed in the evaluation of (53).This analytic continuation is especially simple

'» A. Erdhiyi& Math. Z. 40, 693 (1936).
'» W. Gordon, Ann. Physik (3) 2, 1031 (1929).
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I(l'+1+iaaf)—X—1 ~(.m/2) f
I

—1(»~)"-'
r(i+1+x+2~,) &~fj
II'(~+'~) l'

X F2~ —2K+1, l+1 ir—lf l+1+Z7f f X+1 Z$ X+1+Z$
(2X—1)! '2gf'2qf&

P q
i+'& r(i+X+1—z&,)r(—X—z~)+»~

~

~'
E 2gfj I'(l+1—

iaaf)

to perform in the case l;= if+A, where the F2 function reduces to an Fi function )see (II E.97)j.The Fi function
can again be written in terms of the Appell function Fz Lsee (II E.98)j for which the analytic continuation is well
known Lsee (II E.99)g. The application of these three 'formulas leads directly to the following result:

and
~l, 1+& (zll)'Qf) ~1+»1 (Offal) S ~1+» 1 ( 1f~ &l) (II 8.59)

XF
i

—&+1+z(, i+X+1—zg;, l+1+zqf, &+1+2', —X+1+zP;, ~, (118.58)
(

2gf 2qf&

In (58), the first Fz function is a polynomial, since the first parameter is a negative integer Lsee (II E.93)j.Thus,
for the erst few ) 's, one 6nds

P2~ —2&+1, l+1 iaaf,—l+1+izlf, X+—1 i$, —X+—1+i(;
2gf 2qfj

-0 (&=1)

= 2(1+8)
n'(n~+nf)

7

'gf
(x=2)

(II 8.60).;(~;+.f)
$5l$(g~+gf)+12gf2 —8g;zj. (X=3).2(1+e)(4+v)

If
~
l,—lf

~
WX the F2 function cannot be reduced to a single Fi function, but, as shown in Sec. II E.8, it may be

written as a finite sum of such functions. The analytic continuation may thus be performed in complete analogy
to the case ~1, lf! =X and t—he result can be expressed by two polynomials plus a finite number of F2 functions of
the arguments x ' and y '. The analytic continuation can, however, be obtained more easily from (II E.99).
Identifying one of the F2 functions of this equation with that involved in (53), one obtains

F2(l,+lf X+2, l;+1 i—q, , lf+1+iqf, 2ll+—2, 2lf+2, x, y)

I'(—l;—iq,)I'( —lf+iltf)1'(X —l;—lf —1)
( X)-l,—1+12l( y)

—lf—1—l2f

I'(X+1+i))F(—2l;—1)1'(—2lf—1)

( 11'
XF2~ l,+1—zg;, lf+1+zg f~ l' 27/'| lf+zf/f X+1+2(i

x

I'(2lf+1)I'( lf+z7f f)1'(X l lf 1)'
( y)

—2lf—1

r (—2l,—1)I'(lf+1+igf) I'(X—l,+lf)
XF2(l;—if+1—X, l;+1—zg;&

—lf+zz!f, 2l;+2, —2lf., x, y)

r (2l;+1)1'(—l;—z&,)i'(X—l,—l,—1)
g —2ls—I

I'(—2l;—1)I'(l;+1—ill) I' (X—l„+l;)

XF2(lf l;+1 X—, l, —i';, l—f+1—+iaaf, —2l;, 2lf+2; x, y)

I'(2l;+1)I'(2lf+1)I (X l lf 1)I'(—l;—'iq;)—r (—if+zopf)
( x)—2 1l—1( y) 2lf 1-—

I'( 2l; 1)1'( 2—lf 1—)I'(l—'+lf+) +1)1'(l,+1 ig )I'(if+1—+iq f)

XP2(—l;—lf X ll iz; if+iaaf, —2l;, —2lf, x, y). — (II 8.61)
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This equation is, however, singular for integer values of l; and ly. If one first considers l; and ly to have noninteger
values while preserving /, —ly as an integer, the first and second Ii 2 functions reduce to polynomials, since the 6rst
parameter is in that case a negative integer. The third F2 function can be eliminated by considering also the complex
conjugate equation to (61) which contains the same Fz functions, according to the transformation (II E.95). After
this elimination, the limiting process I;, l~ approaching integer values and q

—+0 can easily be performed and the
result gives the following expression for the radial matrix element (46) or (53):

(z!;) '&e& ~'&& I'(tg+1+iz!r) (2l;)! zg q
li—ly-1+x

M i;ii
—"—' ——zr(2k;)"—

zi —
)

~ z!f) sinhn. $ I (l;+1+zz!;) (2tg+1)!(l;—tr+X —1)!( 2z!g)

)(Fz(tf tj+1—X, ty+1+zz!y, l; —zz!;,—2L~+2, —2l;; y, x)

(&,l t':-(-iz~~ r(t, +1+z&,) (2tr)! ( ig ) lI—li—1+X

+zr (2k') "-z
f

—
f

E z!;J sinhvrp I'(tg+1+iz!y) (2L,+1)!(t r—t;+X—1)!( 2z!;)

XFz(t;—ty+1 —X, t~+1 —
zing;, tg+zz!g—) 2l,+2, —2ti) x, y)

e ( ~'&~z~ I'(t, +1+ii',) ($ ~
'z I'(ty+1 —iz!i)

sinhzr P I'(ti+1+zqy) E 2 ~ I'(l;+1 ig,—)I'(X+1—i))

( 1 1)
Xzbi* i '—'z'

1
—'»—

z1&
'«F—,

~

—t;+zz!;, Ly zz!1—, t, +—1+zzt', t~+1 zz1f, X—+1 z$!
x y

(II 3.62)

In these equations, g and y represent the limiting values obtained from (54) by setting g=o The Fz «n«io» in
(62) are to be interpreted as the polynomials obtained in the limit of l; and t~ approaching integer values while

t;—t~ remains an integer. These polynomials are pure imaginary Lsee (II E.95)j and are for the lowest values of X

given explicitly by

Fz(l, t~+1—X, L,+—1 ill;, —tr+iz1~—, 2l;+2, 2L~, x,—y)

p X=1 tg=l;+1

q l(l+1)
n'v, (n'+n y)

P(t,+1)(l;+2) (2l,+3)

~=2 ly ——l;

X=2 tg l,+2——
(II 8.63)

2';i1ggl;(t;+1) (2L+1)$(zl;+zip) 6(t;+1)'zl —6z!Pzjr'j-
r=3 tg=t, +1

Pt, (t,+1)'(t;+ 2) (2t,/1) (2l;+3)

2n'nr(n'+a~)PL'h(n'+~s)+12ni' 8n"j—
P(t,+1)(t~+2) (t~+3) (2L;+3)(2l;+5)

X=3 tg=t;+3.

As mentioned above, the analytic continuation of the
Fz function in (53) can be written as a finite sum of Fz
functions. This alternative form for the matrix elements
may be obtained directly from (62) by expanding the
Fz function in terms of Fz functions Lsee (II E.104) and
(IIE.97)g. The relation (II E.98) shows how (62) re-
duces to (58) in the special case l;—t~ ——&X.

In the evaluation of the excitation cross section, it is
in general necessary to extend the summation to include
large values of l; and l~. While the main contribution in
most cases arises from terms with 1 q, the convergence
for large l is rather slow, especially for small values of $.
The numerical calculations are therefore greatly sim. -

plified by the use of recursion formulas connecting
matrix elements for diferent values of /;, ly, and ).

The existence of such recursion formulas is a conse-
quence of simple recursion properties of hypergeometric
functions. Thus, five F2 functions with parameters
diGering only by integer numbers are always linearly
dependent. In special cases, the recursion formulas may
of course contain less than Ave terms. One may derive
these formulas either directly from the properties of
the hypergeometric functions or from the differential
equation for the Coulomb wave functions. ' 6~ The

~0 See also L. Infeld and T. E. Hull, Revs. Modern Phys. 23,
21 (1951).
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recursion relations obtained by the latter method are all contained in the following general formula

Ilf+1+3~fl I«+2m'I ll~+1+3n'I
Ml, , if+1 +X Ml, -l, lf —X Mt.+j i

—~ '
af (if+1) q, (l,+1)

I lf+iqf I

Ã4 Ml;, ly-1
Qflf

$$ $2 $3 $4
+— ——Mllf"'

if+1. l; l;+1 lf

=I k;g;5-'L2:1(lf X)+S2lj x3(lj+1) x4(lf+X+1)5M14lf " '

+ (/3, q~) '(foal—+2f2+233+ff4) Flf(/3fr)r"' F-l;(/3—r)dr, (II 3.64)
~o dr

where xj, x2, x3, and g4 are arbitrary constants. Three
independent recursion formulas may be obtained from
(64) by giving the factors xl to x4 different values
satisfying

Also in the dipole case the recursion relation which
connects diferent values of / contains only three terms
and may be written

$1+F2+F3+$4—0) (II 8.65)
ylMl 1, l- '+y2Ml, 1 1 '+y3Ml+1, l '=0, (II 8.70)

whereby the last term of (64) is suppressed.
Additional recursion relations may then be obtained

by combining those derived directly from (64) and
eliminating the unwanted matrix elements. In the fol-
lowing, we shall give some specific relations which are
useful for the numerical evaluation of the radial matrix
elements for low multipole orders.

For the monopole (X=O) matrix elements (see (56)),
one obtains the three term relation

ylMl+1, l+1 +y2Mll +y3Ml ll—1 —,0 (II 3 66)

with

y1=2l Ii+1+3~'I ll+1+2~f I,

n"+nf'
y2= —(2l+1) l (l+1)+2glqf, (II 8.6/)

y3= (2l+2) I l+2~' I I l+2~f I.

yl=»*~f ll —1+3~f I I l+3~'I

y2 ———4q 'qf2 —l (2l+1)q;2 —l(2l —1)gf2, (II 8.71)

y, =2&;~f ll+ ~f I Ii+1+2&,l.

The ) = 2 matrix elements cannot be reduced to those
with ) =1, since the recursion relations connecting
matrix elements of multipolarity 3 with those of multi-
pole order X+1 become singular for ),= 1.There are, for
X=2, two types of matrix elements, namely those for
which /i —ly= &2 and those for which li= ly. The latter
are connected with the former through the relation

yMll ylMl, l+2 +y2Ml ll+1—,

+y3M 1~2. 1 '+y4M'1+1, 1 1') (II 3—.72)

with

This relation connects all monopole matrix elements
satisfying the condition (55) with the two first (l=0
and 1).

For X=1, the matrix elements are most easily ob-
tained from the monopole matrix elements by

(X+1)Ml, lyl ylMll +y2Ml+1, l+1 y (II 3 68)

with

l(l+1)
(~f' ~'')

3

yl= —~"Il+1+3~f I Ii+2+2 lf I

2l+3
Ii+3m; I I l+1+2~f I,

2l+1

y =qf'll+1+'g; I Ii+2+'g;I,

(II 3.73)

y) =kg
l

(II 3.69)

2l+3
y4= &'&~ I

—l+3&f I I l+1+2n' I

2l+1

For the matrix elements with
I
l, lf I

=X there exi—st the
following four term relations

By means of this relation one may obtain an explicit
expression for the dipole radial matrix elements in terms
Of usual hypergeometric functions, "

ylMl+1 —3, l—3 +y2Ml+1—2, l 2—
, ~1 " '+y M+„—" '=0, (I13.74)
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with

y1=2rt;rtf It—2+ill, I I l —1+irtf I It+A —2+irt; I,

y.= —
I
t 1—+i~f I 02(2n;2+4~f2)

+t (4(X—2) (gP+»2)+ 2)42—»2)

+ (X—2) ((2X—3)rt;2 —3»2)+6rtP»2 1,

gf
ys I

t——+—x 1+i—rt; I $P(42)P+2rtf2)
'fti

In the X=2 case, one thus needs to calculate directly
from (58) either the six matrix elements M22, 3I12 &24,
3E2Q M3$ and M4&, from which the remaining ones may
be obtained from (72) and (74), or one may use the
relations (78) and (72) and thereby obtain all matrix
elements from &02, %20, and the monopole matrix
elements (see (56) and (66)).

For X=3 the matrix elements with l,—lf =&1 may

(II 8 75) be obtained from the quadrupole matrix elements by
means of Eq (6.8). The matrix elements with t;—lf =&3
can again be reduced to the six first by means of (74).

+t(4(X—2)2)/+2)P —»2)

—2 ()I.—2)2)/+62)P»2 j,
y4= 2nfs —

I t+) 1+i—~' I I t+&+i~' I I t+inf I

For X=2, two of these matrix elements are also con-
nected with two monopole matrix elements by

y1bIl+ll+2 ,+y2bf ll+2,

II I3.5. Angltar Distribltion of
De-Excitation p Eays

The angular distribution of the y quanta following
an electromagnetic excitation is given by

tf "'"f(ftr) = & I Z (Ifftlf ff I &.(~., o) I Ifjib)
MsMff o Mf

x(fI5(""I ) I' (I» 81)

with
=yslrI1+1, 44.1 '+y4&1 ',

y.=«t+1)., It+2+»I It+3+'»I,
y2= —«l+ 1)n'~f I t+2+i» I I t+1+i~' I

y, = (kP —k, ') I 2g, 2»2

(II 8 76) in analogy to the expression (II A.59). The transition
matrix element (f I

K&'&
I i) is given by (15) and is of just

the same form as the classical transition amplitude b;f
I

see (II A.79)].
The quantum-mechanical angular distribution (81)

can thus be directly obtained from the formulas in
Sec. II A.4 by the substitution

+»2 (l+ 1)(2l+3)—rt,'(t+1)j, S.l,„-+(kf I at(2rX, tl) I k,). (II 8.82)

Ml, 1+2 = f(l)

with P(l' and

Ml, 1+2 ' l—1 A(j)
+Q, (II 8.78)

'=' fU+1)'f«')

t'rtf) ' r(t+1+irt;)
f«) =

I
—

Ii„,) r(ty3+i&, )
'

k-' —k ' 1
A(t) =

4(t+1) It+2+'&fl It+3+ &fI &,

(II 8.79)

y, =—(kp kf')2—2),rtf I t+1+irt; I I t+1+irtf I.

By repeated application of this formula one obtains
the recurrence relation

While the classical integrals S aside from constant
factors depend only on the scattering angles and the
parameter g Lsee (II A.24) and (II A.48)j the quantum-
mechanical matrix elements depend also on the param-
eter g;. Thus, the a and b coeKcients involved in the
quantum-mechanical angular distributions will also
depend on g;.

In order to obtain the total y distribution irrespective
of scattering angle one simply integrates (81) over the
direction of kf, since the Rutherford cross section is
already contained in I(flX&'& li) ls. In the most im-
portant case of excitations of pure EX type one thus
obtains I see (II A.74)ls'44

W(2)l,)=Y a2E"(rt;, $)As&"&I's(cosl'tr), (II 8.83)

x (L2rtprtf2+rif2(t+1) (2l+3)—rip(t+1) j
xMl+1, 1+1

' —22);rif I t+1+irt; I

with
a Ex(rt. P)

—b„EX/b Ex (II 8.84)

X It+1+irtf I ~11 '). (II 8.80) and, according to (II A.68), (II 8.28), and (II 8.45),

(X X k)-'
bp" (rt;t) =

I I p (—1)'&+'(2t,+1)(2l +1)(2lf+1)i" "' exp i(o 1;(rt;)—o.l,'(rt, ))0) ill lf

k (X l; tfq tX l tfq (t; l kq
x I I I I I Iml;if 1 'ml «-"—'. (II 8.85)

l t/ EO 0 0) EO 0 0) EO 0 0)
41L. C. Biedenharn and M. E. Rose, ORNL report 1789 (1954).See also Breit, Ebel, and Russell, Phys. Rev. 101, 1504 (1956).
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We have here employed the relation'4

ls ls q li gs ls ) li ls
Z (—1)'"' '"""" "'i

pigr~s &mi ps —tisi (—tii ms tisi (tii —tip ms)

(jl j2 j3 l ji j2 $8
(II B.86)

Emi ms ms) ii ls lp

and have inserted

(2l;+1) &

Fi,~;(k&) =
~ ( b~,o,&4~)

corresponding to the fact that the emission angle 8~ of
the p quantum is measured from the direction of the
incident beam.

The coeKcient bp" (rl;, p) is related to the total excita-
tion function fbi(rt;, P) (see (48)) by the equation

64X2
fir), (r) $)= k kya'" 'bp "(rt P) (I.I B 88)

(2)i+1)'

II B.6. WEB Approximation arid Classical Limit

For g)1, a rather accurate approximation to the
Coulomb excitation cross sections may be obtained by
replacing the radial matrix elements by those derived
from the WEB approximation. "This treatment is also
convenient for t.he discussion of the transition of the
quantum-mechanical expressions to the classical for-
mulas in the limit g))1.""

The WEB approximation for the radial wave function
is given by

phase diGerence may be expanded as follows

one obtains

kr = (rip+i(l+1)) & coshw+ri, (II B.93)

e+coshw
9i;—qf $(e sinhw+w)+ti cos ' (II B.94)

1+e coshw
where

while
(=rid rt', — (II B.95)

(n'+i(i+1))'*

Lf())-»d
4rp

dr
I l;—(l;+1) 1f(—lf+1)) Lf(r)j &, (II B.92)

2r"
since P;g;=Pfgf.

In the integrals in (92) the parameters k, rt, and l
refer to average values for initial and final state. The
diGerences between the turning points for the initial and
final state have been neglected, since these contributions
are of higher order in $/rt.

Evaluating the integrals in (92) and introducing the
substitution

where

Fi(kr) = $f(r)/k'j —
& sinq,

Lf(r) j'«,

(II B.89)

(II B.90)

and

(l,+ti/2) (l;+1+ii/2)
1

&

(II B.96)

f(r) =k'—
2ki) l (l+1)

r2
(II B.91)

(II B.97)

For the radial matrix element (46) we thus obtain

The expression (89) holds outside the classical turning
point rp defined by f(rp)=0 The contri.bution to the
radial matrix element from the region r (ro is of lower
order in g and is neglected in the present approximation.

Inserting (89), one finds that the radial matrix ele-
ment (46) involves two terms, the first containing the
sum of the phases q; and yf of initial and 6nal wave
function and the second containing the diGerence

p,—pf. The first term may be neglected due to the rapid
oscillation of the integrand. In the second term, the

ps Benedict, Daitch, and Breit, Phys. Rev. 101, 171 (1956);
K. Alder and A. Winther, CERN report T/KA-AW-4 (1955).

~'K. Alder and A. Winther, Phys. Rev. 96, 237 (1954); G.
Breit and P. B. Daitch, Phys. Rev. 96, 1447 (1954).

PX—2

&it(e sinhw+iul

4„i J

Lcoshw+ e+i(e' 1)& sinh—w$"
X dw. (II B.98)

(e coshw+1) "+"

It is seen that this integral is identical with the orbital
integral (IX A.26) involved in the classical treatment.
The quantity e given by (96) just corresponds to the
eccentricity of the orbit Lsee (II A.23 and 45)$ and ti
represents the transfer of angular momentum in the
direction perpendicular to the plane of the orbit. By
introducing the deQection angle of this corresponding
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8'=2 sin (II 3.99)
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of (100) is given inAn illustration oof the accuracy o
f adrupole matrixT ble II.j., where exaact values o qua
1

'
Sec. H 3.4 arel t p t

KB va ues. r isCOIIl

1 fl h 1or not too large va ues o

KB fo l (100) f th di l

e obtains cross sections w ic a r

he i e WEB approximation.. h haccuracyof th
I b G B t d P Bp 4'

cad. Sci. 41, 653 (1955);
Phys. Rev. 100, 370 (19
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(II C.1)

and the energy independent quantities such as the
charge and mass numbers and the excitation energy.

Thus, while the initial projectile velocity is given byl=g cot—,
2' (II B.102)

( 2Eq~

&A yr)
(Il C.2)and replaces the sum over l; by an integral over 8', i.e.,

and l2, for axed X. This formula may be derived from the tions of the energy of the incident projectile
explicit expressions for the Clebsch-Gordon coeKcient
and the rotation matrix D.' "

If in (48) one further inserts Lsee (96) and (99)j,

(
u) sin- ~, (II Il 1 03) where A i is the projectile mass in units of the proton

mass M, the final relative velocity vf is obtained from
the equation

one obtains immediately the classical expression
(II A.31).

In the case of the magnetic cross section one must in
addition employ the asymptotic expression

with
~mug =E—~E',

AE'= (1+A i/A2) AE.

(II C.3)

(II C.4)

Xg X2 ) 3

lg lg l3

The nuclear mass number is denoted by A2, and hE
represents the excitation energy. Introducing the
parameter

(—1)"-»
~ X,

(II &.104) we may also write
(2li+1) & (13 l2 l] l3 l2 li)

f=AE'/E, (II C.S)

for the Racah coefficient in the limit of large l~, l2, and
l3 with fixed X's. The expression (50) then reduces to
(II A.54) .

In a similar way the classical limit (II A.29) for the
differential cross-section function is obtained from (47)
by employing the further relation

lg l2 l3

l4 ls 'A

( 1)4+i4+4
Di4- 12,ii-i4" (0,8,0), (II 8.105)

L(2l i+1)(2ls+1))'*

with
13(la+ 1)—li (li+ 1)—l2 (lm+ 1)

cos8=
2Di(4+1)4(4+1)]-:

holding for 7i, l2, l8, l4, and 4 large. The formulas (104)
and (105) may be derived from the explicit formulas
for the Racah coefhcients. '4

(2E ~~
I
(1-f)'.

~AiM)
(II C.6)

For the symmetrized parameter 4i defined by (II A.86)
we thus obtain

where EM, is the initial energy (1) expressed in. Mev.
Furthermore, the parameter g (see (II A.1)), for the

initial and final states may be written

z,z, p

2 &10.008 EM, &

nr=n'(1 i) '

(II C.8)

(II C.9)

Z,Z, (1—1)
—

&

=0.07199(1+A i/A 2) 10 "cm, (II C.7)
+Mev

II C. Numerical Results

In this Section we shall give the results of the nu-
merical computations of excitation cross sections and

y distributions based on the formulas derived in the
preceding two Sections. A survey of the approximations
involved in these formulas is contained in Sec. II C.S.

II C.l. Collision I'arameters

The quantum™mechanical excitation and angular dis-
tribution functions are expressed as functions of g; and
$= gf —q;. Since both these parameters depend on the
bombarding energy it is sometimes convenient instead
of q; to use the energy independent parameter
defined by

~=2(n' '—nf ')'

4 (10.0083,E'M,„)&

zz( A, j
For the application of the theoretical expressions it (II C.10)

is convenient to write all parameters involved as func-

~~ E. P. Wigner, Grgppentheorie (Friedrich Vieweg Bz Sohn,
Braunsehweig, Germany, 1931). where the effective energy loss AE' defined by (4) is
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TABr.E II.2. List of numerically evaluated functions. with

Results for

Total cross section

E1, E2, E3, E4,
3IIi M2

E11 E2

Differential cross section

Ei, E2
E3, E4, Mi, 3II2

Angular distribution of
p rays

Ei
E2
Mi

Method Given in

Quantal Table II.5 Fig. II.6

Classical Tables II.7, 8 Fig. II.7
Classical Fig. II.7

Quantal Fig. II.S
Quantal Tables II.9, 10 Fig. II.S

Text

Classical Tables II.3, 4 Figs. II.4, 5

Zg'A g

caq —— $0.07'199(1+A1/A sZ1Zs) '1+' barns
40.03

(II C.16)
&.e.,

2.498.10 'ZisA1 barns () =1)

4.819.(1+At/As) ' barns ()~=2)
Z2

(II C.17)
c@g=' Ag

9.298 10'(1+A,/A s)-4 barns ()i=3)
Z1'Z2'

measured in Mev. The parameter v is related to g; by

Ag
1.794.10'(1+A 1/A s) barns ()1=4).

Z$ Z2

and for P one finds
q;= 2l'&/v, (II C.11)

(II C.12)

The reduced nuclear transition probability, B(EX)
defined by (II 8.21 and 23) Lsee also (II A.13)) is
measured in units of e' (10 '4 cm')"

Similarly, for the magnetic excitations, one obtains

The dependence of $v on t' is given graphically in
Fig. III.10. A convenient expansion of $ in powers of
the energy loss is given by

Z1ZsA1 +E Mev

12.65(EM,„——,'DE'M, )&

5 (hE'q'
X] 1+—( [ + (. (II C.13)

32( E) j
The numerically evaluated excitation functions and

angular distribution functions"" " are given in the
series of tables and figures listed in Table II.2.

II C.Z. Total Cross Sections

The total cross section for excitation of a given level

may be written

0'zX (II C.14)
1

where the partial cross sections are given by (II B.37)
and (II 8.38). Inserting (2) and (7) one obtains, for
the electric excitation,

&E'A CE1EMev (EMev +E Mev)

XB(EX)fbi(r)*., $), (II C 15)
44 K. Alder and A. Winther, CERN report T/KA-AW-1 (1954);

see also reference 88.
er L. C. Biedenharn and C. M. Class, Phys. Rev. 98, 691 (1955)

and 100, 1790 (1955).
K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab

Mat. fys. Medd. 29, No. 19 (1955).
'~ K. Alder and A. Winther, reference 52.
'0 Biedenharn, Goldstein, McHale, and Thaler, Phys. Rev. 101,

662 (1956).' Thaler, Goldstein, McHale, and Biedenharn, Phys. Rev. 102,
1567 (1956).

O'Mi =&MAEMev (EMev +E Mev)

with

c~),=5.888.10 'Zg'

XB(M)i)fsr' (r);, $), (II C.18)

XL0.07199(1+At/As)Z1Zs) '"+' barns (II C.19)

5.888 10 'Zts barns ()t= 1)
(II C.20)

1.136 10 s(1+At/As) ' barns () =2).
Z 2

The reduced transition probabilities B(3EA) defined

by (II 8.17) and (II 8.23) Lsee also (II A.41)) are
measured in units of (eh/2Mc)' (10-'4 cm')"-'

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
4.0

XEI u)

0.580 (2)
2.721 (1)
1.349 (1)
0.693 (1)
3.591 (0)
1.872 (0)
0.980 (0)
0.514 (0)
2.707 (—1)
1.428 (—1)
3.992 (—2)
1.121 {—2)
3.154 (—3)
0.889 (—3)
2.511 (—4)
0.839 (—9)

f~2(k)

0.895 (0)
0.859 (0)
0.729 (0)
0.561 (0)
4.046 (—1)
2.781 (—1)
1.844 (—1)
1.189 (—1)
0.751 (—1)
4.663 (—2)
2.855 (—2)
1.035 (—2)
3.628 (—3)
1.238 (—3)
4.143 (—4)
1.363 (—4)
1.247 (—9)

2.230 (1)
0.828 (1)
3.719 (0)
1.809 (0)
0.905 (0)
4.603 (—1)
2.368 (—1)
1.229 (—1)
0.642 (—1)
3.377 (—2)
0.944 (—2)
2.664 (—3)
0.757 (—3)
2.160 (—4)
0.618 (—4)
2.404 (—10)

TABLE II.3. Classical f functions for E1,E2, and Ml excitations.
The entry is given by a number and the power of ten (in paren-
thesis) by which it should be multiplied. The data are taken from
reference 56.
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The classical treatment of the excitation process
given in Sec. II A leads, after symmetrization of the
cross sections, to expression. s of the same form as (15)
and (18) Lsee (II A.88) and (II A.89)$. The entire
difference between the classical and quantal cross sec-
tions is contained in the f functions, which in the
classical case depend only on P, and correspond to the
limiting values of the quantum-mechanical functions
f(rt, ,g) for rt,—+oo.

In most practical cases the quantal f functions differ
only slightly from the classical limit. It is thus con-
venient to write

(II C.21)

/0

TABLE II.4. Classical f functions for E3, F4, and t)d 2 excitations.
The entry is given by a number and the power of ten (in paren-
thesis) by which it should be multiplied. The data are taken from
reference 56.

0.0
0.2
0.4
0.6
0.8
1.0
1.5
2.0
40

fE3($)

3.797 (—2)
3.532 (—2)
2.723 (—2)
1.736 (—2)
0.956 (—2)
4.722 (—3)
0.593 (—3)
0.565 (—4)
1.398 (—9)

fZ4Q)

2.862 (—3)
2.729 (—3)
2.330 (—3)
1.760 (—3)
1.176 (—3)
0.705 (—3)
1.370 (—4)
1.870 (—5)
1.204 (—9)

fM2 (g)

1.936 (—1)
1.233 (—1)
0.577 (—1)
2.391 (—2)
0.920 (—2)
3.378 (—3)
2.433 (—4)
1.562 (—5)
1.560 (—10)

where fx(() is the classical f function and where
the quantum effects are contained in the correction
factor E~.

The classical f functions have been calculated""
for excitations of order Ei, E2, E3, E4, Mi, and M2
and the results are presented in Tables II.3 and II.4 and
Figs. II.4 and II.5.

The functions were obtained from (II A.31) and
(II A.54) with the orbital integrals Ix„(t7,$) given by
(II A.26). For the evaluation of these integrals, see
Secs. II K.4-6.

The quantal f functions have been computed in the
case of E1"and E2'~—""excitations. "' The function
fEs(rt;, $) is given in Table II.5 and the correction factors
REx(rt;, $) for X= 1 and 2 are illustrated in Fig. II.6.

The fEt and fEs functions have been obtained from
(II 3.48) which for X= 1 reduces to

/0
with

64m'
fEr(rt;, $) = J's;kgbpE',

9
(II C.22)

gpE' ——Q ($1Mt t 1'+()+1)[Mt+, t 1'} (II c.23)
l=o

For X= 2 one obtains

with
f (tl;, $)= rt;rt bo ',

25
(II C.24)

I l I i

05
1 1 1

FIG. II.4. The total excitation cross section functions fx($) in
the classical approximation. In the limit of large values for g;,
the f functions approach those obtained from a classical de-
scription (see Secs. II A.1 and II A.2). The classical f functions
for the lowest electric and magnetic multipole orders are plotted
against the parameter (.The data are taken from reference 56.

3E(E 1)—
b ES—Q 1M' s, t

2(2l —1)

3(1+1)(3+2)

2 (21+3)

l(3+1)(21+1)
iMtt-'i' . (II C.25)

(2t—1)(2t+3)
"The quantum-mechanical calculation of the electric quadru-

pole cross section was first performed for &=0 and for a particular
value of p; by direct numerical integration of the radial matrix
elements by Daitch, Lazarus, Hull, Benedict, and Breit, Phys.
Rev. 96, 1449 (1954).'" )Vote added ~N proof.—Recently, the quantal f function for
M1 excitation has been given by L. C. Biedenharn and R. M.
Thaler (to be published in Phys. Rev.). This reference also con-
tains the coefficient e2 describing the angular distribution of the
y rays from an M1 or mixed &1+82 excitation process.
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~ ~t&
I

.008

.06

.04
~

~
6

.0Z

9

.Of
I

/. 0

gz

~ 006

.004

Fro. ILS.The total excitation cross-section function f@2(t') in the classical approximation. The data are taken from reference 56.
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0.1 0.2 0.3 0.4 0.5 0.6

0.5
1
1.5
2
2.5
3
3.5

5
6
7
8

0.321 0.344 0.307 0.243
0.620 0.614 0.528 0.409 0.295
0.754 0.732 0.624 0.480 0.346
0.812 0.784 0.666 0.512 0.368
0.842 0.810 0.688 0.529 0.380
0.858 0.825 0.700 0.538 0.387
0.869 0.834 0.708 0.545 0.392
0.875 0.840 0.713 0.548 0.395
0.881 0.847 0.719 0.553 0.398
0.886 0.851 0.722 0.556 0.400
0.888 0.854 0.724 0.558 0.401
0.890 0.855 0.726 0.559 0.402
0.895 0.859 0.729 0.561 0.405

0.203 0.1350
0.237 0.1570
0.253 0.1672
0.261 0.1726
0.266 0.1759
0.269 0.1779
0.271 0.1793
0.273 0.1810
0.275 0.1819
0.276 0.1825
0.276 0.1829
0.278 0.1844

0.8 ).0 1.2 1.4 1.6 2.0

TABLE II.5. Total f function for E2 Coulomb excitation. The
total f function for E2 excitation, as obtained from the complete
quantum-mechanical calculation, "' is listed as a function of
q; and (.

order Ei, E2, E3, E4, M1, and M2, are given in
Fig. II.7, and for Ei and E2 excitations also in the
Tables II.7 and II.S.

The quantum corrections to the differential cross
sections are expected to be greater than for the total
cross sections. An indication of the eRect of these cor-
rections is provided by a comparison with the results of
the Born-approximation treatment which corresponds
to the limit rt, = $= 0, and which for E2 excitations leads
to an isotropic distribution of the inelastically scattered
particles4 (see Sec. II E.2).

II.C.4. Angutar Distribution of
De-Excituti on p Rays

The angular distribution of the p rays following
electromagnetic excitation is given by (II B.83).

For E1 excitations the distribution can be written
1
1.5
2
2.5
3
3.5
4
5
6
7
8

0.0553
0.0640
0.0680
0.0702
0.0715
0.0724
0.0730
0.0737
0.0741
0.0743
0.0745
0.0751

0.0244 0.00887
0.0259 0.00939
0.0267 0.00968
0.0272 0.00986
0.0275 0.00996
0.0277 0.01005
0.0280 0.01015
0.0282 0.01021
0.0283 0.01024
0.0283 0.01027
0.0286 0.01035

0.00312
0.00330
0.00340
0.00345
0.00349
0.00352
0.00356
0.00358
0.00359
0.00360
0.00363

0.001130
0.001162
0.001181
0.001194
0.001203
0.001214
0.001221
0.001225
0.001228
0.001238

0.0001287
0.0001306
0.0001319
0.0001328
0.0001339
0.0001345
0.0001350
0.0001353
0.0001363

W(8,)=1+a@'(r);,$)As&'&Ps(cosd, ), (II C.26)

where the A2&') coeS.cients refer to the hypothetical

y~ correlation of Fig. II.2 and may be obtained from

(II A.70). The coeKcients ass' are given by (II B.84)
and (II B.85) which for X= 1 reduce to

The radial matrix elements in (23) and (25) have been
evaluated by the methods described in Sec. II 8.4. The
sum over l must be extended to l 300 for large g; and
small $, while the convergence for large $ is much
more rapid.

II C.3. Differential Cross Sections

The diRerential excitation cross sections are obtained
from (15) and (18) by replacing f(rt;,$) by df(t'), rt, ,p),
where 8 is the deflection angle in the center-of-mass
system )see (IIB.32) and (IIB.33)j. These functions
have so far only been evaluated" in the classical limit
rt,—+eo in which they are equal to the df(r't, $) given by
(II A.29) and (II A.51). The results for excitations of

(i+1)(l+2)

2l+1

6t(l+1)
+ ~H-l, 1 ~E-l, /

2l+1

where bso' is given. by (23).The numerical results" "for
a2~' are shown in Fig. II.S.

In the classical limit g,—+~ or v—+0 the value of
aP'(rt;, P) is equal to aP'($) which is given by )see

TABLE II.6. Normalization for the angular distributions given in Fig. II.7. The absolute values of the classical differential f functions
may be obtained from the relative values given in Fig. II.7 by employing the absolute normalization given in the present table. For
electric excitations, the table gives df/dQ at O= 180', while for magnetic excitation the value given is for O= 90'. The entry is given by
a number and the power of ten by which it should be multiplied.

df&, (180,P)/dn
dfxg (180',t)/dQ
df»(180', P)/dn
df4 (180',()/dQ
df~I (90',P) /dQ
df~2(90', ()/dn

)=00

1.40 (0)
5.58 (—2)
456 (—3)
5.16 (—4)
2.58 (—1)
6.94 (—3)

$ =0.2

5.62 (—1)
3.89 {—2)
3.76 (—3)
4.47 (—4)
1.63 (—1)
5.64 (—3)

$ =0.4

1.95 (—1)
1.96 (—2)
2.36 (—3)
3.20 (—4)
723 (—2)
3.45 (—3)

$ =0.6

6.40 (—2)
8.60 (—3)
1.26 (—3)
1.97 (—4)
2.76 (—2)
177 (—3)

$ =1.0

6.39 (—3)
132 (—3)
2.71. (—4)
5.46 (—5)
3.25 (—3)
3.44 (—4)

$ =2.0

1.66 (—5)
6.76 (—6)
2.51 (—6)
8.39 (—7)
8.97 {—6)
2.30 (—6)

g =4.0

8.41 (—11)
7.37 (—11)
5.58 (—11)
357 (—11)
3.16 (—11)
2.36 (—11)

"A %KB calculation was given in reference 59.
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TABLE II./. Classical differential cross section function for E1 excitation. The table lists dfx&/dQ as a function of a (in degrees) and p.
The entry is given by a number and the power of ten by which it should be multiplied.

0
10
20
30
40
50
60
70
80
90

100
iio
120
130
140
150
160
170
180

0.0

1.838 (2)
4.63O (1)
2.084 (1)
1.194 (1)
o.7s2 (1)
0.558 (1)
4.244 (0)
3.379 (o)
2.792 (o)
2.379 (o)
2.081 (0)
i.s62 (o)
1.7oo (o)
1.581 (0)
1.496 (0)
1.440 (0}
1.407 (0)
1.396 (0)

0.1

0.000
0.595 (2)
2.792 (1)
1.420 (1)
o.s39 (1)
ossi (1)
3.920 (0)
2.954 (o)
2.331 (O)
1.909 (0)
1.613 (0)
1.401 (0)
1.24s (o)
1.131 (O)
1:o47 (o)
0.988 (0)
o.94s (o)
0.925 (0)
0.918 (0)

0.2

0.000
0.783 (1)
1.os2 (1)
0.724 (1)
4.843 (0)
3.373 (0)
2.462 (0)
1.877 (0)
1.485 (0)
1.213 (0)
1.021 (0)
0.881 (0)
0.779 (0)
0.703 (0)
0.648 (0)
o.6os (o}
0.582 (0)
0.567 (0)
0.562 (0)

0.3

0.000
0.827 (0)
3.342 (0)
3.236 (0)
2.52o (o)
1.898 (0)
1.446 {0)
1.127 (o)
0.9o2 (0)
0.740 (0)
0.622 (0)
o.s36 (o)
4.714 (—1)
4.236 (—1)
5.885 (-1)
3.634 (—1)
3.466 (—1)
3.369 (—1)
3.338 (—1)

0.4

0.000
0.791 (—1)
0.976 (0)
1.346 (0)
1.234 (0)
1.o15 (o)
0.813 (0)
0.653 (0)
0.531 (0)
4391 (—1)
3.703 (—1)
3.1ss (—1)
2.79s (—1)
2.503 (—1)
2.286 (—1)
2.131 (—1)
2.O26 (—1}
1.966 (—1}
1.946 (—1)

0.5

0.000
0.714 (—2)
2.709 (—1)
o.s35 (o)
o.ssi (o)
0.524 (0)
4.438 (—1)
5.682 (—1)
3.053 {—1)
2.554 (—1)
2.165 (—1)
1.864 (—I)
1.634 (—1)
1.459 (—1)
1.328 (—1)
1.234 {—1)
1.170 (—1)
1133 (—1}
1121 (—1)

0.6

0.000
0.620 (—3)
o.727 (—1)
2.066 (—1)
2.664 (—1)
2.645 (—1)
2.370 (—1)
2.037 (—1)
1727 (—1)
1.463 (—1)
1.248 (—1)
1.078 (—1)
O.944 (—1)
0.841 (—1)
0.764 (—1}
0.707 {—1)
0.669 (—1}
0.647 (—1)
0.640 (—1)

0.7

0.000
0.525 (—4)
1.904 (—2)
o.779 (—1)
1.196 (—1)
1.3O9 (—1)
1.245 (—1)
1111 (—1)
0.964 (—1)
0.828 ('—1)
o.712 (—1)
0.617 (—1)
o.s41 (—1}
4.814 (—2}
4.360 (—2)
4.026 (—2)
3.799 (—2)
3.667 (—2)
3.623 (—2)

0.8

0 0.000
10 4.365 (—6)
20 4.898 (—3)
30 2.893 (—2)
40 0.529 (—1)
50 0.639 (—1)
6o 0.645 (—1)
70 0.598 (—1)
80 0.532 (—1)
90 4.643 (—2)

100 4.030 (—2)
110 3.507 (—2)
120 3.078 (—2)
130 2.737 (—2)
140 2.473 (—2)
150 2.2/8 (—2)
160 2.145 (—2)
1'/0 2.067 (—2)
180 2.041 (—2)

0.9

0.000
3.573 (—7)
1.243 (—3)
1.059 (—2)
2311 (—2)
3.084 (—2)
3.311 (—2)
3.192 (—2)
2.912 (—2}
2.ss2 (—2)
2.263 (—2)
1,9so (—2)
1.741 (—2)
1.547 (—2)
1.396 (—2)
1.283 (—2)
1.2os (—2)
1.1S9 (—2}
1.144 (—2)

1.0

0.000
2.s9o (—8)
3.117 (—4)
3.839 (—3)
0.999 (—2)
1.474 (—2}
1.684 (—2)
1.690 (—2)
1.582 (—2)
1.427 (—2)
1.264 (—2)
1.112 (—2)
0.980 (—2)
0.871 (—2)
0.784 {—2}
0.719 (—2)
0.674 (—2)
0.648 (—2)
0.639 (—2)

1.2

0.000
1.840 (—10)
1.911 (—S)
4.919 (—4)
1.826 (—3)
3.296 (—3)
4.266 (—3)
4.643 (—3)
4.587 (—3)
42S6 (—3)
3.880 (—3)
3.458 (—3)
3.066 (—3)
2.727 (—3)
2.452 (—3)
2.240 (—3)
2.092 (—3)
2.004 (—3)
1.975 (—3)

1.4

0.000
1.140 (—12)
1.142 (—6)
0.615 (—4)
5.256 (—4)
0.720 (—3)
1.058 (—3)
1.251 (—3)
1.3os (—3)
1.265 (—3)
1.173 (—3)
i.o6o (—3)
0.947 (—3)
0.844 (—3)
0.758 (—3)
0.690 (—3)
0.642 (—3)
0.614 (—3)
0.604 (—3)

1.6

0.000
0.693 (—14)
0.669 (—7)
0.754 (—5)
o.s71 (—4)
1.547 (—4}
2.581 (—4)
3.317 (—4)
3.662 (—4)
3.685 (—4)
3.502 (—4)
3.213 (—4)
2.893 (—4)
2.588 (—4)
2.322 (—4)
2.110 (—4)
1.957 (—4)
1.865 (—4}
1.S34 (—4)

1.8

0.000
4.144 (—1'7)
3.S63 (—9)
0.911 (—6)
0.986 (—5)
3.279 (—5)
0.622 (—4)
o.s69 (—4)
1.015 (—4)
1.062 (—4)
1.035 (—4)
0.965 (—4)
0.877 (—4)
o.7s7 (—4)
o.7o7 (—4)
0.641 (—4)
0.592 (—4)
o.s63 (—4}
0.553 (—4)

2,0

0.000
2.449 (—19)
2.204 (—10)
1.089 (—'7}

1.685 (—6)
0.688 (—5)
1.482 (—5)
2.255 (—5)
2.79o (—s)
3.033 (—5)
3.034 (—5)
2.s77 (—s)
2.639 (—5)
2.380 (—5)
2.137 (—S)
1.934 (—5)
1.784 (—5)
1.692 (—S)
1.661 (—5)

4.0

0.000
0.894 (—41)
0.569 (—22)
4.615 (—17)
2.566 (—14)
0.818 (—12)
0.642 (—11)
2.301 (—11)
o.sii (—1o)
o.s32 (-io)
1.097 (—10)
1.251 (—10)
1.288 (—10)
1.236 (—10)
1.136 (—10)
1.024 (—10)
0.927 (—10)
0.863 (-10)
0.841 (—10)

(II A.75)j
cos—

2
as ($)=—&+ ~

3Ir, tIr, r cost} dt'/

sin'—
2

~ —1

cos-
p

7I

X.
, j jlr, tj'+IIt, rj']

~0
sln—

2

(II C.28)

+a4~'(ri;, $)24&'&I'4(cost'}7), (II C.29)

where the AI, &') coeKcients may be obtained from

For E2 excitations the angular distribution of the y
rays is given by

W(t7 ) = I+ass'(ri t)As&'lEs(costi, )

(II A.70). For some of the most frequently occurring
transitions these coeKcients are given in Table lI.11.
The a coefficients of (29) are tabulated as functions of

j!0

I j
&

l I
l

I

I

1 [ I [ I
j

I
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/=ad-&0

Q9—
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i t l i I i l
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I I
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/=0
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FIG. II.6. Quantum-mechanical corrections to the classical
total f functions. The ratio Rz&(q;, P) between the quantal and
the classical total f function for X=1 and 2 I see (II C.21)j is
plotted as a function of q; ' for different values of g. The data are
taken from references 59, 60, and 61.
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FiG. II,7. Angular 'distribution of the inelastically scattered particles in classical approximation. The
classical differential excitation cross section functions If'(8,P)/dQ are plotted as a function of 8 for fixed
values of $. The electric multipole cross sections are normalized to unity at 180', while the magnetic are
normalized to give a total cross section of unity. The absolute", 'values can be obtained by means of Table
II.6. The data are taken from reference 56.
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TABLE II.8. Classical differential cross section function for E2 excitation. The table lists dfz2/dQ as a function of 0 (in degrees) and f.
The entry is given by a number and the power of ten by which it should be multiplied.

0
10
20
30

50
60
70
80
90

100
iio
120
130
140
150
160
170
180

0.0

1.676 (—1)
1.385 (—1)
1.1/8 (—1)
1.o27 (—1}
0.916 (—1)
0.832 (—1)
0.768 (—1)
0.719 (—1)
0.680 (—1)
0.650 (—1)
0.627 (—1)
0.608 (—1)
0.593 (—1)
0.582 (—1}
o.s73 (—1)
0.566 {—1)
0.562 (—1)
0.559 (—1)
0.558 (—1)

0,1

0.000
1.403 (—1)
1.286 (—1)
1.087 (—1)
O.943 (—1)
o837 (—1)
0.758 {—1)
o.697 (—1)
0.649 (—1)
O 612 (—1)
0.583 (—1)
o.ss9 (—1)
0.541 (—1)
o.sz6 (—1)
0.515 (—1)
0.507 (—1)
o.soi (—1)
4.980 (—2)
4.969 (—2)

0.2

0.000
0.521 (—1)
1.016 (—1)
0.981 (—1)
0.873 (—1)
0.772 (—1)
0.690 (—1)
0.624 (—1)
0.570 (—1)
0.527 (—1)
4.930 (—2)
4.651 (—2)
4.428 (—2)
4.252 (—2)
4.115 (—2)
4.013 (—2)
3.942 (—2)
3.900 (—2)
3.887 (—2)

0.3

0.000
1.110 (—2)
0.578 (—1)
0.716 (—1)
0.694 (—1)
0.634 (—1)
0.570 (—1)
0.513 (—1)
4.643 (—2)
4.234 (—2)
3.895 (—2)
3.617 (—2)
3.391 (—2)
3.21o (—2)
3.068 (—2)
2.961 (—2)
2.887 (—2)
2.844 (—2)
2.829 (—2)

0.4

0.000
1.788 (—3)
2.678 (—2)
4.474 (—2)
4.895 (—2)
4.715 (—2)
4.341 {—2)
3.932 (—2)
3.S49 (—2)
3.210 (—2)
2.9zo (—2)
2.676 (—2)
2.475 (—2)
2311 (—2)
2.182 (—2)
z.o8s (—2)
z.o17 (—2)
1.977 (—2)
1.963 (—2}

0.5

0.000
2.443 (—4)
1.085 (—2)
2.508 (—2)
3.154 (—2)
3.zsi (—2)
3.095 {—2)
2.846 (—2)
2.579 (—2)
2.326 (—2)
2.100 (—2}
1.9os (—2)
1.741 (—2)
1.606 (—2)
1.499 (—2)
1.418 (—2)
1.361 (—2)
1.328 (—2)
1.316 (—2)

0.6

0.000
2.996 (—5)
4.005 (—3)
1.300 (—2)
1.899 (—2}
2.113 (—2)
2.095 (—2)
1.967 (—2)
1.798 (—2)
1.624 (—2)
1.460 (—2)
1.314 (—2)
1.190 (—2)
1.086 (—2)
1.003 (—2)
0.939 (—2)
0.895 (—2)
0869 (—2)
0.860 (—2)

0,7

0.000
3.4O3 (—6)
1.382 (—3)
0.635 (—2)
1.085 (—2)
1.311 (—2)
1.361 (—2)
1.311 (—Z)
1.213 (—2)
1.1oo (—2)
0.988 {—2)
0.884 (—2)
0.794 (—2)
0.718 (—2}
0.657 (—2)
0.609 (—2)
o S76 (—2)
oSS7 (—2),
o.sso (—2)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

0,8

0.000
3.652 (—7)
4.531 (—4)
2.960 (—3)
o.s9s (—2)
0.784 (—2)
0.855 (—2)
0.847 (—2)
0.796 (—2)
0.727 (—2)
o.6s3 (—2)
o.s82 (—2)
o.szo (—2)
466O (—3)
4.224 (—3)
3.888 (—3)
3.6so (—3)
3.509 (—3)
3.462 (—3)

0.9

0.000
3.7so (—8)
1.427 (—4)
1.331 (—3)
3.1S9 (—3)
4.553 (—3)
o.sz3 (—2)
0.534 (—2)
0.510 (—2)
4.700 (—3)
4.232 (—3)
3.769 (—3)
3.345 (—3)
2.979 (—3)
2.678 (—3)
2.445 (—3)
2.280 (—3)
2.181 (—3)
2.148 (—3)

1,0

0.000
3.719 (—9)
4.351 (—5)
0.581 (—3)
1.631 (—3)
2.577 (—3)
3.123 (—3)
3.294 (—3)
3 211 (—3)
2.986 (—3)
2.699 (—3)
2.402 (—3)""(3)
1.879 (—3)
1.677 (—3)
1.519 (—3)
1.407 (—3)
1.340 (—3)
1.318 (—3)

1.2

0.000
3.374 (—11)
3.752 (—6)
1.032 (—4}
4.076 (—4)
0.777 (—3)
1.054 (—3)
1.191 (—3)
1.211 (—3)
1153 (—3)
1.054 (—3)
0.939 (—3)
0.826 (—3)
0.724 (—3)
0.637 (—3)
0.569 (—3)
0521 (—3)
4.918 (—4)
4.822 (—4)

1.4

0.000
2.824 (—13)
2.998 (—7)
1.708 (—5)
0.953 (—4)
2.203 (—4)
3.356 (—4)
4.079 (—4)
4.338 (—4)
4.245 (—4)
3.936 (—4)
3.526 (—4)
3.094 (—4)
2.691 (—4)
2.344 (—4)
2.069 {—4)
1.870 (—4)
1.751 (—4)
1.712 (—4)

1.6

0.000
2.227 (—15)
2.265 (—8)
2.680 (—6)
2.118 (—5)
0.595 (—4)
1.022 (—4)
1.339 (—4)
1.494 (—4)
1.506 (—4)
1.420 (—4)
1.282 (—4)
1.125 (—4)
0.973 (—4)
0.840 (—4)
O. /33 (—4)
0.656 (—4)
0.609 (—4)
0.593 {—4)

1.8

0.000
1.679 (—17)
1.638 (—9)
4.032 (—7)
4.523 (—6)
1.549 (—5)
3.001 (—5)
4 249 ( 5}
4.985 (—5)
0.519 (—4)
4.983 (—5)
4.538 (—5)
3.990 (—5)
3.439 (—5)
2.947 (—5)
2.546 (—5)
2.254 (—5)
2.078 (—5)
2.019 (—5)

2.0

0.000
1.220 (—19)
1.144 (—10)
0.587 (—7)
0.936 (—6)
3.913 (—6)
0.857 (—5)
1.312 (—5)
1.621 (—5)
1,743 (—5)
1.708 (—5)
1.572 (—5)
1.387 (—5)
1.193 (—5)
1.016 {—5)
0.870 (—5)
0.763 (—5)
0.698 (—5)
0.676 (—5)

4,0

0.000
1.750 (—41)
1.134 (—22)
0.929 (—16)
0.518 (—13)
1.643 (—12)
1.269 (—11)
4.434 (—11)
0.950 (—10)
1.477 (—10)
1.842 (—10)
1.964 (—10)
1.869 (—10)
1.640 (—10)
1.364 (—10)
1.106 (—10)
0.904 (—10)
0.779 (—10)
0.737 (—10)

r), and f in Tables II.9 and II.10 and are illustrated as functions of p and v Lsee (10)$ in Fig. II.8.»—s's4 ss

These coeKcients have been computed from the expressions

g E2(~ P) b E2/b E2 (II C.30)

where bP' is given by (25), while

I
3l(/ —1)(l—2) 3 (/+1) (/+2) ('l+3)

b,E'=g, l~~--., ~ 'I'+ l~~+-, ~
'I'

I (2/ —1)' (2E+3)'

l(l+1) (2l—3) (2l+1) (2/+5) 6(/ —1)l(l+1)
ilr(, ,

(-'M „—' cos(~)(g;) ~t s(q,))—
(2/ —1)'(2/+3)' (2/ —1)'

6l(/+1) (/+2)
M~s, i-'M n

—' cos(o-((q,)—~&+s(g,))
(2l+3)'

(II C.31)

"The coe~cients a28, given in references 58 and 59, contain a numerical error responsible for the somewhat irregular behavior.
We are indebted to Dr. L. C. Biedenharn for discussions concerning this point.

6~ A WEB calculation for special values of p; and ( has been given by F. D. Benedict, Phys. Rev. 101, 178 (1956).
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TAnx, z II.9. Gamma-ray angular distribution coeScients op2(sc, e). The coefficient amos which describes the angular distribution
of the gamma rays following E2 Coulomb excitation Lsee (II C.29)g is given as a function of q; and g. The data are taken from ref-
erences 59 and 60.

0.0 0.1 0.2 0.3 0.5 0.6 0.8 1.0 1.2 1.4 2.0

0.0
0.5
1,0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
8.0

10.0
12.0
16.0

0.50
0.20
0.07—0.00—0.02—0.03—0.04—0.04—0.04—0.05—0.05—0.05—0.05—0.05—0.05

2.000 2.000 2.0002.000 2.000 2.000
0.800 1.142 1.325
0.501 0.809 1.002 1.130 1.223 1.285
0.372 0.660 0.843 0.970 1.065 1.132
0.307 0.577 0.758 0.884 0.971 1.046
0.270 0.526 0.707 0.831 0.922 0.993
0.247 0.497 0.673 0.793 0.882 0.956
0.220 0.462 0.633 0.752 0.841 0.909
0.204 0.440 0.606 0.724 0.813 0.878
0.194 0.426 0.589 0.705 0.794 0.859
0.178 0.408 0.569 0.685 0.769 0.838
0.173 0.399 0.557 0.672 0.758 0.823
0.170 0.393 0.549 0.661 0.748 0.813
0.165 0.387 0.540 0. 51 0.735 0.803
0.150 0.361 0.510 0. 19 0.700 0.763

2.000 2.000 2.000 2.000 2.000

1.228 1.290 1.334 1.360
1.144 1.210 1.256 1.290
1.089 1.158 1.206 1.242 1.270
1.053 1.122 1.171 1.208 1.237
1.008 1.075 1.125 1.163 1.192
0.979 1.046 1.095 1.131 1.162
0.959 1.026 1.075 1.110 1.142
0.934 1.000 1.048 1.086 1.116
0.919 0.984 1.030 1.069 1.099
0.908 0.973 1.019 1.057 1.087
0.894 0.959 1.005 1.043 1.072
0.853 0.915 0.961 0.996 1.023

1.279
1.235
1.207
1.185
1.159
1.143
1.130
1.115
1.064

and

16(2/+1) (2/+3) '
9l(l—1)(l—2) (/ —3) 9(/+1) (l+2) (l+3) (/+4)

g E2 l~z s, z-'j'—
l 16(2/ —1)'(2l+1)

9(/ —1)l(l+1)(/+2) (2l+1) 15(l—2) (/ —1)l(l+1)
I~Er'l'+ cog s, t-'M)(-s cos(og(r);) —oi s(ri;))

4 (2l—1)'(2l+3) ' 4 (2/ —1)'(2l+3)

15l(l+1)(/+2) (l+3)
M(+s )

—'Mn —' cos(o )(qr) og+s(r—);))
4(2/ —1)(2l+3) s

105(l—1)l (l+1)(l+2)
Mt+s, t 'M~ s, ~ 'cos(ot+s(q, ) . o~ s(q—;)) . (II C.32)

8 (2/ —1)(2l+1) (2l+3)

The classical limit (rl,—+co or v= 0) is obtained from the formuIa (II A.76) which in the case X= 2 reduces to" "'s

COS—
2

/ "(~)= (llI-I'+ li-I'+llI. .—.I')
0

Snl—
2

(II C.33)

bs" (5)=
COS—

2
(-', l 122 l l/20 j '+s I &2,—2 j 3/20(/22+I2, 2) cosy') tft'))'

S111—
2

(II C.34)

COS—
9 9 9 9 ~05

/4 (5) I l [F22 l

loess

l les —s l + l20(/22+/2, 2) costi — Isa/s, 2 cos2d'
l

d8. (II C.35)
~ p ( 64 16 64 16 32

Slll—
2

« '@he y-ray angular distribution coefEcients of references 11 and 56 contain errors of sign as pointed out by Breit, Kbel, and Benedict
{Phys. Rev. 100, 429 {1955)),who have re-evaluated the distributions for certain values of 5 (see also F. D. Benedict and G. Tice,
Phys. Rev. 100, 1545 (1955)).
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TABLE II.10. Gamma-ray angular distribution coefficient a4s'(v;, p). The coefficient a4ss which describes the angular distribution
of the gamma rays following Z2 Coulomb excitation Lsee (II C.29)j is given as a function of v; and P. The data are taken from refer-
ences 59 and 60.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.6 2.0

0
0.5
1.0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
8.0

10.0
12.0
16.0

+0.0625
+0.016
+0.002

0.000
0.000
0.000
0.000
0.000
0.000—0.001—0.001—0.001—0.001—0.001—0.001

—1.500—0.007
+0.020
+0.026
+0.027
+0.027
+0.027
+0.026
+0.025
+0.025
+0.024
+0.024
+0.023
+0.023
+0.022

—1.500—0.179—0.040—0.006
+0.006
+0.011
+0.014
+0.017
+0.018
+0.018
+0.019
+0.019
+0.019
+0.020
+0.020

—1.500—0.338—0.114—0.054
—. 0.031—0.020—0.013—0.006—0.003—0.001
+0.001
+0.003
+0.004
+0.005
+0.007

—1.500
. —0.463—0.183.—0.101—0.069—0.053—0.043—0.033—0.027—0.023—0.019—0.016—0.013—0.010—0.009

—0.241—0 144—0.104—0.084—0.071—0.058—0.050—0.045—0.039—0.036—0.034—0.031—0.024

—0.291—0.182—0.136—0.112—0.097—0.080—0.071—0.065—0.058—0.053—0.051—0.048—0.039

—1.500 —1.500

—0.368—0.242—0.188—0.159—0.141—0.120—0.108—0.100—0.090—0.084—0.081—0.076—0.064

—0.289—0.229—0.197—0.176—0.151—0.137—0.128—0.117—0.109—0.105—0.100—0.085

—0.324—0.262—0.227—0.205—0.178—0.162—0.151—0.139—0.130—0.)24—0.118—0.101

—0.352—0.288—0.251—0.228—0.199—0.182—0.171—0.157—0.147—0.142—0.135—0.116

—0.309—0.272—0.247—0.218—0.200—0.188—0.173—0.162—0.157—0.149—0.128

—0.303—0.278—0.246—0.221—0.217—0.199—0.185—0.177—0.174—0.146

It is seen from the figures and tables of the a coeK-
clients that the deviations from the classical limit are
considerable even for rather large values of g;.

In the limit of ~-- -0, the curves for v/0 would exhibit
rapid variation and would approach the Born approxi-
mation values which are appreciably diGerent from
those of the classical approximation (see Sec. II E.2).
Since the region of rapid variation corresponds to
q«1 it is outside the domain of Coulomb excitation
experiments.

For Mi excitations the angular distribution of the 7
rays in the classical approximation is given by (see
II A.74)

W(8„)

=1+As�

"&Ps(costi,), (II C.36)

where the deuce may be obtained from (II A.70). It is
noted that for mixed multipole excitations, the y-ray
angular distribution contains additional interference
terms 6 ~

The angular distribution of the y's following other
multipole excitations, as well as the angular distribution
for specified direction of the inelastically scattered pro-
jectile, may be obtained in the classical approximation
from the formulas of Sec. II A.4 using the tabulated
values of the orbital integrals (see Table II.12 and
reference 88).

The polarization of the decay p rays ip obtained by
replacing As&"&Ps(cos8r) in (26), (29), and (36) by the
appropriate expressions which depend also on the
polarization angle f~, and which are given in Sec. II A
Lsee (II A.70) and (II A.78a)j.

II C.5. Survey of Approximations

We here summarize the various effects which have
been neglected in the formulas considered in the earlier
parts of this Section.

'" See reference 62a, where it is also shown that Eq. (36) re-
mains valid in the quantum-mechanical treatment, provided spin
effects are neglected.

a. Relativity effects.—The relativistic treatment of the
excitation process (see Sec. II 8.1) involves a modifica-
tion of the excitation functions, but the correction terms
are at most of order v'/c', where v is the projectile
velocity. The eGect of the projectile spin, which is not
included in (15) and (18), again implies corrections to
the electric excitation cross section of order v'/cs or less,
while the corrections to the magnetic excitations are
of relatively greater signi6cance and may be obtained
from (II 8.30).'"

It is noted that the treatment of the nuclear structure
is fully relativistic, provided the expressions (II 8.16
and 17) for the multipole operators are employed.

b. Screening by the atomic electrons. —The screening of
the nuclear Coulomb 6eld by the atomic electrons gives
rise to a minor modification of the projectile orbit. The
effect is, however, very small, since the distance of
closest approach, 2a, even in heavy atoms and for
proton energies as low as one Mev, is an order of magni-
tude smaller than the radius of the atomic E shell. The
attraction from the electrons implies a small accelera-
tion of the projectiles during their passage to the center
of the atom, which results in a small increase in the
eGective energy in the Coulomb excitation process. This
energy increase amounts to about 10 kev in a heavy
atom (Zs 80). An effect of similar magnitude but
opposite sign results from the vacuum polarization
which implies a small increase of the order of one-half of
a percent in the repulsion between the nucleus and the
projectile at distances of a few times the nuclear radius. e~

There are also various processes by which the pro-
jectile may lose small amounts of energy in traversing
the atom (e.g. , ionization of E, I., shells, or
bremsstrahlung (see Sec. III 8.3)). These effects are
connected with the inQuence of straggling on the
Coulomb excitation yield, and are of minor importance.

c. Attenuation sects in angular distributions, The-
atomic electric and magnetic fields may cause a pre-

er L. L. Foldy and E. Eriksen, Phys. Rev. 95, 1048 (1954).
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0 2 0

A2(»

0.3571

A4(»

1.143

—0,250+0.86606+0.2502
1/2 3/2 1/2

1/2 5/2 1/2 0.2857

—0.2000+1.0148+0.102082
1/2 5/2 3/2

1+a2

0.3810

—0.4354

TABLE II.11. Some y-')r angular correlation coefhcients. The
table gives the y-y angular correlation coefIIcients, "AI,(2), for
values of the spins I;, If, and Iff which may occur especially often
in Coulomb excitation experiments. The excitation process is
assumed to be pure E2 and the de-excitation is assumed to proceed
by mixed Ni and E2 radiation; 82 is the ratio between the in-
tensities of E2 and 3fi gamma radiation, and the sign of 5 is
defined as in Eq. (II A.70).

short as 5.10 " second. ' The excited states involved
in these n-y correlations are expected to have especially
large quadrupole moments (see Sec. V 8.2). It may thus
be concluded that a lower limit to the lifetimes for which
the attenuation eGects may be of significance in Cou-
lomb excitations is of the order 10 "second.

d. Higher order ircteractiors effects. In —Secs. II A and
8, the probability for exciting the nucleus is treated in
first-order perturbation theory. Under most experi-
mental conditions so far studied, the probability for
excitation in a single encounter is very small, and such
a treatment therefore well justified. The inQuence of
higher order e8ects giving rise to multiple excitations is
considered in Sec. II D. Such effects become of special
importance in the case of high projectile charge and
large bombarding energies.

3/2 5/2 3/2

3/2 7/2 3/2

—0.07143+0.36225+0.0364452

1+82

0.2186

—0.1530+0.8845+0.0364i2
3/2 //2 5/2

5/2 9/2 5/2 0.1870

—0.1310+0.8098+0.0085282
5/2 9/2 '//2

—0.0255+0.1472&+0.00607&2
5/2 7/2 5/2

1+82

0.4976

1+9
0.1282

—0.2280

0.4054

1+g2

0.07204

—0.1572

1+82

II D. Higher Order Excitation EGects

In the theory of Coulomb excitation presented, in the
preceding sections, the probability for excitation of the
nucleus was calculated in lowest order perturbation
theory. In most of the experiments which have so far
been performed, this approximation is well justihed
since the excitation probability in a single encounter is
very small compared to unity. Thus, for an E2 excita-
tion with )=0 the excitation probability, in a backward
scattering, is given by [see (II A.2) and (II A.28) and
Table II.S]

P= do g2/dO'g

—0.00597+0.03688+0.0003898'
7/2 9/2 //2

0.3430

1+$2

=207 EM.r'B (E2),
Zg'Z24

(II D.1)

7/2 11/2 7/2

7/2 11/2 9/2

0.1688

—0.1182+0.7628 —0.0064982

0.0500

—0.1231

1+52

0.00454—0.02938+0.0002552
9/2 11/2 9/2

1+52

0.3030

1+52

9/2 13/2 9/2 0.1570 0.03881

cession of the angular momentum vector of the excited
nucleus, giving rise to an attenuation of the angular
anisotropy of the emitted radiation. ' In most cases one
expects the largest eGect to arise from the quadrupole
coupling to the electric held. This coupling may be
especially strong at the interstitial positions reached by
the recoiling nucleus. The conditions are somewhat
similar to those encountered in the n decay of the very
heavy elements, where the o.-y correlations are observed
to be appreciably attenuated" even for lifetimes as

"H. Frauenfelder, Chapter XIX of Beta- and Gamma-Ray
Spectroscopy (edited by K. Siegbahn) (North Holland Publishing
Company, Amsterdam, 1955).

6s See e.g., J.0. Newton, Progress Az NNctear Physics (edited by
0. R. Frisch) (Pergamon Press, London, 1954), Volume 4, p. 256.

where B(E2) is measured in units of e' (10 "cm')'
As an example, one Ands for 6-Mev o. particles on a

target with Z2 ——70 a value for I' of about 0.01 for
B(E2)=5 corresponding to the largest transition prob-
abilities encountered (see Table IV.2).

It is seen, however, that the probability, P, may be-
come appreciable for large bombarding energies, which
may especially be employed with highly charged, pro-
jectiles. "Moreover, even when the probability is small,
higher order eGects may be observed if the direct
transition to the final state is weak.

YVe shall in this section consider the treatment of
higher order eGects based on the classical description
of the projectile orbit, and brieRy discuss a few
applications.

II D.Z. Cross Sections to Second Order

To second order in the charge of the projectile, the
amplitude for a transition from the initial nuclear state

7 Wrhile none of these lifetimes has been directly measured,
they are expected to be similar to those for the first excited states
in Th'" and U"8 inferred from the Coulomb excitation cross
sections (Table IV.2).

7' See G. Breit and J. P. Lazarus, Phys. Rev. 100, 942 (1955).
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i to the final state f is given by

b'I"' =b't(~)+2 b'*~

The summation in (2) is to be performed over all inter-
mediate states s, including the initial and final state.
The frequencies o/i, o/2, and /o, are given by

where b,t is the first-order amplitude (II A.6) and
where'0

o&i ——(E,—E,)/h,

o&g ——(Eg—E,)/I't ,

G& =coi+o/2= (Et—E;)/It,

(II D.4)

b;,y=
(i&&t)' ~

«(f 13'(t) I )

)(g$Np5 dt'(z ISe(t/)
I
i)e'"i". (II D.3)

where the energies of the initial, intermediate, and final
states are denoted by E,, E„and E~, respectively.

In the evaluation of the double integral (3), it is
convenient to introduce the unit step function

We then get

~to e—/(/ —/'& g

e(t t') =——lim dg=
s o+ 2iri „q+ib 0 t(t'. (II D.5)

1 /" dq i t'" b, ,(o&i+q)b, t(o&2 q)—
lim

'

b;, (//&i+q)b, t(o&2 q) = —',b;—, (//&i)b, t (o&&)+—(P dq, (II D.6)
b o+2vi & „q+io 2 g

where (P stands for the principal part of the integral.
In the focal system the b,t are pure imaginary and for electric excitation are given by I see (II A. 14), (II A.16),

and (II A.24)]
4mZie (—1)r' ~'( I; X I/ ) (ir

b f(c/&) = i —'P
I l(I;I15K(EX)III')a-"I i//I —,0 IIi„(v/&, P).

&&tv i/ 2l&, +1 4 —M; t/ Mt)

Thus, the last form of (6) represents a decomposition of b;,t into real and imaginary parts.
Inserting (7) into (6) one obtains the following expression for the amplitude to second order:

4irZie (—1)'"-~'
t I; k Iq q

I L(I, lion(Ek) III,)s», „+2,.],
/c 2k+1 E —M, ~ Mgl

where

(II D.7)

(II D.8)

2x'Zy8
~k»

gg~2 ZXIX2

( 1)& i+i2+I;+Iy+//+//

gXI+X2

(2k+1)'
(I,ll~(»i) III.)

(2lii+1) (2l&,2+1)

Ag )2
x(I.II~(E~2) IIIf) IA, —(~ii~2(i&~+) —~i, —.(l&, ii~2(&&2&)] (II D 8a)

Iy I; I,
We have here employed the relation (II A.6) and have introduced the real functions ni„and P/, „ through the
definitions

and

t'~i ~2 »
&i.(l& h2hg, +) = 2 I l»uil —,0

I »~/2I —,0)I»ui(+, 4)I&2/2(v&/6),./. * &t i t g ~& &2 2 &2
(II D.9)

(Xi X2 kq (v y fir y 1 "dg'
p..&,il 2~ibp) = E I l»i/il —,0 l»g/2I, 0

I

—8
~

I&i/i(vt, (i+/')IX//2(e, b—(). (IID.10)
///2 Et/i t/2 //:J (2 ) (2 ) ir ~ „p'

The two indices refer to the two transitions in the double excitation; thus Pi
——/oia/v, Pi

——/oia/v, and $= )&+$2.
The differential cross section to second order is obtained by inserting (8) into (II A.5 and 4) and may be written

in the form
do =do &'&+do&"&+dai'& (II D.11)

The first term is the first-order excitation cross section (II A.28). The second term represents the interference
between 6rst-order and second-order transitions and receives a contribution only from the imaginary part of (6)
(the real part of (Sa)). Additional terms of the same order of magnitude as the third term in (9) (proportional
to Zi ) may arise from cross terms between first- and third-order terms in the transition amplitude.
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Performing the summation over the magnetic quantum numbers, the two last terms in (11) take the form

(Zie) '
do&"i=(—1)r'+f16msl

I
a'sin ~dQ

&hv) 2

( 1)x+Az+xg
X, &I;[lm(Ex) III,&&I,[lm(Ex,) III,&(I,[lm(», ) [II,&

a"+"i+"2(2li+1) (2X,+1)(2X2+1)(2I;+1)

and

t'Ziel '
do&2i=16+4[

I
a' sin 4—dQ

&Av) 2

XP (—1)"7'i,„f —,0 [I „(i't, $+$)Pi, „(X, li $ $ P), (IID.12)
i2

,&I'[l~(El% i) [II &(I*ll~(E~2) [IIt&&I'[I~(El% i') [II* )&I* fl~(»2') IA&

a"'+""+~~""(2Xi+1)(2li2+1) (2lii'+1) (2l%.2'+1) (2I,+1)

+pig(liili2$ib)6)pJgg(Xi li2 $i $2 ~8)7. (II D.13)

bers as the first-order amplitude (7), the angular distri-
bution to second order is obtained from (II A.80—81)
by the substitution

(I,lf~(») l[I,)S,„~
(I;I[K(»)[[If&Si„+Ti,„. (II D.13a)

II D.Z. Interfereece sects
An interesting case where interference between the

first- and the second-order terms in (2) may become
significant is that in which the intermediate state s is
one of the magnetic substates of the final nuclear level. "
The transition s~f then occurs through the interaction
of the projectile with the quadrupole moment of the
final state.

From (6) and (7) one obtains for the order of mag-
nitude of b;,f [see (II C.7) and (II C.8)7 in the cas= X= 2

(II D.14)

where the quadrupole moment Qr, which is measured
in units of 10 "cm', is related to the reduced matrix
element through [see (II A.18) and (V.32a)7

(
f

Qe= &Ill~(E2) III&
&16m ]

I(2I—1)
X (II D.15)

E (2I+1)(I+1)(2I+3))

If the initial state (ground state) also .possesses a
quadrupole moment (I,~&1), a corresponding effect

Since the summations over the magnetic quantum num-
bers have been performed, the summation index s (or z')
in (12) and (13) refers only to summation over different
energy levels.

Also intermediate levels with energy well above that
of the Anal state may give a significant contribution,
since Pi„ for large $i(= —$2) behaves approximately as

$i ' in contrast to the strong exponential dependence
on $i, which is characteristic of Iq„(pi) and thus also of
ni, „Even .for an intermediate energy transfer (E, E,)—
comparable with, or larger than, the projectile energy,
the above results remain valid provided only that
Ep—E; is small compared to the projectile energy. In
fact, as may be seen in more detail from a quantum-
mechanical treatment, the effective energy loss of the
projectile in the intermediate state is that associated
with those values of Pi+(' which contribute the main
part of the integral in (10), and which are of the
order $/2.

In the summation over the multipole orders in (12)
and (13) the main contribution will usually arise from
the lowest value of X compatible with the spin and parity
selection rules for the nuclear matrix elements.

The coefficients n „idaPnk„needed for the evaluation
of the cross sections (12) and (13) may be calculated
from the classical integrals Ii,„.For li = 2 and positive $,
these are given in Table II.12.72 The I~„ for negative
arguments are obtained by means of (II E.54).

The angular distribution of the y quanta following
Coulomb excitation will also be subject to second-order
corrections. " Since the second-order amphtude (8) has
the same dependence on the magnetic quantum num-

'2 For ) =1, 3, and 4, the Iy„are tabulated in reference 88.
'&reit, Gluckstern, and Russell, Phys. Rev. (subInitted for

publication).
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arises from intermediate transitions to the substates of
this level.

A more detailed calculation has been made for the
particular case I,=O, Ir 2, a——nd pi=(=0.4. For the
differential excitation cross section at 90' one obtains
from (12)

dogp'=dogp'&" [1+1.55Zi 'Zg 'A iEM &Qr]. (II D.16)

Effects of similar order of magnitude are expected in the
angular distribution of the de-excitation p rays. ""

It is of interest that the interference effects con-
sidered are linear in Q and thus provide a means of
determining not only the magnitude, but also the sign
of the quadrupole moment of the excited state. The
present estimates indicate, however, that the effects
become of significance only for high bombarding energies
and thus especially for heavy ions.

II D.3. Dolble Excitutioes

Another important second-order effect is that of a
double E2 excitation leading to a final state which
cannot be reached directly from the ground state by
an E2 excitation. The order of magnitude of the cross
section for such a double excitation may be obtained
from (6) and, provided E,&Er, is given approximately
by [see (II A.2) and (II A.4)j

0@g, s'g sa o@g(I~I, )o a, (Ig~It). (II D.17)

A direct numerical evaluation of (11) for the specific
case I,=O, I,= 2, and Is=4, and for $i ——$g

——)=0 gives

(Zie) 4

«g. &g 0——24.01
KAv&

XB(E2, ~2)B(E2, 2 4), (II D.18)

which corresponds rather closely to (17).
On account of the large values of B(E2) in collective

excitations, the cross section (18) may become appreci-
able for large bombarding energies (see numerical esti-
mates in Sec. V 8.2). Also excitations of higher order
than the second may become feasible. The correspond-
ing cross sections can be estimated in analogy to (17).

The excitation of the I=4 state may also take
place by a direct E4 transition with the cross section
(II A.30). For $i ——gg

——)=0, the ratio of the two cross
sections is found to be

A iZig B(E2,~2)B(E2, 2~4)
=2.i (II D.19)

EM. egB (E4, 0-+4)

If one would employ the single particle estimate
(II A.58) for the B(EX) one would obtain a value of
about 1/3 for the ratio (19) in the case of 20-Mev u
particles. However, if the E2 transitions are of collective
type, the ratio (19) may be several orders of magnitude
larger.

The cross section for the excitation of the I=4 state
also contains an interference term between the direct
E4 transition and the double E2 transition. As an
example the diBerential cross section at 90' has been
evaluated from (12) and (13) for the case $i ——0.2,
$g ——0.4, with the result

(ZigAi B(E2,~2)B(E2, 2~4) q
'* ZigA, B(E2, 0-+2)B(E2, 2—+4)

do'gp'=do'gp ' 1+0 17' i +0.4
4 EM., egB (E4, 0—+4) ) EM, e'B(E4, 0—&4)

(II D.20)

The square root of the reduced transition probabilities
B(EX) is to be taken with the sign of the reduced
matrix elements.

II D.4. Polarization Egects erg Elastic Scatterieg

The virtual excitations also give rise to a modification
of the elastic scattering cross section. ~' ~' Such polariza-
tion effects are especially simple to estimate if the fre-
quencies of the virtual excitations are large compared
to the inverse collision. time ((i———gg))1). Under these
conditions, one may for each position of the projectile
consider the static polarization of the nucleus and
derive the resulting potential which reacts on the
projectile.

Expanding the interaction (II A.8) and (II A.9) in
multipoles [see (II A.10)7 one obtains by a perturbation

74 P. Debye and W. Hardmeier, Physik. Z. 27, 196 (1926).
~s N. F. Ramsey, Phys. Rev. 85, 659 . (1951), and Malenka,

Kruse, and Ramsey, reference 7.
i' Breit, Hull, and Gluckstern, Phys. Rev. 87, 74 (1952).

calculation

Vv. i(r„)=4grZige' P (2K+1) 'r, '" '
X=1

B(EX, i—+z)
(II D.21)

E'—E.
for the potential energy of the projectile, arising from
the nuclear polarization. In obtaining (21) we have
averaged over initial orientations M; of the target
nucleus and summed over M„ thus, the sum over s only
refers to summation over different energy levels.

A similar term in the potential energy may arise from
the polarization of the projectile if this is a composite
nucleus.

The effect on the elastic scattering cross section may
now be obtained by inserting V~, & as a perturbing
potential into the Schroedinger equation for the scatter-
ing process. 7' If the scattering can be treated classically

(il))1), the polarizing effect may also be obtained by
inserting (21) into the classical equations of motion.
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If the target nucleus possesses a spin, additional
eRects on the elastic scattering cross section may arise
from the interaction of the projectile with the static
electric moments of the nucleus. For aligned target
nuclei this interaction gives rise to changes in the cross
section linear in the nuclear moments. This linear term,
however, vanishes when averaged over the orientations

M;, but there remains a second-order term which may
be comparable with the effect of (21).

In most cases, it is to be expected that the principal
polarization eGect arises from the quadrupole inter-
action, on account of the high excitation frequencies
associated with the main part of the dipole oscillator
strength. For many nuclei the most important quadru-

pole excitations have rather low frequencies (see
Chapter V), and. it may then not be possible to consider
the nucleus simply in terms of its static polarizability.
In such cases $&

———$&&1, and it becomes necessary to
treat in more detail the coupled motion of projectile
and nucleus.

II E. Appendices

II E.l. ErEissi ort of Brerrtsstraklgng

The emission of bremsstrahlung in the collision be-
tween the projectile and the nucleus, which constitutes
an important background eGect in the Coulomb excita-
tion experiments (see Sec. III 8.3), may be treated in

close analogy to the nuclear excitation process. The first
theoretical treatments of the bremsstrahlung process
were based on a classical description of the particle
orbit. "The quantum-mechanical theory of the electric
dipole bremsstrahlung was given by Sommerfeld. ~'

The cross section for scattering of the projectile into
the solid angle dQ with emission of a photon with wave
number between q and q+dq is given by )see (II 8.2),
(II 8.9), and (II 8.25)j

of (II 8.7)

The eGect of the nuclear recoil may be taken into ac-
count by replacing ns& with the reduced mass mo and the
multipole moment in (3), which refers to the center of
the nucleus, by the combined moment of projectile and
nucleus with respect to the center of mass. The latter
replacement simply corresponds to the substitution

Zk—k(A k+A2) —"(ZkA 2"+(—1)"Z2A kk$. (II E.4)

The reduction of the matrix element in (3) to radial
matrix elements can be made in complete analogy to
the case of Coulomb excitation Lsee (II 8.45)), and the
resultant cross sections can be derived directly from
(II8.47) and (II 8.48). For the total electric cross
section for emission of a photon in the wave-number
interval dq, one obtains

with

doE ——p do.Ek,
)1=1

(II E.5)

mf'c ef (l%,+1)q"+'
do=

s'h3 o &I lk((2lk+1)!!j'
X f ((&s)~„(E&,tk) (&;)('

+ [(&t)~,(~,t ) [&,) ['}dqd~, (II E.2)

where the multipole moments OR„p,tk) are defined by
(II 8.16) and (II 8.17) by replacing j„by j~.

In the nonrelativistic case, the multipole moments
are given by (II A.13) and (II A.39). For the electric
part of the bremsstrahlung cross section, which is the
most important. , one thus obtains

1 t'~leg Zl e o/ q
&'+ (&+1)

do.E
gr'0 k ) hc o; & lkL(2K+1)!!)'

X )(kg!,r"Fk„(8,y) ~k;) )
dQdq. (II E.3)

mg' vf E.
da=

4x'k4 v, m

e' (cq'
do Ek

———(A k+A g) "LZkA2"+ (—1)"Z2A k")'~ —
~

Ac (v, )

Xg (1 «„kq — j, kd Ok; dgdQ. (IIE.l)
1

and

8g
Xa2(qa)'"+'fEk'(q. $)—, (II E.6)

g

(l; /t
XQ (21+1)(2lf+1)] (

~M/'tf )'. (II E.7)
lsd &o o o)

We have here assumed the nucleus to be infinitely heavy 16(X+1)k;kr
and have neglected the spin of the projectile. The matrix fEkk(rt;, g) = a '" 4

element represents a transition from an initial state lb.[(2'—1)!!$'(2K+1)
with no photons present to a final state with one photon
of multipole order X, p, and parity x. Using the multi-
pole expansion (II 8.4), we obtain from (1) by means

77H. A. Kramers, Phil. Mag. 46, 836 (1923); G. Wentzel, Z.
Physik 27, 257 (1924); see also L. Landau and E. Lifshitz, The
Classical Theory of Iiields (Addison-Wesley Press, Cambridge,
1951),pp. 197 ff.

7' A. Sommerfeld, reference 44, pp. 495 ff.

In these expressions, a is the syInrnetrized distance of
closest approach defined by (II A.86).

The radial matrix elements are defined by (II 8.46)
and can be expressed in terms of hypergeomet. ric func-



COULOMB EXCI TATION 473

tions, as is shown in Sec. II B.4. The bremsslrahlung
matrix elements, however, are more elementary than
the Coulomb excitation matrix elements, since they can
all be expressed, from the monopole matrix elements
(II B.56), through recursion formulas (see, e.g. , IIB.68).

We shall here especially consider the electric dipole
bremsstrahlung, in which case the matrix elements can
b= directly related to the Ej Coulomb excitation matrix
elements. "The connection" is given through the equa-
tion of motion

which leads to

4 r ZyZ2$
180 r,

dt' r'
(II E.8)

or

ZyZ28
(ky I

rYi„ I k;)= — (kr I
r 'Yi„

I lr;) (II E.9)
mph'

ZyZ28
~i, ig~+'=—

4g;gf
u'Mi, ipi '. (II E.10)

(~ s ~.s)s

3 e' (Zi Zs) '
&birr=

2m' $g KAj. A2&

By inserting (9) into (3) and comparing the result with
the Coulomb excitation f function (II B.34), one
obtains~

24f. '(.',~)= .. . f-(~', ~) (»E»)
~Y (~'+~f)'--

The dipole bremsstrahlung cross section thus takes
the form

The relative intensity of consecutive multipole con-
tributions to the bremsstrahlung is at most of the order
(qa)'= [$(v/c)]'. The magnetic multipole contributions
are reduced with respect to the electric ones by a factor
(v/c)'. Thus, in most cases, the electric dipole brems-
strahlung strongly dominates. However, due to the
factor Zi/Ai —Zs/As, the E1 cross section may vanish
for n-particle bombardment on light nuclei. In such
instances, the bremsstrahlung is mainly of electric
quadrupole and magnetic dipole type.

The angular distribution of the bremsstrahlung y
quanta may also be evaluated in a similar way as the
angular distribution of de-excitation p quanta in
Coulomb excitation (see Sec. II A.4 and Sec. II B.5).
For pure electric ) -pole bremsstrahlung, one has the
following angular distribution function

Wk, kf (Q,)

=2 IZ (&r Ir"Y"(OA) I&')D..'(6i) I', (II E 14)
O' P

where the rotation matrix D($) represents the transi-
t,ion amplitude for emission of a 2"-pole photon in the
direction Q~ and with polarization 0.. By the usual
technique of y-y correlation, one obtains from (14)

wk, kr(Q„)= p (kf Ir'Y&,„Ik;)(lr»lr"Yx„' Ik,)~
pp'It:a

kq ( X X kq
XI

E1 —1 0J i. —p, p,
'

X (2k+1)iYs„(Q„). (II E.15)

For X=1, the matrix elements are proportional to the
dipole Coulomb excitation matrix elements, and in this
case one has by comparing with (II A.68) and (II B.82)

( by' dq
X

I I rt frrr(rt, ,$) , (II E.12)—
(Mc) q

Wk, kr(Q„) =1++—,'as„'(8,y,g;,$)Ys, (Q,), (II E.16)

where M is the proton mass, Introducing numerical
values for the constants involved, one obtains [see
(II C.8)j

(Zi Zs'i
do sr=1.225 10 sZisZs'I ——

I

KAi As)

dE,
XA rZM. 'fbi(rt, ,$) barns (II E.13)

where 8 is the photon energy. Jf one inserts for
fzr(rt, ,$) in (12) the exact expression (II E.64), one gets
the bremsstrahlung formula of Sommerfeld. Numerical
values for the f~r function are given in Sec. II C.2."

7' C. J. Mullin and E. Guth, reference 4.
~ See also L. C. Biedenharn, Phys. Rev. 102, 262 (1956); K.

Alder and A. Winther, CERN report TjKA-AK-4 (1955).
'S. Drell and K. Huang, Phys. Rev. 99, 686 (1955) have

evaluated the Sommerfeld expression for the bremsstrahlung in a
specific case by expanding in powers of p Lsee (II E.66l g.

where the a coefficients are those occurring in (II A.66).
If one integrates over all proton directions, one obtains
in the electric dipole case" "

W(8~) = 1+-',aP'(g;, $)I's(cos8r), (II E.1'7)

where 8„is the direction of the p quantum with respect
to the incoming beam of projectiles. The coeScient a2 '
is defined by (II B.84) and (II 8.85) and is given
numerically in Sec. II C.4.

II E.Z. Born Approximation

Under experimental conditions where the Coulomb
repulsion is suSciently strong to prevent the projectile
from entering into the nucleus, the parameter q is large
(see introduction to Chapter II). Although the Born
approximation cannot be applied in such cases, it

~ The angular distribution in the classical treatment has been
considered by G, Wentzel (reference 77).
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one finds, for X/1,

16m'

O.6

04

(Z —1)[(2&+1)!!)'

&&t(~'+~i)"" " (~r—~ )"" ."& (I E 3)

0 05 Z.O

32m' rl;+ rig
ln (II E.24)

FIG. Il.9. Comparison of quantal, classical, and Born approxi-
mation for E2 Coulomb excitation. The total f functions for Z2
Coulomb excitation as given by the quantum-mechanical, classical,
and Born approximation calculations are plotted as functions of
g; for the case of vanishing energy loss ()=0).

=in-i"
"0

jx(Kr)r "+'dr Yi,„(K), (II E.18)

where we have used the expansion

&'(~'—~J) ~ r= z'K ~

=P 4rrij'i(ICr) Yi~(K) Yi~*(8,$) (II E.19)

and denoted the difference between the wave numbers
for the initial and final state by K. The integration over
r in (18) leads to

" 'Y (0A)lk')

J." 'Y),„(K), (II E.20)
(2X—1)!!

nevertheless provides an interesting limit of the general
theory presented above. Moreover, for high energy pro-
jectiles with g«1, some of the Born approximation
results may find application, although under these
circumstances the eGects of the penetration of the pro-
jectile into the nucleus must also be taken into account.

In the Born approximation, the initial and final
scattering states are considered as plane waves and the
matrix element in (II 8.34) thus takes the form

(kr )
r—"-'Yi (e,y) ( k;)

These expressions are expected to coincide with the
exact quantum-mechanical expressions for g; &g~&&1.
A comparison for the case X=2 and )=0 is shown in
Fig. II.9. It is seen that the Born approximation results
deviate appreciably from the exact ones already for
rather small values of q.

As regards the differential cross section given by (21),
it is of interest that the angular distribution is isotropic
in the especially important case of X=2.

For large values of p, the Born approximation greatly
overestimates the excitation cross section. This is associ-
ated with the neglect of the Coulomb repulsion which
implies that the small distances give too large a contri-
bution. Thus, the expressions (23) and (24) also do not
show the adiabatic behavior for large values of f One.
may improve the approximation by introducing a cutoG
in the radial integral (18) for small distances. ' If one
choses this cutoff at the distance of closest approach,
2u, one obtains values for the total cross section in
rather good agreement with the exact theory for small
values of $. However, the differential cross section re-
mains essentially incorrect for g&1.

The angular distribution of the de-excitation
quanta can also be easily evaluated in the Born ap-
proximation. According to (II A.68) and (II 8.82), one
obtains by means of (20)

X k~
—' )X X kg

t,„zi
I (—1)"

(1 —1 0) ~ (li —li Ol

X f
~
Y,„(K)

~

Z'&-'dn (»E.25)
and the differential cross section function [see (II8.34)j
is thus given by~' "

16m
dfzi,= a'" 'k;kr (k; kr (—"—4dQ.

[(»+1)' 3'

where the integration is over all directions of kr. In the
case )=0, the polar angle for K is equal to m/2+i'l/2,

(II E 21) where tl is the deflection angle, and the integral is thus
proportional to [see (22)$

The total cross section function is easily obtained by
integration over the angles. Since

~
k,—kr

~

'= k'+kg' 2k;kr cos8, (II E.22)—
8' R. Huby and H. C. Newns, reference 4.

s

Yx„~ —+—,0
~

(1—cos8)'~ 4 sin@dtl. (II E.26)2' )

The sum over p, can then be evaluated explicitly with
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the result~

2X (X+1)I' (2X—5/2) I'(2X—2)
a Ex

L2&(~+1)—&(&+1)ji'(2X —0/2 —5/2) I'(2l%, +0/2 —2)
(II E.27)

For X=1 one obtains

while for ) =2

functions are in this case spherical Bessel functions and
(II E.28) the matrix element takes the form

aP'= -,'and a4tt' ———' (II E.29) Mz;zg
—"—' ——

It is also of interest to consider the radial matrix
elements in the Born approximation. The radial wave the evaluation of which leads to"

Mz 'zy

t i~+if—X+2q

tktq 'f t'l;+if —X+2 lt —l;—X+1 kt')
(II E 31)2"+' 0 lt, ) )l, it+A+—1q E 2 2 0')

I'(lt+-', )I'l

where F is the ordinary hyper geometric function
(IIE.84) which, in this case, may be expressed by
elementary functions. A special discussion of the radial
matrix elements in the limit of large / is given in
Sec. II E.7.

II E.3. Esccittttiort by Mearts of Eiectrorts

Although the present article is concerned with electro-
magnetic excitations produced by heavy projectiles, we
shall in this paragraph briefly consider the nuclear
excitations by fast electrons. This process has been
treated in the Born approximation" which is expected
to be valid for light target nuclei. %e shall give here an
equivalent treatment which leads to cross sections in a
form analogous to those derived for Coulomb excitation.

I e'"', (II E.32)

where
l
tt) is the spinor and k the wave number of the

electron. It is in this case convenient to perform the
integration over the coordinate r already in the expres-
sion (II 8.8) and afterwards to perform the integration
over the wave number q of the photon. This leads to the
following result for the transition matrix element

The general expressions (II 3.8) and (II 3.25) for
the transition matrix element and the cross section are
equally valid for electron excitations. In the Born
approximation, the wave functions for the scattering
states are plane waves

16m' (Ntlelg;) I
(fl~"'li)= K"ei"+'p (—1)& (IfMfl&(EX~ t ~K) II,M,) —gLxY),„(K)

X (2K+1)!! &t E —s(' E

Il')
(ItMt l5R(MX,——tM, K) l I,M;) LxY),„(K)E'—a

(II E.33)

K=k;—kt, (II E.34)

The wave numbers I and tt represent the momentum and
and energy transfer in the collision and are given by hE

K=
kc

(II E.35)

"A. Erddlyi et at. , Higher Trartscertderttal Fttrtctt'orts (McGraw-.
Hill Book Company, Inc. , New York, 1953), Vol. I, p. 171."P. 401 of reference 40.

For recent experimental results obtained in high energy
electron scattering, see J. H. Fregeau and R. Hofstadter, Phys.
Rev. 99, 1503 (1955)."L.I. Schiff, Phys. Rev. 96, 765 (1954), which also contains
references to earlier work.

The operator L& is deined by (II A.35) and operates
on K. In the derivation of (33), we have used the
identities

e"'L(i ~(qr) Y»(fthm)) ~'r

= 2~'t', t'q'tt (q—K)Ltr Yy (I), -(II E.36)
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e'*'vXL(j.(q.)F»(&,S))~"

and similar relations, one obtains

da= P du»+P do~y, (II E.40)

+B(ZX,E)V,(e) dn, (II E.41)

( e y
' 4n-(X+1) E'"

d~3ri, = (
—

f!hc& X[(2K+1)!!7'k;2
X p„jz(Er) Yz„(0,@)dr. (II K.38)

XB(ME E)Vr(i7')dQ. (II E.42)
In the limit E—+0, this operator approaches the moment
(II A.11).

While the multipole moments 5K(EX) and DR(3D,)
vanish for X=O, the moment (38) also gives rise to
electric monopole transitions. "

The differential cross section (II 8.25) is now easily
obtained by performing the summation over the electron
spin indices and the nuclear magnetic quantum num-
bers. Using the identity

Q (k,"KXLirY»(K)) (kf KXLrrF»(K))*

The reduced nuclear transition probabilities B(X,E) are
given by (II 8.23) in. terms of the multipole matrix
elements involved in (33). The dimensionless functions
Vz, (8) and Vr(6) are given by

2k 2+2k '+4m'c'/h' —a' —E'
VJ.=k;kf (II E.43)

(k '+kg' —z')E' —2(k; K)(kr K)
Vg=k;kq (11K.44)

E2 (E2 g2) 2
X (X+1)(2K+1)

[E'k; kq —(k,"K)(kr K)7, (II K.39)
Sm and may also be expressed in terms of k;, ky, and 8 as

=2ir'ii' 'q '8(q —E)KXLxF»(K). (II E.37)
where

The nuclear transition operators BR(EX,y,E) and
BR(MX,p,E) are defined by (II 8.16) and (II 8.17), f e ) s 4ir(X+1) E'" X

where ~ is to be replaced by E. Whe'reas in the Coulomb do'»=
~

I BX'&~E)Vr (+)
&hc X~~2X~1~~~~' k' X~1excitation the wave number dependence of the multi- [( + J 7 ' +

pole moments is usually unimportant, since (~ED&&1),
the E' dependence of the nuclear moments in (33) is
essen. tial. The last term in (33) arises from the multipole
expansion of the instantaneous Coulomb interaction,
and the transition operator involved is defined by

5R(CX,p,E)= (2K+1)!!E"

V,(a) =

Vr(8) =

yg2c2 k . kf K2

4 + + +2 cos8
k'k;kf kf k, k;kg

)k; kf
(
—+——2 cosa j

(kf k; )
(k'l ' (krl "' (k' kf1 ( k' kf

i

—
i + i

—
i +4—

i

—+—
i
—2i 2—+2— i

cos8+2 cos'0
(kr) (k;) k;kr Kkf k;) 0 kr k; k,kr)

~k; k& y k, kr
i
—+—2 cos8

i

—+——2 cos8
Kkr k; ) kr k; k;ky

(II E.45)

(II E.46)

It is noted that the angular dependence of the cross
sections is contained not only in the functions VL, and
Vp and in the factor E'", but also in the nuclear transi-
tion probabilities.

the radial matrix elements in the quantum-mechanical
treatment [see (II 8.100) and Table II.17.

In this paragraph, we shall discuss some properties
of these functions, which are given by the integral

IIE.4. Classical Orb@a/ Jetegrals

The orbital integrals I»(8$) [defined by (II A.26)7
are the basic functions in the classical theory of Cou-
lomb excitation. In addition they provide an approxi-
mation, valid for p or l large compared with unity, for

(Q $)
— et)(0 81Qhtll+w)'~ ~

[coshic+ a+i (e' 1)' sinhw—7»
X dry, (II E.47)

(e coshre+1')'+&
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with

sin(8/2)
(II E.48)

Values of I),„may be obtained directly by a numerical
integration of (47). However, due to the oscillations of
the integrand, which are especially pronounced for
large $, it is convenient to translate the path of integra-
tion by an amount of i(s./2), whereby on.e obtains

fi sinhw+s —(s' —1)'* coshw)s
(g $) e

—(w/2) S ~ e
—$c coshwec)w Av.

(is sinhw+1) "+s
(II E.49)

Numerical values of I&,„(i't,$) calculated in, this way are
given in Table II.12 for X= 2 and for X= 1, 3, and 4 in
reference 88.

A series representation of the classical integrals can

be obtained by performing the limiting process q—+~
in the radial matrix elements. For the integrals with
ti= —X one gets directly from (II8.58) by a simple
confluence Lsee (II E.105))

e~- [rg+ig)(s
), (8,$) =2" sin"—exp —

$~
———+cot—

~
@s(—2l),+1, —X+1—i$, X+—1+i); s, s*)

2 E2 2 2j (2l),—1)!

+2 Re[e &I'( X i—$)s"—+'&4s( X'+1—+i), X+1+i), X+—1+i);s, s*))1, (II E.50)

with

s=—
(

cot i —)=e '&els) (II E.51)

2 scn—
2

I, ,Q,))= (-1)he--t'I, ,(—8, t). (II E.52)

The integrals with ~ts ~
WX can be obtained from the

expression (II 8.62) by inserting the expansion of the
function Fs in terms of Fs functions (IIE.104) and
(II E.97) and then performing the confluence. In this
way, one obtains, however, a nonterminating series of
+s functions (see reference 45). A more convenient form
is obtained by means of the recursion formulas for the
orbital integrals. These may be derived from the recur-
sion relations for the radial matrix elements (see Sec.
II 8.4) by performing the limit q~~. From (II 8.72)
one thus obtains the following relation

2$ 8 (c)I s BI,—Iso(8,$) =2 tan' —
~

— ~+$(Iss+Is, s)
3 2 ( 88 88 j

We have here used the relation (II 8.100) between the
radial matrix elements and the classical integrals, and
the limiting formula (II 8.102). The conQuent Appell
function %s is defined in (II E.105). The integral with
ti=X is given by (II 8.59) which leads to the relation

possess the symmetry property

(II E.54)

which follows directly from (47).
For (=0, the integrals may be evaluated in terms of

elementary functions (see Sec. II E.6).
In the limit of $»1, the integrals decrease exponen. -

tially, rejecting the adiabatic character of the excitation
process, and the resultant f functions contain the factor
e ~&. More detailed expressions appropriate to this
limit have been obtained by the method of steepest
descent. '

As a function of 8 or e the classical integrals have
symmetry properties of the type (52). For 8=s- (or
c=1), the orbital integrals are independent of p. For
8&(1 (s»1), the Iq„are simply related to the integrals
for straight line orbits, as is discussed in Sec. II E.7.

II E.5. Electric Dipole Excitatior)s

For X=1, the classical integrals can be expressed in
terms of Hankel functions. "5 By a partial integration,
one may write (49) in the form

]e—(s/s) f

(y ()— I e
—$c coshw+s$w

("-1)'
)& (i sinhw+sW (s' —1)'* coshw)dw, (II E.SS)

which, by means of the integral representation

)r

+~ tall' —tan —~(Iss—Is, s). (IIE.53)
2 2j

E,(s) =
"0

~
—z cosht+vfd] (II E.56)

"K.Alder and A. Winther, Kgl. Danske Videnskab. Selskab
Mat. tys. Medd. 31, No. 1 (1956).

As a function of the parameter P the classical integrals
' L. Landau, reference 1."G. Wentzel, Z. Physik 27, 257 (1924).
' See Vol. II, p. 82 of reference 84.
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TABLE II.12. The classical orbital integrals for E2 Coulomb excitation. The table lists the values of the classical orbital integrals
Is„(8 f). The first column gives the deflection angle 8 in degrees. The second column gives the values of X and p (X=2 for all the integrals
listed). The subsequent columns give the values of I» for the ( value indicated; these entries are given in the form of a number followed
by the power of ten by which it should be multiplied. The data are taken from reference 88.

$ =0.0 $ =0.1 $ =0.2 $ =0.3 $ =0.4

10 2.2
2.0
2.—2

5.064 (—3)
1.332 (—2)
5.064 (—3)

8.675
6.505
1.195

(—4)
(—3)
(—2)

1.895
2.280
7.765

(—4)
(—3)
(—3)

4.425
7.311
3.637

(—5)
(—4)
(—3)

1.069
2.245
1.468

(—5)
(—4)
(—3)

2.637
6.716
5.442

20' 2.2
2.0
2.—2

2.010 (—2)
4.687 (—2)
2.010 (—2)

7.251
3.417
4.063

(—3)
(—2)
(—2)

2.957
2.040
4.092

(—3)
(—2)
(—2)

1.257 (—3)
1137 (—2)
3.206 (—2)

5.467
6.111
2.217

(—4)
(—3)
C
—2)

2.413
3.211
1.423

(—4)
(—3)
(—2)

30'

40'

2.2
2.0
2.—2

2.2
2.0
2.—2

4.466
9.323
4.466

7.799
1.471
7.799

(—2)
(—2)
(—2)

(—2)
(—1)
(—2)

2.117
7.628
7.763

4.290
1.268
1.217

(—2)
(—2)
(—2)

(—2)
(—1)
(—1)

1.080
5.381
8.538

2.466
9.683
1.359

(—2)
(—2)
(—2)

(—2)
(—2)
(—1)

5.658
3.582
7.699

1.443
7.022
1.291

(—3)
(—2)
(—2)

(—2)
(—2)
(—1)

3.013
2.309
6.242

8.538
4.942
1.119

(—3)
(—2)
(—2)

(—3)
(—2)
(—1)

1.621
1.457
4.737

5.089
3.410
9.142

(—3)
(—2)
(—2)

(—3)
(—2)
(—2)

50' 2.2
2.0
20 2

1.191
2.048
1.191

(—1)
(—1)
(—1)

7.214 (—2)
1.817 (—1)
1.716 (—1)

4.482 (—2)
1.451 (—1)
1.904 (—1)

2.815 (—2)
1.106 (—1)
1.843 (—1)

1.779
8.192
1.647

(—2)
(—2)
(—1)

1.130
5.955
1.397

(—2)
(—2)
(—1)

60' 2.2
2.0
2.—2

1.667
2.636
1.667

(—1)
(—1)
(—1)

1.083 (—1)
2.380 (—1}
2.258 (—1)

7.117 (—2)
1.957 (—1)
2.468 (—1)

4.700
1.539
2.401

(—2)
(—1)
(—1)

3.113 (—2)
1.178 (—1)
2.176 (—1)

2.067 (—2)
8.858 (—2)
1.881 (—1)

70' 2.2
2.0
20 2

2.193
3.215
2.193

(—1)
(—1)
(—1)

1.505
2.938
2.826

(—1)
(—1)
(—1)

1.033
2.463
3.035

(—1)
(—1)
(—1)

7.093 (—2)
1.980 (—1)
2.944 (—1)

4.8'/0 (—2)
1.551 (—1)
2.682 (—1)

3.344
1.193
2.340

(—2)
(—1)
(—1)

80' 2.2
2.0
2.—2

2./55 (—1)
3./70 (—1)
2.755 (—1)

1.977
3.475
3.402

(—1)
(—1)
(—1)

1.406 (—1)
2.955 (—1)
3.586 (—1)

9.966 (—2)
2.413 (—1)
3.456 (—1)

7.043 (—2)
1.920 (—1)
3.147 (—1)

4.969 (—2)
1.502 (—1)
2.755 (—1)

90'

100'

2.2
2.0
2.—2

2.2
2.0
2.—2

31333
4.292
30333

3.912
4.772
3.912

(—1)
(—1)
(—1)

(—1)
(—1)
(—1)

2.485 (—1)
3.980 (—1}
3.968 (—1)

3.016 (—1)
4.446 (—1}
4.507 (—1)

1.823 (—1)
3.420 (—1)
4.106 (—1)

2.2/4 (—1)
3.850 (—1)
4.580 (—1)

1.327
2.825
3.922

1.694 (—1)
3.208 (—1)
4.329 (—1)

9.609 (—2)
2.27S (—1)
3.558 (—1)

1.253 (—1)
2.608 (—1)
3.904 (—1)

6.934 (—2)
1.801 (—1)
3.114 (—1)

9.219 (—2)
2.083 (—1)
3.406 (—1)

2.2
2.0
2.—2

4.473
5.205
4.473

(—1)
(—1)
(—1}

3.555 (—1)
4.866 (—1)
5.002 (—1)

2.746 (—1)
4.239 (—1)
4.992 (—1)

2.089 (—1)
3.556 (—1)
4.665 (—1)

1.575 (—1)
2.911 (—1)
4.176 (—1)

1.179
2.342
3.627

(—1)
(—1)
(—1)

120' 2.2
2.0
2. 2

5.000
5.586
5.000

(—1)
(—1)
(—1)

4.086
5.236
5.439

(—1)
(—1)
(—1)

3.227
4.583
5.333

(—1)
(—1)
(—1)

2.504 (—1)
3.864 (—1)
4.925 (—1)

1.920 (—1)
3.180 (—1)
4.372 (—1)

1.460 (—1)
2572 (—1)
3.773 (—1)

130' 2.2
2.0
20 2

5.476 (—1)
5.913 (—1)
5.4'/6 (—1)

4.594 (—1)
5.554 (—1)
5.805 (—1)

3.705
4.878
5.593

(—1)
(—1)
(—1)

2.926 (—1)
4.130 (—1)
5.101 (—1)

2.279 (—1)
3.412 (—1)
4.487 (—1)

1.758 (—1)
2.771 (—1)
3.845 (—1)

140' 2.2
2.0
2.—2

5.887
6.182
5.887

(—1)
(—1)
(—1)

5.063
5.817
6.088

(—1)
(—1)
(—1)

4.165
5.122
5.766

(—1)
(—1)
(—1)

3.345
4.349
5.192

(—1)
(—1)
(—1)

2.645
3.605
4.522

(—1)
(—1)
(—1)

2.067
2.937
3.845

(—1)
(—1)
(—1)

150' 2.2
2.0
2.—2

6.220
6.393
6.220

(—1)
(—1)
(—1)

5.479
6.022
6.282

4.593 (—1)
5.314 (—1)
5.849 (—1)

3.748
4.522
5.199

3.005 (—1)
3.756 (—1)
4.480 (—1)

2.379
3.067
3.777

2.2
2.0
20 2

6.466 (—1)
6.545 (—1)
6.466 (—1)

5.828
6.170
6.381

(—1)
(—1)
(—1)

4.976
5.451
5.840

(—1)
(—1)
(—1)

4.124 (—1}
4.646 (—1)
5.122 (—1)

3.351
3.865
4.367

(—1)
(—1)
(—1)

2.684 (—1)
3.161 (—1)
3.647 (—1)

170'

180'

2.2
2.0
2.—2

2.2
2.0
2.—2

6.616
' 6.636

6.616

6.667
6.667
6.667

(—1)
(—1)
(—1)

(—1)
(—1)
(—1)

6.101
6.258
6.383

6.288
6.288
6.288

5.303 (—1)
5.534 (—1)
5.743 (—1)

5.561
5.561
5.561

4.460
4.720
4.969

4.745
4.745
4.745

(—1)
(—1)
(—1)

3.670 (—1)
3931 (—1)
4.188 (—1)

3.953
3.953
3.953

2.973
3.218
3.465

3.237
3.237
3.237
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TABLE II.12.—Continued.

$ =0.6 $ =O. l ( =0.8 $ =0.9 $ =1.0 $ =1.2

10' 2.2
2.0
20 2

6.598
1.975
1.908

(—7)
(—5)
(—4)

1.668 (—7)
5.739 (—6)
6.438 (—5)

4.250
1.652
2.110

(—8)
(—6)
(—5)

i.o9o (—8)
4.724 (—7)
6.765 (—6)

2.807
1.343
2.131

( 9)
(—7)
(—6)

1.886
1.071
2.031

20' 2.2
2.0
2 0 2

1.077 (—4)
1.661 (—3)
8.685 (—3)

4.841 (—5)
8.496 (—'4)
5.117 (—3)

2.190 (—s)
4.309 (—4)
2.936 (—3)

9.959 (—6)
2.171 (—4)
1.650 (—3)

4.546
1.088
9.119

(—6)
(—4)
(—4)

9.56'?
2.696
2.681

(—7}
(—5)
(—4)

30' 2.2
2.0
2 t 2

8.795
9.064
3.438

(—4)
(—3)
(—2)

4.799
5.578
2.415

(—4)
(—3)
(—2)

2.631 (—4)
3.404 (—3)
1.655 (—2)

1.448 (—4)
2.064 (—3)
1.113 (—2)

7.997
1.245
7.368

(—5)
(—3)
(—3)

2.457 (—5)
4.473 (—4)
3.114 (—3)

40' 2.2
2.0
2. 2

3.050 (—3)
2.321 (—2)
7.174 (—2)

1.836 (—3)
1.563 (—2)
5.464 (—2)

1.109 (—3)
1.044 (—2)
4.068 (—2)

6.717
6.932
2.975

(—4)
(—3)
(—2)

4.079 (—4)
4.577 (—3)
2.144 (—2)

1.514 (—4)
1.971 (—3)
1.076 (—2)

50' 2.2
2.0
20 2

7.203
4.270
1.142

(—3)
(—2)
(—1)

4.604
3.031
9.080

(—3)
(—2)
(—2}

2.953 (—3)
2.134 (—2)
7.069 (—2)

1.894
1.493
5.412

(—3)
(—2)
(—2)

1.219 (—3)
1.039 (—2)
4.088 (—2)

5.063
4.972
2.257

(—4)
(—3)
(—2)

60' 2.2
2.0
20 2

1.375 (—2)
6.570 (—2)
1.572 (—1)

9.164 (—3)
4.824 (—2)
1.281 (—1)

6.114 (—3)
3.514 (—2)
1.024 (—1)

4.084 (—3)
2.543 (—2)
8.054 (—2)

2.731 (—3)
1.831 (—2)
6.254 (—2)

~ 1.224 (—3)
9.368 {—3)
3.658 (—2)

70' 2.2
2.0
2. 2

2.298 (—2)
9.053 (—2)
1.980 (—1)

1.579 (—2)
6.803 (—2)
1.636 (—1)

1.085
5.072
1.328

(—2)
(—2)
(—1)

7.464 (—3)
3.757 (—2)
1.061 (—1)

5.134 (—3)
2.768 (—2)
8.384 (—2)

2.432
-1.483
5.083

(—3)
(—2)
(—2)

80' 2.2
2.0
2.—2

3.502
1.159
2.345

(—2)
(—1)
(—1)

2.466
8.853
1.952

(—2)
(—2)
(—1)

1.735 (—2)
6.710 (—2)
1.598 (—1)

1.221 (—2)
5.053 (—2),
1.290 (—1)

8.583 (—3)
3.785 (—2)
1.030 (—1)

4.242 (—3)
2.096 (—2)
6.383 (—2)

90' 2.2
2.0
2.—2

4.991
1.407
2.654

(—2)
(—1)
(—1)

3.586
1.088
2.217

(—2)
(—1)
(—1)

2.572
8.350
1.823

1.843 (—2)
6.364 (—2)
1.480 (—1)

1.319
4.825
1.188

(—2)
(—2)
(—1)

6.748 (—3)
2.737 (—2)
7.464 (—2)

100' 2.2
2.0
2. 2

6.757
1.643
2.901

(—2)
(—1)
(—1)

4.938 (—2)
1.282 (—1)
2.424 (—1)

3.601
9.928
1.996

(—2)
(—2)
(—1)

2.621
7.637
1.623

(—2)
(—2)
(—1)

1.905
5.842
1.307

(—2)
(—2)
(—1)

1.002
3.373
8.270

(—2)
(—2)
(—2)

110' 2.2
2.0
2.—2

8.781
1.859
3.0'?9

(—2)
(—1)
(—1)

6.515
1.462
2.569

(—2)
(—1)
(—1)

4.818
1.140
2.114

(—2)
(—1)
(—1)

3.555
8.827
1.719

(—2)
(—2)
(—1)

2.617
6.799
1.385

(—2)
(—2)
(—1)

1.411
3.979
8.786

(—2)
(—2)
(—2)

120' 2.2
2.0
2. 2

1.103 (—1)
2.054 (—1)
3.189 (—1)

8.294
1.623
2.652

(—2)
(—1)
(—1)

6.213
1.272
2.176

4.639
9.905
1.767

(—2)
(—2)
(—1)

3.454
7.669
1.422

(—2)
(—2)
(—1)

1.903 (—2)
4.534 (—2)
9.014 (—2)

130' 2.2
2.0
2 I 2

1.346 (—1)
2.222 (—1)
3.232 (—1)

1.025
1.763
2.675

(—1)
(—1)
(—1)

7.765
1.388
2.188

(—2)
(—1)
(—,1)

5.861
1.085
1.771

4.410
8.431
1.422

(—2)
(—2)
(—1)

2.477
5.024
8.980

(—2)
(—2)
(—2)

140' 2.2
2.0
2 0 2

1.602
2.362
3.210

(—1)
(—1)
(—1)

. 1.234
1.880
2.643

(—1)
(—1)
(—1)

9.447
1.484
2.151

(—2)
(—1)
(—1)

7.202
1.164
1.735

(—2)
(—1)
(—1)

5.470
9.071
1.388

(—2)
(—2)
(—1)

3.126
5.437
8.717

(—2)
(—2)
(—2)

150' 2.2
2.0
2. 2

1.865
2.472
3.131

(—1)
(—1)
(—1)

1.451
1.972
2.561

(—1)
(—1)
(—1)

1.122 (—1)
1.560 (—1)
2.074 (—1)

8.632 (—2)
1.226 (—1)
1.664 (—1)

6.613 (—2)
9.578 (—2)
1.326 (—1)

3.840 (—2)
5.765 (—2)

.8.264 (—2)

160' 2.2
2.0
2 0 2

2.127 (—1)
2.ss2 (—1}
3.000 (—1)

1.671
2.039
2.437

(—1)
(—1)
(—1)

1.304 (—1)
1.615 (—1)
1.961 (—1)

1.012
1.2'?1
1.565

(—1)
(—1)
(—1)

7.813 (—2)
9.945 (—2)
1.240 (—1)

4.605
6.002
7.665

(—2)
(—2)
(—2)

170' 2.2
2.0
2.—2

2.380
2.600
2.825

(—1)
(—1}
(—1)

1.887
2.079
2.278

(—1)
(—1)
(—1)

1.485
1.649
1.821

1.162 (—1)
1.298 (—1)
1.444 (—1)

9.036
1.017
1.138

(—2)
(—1)
(—1)

5.398 (—2)
6.146 .{—2)
6.962 (—2)

180' 2.2
2.0
2. 2

2.616
2.616
2.616

(—1)
(—1)
(—1)

2.092
2.092
2.092

(—1)
(—1)
(—1)

1.660
2.660
1.660

(—1)
(—1)
{—1)

1.308
1.308
1.308

1.024 (—1)
1.024 (—1)
1.024 (—1)

6.194 (—2)
6.194 (—2)
6.194 (—2)
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TABLE II.12.—Continled.

10'

20'

30'

50'

60'

70'

80'

90'

100'

110'

120'

130'

140'

150'

160'

170'

180'

2.2
2.0
2. 2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

2.2
2.0
2.—2

$ =1.4

1.282 (—11)
8.426 (—10)
1.858 (—8)

2.034 (—7)
6.595 (—6)
7.587 (—5)

7.613 (—6)
1.587 (—4)
1.269 {—3)

5.652 (—5)
8.377 (—4)
5.215 (—3)

2.113 (—4)
2.348 (—3)
1.206 (—2)

5.505 (—4)
4.732 (—3)
2.o73 (—2)

1.154 (—3)
7.842 (—3)
2.991 (—2)

2.096 (—3)
1.145 (—2)
3.847 (—2)

3.443 (—3)
1.531 (—2)
4.565 (—2)

5.254 (—3)
1.920 (—2)
5.102 (—2)

7.569 (—3)
2.296 (—2)
5.440 (—2)

1.042 (—2)
2.643 (—2)
5.5S5 (—2)

1.3so (—2)
2.95O (—2)
5.551 (—2)

1.77o (—2)
3.211 (—2)
5.365 (—2)

2.2O6 (—2)
3.418 (—2)
5.056 (—2)

2.680 (—2)
3.569 (—2)
4.654 (—2)

3.181 (—2)
3.660 (—2)
4.190 (—2)

3.691 (—2)
3.691 (—2)
3.691 (—2}

$ =1.6

8.788 (—13)
6.566 (—11)
1.651 (—9)

4.355 (—8)
1.598 (—6)
2.086 (—5)

2.374 (—6)
5.574 (—5)
5.031 (—4)

2.122 (—5)
3.527 (—4)
2.463 (—3)

8.856 (—5)
1.098 (—3)
6.284 (—3)

2.481 (—4)
2.366 (—3)
1.148 (—2)

5.478 (—4)
4.105 (—3)
1.720 (—2)

1.035 (—3)
6.189 (—3)
2.269 (—2)

1.755 (—3)
8.473 (—3)
2.735 (—2)

2.746 (—3)
1.082 (—2)
3.086 (—2)

4.044 (—3)
1.310 (—2)
3.307 (—2)

5.67o (—3)
1.523 (—2)
3.400 (—2)

7.637 (—3)
1.713 (—2)
3.375 (—2)

9.942 (—3}
1.874 (—2)
3.251 (—2)

1.256 (—2)
2.003 (—2)
3.048 (—2)

1.545 (—2)
2.o97 (—2)
2.787 (—2}

1.854 (—2)
2.154 (—2)
2.489 (—2)

2.173 (—2)
2.173 (—2)
2.173 (—2)

$ =1.8

6.068 (—14)
5.078 (—12)
1.433 (—10)

9.385 (—9)
3.844 (—7)
5.612 (—6)

7.440 (—7)
1.944 (—5)
1.953 (—4)

7.996 (—6)
1.473 (—4)
1.140 (—3)

3.723 (—5)
5.093 (—4)
3212 (—3)

1.121 (—4)
1.174 (—3)
6.235 (—3)

2.604 (—4)
2.131 (—3)
9.721 (—3)

5.112 (—4)
3.319 (—3)
1.315 (—2)

8.932 (—4)
4.651 (—3)
1.612 (—2)

1.433 (—3)
6.041 (—3)
1.838 (—2)

2.153 (—3)
7.412 (—3)
1.981 (—2)

3.074 (—3)
8.700 (—3)
2.041 (—2)

4.206 (—3)
9.856 (—3)
2.025 (—2)

5.552 (—3}
1.O84 (—2)
1.945 (—2)

7.104 (—3)
1.163 (—2)
1.816 (—2)

8.838 (—3)
1.221 (—2)
1.651 (—2)

1.072 (—2)
1.256 (—2)
1.464 (—2)

1.268 (—2)
1.268 (—2)
1.268 (—2)

$ =2.0

4.213 (—15)
3.904 (—13)
1.222 (—11)

2.032 (—9)
9.193 (—8)
1.484 (—6)

2.342 (—7)
6.737 (—6)
7.455 (—5)

3.024 (—6)
6.119 (—5)
5.189 (—4)

1.569 (—5)
2.349 (—4)
1.616 (—3)

5.071 (—5)
5.787 (—4)
3.337 (—3)

1.239 (—4)
1.099 (—3)
5.415 (—3)

2.525 (—4)
1.768 (—3)
7.521 (—3)

4.543 (—4)
2.535 (—3)
9.379 (—3)

7.462 (—4)
3.350 (—3)
1.081 (—2)

1.144 (—3)
4.163 (—3)
1.172 (—2)

1.661 (—3)
4.933 (—3)
1.211 (—2)

2.306 (—3)
5.628 (—3)
1.202 (—2)

3.os5 (—3)
6.224 (—3)
1.152 (—2)

3.994 (—3)
6.703 (—3)
1.071 (—2)

5.023 (—3)
7.053 (—3)
9.689 (—3)

6.149 (—3)
7.265 (—3)
8.538 (—3)

7.337 (—3)
7.337 (—3)
7.337 (—3)

( =4.0

1.294 (—26)
2.362 (—24)
1.464 (—22}

5.342 (—16)
4.709 (—14)
1.479 (—12)

2.546 (—12)
1.411 (—10)
2.972 (—9)

2.025 (—10)
7.7so (—9)
1.225 (—7)

3.034 (—9)
8.468 (—8)
1.052 (—6)

1.947 (—8)
4.049 (—7)
4.089 (—6)

7.655 (—8)
1.203 (—6)
1.004 (—5)

2.2o9 (—7)
2.647 (—6)
1.842 (—5)

5.177 (—7)
4.757 (—6)
2.772 (—5)

1.048 (—6)
7.413 (—6)
3.617 (—5)

1.904 (—6)
1.040 {—5)
4.243 {—5)

3.188 (—6)
1.349 (—5)
4.582 (—5)

5.000 (—6)
1.645 (—5)
4.629 (—5)

7.437 (—6)
1.9o9 (—5)
4.426 (—5)

1.057 (—5)
2.126 (—5)
4.036 (—5)

1.444 (—5)
2.288 (—5)
3.532 (—5)

1.903 (—5)
2.388 (—5)
2.976 (—5)

2.421 (—5)
2.421 (—5)
2.421 (—5)
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be expressed by

I~.+~(+~5)= —2& ' '"z

(e' —1)&

&& E;z'(fe)& E;z($e) . (II E.57)

32m4

f»(&' 5) =— (—xo)
9 (s'«~ —1)(s'«& —1)

For the total f function (II 8.39) one obtainszz ~ z

jp(-ig;, ig~, 1-;xo) j', (II E.64)
duoThe E' represents the derivative of the function (56)

with respect to the argument.
The integral over the square of I», ~~, which is needed

for the total cross-section function j see (II A.31)j, can
also be expressed in terms of Hankel functions b means
of the Lommel integral

with

(II E.65)

32%2

y
formulas. "This leads to Since the variable xo is always larger than unity, it is

necessary for the numerical evaluation of (64) to use
the analytic continuation (II E.87) of the hypergeo-
metric function. After differentiation one obtains in
this manner

In the limit of ~ -0, this expression diverges with the
following asymptotic behavior

32 gsgf 1
f»(n*, k) =—

9 $ szwf

fbi(() =
327r2 2

ln—(1—zr$+ . .). (II E.59)
v$

t'.
X~m —Pj z~;, z~;, 1 zg;—'

xo)

The number y is given by

y= e~= 1.781 (II E.60)

(
X pj 1—z);, —zg;, 1+zp; —j'

xo)

where C is the Euler constant.
In the limit P))1, one obtains from (58) the following

asymptotic formula

327ra

f/'(]) = e '~z(1+0.218$ &+ ). (II E.61)

1q
+s Pj 1 zg~, —zq~, 1——zP, —j

xo)

+g,~~gy, (II E.66)

where g;~~gg implies the addition of terms with q, and

qy interchanged, and whereAlso the quantum-mechanical formulas for the elec-
tric dipole excitation cross sections can be expressed in
an especially simple form. The matrix element between
the scattering states in (II B.34) is equivalent to that
involved in the bremsstrahlung cross section (see Sec.
II E.1) and may be evaluated by expressing the
Coulomb wave functions in parabolic coordinates. ~'

The resulting expression for the differential f function
may be written~9@'

p=2 arg{I'(ig)1'(ill )/I'(igr)}+( ln j xo j. (II E.66a)

In the limit of g«1, the expression (66) reduces to

32zrz ( 2q
f (rl'k)= I

l —+0(1)— (4(~)} j

32Ã pilaf $27l zf $

9]2 (gzwyc 1) (szwv 1)

X——x—jP(—ig;, —ig, 1; x) j' dn,
8$ dS

where P is the logarithmic derivative of the I' function.
The classical limit (zl,—+~) of fs~(g, ,$) may be ob-

tained by performing a conAuence in the hypergeometric
functions in (64). This leads to the expression (58).

The Ei Coulomb excitation process is closely related
to the problem of the excitation and ionization of atoms

t,
'u z.62&

by fast charged particles. The atomic stopping power
may thus be written in the form

where p is the hypergeometric function (II E.84) of the
variable

4g,gg
sin —.

$2

"See p. 133 ff of reference 40.

5 dE
=Q ozg(i~f)(Eg —E;), (II E.67)

E dx

where X is the number of atoms per unit volume and
dE/dx the energy loss of the particle per unit path
length.
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In order to compare (67) with the usual form for the
stopping power, it is convenient to introduce the atomic
oscillator strength for the transition i~f defined by

Sm ns
s;/= — B(E1;i~f) (Ef 8;),—(II E.67a)

9 e'k'

where m is the electronic mass and where s;f is normal-
ized in such a manner that the total oscillator strength
equals the number of electrons in the atom. The expres-
sion (67) may then be written in the form )see (II3.37)j

In the last expression in (68) the integral has been
expressed in terms of Legendre functions of half-integer
order. "

For the lowest multipole orders, one obtains the
following explicit expressions

Ir, gr(r1, 0) =2 sin —,
2'

2
Is, ~s(8,0) =—sin' —,

3 2'

Z 'e4 9
=4rr Q sr/ fz] (rtr))q f)) '(II E.67b)

me. f 32m
Iso(es, o) =2 tan' —1—

2
tan —,

2 2.
'

where tt and P refer to the collision between the incident
particle and an atomic electron; the inQuence of the
nuclear 6eld on the motion of the particle is of minor
importance. In the case of collisions with fast particles,
the values of f,f for the important transitions are small
compared to unity, so that we may use the asymptotic
form of far for $«1.

When the collision can be treated by classical
mechanics (r)))1), it is thus seen from (59) that (67b)
gives the classical stopping formula. "' In the opposite
limit of tt«1, where (24) applies, one obtains the
stopping formula derived in Born approximation. " The
more general quantum-mechanical expression for the
stopping power, "' valid for all t), is obtained from (67b)
by inserting (66b).

IIE.6. Limit of /=0

4
I; ~s(i),0)= sin' —,—

15 2

I, ~&(8,0)=2
sin —2+sm—

2 2
tan—

3 2 2'
cos~

2-
(II E.71)

4
I4, ~4(8,0) =—sin

35 2

I4 ys(8, 0) =2

sin~ 8+9 sin' ——2 sin4—
2 2 2 3x—8

— tan—
20 4 2 2

cos'—
2-

In the limiting case of )=0, several expressions from
the general t.heory of Coulomb excitation reduce ap-
preciably. In the classical theory, the exponential
factor in the orbital integrals (47) disappears and the
resulting integrals can be performed explicitly in terms
of elementary functions. ' Thus, one obtains

I4o(t1,0) =2 tan'—
2

2 tan—
2

3+5 tan'—
2 11 2

+
6 2

3 slll—
2

p&o

Ig„(8,0) = (e' 1) "+l —' e—'»(e cosy —1)"—'dy
—40

= (2s)i(),—1) le—1( s —])—(& &s&+&t4

(11
Ee)

The differential f functions are given directly in
terms of these integrals by means of (II A.29) and
(II A.51) and the results are illustrated. in Fig. II.7.

The total f function is obtained from df by an inte-
gration over the deRection angle . This integration can

(II E 68) also be simply performed, and one obtains

We have here introduced the azimuthal angle p of the
projectile given by Lsee (II A.22)g

8~' ~m'

f»(0) =
~

——
~

=O.8954,
25 &16 3)

(e 1)~ slnh w
tang =

a+cosh to
and the limits ps are

ys ——tan-'(e' —1)& =——.
2 2

(II E.69)

(II E.70)

8s' ( 8
fas(0) =

i

———
i
=0.03/97, (II F..72)

49 (45 64)

Ss.s t'ss 5 y

fm(0) =
)
——

[ =o.1936.
25 &16 9d

ss (a) N. Bohr, Phil. Mag. 25, 10 (1913);see also reference 19.
(b) H. A. Bethe, Ann. Physik (5) 5, 325 (1930). (c) F. Bloch,
Ann. Physik (5) 16, 285 (1933).

For ), =-1, the f functions diverge in the limit s":0.
94 See p. 159 of referenCe 84.
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The a coefficients in the angular distribution of the
de-excitation y rays (II A.75) also involve integrals
over 8 of the orbital integrals. From (II A.75), (II A.76),
and (II A.77) one obtains

aP'(0) =1,

Also in the quantum-mechanical treatment, the case
)=0 is especially simple. For the matrix elements with
l,—/r = +l~ the last term of (II 8.58) vanishes (for li) 1)
and the first Ii2 function is unity. For (=0, one thus
obtains for these matrix elements

~ii+~,
" '(&=0)=~igni" , '(5=0)

21m' —208
a2 '(0) = = —0.05425,

3m' —16

441m' —4352
aP'(0) = — = —0.0007587,

48(3~' —16)

a Ml(0) —1

(II E.73)

[( —1)!]' I (/+1+i&)= (2k)" ' (II E.74)
(2X—1)! I'(/+lI. +1+ii!)

where g= g;= gf. This formula may also be seen to hold
for X=1. The matrix elements with Il,—/rl (X may
most easily be obtained by means of the recursion
formulas (II 8.72) and (II 8.68). For the lowest multi-
pole orders, one obtains the following expressions"

1 1
Ml, 1+1 cVL+1, l » I/+1+ivI

1 1

6 I/+1+i~I I/+2+i~I

Mg, )
—' —— [2/+1 —ir it+ 2it 8m/ (/+1+ii') ],

2l(l+1) (2/+1)

k 1
~), ~3 ='~i+3,r =—

» I/+1+ivI I/+2+/el I/+3+i~I

(II E.75)

~l, ~1 —~+1, l
3/(l+1) (l+2) (2l+1) (2/+3) I /+1+irt I

X{3I /+1+ii! I '[2/+1 —7rrt+2g 6mP(/+1+i rt) ] l (l+1)—(2/+1)}

The imaginary part of the logarithmic derivative i/ of improved by employing the Euler sum formula. It
the I' function can be expressed by elementary functions should be pointed out that the convergence for $WO is
through the relation more rapid due to the adiabatic cuto6 for high l's; the

sum then becomes a geometric series.
dmiP (/+1+i')

II E.7. limit of Large Orbita/ Angl/ar Momeeta

=s. cothvit+it —'—2it Q . (II E.76)
~=0 rt'+it'

In the classical limit (it~~), the matrix elements (75)
are related to the above calculated orbital integrals (71)
by means of (II 8.100).

To obtain the differential and the total f function as
well as the y-ray angular distribution functions, a sum-
mation over the angular momentum has to be performed
[see (II 8.48), (II 8.50), and (II 8.85)]. For large l,
the terms in these sums decrease as l-'"+'. For X= 1, the
total f funct:ion as well as the b coefficients diverge, and
one obtains

a2 '(rt, O)= 1. (II E.77)

For A, &1, the convergence is rather slow and may be

An interesting limit of the Coulomb excitation matrix
elements is that of l»1."As pointed out in Sec. II 8.6,
the radial matrix elements io this limit can be expressed
by means of (II 8.100). This result can be obtained by
employing the %KB approximation or by performing a
conRuence in the explicit expressions for the radial
matrix elements, and holds for /»1 irrespective of the
value of g.

H l»g, the deflection angle of the associated classical
orbit is small (6= 2it//) and the orbits approach straight
lines. It is thus of interest to compare the Iq„with the
corresponding integrals for straight line orbits given by

"For X=2 these results have been given by L. C. Biedenharn
and C. M. Class, Phys. Rev. 98, 691 (1955).

This limit has been studied by Gluckstern, Lazarus, and Breit,
reference 18.
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Lsee (II A.24)7

++it/t7"
I& st(tf. g)

—/ax. t/ sirst d't

EP'+(nt)'7""+""'

$1+i sinhw7s
6 X

I ~.fesxnhw dw, (II E.78)
(coshw) "+s

where p is the impact parameter. We have introduced
the parameters t/=2a/P and e=P/a which, for p))a,
correspond to the deQection angle and eccentricity of
the hyperbolic orbit with the impact parameter p.

The integral (78) is the same as the limit of (47) for
e»1 except for the phase factor e'&". The effect of this
factor may be seen by transforming (47) according to
(49). In the latter form the phase factor e'&" can be
neglected for large e and we thus have the relation

For large values of e $ one obtains by employing the
asymptotic expansion of the Whittaker function" '

(X+1—tt l

ps—t ((&—s—&)/s(2 )
—0+s+r)/s (II F 82)

For the radial matrix elements in the limit l&)1, one
thus obtains the result

Mi, if
—'-'=

&
—(,~~~+~]2)g

4g" /')I. +1—/t'l

I„(y g) &
—(n/sl)I& Bi(y P) (II E.79) )& p&" s 'l "(2t/rt) &"+s+'//—'. (Il E.83)

holding for 8(&1.
The large diGerence between the orbital integrals for

straight line and hyperbolic orbits in the case of $& 1 is
associated with the fact that for such values of g the
integral is very sensitive to the impact parameter. Thus,
an increase of p by the amount a, which represents the
order of magnitude of the displacement during the
collision, implies a reduction of I~„by a factor of the
order of that. involved in (79).

Since the Iq„" corresponds to the neglect of the
Coulomb force on the motion of the projectile, these
integrals are for large / related to the Born approxima-
tion radial matrix elements by an equation analogous
to (II B.100). From (79) we thus obtain

Mt;ts " '=e ' "'&Ml;lf " ' (Born appr. ), (II E.80)

holding for l;, /y»1. This relation shows that the
Coulomb phase in the wave functions, for large l, gives
rise to a simple factor, independent of /."

The integral P8) can be expressed by means of the
Whittaker function "in the form

I "(tt ()= (—1)i"+sl/'e —
'~ —

~Z)
t' —X+tt+1i

Xi'] fW „/s, g/s(2$e). (II E.81)

A more accurate result may be obtained by an expan-
sion of the Born approximation radial matrix elements
(31) employing (86).

where

F(~,P,~; s) =Q s-,
7 msgr

(II E.84)

F(it+ttt) =a(a+1) ~ (a+r/t —1). (II E.85)()
This series is only convergent for

~
z

~
(1.However, the

analytic continuation can again be expressed by hyper-
geometric functions. We note especially the Kummer
transformation

( s
F(~,p,v;s)=(1 «)=F~ ~, &——p, 7; ~

(IIE.86)E' ' 's—1)

and the relation in terms of the reciprocal argument

IIFJf. Sorrte Properties of Hypergeometric FNrtctiorts

In this paragraph, we shall collect some formulas for
hypergeometric functions which are of interest in the
theory of Coulomb excitation. '"

The ordinary hypergeometric function of one variable
is defined by the series expansion

I'(V)1'(p- )
F(c/, p,y; s) = (—s)

—F(n, 1—y+u, 1—p+n; 1/s)
r(p)r(v —)

I (V)1."(cr p)+ ( s) 'F(P, 1 —7+P, 1 ~+P—; 1/s) (11E 87)
r( )r(~—p)

9r In the applications of the relations (79) and (80) in reference 96 the exponential factor has been omitted.
8 See p. 274 of reference 84.

See p. 278, reference 84.
Most of these formulas may be found in reference 84 or in the treatise by P. Appell and J. Kamph de Feriet, Fonctions

Hyperggoraetriqges etc. (Ganthiers Villars, Paris, 1926).
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The analytic continuation is also given by the integral representation

r (v)F(,pv; )= u e—'—(1 —I)& ~ '—(1 —es) ~de
r(p)r(v —p) ~,

(II E.88)

(II E.89)~F~(n,v; s) =lim F(n,p,v; s/p) =p s,
P pm|

which is convergent for all s.
From the formula (86) one obtains the Kummer transformation for the confluent function

valid for ReP)0 and Se(v —P))0.
When one of the parameters n or p tends to in6nity while s becomes small, the function (84) approaches the

conQuent hypergeometric function
~m,

gFg(a, v; s) =e'kg(v n, v; ——s). (II E.90)

r(v) 1

gFg(n, v; s) = ~ e"t.-'(1—&)~--'dh,
r(n)r(v —n) ~,

An integral representation of the function ~F~ is given by

(II E.91)

valid for (Ren) 0 and tRe(v n))—0
Among the hypergeometric functions of more than one variable, the simplest are the so-called Appell functions.

We shall here be concerned with the functions F&, F2, and F3 defined by the series

g„p„'
F (,p,p',v;,r) =Z—v.,„m!~!

n + P& '
F2(n,P,P',V,V', *,y)=2, ~"y"

I
~ I+ Ir I

&1,-~„~.'mIet

n n„'p~„' IxI &1
F (, ',P,P',v;*,y)=Z, "r"- v„,„m!~! IyI &1

(II E.92)

(II E.93)

(II E.94)

whose regions of convergence are indicated.
These functions have properties similar to those of the hypergeometric functions of one variable. Thus, for the

function F2 there exist transformations of the Kummer type

F (,PÃ, v,v', ~,y) =(1-r)-.F I,P, v' P', v, v', —

= (1—&—y) F I, v P, v' P', v —v'—x
(11E.95)

x+y —1 x+y —1)

For special values of the parameters, the Appell functions reduce according to the following relations

xy
F,(n,P,P',n,n; x,y) = (1—*)-s(1—y)-e'F

I P, P', n;
(1—x) (1—y) )

(II E.96)

F (,P,P',v, ;*,r) =(1 r) 'F
I P, —P' P' v— (II E.9'/)

Fi(n,p,p', V;*,y)=(1 r) 'F8I n V —np p' V— (II E.98)

The analytic continuation of the function FB can be expressed by four F2 functions of the arguments x ', y '
as follows:
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F3(n,n', p,p', v; x,y)

r(v)r(p —)r.(p' —')

, (—&) (—y) "F2I ~+&'+1—» «' &+1—p &'+1 p"———
I

r(p)r(p)r(v ——.)
r(v)r(p —)r( '-p')

,
(-*)--(-y)-eF.

l
-+P'+1 v,-, P', +1 P,-P'+1

r(p)r( ')r(v ——p') x y)

r(v)r(-- p)r(p'--')
(-~)-e(-y)--'F.

I
P+~'+1 v, P-, ', P+1 ~, ~'+1 P';-

r( )r(p')r(v —p —')

r(v)r( -p)r( '-p')+, , (—*) '(—y) 'F2I p+p'+1 v, p—, p', p+1 ~, p'+1 ~', , I—. —(IIE99)
r( )r( ')r(v —p —p')

The analytic continuation of the function Ii 2 can, in the general case, not be expressed in terms of Appell functions,
but may be given by the integral representation

F~(~ P,P',v,v', ~,y)
r (v)r (v')

dldve~ 've' -'(1 —I)&—e '(1 -v)&'—~' '(1 -Nx —vy) —~—(II E.100)
r(p)r(p')r(v —p)r(v' —p') &, &,

valid for (Rep) 0, (Rep') 0, (Re(v —p))0, and Re(v' —p') )0. One of the integrations can be performed according
to (88) yielding the result

Fg(n, p,p', v,v'; g,y) =
r(v') r' !t' x

dvv~' '(1—v)&' &' '(1—vy) Fl n, p v.
r(P)r(v' —p') ~. & 1—vy)

(II E.101)

A similar integral representation of Ii& is given by

r(v) I

F (,p,p',v;,y)= " dgu —'(1—u) &— '(1—ex)—e(1—uy)
—e',

r( )r(v —) ~,
(II E.102)

F (,P,P',v,v', ,y) =

(1—).(1—v'+p')- (
(y —1)--F,

I p, ~ p' m, p' v—'+1—+m, v;—~, I. (II E.1o3)
m (1+P'—n) „m!

A similar relation for Ii 3 is given by

valid for (Ren) 0 and (Re(v o.))0—

There exist a large number of relations by which one may expand one Appell function in terms of other hyper-
geornetric functions. An expansion of F2 is obtained from (101) by transforming the F function according to (87)
and (86). By the integral representation (102), this leads to

r(p)r(v')r(v-p)r(p'- )
(—y) "I

r(v)r(p')r(v' —~)

(1—P') (1—v+&) t'
(y 1) ~F&l P~ m~ Q —v +1+m v x

m (1—P'+n) m!
' ''1—y)

r(p)r(v')r(v —p)r( —p')+, , (—y) 'I
r(v)r( )I'(v' —p') Ey —1)

(v —p —p'). -'
F3(n,n', p,p',v; x,y) = (1—x)- g

p pQSS ~

(—y)-F,
I v p+m, ~,—~'~m, v+m;

S
(11E.104)

x—1

For large parameters, the Appell functions reduce to confluent functions. Thus, for the F2 function with P, P'

large, one obtains
~ yq+ (,v,v';~,y)= »m F I,p,p',v,v', , , I=Z——
p p') ~,~v v„'m!n!

which is convergent for all x and y.

(II E.105)
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CHAPTER III. EXPERIMENTAL CONDITIONS

In the present chapter, we consider the conditions for
the experimental investigations of the Coulomb excita-
tion process. Section III A deals with the requirements
on the ion beam, and the following sections treat the
problems connected with the observation of the nuclear
excitations. These can be detected by observing either
the y rays (III 3) or the internal conversion electrons
(III C) which are emitted in the decay of the excited
states. It is also possible to detect directly the inelas-
tically scattered projectiles (III D).

to'

/0

/0

~ e'

& So'

4o

III A. Beam Requirements

The range of projectile energies which can be em-

ployed in the excitation of a given nuclear level is
limited on the low-energy side by the condition that the
collision time must not be longer than the nuclear
period, since otherwise the collision becomes adiabatic
and the excitation cross section small. On the other
hand, for too high bombarding energies, the projectiles
may penetrate into the nucleus, and the interpretation
of the observed excitations then becomes more dificult
due to the onset of proper nuclear reactions.

For the Coulomb barrier we may write

0.4 as
F/F~

08 /. 0

Pto. III.1. Cross sections for compound nucleus formation.
The figure gives theoretical estimates of the cross sections as a
function of the ratio E/Z&, where 8 is the kinetic energy in the
center-of-mass system, and where Ez is the height of the Coulomb
barrier. The curves are labeled H for protons and n for o. particles,
whereas the numbers indicate the charge number Z2 of the
target element. The cross sections are taken from the tables given
by J. M. Blatt and V. F. Weisskopf PTheoretico/ Nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952)], and correspond
to an effective interaction radius given by (III.2) with ra=1.5 10 "
cm. The value of p is taken to be zero for protons, and 1.2 10 "cm
for n partIcles.

ZyZ28
(III.1) If the conditions (4) and Z&E~ are expressed in

terms of $, one obtains, employing the estimate (3)

where E is the e6ective radius of interaction which may
be represented by

(At As) ' ARM. ($(1
(Z, Zsi 13

(III.5)

R=roAs*+p. (III.2)

The radius of the projectile is denoted by p and is taken
to be zero in the case of protons. If one neglects p and
assumes ro ——1.5&( 1.0 "cm, one obtains the approximate
estimate

E~~Z~Z2A2 —
& Mev. (III.3)

Even for bombarding energies somewhat smaller than
(1), there may be a significant quantum-mechanical
penetration of the barrier. This effect is less important
when heavier projectiles or target nuclei are involved
(see Fig. III.1). Furthermore, even if the cross section
for compound nucleus formation exceeds that for
Coulomb excitation, it may still be possible to observe
the latter e6ect, since the compound nucleus usually
decays predominantly into other channels than that cor-
responding to the inelastic scattering (see Sec. IV A.5).

The low-energy limit to the bombarding energy may
be expressed by the condition $(1 Lsee (II A.27)j.
According to (II C.13), this condition may also be
written

EM,~ 0.2Zt(A t/Zt) l(ZshEM. v), (III.4)

where EM, and AE~, are the bombarding energy and
the excitation energy in Mev. In (4) we have neglected
the center-of-mass corrections and the relative eriergy
loss AE/E.

for the usable range of P values.
From (5) it follows that the various types of acceler-

ated ions can be used in approximately the same range
of g values. Moreover, it is seen that, by employing
suKciently high bombarding energies, it may be pos-
sible to excite levels with AE as high as 5 Mev. Since,
however, AE must be small compared to E, it is neces-
sary in the Coulomb excitation of such high-lying levels
to employ high energies, and thus rather heavy pro-
jectiles, especially in the case of light target nuclei.

For a given value of $, the cross section for an
excitation of multipole order EX is proportional to
Zts(At/Zt)'M' Lsee (II C.13), (II C.15), and (II C.16)j;
thus, the largest cross sections are obtained with the
heavier projectiles. The advantage of the heavier pro-
jectiles is even greater in the case of higher order
excitations (see Sec. II D).

In order to obtain the same P value for the different
projectiles, it is necessary that they be accelerated to
energies which are proportional to Zt(At/Zt)&. For a
given acceleration voltage this may be approximately
achieved, provided the ions can be completely stripped
of electrons. However, if this is not the case, the relative
magnitude of the excitation cross sections obtainable
with different projectiles depends essentially on the
available voltage.
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cially for low-energy radiation, where the background
of x-rays is large (see Sec. III 8.3). Some improvements
can be obtained by using the spectrometer in combina-
tion with various absorbers. The absorption coefficients
are strongly energy dependent in this region and the
e6ect of the absorbers is therefore dependent on the
energy distribution of the radiation. This is illustrated
in I'ig. III.6, where the background peak is seen to be
suppressed relative to the peak due to Coulomb excita-
tion, when the absorber thickness is increased. In cases
where a peak is composite, this may be revealed by a
change in the shape of the peak when the absorbers are
introduced. The measurement of the absorption coefQ-
cient can also sometimes be useful in providing an
independent energy determination which makes it pos-
sible to avoid misinterpretations of the experimental
spectra, e.g., due to coincidences or to the so-called
escape peaks.

Pot KEV

V-K~

~ 60-

50—

~ 40-

Q g0

Zo j
0 I I I

/0 ZO 30 40 50 60 70
PULSE HEIGHT (VOL TS)

FxG. III.5. Gamma rays from the excitation of europium. The
y rays resulting from a bombardment of a thick Eu&O target
with 6-Mev n particles are observed with a crystal spectrometer.
The pulse-height spectrum is taken from N. P. Heydenburg and
G. M. Temmer /phys. Rev. 100, 150 (1955)g. All three lines are
assigned to the isotope Eu'"; the CI and C2 lines correspond to
the ground-state transitions from the first two rotational excita-
tions, respectively, whereas the C» line represents the cascade
transition from the second to the first level.

tions, since the correction for the target thickness is
usually small. An example of the measured y-ray angu-
lar distributions is shown in Pig. III.S.

If one wishes to determine directly the total p-ray
yield, one may either employ a 2x-geometry, '0' or one

'30 xN
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6-nfO

'Ib mm Cu

I i I i i i I

2 4 6 8 fo
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F&0. III.4. Gamma rays from 'the excitation of separated
isotopes of tungsten. The p rays are observed with a crystal
spectrometer and result from bombardments of thick WOI targets
of the separated isotopes with 2.5-Mev protons. The pulse-height
spectrum is taken from McClelland, Mark, and Goodman )Phys.
Rev. 93, 904 (1953)g. The three y rays represent the first excited
states in the even-A isotopes.
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The large yields for the Coulomb excitation processes,
which are encountered for low excitation energies, also
make feasible the use of proportional counters for the
detection. The comparatively high resolution of this
type of counter may in such cases be of greater impor-
tance than the correspondingly lower eKciency. The
Coulomb excitation of some of the heaviest elements has
recently been studied in this manner (see Fig. III.7).'s"

Besides the eS.ciency and simplicity of the scintilla-
tion detector, the observation of the y radiation has
several other intrinsic advantages associated with the
relatively small scattering or absorption in the target.
This facilitates the measurements of angular distribu-

""Note added in proof. The very high resolution of —the bent
crystal spectrometer has recently been employed in an experiment
performed with the high current (~100 mA) from a linear ac-
celerator (private communication from H. Mark).

0 lo 20 30' 40 $0 0 Io ZO 30 40 50

PULSE HEIGHT (VOLTS)

FIG. III.6. Kffect of absorbers in p-ray measurements. The
figure illustrates the effect of Cu absorbers inserted between the
crystal and the target when Ta is bombarded by 1.75-Mev
protons. The pulse-height spectra, obtained with a thick target,
are taken from T.Huus and L.Zupancic LKgl. Danske Videnskab.
Selskab Mat. -fys. Medd. 28, No. 1 (1953)j.With a 3.5-mm copper
absorber the characteristic x-rays from the K shell are strongly
reduced, while the 137-kev C& line from the decay of the first
excited nuclear state is much less affected. The spectra also
show an escape peak associated with the x-rays.

i02 N. P. Heydenburg and G. M. Temmer, Phys. Rev. 100, 150
(1955).
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rather well the stopping power of protons and o. par-
ticles in almost the entire range from the lowest
energies employed in Coulomb excitation experiments
and up to energies equal to the Coulomb barrier. "'

By means of the theoretical excitation cross section
(II C.15) one then obtains

20
! !

30 40 50
PULSE HEIGHT

60

may make the observations at an angle of 55 or 125
degrees with respect to the beam. "'For these angles, the
Ps function in (II C.26) and (II C.29) vanishes, and
since the coefficient of P4 in (II C.29) is almost always
very small, one observes a yield approximately propor-
tional to the cross section averaged over all angles.

FIG. III.7. Gamma rays from U" observed with a proportional
counter. The pulse-height spectrum is obtained with a xenon-
filled proportional counter when a target of U"' is bombarded by
3-Mev n particles. The 6gure is reproduced from data communi-
cated to us by J.O. Newton (unpublished). The lines correspond
to the ground-state transition from the first rotational state and
the cascade transition from the second rotational state.

where the functions uq are de6ned by

g!,(p f) =f'"—'"(1—t)"—'fii!,(p f'), (III.g)

The relations between the parameters (i,f') and

(r);,f) are given by Eqs. (II C.11) and (II C.12), and
the subscript zero indicates that the values correspond
to the bombarding energy Eo. The values of bE& com-
puted from these formulas are given in Fig. III.9 as a
function of $s, for the case !~0,which corresponds to
the classical limit. The results are rather insensitive to
the assumed energy dependence for the stopping power,
due to the rapid variation of 0- with the energy of the
projectile for all but the smallest $ values. Even in the
extreme case of ps=0, the value of bEs will be changed
by only 8% of its magnitude if, instead of E—'", one
employs the rather diferent energy dependences E "

I I I I I I I I I I I

III B.Z. Thick Target Fields

The small scattering and absorption of the y rays in
the target make it possible to employ thick targets in
the measurements of the excitation cross sections and
of the angular distributions. The determination of the
cross section from the observed yield then involves
either a differentiation of the yield as a function of the
bombarding energy, or an integration of the theoretical
excitation function along the trajectory of the projectile
in the. target.

It is convenient to express the result of the latter
calculation in terms of an effective target thickness 8E),
which is related to the true thick target yield by

P.O—

09—

E„=30HEY

~y =Z79A'EY

E„=44HEY

Ej =555AEY

Eo&
T=o (Ep)

(dE/ds)p Ep
(III.6)

where F is the fraction of the incoming particles which
produce the nuclear excitation and Ã the density of the
investigated atoms in the target. The stopping power
of the target material is denoted by dE/ds and is
evaluated at the bombarding energy Eo. Thus, the frac-
tion oE&,/Es represents the ratio of the observed yield
to that which would result if the excitation cross section
0. and the stopping power were independent of the
energy of the projectile and had the values correspond-
ing to the energy Eo.

The calculation of bE), has been performed assuming
dE/ds-E '". This energy dependence represents

"sP.H. Stelson and F.K. McGowan, Phys. Rev. 99, 112 (1955).

$0—
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Pro. III.8. Angular distribution of p rays from gold. The figure
shows the angular distribution of the two intense p rays resulting
from the Coulomb excitation of Au"' (see Fig. III.3). The data is
taken from Cook, Class, and Eisinger LPhys. Rev. 96, 658 (1954)].
The curves represent a least-square fit to the experimental data.
For the 555-kev y ray the distribution corresponds to the sequence
3/2(Z2)7/2(E2)3/2 of spins and multipolarities (see Table IV.2).
For the 279-kev y ray the angular distribution indicates the
sequence 3/2 (Z2)5/2 (3E1+E2)3/2 with an 82 intensity of
approximately 40% in the decay radiation.

Cf. J. Lindhard and M. ScharÃ, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 27, No. 15 (1953).
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F~G. III.9. Effective target thickness. The curves give the ratio
hZ~/Zs which enters into the determination of the theoretical
thick target yields /see (111.6)g. The ratio has been computed
from (111.7) by means of the classical f functions (y=O) for
electric excitation of multipole order P =1, 2, and 3; the stopping
power has been assumed to depend on the energy of the projectile
as E 0". The abscissa gives the & value corresponding to the
bombarding energy Eo.

FIG. III.10. Correction factor to the effective target thickness.
The quantity C gives the factor by which the value read from
Fig. III.9 should be multiplied in order to take into account the
finite value of v Lsee (II C.10)g. This correction factor may be
represented approximately as a function of the single parameter
1'0 /see (IIC.4) and (IIC.5)g. The e value (IIC.12), to be
employed in the reading of Fig. III.9, can be obtained from the
v&o curve, which is shown in the present figure.

or E "for the stopping power. The curves in Fig. III.9
should thus be applicable to all target materials, in-
cluding compounds, and the uncertainties are expected
in most cases to be less than 2%. Also the effect of the
energy straggling, which is neglected in (8), is smaller
than this amount.

For finite values of the parameter v, slightly diferent
curves are obtained, but, to an accuracy of better than
a few percent, they can be found from the curves for
v=o by multiplying with a correction factor which is a
function of the product v$s or f's, only. This correction
factor C is given in Fig. III.10 together with a curve for
the determination of the $ value Lsee (II C.12)).

For the angular distribution coeKcients i~~" appro-
priate to thick target measurements, one obtains in a
similar way the expressions

where ass" are the thin target coefficients [see (II Il.83),
Fig. II.8j. The values for the thick target coefficients
are to a good approximation the same as those for the
thin target coefficients, if the latter are evaluated for a
bombarding energy which is smaller than the actual one
by the factor (1+8Eq/Es). The estimated errors are
less than three percent under the condition that the
coeKcients can be considered to depend linearly on f
within energy intervals of the order of 8E&.

The multiple scattering of the projectiles in the target
gives rise to an angular spread of at most a few degrees
for a target thickness of 8E),.'"The eGect on the angular
distribution of the p rays is thus of minor importance.

III B.3. Backgroled Eadiatioe

When one studies the radiations following Coulomb
excitation, it is of course not only important that the
absolute yield is sufhcient to give a reasonable counting
rate, but also that the yield relative to the existing back-

""See, for example, reference 19 and also T. Huus, Kgl. Danske
Videnskab. Selskab Mat. fys. Medd. 26, No. 4 (1951).
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FIG. III.11. Effect of impurities in y-ray measurements. The
pulse-height spectrum, obtained with a crystal, has been observed
in the bombardment of a thick Lu203 target with 2.6-Mev protons
PMcClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955)g.
In addition to the peak a which corresponds to a 240-kev y ray
from the cross-over transition from the second excited state in
Lu"', other peaks are observed, arising from the presence of
light elements in the target. The peak b at 439 kev is assigned
to sodium impurities, and the peak c at 490 kev to the 0" (P,y)
process. The peaks d and e at 0.843 Mev and 1.017 Mev, re-
spectively, are ascribed to inelastic scattering in aluminum,
contained in the target material as an impurity; nominal purity
of the sample was given as 99.9%%uo.

ground radiations is high enough to be detectable in the
actual experiments.

The background arises partly from external sources,
such as the radiations from the accelerator, or from
reactions with impurities in the target and with sub-
stances chemically bound to the element under investi-
gation. Thus, oxide targets emit a strong y radiation in
the region of a few hundred kev when bombarded with
protons (see Fig. III.11), and a line at 342 kev when
bombarded with 0, particles. ' In addition to this type of
background, there is the background radiation due to
processes taking place in the atoms of the investigated
element itself. The production of the latter kind of back-
ground radiation can of course not be avoided. How-
ever, it can be discriminated against, if coincidence
measurements can be performed, "' or if the nuclear
decay involves a sufhcient delay. "' When such possi-
bilities do not exist, the best that can be done is to
choose the experimental conditions so as to give the
smallest possible ratio of background to nuclear radia-
tion. It is therefore important to know how the atomic
processes depend on the various parameters of the
bombardment.

In the region of low y-ray energies, the most impor-
tant background process is the emission of the charac-
teristic x-rays which follow the ionizations produced by
the projectiles (see Figs. III.3, III.4, III.6, and III.13).

See, for example, reference 103, and G. M. Temmer and
N. P. Heydenburg, Bull. Am. Phys. Soc. Ser. II 1, 43 (1956)."r T. Huus and A. Lundsn, Phil. Mag. 45, 966 (1954).

The theoretical cross sections for the ionization of the
E shell have been computed in Born approximation for
nonrelativistic electron wave functions. '0 The result
may be written in the form

o rc~Zrs(QM, v/A t)4(36/Z, )"10—'4 cm' (111.10)

provided the E shell binding energy exceeds the maxi-
mum energy which a free electron can acquire in a
collision with the projectile. Even for bombarding
energies close to the Coulomb barrier, this condition is
fulfilled for Zg) 40.

The experimental cross sections"' are found to be
somewhat larger than given. by (10) for protons in the
energy range employed in Coulomb excitation; thus, in
the case of 4-Mev protons on tantalum, the observed
cross sections are about five times larger than the esti-
mate (10).The discrepancy has been ascribed partly to
the inadequacy of the Born approximation, partly to
relativistic eGects in the electron motion. "' However,
the dependence of the cross section on the various para-
meters is approximately represented by the formula
(10). If these x-rays constitute the dominating back-
ground, it is of no advantage to employ bombarding
energies much higher than those for which the cross sec-
tion for Coulomb excitation increases approximately as
E4, because then the signal to noise ratio mill begin to de-
crease. For E2 excitations, this condition corresponds
to ~0.5, as can, be seen from Fig. III.12. From Eqs.
(10) and (II C.13), (II C.15), and (II C.17) it also

tz
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F&G. III.12. Ratio of Coulomb excitation to production of
characteristic x-rays. The curve gives the ratio between the
theoretical cross sections for E2 Coulomb excitation and ionization
of the E' shell, as a function of (. It is seen that an optimum is
obtained for a bombarding energy corresponding to )=0.5. For
this f value the signal to noise is proportional to (A|/Z|)'. The
same ( dependence of the signal to noise ratio applies to the back-
ground of 8 rays in the electron measurements.

8 W. Henneberg, Z. Physik 86, 592 {1933).
0' Lewis, Simmons, and Merzbacher, Phys. Rev. 91,943 (1953);

T. Huus and C. Zupancic, reference 10 {on p. 17 of this reference,
read "larger" instead of "smaller" ).

'"Lewis et al. {see reference 109), and D. Jamnik and C.
Zupancic, Kgl. Danske Videnskab. Selskab Mat. fys. Meed. 31,
No. 2 (1956).
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such as, e.g., bremsstrahlung associated with the ioniza-
t.ion of the inner atomic shells.

The Ej excitation cross sections, and thus also the
bremsstrahlung, increase with the bombarding energy
in very nearly the same way as do the E2 excitation
cross sections, except for the very high bombarding
energies, where the latter become relatively greater, as
illustrated by Fig. III.15. In the region of the spectra
where the bremsstrahlung is the important background,
one thus obtains a nearly constant signal to noise ratio
in the case of an E2 excitation decaying to the ground
state (E,=hE). The signal equals the noise for a partial
B(E2) value (see Sec. IV 8) given by

go 40 60
PULSE HFJGHT (VOLTS)

FIG. III.13. X-rays from internal conversion of the nuclear
excitation. The pulse-height spectrum, obtained with a crystal,
shows the relative strength of the E x-rays and the 137-kev p ray
from tantalum bombarded with 3-Mev n particles )G. M. Temmer
and N. P. Heydenburg, Phys. Rev. 93, 351 (1954)g. No absorbers
were employed. The X conversion coefficient for the nuclear
radiation is about 1.7, and the major part of the E peak is there-
fore accounted for by the internal conversion of the p ray. In
the case of proton bombardment the main part of the IC x-rays
arises from the direct ionization of the E: shell (see Fig. HI.6).

follows that at the optimum the signal to noise ratio
will be proportional to (Ai/Zi)', which is 16 times larger
for o. particles than for protons. Thus, in the o.-particle
experiments, the observed E x-ray peak is usually
small and can sometimes be accounted for nearly ex-

clusively by the eGect of the internal conversion of the
nuclear radiation (see Fig. III.13).

At p-ray energies well above the E shell binding

energy, one observes in the case of proton bombardment
a background radiation which can be ascribed to brems-

strahlung associate, d with the deQection of the protons
in the nuclear field'" (see Fig. III.14). The cross section
for this process is given in Sec. II E.1, where it is shown

that the variation with the bombarding energy and the
angle of observation is the same as for the E1 Coulomb
excitation. If from Eq. (II E.13) one computes the
corresponding thick target yield by means of Eq. (7)
for the effective target thickness (see Fig. III.9), one

finds that the total yield for all angles, multiplied by
E Z2 '~', to a good approximation is a function of the
parameter Ps only. This is confirmed by the measured
yields"' which furthermore show a $ dependence in con-

formity with the theory. Also the predicted absolute in-

tensity seems to be in agreement with the experimental
evidence'" within the rather large uncertainties of the
available data. However, the possibility exists that there
may be additional sources of background radiation,

"'C. Zupancic and T. Huus, Phys. Rev. 94, 205 (1954).
"~ Mark, McClelland, and Goodman, as quoted in reference 81.

Also the measurements in reference 111 agree within the experi-
mental error if the correct expression (II E.59) is used rather than
the expression (II E.24), which was employed in this reference.

(Zip ~ (Zt Zsp (Zspe~«2)=l-
&A i) (A i A s) (85)

100' 4i' dE,
X ( I

-'10 "cm', (III.11)(z, ) z.
where E. is measured in kev and where dE is the reso-
lution of the spectrometer. For a cascade p ray, the
signal-to-noise ratio is usually considerably smaller than
for the ground-state decay, and increases with the
bombarding energy.

In the case of o.-particle bombardment, the brems-
strahlung is very weak due to the fact that the projec-
tiles have nearly the same charge to mass ratio as the
target nuclei (see (II E.13)j. The continuous back-
ground is indeed also found to be very low in the
o,-particle measurements, as illustrated by Fig. III.5.
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FIG. III.14. Proton bremsstrahlung. The 6gure shows the pulse-
height spectra obtained by bombarding thick targets of natural
W and Biwith 4-Mev protons PP. H. Stelson and F. K. McGowan,
Phys. Rev. 99, 112 (1955)g. The C& peak is a composite peak
corresponding to the 6rst rotational states in the even-A isotopes
(see Fig. III.4), whereas the 295-kev peak is assigned to the odd
isotope W'". The radiation in the region between the two peaks
can be ascribed to proton bremsstrahlung and has practically the
same yield for W as for Bi, which give no nuclear radiation,
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FIG. III.1S. Comparison of theoretical cross sections for E2 and
E1 Coulomb excitation. The ordinate is proportional to the ratio
of the two cross sections, for the same value of P. It is seen that
the Ei and E2 excitation functions are nearly identical over a
wide range of P values. The excitation function for the dipole
bremsstrahlung is the same as for the E1 Coulomb excitation
(see Sec.II E.1),and the curve therefore also represents the signal-
to-noise ratio for E2 excitation compared with bremsstrahlung.
Thus, high bombarding energies, corresponding to small $ values,
are the most advantageous as far as this type of background
radiation is concerned.

III C. Measurements of Conversion Electrons

III C.1. Detector Techeiqle

The study of the internal conversion electrons emitted
in the decay of the excited states is to some extent
complementary to the p-ray measurements. For heavy
elements and low-energy transitions, an appreciable or
even major fraction of the excitations will decay by the
emission of such electrons, which may therefore be
rather easily detected. Moreover, the derived excitation
cross sections may be less sensitive to the value of the
conversion coefficients.

Figures III.16—III.20 show some spectra of conver-
sion electrons produced by Coulomb excitation. They
have been measured by double-focusing magnetic spec-
trometers of the wedge-gap type, '"which are convenient
for the purpose. Such spectrometers readily allow the
target to be "viewed" from the same side as that turned
against the bombarding particles, so that the electrons
do not have to penetrate a target support. The com-
paratively high resolving power is often of particular
advantage, because of the great similarity of many of
the nuclear spectra (see Figs. III.4 and III.17), and
because of the relatively small energy difference be-
tween the successive transitions in rotational cascade
decays (see Figs. III.5 and III.16).

The fact that conversion electrons from more than
one of the atomic shells can be observed makes it
possible to obtain additional information by thi-
method. From the measured energy difference between
the E and I. conversion lines one can unambiguously
assign the element in which the excitation has taken

~I3 Kofoed-Hansen Lindhard and Nielsen Kgl. Danske
Pidenskab. Selskab Mat. fys. Medd. 25, No. 16 (1950).

place, and from the intensity ratio between the E and L
peaks one obtains information about the multipolarity
of the radiation (see Figs. III.16 and III.17). With a
somewhat higher resolution it should also be possible
to determine the multipolarities from a comparison be-
tween the lines of the various L subshells. The theo-
retical angular distribution coeKcients have only been
partially evaluated. For 3f1 conversion in the E shell,
the estimated anisotropies are rather small (see refer-
ence 31).

The strong interaction between the electrons and the
target atoms implies that in general thin targets have
to be employed in the experiments, if one wants to
preserve the high resolution. It is important that the
target be homogeneous and that the beam remains
focused on the same spot, in particular since the con-
version lines often appear on top of a strong continuous
background. Thick targets can be used when the elec-
trons have a relatively high energy, so that they can
penetrate with sufhcient ease the layer corresponding
to the effective target thickness for the projectiles.
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FIG. III.16. Internal conversion electrons from the excitation
of tantalum with protons. The figure shows the spectrum of
electrons from a 0.3 mg/cm' thin Ta target bombarded with
2-Mev protons LT. Huus and J. H. Bjerregaard, Phys. Rev. 92,
1579 (1953)]. The measurements are made with a magnetic
spectrometer of the wedge-gap type. The E, L, and 3E conversion
lines with the indices 1 and 21 are assigned to the ground-state
transition from the erst rotational state of Ta'", and to the cascade
transition from the second to the first rotational state, respectively.
The large E/L ratios indicate predominantly M1 transitions.

III C.Z. Background sects
If special precautions are not taken, there may be a

considerable background due to the large number of
scattered beam particles in the spectrometer, but it is
rather easy to trap these by means of an appropriate set
of stops. Also the background effects resulting from the
presence of light atoms in the target are relatively
harmless, since these elements have small conversion
coefficients and give negligible contributions to the
stopping electrons (see later discussion). This is an
advantage when, for practical reasons, one employs
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noise ratio for E2 excitations is again obtained for
0.5 (see Fig. III.12). For bombarding conditions

corresponding to this $ value, the signal equals the
n.oise, as represented by (12), for a partial B(E2) value
(see Sec. IV 8) given by

x/00 )Zty 'fZsy '/100' '

EA rJ 485) E AEl
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FIG. III.17. Conversion electrons from the excitation of tung-
sten. The spectrum shows the conversion lines observed in the
bombardment of thin targets of natural W by 1.75-Mev rotons
LT. Huus and J. H. Bjerregaard, Phys. Rev. 92, 1579 1953)g.
The peaks labeled L', L", and L"' are predominantly due to the
L conversion of the ground-state transitions from the first rota-
tional levels in the even-A isotopes W'" WI ', and W'". The
strong continuous background at the lower momenta is due to the
production of stopping electrons. These conceal the presence of
the E lines, but the fact that these lines are not clearly visible
implies that the IC/I ratios are small, in accordance with the E2
character of the transitions.

chemical compounds, such as oxides, for the target
preparation. Similarly, the target support gives rise to
no difhculties if it is made of light materials.

As in the case of the p-ray measurements, however,
atomic processes in the target element under investiga-
tion give rise to background effects which cannot be
avoided. The maximum energy which a free electron
can acquire in a collision with the projectile is less than
20 kev, even for bombarding energies close to the
barrier. Collisions with the outer atomic electrons there-
fore do not give rise to any significant background. The
tightly bound electrons, however, may be ejected with
much higher energies, and such 8 rays constitute the
main background radiation in the electron experiments.
The observed yield per energy interval can be repre-
sented approximately by the semiempirical expression'"

do~2Zt'(EMev/A t) ZQ Es dEs10 cm (III.12)

where Eq is the kinetic energy of the ejected electrons
measured in kev. The cross section increases very
strongly with decreasing E~, as is illustrated by Figs.
III.16—III.19. The yield of the 8 rays increases with Z2
in contrast to the total ionization cross sections

I
see

(10)).It is therefore dificult to measure the conversion
electrons from the decay of the erst excited state of the
very heavy elements, and for this reason the method
has been applied mostly to the study of somewhat
lighter nuclei.

The cross section (12) depends on the bombarding
energy and the type of projectile in the same way as
the cross section (10), and thus the largest signal to

t„(Es/50)' mg/cm', (III.14)

3ZSa'I 3.8H
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FIG. III.18. Conversion electrons from the excitation of gold.
For the assignment of the observed transitions, confer the level
scheme in Table IV.2. For the low electron energies the best
results are obtained with o. particles, . and this part of the curve is
reproduced from E. M. Bernstein and H. W. Lewis )Phys. Rev.
100, 1345 (1955)j. For the high energies, the spectrum has been
obtained by bombardment with protons. This part of the spectrum
represents results obtained by M. S. Moore and C. M. Class
(private communication).

'" See Huus, Bjerregaard, and Elbek, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 30, No. 17 (1956).

where the excitation energy AE is measured in kev, and
where E& equals the energy of the observed conversion
electrons, also measured in kev. It is evident from (13)
that the 8 values corresponding to the noise are the
smallest for the heavier projectiles. Consequently, it
sometimes proves to be an advantage to use deuterons
rather than protons for the excitation of the lowest
states (see Fig. III.19), even though the background of
penetrating radiation, which is always generated in
deuteron bombardments, gives rise to some difhculties.
If a sufficiently high acceleration voltage is available,
the best results are obtained with n particles (see Figs.
III.18 and III.20).

In estimating thick target yields of ejected electrons
by means of Eq. (12), it must be taken into account
that they come only from a rather thin surface layer.
For heavier elements, the effective thickness of this
layer is approximately given by'"
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where Eq represents the energy, in kev, with which the
electrons emerge from the surface.

In principle, the ejected electrons can be used for
, calibration of the target thickness, since the rate of
their production depends in a smooth way on the atomic
number of the target material. However, if the target
thickness is not considerably smaller than t„, the cali-
bration will be dependent on the homogeneity of the
targets. The calibrations may therefore usually be per-
formed more reliably by means of the intensity of the
elastically scattered projectiles which are not so easily
influenced by the structure of the target.

III D. Measurements of Inelastically
Scattered Projectiles

Perhaps the most straightforward method of detec-
tion in the Coulomb excitation experiments is to meas-
ure directly the inelastically scattered projectiles. This
method has the special advantage that each particle
group corresponds to the excitation of a definite level,
and that the yield is a direct measure of the cross section
for the excitation, irrespective of the mode of decay.
An example of a spectrum of inelastically scattered
protons in a heavy element is shown in Fig. III.21. The
measurements have been performed by means of a
magnetic spectrometer of high resolving power. Because
of the correspondingly small transmission, the particles
were detected by means of a photographic plate.

A high resolution can only be obtained with thin

targets, and a thickness determination must therefore

8y —GAUSS x Chf

Fj:G. III.19. Conversion electrons from the excitation'of hol-
mium. The observed E, L, and 3f li'nes (Huus, Bjerregaard, and
Elbek, Kgl. Danske Videnskab. Sel'skab Mat. fys. Medd. BO,
No. 17 (1956)j, are associated with the first rotational state in
Ho'". The excitations were produced by the bombardment with
1.75-Mev deuterons which give a relatively small background of
stopping electrons (dotted line), as is evident from the com-
parison with the curve for protons of the same energy, which is
also shown in the figure. The arrow marks the cutoff due to the
counter window. The dashed line a indicates the background
contributions from the generation of P activities and the produc-
tion of neutrons. The contribution from the latter effect alone is
indicated by the dashed line b.
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FIG. III.20. Conversion electrons from the excitation of tanta-
lum with a particles. The spectrum shows the conversion lines
from the decay of the first rotational excitation of Ta'si LE. M.
Bernstein and H. W. Lewis, Phys. Rev. 100, 1345 (1955)g. The
background of stopping electrons is seen to be much smaller than
in the case of proton bombardments (see Fig. IU.10).

be included in the measurements. The elastic scattering
overs a convenient means for yield calibrations, and in
the present case it is even not necessary to know the
transmission of the spectrometer, since the solid angle
is practically the same for two lines which are close to
each other. However, a comparison cannot be made in a
single exposure due to the widely different intensities
and will, consequently, be dependent on the calibration
of a beam integrator. The uncertainties introduced in
this way are not of any great significance, in particular
if approximately the same currents are employed in the
two exposures. One thus directly compares the cross
sections for Coulomb excitation with the Rutherford
cross section, and the reduced nuclear transition prob-
abilities B()%,) derived from such a procedure should
therefore be very reliable. At present, the accuracy of
the analysis is limited to some extent by the fact that
the differential excitation cross sections have only been
calculated theoretically in the classical approximation
(see Sec. II C.3).

The large cross sections for elastic scattering imply
that even extremely small contaminations in the targets
give rise to peaks in. the spectra (see I'ig. III.21), but
these lines can be identified by the way in which they
move with respect to the main Rutherford line, when the
bombarding energy or the angle of observation is
changed. Elastic scattering from the target nuclei will,
however, give rise to a continuous background if the
beam employed for the bombardment is not com-
pletely free of energy degraded particles. Even if the
beam is passed through a magnetic analyzer before it
strikes the target, there may still be a significant back-
ground due to scattering from stop edges etc. For this
reason, it is in general preferable to observe in the
backward directions, where the elastic scattering rela-
tive to the Coulomb excitations is the smallest. The
ratio of the cross sections for E2 Coulomb excitation
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E2 Coulomb excitations as compared to the Ei brems-
strahlung, for which the angular distribution is given
by the functions dfst(t7) (see Fig. II.7). The processes
leading to the ionization of the inner atomic shells,
which give rise to an important background in the
measurements on the decay radiations (see foregoing),
are of less importance in the detection of the inelastically
scattered projectiles, since the angular distribution of
the particles responsible for the ionization is expected
to be rather strongly peaked in the forward direction.

CHAPTER IV. NUCLEAR DATA OBTAINED FROM
COULOMB EXCITATION

FIG. IG.21. Spectrum of protons scattered, from gold. The
6gure shows the energy spectrum of protons scattered from a
0.1 mg/cm2 thin Au target (B. Elbek, and C. K. Bockelman, to
appear in Phys. Rev. ). The measurements were made with a
magnetic spectrometer of high resolving power, and the particles
were detected by means of a photographic plate. The exposure
corresponded to approximately 4 millicoulomb. The angle of
observation was 130' and the bombarding energy 6 Mev. The
energy intervals between the inelastic groups and the strong peak
from elastic scattering can be obtained from the calibration
curve shown in the 6gure. The two strongly excited states in Au"'
correspond to the peaks C~ and C2, and there is also an indication
of the more weakly excited 268-kev level (see Table IV.2). The
peak labeled S" is due to elastic scattering from a contamination
of sulfur.

In this chapter, we discuss the analysis of the experi-
mental results on Coulomb excitation in terms of the
theory given in Chapter II. This analysis confirms the
accuracy of the theoretical description of the excitation
process and leads to the determination of the nuclear
parameters involved in the theory. The chapter also
contains a compilation of the experimental results
that have been obtained from Coulomb excitation
investigations.

and elastic scattering is proportional to A ~Z~ 'E', and it
is therefore advantageous to employ high bombarding
energies. For energies of the order of the Coulomb
barrier, the signal to noise increases as A~Z~.

The energy region over which the inelastic groups can
be observed extends from the elastic peak down to the
continuous background from the target support. This
free region is related to the recoil energy; the extension
increases with the mass and energy of the projectile and
with the scattering angle, and decreases with increasing
mass of the nuclei in the target support. Light elements
in the target support may, on the other hand, give rise
to nuclear reactions with the emission of charged par-
ticles. Aluminum has been used as a support in experi-
ments with protons, at energies about 6 Mev. "5

Because of the great strength of the elastic scattering,
it is desirable that the spectrometer gives a very sharp
image, but even then the elastic peak. wBl always have
a signi6cant low-energy tail due to the energy straggling
in the target. In the study of the low excitation energies,
it is therefore necessary to employ very thin targets,
even when the observations are made on particles which
have penetrated the target and, thus, on the average
have lost the same energy.

In addition to the above-mentioned contributions to
the background radiation there will, just as for the y
rays and the conversion electrons, be contributions from
atomic processes in the target. Thus, the considerations
made earlier with regard to the effect of the brems-

strahlung also apply here, with the supplementary re-
mark that the backward angles of observation favor the

"'B. Elbek (to be published).
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FIG. IV.1. Excitation functions for levels in Ta'". The 6gure
gives the thick target yield of the three y rays observed in proton
bombardment of Ta' '. The experimental data are taken from
P. H. Stelson and F. K. McGowan, Phys. Rev. 99, 112 (1955).
The full drawn curves give the theoretical energy dependence of
the yield, assuming E2 Coulomb excitation /see (II C.15) and
(III.6) and Figs. II.5 and 6 and III.9 and 10$. The stopping
power has been assumed to vary as E -", and the curves are
normalized to the experimental value at 3.4 Mev, as indicated
by the large circles. The theoretical curves are rather sensitive
to the excitation energy AE. It is seen that the 13'7 kev and 303
kev 7 rays have excitation functions with AE=B& and thus
represent ground-state transitions, while the 166-kev & ray has an
excitation function with 68=303 kev and is thus associated with
a cascade decay of a level at this energy (see Fig. V.7). For com-
parison, the excitation function corresponding to DE=166 kev is
drawn with a broken curve. The contribution to the 137-kev
radiation resulting from the 303-kev excitation decaying by
cascade has not been subtracted from the experimental yield.
The correction amounts to about 10% at the highest bombarding
energies employed.
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FIG. IV.2. Excitation function for levels in F". The figure
shows the measured excitation cross sections for the 109-kev and
196-kev p rays observed in n bombardment of a thin target of
CaF2 [Sherr, I i, and Christy, Phys. Rev. 96, 1258 (1954)j. The
theoretical excitation functions given by the full drawn curves
are obtained from (II C.15) and Figs. IL4, 5, and 6, by assuming
E1 excitation with DE=109 kev for the 109-kev p ray, and E2
excitation with hE = 196kev for the 196-kev 7 ray. The excitation
functions are not sensitive to the multipole order, but the assumed
values of P are those indicated by other experimental evidence
(see the references in Table IV.2). The theoretical curves are
normalized to the experimental cross sections at Er = 1.55 Mev.

of a 119-kev level decaying to a 9-kev state (see
Table IV.2).

The possibility of determining the multipole order of
the excitation process on the basis of the yield curve is
illustrated in Fig. IV.3. While it would be rather easy
to recognize higher multipole orders P, =3 or 4), it is
usually dificult to distinguish E2 from E1 on the basis
of the excitation function. ""These two multipole transi-
tions have very nearly parallel yield functions, except
for small $ values corresponding to high bombarding
energies or low excitation energies (see Fig. III.15).

An alternative method for determining the multipole
order of the excitation is provided by a comparison of
the yield for two different bombarding particles. If, for
instance, one choses bombarding energies corresponding
to the same value of $, the cross section for an excitation
of order EX is, to a erst approximation, proportional to
Zts(A t/Zt)'"" Lsee (II C.13), (II C.15), and (II C.16)g.
Thus, the ratio of the cross sections for proton and
alpha-particle bombardments would di6er for E1 and
E2 excitation by about a factor of 1.6. This method for
determining X has been used, for example, to establish
the E2 character of the 446-kev transition in Na" (see
Fig. IV.7) and of the 100-kev transition in W'" (see
Table IV.2).

I f ) 1 ~ 1 I

IV A. Analysis of Experimental Data

IV A.1. Excitatioe Function aed Relative Yields

The theoretical expressions for the Coulomb excita-
tion yields as a function of the bombarding energy are
independent of the nuclear structure. It is thus possible
with considerable certainty to identify an observed
radiation as resulting from Coulomb excitation by a
measurement of its yield function. Examples of well-

measured yield functions are given in Figs. IV.1 and
IV.2. It is seen that the theoretical expressions repro-
duce the observed relative yields over a range in which
the cross sections vary by several orders of magnitude.

The yield function depends on the multipole order X

and the excitation energy AE, and may thus be used to
determine these two quantities. The sensitivity of the
yield curve to the excitation energy, DE, may often be
exploited to decide whether an observed radiation repre-
-sents a ground-state decay or a cascade radiation from
a higher lying state. As an example, Fig. IV.1 clearly
shows that the observed 166-kev gamma ray in Ta' '
originates from an excited state with an energy of about
303 kev. This fact is also directly con6rmed by the
observation of coincidences between the 166-kev and
137-kev y rays (see Table IV.2). Similarly, the yield of

the 110-kev radiation from Tm' has been shown to
indicate that this transition results from the excitation

P'-RA Y'

A'EV

OJ, ,

Z 3
E t'LA8) hfEY

FIG. IV.3. Dependence of excitation function on multipole
order. The hgure shows the thin target yield of the 68 kev y ray
observed in a bombardment of Ge" LG. M. Temmer and N. P.
Heydenburg, Phys. Rev. 96, 426 (1954)j.The full drawn curves
give the theoretical excitation functions for E1, E2, and E3
Coulomb excitation, assuming DF=68 kev /see (II C.15) and
Fig. 11.4]. The curves are normalized to the experimental value
at 1.4 Mev. The possibility of distinguishing in the present case
between E1 and E2 excitation on the basis of the yield function
is associated with the rather small P values for the excitation
()=0.14 for Ir~=3 Mev).

'6'Zoic added in proof. ——Recently, an E3 excitation process,
leading to the 40 kev isomeric level in Rh'", has been identified
as of E3 type on the basis oi the measured excitation function
(G. A. Jones and W. R. Phillips, presented at the Amsterdam
Conference on Nuclear Reactions, July, 1956).
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IV A.Z. Angular Distribution of Decay Radiation

The angular distribution of the radiation following
Coulomb excitation provides information on the spins
and parities of the states involved as well as on the
multipole order of the excitation mode and the decay.

Extensive angular distribution measurements have
been made' of the p rays from even-even nuclei which
should follow the unique 0(E2)2 (E2)0 correlation which
is given by t see (II C.29) and Table II.11j

78

W(tt) = 1+0.357aP'Ps(costt)

+1.143aP'P4 (cosr9),

where the coefficients a2 and a4 are characteristic of the
Coulomb excitation process. The observed distributions
have been analyzed to yield experimental values of
these coeKcients which are seen in Figs. IV.4 and IU.S
to be in approximate agreement with the theoretical
values given in Fig. II.8. It seems that the small diRer-
ences between the experimental and-theoretical values
are not outside the experimental uncertainties.

As discussed in Sec. II C.S, there may be in certain
cases important eRects on the angular distribution re-
sulting from the precession of the nuclear spin in the
excited state. In the present cases, however, these
eRects are expected to be very small due to the short
lifetimes of the states involved Lr;=1 10—"sec for
Cd"' and v-y=4 10 " sec for Pt'", as determined from
the absolute yield of the Coulomb excitation of these
levels (see Sec. IV A.4 and Table IV.2)j.Moreover, for
the excited states involved, the static quadrupole mo-
ments are expected to be small, even though the transi-
tion moments are rather large (see Sec. V C.2). Also the
higher order eRects in the exci.tation process are ex-
pected to be small in the present circumstances (see
Sec. II D.2) "'

Besides these investigations of the even-even nuclei,
a number of measurements of the angular distribution
of the p rays from odd-A nuclei have also been made
(see, e.g. , Fig. III.S). The analysis of these experiments

by means of the theoretical expressions in Sec. II C.4
has yielded the spin determinations and multipole
assignments listed in Table IV.2.

In the frequently occurring case of an E2 excitation
followed by a mixed &1+82 decay, there may often
be an ambiguity in the mixing ratio 6 as determined
from the angular distribution of the p rays. This am-

biguity may be removed by a measurement of the
polarization of the p quantum"" )see (II A.78a)].

"' It has been suggested (reference 17) that the multiple scatter-
ing of the projectile in the target may give rise to an important
correction to the measured angular distribution of the p rays.
However, this effect appears to be very small under most experi-
mental conditions (see the comments in Sec. III 8.2).

,"7P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc.
Ser. II, I, 164 (1956).

0
0
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FiGs. IV.4 and IV.S. Angular distribution coefficients u2 and c4.
The angular distribution of the 7 rays following E2 Coulomb
excitation depends on the excitation process only through the
coeKcients or and a4 /see (II C.29)g. The figures plot the experi-
mentally determined a& and a4 coefficients as a function of the
proton bombarding energy; the data is taken from the thick
target measurements by F. K, McGowan and P. H. Stelson
[Phys. Rev. 99, 127 (1955) and unpublished data, quoted in
Goldstein et ol. (Phys. Rev. 100, 436 (1955)g. The full drawn
curves give the theoretical thick target values for u2 and a4
obtained from Fig. II.8 by employing the thick target correction
described in Sec. III 8.2; the values of bE2 involved in this correc-
tion are taken from Fig. III.9.

IV A.4. Absolmte Yields

From the measured absolute cross sections one may
derive the reduced transition probability B(EX) by
means of the theoretical expressions in Sec. II C.2, and
the values obtained in this manner are listed in Table

IV A.3. Angular Distribution of Inelastically
Scattered Parti cles

The angular distribution of inelastically scattered
particles depends only on the multipole order of the
excitation, but not on the spins of the states involved.
The measured angular distributions of the inelastically
scattered protons from Au'" are compared in Fig. IV.6
with the theoretical distributions for A=i and 2, ob-
tained in the classical approximation (see Sec. II C.3).
The exact quantum-mechanical angular distributions
have not so far been evaluated.



500 ALDER, BOHR, HUVS, MOTTELSON, AND WINTHER

a
ck: .15-

~&.ro—

% .Os-

~ g ~

I

I .
s

s
Au

6hfEV H

Z79KE'V
Er

1S-

.10—

SSOKEY Er

s ) ) I $ l ~

I V.5). In a similar manner, it has been possible to de-
termine the transition probabilities for certain E1
transitions representing alternative modes of decay for
levels in Se and Ag populated by E2 Coulomb excitation
(see Table IV.2 and the references given there).

IV A.5. CoNEoesb Excitutioe ut Higher
Bonsbardi ng Eeergi es

60 rZO ~ Mo 0 6o re + re

FIG. IV.6. Angular distribution of inelastically scattered
protons from Au"'. The figure shows the differential cross sections
in millibarns per steradian for excitation of the 279-kev and
550-kev levels in Au"" with protons of 6 Mev (B.Elbek and C. K.
Bockelmann, to appear in Phys. Rev. ) The full drawn curves give
the theoretical cross sections obtained from (II C.15) and Fig.
II.7, assuming E2 excitation (see also Sec. II C.3); the B(E2)
values are determined so as to give the best fit to the experimental
points. The.measured angular dependence of the cross sections
agrees rather well with the classical theory (the value of v in the
present experiment is about 5) and also the absolute values of
the cross sections are in approximate agreement with those ex-
pected on the basis of the v-ray yield measurements (see the B(E2)
values in Table IV.2). The angular dependence of the cross
sections is rather sensitive to the multipole order of the excitation
process. This is illustrated by the broken curves which give the
theoretical E1 differential cross sections, normalized to the same
total cross section as the E2 curves.

IV.2. The reduced transition probability also determines
the lifetime for the inverse radiative transition of order
Eh Lsee (II A.56) and (II A.57)j.One thus obtains for
the transition probability for y emission from the
excited state If to the ground state I;
T (E1.Iy &I.) 1 59X10s(gE)s

2I;+1
XB(E1;I, +If) se—c ', (IV.2)

2Ir+1
and

Tv(E2; I~Is) =1.23X10 s(AE)'

2I;+1
XB(E2;I,~If) sec—', (IV.3)

2Ir+I

where hE is measured in kev and B(EX) in units of e'
(10-'4 cm') ".

In a number of cases, measurements are available of
both the cross section for Coulomb excitation and the
corresponding radiative lifetime, thus providing two
independent measurements of B(EX). The comparison
of these determinations is contained in Table IV.1; the
agreement appears in all cases to be within the experi-
mental error.

In many cases, Coulomb excited states may decay in
several modes, either to the ground state with a mixed
multipole transition or by a cascade to some other
nuclear level. In these cases, measurements of multipole
mixtures and branching ratios together with the abso-
lute cross section for Coulomb excitation provide a
determination of the absolute transition probabilities
for the alternative modes. In this way, a number of M1
decay probabilities have been determined (see Table

TABLE IV.1. Comparison of lifetime determinations with
Coulomb excitation yield measurements. The table lists, in
columns two and three, the spins of the nuclear ground state, I0,
and of the excited state, I. The measured half-lives, ri/2, listed in
column five, are taken from the review by A. W. Sunyar, Phys.
Rev. 98, 653 (1955) and the additional references listed below. The
number in parentheses in column five gives the power of ten for
the observed lifetime measured in seconds. The half-lives yield the
reduced transition probabilities B(E2; Io +I) by means —of (IV.3)
and the relation (rq~~) '=1.4 Tv(E2) (1+3—2) (1+n) where
Tv(E2) is the transition probability per second for E2 p radiation,
while 8 is the ratio of E2 to M1 p-ray intensity, and o. is the total
conversion coefFicient. The values of 8 and n are taken from column
six of Table IV.2. The B(E2) values obtained from lifetime de-
terminations are given in column six in units of e2)(10 "cm', and
are compared with the corresponding quantities obtained from
the Coulomb excitation cross sections (see column seven of
Table IV.2).

A similar comparison as for the E2 transitions in the table can
be made for the 110 kev E1 transition in F"(Is=1/2, I= 1/2). The
measured half-life of 7X10 " sec yields by means of (IV.2) the
value 4.8)&10 30 e' cm', while the Coulomb excitation cross section
gives B(E1)=2.3X10 30 e cms.

Additional references for r112. Thirion, Sarnes, and Lauritsen,
Phys. Rev. 94, 1076 (1954) (P'; 110-kev transition); Fiehrer,
Lehmann, Leveque, and Pick, Compt. rend. 241, 1746 (1955)
(F";197-kev transition); H. Schopper, Z. Physik 144, 476 (1956)
(Vn); F. R. Metzger, Phys Rev. 101. , 286 (1956) (Gers and Ger');
F. R. Metzger, Phys. Rev. 98, 200 (1955) (Hgza); H. deWaard,
Phys. Rev. 99, 1045 (1955), and R. E. Azuma and G. M. Lewis,
Phil. Mag. 46, 1034 (1955) (TP"); T. R. Gerholm (private
communication) (Pb~'}.

Nucleus

F19
V51

32Ge72
Ge'4
Sm152
Gd154

68Fr166

2H f176

8f180

4182
80Hg

Hg199
Hg202

ITl203

82Pb20

I0

1/2
7/2
0
0
0
0
0
0
0
0
0

1/2

1/2
1/2

I
5/2
5/2

2

2
2
2
2
2

2
5/2

2
3/2
5/2

T1/2
(kev) (sec)

197 6(—8)
325 1.0(—10)
835 3.2(—12}
595 1.3 (—11)
122 1.4(—9)
123 1.2(—9)
81 i./( —9)
89 1.35(—9)
93 1.4(—9)

100 1.27 (—9)
411 2.1(—11)
159 2.4(—9)
439 2.2 (—11)
280 1.4(—10)'
569 9(—11)

Coulomb
Lifetime excitation
B(E2) B(E2)

0.01
0.008
0.19
0.28
3.3
3.6
5.7
5.3
4.9
4;3
1.1
0.35
0.8
0.28
0.031

0.003
0.006
0.26
0.30
3.1
4.5
6.8b
6.0
5.0
5.6
0.8
0.26
0.5
0.12
0.028

a This value, obtained from a direct measurement of the delay, differs
considerably from the value deduced from the resonance scattering cross
section LF. R. Metzger and W. B. Todd, Phys. Rev. 95, 627(A) (1954)g.

b The unresolved transitions from all the even erbium isotopes are
assumed to have the same B(82) value.

The above analysis refers to experimental arrange-
ments in which the bombarding energy is sufFiciently
low that penetration into the nucleus can be neglected.
The electromagnetic interaction is then the only mech-
anism for exciting the nucleus.

Already for energies appreciably below the Coulomb
barrier, however, the projectile may penetrate to the
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FIG. IV.7. Coulomb excitation of sodium by protons. The figure
shows the yield of the 446-kev y ray from a thin target of NaCl
bombarded with protons. fG. M. Temmer and N. P. Heyden-
burg, Phys. Rev. 98, 1198(A) (1955)and private communication).
Between the resonances due to compound nucleus formation one
observes a smoothly rising background yield which may be
ascribed to Coulomb excitation. It is possible to determine the
multipole order of the Coulomb excitation by comparing with
the yield observed in the excitation with n particles (loc. cit.).
The dashed curves correspond to the cross sections expected for
'A= 1 and 2 on the basis of the observed cross section for excitation
with a particles (see II C.15). The close agreement of the meas-
ured cross section with the theoretical curve for E2 excitation also
confirms that the yield away from resonances is primarily due to
Coulomb excitation.

nuclear surface and thus initiate proper nuclear reac-
tions. Estimates of the expected reaction cross sections
are given in Fig. III.1. In light elements, the radiation
resulting from such nuclear reactions is characterized
by a resonant structure which is superimposed on the
more slowly varying yield of the Coulomb excitation.
In heavier elements, the level spacing of the compound
nucleus is usually below the energy resolution of the
incident beam, and in addition the levels may overlap
due to the eRect of neutron emission.

Even when the average cross section for compound
nucleus formation exceeds the Coulomb excitation cross
section, it may still be possible to observe the latter,
since the compound nucleus will usually decay prefer-
entially through other channels, such as (p,e), (n, ts),
(n,p), and also the elastic channel (see Fig. IV.S).

Moreover, for light elements where the resonance
structure can be resolved, the cross section between
resonances may result mainly from Coulomb excitation,
and a quantitative determination of the Coulomb exci-
tation yield may then be possible (see Fig. IV.7). In
this connection it is signi6cant that the interference
between Coulomb excitation and the contribution of a
particular resonance is confined to a few angular mo-

menta of the projectile, while the total Coulomb excita-
tion yield results from many angular momenta.

For bombarding energies equal to, or greater than,
the Coulomb barrier, the compound nucleus formation
takes place with a large probability. Still, the observed
inelastic scattering leading to the low-lying states of the
target, appears to result from a direct interaction, since
the yields greatly exceed those expected from the decay

10
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FIG. IV.8. Gamma rays from Coulomb excitation and compound
nucleus formation in F" bombarded with a particles. The figure
shows the thin target yields of the 114-kev p ray from the first
excited state in F" and the 1.28-Mev 7 ray from the first excited
state of Ne" formed by an (n, P') process on F" PSherr, Li, and
Christy, Phys. Rev. 96& 1258 (1954)g. For bombarding energies
below 1.2 Mev, the penetration of the 0. particle through the
Coulomb barrier is very small (see Fig. III.1) and the cross section
for compound nucleus formation is small compared to that for
Coulomb excitation. Kith increasing bombarding energy, 0 p
increases rapidly and soon becomes larger than 0.„,&. However,
even for E ~2 Mev, at which energy the average value of Oo p
is an order. of magnitude larger than 0.~,&, the yield of the 114-kev
p ray is only very little affected by the compound nucleus forma-
tion, since the probability that the compound nucleus decays by
inelastic n-emission is small. Finally, for E~&2.5 Mev, the
Coulomb excitation yield of the 114-kev 7 ray is overshadowed
by the resonance yield from compound nucleus formation.

of the compound nucleus. "' In these reactions one ex-
pects, however, besides the Coulomb interaction, an
important contribution to the direct excitation from the
interaction with the nuclear 6eld. Moreover, the change
of the projectile orbit and of the electric multipole fields
when the projectile is inside the nucleus imply an
essential modification of the calculations given in
Chapter II (see, e.g. , Sec. II E.3).

In some cases, it may be possible to separate the
simple Coulomb excitation eRect resulting from the
particles which have not passed through the nucleus, by
observing the inelastically scattered particles in the
forward directions. Thus, if p))i, so that the projectile
orbits can be described in the classical approximation,
the particles passing outside the nucleus will be scattered
into angles less than a critical value 6,. This angle
depends on the ratio

X=
~B

(IV.4)

(IV.S)(for x&2).
2$—i

"' See, e.g. , P. C. Gugelot, Phys. Rev. 93, 425 (1954);Schrank,
Gugelot, and Dayton, Phys. Rev. 96, 1156 (1954), and also the
review by H. McManus, Brookhaven report On the Statistical
Aspects of the Nucleus, 1955.

between the projectile energy 8 and the Coulomb
barrier Es Lsee (III.1)$ and is given by )see (II A.22)
and (II A.23)j

1
tl, =2 sin '(
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Besides the particles resulting from Coulomb excita-
tion there may also be a contribution from the nuclear
interactions to the inelastic scattering in the forward
direction. The relative magnitude of the two contribu-
tions will depend on the transition matrix elements as
well as on the motion of the projectile inside the
nucleus. The conditions for observing the Coulomb
excitation appear to be the most favorable if the pro-
jectile has only a small chance of traversing the target
nucleus, as in the case of n particles incident on heavy
nuclei. Moreover, the strong increase of the E1 Coulomb
excitation cross section in the forward direction may
facilitate the detection of such excitations. The Coulomb
excitation origin of an observed inelastic scattering may
be tested if it is possible to measure the angular distribu-
tion or the dependence of the yield on the energy and
charge of the projectile.

For p (1, the quantum mechanical diGraction effects
are of more importance than the deflection in the
Coulomb field, and the angle 6, loses its significance.

IV B. Compilation of Experimental Results

The results obtained from Coulomb excitation investi-
gations, reported in the literature or available to us by
private communication prior to approximately April,
1956, are summarized in Table IV.2. A description of
the entries contained in the various columns is given
below.

Collme I. Nucleus

In cases where the element bombarded consists of
more than one isotope, the isotopic assignments of the
observed radiation have been made by means of

1. use of separated (or enriched) isotopes, as noted
under "comments" (column V),

2. identification of the observed radiation with that
found in other reactions where the isotope is
known, as indicated under "other processes"
(column IX),

3. the general systematics of the excitation energies
and cross sections for even-even nuclei, as listed
under "comments. " Thus, certain observed lines
which fit into the established trends (see, e.g. ,
Fig. V.3) may be assigned to an appropriate even-
even isotope of the element investigated, while
observed lines whose energies differ greatly from
those of neighboring even isotopes can be ascribed
to odd-A isotopes.

For some of the data, none of these methods of assign-
ment is available, or the radiation is known to be com-
posed of unresolved contributions from several isotopes;
in such cases, only the element is listed in column I,
and not the mass number.

Column II. Decay Energy

The energies of the observed decay transition follow-

ing Coulomb excitation are listed in kev. When the

method of detection involves the inelastic particle
groups, the value listed in this column equals the excita-
tion energy. If the excitation is detected by means of
gamma radiation or conversion electrons, the observed
decay may represent a cascade from a higher excited
level. (See columns V and VIII for the information
available on this point. )

A separate entry is made for each experiment, and
the references are given in column III.

(IV.6)~(vi) =
2 (1+~')f'

where f; are the relative intensities of the various y
transitions by which the excited state may decay, and
n; are the corresponding total conversion coefficients.
In the case of conversion electron detection, the decay
fraction is given by (6) multiplied by the conversion
coefficient for the conversion line in question. For the
inelastic protons, e(p') = 1.

Colum+ III. Bombardirlg Coeditioes

The range of bombarding energies is given in Mev.
The projectile used is denoted by, p, proton, d, deu-
teron, e, alpha particle, Ã, nitrogen ions. References are
given by means of an abbreviation, e.g. , (M1) which
refers to the bibliography listed at the end of the table.
These references apply also to the decay energies and
yield measurements listed in the previous and succeed-
ing columns.

Colum+ IV. Parka/ Eedlced TraesitiorI

Probability eB(EZ)

The column lists the information regarding the nu-
clear transition probability which can be derived
directly from the measured yield, assuming only a
knowledge of the energy and multipole order of the
excitation. Where the excitation energy is uncertain,
the listed values are based on the arbitrary assumption
that the decay takes place to the ground state. Since all
excitations identified so far have been found to be of
electric quadrupole type, with the exception of the
weakly excited 109-kev level in F",we have assumed E2
character in all except this one case.

The quantity listed in this column is the partial re-
duced transition probability eB(E2), where B(E2) [see
(II C.15)j is measured in units of e'&(10 ' cm4, and
where e is the fraction of the excitations which decay
through the observed mode. The detected radiation
indicated in parenthesis is denoted as follows:

(y) electromagnetic radiation,
(e~), (el,), etc. conversion electrons from the E shell,

I shell, etc.,
(p') inelastic protons.

Thus, if the detected radiation is a y ray (y;), the
decay fraction is given by
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If the Coulomb excitation populates several levels in
the same nucleus, the radiation from the lower levels
may partly result from a cascade decay of a higher level.
In the determination of eB(E2), it is then necessary to
establish what part of the measured radiation is due to
the direct excitation of the radiating level. In most
cases, however, the correction for cascade is small com-
pared with the accuracy of the yield determinations,
and we have not attempted to include it except when
it has already been taken into account by the original
experimenters.

When the isotope responsible for the observed radia-
tion has not been assigned, eB(E2) has been calculated
assuming 100% abundance for the responsible isotope.
Where no yield determination is available, only the
detected radiation is listed in this column.

Collme V. Consmeets

This column contains a brief summary of other in-
formation on the observed levels, which has been ob-
tained from Coulomb excitation. The abbreviations
employed are

ex.func. hE= 127 The measured yield as a function
of energy has been found to be consistent with
Coulomb excitation with an excitation energy AE
equal to the listed value, assuming multipole order
E2. If the yield function also determines the multi-
pole order of the excitation process, the notation
X=2 is added. While the excitation function is
rather sensitive to the excitation energy, it often
does not distinguish between E1 and E2 transitions
(see Sec. IV A.1).

sep. iso. The isotope assignment has been estab-
lished by Coulomb excitation experiments, employ-
ing enriched isotopes.

y(8) The angular distribution of the y radiation has
been measured. The spins and multipolarity of the
transitions which have been deduced, from the
observed angular distribution are indicated by
I;(EX)It(L)Iff where I;, It, and Irr are the spins
of the initial state, Coulomb excited state, and final
state, respectively, while EX and L are the multi-
polarity of the Coulomb excitation process and of
the subsequent y radiation, respectively.
The ratio of the amplitudes of E2 and M1 y

radiation in a mixed transition. For the definition
of the sign of 8, see Sec. II A.4 and Table II.11.

o.(p):o(n) gives X=2. The measured ratio of the
Coulomb excitation cross sections for protons and
n particles implies E2 excitation.

nx, E/I. The E conversion coefficient nx and E/L
ratio measured in Coulomb excitation experiments.

y(100)~(200)coinc. The two indicated y rays are
found to be in coincidence.

y(100):y(200) The value listed is the measured in-
tensity ratio of two p rays assumed to originate
from the same excited level.

Column VI. 3IIultipole Order and Conmrsion
Coegcients of the Decay Radiation

For even-even nuclei, the excited states are assumed
to be of (2+) character and to decay by pure E2 radia-
tion. For odd-A nuclei, the decays are often of mixed
3Ej and E2 type, and the column lists the percentage
of the p decays which are of E2 type; the information is
obtained from the angular correlation measurements or
E/L ratios. In a number of cases, the transitions can be
classified as AI= 2, and thus as pure E2 decays, on the
basis of the rotational interpretation of the levels in-
volved (see column VIII). For some of the rotational
transitions with AI=I, where no other evidence is
available, the multipole mixture has been calculated
from observed branching ratios $(V.10 and V.17); see
also Fig. V.7j. In these cases the E2 percentage is listed
in parenthesis.

In addition, the column gives the conversion coeffi-
cients employed in the derivation of the B(E2) values
in column VII. The listed values for the E shell con-
version coeKcients o.~ for Z(50 are taken from the
calculations appropriate to a point nucleus. "' The
theoretical values for Z)50 include the effect of the
finite nuclear size. '" The L-shell conversion coeKcients
o.l, have been obtained from the o,z values by assuming
a E/L ratio equal to that for a point nucleus. "' The
total conversion coefficients, 0., are obtained by assum-
ing n=n&+1.3nl. , in order to approximately take into
account the conversion in the higher shells.

Collnze VII. Reduced NNcleur TraesitiorI,
Probability B(EZ)

In cases where sufficient data are available, a total
B(E2) for the excitation process may be computed from
the eB(E2) values listed in column IV and the assumed
conversion coefficients (column VI). The B(E2) value
is listed opposite the radiation which represents the
ground-state decay mode of the level in question. The
value given is a weighted average of the various experi-
mental yield determinations. "'

Colum+ VIII. Level Scheme

The suggested level schemes are based on the Cou-
lomb excitation measurements as well as the evidence
from other sources indicated in column IX. Only levels
which have been observed in Coulomb excitation experi-
ments are included. The spin assignments listed in
parenthesis are based on the assumed rotational char-

Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83,
79 (1951) and Rose, Goertzel, and Swift, privately circulated
tables."'L. A. Sliv, privately circulated tables; see also L. A. Sliv,
J. Exptl. Theoret. Phys. U, S.S.R. 21, 770 (1951) and L. A. Sliv
and M. A. Listengarten, ibid. 22, 29 (1952).

'2' There appears to be an unresolved discrepancy between the
p-ray yield measurements in the series of experiments reported in
(Mi, M3, M4, and M6) and those of other experimenters (see
column IV). Rather than attempt to average such conflicting
determinations, we have arbitrarily omitted the former values
from the averages listed in column VII.
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aeter of the excited levels. Where directly measured
lifetimes are available, the half-lives are listed, employ-
ing the following abbreviations: s (seconds), tts (10 '
sec), nttts (10—' sec).

The level populated in Coulomb excitation of an
even-even nucleus appears in all cases to be the 6rst
excited, 2+, state and no decay scheme is drawn.

Columrt IX. Other Processes

This column lists other reactions in which levels are
observed that may tentatively be identified with those
found in Coulomb excitation. The observed energies are
given in kev, together with the reaction involved.
References to the experimental work may be found in
Hollander, Perlman, and Seaborg, Revs. Modern Phys.
25, 469 (1953), and Nuclear Data Cards, edited by
K. Way et a/. , National Research Council, Washing-
ton D. C.

CHAPTER V. COLLECTIVE NUCLEAR
EXCITATIONS

An outstanding feature of the nuclear spectra re-
vealed by the Coulomb excitation studies is the sys-
tematic occurrence throughout the periodic system of
low-energy electric quadrupole transitions of a strength
greatly exceeding that which wouM be associated with
the excitation of a single nucleon. The estimate (II A.58)
of the reduced transition probability for a single proton
transition of E2 type gives"'

B(E2)»=3 10 'A'"e'10 "cm'. (V.1)

Thus, from a comparison with the observed B(E2)
values in column VII of Table IV.2, it is seen that.
most elements exhibit E2 transitions of a strength more
than 10 times the single particle unit, and that in
certain regions transitions occur with a probability
exceeding this unit by a factor of more than 100.

These enhanced transitions are clearly due to the
cooperative sects of a large number of nucleons, and
indeed most of the observed levels can be interpreted
in terms of simple collective excitations of rotational or
vibrational type. Where this interpretation can be
made, the Coulomb excitation experiments yield valu-
able information on such collective nuclear properties
as the equilibrium shape, the deformability, and the
inertial parameters associated with the collective mo-
tion. In the present chapter, we shall outline the theory
of collective nuclear excitations and discuss the evidence
obtained from the Coulomb excitation experiments.

V A. Qualitative Considerations

In the analysis of nuclear excitation spectra it is
possible to distinguish between two diferent modes of

'"As already noted in Chapter II, the statistical factor appear-
ing in (II A.58) is somewhat arbitrary; it is the factor appropriate
to a two proton excitation of the type (j)p 0~(j')J & in the
limit of large j,

excitation, the first associated with the motion of indi-
vidual nucleons and the second with collective types of
nuclear motion. "' "4 One may think of the former de-
grees of freedom as representing the motion of the nu-
cleons in a fixed nuclear potential (the intrinsic nuclear
motion), while the latter are associated with variations
in the shape and orientation of the nuclear field.

Such a separation of the motion becomes possible
when the frequencies of the collective excitations are
small compared with those characterizing the intrinsic
nucleonic motion and is in many respects analogous to
the separation between electronic and nuclear motion
in molecules.

When this adiabatic condition is fulfilled, one may
treat the equations of motion for the nucleus in two
steps. First one considers the nucleonic motion for fixed
values of the collective parameters n, specifying the
nuclear field; the energy eigenvalues for this motion are
denoted by E;(tr). The collective motion superposed on
the intrinsic motion is then given by a Hamiltonian of
the approximate form

I/, ii =8;(tr)+-,'8;(a)cr'. (v 2)

The functions E;(tr) are referred to as the potential
energy surfaces of the nucleus and play a similar role
as in the treatment of molecular vibrations and rota-
tions. In the present discussion we are especially inter-
ested in the behavior of the potential energy surfaces
near the equilibrium shape. "'

The second term in (2) gives the kinetic energy of the
collective motion, which may be obtained by consider-
ing the nucleonic motion for slowly varying o.. This
kinetic energy can be written as a quadratic expression
in the a, provided all the frequencies of the intrinsic
motion are large compared to those of the collective
motion, so that the intrinsic motion adjusts adia-
batically to the variation in o..

If the intrinsic motion possesses degenerate or close
lying energy levels, the adiabatic approximation may
partially break down. The nucleus must then be de-
scribed in terms of a coupled system of collective
oscillations and the low energy intrinsic degrees of
freedom in question. "'

' ' For a recent review of the nuclear independent particle model,
see M. G. Mayer and J. H. D. Jensen, ElemerItary Theory of
Nuclear Shell Stricture (John Wiley and Sons, Inc. , New York,
1955).

"4 Collective nuclear oscillations were first considered by N.
Bohr and F. Kalckar, Kgl. Danske Videnskab. Selskab Mat. fys.
Medd. 14, No. 10 (1937). The interplay between collective and
independent particle motion has been discussed by J. Rainwater,
Phys. Rev. 79, 432 (1950); A. Bohr, Kgl. &Danske Videnskab.
Selskab Mat. fys. Medd. 26, No. 14 (1952); D. L. Hill and J. A.
Wheeler, Phys. Rev. 89, 1102 (1953);A. Bohr and B.R. Mottel-
son, Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 27, No. 16
(1953)."'The behavior of these surfaces for larger deformations has
been discussed in connection with the nuclear fission process
LN. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939); D. L.
Hill and J. A. Wheeler, reference 124; A. Bohr, Proceedings of the
International Conference on the Peacefnl Uses of Atomic Energy
(Columbia University Press, New York, 1956), Vol. 2, p. 151
(Geneva, 1956)j.
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FIG. V.i. Potential energy surfaces for even-even nuclei. The
nuclear potential energy V is plotted as a function of the deforma-
tion parameter P, which may, for instance, represent the quadru-
pole eccentricity of the nucleus )see (V.6)j. The various curves
are intended to illustrate schematically the behavior of the poten-
tial energy surfaces for even-even nuclei as one moves away from
closed shells.

The curve a represents a configuration with only relatively few
particles outside of closed shells. As particles are added the
restoring force decreases though the spherical shape (P=O)
remains stable (curve 5) Still fu. rther from the closed shell the
spherical shape may become unstable (curve c) and the nucleus
acquires a nonspherical equilibrium shape. %ith the addition of
still more nucleons the equilibrium eccentricity increases and
the minimum in the potential energy surface becomes sharper
(curve d).

The curves all refer to the lowest intrinsic state. Additional sets
of potential energy surfaces are associated with each excited
intrinsic state.

Although the details of the figure have no quantitative signifi-
cance, the qualitative trends are suggested by simple considera-
tions (see the discussion in the text).

In the earliest treatments of collective nuclear oscilla-
tions, one attempted to estimate the potential and
kinetic energy in (2) by comparing the nucleus with a
liquid drop. It is found, however, that the shell structure
in the nucleonic motion has a profound effect on the
collective properties of the individual nuclei. Thus, the
potential energy surfaces depend essentially on the
nucleonic configuration and also the inertial parameters
8;(rr) deviate from the hydrodynamical estimates.

The main features of the nuclear potential energy
surfaces are determined by the competition between the
particles in closed shells, which strongly prefer a spher-
ical nuclear shape, and the particles in unfilled shells
which tend to polarize the nucleus and bring about a
nonspherical equilibrium shape. " The latter tendency
is, however, counteracted by the residual interactions
between the nucleons, which must be added to the
interactions already included in the average field. The
residual interactions imply correlations in the nucleonic
motion which reduce the net polarizing eGect. This
reduction is a result of the attractive short-range
character of the nuclear forces which favor states of
maximum spherical symmetry. "'

The inQuence of the residual interactions is the
greatest for small deformations of the nuclear shape, as
a consequence of the degeneracy of the particle motion

~' J. Rainwater, reference 124.

in a spherical field. For large nuclear eccentricities, the
strong coupling of the individual particles to the nuclear
deformation removes the degeneracies, and the residual
interactions are then of less importance.

The dependence of the potential energy surfaces on
the number of nucleons in unfilled shells is illustrated
schematically in Fig. V.1.The figure refers to even-even
nuclei, for which the lowest intrinsic state for a spherical
shape possesses zero total angular momentum. The
spherical density distribution of such a state implies
that the average polarizing effect of the particles
vanishes. For an even-even nucleus, the spherical shape
thus always represents an equilibrium, which may, how-
ever, be either stable or unstable. For configurations
with only relatively few particles outside of closed
shells, the deformation which would result in the absence
of residual interactions is small; the coupling between
the nucleons is then mainly determined by these inter-
actions and the spherical nuclear shape remains a stable
equilibrium. For su%ciently many particles in unfilled
shells, however, the deformation caused by the nucleonic
motion is large and thus only little aGected by the
residual interactions; the strongly deformed shape then
gives the minimum in the potential energy surface, and
the spherical shape is unstable.

On the basis of these qualitative considerations we
consider briefly the general features of the collective nu-
clear excitation spectra for the diferent configurations.

For a closed shell nucleus, the special stability of the
spherical equilibrium shape" implies that oscillations
in shape would have high frequencies. Since these fre-
quencies may be of the order of those involved in the
single particle motion, there may be no sharp distinction
between collective and single particle excitations of a
closed shell nucleus "'

H one or a few nucleons are added to (or subtracted
from) a closed shell configuration, the low-energy
nuclear states may be approximately described in terms
of the motion of these added particles. There exists,
however, a weak coupling between this nucleonic mo-
tion and the oscillations of the closed shell core, which
implies a significant enhancement of the electric multi-
pole transitions between the low-lying levels.

As more nucleons are added to the closed shell con-
figuration, the description of the excitations in terms of
the motion of the individual nucleons becomes highly
complex, especially due to the eGect of configuration
mixing. Moreover, the coupling to the closed shell core
increases.

Already for nuclei containing relatively few particles
in unfilled shells, however, one observes states in the
low-energy nuclear spectrum which can be approxi-
mately described in terms of simple collective oscilla-
tions. The collective behavior of the nucleons may be
understood from the fact that the potential energy of

S. Gallone and C. Salvetti, Nuovo cimento (9) 10, 145 (1953),
See also the references in footnote j.24."'D. Inglis, Phys. Rev. 97, 701 (1955).



COULOMB EXCITATION 525

deformation decreases as one moves away from closed
shell configurations (see Fig. V.1); therefore, the fre-
quency of collective oscillation soon becomes smaller
than the main frequencies of the intrinsic motion.

In the vicinity of the closed shells, where the spherical
shape represents a stable equilibrium, the collective
excitations correspond to vibrations about this shape.
The frequencies of these vibrations are expected to
decrease fairly regularly with the addition of particles,
corresponding to the decreasing restoring force. Eventu-
ally, this tendency may lead to instability of the
spherical shape and a resulting nonspherical equilibrium
shape (see Fig. V.1).

For such deformed nuclei the collective spectrum
separates into excitations of vibrational and rotational
type. The first corresponds to oscillations about the
equilibrium shape for fixed orientation of the nucleus,
while the second represents a collective motion which
rotates the nuclear orientation while preserving the
shape. Such a separation becomes possible since the
nuclear deformation implies that a large mass transport
is associated with the rotational motion. This motion
can thus take place with small frequency and therefore
without affecting the shape (or intrinsic structure) of
the nucleus.

The simple character of the rotational motion gives
rise to many regularities in the rotational excitation
levels, which make them easily identifiable. The rota-
tional states are also especially strongly excited in
Coulomb excitation experiments, as a consequence of
their low energy and large electric quadrupole transition
probabilities. We therefore begin, in Sec. B, with a more
detailed discussion of this special type of collective
excitation.

The properties of the vibrational modes of excitation,
in spherical and deformed nuclei, are at present less well
established, but the Coulomb excitation process consti-
tutes one of the most promising methods for a further
exploration of these states. In Secs. C and D, we discuss
the general characteristics expected for vibrational
spectra and summarize the available evidence on these
excitations. Finally, in Sec. E, we consider briefly some
of the special features of the excitation spectra for
nuclei in the closed shell regions.

V B. Rotational Excitations

The occurrence of rotational spectra is a general
characteristic of nuclei possessing a nonspherical equi-
librium shape. For such nuclei it is possible to separate
between a collective rotational motion and the nucleonic
motion for fixed nuclear orientation. This latter motion
may again separate into vibrational and individual
particle components, but will in the present section
often be referred to simply as the intrinsic nuclear
motion, since the main regularities in the rotational
spectra are independent of the details of this intrinsic
structure.

V It.l. Energy SPectrum

The rotational spectrum becomes especially simple if
the nuclear shape possesses axial symmetry, as appears
generally to be the case for the very strongly deformed
nuclei. "'"' The angular momentum coupling scheme is
then similar to that of a linear molecule"' and can be
characterized by the three constants of the motion: the
total angular momentum I, its projection M on a space-
fixed axis, and its projection E on the nuclear symmetry
axis (see Fig. V.2).

Since there can be no collective rotations about a
symmetry axis (see footnote 147 later), the quantum
number E is a constant for each rotational band and
represents an intrinsic angular momentum. The rota-
tional spectrum for the nucleus has the same general
form as for a molecule and may be written"'

k2

EI=Eo+ V(1+1)+&(—1)'+'(I+s)~x, -.) (V 3)
23

where Eo is a constant depending only on the intrinsic
structure, while Q represents the effective moment of
inertia about an axis perpendicular to the nuclear sym-
metry axis. The last term in the brackets, occurring only
for states with E=-'„ is associated with a decoupling of
the spin angular momentum from the rotational motion.
The decoupling parameter c can be expressed as an
expectation value for the intrinsic motion. " "'A similar
decoupling effect is well known from molecular spectra
(see, e.g. , the uncoupling of the electronic spin from the

FIG. V.2. Coupling scheme for deformed nuclei. For strongly
deformed nuclei possessing axial symmetry, the angular mo-
mentum properties may be characterized by the three constants
of the motion I, M, and E. While I and 3I represent the total
angular momentum and its component along the fixed s axis, the
component of I along the nuclear symmetry axis, s', is denoted
by X. The collective rotational angular momentum R is perpen-
dicular to the s' axis; thus E' represents an intrinsic angular
momentum.

"'The principal empirical evidence for the axial symmetry is
the observed I(I+1) type of rotational spectra (see, e.g., Fig.
V.4). The preference for axial symmetry is also consistent with
theoretical estimates of the equilibrium shape for the nuclear
shell structure.

'30 Rotational spectra for nuclei without axial symmetry have
been considered by C. Marty LNuclear Phys. 1, 85 (1956lj."' A. Bohr, Phys. Rev. 81, 134 (1951).'"A. Bohr and B. R. Mottelson, reference 124.

133 S. G. Nilsson, Kgl. Danske Videnskab. Selskab Mat. fys.
Medd. 29, No. 16 (1955).
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rotational motion for 'Z states, which leads to rotational
spectra with a=+1 and a= —1)."4

The value of E for the nuclear ground state may be
obtained from a consideration of the individual particle
motion in the deformed nucleus. In such a nonspherical
Geld, the angular momenta l& and jI, of a nucleon are in
general not constants of the motion, but for axially

symmetric nuclei the nucleon orbitals may be labeled

by the constant of the motion Ql„which represents the
projection on the symmetry axis of the total angular
momentum of the nucleon. States which differ only in
the sign of QI, are degenerate, since they are the same

except for the sense of the particle motion around the
symmetry axis. This gives rise to an especially simple

type of shell structure, in which the particles are filled

pairwise in states of opposite Dl, with no net contribution
to &.Thus, for the lowest state of an even-even nucleus,
all the particles are in paired orbits, and we have E=0.
In an odd-A nucleus, the last nucleon occupies an un-

paired orbit, and E equals the Q~ of this orbit. "'
This coupling scheme, which would apply for inde-

pendent particle motion, is somewhat modified by the
residual interactions between the nucleons. However,
there is evidence that these interactions can be con-
sidered as acting principally between paired nucleons,
so that the above classification remains valid for the
ground state of even-even nuclei and the intrinsic states
of odd-A nuclei corresponding to the di6erent orbits of
the last odd nucleon. "' On the other hand, the degrees
of freedom associated with the excitation of paired
nucleons may partly manifest themselves in collective
vibrational motion (see Sec. V D).

For nuclear shapes possessing reIIIection symmetry
with respect to a plane perpendicular to the nuclear axis,
the possible rotational quantum states are governed by
symmetry requirements similar to those applying to
homonuclear diatomic molecules. "'" Thus, for an in-

trinsic state with E=0, only even or odd values of I are
allowed, according to the symmetry of the intrinsic
state with respect to a rotation of 180' about an axis
perpendicular to the symmetry axis. In particular, for
the ground state of an even-even nucleus, only the even

rs4 See G. Herzberg, Spectra of Diatomic Motccltcs (D. van
Nostrand Company, Inc. , New York, 1950), p. 222.

»5 For calculations of the single particle states in deformed
axially symmetric potentials, see S. Moszkowski, Phys. Rev. 99,
803 (1955);S. G. Nilsson, reference 133;K. Gottfried, Phys. Rev.
103, 1017 (1956)."' Compare the classification of the spins and parities of the
ground states and low-lying intrinsic excitations of odd-A nuclei
with nonspherical shape in terms of the binding states of the last
odd nucleon in an ellipsoidal potential (B.R. Mottelson and S. G.
Nilsson, Phys. Rev. 99, 1615 (1955);K. Gottfried, reference 135).
Additional evidence is provided by the systematic occurrence o'.

unhindered n decay in odd-A nuclei LBohr, Froman, and iifottel-
son, Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 29, No. 10
(1955)j.

»7 A. Bohr, reference 124.
»8 K. %'. Ford, Phys. Rev. 90, 29 (1953).

values
I=0, 2, 4, 6, (even parity) (V.4)

occur in the rotational spectrum. "'
For intrinsic states with E/0, the allowed values of

the nuclear spin are

I=X, K+1, K+2, (V.S)

The members of the band all have the same parity which
equals the parity of the intrinsic motion. Thus, for an
odd-A nucleus with a single unpaired nucleon, the orbit
of this last particle determines the parity as well as the
E-value of the rotational band.

Ever-ever egclei.—The Coulomb excitation experi-
ments have provided one of the most important sources
of information on the rotational excitations. These are
strongly populated by transitions of electric quadrupole
type, and in an even-even nucleus, one should thus
excite the first state (I=2+) of the lowest rotational
band. It has also been found that the Coulomb excita-
tion induces just one strong transition in each even-even
nucleus far from closed shells. The excitation energy E2
of this state is a rather smooth function of the atomic
number and decreases as one moves away from closed
shells. The energy systematics of the first excited States
of even-even nuclei is shown in Fig. V.3.

The regions of large nuclear deformations are char-
acterized by especially small values of the excitation
energies E2, and, as will be discussed below, rotational
spectra are only expected in nuclei for which E2 is less
than the critical value indicated by the dotted curve in
Fig. V.3. Such small excitation energies are found in the
light elements with A 8 and 24, and in the heavier
elements with 150 &A & 190 and A & 222.

These regions include just the nuclei for which the
number of particles in unfilled shells relative to those in
closed shells is especially large. In the mass region
40&3 &150 the conditions for the occurrence of large
deformations are less favorable, partly due to the effect
of the spin orbit coupling which breaks the major shells,
and partly due to the neutron excess which implies that
the closings of neutron and proton shells occur for
different nuclei.

The rotational interpretation of the states populated
by Coulomb excitation in the mass regions 150&A & 190
and A) 222 is confirmed by the observation of higher
excited states in the rotational band. These states which
are populated in radioactive decay processes are found
in even-even nuclei to have the spin sequence (4) with
energies corresponding to (3). (See Fig. V.4)' '.

The Coulomb excitation of these higher states would
require either, a transition of multipole order greater

»'For the spin-parity values of rotational bands associated
with vibrational excitations, see Sec. P D.1." Evidence for rotational bands in the nuclei with A =24 and
25 is discussed by Litherland, Paul, Bartholomew, and Gove,
Phy . Rev. I02, 208 (1956). For the nuclei around A =8, the
consequences of the present description are similar to those which
follow from the o.-particle model (see the review by D. R. Inglis,
Revs. Modern Phys. 25, 390 (1953)j.
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FIG. V.3. Energy systematics of first excited 2+ states in even-even nuclei. The energies of the first excited 2+ states
of 'the even-even nuclei are plotted as a function of neutron number N and proton number Z. The black circles indicate
levels that have been observed in Coulomb excitation, while the open circles represent levels which have so far only been
observed in radioactivity or nuclear reaction studies.

The rotational 'spectra occur in the regions farthest from closed shells, where the excitation energies are lowest; in other
regions, the excitations have the character of collective quadrupole vibrations {see Sec. V C). The separation between these
two regions is approximately given by the criterion (9) which is illustrated by the dotted curve following the stable mass
region. Thus, the rotational spectra are found in the regions where the observed first excited states have energies less than
this separation line. For the value of 8„;,in (9), we have used the relation (7) with to= 1.2A' 'X10 "cm, and have esti-
mated the higher order P-dependent corrections by assuming P to have the critical value 0.6v with the interaction parameter

p 1. 8A'=I' (see reference 145).
The figure is a representation of the systematics first discussed by G. Scharff-Goldhaber, Phys. Rev. 90, 587 (1953)'and byP. Preiswerk and P. Stahelin, Nuovo cimento 10, 1219 (1953).The experimental energies are taken from Table IV.2, and

from the following compilations: F. Ajzenberg and T. Lauritsen, reference 187;P. M. Endt and J. C. Kluyver, Revs. Modern
Phys. 26, 95 (1954); K. Way et ol , Nuclear Lev.el Schemes, 40(A (92, Washington (1955).Additional data are obtained
from: Perlman, Bernstein, and Schwartz, Phys. Rev. 92, 1236 (1953) Pdios and Cdm', L. Grodzins and H. Motz, Phys. Rev.
100, 1236(A) (1955) Sn"'; C. L. McGinnis, Phys. Rev. 98, 1172(A} (1955) Sn'"; Farrelly, Koerts, van Lieshout, Benczer,
and Wu, Phys. Rev. 98, 1172(A) (1955) Sn'P', M. J. Glaubman, Phys. Rev. 98, 645, 1172(A) (1955) Sn'PP; Benczer, Farrelly,
Koerts, and Wu, Phys. Rev. 100, 955(A) (1955) Te"' and Xe"'; R. S. Caird and A. C. G. Mitchell, Phys. Rev. 94, 412
(1954) Xe'Po; H. N. Brown and R. A. Becker, Phys. Rev. 96, 1372 (1954) Er'P4; A. H. W. Aten, Jr. , and G. D. de Feyfer,
Physica 21, 543 (1955) Os'Po; Aten, de Feyfer, Sterk, and Wapstra, Physica 21, 740 (1955)Os'Po; M. W. Johns and S. V. Nablo,
Phys. Rev. 96, 1599 (1954}Os'" and Pt"' V. E. Krohn and S. Raboy, Phys. Rev. 95, 1354 (1954) Pb"' I. Bergstrom and
A. H. Wapstra, Phil. Mag. 46, 61 (1955) Pb'"; Mihelich, Schardt, and Segre, Phys. Rev. 95, 1508 (1954) Po"', I. Perlman
(private communication of work by Asaro, Harvey, Hollander, Perlman, Smith, and Stephens) Em"', Ra"' Th"', Th"'
Pu'4P Pu'4' Fm"', T. O. Passell, UCRL-2528 (1954), U"' Pu"' O. P. Hok and G. J. Sizoo, Physics 20, 77 (1954) U'".
Asaro, Stephens, Harvey, and Perlman, Phys. Rev. 100, 137 (1955)Cm"', Cm'4'; Asaro, Stephens, Thompson, and Perlman,
Phys. Rev. 98, 19 (1955) CfP~.

4(prqrhR AR
p=-) —

)
=1.06

3 E.S) Rp Rp
(V.6)

than E2, or a multiple E2 transition, and has not yet
been observed. For an estimate of the cross sections for
these processes, see Sec. V 8.2.

The moments of inertia derived from the observed
rotational spectra of even-even nuclei in the region
150&A & 188 are plotted in Fig. V.s as a function of the
nuclear quadrupole deformation parameter P. Jf the
nucleus is assumed to have spheroidal shape, P is
given by gr;g= szA3Mo (1+0.31P+ ), (V.7)

associated with a rigid rotation of a spheroid of mass
AM about an axis perpendicular to the symmetry axis.

where Ro is the mean nuclear radius and AR the differ-
ence between the major and minor semiaxis of the
spheroid. The values of P employed in Fig. V.5 are
obtained. from the observed E2 transition probabilities,
which determine the quadrupole moment of the nuclear
shape Lsee (10) and (12) and Table V.2$. The moments
of inertia are plotted in units of the moment
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The empirical moments of inertia are seen from Fig.
V.5 to be appreciably smaller than ~~„,and to increase
strongly with in.creasing p. A simple classical model of a
rotational motion with these properties is provided by
a wave traveling on the surface of a liquid drop. As-

suming irrotational Row, this model yields the moment
of inertia'"

~~ rrot, = ssAMRosPs(0. 89+0(Ps)) (v.g)

for a nucleus of spheroidal shape. While the nuclear mo-
ments have some of the qualitative features of this irro-
tational Row model, it is seen from Fig. V.S that the
observed moments are considerably larger than ~~;„,&.

'4'

The nuclear moments of inertia can be interpreted in
more detail in terms of the response of the nucleonic

"' See, e.g. , H. Lamb, Iiydrodynamics (Cambridge University
Press, New York, 1916), p. 82 ff (see also reference 137).

'4~ See A. Bohr and B.R. Mottelson, Phys. Rev. 89, 316 (1953);
reference 132; K, W. Ford, reference 138; 95, 1250 (1954). For a
more detailed comparison with the potential flow model, including
the effect of higher multipoles in the nuclear shape, see T. Gustaf-
son, Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 30, 5
(1955).

0 l I l I I I I I I I

/40 NO f80 Z00 ZZO Z40 860
ZM

FIG. V.4. Energy ratios of rotational excitations in even-even
nuclei. The figure shows the measured ratios of the energies of
the higher rotational excitations to the energy of the first excited
(2+) state in the regions 150(A (190 and A)222, where
rotational spectra are expected (compare Fig. V.3). The hori-
zontal lines are the limiting theoretical ratios obtained from (3),
assuming the higher states to have the spins 4+, 6+, 8+; while
these spin values are experimentally established in only a few
cases, they are in all cases consistent with available data on the
decay scheme. The small systematic deviations from the limiting
expression (3), which increase with the approach to closed shells
and with I, can be interpreted in terms of the perturbation of the
intrinsic structure produced by the rotational motion (compare
Sec. V B.4).

- The experimental data for the 6gure is taken from the com-
pilation in Chapter XVII in Bete- and Gamma-SPectroscopy, edited
by K. Siegbahn (North Holland Publishing Company, Amster-
dam, 1955), and from: A. H. W. Aten, Jr., and G. D. de Feyfer,
Physica 21, 543 (1955)Os'"; Aten, de Feyfer, Sterk, and Wapstra,
Physica 21, 740 (1955) Os"'; I. Perlman (private communication
of work by Asaro, Harvey, Hollander, Perlman, Smith, and
Stephens) Ra"', Th"", U"', Pu", Pu'~, Cm'", Cm"', Asaro,
Stephens, and Perlman (submitted for publication) Rao'4 Rao2o

Goldhaber, der Mateosian, Harbottle, and McKeown, Phys. Rev.
99, 180 (1955) Th"', F. Asaro and I. Perlman, Ph s. Rev. 99,
37 (1955) Th"'; O. P. Hok, Phys. Rev. 99, 1613 1955) Th"',
Th'30, U'", U~'4; Asaro, Stephens, Thompson, and Perlman,
Phys. Rev. 98, 19 (1955) Cf"'.

motion to the slowly rotating nuclear field. '4' '44 It is
found'" "' that, for independent particle motion, the
effective moment of inertia would be approximately
that corresponding to rigid rotation, but that the re-
sidual interactions between the nucleons reduce the
moment, which then exhibits a dependence on P of the
type observed. '" Residual interactions so strong as to
break down the shell structure would reduce the mo-
ment to values approaching ~;„,~. The observed mo-
ments indicate interactions about three times smaller
than this limit. The full drawn curve in Fig. V.S corre-
sponds to a rough estimate"' of the moments of inertia
for interactions of such a magnitude.

As one approaches the closed shell configurations, the
value of p decreases and, eventually, as a consequence
of the residual interactions, the nuclear deformation
collapses and the equilibrium shape becomes spherical
(see Fig. V.1). The nucleus then no longer possesses a
rotational spectrum and the collective excitations cor-
respond to vibrations about the spherical equilibrium
(see Sec. V C.1).

A criterion for the transition from vibrational to
rotational spectra may be obtained by noting that this
transition is associated with a change of the nucleonic
coupling scheme (see Sec. V A). For the nuclei with
spherical equilibrium shape, the coupling of the par-
ticles in unfilled shells is determined mainly by the
residual interactions, while the development of a stable
equilibrium shape is associated with a tendency of the
individual nucleonic orbits to align themselves in the
deformed nuclear field. Since, for completely inde-
pendent particle motion, the moment of inertia would
have the value (7) corresponding to rigid rotation, the
smallest moment compatible with the occurrence of
rotational spectra is expected to be a certain fraction of
~~„, This fraction has been estimated on the basis of

"'D. R. Inglis, Phys. Rev. 96, 1059 (1954).
''The nuclear moment of inertia. is also related to the de-

pendence of the collective orientation angles on the nucleonic
coordinates. The introduction of orientation angles associated with
an irrotational collective flow has been considered by A. Bohr,
Rotational States in Atomic ENclei (Ejnar Munksgaard, Copen-
hagen, 1954); G. Siissmann, Z. Physik 139, 543 (1954); H. A.
Tolhoek, Physica XXI, 1 (1955); S. Tomonaga, Progr. Theoret.
Phys. 13, 467 (1955); F. Coester, Phys. Rev. 99, 170 (1955); R.
Nataf, Compt. rend. 240, 2510 and 241, 31 (1955); Marumori,
Yukawa, and Tanaka, Progr. Theoret. Phys. 13, 442 (1955);
T. Marumori and E. Yamada, ibid. 13, 557 (1955);T. Marumori,
ibid. 14, 608 (1955);Lipkin, de Shalit, and Talmi, Nuovo cimento
(10)2, 773 (1955); T. Miyazima and T. Tamura, Progr. Theoret.
Phys. (to be published); T. Tamura, Nuovo cimento (to be pub-
lished; F. Villars (privately circulated manuscript); see also the
discussion of this approach in reference 145) ~

"'A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 30, No. 1 (1955).

'4' S. Moszkowski, Phys. Rev. 103, 1328 (1956)." In the special case of a rotation about a symmetry axis, the
moment of inertia vanishes, since a rotation of the field then has
no effect on the nucleonic motion."' This estimate (compare reference 145) is based on a "two
nucleon model" in which the nucleons outside of closed shells are
represented by two interacting nucleons in p states. Despite the
schematic character of this model, it may provide a qualitative
description of the competition between the residual interactions
and the nuclear shell structure.
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Fro. V.5. Dependence of moments of inertia on the nuclear

deformation. The empirical moments of inertia of even-even
nuclei in the region 150(A (188 are plotted as a function of the
nuclear deformation parameter P. The figure is taken from refer-
ence 145 which employed empirical data on 9' and Qo which is
substantially the same as that contained in Table V.2. The
moments of inertia are plotted in units of the moment 9'„;g
associated with a rigid rotation Lsee (V.7)g. The full drawn curve
represents a theoretical estimate based on a simplified model
(reference 148). The parameter, v, appearing in this estimate is
a measure of the strength of the residual interactions and the value
chosen has been adjusted to fit the experimental data.

For comparison the moment of inertia corresponding to irrota-
tional flow (V.8) is shown by the dotted curve.

the simplified model'4' mentioned above, which yields
a value of about one quarter of ~„g. This would imply
that the transition from vibrational to rotational spectra
could be characterized approximately by a critical value

(Es)„;g=13''/ J„s (V.9)

for the energy of the first excited state of an even-even
nucleus. Stable equilibrium deformations and rotational
spectra occur in this model only for even-even nuclei
with Es values smaller than (9). However, the coeffi-
cient in (9) may have an 2 dependence which would lie
outside the scope of this model. (See Fig. V.3.)

Odd-A elclei.—For odd-A nuclei, the E2 excitation
process can populate both the first and second rotational
excitations of the ground state [see (5)j. It is indeed
found that, in the regions where rotational spectra are
found in the even-even nuclei, the Coulomb excitation .
of odd-A nuclei strongly populates just two states. The
energies of the states, identified in this manner as rota-
tional excitations, are listed in Table V.1.It is seen that
the ratios of the energies agree well with those calcu-
lated from (3). While the assumed spin sequence (5)
appears in all cases to be consistent with Coulomb exci-
tation data and with the evidence from the observed
radioactive decay schemes, unambiguous spin deter-
minations have been made in only a few cases (see Ta
and W in Table IV.2).

For the nuclei with ground-state spin Io———'„ the ir-
regular sequence of the observed states reveals the
effect of the second term in (3). The value of a obtained
from the observed levels is listed in column seven of
Table V.1. From the values of ~~ and a, the position of
the higher members of the band can be calculated.

Although these levels are not populated by E2 Coulomb
excitation, they have been observed in a number of
cases in radioactive decays with energies rather accu-
rately given by (3).'4' The values of u can be approxi-
mately accounted for on the basis of the wave function
for the last odd nucleon. '""'

The rotational energy constants 3'/g determined
from the odd-A spectra are listed in column five of
Table V.I. The corresponding quantity for the related
even-even nucleus, obtained by removing the last odd
nucleon, is listed in column six of the table and is seen

Nucleus
Q(1)

Io (kev)
jV(2)

(kev)

36~

3
(kev) (kev~

63Ku'"
Qd155
Qd157
Tb159
Ho"'
Tml69

I U175

72Hf'»
H f179

Ta181
W183

Re185
Re187

71
72
66
70
63
74

(o= —0.77)
7/2 113.8 2S1.0 (252.9) 76
7/2 113 250 (251) 75
9/2 121 262 (264) 66
7/2 136 303 (302) 91
1/2 46.5 99.1 78

(o=0.19)
5/2 126 108
5/2 135 116

5/2 83 192 (190)
3/2 60 145 (144)
3/2 55 131 (132)
3/2 58 138 (139)
7/2 95 211 (211)
1/2 8.4 118.3

286 (288)
303 (309)

122
123
89
79
73
80

78
89
90
93

100

112
123

+233
U235

Np23?
Pu239

5/2 40.4 92.1 ( 92.4)
7/2 46.2 103.0 (102.7)
5/2 33.2 75.8 (75.9)
1/2 7.8 57.2

35
31
28
37

(a = —0.58)

45
45
44
43

"'Tm'"; S. E. Johannson, Phys. Rev. 100, 835 (1955); J. M.
Cork et a/. , Phys, Rev. 101, 1042 (1956); E. N. Hatch et al.,
Bull. Am. Phys. Soc. Ser. II 1, 170 (1956). W' '; see Fig. V.8.
Pu'3'; Hollander, Smith, and Mihelich, Phys. Rev. 102, 740 (1956)."0B.R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. (to be published); see also the analysis
of the Tm"' spectrum in Z. Physik 141, 217 (195S).

TABLE V.1. Rotational states in odd-A nuclei populated by
Coulomb excitation. The table lists the odd-A nuclei in the regions
152&A (190 and A)222 which have been studied by Coulomb
excitation. The only nuclei omitted are the odd isotopes of Dy,
Er, and Yb for which it appears that the radiation from the lowest
excitations has not been resolved from that of the even isotopes.

The ground state spins Io, listed in column two, are taken from
the compilation of Hollander, Perlman, and Seaborg, Revs. Modern
Phys. 25, 469 (1953) and the additional references listed below.

The energies. of the first excited state, E&'), and of the second
excited state, E& ), are listed in columns three and four. The E&@
value in parenthesis is that calculated from (V.3), assuming the
spins ID+1, ID+2 for the two excited states. The moment of
inertia parameter employed is obtained from the experimental
value of E&') and is listed in column five. For comparison, the
corresponding parameter for the neighboring even-even nucleus,
obtained by removing the last odd nucleon, is listed in column six.

For nuclei with ID= 1/2, the rotational spectra involve an addi-
tional parameter, "u." For these nuclei, the moment of inertia
parameter and the value of "o" determined by means of (V.3)
from the measured values of E&') and E& & are listed in column five.

Additional references for Io.. D. R. Speck, Phys. Rev. 101, 1725
(1956) (Gd""");D. R. Speck and F. A. Jenkins, Phys. Rev. 101,
1831 (1956) (Hf"~'"); K. L. van der Sluis and J. R. McNally&
Jr., J. Opt. Soc. Am. 44, 87 (1954) (Us~); Hutchinson et at. ,
Phys. Rev. 102, 292 (1956) (U ~); van den Berg et at , Physica.
20, 37 (1954), and Bleaney et at , Phil. Mag. .45, 991 (1954) (Pu'39).
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to be systematically somewhat greater than the odd-A
value. This diR'erence appears to be associated, at least
partly, with the difference in the intrinsic excitation
spectra for even-even and odd-A nuclei. While the first
intrinsic excitation of an even-even nucleus usually has
an energy of the order of a Mev in heavy nuclei, the
odd-A nuclei exhibit excitations with an average spacing
of about two hundred kev, associated with the change
of orbit of the last odd particle. '" The occurrence of
low-lying intrinsic excitations in the odd-A nuclei im-
plies that the intrinsic motion is less able to follow the
rotational motion in an adiabatic manner, with a
resultant increase in the effective moment of inertia
(see Sec. V B.4).

V B.Z. Excitatioe Cross Sections

An especially valuable feature of the Coulomb excita-
tion process is the possibility of determining the absolute
transition probability for the excitation by a measure-
ment of the cross section. Since the rotational transi-
tions leave the intrinsic structure unaltered, the transi-
tion matrix element can be expressed as an expectation
value for the intrinsic structure, multiplied by a vector
addition coefficient. Thus, one obtains'" for an E2
transition from a state I;, E to another state If, E of
the same rotational band, the reduced transition prob-
ability )see (II A. 18)j'"

J3 (823 I,—+I~) = e'Q '(I;2EO
~

I;2I~E')' (V.10)
16m.

eQ=(I, II=I ~~pr'(3 cos'I —1)3 I, II=I), (V13)

where the angle 8 is measured from the fixed s axis. For
a state of a rotational band, the moment Q is related
to Qoby

3E' I(I+1)—
Q=Qo

(I+1)(2I+3)
(V.14)

TABLE V.2. Moments of inertia and quadrupole moments of
even-even nuclei. The table lists the even-even nuclei which
exhibit rotational spectra and for which there exists evidence on
the transition probabilities. Column two gives the moment of
inertia parameter obtained from the energy of the erst excited
state (2+). Column three gives the intrinsic quadrupole moments
obtained from the measured transition probabilities by means of
(V.10). The data come partly from Coulomb excitations, see
Table IV.1, and the additional data given by A. W. Sunyar, Phys.
Rev. 98, 653 (1955). The deformation parameter, P, in the last
column is obtained from the Qp values by means of (V.12),
assuming R0=1.2A& 10 "cm.

than the single particle unit (1), in some cases by more
than a factor of a hundred.

The intrinsic quadrupole moments Q() deduced by
means of (10) from the observed c'.ross sections for
Coulomb excitation of rotational levels are listed in
Tables V.2 and V.3.

For odd-A nuclei, it is possible to compare the in-
trinsic quadrupole moments deduced from transition
probabilities with the expectation values for the quadru-
pole moment Q in the nuclear ground state, as obtained
from atomic hyperfine structure separations. The latter
quantity is defined by

where Q() is the electric quadrupole moment of the
nuclear shape, defined by

e()s=(II ~( pr'(3 cos'3' —1)3 ' II). (V11)

In (11), p is the nuclear charge density and the angle 0'

is measured from the intrinsic nuclear axis (s' in Fig.
V.2). The wave function for the intrinsic nuclear state
is labeled by E.

For a uniformly charged nucleus of spheroidal shape,
Q() can be expressed in terms of p, given by (6), and one
obtains

Qo= ZRo'P(1+0 16P+ ' ),
(53r)'*

(V.12)

where Z is the nuclear charge number. Corresponding
to the fact that, for the strongly deformed nuclei, the
quadrupole moments are an order of magnitude larger
than those associated with a single proton, the transit on
probabilities (10) are observed to be appreciably larger

'6' See, e.g., the di6'erence between the spectra of W' and W'8'
(Murray et a/. , Phys. Rev. 97, 1007 (1955)) or between Pu 38

(reference 176) and Pu2'9 (reference 149).
"2The relationship of the vector addition coeKcients used in

this chapter to the equivalent 3j symbols employed in Chapter II
is given by (II A.17).

Nucleus

Nd160
62Sm'"

Sm'"
Gd154
Gd156
Gd158
Gd160

66Dyl60
Dy162
Dy164
Fr164

Er166
Er168
Erl70
+b170
+b172
Qb174
Qb176

72Hf»6
Hf'78
Hf'~
W182
WI84
W186
OS186
OS188

gpTh2~
92U238

3k~

3
(kev)

130
122
83

123
89
79
76
86
82
73
90

80

89
91
93

100
112
124
137
155

tOoI
(10 24 cm2)

4.8
5.7
6.7
6.3
8.8

10
10
7.8
8.2
9.5
7.8

7.5

7.8

7.5
8.1
7.1
7.1
6.5
6.5
5.5
5.1

10
11

0.25
0.28
0.33
0.30
0.41
0.46
0.47
0.35
0.36
0.41
0.33

0.33

0.30

0.31

0.29
0.31
0.27
0.26
0.24
0.24
0.20
0.18

0.25
0.28
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and, in the special case of the ground state (Is——E), one
obtains

Is(2Is—1)
=Qo

(Is+1)(2Io+3)
(V.15)

The smaller value of Q, as compared with Qo, reflects the
fact that, even for the state &=I, the intrinsic nuclear
axis is not completely aligned along the fixed. s axis.

The intrinsic quadrupole moments obtained from the
spectroscopic Q values by means of (15) are compared
in Table V.3 with those derived from the Coulomb
excitation cross sections by means of (10). The two
determinations seem to be consistent, considering the
rather large uncertainties involved, especially in the
estimate of the nuclear quadrupole Inoments from the
measured hyper6ne structure intervals.

As is seen from expression (10), the ratio of the cross
sections for the excitation of the first and the second
rotational state in an odd-A nucleus is independent of

Nuc1eus

Eu153
Gd155
Gd157
Tb159
Ho165
Er16v
Tni169
Qb173
Lu175
Hf"7
Hf'"
T3181
Re185

R e187

AC227
'U233

U'235

Np23?
94Pu239

Io

5/2
3/2
3/2
3/2
7/2
7/2
1/2
5/2
7/2
7/2
9/2
7/2
5/2
5/2

3/2
5/2
7/2
5/2
1/2

l opl
(Coul. exc. )

7.7
8.0
7.7
6.9
7.8

8.0

8.2
7.5

~7
6.8
5.4
5.0

14
9
9
8.3

2.5
1.1
1.0

~10
0
3.9
5.7

4.3
2.8
2.6

7.0
5.5
5.0

~4
20

11
12

9.2
7.8
7.3

TABLE V.3. Intrinsic quadrupole moments of odd-A nuclei. The
table lists the odd-A nuclei in the regions 152&A&190 and
A &222 for which there is evidence on the nuclear deformation
from Coulomb excitation cross sections or spectroscopic hyperfine
structure measurements. The ground-state spins, I0, are taken
from the references in Table V.1, and the intrinsic quadrupole
moments (in column three) are obtained from the experimental
transition probabilities in Table IV.2 by means of (V.10). The
spectroscopic quadrupole moments, Q, in column four are taken
from the compilation of N. F. Ramsey, Aruclear 3Iloraersts (John
Wiley and Sons, Inc. , New York, 1953), and the additional refer-
ences given below. From these moments, the intrinsic quadrupole
moments in column five are obtained by means of (V.15).

Additional references for Q: D. R. Speck Phys. Rev. 101 1725
(1956) (Gd'" "s) . J. M. Baker and B.Bleaney Proc. Phys. Soc.
(London) 68A 1090 (1955) (Ho"'); Bogle et el. , Proc. Phys. Soc.
(London) 65A, 760 (1952) (Er" ); T. Kamei, Phys. Rev. 99, 789
(1955) (Lu'ss; Ta'ss). Fred et al , Phys. Re.v. 98, 1514 (1955)
(Ac"'); K. L. van der Sluis and J. R. McNally, Jr., J. Opt. Soc.
Am. 44, 87 (1954) (Usss); Korostyleva et ul. , J. Exptl. Theoret.
Phys. U.S.S.R. 28, 471 (1955) and N. I. Kaliteevskij and M. P.
Chaika, private communication (ratio between moments of U'ss

and U"').

TABLE V.4. Relative intensities of rotational excitations. The
table lists the odd-A nuclei for which the cross sections for the
Coulomb excitation of the first two rotational states have been
measured. The ratio of the experimental transition probabilities
(compare Table IV.2) is listed in column three together with the
theoretical value (in parenthesis) obtained from (V.10). The
ground-state spins, I0, are taken from the references given in
Table V.1.

)Vote added s'ss proof. Are—cent systematic study of the ratio of
B(E2) values obtained in Coulomb excitation of odd-A nuclei
(G. Goldring and G. T. Paulissen, Phys. Rev. 103, 1314 (1956))
has yielded values in approximate agreement with those listed in
Table V.4. The one essential diBerence occurs for Hf'7', for which
the new measurements give a ratio of 0.22.

Nucleus

Eu153
64Gd'57

Tb159
0165

71Lu175
Hf177

Hf 179

73Ta181
75Rel85

Re"7

U233
U'235

93Np237

Io

5/2
3/t'2

3/2
7/2
7/2
7/2
9/2
7/2
5/2
5/2

5/2
7/2
5/2

B(E2; Io-sIo+2)
9(82; Ip~Ip+1)

0.28 (0.35)
0.38 (0.56)
0.56 (0.56)
0.24 (0.26)
0.23 (0.26)
0.26 (0.26)
0.07 (0.20)
0.29 (0.26)
0.27 (0.35)
0.39 (0.35)

0.18 (0.35)
0.16 (0.26)
0.44 (0.35)

5" Such intensity relations apply quite generally to transitions
leading to different members of a rotational band. For applications
to P and y transitions, see Alaga, Alder, Bohr, and Mottelson,
Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 29, No. 9
(1955); for cr transitions see Bohr, Froman, and Mottelson,
reference 136; for deuteron stripping reactions, see G. R. Satchler,
Phys. Rev. 97, 1416 (1955).

"'W. Gordy, Phys. Rev. 76, 139 (1949). Townes, Foley, and
Low, Phys. Rev. 76, 1415 (1949).'"D. Pfirsch, Z. Physik 132, 409 (1952). S. Moszkowski,
reference 135; B.R. Mottelson and S. G. Nilsson, reference 136;
K. Gottfried, referent:e &35,

Qs."s Thus, a measurement of this ratio provides a
direct test of the nuclear coupling scheme. The available
evidence is collected in Table V.4 and compared with
the ratios calculated from (10).

The Qs values obtained from (10) are plotted in
Fig. V.6, and show similar general trends as previously
observed in the spectroscopic quadrupole moments. "
Thus, the nuclear deformations increase strongly as one
moves away from closed shell regions, rejecting the
polarizing effect of particles outside of closed shells
(see Sec. V A). A theoretical estimate of Qs may be
obtained by calculating the binding energies of the
individual nucleons as a function of the nuclear defor-
mation and minimizing the total nuclear energy. "5The
deformations calculated in this manner are shown by
the full drawn curve in Fig. V.6.

The excitation of higher members of the ground-state
rotational band (d,I)~ 3) may be achieved, by multiple
E2 processes. (See Sec. II D.3.) The cross sections for
such processes may become quite large for high bom-
barding energies, as may be employed especially with
heavy ions as projectiles. Thus, for 20-Mev o. particles
incident on a target with Z2 ——90, the cross section for a
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FIG. V.6. Intrinsic quadrupole moments of deformed nuclei.
The experimental Qo values, determined from E2 transition
probabilities (compare Tables V.2 and V.3), are plotted as a
function of the nuclear mass number. The experimental un-
certainties are usually of the order of 10—20%, but may be some-
what greater in the very heavy elements region. The full drawn
cur've gives a theoretical estimate of Qo based upon an independent
particle description of the intrinsic structure (B. R. Mottelson
and S. G. Nilsson, reference 136 and Kgl. Danske Vidensk.
Selskab Mat. fys. Medd. (to be published).

second order E2 excitation of the 4+ state of an even-
even nucleus is found from (II D.18) and (10) to be
about 50 millibarns, assuming Qs= 10 barns.

While the cross sections for single or multiple E2
excitations of rotational states depend on the nuclear
quadrupole moment, the possible occurrence of higher
multipole moments in the nuclear shape can in principle
be studied by means of the Coulomb excitation of corre-
spr nding multipole order populating higher members of
the ground-state rotational band. Thus, an EA. transi-
tion from the ground-state /;E to the rotational states
I~E would be characterized by the reduced transition
probabilities

Il(E); I, I,)=(EiSir'(E),O) iE)'
X (I,kEO

i
I,hItE)s, (V.16)

where OiIr(E), 0) is the intrinsic E) moment defined by
(II A.11) with the coordinates referring to the intrinsic
nuclear system. The cross sections for higher multipole
excitation will usually be appreciably smaller than those
for multiple E2 transitions. Thus, if one assumes'" a
value for I3(E4; 0—&4) of 0.2e'(10 "cm')' in a nucleus
with Zs ——90, one obtains from (II C.15) a cross section
of about 0.2 millibarn for E4 excitation of a 4+ state
with 20-Mev n particles.

V 8.3. Magneti c Dipole Decay of Rotational Excitations

Since the successive rotational states in an odd-A
nucleus have DI=1 1 see (5)), the y radiation emitted

"6A recent analysis of the 6ne structure intensities in the o.
decay of the heavy nuclei LP. O. Froman, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. (to be published) g indicates E4 moments
in the nuclear shape corresponding in some cases to values as
large as B(E4;0—+4) =0.2e (10 cm )4; the single particle unit
(II A.58) for Zq= 90 corresponds to l3 (E4) =0 Oles(10 24 cms)4.

in the decay of these states will in general be a mixture
of M1 and E2, although the excitation is of almost pure
E2 type (see Sec. II A.3). The absolute E2 transition
probability can be determined from the cross section for
Coulomb excitation. Thus, a determination of the rela-
tive strength of the 3f1 as compared with the E2
radiation in the decay of the first excited state will also
yield the absolute 311 transition probability. This in-
formation can be obtained from angular distributions or
internal conversion measurements on the emitted radia-
tion (or from the lifetime of the excited state). The
3f1 transition probability in the cascade transition
(Ip+2~Ip+1) can be determined from the relative
strength of M1 and E2 in this transition together with
the branching ratio between the mixed M1+E2 cascade
radiation and the pure E2 cross-over (Is+2~Is) decay
of the second excited state. If only one of these data is
available one may employ the rotational formula (10)
to provide the additional relation necessary for the
estimate of the absolute M1 transition probability in
the cascade radiation.

The magnitude of the 3f1 transition probabilities
between rotational states can be related to the gyro-
magnetic ratios, g~ and g~, of the intrinsic and collective
motion. The reduced M1 transition probability from a
state I;E to another state lfE of the same rotational
band (with EA s) is given by "s

gz —ga
signb = sign (V.1g)

where 8 is the ratio between the reduced E2 and M1
matrix elements for the transition (see Sec. II A).

The static magnetic moment p of a state in the rota-
tional band may also be expressed in terms of the gyro-
magnetic ratios g~ and gg. Thus, for EQ —,', one obtains

ti = (gJr gz)+Igo—I 1
(V.19)

For a band with E=-,', the magnetic properties in-
volve an additional parameter bp similar to the de-
coupling parameter, a, in the energy spectrum. "' For
this case, the F1 transition probability and the mag-
netic moment may be written in the form

3 t ek q'2I+1
B(M1;I+1~I)=

~ ~ (grc —grr)'
64ir E2Mc) I+1

X (1+(—1)' ~bp)' (V.20)

3 t'eggs
I3(M1;I, I,)=

~ i (, —,.) E
4ir &2Mc)

X(I;1EO i I;1I,E)'. (V.17)

The relative sign of M1 and E2 transition amplitudes
may also be determined from 'angular distribution
measurements (see Sec. II C.4). This phase is related
to the sign of Qs and of gx —git and is given by
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with

and

gx —gz
signb= sign (1+(—1)r 'bs), (V.21)

9/

EZ+Mf

136

(gx —g~)
4 (I+1)

X$1—(2I+1)( 1)r ,'b p]+—Igrr (V 22)

A measurement of both the M1 transition probability
and the ground state magnetic moment can thus yield

g& and gz separately (and the value of bs for E= —', bands
if an additional transition probability or moment is
measured). The quantities g& and bs can be related to
the intrinsic nucleonic configuration, while g~ provides
information on the rotational motion, and may be
compared with the value

Z
(g~)-=—,

A
(V.23)

corresponding to a Q.ow of uniformly charged nuclear
matter.

The gg values obtained from Coulomb excitation
studies and ground state moments of nuclei with Ip& —,

'
are listed in Table V.S. The uncertainties in these values

Nucleus

63Eu'~3
Gd155
Gd157
Tb159

6,Ho165
Lu176

72H8f179

73Ta181
Re185
Rel87

Ip

5/2
3/2
3/2
3/2
7/2
7/2
7/2
9/2
7/2
5/2
5/2

1.5—0.30—0.37
1.5
3.3
2.6
0.61—047
2.1
3.14
3.18

0.5) 0.7
0.3, —0.7
0.3, —0.7
0.1, 1.9
0.3, 1.6
0.3, 1.2
0.3, 0.1
02, —04
0.2
0.5,
0.5,

gK

0.6)—0.5,—0.6,
1.6,
11
0.9,
0.1,—0.2,
0.7
1.6
1.6,

0.5
0.1
0.1
0.4
0.8
0.6
0.2
0.0

0.9
1.0

U233
U235

5/2
7/2

0.8—0.5
0.4, 0.3
O.i, —0.4

0.3, 0.3—0.2, —0.1

TABLE V.5. Magnetic properties of rotational levels in odd-A
nuclei. The table lists the odd-A nuclei with Io/1/2 for which
there is evidence on both the ground state magnetic moment, p, ,
and the Mi rotational transition probability. The ground-state
spins and magnetic moments in columns two and three are taken
from the references given in Tables V.i and V.3 and the additional
references given below. The reduced M1 transition probabilities
B(M1) are obtained from the measured B(E2) values and the
M1/E2 ratios given in Table IV.2 by means of the relations
(II A.52) and (II A.53). From the values of ltd and B(M1) the
gyromagnetic ratios, gs and g&, are determined from (17}and (19).
Since (17) is a quadratic expression, there exist two sets of possible
g~ and gg values, except in the case of Ta' where angular correla-
tion measurements have established the sign of (g~ —g~) by com-
parison with the sign of the quadrupole moment [compare (18)7.
The g factors in columns four and five are listed in such a manner
that the first value of g~ belongs together with the first value of g~.

The table does not include nuclei with ID=1/2, since the mag-
netic properties of these nuclei involve an additional parameter
bp [compare (20}, (21), and (22), and the analysis of the W"'
spectrum in Fig. V.gj.

Additional references for p. J. M. Baker and B.Bleaney, Proc.
Phys. Soc. (London) 68A, 257 (1955) (Tb' '); D. R. Speck, Bull.
Am. Phys. Soc. Ser. II, I) 282 (1956) (Hf'" and Hf'").

EZ+Mf

T
f81

FIG. V.7. Rotational spectrum for Ta' '. The Coulomb excita-
tion experiments have determined the energies and spins (from
the angular distribution of the p rays and measured conversion
coefficients) of the first two rotational excitations in Ta'". In
addition the absolute magnitudes of all the 3I1 and 82 transition
probabilities have been obtained by combining the Coulomb
excitation cross sections with the measured branching ratio
between the 167- and 303-kev p rays, and the Mi to E2 ratios
determined from the p-ray angular distribution and the conversion
coeKcients (compare the data in Table IV.2). In addition, the
relative phases of the 2VI1 and E2 radiation have been determined
for the 167-kev transition from the angular distribution in
Coulomb excitation and for the 136-kev transition from the y-y
angular correlation following the p decay of Hf'" [F.K. McGowan,
Phys. Rev. 93, 471 (1954);Heer ef af. Helv. Phys. Acta 28, 336(A)
(1955); F. Boehm and P. Marmier, Phys. Rev. 103, 342 (1956)j.

These results test the rotational interpretation of the observed
levels in the following ways.

(a) The spin sequence is that given by (V.S) in which we assume
E=7/2 as determined from the ground state spin, and the
parity is the same for all the states.

(b) The observed energy ratio of the I=11/2 and I=9/2
states is 2.23+0.02 which agrees with the ratio 20/9 obtained
from (V.,3).

(c) The reduced E2 transition probabilities B(E2; 7/2~9/2),
B(E2; 7/2 —+11/2), and B(E2; 11/2 —+9/2} are found to have the
relative values 1:0.29: 1.3 which may be compared with relative
values 1:0.26:0.81 obtained from (V.10).

(d) The reduced 3f1 transition probabilities B(M'1; 11/2~9/2)
and B(3f'1; 9/2~7/2) have a ratio of ~2 while the theoretical
value obtained from (V.17) is 1.53. Moreover the relative phases
of M1 and E2 radiation are the same in the 136- and 167-kev
transition as expected from theory (see V.18).

From the experimental data one determines a number of nuclear
parameters characterizing the ground state configuration in Ta' '.

(a) The moment of inertia obtained from the rotational energies
is given by 3b'/8 =91 kev. For a discussion of the interpretation
of this value compare Fig. V.5, Table V.1, and the comments in
the text.

(b) The intrinsic quadrupole moment determined from the E2
transition probabilities by means of (V.10) has the value Qo= 6.8.
This quantity determines the quadrupole eccentricity parameter
which is found from (V.12) to be P= 0.25; see also the discussion
of Qo in Fig. V.6 and Table V.3.

(c) The M'1 transition probability and its phase relative to
that of the E2 transition [together with the assumption of a
positive Qo as indicated by spectroscopic evidence, (compare
T'able V.3)g yields by means of (V.17) and (V.18) the value
g~ —go =0.5 for the difference between the intrinsic and collective
gyromagnetic ratios. This value, when combined with the meas-
ured magnetic moment, yields by means of (V.19) the separate g
factors listed in Table V.5.

are considerable, but the data, may indicate deviations
from (23). In fact, one expects such deviations in odd-A

nuclei as a consequence of the especially large contribu-
tion of the last odd nucleon to the rotational moment

of inertia, and thus also to the rotational angular
momentum.

The analysis of rotational spectra in odd-A elements
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~rZ. 1 (&1Z.1)
is summarized in the captions to Figs. V.7 and V.8,
which discuss the spectra of Ta'" and K' '.

g08.9(Z08.7)
gg

g070 (ZO71)

291.7 (291.8)

2088 (Z08.7)

99.1 (994

~8S (W8.~)

FIG. V.S. Low-lying energy levels in W'". The figure shows the
energies, spins, and parities of the low-lying states in W"~,
populated in the P decay of Ta'ss )Murray, Boehm, Marmier, and
DuMond, Phys. Rev. 97, 1007 (1955)g.

The Coulomb excitation strongly populates the first two
excited states of the ground state rotational band (compare
Table IV.2). The energies in this band reveal the effect of the
decoupling term in (V.3) characteristic of configurations with
%=1/2. From the energies of the (I=3/2) and (I=5/2) states
in this band, one can calculate the parameters 8 and a. Using
these parameters, the position of the (I=7/2) level calculated
from (V.3) agrees well with the observed level, while the calcu-
lated energy for the I=9/2 state is a few percent below the ob-
served value. Similarly, the relative energies in the (E=3/2)
band are found to deviate somewhat from those obtained from
(V.3). These perturbations have been interpreted in terms of a
coupling between the two bands resulting from the Coriolis
eRect of the nuclear rotation. Sy suitably adjusting the matrix
element associated with this coupling, the observed energies have
been accounted for with great precision (A. K. Kerman, reference
157).The calculated energies are shown in parenthesis.

To a first approximation, the electric quadrupole transition
probabilities for the rotational excitations can be discussed in a
similar manner as for Ta'" (see Fig. V.7), although for W'" the
data is less complete. However, the coupling to the (K=3/2)
band implies small deviations from (V.10), and leads especially
to enhanced E2 transition probabilities for the excitation of the
states in this higher band. The magnitude of the B(E2) values
for these transitions provide a direct measure of the admixed
amplitudes and can be calculated from the parameters involved
in the analysis of the observed energies. The observed B(E2) for
the population of the 292-kev level (compare Table IV.2) is in
good agreement with the analysis in reference 157, which, in
addition, predicts B(E2)=0.1 for the excitation of the 209-kev
level.

The magnetic parameters, g~, g~, and bp for the ground-state
rotational band may be obtained from the observed relative in-
tensities in the decay of the 207-kev and 99-kev levels together
with the estimated Qp value of 6.5 and the measured ground state
magnetic moment p, =0.115 LP. P. Sogo and C. D. Jeffries, Phys.
Rev. 98, 1316 (1955)g. By means of (V.20) and (V.22) one finds
b p =0.28, grk =0.30, and gz =0.49, by a suitable choice of the
phases (A. K. Kerman, private communication). The coupling
between the bands has an appreciable effect on the magnetic
transition probabilities, which have been analyzed in detail in
reference 157.

As discussed in Sec. V B.4, the moment of inertia and the mag-
netic parameters determined directly from the ground statt.
rotational band contain contributions from the coupling between
this band and the E=3/2 band. In the present case where this
coupling has been determined from the analysis of the energy
perturbations, it is possible to derive the various parameters
which would characterize the ground state band in the absence
of this coupling. These "unrenormalized" values are found to be
(3h'/tf)s=95 kev, (a)s=0.17, (bs)0=0 46, (grr)0=0. 1.6, and (ga)0
=0.28 (A. K. Kerman, reference 157 and private communication).

V B.4. Cogptieg Bettoeeu Rotatiolal
aed Ietriesic 3foti oe

Rotational spectra of the simple form (3) are obtained
when the rotation is so slow that the intrinsic motion
can adjust adiabatically to the changing orientation oi
the nuclear field. The finite rotational frequency gives
rise to small nonadiabatic excitations resulting from
the Coriolis and centrifugal forces acting on the nucleons
in the body fixed coordinate system. To lowest order
in the rotational frequency, these virtual excitations
imply an increase in the energy of the nucleus propor-
tion. al to I(I+1) and thus provide the moment of
inertia associated with the rotational motion. ""4' To
higher order, the nonadiabatic eGects give rise to a
coupling between the rotational and intrinsic motion,
which implies deviations from the rotational spectrum
(3) and the geometrical relations for the nuclear mo-
ments, e.g. , (10), (14), (17), and (19).

In odd-A nuclei the nonadiabatic excitations of the
last odd nucleon will play a special role, since these do
not involve the breaking of any pairs. As noted above,
in connection with the discussion of Table V.1, the
inertial effect arising from these excitations may be
largely responsible for the observed differences in the
moments of inertia of even-even and odd-3 nuclei.
Small deviations from the energy ratios (3) may arise
primarily from the higher order eGects of the near lying
bands associated with the lowest states of the last odd
particle. Such effects have been detected (see, e.g. ,
Table V.1 and reference 149) and a detailed analysis"'
has been made for the spectrum of W' ' (see Fig. V.S).
Even when the deviations from (3) are small, the
electromagnetic transition probabilities may be appre-
ciably aGected. In particular the E2 transition prob-
abilities between the coupled bands may be strongly
enhanced. In the Coulomb excitation of W'83, an en-
hancement of this type has been observed and has been
related quantitatively to the observed energy perturba-
tions'" (see Fig. V,S). Further studies of this phe-
nomenon would provide valuable information on the
relationship between the rotational motion and that of
the individual nucleons.

In addition to the specific eGects of the coupling
between close lying bands, rotational perturbations also
arise from the nonadiabatic excitation of higher lying
intrinsic states. An important part of such perturba-
tions may be described as rotation-vibration interac-

A. K. Kerman, Kgl. Danske Videnskab. Selskab Mat. fys.
Medd. 30, No. 15 (1956).

It is of interest that the moment of inertia 8p is much closer to
the moments of neighboring even-even nuclei than the effective
moment (compare Table V.1). The coupling between the bands
is seen in the present case to increase the eRective value of gg,.
this is opposite to the general trend for odd neutron nuclei sug-
gested in reference 146.
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tions of a similar kind as in molecules. These interactions
imply an energy depression which in 6rst approximation
is proportional to P(I+1)'."' In. even-even nuclei, the
small deviations of the observed rotational energies
from the I(I+1) ratios (see Fig. V.4) are indeed always
negative and increase systematically with increasing
rotational frequency; there is also some evidence that
these perturbations to first order are proportional to
12(I+ 1)2 158

For small amplitudes of oscillation, the energy may be
expanded in powers of e),„and of the time derivatives
ct),„, and one obtains to a first approximation

(V.26)

corresponding to a set of independent harmonic oscil-
lators, with energy quanta

V C. Vibrations of Spherical Nuclei

V C.1. Classification of Vibrations

The shape oscillations of a spherical nucleus"' may
be classified according to their multipole order X. The
excitation quanta, called phonons, have total angular
momentum 'h, parity (—1)", and may be further char-
acterized by their component of angular momentum p,

along a space fixed axis.
The vibrational motion is associated with an oscillat-

ing electric multipole moment, and it is convenient to
normalize the vibrational amplitudes o.),„with respect
to the multipole moments (II A.11) by the relation"

(V.24)

This normalization is chosen in such a manner that, in
the idealized case of a nucleus with constant density and
a sharp surface, the coordinates nq„would define the
nuclear surface by

R(f) fo) +0(1++n),„Ty„(8,p)). (V.2$)
Xy

0Z3,4,6+

(V.27)

While the classi6cation of the nuclear vibrations in
multipole orders and the expression. (26) are general
consequences of the spherical equilibrium shape and
small amplitudes of oscillation, the parameters Bq and
C), depend on the more detailed structure of the nucleus.
The former represents the mass transport associated
with the vibration, and it is of interest to compare the
observed B~ in nuclear vibrations with the value

1 3
(%)irrot= &~&0

q

X 4x
(V.28)

corresponding to the surface oscillations of an irrota-
tional and incompressible liquid drop. The parameter
C~ represents an effective surface tension which, within
the scope of the liquid drop model, may be obtained
from the surface energy appearing in the semiempirical
mass formula (see, e.g. , reference 124).

The lowest frequencies of collective vibration are in
most cases expected to be of quadrupole type (X=2),
since a surface deformation with ) = 1 simply represents
a center-of-mass displacement. '"

-- OZ4+

»G. V.9. Quadrupole vibrational spectrum for even-even nuclei
with spherical equilibrium shape. The quadrupole vibrational
quanta each have an energy Aor2 and carry two units of angular
momentum. The resulting spectrum is indicated in the figure, in
which the total angular momentum values are indicated on the
right. The equality of the energy spacings and the degeneracy of
the diferent spin values are a consequence of the harmonic
oscillator approximation and will be removed by higher order
terms in the nuclear energy.

"8 See, e.g. , the accurately measured spectrum of Hf'" (Mihehch
et a/. , Phys. Rev. 94, 794(A} (1954}discussed in Beta- aed Ganzma-
Eay Spectroscopy, edited by K. Siegbahn (North Holland Publish-
ing Company, Amsterdam, 1955},Chapter XVII, p. 487.'" See, e.g. , reference 137,'"Equation (24} is meant to apply only to the matrix elements
between the vibrational levels, and thus merely to give the
normalization of the vibrational amplitude. Taken as a definition
for ny„ in terms of the nucleonic coordinates )see (II A.13)], the
relation (24) would imply the assumption of irrotational flow for
the':vcollective motion, an assumption which is not in general
expected to be valid (see reference 145 and Table V.7).

V C.Z. Quadrupole Vibrations of Even Even Eu-clei

The vibrational excitation spectra have the simplest
character for the ground-state configuration of even-
even nuclei, for which the intrinsic structure does not
contribute to the nuclear angular momentum. The
quadrupole vibrational spectrum for an even-even
nucleus is illustrated schematically in Fig. V.9. The
exact equality of the energy separations as well as the
degeneracies which result from the harmonic oscillator
approximation (26) will be modified by higher order
terms in the nuclear energy (see, e.g. , references 163
and 166).

The vibrational excitations are characterized by en-
hanced electric transition probabilities. These can be
expressed dirc ctly in terms of the parameters B~ and C)„
since the vibrational amplitud;-. s have been normalized
with respect t&! the electric n.ultipole moments Lsee

Collective dipole oscillations P =1} of the neutrons with
respect to the protons have been discussed in connection with the
nuclear photoeffect. Such oscillations have been estimated to have
energies of the order of 10-20 1Vlev LM. Goldhaber and E. Teller,
Phys. Rev. 74, 1046 (1948};H. Steinwedel and J. H. D. Jensen,
Z. Naturforsch. Sa, 413 (1950)j.
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fABLE V.6. Vibrational spectra in even-even nuclei. The table lists the even-even nuclei, for which the empirical data on the second
excited state is compatible with a 2+ assignment. The energies of the first and second excited states are listed in columns two and three,
and their ratio in column four. The E2 transition probability from the ground state to the first excited state (compare Table V.7) is
given in column five, in units of the single particle estimate (V.1).The cascade transition from the second to the first excited state may
proceed by M1 or E2 radiation, and the ratio of the components, as determined by angular correlations, or conversion coeKcients, is
shown in column six. Finally, column seven gives the ratio of the reduced E2 transition probability of the cross-over and cascade radia-
tion from the second excited state. ln the cases where the 3f1 admixture in the cascade radiation is unknown, the value for the ratio in
column seven corresponds to the assumption of pure E2 radiation for the cascade transition, and is then given in parenthesis. The table
is based on the empirical data in Table V.7 and on the references listed below.

Nucleus

26Fe'8
28Ni6O

3pZn-
Zn
Se76

96Kr82
Kr84
Zr92

44Ru
Ru'"

2Te122
Te126

64Xe+6
Xe128

Ptl92
Pt194
Pt196
Hg198
Po214

(Mev)

0.81
1.33
1.00
1.05
0.55
0.77
0.9
0.93
0.54
0.47
0.57
0.65
0.39
0.46

0.32
0.33
0.35
0.41
0.61

r

(Mev)

1.62
2.18
2.27
2,40
1.19
1.45
1.9
1.83
1.36
1.10
1.26
1.40
0.86
0.98

0.61
0.62
0.69
1.09
1.38

2.00
1.64
2.27
2.29
2.17
1.88
2.1
1.97
2.52
2.34
2.21
2.16
2.20
2.13

1.90
1.88
1.97
2.66
2,26

B(E2;0~2)
Bs,(E2)

17
15
11
45

22
45
26
17

50
38
29
15

(M1/E2) 2r~2

0.2

0.1

0.025
small
0.05
0.7)1

B(E2;2' 0)
B(E2; 2'-s2)

0.01
(3 10 ')
(o 1)
(0.04)
0.1

(0.01)
&0.1

(0.06)
(o.o2)
(0.15)
0.01

(0.004}
(o.'o1)
(o.o1)

0.008
0.01

&4 10'
0.03

Reference

s

a
a
a

b
c

d, e, f
g, h
g, h

1

j, k
j, l

ds m
d, n, o-q

r

a b, uclear Level Schemes (40& A&92), edited by Way, King, McGinnis„and van Lieshout, U. S. Atomic Energy Commission, Washington, 1955.
b L. Marquez, Phys. Rev. 92, 1511 (1953).
o P. Avignon, Compt. rend. 240, 176 (1955).
d R. M. Steffen, Proceedings of the 1954 Glasgozo Conference (Pergamon Press, London and Net York. , 1955), p. 206.
e M. J. Glaubman, Phys. Rev. 98, 645 (1955).
f B. Farelly et al. , Phys. Rev. 99, 1440 (1955).
I M. L. Perlman and J. P. Welker, Phys. Rev. 95, 133 (1954).
h L. Koerts et al. . Phys. Rev. 98, 1230 (1955).
i N. Benczer et al. , Phys. Rev. 100, 955 (A) (1955).
& M. W. Johns and S. V. Nablo, Phys. Rev. 96, 1599 (1954).
& H. W. Taylor and R. W. Pringle, Phys. Rev. 99, 1345 (1955).
& Mandeville, Varma, and Saraf, Phys. Rev. 98, 94 (1955).
m M. T. Thieme and E. Bleuler, Phys. Rev. 99, 1646(A) (1955).
n D. Schi8 and F. R. Metzger, Phys. Rev. 90, 849 (1953).
o C. D. Schrader, Phys. Rev. 92, 928 (1953).
& L. G. Elliot et al. , Can. J. Phys. 32, 153 (1954).
& D. Maeder et al. , Helv. Phys, Acta 27', 3 (1954).
r O. B. Nielsen, private communication.
& Frauenfelder, Levine, Rossi, and Singer, Phys. Rev. 103, 352 (1956).

(24)]. Thus, for the one phonon excitation, one obtains
Lsee (II A. 18)$

B(EX I=O +I=X)—
(3 )' Pc

=(»+&)~ —«&»"I, (V29)
(4ir ) 2(Bi,(;i,)*

In the harmonic oscillator approximation, the transi-
tions to higher states in the vibrational spectrum are
forbidden.

The static electric moments of the vibrational excita-
tions vanish to lowest order and are thus expected to
be small in spite of the large transition moments. The
smallness of the static E2 moments for the excited states
of an even-even nucleus is a characteristic feature of
vibrational as distinct from rotational excitations.

In the decay of vibrational states, MI radiation is
forbidden even when AI equals 0 or 1, such as in the
transition from the second to the first 2+ state in the
quadrupole vibrational spectrum. In fact, the magnetic
moment associated with the collective motion is propor-

tional to the angular momentum and is thus a constant
of the motion which possesses no matrix elements be-
tween different energy levels.

The static magnetic moment of a vibrational excita-
tion is given by

P=g~'I7 (V.30)

where the collective g factor is expected to be similar to
that associated with the rotational motion of the de-
formed nuclei (see Sec. V 8.3).

The transitions between vibrational states with hI= 0
may also take place by emission of conversion electrons
corresponding to a nuclear electric monopole transition.
The matrix elements for these EO transitions may be
related to the vibrational parameters and the nuclear
compressibility. '"

V C.3. Discussion of Empirical Data

Collective excitation spectra corresponding to vibra-
tions about a spherical equilibrium shape are expected

'"E. L. Church and J. Weneser, Phys. Rev. 100, 943 (1955).
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in the extensive intermediate regions'between the closed
shell nuclei and the nuclei with especially many par-
ticles in un611ed shells and a resulting nonspherical
equilibrium shape (see Sec. V A). In these inter-
mediate regions, the low-lying excited states of even-
even nuclei are indeed found to exhibit a pattern which
resembles that of quadrupole vibrations about a spher-
ical equilibrium. '"

The first excited states are always of 2+ type and
the energies vary regularly with neutron and proton
number, decreasing as one moves away from closed-
shell regions (see Fig. V.3).Moreover, the cross sections
for Coulomb excitation of these states are found to be
an order of magnitude larger than for single particle
transitions, exhibiting the collective character of the
transition. s I see (1) and Table IV.2$.

In many cases, a second vibrational excitation with
spin 0+, 2+, or 4+ has been observed in radioactive
decay processes. The energy of this second state is found
to be in almost all cases between 2 and 2.5 times that
of the 6rst excited state, and the vibrational character
is especially indicated by the observed y decay. Thus,
when the second excited state is of 2+ type, it is found
to decay to the first excited 2+ state mainly by E2
radiation, although M1 radiation would be strongly
preferred, assuming single particle matrix elements. In
addition, the reduced E2 transition probability to the
ground state, which would be forbidden for harmonic
vibrations, is found to be in most cases several orders
of magnitude smaller than that to the Grst excited
state. "'These features are exhibited in Table V.6 which
lists the evidence on the vibrational spectra in those
cases where the second excited state has the 2+
character.

The observed deviations of the energy ratios from
those obtained in the harmonic oscillator approximation
may possibly be accounted for by higher order terms in
the collective nuclear Hamiltonian. "' However, the
striking selection rule observed in the E2 decay of the
second 2+ state suggests that the higher order terms
in the potential energy depend only on the parameter
P'= P„~ns„~ s, since otherwise this selection rule would.

no longer hold. "' The inclusion of such higher order
terms in P would leave the two phonon states with spins
2+ and 4+ degenerate, while in most cases the Oj
state would lie higher.

From the energy and B(E2) value for the excitation
of the first 2+ state, one can determine the parameters
Ss and Cs by means of (27) and (29). The values ob-
tained, which are listed in Table V.7, exhibit the im-

Nucleus (Vev)
B(B2; 0-+2)
(e2.10 48 cm4)

C2
(Mev) B2/(Bg) irrot

C12
10Ne'0
22Tj46

Ti4'
26Fe56
28NI"

Ni60
3()Zn64

Zn66
32Ge70

Ge72
Ge74
Qe76

64Se74
Se76
Se78
Se80
Se82

42M o'4
Mo96
Mo98
Mo'~

44Ru"'
Ru"'
Ru104
Pd104
Pd106
Pd"'
Pd110

48Cd110
Cd112
Cd114
Cd116

52Tel20
Te122
Te124
Te126
Tel'28
Tel30
Nd146
Nd'48

62Sm148
Sm"0

4400
1630
890
990
854

1450
1330
1000
1040
1020
830
593
556
635
567
615
654
880
871
778
786
528
540
473
362
556
512
430
375
654
620
550
508
560
570
608
662
750
850
455
300
562
337

0.009
0.045
0.15
0.083
0.10

~0.1
0.12
0.11
0.087
0.077
0.23
0.29
0.33
0.21
0.43
036
0.23
0.056
0.29
0.4
0.4
0.64
0.30
0.63
1.0
0.50
0.66
0.89
1.0
0,41
0.46
0.55
0.62
0.55
0.47
0.39
0.32
0.28
0.26
0.25
0.69
0.50
0.98

14
5.8

14
29
36
77
59
61
86

120
32
19
17
32

20
34

190
67
44
47
20
48
20
10
34
24
15
12
58
49
37
32
48
58
77

105
140
170
150
36

100
31

2.9
3.6
7.3

12
15
10
9.0

15
18
23
9.2

10
9.3

15
8.1
8.7

13
39
11
8.9
8.7
8.0

18
10
8.2

12
9.5
8.3
8.5

13
12

11
13
14
16
18
18
18
44
23
18
16

TABLE V.7. Vibrational parameters for even-even nuclei. The
table lists the even-even nuclei in the regions 2&150 and
190&3&220 for which there exists evidence on the transition
probability to the first excited (2+) state. The energies, B2, of
these states and the reduced transition probabilities, 8 (E2; 0—+2),
are listed in columns two and three. The data are obtained from
the Coulomb excitation results in Table IV.2, from the lifetime
data in Table IV.1 and from the additional references given below.
From the values of Es=M and of B(B2), the effective surface
tension C2 and mass parameter 82 for quadrupole vibrations are
obtained from (V.27) and (V.29). The B2 values are given in units
of (Bq);„„,i Lcompare (V.28) j. In the immediate neighborhood of
closed shells, the observed excitations may be described in more
detail in terms of the excitations of the few particles outside of
closed shells (see Sec. V.E).

Additional references: Devons et ol. , Proc. Phys. Soc. (London)
69A, 173 (1955) (C's and Ne"); F. R. Metzger, Bull. Am. Phys.
Soc. Ser. II, 1, 40 (1956) (Ni"). The lifetime determinations for
Po" and Po'" from the n —y branching are discussed in refer-
ence 132.

'"G. Schar8-Goldhaber and J. Weneser, Phys. Rev. 98, 212
(1955).'"J. J. Kraushaar and M. Goldhaber, Phys. Rev. 89, 1081
(1953);R. M. Steven, Eroceedirlgs of the 1954 Glasgow Conference
(Pergamon Press, London and New York, 1955), p. 206.' 'The deviations from the harmonic oscillator spectrum have
also been discussed in terms of the coupling of the collective vibra-
tions to high-frequency nucleonic excitations (reference 163).

'66 M. Jean and L. Wilets, Compt. rend. 241, 1108 {1955)and
Phys. Rev. 102, 788 (1956).

Ptl94
Pt196
Pt198
Hg198
Hg200
Hg202
Pb206
Po212
Po214

330
358
403
411
370
439
803
719
606

1.7
1.3
1.4
1.0
0.7
0.6
0.14
0.3
0.6

39
55
60
88

120
170

1400
640
270

13
17
13
19
30
29
72
39
23



ALDER, BOHR, HUUS, MOTTELSON, AND WINTHER

portant inhuence of the shell structure on the nuclear
vibrational properties. The eGective surface tension C2
varies strongly with respect to the liquid drop value,
which is of the order of 50 Mev throughout the mass
region considered, and the inertial parameter B2 devi-
ates considerably from the value (28).

While no quantitative analysis of the nuclear vibra-
tional parameters has been given, some of the qualita-
tive trends of the data in Table V.7 can be understood
as consequences of the nuclear shell structure and the
residual interactions (see Sec. V A). Thus, the effective
nuclear surface tension decreases as one moves away
from the closed shell regions, as a result of the polarizing
effect of the nucleons in unfilled shells. While in the
regions of closed shell configurations the C2 values con-
siderably exceed the liquid drop estimate, the C2 values
are appreciably smaller than this estimate for nuclei
with many particles in unfilled shells, corresponding to
the approach to instability of the spherical shape (see
Fig. V.1). The inertial parameters Be systematically
exceed those corresponding to irrotational Row. In
regions away from closed shells, the increase of the
inertia over that for irrotational Qow is comparable to,
although somewhat larger than, that observed in the
rotational motion (see Sec. V 8.2, and especially
Fig. V.5).

In the more detailed interpretation of the data in
Table V.7, it is necessary to take into account that the
nucleus does not oscillate as a homogeneous system
because of the different behavior of the particles in the
unfilled shells from those in the closed shell core. This
distinction is of special significance when the number of
particles outside of closed shells is small. For such nuclei
the vibrational energy is mainly associated with the
motion of these few particles; on the other hand, an
important and sometimes dominating part of the electric
quadrupole moment of the vibration arises from the
polarization of the closed shell core by the outside
particles. This accounts for the large values of the
vibrational parameters in Table V.7 for nuclei in the
vicinity of the closed shell regions; in fact, the ampli-
tudes n, normalized by (24), measure essentially the
small core deformation, and the kinetic and potential
energies per unit of n thus become very large.

With the approach to closed shell configurations the
collective description of the low-lying excited states
becomes less appropriate, and a more detailed analysis

may be given by considering the motion of the indi-

vidual particles outside of closed shells under the inhu-

ence of their mutual interactions (see Sec. V E).

U C.4. Octitpole Vibrations of Eeeri Evert Nitclei-
The odd parity collective vibrations of lowest energy

are expected to be of octupole character (&=3). In
even-even nuclei the one phonon excitation of this type
has I=3 and negative parity, while the two phonon
octupole excitations give rise to states with I=0+, 2+,

4+, and 6+. The levels with one quadrupole and one
octupole phonon have I= 1—,2— 5—.

A rather low-lying (3—) state has been observed"' in
the spectrum of Gd'", and may possibly represent a
X=3 vibrational excitation. Such an interpretation
would imply a transition probability for E3 Coulomb
excitation appreciably in excess of the single particle
estimate (II A.58). It is of interest that odd parity
states of similar energy have also been observed in
neighboring deformed nuclei; in these, the coupling
between the quadrupole deformation and the octupole
mode may give rise to a lowest odd-parity excitation of
I= 1—(see Sec. V D.4).

p5q~ k

416ir) (k(ogCg)&
(V.31)

where the coupling constant k is of the order of magni-
tude of the average potential energy of a nucleon. Thus,
as one moves away from closed shell regions, the
coupling is expected to increase as a consequence of the
decrease of the effective surface tension and of the
vibrational frequencies. '"

If the coupling could be neglected, one would obtain,
for each intrinsic state, a collective spectrum corre-
sponding to the phonon excitations. The states most
strongly excited in the Coulomb excitation are the one

"'H. Kendall and L. Grodzins, Bull. Am. Phys. Soc. Ser. II,
1, 164 (1956) and O. Nathan and M. Waggoner (private com-
munication) ."' See, e.g., M. Goldhaber and R. D. Hill, Revs. Modern Phys.
24, 179 (1952).'" See reference 132. In this reference the streilgth of the coup-
ling has been discussed in terms of the parameter x=qj &.'" In reference 132 the increase of the coupling as one moves
away from closed shells has been described in terms of the co-
herence of the individual particles in the unhlled shells in polariz-
ing the nuclear shape. In the present discussion the paired par-
ticles are included in the collective degrees of freedom and their
polarizing effect is thus reRected in the variation of the vibrational
para. meters.

V C.5. Spectra of Odd AN-uclei

In the regions where the even-even nuclei exhibit col-
lective excitations corresponding to vibrations about a
spherical equilibrium, the spectra of the odd-A nuclei
are somewhat more complex and in most cases less well
understood.

For the description of the low-energy spectrum of an
odd-A nucleus, one must consider intrinsic degrees of
freedom in addition to the collective motion. The
intrinsic motion possesses a nonvanishing angular mo-
mentum which must be combined with the collective
angular momentum; moreover, low-lying intrinsic exci-
tations may arise from the change of orbital of the last
odd nucleon, such as in the case of the nuclear isomers. '"

The intrinsic nucleonic degrees of freedom are coupled
to the collective oscillations, since the latter involve
variations in the nuclear 6eld. The effect of the coupling
to the quadrupole vibrations depends essentially on the
parameter'"
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phonon quadrupole excitations of the ground state con-
figuration. If the ground state has spin Io, these excited.
states have spins Is+2, Is+1,

~
Io—2

~

and energies
of the same order of magnitude as the first excited state
in the neighboring even-even nuclei. The reduced
transition probability for the excitation of these states
is given by

1 2Is+1
B(E2;Io-+If) =- B(E2)vg,

5 2Io+1
(V.32)

where B(E2),z is the quadrupole phonon excitation
probability (29).

When the coupling between the intrinsic and collec-
tive motion. is weak (q(1), the effect on the energy
spectrum and transition probabilities may be obtained
from a perturbation treatment. '"

If one estimates the coupling strength q employing
the empirical vibrational parameters in Table V.7, one
6nds for most nuclei 1 (q (3 indicating an intermediate
coupling situation. With such values of the coupling
the stationary states represent a rather complicated
superposition of individual particle and collective
motions. '~2

In a few regions (2~20, 75, 105, 150, and 192), one
obtains q&4. For such strong couplings, the last odd
particle may appreciably polarize the nuclear shape with
a resulting approach to the coupling scheme character-

'istic of the deformed nuclei" 'rs (see Sec. V 8). The
strongest transitions observed in Coulomb excitation
may then be approximately described as rotational
excitation s.'~4

In the limits of very weak or very strong coupling,
the dominant quadrupole transitions are associated with
a few simple excitations. For an intermediate coupling
situation the pattern is more complex, but there exists
an approximate sum rule which may be of use in the
analysis of such spectra. Thus, the summed quadrupole
strength Pf B(E2;Io~If) obtained by adding all the
low-energy transitions (i.e., with energies less than. a
few times @&us) is proportional to the average value of
P' in the nuclear ground state, aside from a small contri-
bution due to the quadrupole transitions of the last odd
particle. The sum is, therefore, expected to be approxi-

'rr L. L. Foldy and F. j'. Milford, Phys. Rev. 80, 751 (1950);
A. Reifman, Z. Naturforsch. Sa, 505 (1953);M. Trocheris, J.phys.
radium 14, 635 (1953); reference 132; A. K. Kerman, Phys. Rev.
92, 1176 (1953);F.j.Milford, Phys. Rev. 93, 1297 (1953);K. W.
Ford and C. Levinson, Phys. Rev. 100, 1 (1955); B. J. Raz,
thesis, University of Rochester, 1955; W. W. True, Phys. Rev.
101, 1342 (1956).

'7~ Intermediate coupling calculations have been given by K.
Ford, reference 138; reference 132; D. C. Choudhury, Kgl.
Danske Videnskab. Selskab Mat. fys. Medd. 28, No. 4 (1954);
reference 163; B.J. Raz, reference 171.

'~' The near instability of the spherical shape for the even-even
nuclei in these regions is also indicated by the comparison of the
energies of the first excited states with the critical value drawn
in Fig. V.3.'" See, e.g., the discussion of the spectra of Ag" "' (F1 H4
H7), Ir"' "' (D1), and Auror (C1, G1, S4); the reference code refers
go Table IV.2.

mately the same in odd-A nuclei as in neighboring
even-even nuclei, except insofar as the last particle
polarizes the nucleus and thereby increases the sum. If
the nucleus possesses a ground-state spin Io)-,', the
sum over the final states If should include also the
ground. state quadrupole strength B(E2' Io~Io). The
latter quantity is related to the static electric quadru-
pole moment Q of the ground state by Lsee (13) and
(II A.18)j

5 (Io+1)(2Io+3)
B(E2;Is~Is) = a'Q', (V.32a)

Io(2Io—1)

a relation which is independent of the structure of the
nuclear state.

When the total strength observed in an odd-A nucleus
is appreciably smaller than B(E2;~2) for the transi-
tion to the erst excited state in the neighboring even-
even nucleus, one may conclude that there exist strong
quadrupole transitions as yet undetected. A total
strength greatly exceeding this value implies an appre-
ciable polarization produced by the last particle and
may thus indicate that the coupling scheme is approach-
ing that of a deformed nucleus. In this limit the ground. -
state strength contributes the fraction (Io2Io0

~
Io2IoIo)'

=Is(2Io—1)(Is+1) '(2Io+3) ' of the total quadrupole
strength )see (10)).For weak or intermediate coupling,
the relative contribution of the ground-state strength
to the total sum is expected to be smaller than this
fraction.

V D. Vibrations of Spheroidal Hut:lei

V D.l. Classification of Vibratiorss

While the lowest collective excitations of the strongly
deformed nuclei correspond to rotations with preserva-
tion of shape, one may also expect these nuclei to
exhibit collective excitations which correspond. to vibra-
tions about the equilibrium shape. Only scanty evidence
is at present available on such vibrational excitations,
but since the Coulomb excitation is well suited for the
exploration of these levels we shall briefly outline the
expected patterns.

For a nonspherical nucleus, the angular momentum
of a vibrational quantum is not a constant of the motion
due to the coupling to the nuclear rotation. Still, one
may characterize the symmetry of the vibrations by a
quantum number X which represents the number of
nodal surfaces and which, in the limit of small nuclear
eccentricities, corresponds to the multiple order. The
parity of the vibrations is (—1)".For axially symmetric
nuclei, the vibrations may in addition be characterized
by the quantum number v, representing the component
of vibrational angular momentum about the symmetry
axis. For given ), the component v may take the values
0, &1 &) but, in contrast to the vibrations of
spherical nuclei, the vibrational parameters 8 and C
Lsee (26)j, and thus also the frequency, depend on

~
v

~
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+
p +

tt('=2'; n& =0; n&= s

8+

A'=0; n&= 1; n&=0.

also applies to the radiative decay of a vibrational
excitation, and thus gives the branching ratios to the
members of the ground-state band.

If the electric multipole order, I., of the excitation
equals that of the vibration, X, the transition probability
(33) can be expressed in terms of the vibrational
parameters B~„and Cq„by means of the relation
[compare (29)j

p+
0+

A'=0;y= n& =o

Fro. V.10. Quadrupole vibrations of an even-even nucleus with
spheroidal shape. The quadrupole vibrations of the nucleus about
a spheroidal equilibrium shape separate into two modes, of
which the one has r=0 (P vibration) and the other ~v~ =2
(v vibration). The figure illustrates the ground-state rotational
band as well as the rotational bands associated with the erst
vibrational excitation of these two modes (rtp=1 and Nr=1,
respectively). The figure is meant for illustrative purposes only
and no signi6cance should be attached to the relative magnitude
of the two vibrational frequencies.

It is expected that Coulomb excitation will strongly excite the
two states (rttt=1; 7=2+) and (ate=1; I=2+). These states
decay by means of E2 radiation to the I=0, 2 and 4 members of
the ground-state band with relative reduced transition probabili-
ties 1:10/7:18/7 for the P vibration and 1:10/7:1/14 for the
y vibration Lcompare (V.33)j. 3I1 radiation is expected to be
weak in these transitions, even when AI =0 or 1.

In an odd-2 nucleus, the np=1 vibrational excitation gives rise
to a rotational band with E=E'0, where Xf) is the ground-state
E value. The N&=1 excitation gives rise to two bands with
E= ]Xpa2).

as well as on A. . In the special case of v= 0, the vibrations
preserve the axial symmetry of the nuclear shape.

The rotational band associated with a one-phonon
excitation has E= ~Ks+t ~, where Ks is the intrinsic
angular momentum of the ground state. The band
contains the members I=K, K+ 1, K+2, except for
a v=0 vibration in a nucleus with a paired nucleonic
configuration (ground-state configuration of even-even
nuclei), in which case the band contains the states
I=0+, 2+, 4+, (for X even) or I= 1—,3—,5—,

. (for X odd).

V D.Z. Traesitiox Probabi/ities

The reduced transition probability of multipole order
El- for the excitation of a vibration with angular mo-
mentum component v may be written'"

B(EL; I;K,~IfKf) = (Kf ~
DR (EL P)

~
E )'

&& (IJ.K~y K;
i
I;LIgKg)r (V.—33)

where the first factor contains the vibrational matrix
element of the electric multipole moment (II A. 11)
expressed in the intrinsic coordinate system. The second
factor in (33) gives the relative probabilities for the
excitation of the different members of the rotational
band associated with the vibration. The formula (33)

"' In the special case of X;=0 and Xt AO (excitation of v/0
modes in even-even nuclei), the value of B(EL) is twice that
given by (33).

t3 qs It
(Kr j~'(E»&) IK)'=

I
«&—e"

I (V 34)
44x ) 2(Bx,C)„)'*

We here assume a normalization of the vibrational
amplitudes in analogy to (24).

V D.3. QuadruPole Vibrafiorts

The lowest order shape vibrations have ) = 2 and are
of approximately quadrupole type. A deformation of
order X=2 and v=&1 is equivalent to a rotation and
the only occurring quadrupole vibrations thus have v= 0
(P vibrations) or o= &2 (j vibrations). The quadrupole
vibrational pattern expected for an even-even nucleus
is i11ustrated in Fig. V.10.

While theoretical estimates of the vibrational fre-
quencies are rather uncertain, due to the inQuence of
the shell structure, the empirical data on the spectra of
the even-even nuclei appears to indicate that the
quadrupole vibrational energies for the very strongly
deformed nuclei may be of the order of a Mev in the
heavy nuclei. States with some of the expected prop-
erties have been found in a number of even-even
nuclei. " '" The determination of the E2 transition
matrix elements mould be of great value for the classifi-
cation of these levels, since vibrational excitations
should be appreciably stronger than single particle
transitions. As in the case of spherical nuclei, Mi radia-
tion is forbidden in the decay of vibrational excitations,
even when hI =0 or 1.With decreasing deformation and
gradual approach to the transition region, where the
nuclear shape becomes spherical, the (2+) rotational
excitation increases in frequency and goes over into the
one phonon quadrupole vibration. The lowest vibra-
tional excitation goes over into a two phonon state and

"'See, e.g. , Er'" (1.46 Mev) J. S. Fraser and J. C. D. Milton,
Phys. Rev. 98, 1173(A) (1955). W' (1.22 Mev) Murray et al. ,
reference 151;Alaga et a/. , Kgl. Danske Videnskab. Selskab Mat.
fys. Medd. 29, No. 9 (1955). Pu"8 (1.03 Mev) Rasmussen et al. ,
Phys. Rev. 99, 42 and 47 (1955).

'Note added in proof Recent studies of.—the levels in the
one-Mev region in heavy nuclei of the even-even type have re-
vealed the systematic occurrence of states having many of the
expected properties associated with both y- and P-vibrational
excitations (private communication from Asaro, Hollander, Perl-
man, Rasmussen, and Stephens; see also the review article on n
radioactivity by I. Perlman and J.Rasmussen, to appear in Hand-
book of I'hys~cs, edited by S. Flugge}. In this connection, it seems
likely that the 760-kev level excited in Th'" (see Table IV.2) is
a 2+ level corresponding to a P vibration. Its excitation cross
section would then indicate a B(E2) value several times greater
than the single particle unit (1).
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its frequency may thus decrease somewhat with the
approach to the transition region. '~~

V D.4. OctsIPole Vibrations

The lowest odd parity modes ('A=3) should resemble
octupole vibrations, and have v=0, &1, &2, and ~3.

Recently, relatively low lying 1—states, and in some
cases also 3—and 5—states, have been observed in a
number of even-even nuclei in the heavy elements
region'rs'r' (see Fig. V.11 and Table V.8). Their sys-
tematic occurrence suggests an interpretation in terms
of odd parity vibrations, '" and the branching ratios in
the E1 decays to the ground-state rotational band )see
(33)) characterize the states as E=O (and thus v=O)
in all cases (see Table V.8). The lower energy of the
v=0 mode as compared with the vibrations having

~ v~ =1, 2, and 3 may be associated with a prolate
nuclear shape.

The frequencies of these vibrations estimated on the
basis of the liquid drop model would be a few Mev in
heavy nuclei. However, as in the case of quadrupole
vibrations, the shell structure is expected to have an
important inhuence. Thus, the restoring force for odd
parity vibrations will be strongly reduced by the oc-
currence of near lying s'ingle particle levels of opposite
parity, which might even lead to stable odd parity
deformations.

In an even-even nucleus, the odd parity vibrational
levels of 1—type can be excited by an Ei transition
from the ground state; there are two such levels having

~
v

~

=0 and 1, respectively. The transition probability
(33) depends on the displacement of the center of charge

TABLE V.8. States of 1—type in even-even nuclei. The excita-
tion energies of the observed 1—states in the heavy elements are
listed in column three, while the energies of the first excited 2+
states are given in column two. The 1—states decay by Ei
radiation to the 0+ and 2+ members of the ground state rota-
tional band, and the ratios of the reduced transition probabilities
are shown in column four. These may be compared with the
theoretical ratios obtained from (V.33) for the assignments IC=0
and K= 1 for the 1—states. The table is taken from Stephens,
Asaro, and Perlman, Phys. Rev. 100, 1543 (1955).

3ZO

K=0-

678

K=0+

F&G. V.11.Level spectrum of Ra"'. The figure shows the levels
in Ra"' populated in the a decay of Th'~ (Stephens, Asaro, and
Perlman, Phys. Rev. (to be published)j. The observed levels
appear to form two rotational bands, of which the first is the
usual ground-state band of even-even nuclei with %=0+ (com-
pare Fig. V.4). The negative parity levels form a rotational band
with Z=O as determined by means of (V.33) from the observed
relative intensities in the y decay of these states (compare
Table V.8).

As discussed in the text, the observed odd parity states may
be associated with a collective vibration of approximately octupole
type and with component v =0.The appreciably larger moment of
inertia observed in this band as compared with that in the ground-
state band may result from the coupling to the expected octupole
vibrational mode with ~v~ =1 (%=1—).

with respect to the center of mass. Since this vanishes
for a uniformly charged nucleus, the cross section is
expected to be relatively small. A contribution to the
nuclear dipole moment arises from the polarization of
the nuclear charge resulting from the Coulomb forces.
Estimates indicate that this effect would lead to B(E1)
values several orders of magnitude smaller than the
single particle unit (II A.58).

The excitation of the 3—states would involve the E3
moment I see (34)], which is expected to be appreciably
larger than that of a single particle. The determination
of the cross section for E3 excitation would thus provide
crucial information on the interpretation of these states.
If B(E3) for such an excitation were 10 times the
value (II A.58) for a nucleus with Z= 90 Li.e., assuming
B(E3;0—&3)=0.2e'(10 '4 cm')'j, the excitation cross
section for 20-Mev n particles would be about one
millib am.

Nucleus

ssRa~~
Ra~4
Ra~'

g 0Th~6
Th~'

g4Pu"8

112
84
68
73
58
43

242
217
253
232
326
605

E(2+»O-)
(Wev) (aev)

0.48W0.15
0.36a0.15
0.49&0.08 „0.51~0.15
0.43+0.08
0.60+0.15.

0.50 2.00

B(E1;1 ——+0+)/B(E1.; 1 —-s2+)
theor. theor.

(K =0) (Z =S)
V E. Regions of Closed Shells

For nuclei with only a few particles outside of closed
shells, a rather detailed analysis of the low-energy exci-
tations may be obtained by considering these particles
as moving, under the inQuence of their mutual inter-
actions, in a fixed central binding field produced by the
closed shell core.'"The weak. coupling between the par-

'7~ Thus the 633-Mev level in Os"8 with I=2+ may represent
a p vibration in the transition region (Johns et al. , Can. J. Phys.
34, 69 (1956) and Potnis et a/. , Phys. Rev. 102, 459 (1956)).

"8 See especially Stephens, Asaro, and Perlman, Phys. Rev. 96,
1568 (1954); 100, 1543 (1955), and to be published.

' ' See also the 960-kev level in Sm'" which appears to have
I=1—and Z=O LO. Nathan and M. Waggoner, Nuclear Phys.
(to be published).

"0R F. Christy (private communication).

'"Detailed analyses of this type have been discussed, e.g., by
D. R. Inglis, reference 140 (A &16);D. Kurath, Phys. Rev. 101,
216 (1956) (A (16);A. M. Lane, Proc. Phys. Soc. (London) 66A,
977 (1954) (A =13);J. P. Elliot and B. H. Flowers, Proc. Roy.
Soc. (London) A229, 536 (1955) (A =18, 19); M. G. Redlich,
Phys. Rev. 99, 1427 (1955) (A. =18, 19); S. Goldstein and I.
Talmi, Phys. Rev. 102, 589 (1956) (A=38, 40); C. Levinson
and K. W. Ford, Phys. Rev. 100, 13 (1955) (A =42, 43); W. W.
True, Phys. Rev. 101, 1342 (1956) {A=204); D. E. Alburger and
M, H, L. Pryce, Phys. Rev. 95, 1482 (1954) (A =206).
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ticles and the excitations of the core may be added as a
perturbation and principally contributes to the electric
moments associated with the particle motion. The dy-
namical eGects of the core also imply a coupling be-
tween the outside particles'" which may contribute an
appreciable part of the apparent interaction between
the nucleons.

To the extent that the dynamics of the core can be
described in terms of collective oscillations, an approxi-
mate expression for the resultant nuclear transition
moment may be simply obtained from (II A. 13) by
including in the sum over k only the extra nucleons, and
replacing their charges ej, by the effective radiating
charges eI,

' given by'"

(V.35)

where Z' and Cq''are the charge number and effective
surface tension of the closed shell core. The coupling
constant k in (35) is the same as that employed in (31).

'82 Reference 132, p. 27.

Estimates of Cq' for a closed shell indicate that the
induced charge is of the order of one unit.

Especially clear-cut examples of this eGect are pro-
vided by the E2 Coulomb excitation cross section for
the first excited states in Pb"' and Pb"' (see Table IV.2)
and the measured E2 decay rate'" of the first excited
state in 0".In these con6gurations consisting entirely
of neutrons outside of closed shells, the observed transi-
tion rates imply an effective polarization charge of
about one unit. '"'" A similar enhancement of the
electric transition probability is observed for the T96-
kev E2 excitation of F"'" and in the E3 decay of the
3—states in 0"'" and Pb"'.'"

'"J. Thirion and V. L. Telegdi, Phys. Rev. 92, 1253 (1953).' ' W. W. True, reference 171;J. Raz, reference 171.
' 'The polarization charge (35) contributes not only to the

transition rate, but also to the static electric moments. Thus, the
very small electric quadrupole moment reported for 0'r LG. R.
Bird and C. H. Townes, Phys. Rev. 94, 1203 (1954)j seems sur-
prising (see the detailed discussion by J. Raz, reference 171).' ' J. Elliot and B.H. Flowers, reference 181.' ' See F, Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27,
77 (19SS)."' Elliot ef a/. , Phys. Rev. 93, 356 (1954).


