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COULOMB EXCITATION

CHAPTER I. INTRODUCTION

ALREADY in the early stages of the study of
nuclear reactions, the possibility was discussed!
of producing nuclear excitations by the long-range elec-
tric interactions with bombarding particles.? Particu-
larly for incident energies so low that the Coulomb
repulsion prevents the particles from penetrating into
the nucleus, such excitation processes can be studied
without interference from the more complicated nuclear
interactions. Following these early theoretical sugges-
tions, the possibility was discussed that an isomeric
activity in indium, observed in charged particle bom-
bardment, might have been produced by processes of
this kind.?

In subsequent years, the theoretical description of the
“Coulomb excitation” reactions was considerably de-
veloped.#® In particular, it was found that in many
cases of interest a classical treatment of the trajectory
of the bombarding particle is justified and leads to
simple quantitative expressions for the excitation cross
sections.®

At the same time, it was recognized that such experi-
ments were a particularly appropriate means for in-
vestigating certain features of the nuclear structure.
The nuclear states most strongly produced in the
Coulomb excitation reactions are the low-lying collec-
tive excitations which are induced by the electric
quadrupole field of the impinging particles. Such experi-
ments, thus, appeared as an especially promising tool for
the exploration of the nuclear rotational and vibrational
spectra.%7

Nuclear gamma rays which were later identified as
resulting from Coulomb excitation of tantalum were
first seen as a background radiation in experiments on
proton induced reactions in light nuclei, in which target
backings of tantalum were employed.® About a year

1See, e.g., the discussion in Rutherford, Chadwick, and Ellis,
Radiations from Radioactive Substances (Cambridge University
Press, Cambridge, England, 1930), p. 247 ff. and the later work
by L. Landau, Physik. Z. Sowjetunion 1, 88 (1932) and V. F.
Weisskopf, Phys. Rev. 53, 1018 (1938).

2 We shall, in the present article, confine our attention mainly
to electric and magnetic excitations produced by bombardment
with nuclear particles. A brief review of the theory of inelastic
electron scattering is given in Sec. ITE.3.

3S. W. Barnes and P. W. Aradine, Phys. Rev. 55, 50 (1939);
Risser, Lark-Horovitz, and Smith, Phys. Rev. 57, 355 (1940).

4 C. J. Mullin and E. Guth, Phys. Rev. 82, 141 (1951) ; R. Huby
and H. C. Newns, Proc. Phys. Soc. (London) A 64, 619 (1951).

5 K. A. Ter-Martirosyan, J. Exptl. Theoret. Phys. (U.S.S.R.)
22, 284 (1952).

6 A. Bohr and B. Mottelson, Report of the International Physics
Conference, Copenhagen, June, 1952; Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 27, No. 16 (1953).

71t has also been suggested [N. F. Ramsey, Phys. Rev. 83, 659
(1951) ; Breit, Hull, and Gluckstern, Phys. Rev. 87 74 (1952);
Malenka, Kruse, and Ramsey, Phys. Rev. 91, 1165 (1953)7] that
the polarization of the nucleus as a whole, as well as of the pro-
jectile, could be studied in reactions where the energy of the
bombarding particle was insufficient to enable it to surmount the
Coulomb barrier (see Sec. II D.3).

. 8R., B. Day and T. Huus, Phys. Rev. 85, 761 (1952); C. L.
McClelland, S. M. thesis, Massachusetts Institute of Technology,
August, 1952.
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after these first observations, the origin of the gamma
rays and the mechanism of their production were clearly
established.®1® It was also shown!® that the yield of this
radiation as a function of the proton energy was in
agreement with the theoretical expression for electric
quadrupole Coulomb excitation®!! and that the absolute
cross sections and excitation energies could be inter-
preted in terms of rotational excitations.

Since these first investigations, the Coulomb excita-
tion reaction has been extensively employed in many
laboratories for the study of nuclear levels. Apart
from furnishing new information on previously known
nuclear states, a large number of new levels have been
identified.?

The scope of the experiments has been extended by
the utilization of alternative methods of detection.
Thus, additional information has been obtained from
measurements of the internal conversion electrons®® and
of the inelastically scattered proton groups.* While
most of the experiments performed so far have employed
protons, deuterons, or « particles as projectiles, the use
of still heavier ions’® may in certain respects provide
additional advantages. The Coulomb excitation reaction
has so far been used for the study of rather low-lying
states (excitation energies up to about one Mev), but
with the use of higher bombarding energies it should be
possible also to explore excitations of somewhat higher
energy.

Extensive experimental investigations of the Coulomb
excitation process itself have also been performed and
have tested the adequacy of the theoretical description.
Thus, the excitation cross section as a function of the
energy, charge,and mass of the projectile has been found
to be in good agreement with the classical theory, when
the latter is appropriately modified to take into account
the energy loss of the projectile.’® On the other hand,
the accurately measured angular distribution of the v
radiation from Coulomb excitation revealed!” significant
deviations from the theory, and stimulated the develop-
ment of a complete quantum-mechanical treatment of
the process.!®

9 C. L. McClelland and C. Goodman, Phys. Kev. 91, 760 (1953).

1T, Huus and C. Zupan&i¢, Kgl. Danske Videnskab. Selskab.
Mat. fys. Medd. 28, No. 1 (1953).

11 K. Alder and A. Winther, Phys. Rev. 91, 1578 (1953).

12 A special reference should be made to the extensive and
systematic survey performed by N. Heydenburg and G. Temmer,
Phys. Rev. 93, 351 and 906 (1954); 94, 1399 (1954); 95, 861
(1954); 96, 426 (1954); 98, 1308 (1955); 100, 150 (1955).

13T, Huus and J. H. Bjerregaard, Phys. Rev. 92, 1579 (1953).

14 B, Elbek and C. K. Bockelman (submitted for publication).

‘15 Recently, Coulomb excitation studies have been made em-
ploying cyclotron accelerated nitrogen ions [Alkhazov, Andreyev,
Greenberg, and Lemberg, Nuclear Phys. 2, 65 (1956)].

16 K. Alder and A. Winther, Phys. Rev. 96, 237 (1954).

17 F, K. McGowan and P. H. Stelson, Phys. Rev. 99, 127 (1955).

18 Biedenharn, McHale, and Thaler, Phys. Rev. 100, 376 (1955) ;
K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab Mat.
fys. Medd. 29, No. 19 (1955). Numerical results have been given
by K. Alder and A. Winther, reference 11; Biedenharn, Goldstein,
McHale, and Thaler, Phys. Rev. 101, 662 (1956), and 102, 1567
(1956). A WKB approximation which yields results in essential
agreement with the detailed quantal treatment has been. given
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In the present review article, we begin in Chapter IT
with a discussion of the theory of Coulomb excitation,
and give in tables and figures the numerical results
necessary for the analysis of the experiments. Chapter
IIT deals with the experimental techniques which have
been employed in Coulomb excitation measurements,
and also contains a discussion of the main background
effects in these experiments. Chapter IV contains a
compilation of results obtained in Coulomb excitation
experiments and also a comparison with the theory of
Chapter II. Finally, in Chapter V, we outline the theory
of collective nuclear excitations, which makes possible
an interpretation of many of the observed transitions.

We wish to acknowledge the benefit we have derived
from contacts with experimental and theoretical physi-
cists working in the field of Coulomb excitation, many
of whom have kindly communicated to us the results of
their investigations prior to publication. We are also
indebted to the members of the Institute for Theoretical
Physics, Copenhagen, as well as to Dr. N. P. Heyden-
burg, Dr. G. M. Temmer, and Dr. G. Breit for valuable
discussions.

CHAPTER II. THEORY OF ELECTROMAGNETIC
EXCITATIONS

The excitation of nuclei by impinging nuclear par-
ticles with energies well below the Coulomb barrier
proceeds only through the electromagnetic interaction
between the projectile and the nucleus.

The motion of the projectile in the Coulomb field of
the nucleus is essentially characterized”® by the dimen-
sionless quantity 5 defined by

n="2Z1Zs*/ ", (ITA.1)

where Z; and Z; are the charge numbers of the pro-
jectile and the nucleus, while v is the velocity of the
incident particle. The parameter n measures the effec-
tive strength of the interaction. Thus, for <1, the
Coulomb field produces only a small distortion of the
incident wave, and the collision process can be treated
by Born approximation. For the particle velocities
involved in Coulomb excitation, however, the inter-
action must be strong to prevent the projectiles from
entering the nucleus. Under such conditions, we al-
ways have g>>1, and the collision may then be ap-
proximately described by considering the particle as
moving along a classical trajectory. For inelastic colli-
sions, it is a further condition for the application of a
classical description that the energy loss of the particle
is small compared to the bombarding energy, so that
the effect of the excitation on the particle motion can
be neglected.

In such a treatment, the nuclear excitation is a result
of the time dependent electromagnetic field of the
by Benedict, Daitch, and Breit, Phys. Rev. 101, 171 (1956);
Gluckstern, Lazarus, and Breit, 7bid. 101, 175 (1956); F. D.
Benedict, ibid. 101, 178 (1956). :

1 N. Bohr, Kgl. Danske Videnskab. Selskab Mat. fys. Medd.
18, No. 8 (1948).
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projectile acting on the nucleus. In most cases, the
effect of this field is small and may be treated by first-
order quantum-mechanical perturbation theory. The
excitation probability can be expressed m terms of the
same nuclear matrix elements as determine the radiative
transitions between the nuclear states.

In the following we shall first consider, in Sec. A, the
Coulomb excitation process in terms of such a classical
treatment of the projectile. We shall describe this
simplified method in some detail, since it illustrates the
main physical features of the process, without involv-
ing the more complex mathematical formalism of the
quantum-mechanical theory.

The more rigorous treatment of the excitation process,
in which the particles are described by the Coulomb
wave functions, is given in Sec. B. At the end of this
Section, we also consider the application of the WKB
approximation, which is intermediate between the
classical and the exact quantum-mechanical treatment.

In Sec. C, the final formulas for the excitation cross
sections and the angular distribution of the emitted
nuclear radiation are collected. These depend on the
collision parameters through certain functions which
have been evaluated numerically and are tabulated and
given in figures.

In Sec. D, we briefly consider some of the effects
associated with the higher order excitation processes,
while Sec. E has the form of an appendix, which contains
partly results appropriate to certain limiting cases and
partly a discussion of certain processes related to
Coulomb excitation, such as bremsstrahlung and nuclear
excitation produced by fast electrons.

IT A. Classical Theory

In the classical treatment of the Coulomb excitation
process,® we consider the projectile as moving along a
hyperbolic orbit in the repulsive Coulomb field of the
target nucleus (see Fig. IL.1). The differential scattering’

F1c. II.1. Classical picture of the projectile orbit in the Coulomb
field of the nucleus. The hyperbolic orbit of the projectile, P, is
shown in the frame of reference in which the nuclear mass center
is at rest. The focal coordinate system employed in the evaluation
of the orbital integrals (IT A.24) is indicated. The position and
velocity of the projectile are denoted by ¢, 75, and v,, respectively,
and the total deflection angle by #.
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cross section is given by the Rutherford law

dop=1%a? sin—4(4/2)dQ, (ITA.2)

where & is the scattering angle in the center-of-mass
system, and

Z 1Z 262

(I1 A.3)

a —3
mov?

is half the distance of closest approach in a head-on
collision. The reduced mass of the projectile and the
nucleus is denoted by .

Since we have assumed that the orbit of the particle
is not appreciably affected by the excitation, the differ-
ential excitation cross section is given by

do= Pdog, (IT A4)

where P is the probability that the nucleus is excited
in a collision in which the particle is scattered into the
solid angle d<. ‘

The probability P can be expressed in terms of the
amplitudes b;; for a transition from the initial nuclear
state 7 to the various final states f. If we ask for the
probability for excitation of a given energy level, irre-
spective of the orientation of the initial or final nuclear
state, we have

P=QI+1)1 ¥

MMy

s 7, (ITA.5)
where I, is the spin of the initial nuclear state, and where
M ; and M are the magnetic quantum numbers of the
initial and final states.

Under most experimental conditions the probability
for excitation in a single encounter is very small. Thus,
by first-order time dependent perturbation theory,*
we obtain

1 © )
biy=— f_ (fle@lpea, @A

where 3C(¢) is the interaction energy and

AE E;—E;

/2 %

(ITA.7)

is the nuclear frequency associated with the excitation
energy AE.

II A.l1. Electric Excitations

For particle velocities small compared with that of
light, the main interaction is the Coulomb energy

sen ()= f p@®e(tddr, (A

20 P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford
University Press, New York, 1947), third edition, p. 172.
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where
Z 1€ Z 1€

T, 70

and pn(r) is the nuclear charge density operator. The
projectile is considered as a point charge and its position
vector r,(¢) is measured from the nuclear center of mass.
In (9)* we have subtracted the interaction between the
mass centers, which is responsible for the scattering and
does not contribute to the excitation.

In order to evaluate the matrix element in (6) we
expand the potential (9) in multipole components,
whereby one obtains

o(r,9) (ITA9)

) A 1
HLe()=4rZe > Y, ——r; 1
A=1 p=2 2\41

XY ru(0p,0)N* (EN ), (I A.10)

which holds if the projectile remains outside the nucleus.
The electric multipole moments of the nucleus are
defined by

M (M) = f PV (0,8)pa@dr. (I A1)

The polar coordinates are referred to a coordinate sys-
tem with origin in the nuclear center of mass and with
a fixed direction of the polar axis. The ¥3,(6,¢) are the
normalized spherical harmonics.?

The multipole operators (11) are the same as those
responsible for the emission of electric multipole radia-
tion with wavelength large compared with the nuclear
radius.?? If we assume that the nuclear charge density
can be described in terms of point charge protons
we have

pr(t)=3" exd(x—ry), (IT A.12)

where ¢;, and r;, are the charge and the position vector
of the kth nucleon. The multipole moment can then be
written in the familiar form

W(Ek,u)—.——‘% eri* Vau(Or,0). - (IT A.13)
Inserting (10) into (6) we get for the transition
amplitude
LY AT 1
ih e 5)\—}-—1
XM | TUEN) | LM S s

bij‘—-‘

(IT A.14)

*In each chapter we have referred to the equitions in that
chapter without adding the chapter or section designation. For
example, this reference is to Eq. (IT A.9)

2 We use the phases employed by E. U. Condon and G. H.
Shortley, Theory of Atomic Spectra (Cambridge University Press,
New York, 1935).

%2 See, e.g., J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (John Wiley & Sons, Inc., New York, 1952).
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where we have introduced the notation

SExu= f ) etV (0,8),0,D) ()Tt (1T A.15)

-0

for the orbital integrals, and where we have specified
the nuclear states by their total angular momentum I
and magnetic quantum number M.

Since the multipole moments are tensor operators,
we may write?

(LM |9\ p) | 1M 1)

I\ I,
=(__1)Ii-—Mi
_Mz 12 J

where the last factor is the reduced matrix element. We
use the Wigner notation for the vector addition coeffi-
cients,?* which is related to the notation employed by
Condon and Shortley® by

(jl Jz 73 )
my Mg M3
( 1)71—22—7n3

=—————(j1fomams| j1j2js—ms).
(27:+1)%

Further, we introduce

)(nusm(x) 12, (I1 A.16)

(ITA.17)

B(EN; I,—1)
=Y [I:M:|(ENp) | I,M ) |?

Myp

= (LA (M (EN) 11 ]2, (ITA.18)
which represents the reduced transition probability
associated with a radiative transition of multipole
order EX. ‘
By inserting into (4) Egs. (2), (5), and (14), and
using the orthogonality relation,?*
I A I

LN I,
Z ) [
mimy \—M; p M/ \—M; u M;

= (A1) 8, (I A.19)

for the vector addition coefficients, we get for the
differential excitation cross section

dop=Y dop, (IT A.20)
A=1

28 G. Racah, Phys. Rev. 62, 438 (1942). In the following we
assume the phases of the nuclear wave functions to be chosen in
such a manner that the matrix element (II A.16) is real. In this
case, one finds Il N1 Ip)= (= DI~ || (V|| 1)

20 A. R. Edmonds, Angular Momentum in Quantum Mechanics,
CERN 55-26, Geneva, 1955. The notation is also employed by
A. de Shalit, Phys Rev. 91, 1479 (1953).
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with
47?7 %2
do’E)‘= a?
h?
e 2 i, (
st ————— ul2dQ. (ITA.21
2 (AF1)3 5 Sans )

The evaluation of the integrals Sgy , is most easﬂy
performed if the coordinates (r,,0,,¢,) are given in the
focal system of the hyperbolic orbit (see Fig. IL.1). In
this system, a convenient parametric representation is

%p=a(coshwe),
¥p=0a(e*— 1)} sinhw,
2,=0,

7p=a(e coshw-+1),

(IT A.22)

a
t=—(e sinhw+w).
v

The eccentricity e is related to the deflection angle & by

1
=— . (IT A.23)
sin(4/2)
Since 0,=m/2, the Sg), , take the form
* (@ptiy,)*
SE)‘ = Y)\}t( ) f ? z ""dt
)\'HH‘I
™
=y~ lg7A Y)\,‘ (E, O)I)\,‘(ﬂ, f), (II A24)
where?®
21N LA =) I ) 1T
( ) (—1) w2
™ A= \+u)!!
x,‘(—, 0) = (IT A.25)
2 (A+u even)
0 (A+u odd)
and where
I)‘“ (0, E) = f ei(esinhwtw)
[coshw+e+i(e2—1)? sinhw ]
X - dw. (11 A.26)
[e coshw-1 T+
The dimensionless quantity £1is defined by
aAE Z1Z262 AE
== — (IT A.27)
ho v 2E
25 We have used the notation (2)!!=2-4-6---2x and (2n-1)!!

=1.3-3---(2n41).
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with E=%mq? The product £e represents the ratio
between the collision time and the nuclear period, and
is thus a measure of the extent to which the process is
adiabatic.

The properties of the integrals I, are discussed in
Secs. IT E.4-7.

The differential excitation cross section (21) may
thus be written

Z18 2
dom= (h—) aRB(ENdfan(8,8), (IIA.28)
v
with

fE)\( )E)

(2>\+1)3 I
X | Ina(9,8) |2 sin— 4~2—d9. (I A.29)

The total excitation cross section of order EX, obtained
by integration over all scattering directions, is given by

Zie)* ~H2B(EN I A.30
m-(h—v)a (ENfm(9, (I1A30)

where

a E (0)9
Fon(®)= f —J-r—;ﬂ——dsz

w50

XJ: [ Tnu(8,8) |2

(2)\-I-1)3

D4
cos—

2
ds. (IIA.31)
9

sin®—
2

The excitation processes considered so far, which are
produced by the electrostatic interaction (8), are sub-
ject to the usual parity selection rule for electric multi-
pole radiation. Thus, an excitation of order A involves
a parity change of (—1).

Excitations of opposite parity can be produced by
the magnetic field from the projectile.?6 Such magnetic
excitations usually have very small cross sections, since
for bombarding energies below the Coulomb barrier the
projectile velocity is small compared with that of light.
Still, in cases where electric transitions are forbidden,
or in the case of y-ray angular distributions where there
are interference terms between electric and magnetic
excitations, it may be possible to observe the magnetic
effects.

26 The classical treatment of the magnetic excitations was first
given by M. Jean and J. Prentki, Compt. rend. 238, 2290 (1954).
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IT A.2. Magnetic Excitations

To lowest order in the particle velocity, the magnetic
interaction is contained in the expression

1
se(l) = —- f . -AGddr,  (ITA.32)
c

where j,(r) is the nuclear current density and

Zie  v,(1)
A(x t)—— ——e
[r—r,(¢ )l

is the unretarded vector potential produced by the
projectile. We measure j, and A in the nuclear rest
system, and thus v,(¢) is the instantaneous relative
velocity of projectile and nucleus.

In (33) we have neglected the contribution from a
possible magnetic moment of the projectile. This effect,
however, is usually small compared to the magnetic
effect of the orbital motion, since, for n>>1, the main
contribution to the excitation arises from collisions with
large orbital angular momenta /. For £X1, the order of
magnitude of the effectivelis given by 142> moav=n%>>%.

Expanding in spherical harmonics we obtain for the
vector potential (33)

(IL A.33)

4:7!" VA 1€

— vV, N1

Am=X
A1

X Y)\u(ep;qsp)rk Y)\M* (0’¢)'

In this potential the terms involving #* contain, besides
the magnetic multipole component of order A, also
electric multipole components of order A+-1. These con-
tribute a small relativistic correction to the electric
excitations, and will here be disregarded.?” In order to
extract the magnetic part of (34) we take the com-
ponent of A along the direction of L (see expression
(I1 B.6) below), where

(IT A.34)

=—i[rXVv]. (IT A.35)
Thus, one obtains
A M(l“) =47"Z13 rkrp—)\—l_ll—(%lﬂ___
¢ 2 (O DNNH1)
XE Vau(0p00) Vou*(6,0), (II A.36)
“
since
(L=A(+1))7u(0,6)=0.  (ITA.37)

The sum over u in (36) depends only on the relative
angle of the vectors r and r,,, and the operator L acting
on this sum can therefore be replaced by L,, where L,
acts on the projectile coordinates.

For the magnetic multipole part of (32) we thus

27 The complete relativistic interaction is derived in Sec. II B.1,
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obtain
P il (L v)r,
¢ wA\+1)
XY u(05,6)I* (M), (I A.38)
where

7
W(M,ﬂ)=“m f (n-L)PYu(0,0)dr (11 A.39)

is the nuclear magnetic multipole moment, which is
associated also with radiative transitions of order M\ .22

If we describe the nuclear current in terms of a con-
vection current of point charge protons and a mag-
netization current associated with point dipole moments
of the nucleons, we have

in(r)%‘,é x(Vid (T—11))sym

eh
+ﬂgskv Xspd(r—ry), (11 A.40)

where s, and g, are the spin-vector and the spin-
gyromagnetic ratio for the kth nucleon, while A/ is the
proton mass. The subscript “sym” indicates a sym-
metrization of the factors in the parenthesis. With the
expression (40) for j, we obtain the multipole moment

(39) in the familiar form
2
>\+1g”°l'°)

V(Y au(05,95)),

eh
N(MAp)=—2 (gsksk—l—
2Mc ®

(IT A.41)

where g is the orbital g factor for the kth nucleon.
Inserting (38) we get for the transition amplitude (6)

41rZ1e 1
bif= —_—
i w201
XM | (M) [ T M S, uy  (ITA42)
where
1 %
SM)\ p= —_lp'prr 1
\ moc
XV au(0p,pp)ei@tdi. (11 A.43)
We have used the relation [see (35)]
ih
L, vo,=—1,-A,, (IT A.44)
Mo

where 7#l, is the relative orbital angular momentum,
which is a constant of the motion. This vector is
perpendicular to the plane of the orbit and its magni-

MOTTELSON, AND WINTHER

tude is related to the deflection angle ¢ by

&
#lp=amw cot—. (I1 A.45)

It is convenient, as for the electric excitations, to
evaluate the orbital integrals in the focal system (22).
In this coordinate system we have

L, v, =1y,

(IT A.46)
p=m[2 601,

Op=m/2

and, by employing the formula

a
Yx,,(ﬂ;,,(b,,)
a0

¥4

Op=m/2

(2 +3) [O‘+1)2_"‘2]’Y>\+1u( ,¢>p) (IT A47)

we may express the orbital integrals (43) in terms of
those involved in the electric excitations (15). By means
of (45) and (24), one obtains

S ,———la"‘( ) A1)2— 2k
M\ p 3 [ ) l‘]

T &
X Y)\+1, “(5, 0)[)\4.1, P (19,5) COt—2—. (II A.48)

In complete analogy with the derivation of the cross
sections for electric excitations we thus obtain

> don,

A=1

o= (IT A.49)
with

Zie\?
dO'M)\= (_hl_) 0_2)\+2B(M)\)dfM)\('l’, E), (II ASO)
C

and
47 A+1)2—pu2 T 2
dfan(8,5) = v (—, o)
Jn(8:8) D2 F neant3) | ‘
0 ¢
X [Tvra.n(0,8)|*cot sind. (1T A.51)
We have here introduced
B(MR)“—‘% [CTaM s | 9 (MN ) | T,M 1) | 2
—y
= QLA (Ll |1 1)]2 (ITA.52)

in analogy to (18) and have employed the relation (16).
The total excitation cross section of order MA is
given by

Z1€ 2
TMN= (—-—) aM2B(MN) fann(£), (IT A.53)
#e
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with
1673 A+1)2—p? T 2
fin(§)= Ym+1.u(—,0)l
(A+1)2 T A2(20+3) 2
COS—
"" ¢ 2
x f [ Tnos u(8,8) |2 cot'——do.  (T1A.54)
0 2 ¢
sin®—

IT A.3. Discussion of Cross Sections

The electromagnetic excitation cross sections, derived
above, are expressed in terms of the reduced nuclear
transition probabilities and the functions f(£) and
df(9,£). The orbital integrals I, entering in these func-
tions are defined by Eq. (26) and can be expressed
in terms of confluent hypergeometric functions of two
variables (see Sec. IT E.4). In the special cases of A=1
or £=0, the I,, reduce to simpler functions (see Secs.
IL E.5 and 6). The integrals have also been evaluated
numerically, and the results are given, for A=2, in
Sec. II E.4. The numerically evaluated f and df func-
tions are given in Sec. II C for E1, E2, E3, E4, M1,
and M2 excitations.

An important feature of the functions f(£) is the
exponential decrease for large values of £ (see, e.g,
Fig. 11.4). This is a consequence of the approximately
adiabatic character of the collisions for £>1, for which
the collision time is large compared to the nuclear period
[see (27)]. In the opposite limit of £—0, all the f(&)

approach a finite value except for the E1 and M1

excitations. The functions fgi1(§) and fann(£) increase
logarithmically for small ¢ (see Sec. II E.5) in analogy
to the well-known logarithmic dependence of the atomic
stopping power on the atomic excitation frequencies.

As already mentioned, the electromagnetic excitation
involves the same nuclear matrix elements as the radi-
ative transition of corresponding multipole order. Thus,
the excitation process is subject to the usual selection
rules

|Ii—I;| AL+,
{(—1)" for EM,
=
(=M1 for MM,

(II A.55)

where m; and 7, are the parities of the initial and final
nuclear states.

There is therefore also a simple relation between the
excitation cross section and the lifetime for the radiative
decay of the excited state by the corresponding multi-
pole transition. The probability per unit time for such
a transition is given by??

8r(Z\+1) 1 2A+1
=—————-(-) BQl;I~I), (ITAS56
x[(2k+1>u]2h(c) W5 11, (ILA.56)
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where the reduced transition probability B(\; I,—1I,)
for the decay is related by

B(\; I,—I) 2t
) f-')l—ZI

1
1B()\; I—I;) (IIA.57)
f

to the reduced transition probability B(\; I,—I;) enter-
ing into the expression for the excitation cross section.
The relation (57) is equivalent to the fact that the
magnitude of the reduced matrix elements (Z; |9 (\) | Z5)
is symmetric with respect to interchange of initial and
final state® (see (18)).

The electromagnetic field acting on the nucleus in a
collision with a charged particle differs, however, in
various respects from that involved in the emission or
absorption of a photon, and this implies certain essential
differences between the two processes as regards the
relative contributions of the various multipole com-
ponents. Thus, while in the radiative field the electric
and magnetic field strengths are of equal magnitude,
the magnetic field of the bombarding particle is only of
order v/¢ as compared with the electric field. Magnetic
excitations therefore are reduced, with respect to elec-
tric ones, by a factor (v/c)?, apart from differences in
the nuclear matrix elements. Moreover, while, in radia-
tive processes, the relative intensities of consecutive
multipole orders involve a factor [ (w/c)Ro ]2, where Ry
is the nuclear radius, the corresponding factor in
Coulomb excitation is (Ro/a)? [see (30) and (53)7]. The
latter factor is much larger than the former since,
according to (27), we have (w/c)a= (v/c)¢. Therefore,
the cross section for Coulomb excitation does not de-
crease as rapidly with increasing multipole order as does
the intensity of radiative processes.

A convenient unit in which to measure the nuclear
transition probabilities B()) is the “single-particle unit”
defined by??

et/ 3 \?
By (W)= (2\4+1 —-(———-) R
p( ) ( )471_ 3—I—?\ 0

for EX
(IL A.58)

10(
McR 0

where M is the proton mass. We have included, some-
what arbitrarily, a statistical factor 2\41, since the
Coulomb excitation usually, and always in even-even
nuclei, involves an increase in the nuclear spin.

F1gure II.1a gives the excitation cross sections for
proton bombardment of a medium heavy nucleus
(Z5=50, A2=120), assuming B(A) equal to the unit
(58) with Ro=:1.2- 4} 10~ cm.?® The excitation energy
is taken to be 200 kev.

28 This value for the nuclear radius seems the most appropriate
in connection with the interpretation of evidence regarding the
nuclear charge distribution (see Chapter V).
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Fic. IL.1a. Excitation cross sections for nuclear transitions of
single particle strength. The curves give the total Coulomb exci-
tation cross sections of various multipole orders for proton bom-
bardment of a nucleus with Zs=350 [see (II A.30) and (II A.53),
and Fig. I1.4]. The excitation energy is taken to be 200 kev, and
the reduced nuclear transition probabilities to be given by the
single particle units (IT A.58) with Ro=5.9 1078 cm.

The empirical values of the nuclear transition prob-
abilities obtained from lifetime determinations of
transitions show major departures from the single-
particle unit (58).2° Thus, the relatively few electric
dipole transitions, which have been observed in the low-
energy nuclear spectra, have in most cases transition
probabilities many orders of magnitude smaller than
(58). In contrast low-energy electric quadrupole trans-
itions, which occur with great frequency, are often found
to be strongly enhanced as compared with single-
particle estimates. Thus, £2 transitions with a strength
of 10-100 single-particle units occur systematically in
most regions of elements (see Chapter V).

For these reasons, the electric quadrupole transitions
are of special importance in the Coulomb excitation,
and in fact it appears that the overwhelming majority
of the excitations so far observed are of E2 type (see
Chapter IV).

As seen from Fig. Il.1a, the cross sections for mag-
netic excitation are very much smaller than for electric
excitations; thus, even in cases where the radiative de-
excitation process takes place by a mixed M1+4E2
transition, the excitation will almost always be of rather
pure E2 type.

11 A 4. Angular Distribution of De-Excitation v Rays

The nuclear states populated by Coulomb excitation
decay by emission of v radiation or conversion elec-
trons. The angular distribution of this radiation can be
obtained from the excitation amplitudes b,; given above.

® For a survey of these data, see M. Goldhaber and A. W.
Sunyar, Chapter XVI of Beta- and Gamma-Ray Spectroscopy,

edited by K. Siegbahn (North Holland Publishing Company,
Amsterdam, 1955).
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Denoting the nuclear state to which the de-excitation
takes place by ff, the angular distribution of the emitted
v radiation is given by®

W, o(Qy)= MZ ) l %:, bi{l 1M 7| Hy (Qy0) | T M g |2,
oMMy,
(I A.59)

where H,(Q,,0) is the interaction Hamiltonian for
emission of a ¥ quantum in the direction €,, and with
polarization ¢. We have assumed unpolarized target
nuclei and have summed over the polarizations of the
v quantum. The distribution (59) refers to a definite
orbit of the projectile characterized by the polar angles
3, ¢ of the scattered particle.

We first consider the case in which the excitation
takes place by a transition of pure multipole order A
which may be either electric or magnetic. Using the
expressions (14) and (42), and the relation (16), we get
from (59)

7 I NI,
Wo,o(@) =3 ( ) |
'—M,' 12 M/

L A I
x(

'—Mi M, M/I
X{I 1M sz | Hy(Qy,0) | 1M 5)
X{T 1M sp | Hy(Qyy0) | I M /),

Y5

(II A.60)

where we have left out constant factors. The summation
in (60) is to be extended over M;, My, M/, u, u’, Myy,
and o.

The distribution (60) may conveniently be expressed
in terms of the correlation function for a hypothetical
v~y cascade in which the first transition is a pure 2*-pole
radiation® (see Fig. I1.2). This latter correlation func-

—
EA
Z;
£X 4 I,
Zef s
e li o ‘,ff

Fi1c. II.2. Hypothetical transitions involved in describing
angular distribution of gamma rays following Coulomb excitation.
The ground-state spins, the spin of the state excited by Coulomb
excitation, and the spin of the final state populated by the gamma
ray are denoted by I;, Iy, and Iy;, respectively. The figure on the
right then gives the hypothetical y—+ cascade employed in
obtaining the angular distribution of the gamma rays following
Coulomb excitation.

# D. L. Falkoff and G. E. Uhlenbeck, Phys. Rev. 79, 323 (1950).
#71,. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953).
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tion differs from (60) only in the replacement of Sy, by
the rotation matrix D,*(®), where ® denotes the
rotation from the fixed coordinate system to a system
whose 2 axis points in the direction Q," of the first y
quantum. The polarization index ¢’ refers to circular
polarization.

As in the usual treatment of angular correlation, we
employ the relation?

N I

I: I N I/
% ( )[R
Mi\—M; p M,/ \=-M; p M/

= Z (_ 1)2)\'+k—li+ll+Mj’ (Zk_l_ 1) ()\
kx o

I, I/
x(
-M; M/

)

E\(AN N
) [ } (IT A.61)
K I;/ If Ii

where we have introduced the Wigner notation for the
Racah coefficient W(\\I;I,| k1) through the definition

{ j1 J2 g 3}
L1 Iz
= (—1)ivtiztet bl (§y fololy | fals).  (IT A.62)

In this manner, we obtain an expression for W(Q,)
which involves the Sy, only in the combination

A k
2 (= 1)"( )SMSx,u*. (IT A.63)
Lt I A

In the y-y correlation the corresponding expression
reduces to

()1\ -1 0) (2k+1) Vi*(2,) (ILA.64)

after summation over the polarization index o’
Thus, if we write the angular correlation in the v~y
cascade in the usual way

Way (Qy) =2 A:MP(cos(2,,2y))
P

47
=Y A;™ Vi (2,)Vie(Q,), (IT A.65)
= ! k |

where (Q,/,Q,) is the angle between the ¥ rays, it is
seen that the angular distribution function (60) may
be written

Ws, o(Ry) =2 @ (3,0,5) AxPVie(Qy). (1T A.66)

kx

The coefficients @, which are independent of the
nuclear states involved, and of the de-excitation process,
may be expressed in the form

a’kK)\ (l’) @, E) = bkxx/boo)‘, (II A.67)
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== arrryi(

A k)—l
-10
NNk
X2 (—1)”( ) )SMSW*. (IT A.68)
bt Bo—K K

The normalization of a* is then such that gg*=1. As
in the cascade, only terms with even & occur in (66).
It is noted that boo* reduces to
boor=3_ [ Snu|?, (I A.69)
I
and is thus directly related to the differential excitation
cross section (see (21)).

The coefficients 4 in the y-y correlation”™(65) are
given by

AN =Fx\I:d ;) 3 6180 Fp(LL'T4I), (II A.70)
L

where 8.% is the intensity of the 2Z-pole radiation in the

« transition I—I;;. With the present definition of the

multipole operators, the relative values of 6; are

given by
_ g fL+1\?
Sy 1sun)zz-L-Il—)-f—'(~~L——) Issllon(xL)|I;), (IIA.71)
with
for EL
s(D)= lL+1 for ML (I A.71a)
or

The product 828z is always real since (—1)*@ =1 (the
parity). The coefficients F, are geometrical factors de-
fined by

Fr(LL'I.I5)
= (=D (2k41) 2L+1) 2L+ 1) 2L/ +1) ]
L L k(L L &k
><( ){ } (IT A.72)
1 =1 0/ U, I, I,
Fk(L11[2)=Fk(LLI1I2),

and

and are tabulated® in references 31 and 33.

The orbital integrals Sy, in (68) are most easily
evaluated in the focal system (see Fig. I1.1) in which
they are given by (24) and (48). One thereby obtains
the angular distribution coefficients bz in the focal
system. It is, however, often more convenient to express

2 L. C. Biedenharn and M. E. Rose (reference 31) have given
the interference terms (for L3 L’) in the form

Gw(LL'ILI,)
= (=1)Ir I (21,4+1) 2L+-1) QL'+ 1) 4P (LL'TLTS).
The coefficients 4 & are tabulated in Table II.11 for some cases

often encountered in Coulomb excitation.

® M. Ferentz and N. Rosenzweig, Argonne National Laboratory
report, ANL 5324.
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the angular distribution of the v quanta in a coordinate
system with the z axis in the direction of the incident
beam of particles. This may be obtained by a simple
transformation which, in the case of electric excitations,

gives
e s (N
kx )¢7E - 1 _1 0
A Ak T
sl )
g u _#I < 2
X Y)\#’ (;_r'r O)I)\# (0’ S)IAM’(“’;E)

T 97
XDK:,"(E+-2—, E, qo), (IT A.73)

a*(£) =0/,

with
A P AN
1

)= (—1)~(Z )

wu'x

bkm<z>=—<2k+1>—*(

Ak
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where the Eulerian angles®® (r/249/2, 7/2, ¢) repre-
sent the rotation from the coordinate system of the inci-
dent beam to the focal system of the orbit in question.

The distribution function (66) applies to a measure-
ment of v rays in coincidence with particles scattered
inelastically in a definite direction. The total angular
distribution of the 4’s, irrespective of the scattering
angle of the projectile, is obtained by multiplying (66)
by the differential excitation cross section (28) or (50),
and integrating over ¢ and ¢. This gives

W(9y) =2 e (AP Py(cosdy), (1L A.74)

where ¢, is the angle between the direction of the inci-
dent beam and the y quantum. The coefficients a;*(£)
are given by

(IL A.75)

)

D)
cos—

T T * rr ¢ 2
xyx,.(—, 0) YW(—, o) f A,.(&,g)rww,g)yk.(—, —+—-)~—d0, (IT A.76)
2 2 0 22 2 &

and
A R\?

A
8u8(8)= — (2h+)74(
1 -1 0

pp'x

T T 4 T ¢
X YX+1, #(_: 0) Y)\+l, » (—’ O) f IH—L #(197 E)IHL 74 (07 5) ka(_; "+‘) cot’-
2 2 0 22 2 2

The coefficients a;Z*(£) have been evaluated numeri-

cally for E1 and E2 excitations. The results are shown

in Fig. I1.8, where they represent the limiting values for
»—0 of the corresponding quantum-mechanical expres-
sions. In the case of M1 excitations, where (77) only
contains terms with u=u’= k=0 (see (25)), one obtains

aM(§)=1, (IT A.78)

independent of £.

If the polarization of the decay v ray is measured,
one may obtain the correlation functions in a similar
manner as above by comparing with a y-y cascade in
which the polarization of the second quantum is
measured. Thus, the probability for emission of a y ray
at an angle ¢, and with a given direction of polarization
is again of the form (74) with the only difference that

sin®—

A Ak
5 eo(, _, Jrokonwny

&
cos—
g 2
z‘}dz‘}. (ITA.77)

sin®—

the functions Py (cosd,) are to he replaced by

Cu(LL'; 3¥y)
(B—2)19t/L L’ kY
=Pk(C0507)+(—1)p(L’)[ ] ( )

L2 \1 1-2
L I
x(
1 -1

where ¥, is the angle between the electric vector and
the plane determined by the direction of the incident
projectile and the v ray. The phase (—1)»@" is 41 if
L' is an electric radiation, and —1 if it is magnetic.
The functions P;* are the associated Legendre poly-
nomials. If the decay radiation is of mixed multipole

B\ !
0) cos2¢yPi?(cosd,), (II A.78a)

3 We have used the same definition of the Eulerian angles as
that used in reference 6 (see also reference 24).
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type, each term in the coefficient 4;,™ (see (70)) is to
be multiplied by the appropriate angular function
®x(LL").

If the excitation is of mixed multipole type, the
angular distribution of the v rays, in contrast to the
excitation cross sections, contains additional inter-
ference terms.

In order to derive the general expression for the
angular distribution, we write the transition amplitude
b:s in the following form (see (14), (16), and (42))

dnZ e A If)
n My

> (-t
. o
XL\ NN |7l )Sare, (TLALT9)

b{f=
ih ™

where 7; and =, iridicate the parity of the initial and
final nuclear state, while = is the parity of the excitation
process, i.e., r=mws. The Sm\, are defined by (15) and
(43) for electric and magnetic excitations.

By following the same procedure as above, it is
readily seen that the angular distribution (66) now
takes the form

Wo,o(@)=2 2 ™ (3,0, F(W L))

kx 2w\ =’
X 0ubuF (LU 1) Vin(@), (I AS0)
with
cue™ "N (9,0,8)
N
—1 0)
XL l| () [l o ) T || (/N [l )

A N
I

=—[(2k+1) (2>\+1)3(2>\'+1)3]—%C

k
XZ (—1)"( )SW)#S,{')\I“/*. (II A81)

e’ —K K
For k= k=0, the coo™ ™ are proportional to the differ-
ential excitation cross sections. For As£)’, the coe™ ™"
vanish.

In order to obtain the total angular distribution of
the v quanta, we multiply (80) by the Rutherford cross
section (2) and integrate over ¢ and ¢. One thus obtains
the angular distribution in the form

W () =22 & (§) (emn)(oan) Fr(AN'TI )
kAN
X Z 5L5L1Fk(LL’IffIf)Pk (COSI}:,), (II A82)
LL

where o\ is the total excitation cross section of multi-
pole order #A and where the sign of the square root is
the same as that of the reduced matrix element,
(|l (wA) || I ). These latter are the same as those
occurring in the radiative decay I,—I; (see (71)). The ¢
coefficients in (82) are given by

@Y (£) =by N/ (b (BN, (1T A.83)
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where the b™ are given by (76) and (77). Furthermore
(IT A.84)

bkw)wr)\ — bkﬂ')\.

The most important case where interference terms
appear is that of a mixed electric and magnetic excita-
tion, for which the 8,7’ (£) are given by

DD A A
by FAMN (£) = (2k+1)‘*( )
1 -1 0
- A N ok
P> <—1>"( ;O Jrov-we
rp'x BoO—0 K

™ ™
X qu(? 0) Y)\’+l.u’(5: 0)

X f Taa(®, v, (3, )

¢
Cos—

T ¢ ¢ 2
X ka(—, —+-—)cot— ——dd. (IT A.85)
22 2 2 0

sind—

The decay of the excited nuclear level may also take
place by emission of internal conversion electrons. The
angular distribution of these electrons is given by ex-
pressions similar to those applying to the v distribution,
with the only difference that the Fy factors for the decay
are to be multiplied by appropriate coefficients depend-
ing on the parameters of the conversion process.**

IT A.5. Symmetrization of Classical
Cross Sections

The classical treatment of the excitation process
neglects the effect of the energy loss on the motion of
the projectile. It may be expected, however, that im-
proved expressions for the excitation cross sections may
be obtained by substituting for the particle velocity »
entering in these expressions, some mean value of initial
and final velocity v; and vy, rather than the initial
velocity assumed above.

While the choice of v leading to the best approxima-
tion for the cross sections cannot be decided within the
scope of the classical treatment, it follows immediately
from the general character of the quantum-mechanical
formalism, considered in the next section, that when the
probability for excitation in a single encounter is small
the excitation cross section is symmetrical in v; and vy,
except for a factor v;/v;. In fact, the cross section is
inversely proportional to the flux of the incident par-

3 See Biedenharn and Rose, reference 31, which contains tables
of the coefficients (denoted in this reference by b) involved in the
correlation with K-shell conversion electrons, calculated for a
point charge nucleus.
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ticles, and thus to v;, while proportional to the density
of final states, i.e., to v;. In addition, the cross section
involves the square of a matrix element which is sym-
metrical in the initial and finalstate [see (II B.25
and 26)].

A straightforward way of symmetrizing the classical
cross sections is first to introduce symmetrized parame-
ters ¢ and £, given by

VA 1Z 262
a= , (I A.86)
MoV V¢
and
ZiZxrf1 1
= ———) (11 A.87)
‘h V5 U4

to replace (3) and (27), respectively. It is readily seen
that the expressions (86) and (87) for ¢ and £ are equal
to (3) and (27), respectively, to lowest order in AE/E.?
Although (87) changes sign when v; and vy are inter-
changed, the f functions are not affected, since they
are even functions of £.

Appropriately symmetrized expressions for the exci-
tation cross sections may thus be obtained by replacing
(28) and (50) by

Zie\?
dom= h—l') a P H2B(EN)dfen(3,8), (11 A.88)
Vi
and
Zie\? vy
domn={ — —a~ 2B (M)\)dfM)\ (07 E): (II A89)
C Vs

and similarly for the total cross sections. In these ex-
pressions a and £ are given by (86) and (87). Likewise,
symmetrized expressions for the angular distribution of
the emitted v rays are obtained by employing, in the
formulas in Sec. IT A.4, the symmetrized expression
(87) for £.

It is found, by comparison with the quantum-
mechanical results (see Sec. II B.6), that the sym-
metrized expressions represent an essential improve-
ment over the unsymmetrized. In fact, the symmetrized
total cross sections reproduce the quantum-mechanical
to within a few percent, for values of 5 as low as 3, and
even for £ as large as 2 (see Fig. I1.6). This corresponds
to a collision in which the particle loses more than half
its energy, and for which the unsymmetrized cross sec-
tions would be in error by more than a factor hundred.

The angular distribution of the emitted v radiation is
found to be less accurately given by symmetrized
classical formulas, except for very large values of 7 (see

35 Arguments for the special choice (87) for £ have been given
by K. A. Ter-Martirosyan, reference 5, and by Sherr, Li, and
Christy, Phys. Rev. 96, 1258 (1954). :
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Table I1.9). Similarly, the differential excitation cross
section may be expected to be fairly sensitive to quan-
tum corrections.

IT A.6. Excitation of Projectile

If the projectile is a composite particle, the collision
may also lead to the excitation of the projectile. This
process is entirely analogous to the excitation of the
target nucleus, and corresponds merely to the inter-
change of the roles of nucleus and projectile. The inter-
action is now proportional to the nuclear charge and to
the projectile transition matrix element, and the excita-
tion cross section is thus obtained from the cross section
for target excitation by simply replacing the factor Z,2
in (88) and (89) by Zs? and the quantities AE, £, and
B()\) by those appropriate to the projectile excitation.

The angular distribution of the emitted v rays follow-
ing projectile excitation is the same as for excitation of
the target nucleus. However, the y energies may be
somewhat shifted by the Doppler effect if the stopping
time for the projectile is longer than the lifetime of the
excited state. To first order in the projectile velocity,
the v energy is given by

/)
Ey= AE( 14 cosu), (IT A.90)

c

where vy, is the velocity of the projectile at the time of
emission (measured in the laboratory system) and # the
angle between the scattered projectile and the direction
of the v ray. Even if (90) is averaged over the direction
of the scattered projectile, there will remain some de-
pendence of the average E, on the direction in which
the ¥ ray is observed.

II B. Quantum-Mechanical Theory

In this Section we consider the quantum-mechanical
treatment of electromagnetic excitations of nuclei. In
the first part (Sec. II B.1) we give a relativistic deriva-
tion of the excitation cross section, considering the
interaction as arising from the exchange of a photon
between projectile and nucleus. This method is equiva-
lent to the use of the retarded Greens functions for the
interaction.?® In most applications it is sufficient to
include only the leading term in the projectile velocity
in the expressions for the electric and magnetic excita-
tion cross sections (Sec. II B.2).

These cross sections can be expressed as sums of
terms referring to the different angular momenta of the
incoming and outgoing projectile (Sec. II B.3). Each of
the terms involves a radial matrix element which can
be evaluated in terms of known functions, and expressed

36 See M. Jean and J. Prentki, reference 26; Biedenharn,
McHale, and Thaler, reference 18.
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in a form convenient for numerical computation (Sec.
II B.4). Similarly, in Sec. II B.5 the angular distribution
of the de-excitation vy rays is expressed in terms of these
radial matrix elements.

Approximate values for the radial matrix elements
can be obtained by means of the WKB method (Sec.
I1 B.6) which in most cases of interest is found to yield
a high degree of accuracy. In this section we also discuss
the transition of the quantum-mechanical cross sections
to the symmetrized classical expressions for large values
of the parameter 7.

II B.1. Derivation of Excitation Cross Sections

For the system consisting of projectile, nucleus, and
the quantized electromagnetic field, we take as the
zero-order Hamiltonian

Z1Z282
3C0=3Cp+gcn+$crad+ 3
"p

(TI B.1)

where the three first terms represent the free Hamil-
tonians of projectile, nucleus, and radiation field, re-
spectively. In (1) we have also included the static point
charge interaction between the projectile and the
nucleus. In the relativistic treatment we shall neglect
the nuclear recoil, so that the nuclear center of mass may
be taken as the fixed origin of the coordinate system.
The recoil effects may be reintroduced in the non-
relativistic part of the cross sections (see below), and
thus the only essential approximation involved here is
that of neglecting the effect of the recoil in the rela-
tivistic corrections.

It is convenient to divide the electromagnetic field
into a transverse part described by a vector potential A
for which divA=0 and a longitudinal part. The latter
contributes the instantaneous Coulomb interaction,?’
and the total interaction Hamiltonian is thus

1
Bimi= —— f (G2(1) -+ () -A(x)dr
[

Z1Z262
+3Ceou1— , (IIB.2)
”p
where
pp(r)pn(r’)
GCcoul= f ‘_f‘_"——‘_‘deT’, (II B.3)
|r—r'|

and where p, and j, are the charge and current density
operators for the projectile.
The vector potential is expanded in multipole com-

37 See, e.g., W. Heitler, The Quantum Theory of Radiation
(Oxford University Press, New York, 1944), second edition,
Sec. IT1.10.
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ponents according to®®

) A
Am=X X Zh {a(EN ) A(EN1,9)

g A=l p—

+a(MM,p,g)A(MM,p,q)+compl. conj.}, (I B.4)

where the electric and magnetic multipole fields are
given by

8wc?
AQA+1)

3
A(E)\,p,g)=( ) RIVXLG@IT08); |

.5)
and

1
7I'62 2

)’R—%L (r(@)Vru(08)). (LLB.6)

&
A(Mk,u,q)=i()\ o

The angular momentum operator L is defined by
(IT A.35), and j\(gr) represents the spherical Bessel
function.® The multipole fields (5) and (6) are ‘associ-
ated with photons of angular momentum A\, magnetic
quantum number p, wave number ¢, and parity (—1)*
and (—1)M™* for the electric and magnetic multipole
fields, respectively. The fields are enclosed in a large
sphere of radius R.

The coefficients ¢ in (4) and their conjugates are the
photon absorption and the emission operators. With the
normalization (5) and (6) the nonvanishing matrix
elements of these operators are given by (see refer-
ence 37)

A(n+1)\?*

—), dIB.7)
2qc

(nla|n+1>=<n+1la*ln>=(

where |#) represents a state with # photons of the type
in question.

The eigenstates of the Hamiltonian (1) are repre-
sented by a wave function ¢, for the projectile moving
in the point Coulomb field of the nucleus multiplied by
a nuclear wave function ¥, and is further specified by a
number of free photons. We consider a transition from
an initial state ¢ with the nucleus in the ground state
to a final state f where the projectile has transferred
an energy AE to the nucleus. In initial and final state
no photons are present. To first order in the charge of
the projectile this transition receives partly a first-order
contribution from the Coulomb term in (2) and partly
a second-order contribution from the first term in (2)
corresponding to the emission of a photon by the
projectile, and its reabsorption by the nucleus (or
vice versa).

To this approximation the transition matrix element

38 See, e.g., W. Franz, Z. Physik 127, 363 (1950); B. Stech, Z.
Naturforsch. 7a, 401 (1952).

# We use the same notation for the spherical cylinder functions
as employed in L. I. Schiff, Quantum Mechanics (McGraw-Hill
Book Company, Inc., New York, 1949).
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N

is thus given by

e

ip'A(E)\:/‘,q)dT

Jn A*(ENp,q)dr

MOTTELSON, AND WINTHER

)

(floe iy = % —

g 2qc3

—AE—#cq

jn'A(E)\;F’Q)dT

NG

jP - A*(E)‘yﬂﬂ)d'r

)

<t///

AE—ticq

+magnetic terms +<l//f¢f

The summation over ¢ may be replaced by an integral
® R
Z'—> f de*,

q 0 T

in which the path of integration is to circumvent the
pole by passing below the real axis.

The integrals over ¢ can be evaluated by using the
formulas®

(II B.9)

< i\(gn)ir(gr") imx
J; O g T er D (er), (L B.10)
0 =« 2
and
@ 5 (ar)i ( r/) T
f ]_)‘(_q.)i‘_q_dq=—]'>\(ﬂ<)hk(l) (ir>)
\ 92—K2 2k
mr rs L
I (Bt
2k2(2041)

where 7- and 7« denote the greater and smaller, respec-
tively, of 7 and #/, while /2, is the spherical Hankel
function of first kind. With

AE
k=— (I1 B.12)

e
the integrals (10) and (11) occur in the magnetic and
electric part of (8), respectively.

It is now seen that the last term in (11) leads to
a contribution from the electric multipole photons to
the transition matrix element (8) which just cancels the
corresponding multipole contribution from the Coulomb
terms. This result may be obtained by using the relation

VXL(AV3) = i(k+1)V (#72,)

(=N or —A—1), (II1B.13)
® G. N. Watson, Theory of Bessel Funciions (Cambridge Uni-

versity Press, New York, 1944), second edition, p. 429.

Z 1Z 262
Gccoul -

¢,-¢,->. (IT B.8)

"p

and the continuity equation
i
il = (E—EXflold.  (XB.14)

Since the photon field contains no components with
A=0, the cancellation is only complete provided the last
terms in (8) contain no resulting monopole component,
which is the case if the projectile does not penetrate into
the nucleus. While this condition is fulfilled in Coulomb
excitation with projectile energies below the barrier,
there may, for instance in electron scattering, be an
important electric monopole interaction causing nuclear
excitations.”

In the following we shall neglect the effect of pene-
tration so that 7,=rs. Specifying the nuclear states by
the quantum numbers I and M, and the scattering state
of the projectile by its momentum %k at infinity, we
may express the transition matrix element in the
following form

4
OIN=S ——(—1)2{(k ki
(f3e@ [4) )Z“ZA 1( 1)#{(ky | U(ENp) | ki)

X{I M ¢ |(EN, —p) | 1M 5)
— (ks | UM ) | Ks)
X(I,M;lEm(Mk, —u) lIiMi>}, (II B.15)

with the notation

I
EJTZ(E)\,M)=‘;(;TC—O:*):5 fin‘VXL(j)\(K")YM(oﬂ’))dTy
N (I B.16)
—i(2n 1)1
W(M)\,ﬂ) = _17\(&6\_-]-—1)_— in : L(])\ (Kf) Y)\M (0)¢))d71

(I1 B.17)

41 See L. I. Schiff, Phys. Rev. 98, 1281 (1955) and Sec. IL E.3
following.
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and
EX ——————in j L\ d
= . .
= [iar XL ) Va0
(I1 B.18)
et
= — Tme (eY)
m(M}‘;/“) (:)\(2)\—1)” I» L(h)\ (Kr)y)\ﬂ(07¢))d7-

(I1 B.19)

It is often convenient to transform the electric multi-
pole transition operators by means of the identity

ad
VXL (k) V) =i¥ (Em(xr»m)

-I—i:c?rf)\(xr) Y)‘,,,

where fi(x7) is a spherical Bessel or Hankel function.
Performing a partial integration and applying the con-
tinuity equation (14) one obtains

(II B.20)

M (EN,w)
(2>\+1)” 3
TR f P (r (k) Vou(0:9)d7
D
Pl +1) f Jn ti (k) Vru(0,¢)dr, (11 B.21)
and
(LN 1)
ezt 9
pvowe e Gk
aen—1)1td o
K)‘+2
— o | e th® : 22
c>\(2>\—1)!!f Jo thh () Vru(Bg)dr. (11 B.22)

The nuclear transition operators (16) and (17) are
precisely the same as those which determine the emis-
sion probability for electric and magnetic multipole
radiation. If the radiative transition probability is
written in the form (II A.56), the reduced transition
probabilities B(A) are given in terms of the transition
operators through the definition

B=X [{I;M;|MM\p)|LMY|2 (I B.23)
rMy

This equation is identical with the definitions (IT A.18)
and (IT A.52), and in fact the transition operators
approach the electric and magnetic multipole moments
(ITA.11) and (II A.39) in the limit kR¢<1, in which
one may employ the asymptotic expression

(kr)*

e (T B.24)

Inkr)=
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The differential cross section for excitation with
unspecified orientation of the initial and final nuclear
state is given by*

2

SR 7
—@IA1)
” 7)'_( )

do= > [(/l3e]i|*de, (IIB.25)

where my is the relativistic mass of the outgoing pro-
jectile. The scattering states in (15) are eigenstates in
the Coulomb field Z1Zy¢?/7,, which for large distances
behave as distorted plane waves plus spherical waves.
While in the initial state these are outgoing, the final
state should contain only incoming spherical waves.®
The scattering states are normalized at infinity to one
particle per unit volume. Using (15) and (23) and the
relation (IT A.16) the cross section may be written

dmy* o B(EN)
o= k k|2
d P NN Z [(ky | 9T(ENp) | k)|
B(M))

(2)\+1)sz (ks |90(MAp) [k |* dQ.  (IT B.26)

II B.2. Nonrelativistic Approximation

For projectile velocities small compared to that of
light the product «r, may be treated as a small quantity
so that we may apply the asymptotic expansion

(@a-nu
n (kr) ~ —f——— (I1 B.27)
(kr) M1
In fact, we have
v 7p v
KV p=—'—""W § )
c v c

since for wr,/v larger than unity the interaction becomes
almost adiabatic.

If we furthermore consider the projectile as a point
particle with charge Z:e we get to leading order from
(22) and (19)

N(EN ) =Z1er 52 Y 3u(05,92), (II B.28)
Z1eh

(M) =’—>\1p V(75 Vau(0p,90), (I1B.29)
mce.

where we have used the relation (II A.44). The terms
neglected in (28) and (29) are at most of the order (v/¢)2.

If the projectile possesses a spin with associated mag-
netic moment, the current density contains a contribu-
tion similar to the second term in (IT A.40). The mag-
netic transition operator then becomes

1
N(MAp)= (iul"l‘ys) Vo (1Y \u(0,85)), (I1 B.30)

“If the projectile possesses a spin the scattering states must
also be specified with respect to spin indices, and the cross sections
will involve appropriate averages over these indices.

4 G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954).
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where w; and u, are the orbital and spin magnetic
moments of the projectile. For n>>1, where large angular
momenta are involved in the scattering, the effect of
the spin moment is expected to be relatively small. =

The magnetic moment also contributes to the electric
excitation through the magnetization current and its
associated charge density (cpspin= (V/c)Jspin), but the
effect is again at most of the order (v/c)? as compared
with the leading term (28).

As was to be expected, the interaction (15) with the
nonrelativistic transition operators (28) and (29) for
the projectile is identical with that assumed in the
classical treatment [see (II A.10) and (II A.38)]. It is
thus also evident that in the nonrelativistic approxima-
tion the nuclear recoil may be taken into account as in
Sec. IT A simply by replacing the projectile mass by the
reduced mass 7, of projectile and nucleus.

The excitation cross section obtained from (26),
(28), and (29) may now be written

do=73" dop+doun,

A=1

(I B.31)

with

Zie\?

dom= (%i) G B(EN S (@), (11 B.32)
V5

and

Z1e\? vy
donn= (—h— —a~M2B(MN)A farn (Sym5, ),
c V;

(I B.33)

where @ is given by the symmetrized expression
(I1 A.86).
We have here introduced the dimensionless functions

for(d ) 4kiky
fE)\ M6 € —‘(2>\+1)3a

X2 [y |75 0 (05095) | ki) [2d2, (11 B.34)

22—2

and

dfMX(’};n'hf) =

Ag2N—2
A2(2A+1)3
XX l<kf“p'vp("p_)‘_lyhu(ep:‘ﬁp)) [ k) I 2dQ (11 B.35)

in analogy with the notation used in the classical
treatment [see (II A.88) and (II A.89)7. From dimen-
sional considerations it follows that (34) and (35) for
given deflection angle ¢ may be regarded as functions
only of 7; and 7y defined by (II A.1) for v equal to v;
and vy, respectively. To stress the analogy with the
classical case we consider (34) and (35) as functions
of 7; and the parameter &

E=ns—m, (II B.36)

4 The expression for fa;; with the inclusion of spin effects has
recently been given by L. C. Biedenharn and R. M. Thaler
reference 62a).

MOTTELSON, AND WINTHER

which is identical with (II A.87). As may be expected,
the functions df(&, 7, £) “approach the classical finc-
tions df (&, £) for n— (see Sec. II B.6).

For the total excitation cross section one obtains, by
integration over the direction of ky,

VAT 2
TEN= (h—') 0—2)‘+2B (E)\)fE')\(nu 2)7 (II B37)
Vi

and
Zle 21),‘
m=(~— Y DB fan (D), (11 B.38)
C V:
where i )
,’fli;f
o= | ———dq. 11 B.39
fnd)= [ =2 (I1 B.39)

The scattering states to be used in (34) and (35) are
the nonrelativistic Coulomb wave functions, which at
large distances behave as distorted plane waves with
appropriate in- and outgoing spherical waves. With the
normalization employed, these wave functions are

given by*

| Ky = e~ (1+4n;) etk

X1F1(—in, 1;i(kor—k;-x)), (II B.40)
and
|k )=~/ (1 — i )eitrr

XiF1(ing, 1; —i(kp+k;-1)), (11 B.41)

where (/' is the confluent hypergeometric function.

It may be observed that the approximations involved
in the cross sections derived in this paragraph only in-
volve to the neglect of relativistic effects in the motion of
the projectile; thus, the nuclear matrix elements enter-
ing into the B(\) may be taken to be the fully relativistic
expressions [see (16) and (17)7] which are identical with
those appearing in the radiative transitions.

The matrix elements involving the scattering states
of the projectile can be evaluated explicitly in the special
case of electric dipole excitations. In fact, these matrix
elements are equivalent to those involved in the
bremsstrahlung process (see Sec. II E.1), and can be
expressed in terms of hypergeometric functions (see
Sec. IT E.5).

For excitations of higher multipole orders the matrix
elements are of essentially more complex character.
They may be evaluated,*4 however, by expanding the
Coulomb wave functions in partial waves; the radial
matrix elements may then be expressed in terms of
hypergeometric functions of two variables.

4 See, e.g., A. Sommerfeld, 4fombau und Spekirallinien (Fried-
rich Vieweg & Sohn, Braunschweig, Germany, 1939). In the
following we leave out the index p for the coordinates of the
projectile.

4 Bjedenharn, McHale, and Thaler, Phys. Rev. 100, 376 (1955).

46 K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab
Mat. fys. Medd. 29, Nos. 18 and 19 (1955).
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IT B.3. Reduction to Radial Maitrix Elements

The expansions of the Coulomb wave functions (40) and (41) in partial waves are given by

k=2 4w (—1)mitei sV, (k) Yim(0,0) (ker) 7 F1(ks7), (11 B.42)
im
and
|kp)=2_ dm (= 1)mite= 1Yy (ks) Vi (0,0) (k) Filesr), (I B.43)
Im

where o;(n)=argl' (I4+-1-+147) is the Coulomb phase shift, and where F;(kr) is the regular solution to the radial
wave equation for orbital angular momentum I. For large values of 7, the function F;(kr) has the asymptotic form

T
F 1(kr)~sin( kr—gl— n ln2kr+o—;) . (II B.43a)

The angular integrations may now be performed by means of the relation®’

(211+1)(2l2+1)(2l3+1))*(ll Iy 13) (l1 la Iy ),

fY11m1Yl2m2Ylsm3d9=(
4r 0 0 O

(II B.44)

my W2 M3
and one thus obtains, for the matrix elements involved in electric excitations (34),

(ks |71V (0,9) [kiy=(4m)} 30 40U (—1)reiCiten

Lilymimy

I; Iy A
! ) Y, —m,'(k,') Y ijmj (kf)Ml,'lf")‘_l, (II B4:5)
m;  —my M

I; Iy, N
x[(zz.-+1)<2zf+1)(zx+1>1%(0 . 0)(

where the radial matrix element M is defined by

0

1
Mlilf_x_l:;—k— Flf(kﬂ)f—)‘—lFli(kif)df. (II B46)

of Yo

Inserting (45) into (34) one obtains

de)\(dy"H’ 9 =

kg™ Y (2it1) (A1) (20 41) (28 1)t (— [y
(2 +1)2 Ll iy

{ ( ) ( ) ( ) ( )}(l; li A l," lfl 2 . -
Xexpi g\ -{—a Ny)— 0w \M)—0'(n )( )lM Ul M 1;'ly"
p i SANUES i i f. f f

Z(zz+1)(l" ¥ l}(h v l)(l’ Y I)P( ), (I B.47)
X cos?), (IIB.4
: i 1, M\ o o/\o o o/

where we have used the notation (II A.62) for the Racah coefficient.*
From (47) one obtains by integration over ¢ (see (39))

6472

Lol A?
(2>\+1)2kikfa”“2§, @i @AD( 0’ 0) | M1, (II B.48)
itf

Similarly, for the magnetic excitations one obtains from (35)

(s |1 v (1Y 0u(0,0)) [k = (4m)? 3 (=)t ¥ (—1)reierten2L, A+ 1D INNA1) (1) (21:4-3) (2L+1) T

Lilymims

Fen(ni, )=

X(l,- Iy )\)(l;+1 Iy )\){)\ A l}Y k)7 (k) M, (L1 B.A49)
lym l;—my (K Ll 4, B.
’ m; —Mmy K 0 0 0 l.' l,+1 l/ e ’

47 See, e.g., reference 24 or reference 22, p. 793.
47a For the numerical evaluation of df, it would be advantagesus to compute (45) and insert afterwards into (34).
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and

6472 (A 1)
(o) =————a?2 3 (20:)’2L:A1) (:+1) (20,+1)

A2A+1) Lty
L1 4 A\IA A 1)2
><( ) l } |Mu-2]2. (I B.50)
o o o/l 1+1 1

The evaluation of the excitation cross sections is thus reduced to the problem of computing the radial matrix
elements and performing the summation over the angular momentum components contained in the scattering states.

II B4. Evaluation of the Radial M atrixz Elements
The radial wave function in (42) and (43) can be expressed in the form#

IT(+14in) | . . .
Filkr)=e 01— (2kr) gkt Fy (141 —1in, 2142; 2ikr), (I1 B.51)
2T (21+-2)

which may be seen from (II E.90) to be a real function.
The radial matrix element (46) and even the more general matrix element

1 ]
M1 =k—— Fiy(ker)r>—le= v Fui,(ka)dr (11 B.52)
ks o

can be evaluated explicitly*® by employing an integral representation of ;F; and carrying out the integration over
7 first. The result is [see (II E.91) and (II E.100)]

T(lA-1449:) | [T 41449
Mg ta= | ) IT¢ 2 (LA L — A1) ikl (— )Y
(214-1)1(20,4+1)!
X &= 12 i) (foy— oy ig)N2F y (-1 — N2, Lk 1Fing, by+1—imy, 202, 20423 7, ), (1L B.53)
29y — 2
o= y y=—— .
Etigni/ky E+iqni/ky

The function F; is a generalized hypergeometric function of two variables, one of the so-called Appell functions,
and is defined in the neighborhood of x=y=0 by the series expansion (II E.93). The function is multivalued and
the branch which is of interest in the present context is determined from (52) in the limit ¢—0.

The conservation of angular momentum and parity in the excitation process implies (see (45) and (49)) that the
only matrix elements occurring in the cross sections are those for which

Limly=—\, —\+42, -+, A, (I1 B.55)

In the special case of A=0, the F; function in (53) reduces to an ordinary hypergeometric function according to
the reduction relation (II E.96). One thus obtains for the monopole matrix elements®

£ i) | T (I4+14-4n,) | | T (+1+in,) |
nit+ns @+1)!
Xe T (—x)lF (I4+1—1in;, I4+1—14ny, 214-2; x0), (II B.56)

with

(I B.54)

lM'u_1 = (k¢—- kf)—2 (

with

dniny
g

Although these matrix elements are of no direct importance for Coulomb excitation, they are useful in expressing

higher multipole matrix elements by recursion relations (see following).

The series expansion (II E.93) of the function F; is valid only for |x|4 |y| <1 and, since in our case x+y=2,
an analytic continuation must be employed in the evaluation of (53). This analytic continuation is especially simple

@ A. Erdélyi, Math. Z. 40, 693 (1936).
9 W. Gordon, Ann. Physik (5) 2, 1031 (1929).

(I B.57)

Xo= —
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to perform in the case /;=1;==\, where the F, function reduces to an F; function [see (II E.97)7]. The F, function
can again be written in terms of the Appell function F; [see (IT E.98)] for which the analytic continuation is well
known [see (I E.99)]. The application of these three Tormulas leads directly to the following result:

. N
My, T l=(m/2)E M_ (_77_:) (2ki))‘-2
T (+14+A+ing)| \ns
[IT(A+48) |2 ) . . ot
|*——_F2("2"+1’ bt —dng, I ing, —AH1—if, —A+14ik—, —
@=11 205 2ny
EN\MET(HA+1—in)T (—N—1§)
+2 (Re[(ei’f—)
2n; T (--+1—iny)

XFz(—k+1+iS, A=, I-14ing, M- 1408, =M 1448; ;—, 2—5-)] l, (IT B.58)
N5 4n5

Moy (nang) = My, . (pyme) = ™M, 7 (=05, —m0). (I1 B.59)

In (58), the first F, function is a polynomial, since the first parameter is a negative integer [see (I E.93)7]. Thus,
for the first few A’s, one finds

and

Fg(—Z)\-I—l, 11—y, I4+-14-095, —NF1—1§, =N 144, i, i

20, 2
0, ny <5 0=1)
1 AU
7:(n +"7.f), N
=12(1+8)  n (I1 B.60)
1 ns(ni+ny)
rSl ( £ 12 2—8 i,Z . )\_—_3
e

If |1,—1;| %\ the F, function cannot be reduced to a single F; function, but, as shown in Sec. IT E.8, it may be
written as a finite sum of such functions. The analytic continuation may thus be performed in complete analogy
to the case |J;—I;| =\ and the result can be expressed by two polynomials plus a finite number of F; functions of
the arguments 2! and y~'. The analytic continuation can, however, be obtained more easily from (II E.99).
Identifying one of the F, functions of this equation with that involved in (53), one obtains

Fg(l,-—l-lf“)\-l-z, lr'}'l""im, l/+1+‘i7]f, 2l,+2, 2lj+2; X, y)
_ r (— li—zm)I‘(— l,r-l—m/)l‘ O\—li—lf“ 1) (_ x)~li—1+ini(._ y)—l/—1-iw
T(\ 14487 (—2L,—1)T (—21,—1)

11
XFs(l,“i‘l"‘i'f]i, lj+1+i’l’]j, _li_ini) _lf+i"7f: >\+1+i£) ] '—)
%y

DA (—lin)T O\ —Li—1,—1)

" T(—2L— )T (41 +in)T —Li+,)
XFo(li—l1—=N, Lit1—ins, —l+ing, 2042, =215 %, 9)

| T@UADT (=L—in)T (A —Li——1)

' T(=2L— )T (i 1—in) T (A—L,+1,)
X Fo(ly—liA-1—N, —li—ins, LH1Fing, — 20, 20,42; 2, 9)

T'(2L+-1)T (204 1)T A= Li—1;— 1T (—Li—in)T (—L+iny)

T (= 20— )T (= 20— 1) (G- AA+ 1)L (i 1—in )T (-1 4-im) |

X Fa(—liml—\, —li—ins, —LyFing, — 2L, — 2043 %, 3). (IL B.61)

(—y)2t

(_x)—flli—l

(—x)—2b—1(— y)—zz;—1
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This equation is, however, singular for integer values of /; and I;. If one first considers /; and /s to have noninteger
values while preserving /;,—I; as an integer, the first and second F. functions reduce to polynomials, since the first
parameter is in that case a negative integer. The third F, function can be eliminated by considering also the complex
conjugate equation to (61) which contains the same F, functions, according to the transformation (II E.95). After
this elimination, the limiting process I;, I; approaching integer values and ¢—0 can easily be performed and the

result gives the following expression for the radial matrix element (46) or (53):
7\ ¥ /M8 | T (L 14iny) (21)! if T
Mlilf)‘—1=1r(2k,~)"“2(—) ! f ) (___—)
;) sinhr£|T(G4-14in) | QL+D1G—LAA—1DIN 27,
XFz(lf—li+1—>\, lf+1+i17f, —'li—i')];, 2lj+2, —215; Yy, x)
N\ B T T (14-14in,) 2! ig\ Yl
a2 ot
n:/ sinhw & [T (I4-144n5) | (204110 —LAN—1) I\ 29,
XFz(li—'lf—{—l—}\, li+1—~im, —lj+i17f, 2l,+2, —‘2lf, X, y)

T e DT (L4 14dn; E\TH I(ly4-1—in
T bk ) (Re{ (_) 1 f)
2 sinhw & |T'(0;+14iny) 2 T(li+1—i9)TA+1—18)
11
Xilf—“_)‘_l'ﬂii”fnf—i“Fs( “li—l-im', —li—1iny, Li14in, li+-1—ig, N\ H1—1&; -, —) } (Il B.62)
Xy

In these equations, x and y represent the limiting values obtained from (54) by setting ¢g=0. The F. functions in
(62) are to be interpreted as the polynomials obtained in the limit of /; and I, approaching integer values while
l;—1; remains an integer. These polynomials are pure imaginary [see (II E.95)] and are for the lowest values of A

given explicitly by
Fo(li—l;+1—N, Lit-1—ins, —ls+ing, 2042, — 2155 x, 9)

r 0
. Mg 1
- ¢ L(L+1)
; niny (nitny)

- 041 U+2)(20+3)

2ning[3:(04-1) (21,4-1) E(ni-n7) — 6 (14-1) 29,2 — 6,20 7]

£1:(0:+1)2(1,42) (21;+1) (21:4-3)
2nims (nitn7)[Sl:E(nit-n7)+12n,2—8n:%]

A=1 Il;=I+1
A=2 ;=1
(I B.63)
’—‘3 lf=l,+1
A=3 Il;=I+3.

.

As mentioned above, the analytic continuation of the
F, function in (53) can be written as a finite sum of Fy
functions. This alternative form for the matrix elements
may be obtained directly from (62) by expanding the
F; function in terms of F functions [see (II E.104) and
(ITE.97)]. The relation (II E.98) shows how (62) re-
duces to (58) in the special case l;—/;= .

In the evaluation of the excitation cross section, it is
in general necessary to extend the summation to include
large values of /; and ;. While the main contribution in
most cases arises from terms with /~, the convergence
for large / is rather slow, especially for small values of &.
The numerical calculations are therefore greatly sim-

(A1 (1A42) (14-3) (21:+-3) (21:4-5)

plified by the use of recursion formulas connecting
matrix elements for different values of /;, I, and A.
The existence of such recursion formulas is a conse-
quence of simple recursion properties of hypergeometric
functions. Thus, five F, functions with parameters
differing only by integer numbers are always linearly
dependent. In special cases, the recursion formulas may
of course contain less than five terms. One may derive
these formulas either directly from the properties of
the hypergeometric functions or from the differential
equation for the Coulomb wave functions.®®46.50 The

% See also L. Infeld and T. E. Hull, Revs. Modern Phys. 23,
21 (1951).
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recursion relations obtained by the latter method are all contained in the following general formula

[2,4-1+iny | [2iims| [+ 14
My e e——— M1, M1,
ﬂf(lf+1) ol m(lrl'l)
l+in x x x X
——x4[—f————fle,-,z,_r*—1—[ Ly —4]Mlilf')"‘l
nsly L+l L L4 L

= [km;:l‘l[xl(lf—k) +x9li— x5 (lr{— 1) — X4 (l;+>\+ l)le;lf_)‘—z

i d
+ (Bani)~ (%1 22+ x5+%4) f sz(k,r)r“‘“lg—Fz,-(kJ)dr, (I1 B.64)
0 r

where 1, %2, 43, and x4 are arbitrary constants. Three
independent recursion formulas may be obtained from
(64) by giving the factors x; to x4 different values
satisfying

®1+xetastx,=0,

whereby the last term of (64) is suppressed.

Additional recursion relations may then be obtained
by combining those derived directly from (64) and
eliminating the unwanted matrix elements. In the fol-
lowing, we shall give some specific relations which are
useful for the numerical evaluation of the radial matrix
elements for low multipole orders.

For the monopole (A=0) matrix elements (see (56)),
one obtains the three term relation

VM og, pr e ye My My, =0,
with

(I B.65)

(II B.66)

yy=20| I4-14in:| |14-14in; ],

n2+ns?

yo=— (214 1)[ l(l+1)—|—2mnf], (II B.67)

Ny
ys= (2142) [I4in:| |I+ins].

This relation connects all monopole matrix elements
satisfying the condition (55) with the two first (!=0
and 1).

For A=1, the matrix elements are most easily ob-
tained from the monopole matrix elements by

NFDMy 2=y My Mgy, ., (11 B.68)

with

A |14+14iny |
1=k~
Y I+1
. (11 B.69)
[14-14in; |
Vo= —ki———.
I+1

By means of this relation one may obtain an explicit
expression for the dipole radial matrix elements in terms
of usual hypergeometric functions.*

Also in the dipole case the recursion relation which
connects different values of / contains only three terms
and may be written

ViMoo, s ye My 2 ysM oy, 7 2=0, (I B.70)
with
y1=2miny | 1= 14ing | | IH-ine],
yo= — iy 2= 1(2AH1) 52— 121~ 1)n,2, (1L B.71)

ys=2n:my | I4ins | |I4-144n:].

The A\=2 matrix elements cannot be reduced to those
with A=1, since the recursion relations connecting
matrix elements of multipolarity A with those of multi-
pole order A+1 become singular for A=1. There are, for
A=2, two types of matrix elements, namely those for
which /;,— ;=2 and those for which /;=1;. The latter
are connected with the former through the relation

YM 3=y My sy My, 118
FysM o, i34y M 14, 18, (II B.72)
with

1(+1)

y= (77f2_'17i2):
yi=—n2 | I14-in, | [14+24in, ],
i Il'l- l [1+41 I (IL B.73)
=N in; +1 ’ .
Y % ns
ya=ns2|I4+14in: | [I424i9:],

2143
ya=—nin—|I+ins | [IH+-14in:|.
2041

For the matrix elements with |J;—I;| =X\ there exist the
following four term relations

M prs, 1 YoM e, 15V

FyaM a1 Ny Mg, 7 1=0, (I1B.74)
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with
y1=2nang|I—=24ins| | 1= 14ing | |IHA—2+ins],
ya=— |I=14ins|[*(2n:*+47,7)
+(4A—=2) (42t —ns)
+A—=2) (@A —3)n:—3n/%) +6m:%9,7],
Ny (11 B.75)
ya:; [IHN—14in: | [ (492 +2n,7)
+I(AA—=2)n2+n—ns)
—2(\—2)n+6nn7%],
ya= =202 | I+ —1tine | |I4+-N+dns | |I4ing|.

For A=2, two of these matrix elements are also con-
nected with two monopole matrix elements by

M ip1, 15y My, 178

with =vsM 1, 1 HyaM i, (11 B.76)
y1=4(+1)nd |I+24dn; | |14-3+ings |,
yo=—4 (4D nin; | I4+2-+in; | [14-14ins],
y3=(k2—k)[ 200, (IL B.77)

+020+1) 2+3)—2(4+1)],
= — (k2— k) 2nimy | I+-14in: | [14-14in, .

By repeated application of this formula one obtains
the recurrence relation

M —3—f(l)[Ml"l'+2—3' lf watl ] (I1 B.78)
B A = S
with /' <! and
T (I+14in,)
¢/ ( ) II B.79
0= T (43+in)| ( )
ki—kp 1

A= : — =
A1) [14-24ins | [14-3+ins | 9

X{[2n:2n 242 0H41) (204-3) =72 (H4-1)]
XM s, 1017 — 2907 | 1H-144n: |

X |11y | My}, (11 B.80)

MOTTELSON, AND WINTHER

In the A=2 case, one thus needs to calculate directly
from (58) either the six matrix elements Moz, M13, M a4,
M50, M 33, and M 45, from which the remaining ones may
be obtained from (72) and (74), or one may use the
relations (78) and (72) and thereby obtain all matrix
elements from Mos, Mgz, and the monopole matrix
elements (see (56) and (66)).

For A=3 the matrix elements with /;—/;=4-1 may
be obtained from the quadrupole matrix elements by
means of Eq. (68). The matrix elements with J,— ;=43
can again be reduced to the six first by means of (74).

II B.5. Angular Distribution of
De-Excitation v Rays

The angular distribution of the v quanta following
an electromagnetic excitation is given by

Wkikf(ﬂ'y) = MZ I Z (Iffof I Hv(ﬂno') 'Ifo>
iMffe My
X(flse®[d)[%, (IIB.81)

in analogy to the expression (II A.59). The transition
matrix element {f|3¢® |4) is given by (15) and is of just
the same form as the classical transition amplitude ;s
[see (IT A.79)].

The quantum-mechanical angular distribution (81)
can thus be directly obtained from the formulas in
Sec. IT A.4 by the substitution

Soa— & s | (A p) | K. (11 B.82)

While the classical integrals S aside from constant
factors depend only on the scattering angles and the
parameter £ [see (I A.24) and (IT A.48)] the quantum-
mechanical matrix elements depend also on the param-
eter ;. Thus, the ¢ and b coefficients involved in the
quantum-mechanical angular distributions will also
depend on 7.

In order to obtain the total v distribution irrespective
of scattering angle one simply integrates (81) over the
direction of k;, since the Rutherford cross section is
already contained in [{f[3¢® |)|2. In the most im-
portant case of excitations of pure EX type one thus
obtains [see (I A.74)]5145

W(3y)=2_ ar®(1:,£)Ax® Py(cosd,), (II B.83)
k

with
@M (03, £) = b BN /bo PN, (11 B.84)

and, according to (II A.68), (II B.28), and (II B.45),

> (=DUH(2LA4-1) (21 +1) 2+1)%5 exp i(ow(n:) —our (12))

AN kD
se )= )
1 —1 0 13’y

RN IV N A AV R
x[ '( )( )( )Mz, =133, (11 B.85)
L1 ,J\o o o/\o o o/\o 0o o

S1,. C. Biedenharn and M. E. Rose, ORNL report 1789 (1954). See also Breit, Ebel, and Russell, Phys. Rev. 101, 1504 (1956).
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We have here employed the relation?

IBVETTES my M2 T M3 —HL

and have inserted

21,41\ }
Ylimi(k,') = ( ) 5mi0,
4

(11 B.87)

corresponding to the fact that the emission angle ¢, of
the ¥ quantum is measured from the direction of the
incident beam.

The coefficient bo?*(n;,£) is related to the total excita-
tion function fz(n:,£) (see (48)) by the equation

6472
fen(n4,8) =————k:ik;a® 20" (9, £).

(I1 B.88)
(2+1)2

11 B.6. WKB Approximation and Classical Limit

For n>1, a rather accurate approximation to the
Coulomb excitation cross sections may be obtained by
replacing the radial matrix elements by those derived
from the WKB approximation.’ This treatment is also
convenient for the discussion of the transition of the
quantum-mechanical expressions to the classical for-
mulas in the limit 7>1.16.5

The WKB approximation for the radial wave function
is given by .

Fi(kr)=[f(r)/k*]? sine, (11 B.89)
where
¢=;—r+ f : [/ Jidr, (1T B.90)
and
2kn  I(H1
f(r)=k2——z— (i ). (T1 B.91)
r r?

The expression (89) holds outside the classical turning
point 7o defined by f(ro)=0. The contribution to the
radial matrix element from the region r <7, is of lower
order in 9 and is neglected in the present approximation.

Inserting (89), one finds that the radial matrix ele-
ment (46) involves two terms, the first containing the
sum of the phases ¢; and ¢, of initial and final wave
function and the second containing the difference
©i— ¢y. The first term may be neglected due to the rapid
oscillation of the integrand. In the second term, the

2 Benedict, Daitch, and Breit, Phys. Rev. 101, 171 (1956);
K. Alder and A. Winther, CERN report T/KA-AW-4 (1955).

8 K. Alder and A. Winther, Phys. Rev. 96, 237 (1954); G.
Breit and P. B. Daitch, Phys. Rev. 96, 1447 (1954).

Z ("‘ 1)ll+12+l3+ul+nz+n3(‘71 b ls ) ( L J2 Is

ma M

o)
M1 —H2 Mg

Jv o Jr Js\(Jr J2 J
=(1 : 3)“ 2]3}, (11 B.86)

my me ms/ VI s

phase difference may be expanded as follows
vimprebi=b) [ L) hir
70

T dr
_[li(li"l‘l)—lf(l/—l"l)]f [f(r)]“%;, (11 B.92)
70 r

since kin;=kmy.

In the integrals in (92) the parameters %, 7, and !
refer to average values for initial and final state. The
differences between the turning points for the initial and
final state have been neglected, since these contributions
are of higher order in £&/7.

Evaluating the integrals in (92) and introducing the
substitution

kr=(n?4+1(14-1))* coshw-+7, (I1 B.93)
one obtains
e+coshw
0i— pr~¢(e sinhw—+w)4pu cos'——, (11 B.94)
1+ coshw
where
. E=ns—mns (I1 B.95)
while
(n*-14-1))}
e=———
n
(T4p/2) Gt-14u/2)) 2
={1} /2 'u/)}, (I1 B.96)
n2
and
}L:lf—‘li. (II B97)

For the radial matrix element (46) we thus obtain

k)\—-2 ©
Myt t=——
an J_,

giE(E sinhw+w)

[coshw+e+i(e2—1)? sinhw ]*
(e coshw—-1) =

dw. (11 B.98)

It is seen that this integral is identical with the orbital
integral (II A.26) involved in the classical treatment.
The quantity e given by (96) just corresponds to the
eccentricity of the orbit [see (IT A.23 and 45)] and u
represents the transfer of angular momentum in the
direction perpendicular to the plane of the orbit. By
introducing the deflection angle of this corresponding

455 -
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TasLE IT.1. Comparison between WKB approximation and exact values for the radial matrix elements. The radial matrix elements,
M,173, occurring in £2 Coulomb excitation are given for various values of 7;, £, /;, and /. The table compares the values obtained
from the exact calculation (Sec. II B.4) and from the WKB approximation (II B.100).

Mia,13

Mig1,14173 Mi1973

Quantal WKB Quantal WKB Quantal WKB
£=0.2 0 0.06548 0.06615 0.05993 0.05393 0.02402 0.02338
7:=1.0 3 0.01544 0.01528 0.00932 0.00922 0.00171 0.00172
6 0.00589 0.00583 000258 0.00264 0.00032 0.00033
=0.2 0 0.008463 0.008577 0.007777 0.007616 0.006137 0.006184
7¢=4.0 2 0.006717 0.006750 0.005740 0.005669 0.003318 0.003316
5 0.004052 0.004052 0.003947 0.003918 0.001266 0.001266
£=0.2 0 0.002219 0.002228 0.002085 0.002073 0.001877 0.001883
7:=8.0 1 0.002212 0.002220 0.002007 0.001996 0.001678 0.001681
3 0.002048 0.002053 0.001901 0.001892 0.001468 0.001470
£=1.0 0 0.001690 0.001714 0.001155 0.001155 0.000729 0.000727
7:=4.0 2 0.001659 0.001681 0.000799 0.000782 0.000273 0.000274
5 0.001024 0.001032 0.000340 0.000338 0.000061 0.000061
£=1.0 0 0.0004295 0.0004308 0.0003492 0.0003452 0.0002712 0.0002712
7:=8.0 1 0.0004655 0.0004672 0.0003316 0.0003281 0.0002184 0.0002183
3 0.0004932 0.0004953 0.0002802 0.0002779 0.0001335 0.0001334
classical orbit moderate values of 7 and which represent a major im-
. provement over the classical expressions (see Fig. 11.3).
J=2sin"-, (I1B.99) In order to exhibit the transition of the total cross

€

where e is given by (96), the matrix element (98) may
also be written
k)\—Z
Ml,'.l,'+p—)‘_1=—l)‘,, ('l’, E)
4

(I B.100)

Since the WKB approximation for the radial wave
function is valid not only when 7>>1, but also when
I>1, the limiting formula (100) holds also for large I
irrespective of the magnitude of 7.

The formula (100) has also been derived® by ex-
pressing the exact radial integral (46) in a suitable form
and going to the limit |J4in|— for fixed £ In this
way one obtains an expansion of the matrix element
with (98) as the leading term.

The WKB formula (100) gives very accurate values
for the radial matrix elements even for moderate values
of n and 7; indeed the accuracy is much greater than
might have been expected in view of the inaccuracy of
the wave function (89) in the neighborhood of the
turning point.5

An illustration of the accuracy of (100) is given in
Table II.1, where exact values of quadrupole matrix
elements computed from the formulas in Sec. II B.4 are
compared with the WKB values. From this table it is
also seen that for not too large values of /; the particular
choice of / in (96) is essential for the close agreement.

If one employs the WKB formula (100) for the radial
matrix elements in expressions such as (47), (48), or
(85), one obtains cross sections which are valid even for

% The reasons for the high accuracy of the WKB approximation
have been discussed especially by G. Breit and P. B. Daitch,

Proc. Natl. Acad. Sci. 41, 653 (1955); J. P. Lazarus and S. Sack,
Phys. Rev. 100, 370 (1955).

sections to the classical limit one may take advantage
of the fact that for large »’s the main contribution arises
from the large values of /. One may thus use the
asymptotic formula

(ll lz )\)
m mz M

(_. 1) lg—A—m1
= Du.l1—-lz)‘ (@,0,0),

o (II B.101)
1

with
2]

=
[Za(l4-1)]

for the vector addition coefficient in the limit of large /,

a5}

05 1 15 2 X

+05

>

Fic. I1.3. Comparison of WKB approximation and exact calcu-
lation for the angular distribution of the gamma rays. The
coefficient @2®'(y;,£) which describes the angular distribution of
the gamma rays following E1 Coulomb excitation (II C.26), or
bremsstrahlung (IT E.17), is plotted as a function of £ for different
values of ;. The full-drawn curve corresponds to the exact calcu-
lation,® while the black points have been obtained by the WKB
approximation.®
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and J,, for fixed A. This formula may be derived from the
explicit expressions for the Clebsch-Gordon coefficient
and the rotation matrix D.24%

If in (48) one further inserts [see (96) and (99)],

8
l=n cot, (I1 B.102)

and replaces the sum over /; by an integral over d, i.e.,

Ty

Lily 2 ®

T 3 —2
do(sin—) , (11 B.103)
0 2

one obtains immediately the classical expression
(IT A.31).

In the case of the magnetic cross section one must in
addition employ the asymptotic expression

{}\1 A2 )\3}
l1 Iy I3
(_ 1)211—2)\, >\1 )\2 )\3
=———( ) (11 B.104)
QL+1)} \lLi—ly h—Iy b—1

for the Racah coefficient in the limit of large Z;, s, and
I3 with fixed N’s. The expression (50) then reduces to
(IT A.54).

In a similar way the classical limit (IT A.29) for the
differential cross-section function is obtained from (47)
by employing the further relation

{ll lz la}
Iy Is A
(—1)trHists

= D
CeL+1)(2L+1)T
with

14—12.11—15)‘ (0,6,0), (II B.105)
Is(ls+1) —L(h4-1) =1 (l+1)
cosf=
200G+ D)L+

holding for Iy, Iz, I3, ls, and I large. The formulas (104)
and (105) may be derived from the explicit formulas
for the Racah coefficients.?

II C. Numerical Results

In this Section we shall give the results of the nu-
merical computations of excitation cross sections and
v distributions based on the formulas derived in the
preceding two Sections. A survey of the approximations
involved in these formulas is contained in Sec. IT C.5.

II C.1. Collision Parameters

For the application of the theoretical expressions it
is convenient to write all parameters involved as func-

5 E. P. Wigner, Gruppentheorie (Friedrich Vieweg & Sohn,
Braunschweig, Germany, 1931).
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tions of the energy of the incident projectile

—1
E= 71%1'1),"2,

(I1 C.1)

and the energy independent quantities such as the
charge and mass numbers and the excitation energy.
Thus, while the initial projectile velocity is given by

2E \}
V= ( ’
AM
where A; is the projectile mass in units of the proton

mass M, the final relative velocity vy is obtained from
the equation

(11 C.2)

imws=E—AE, (11 C.3)

(I1C.4)

with
AE,= (1+A 1/A2)AE.
The nuclear mass number is denoted by A, and AE

represents the excitation energy. Introducing the
parameter

¢=AE'/E, (I1 C.5)

we may also write

V= (Azjl)%(l—f)*-

For the symmetrized parameter ¢ defined by (II A.86)
we thus obtain ,

(11 C.6)

21Z2e2
a=5(14+4:/4,) (1=9)t
E
Z\Zs(1—¢)?
—0.07199(14+-41/45) 1012 cm, (TI C.7)
‘Mev

where Ewuoyv is the initial energy (1) expressed in Mev.
Furthermore, the parameter  (see (II A.1)), for the
initial and final states may be written

leg( A 1 ) H
N=
2 \10.008- Eniev /

nr=n:(1—¢)7%

The quantum-mechanical excitation and angular dis-
tribution functions are expressed as functions of 7; and
£=n;—n;. Since both these parameters depend on the
bombarding energy it is sometimes convenient instead
of n; to use the energy independent parameter »
defined by

(I1 C.8)

and
(I1 C.9)

y=2(n2—n; )}
4 (IO.OOSAE'Mev
Z1Z2 A 1

)*, (II C.10)

where the effective energy loss AE’ defined by (4) is
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TasBLE IL.2. List of numerically evaluated functions.

Results for Method Given in
Total cross section
E1, E2, E3, E4, Classical Tables I1.3,4 Figs. I1.4, 5
M1, M2
E1, E2 Quantal Table II.5 Fig. IL.6
Differential cross section
E1, E2 Classical Tables I1.7,8 Fig. IL.7
E3, E4, M1, M2 Classical Fig. IL.7
Angular distribution of
v rays
E1l Quantal Fig. I1.8
E2 Quantal Tables II.9, 10 Fig. IL.8
M1 Text

measured in Mev. The parameter » is related to 5; by

n:=2{%/», (I C.11)
and for £ one finds

2
g=-¢iL(1=)"—-1] (I1 C.12)
14

The dependence of £ on { is given graphically in
Fig. II1.10. A convenient expansion of £ in powers of
the energy loss is given by

: Z1Z A PAE vov
' 12.65(Erter— 2AE v1e0)’}

x(1+;—2(%y)2+---). (II C.13)

The numerically evaluated excitation functions and
angular distribution functions!™:%6-6! are given in the
series of tables and figures listed in Table I1.2.

II C.2. Total Cross Sections

The total cross section for excitation of a given level
may be written

o= i (conton),

]
where the partial cross sections are given by (II B.37)
and (II B.38). Inserting (2) and (7) one obtains, for
the electric excitation,

- /. —
OEN= GE)\EMev)‘ 2 (EMev— AE Mev))\ 1

XB(EX) fex(n:,8), (II C.15)

5 K. Alder and A. Winther, CERN report T/KA-AW-1 (1954);
see also reference 88.

7 L. C. Biedenharn and C. M. Class, Phys. Rev. 98, 691 (1955)
and 100, 1790 (1955).

58 K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab
Mat. fys. Medd. 29, No. 19 (1955).

5 K. Alder and A. Winther, reference 52.

6 Biedenharn, Goldstein, McHale, and Thaler, Phys. Rev. 101,
662 (1956).

61 Thaler, Goldstein, McHale, and Biedenharn, Phys. Rev. 102,
1567 (1956).
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with
24,
ca = [0.07199(1+ A1/ A 271752 barns
40.03
) (IT C.16)
ie.,
(2.498-1072Z:241 barns (A =1)
Ay
4.819- (1+A 1/A 2)_2—2"'; barns ()\—_—2)
2
(I1 C.17)
CEA= Ay
9.298-102(1+A41/A2)*———barns (A=3)
12Z24
5 6 A1
1.794-105(1+41/A45) Tz barns (A=4).

The reduced nuclear transition probability, B(ZN)
defined by (IIB.21 and 23) [see also (IL A.13)] is
measured in units of ¢2- (10~2* cm?)*,

Similarly, for the magnetic excitations, one obtains

TMA= CMAEMevx—% (EMev - AZ':,Mev) A=}

XB(MN) farn(n,8), (I C.18)

with
cin=2>5.888-10-9Z22
X[0.07199(14+A1/A2)Z1Z 5"+ barns (11 C.19)

5.888-10-9Z% barns (A=1)
(II C.20)

1
1.136-10—%(1+4.,/4 2)—ZZ barns (A=2).

2

The reduced transition probabilities B(M\) defined
by (II B.17) and (II B.23) [see also (IT A.41)] are
measured in units of (e#/2Mc)?- (10724 cm?)M1,

TasLE I1.3. Classical f functions for £1, E2, and M1 excitations.
The entry is given by a number and the power of ten (in paren-
thesis) by which it should be multiplied. The data are taken from
reference 56.

£ fE1(§) fE2(8) far(§)
0.0 0 0.895 (0) ©

0.1 0.580 (2) 0.859 (0) 2.230 (1
0.2 2.721 (1) 0.729 (0) 0.828 (1)
0.3 1.349 (1) 0.561 (0) 3.719 (0)
0.4 0.693 (1) 4.046 (—1) 1.809 (0)
0.5 3.591 (0) 2.781 (—1) 0.905 (0)
0.6 1.872 (0) 1.844 (—1) 4.603 (—1)
0.7 0.980 (0) 1.189 (—1) 2.368 (—1)
0.8 0.514 (0) 0.751 (—1) 1.229 (—1)
0.9 2.707 (—1) 4,663 (—2) 0.642 (—1)
1.0 1.428 (—1) 2.855 (—2) 3.377 (—2)
1.2 3.992 (—2) 1.035 (—2) 0.944 (—2)
1.4 1.121 (-2) 3.628 (—3) 2.664 (—3)
1.6 3.154 (—3) 1.238 (—3) 0.757 (—3)
1.8 0.889 (—3) 4,143 (—4) 2.160 (—4)
2.0 2.511 (—4) 1.363 (—4) 0.618 (—4)
40 0.839 (—9) 1.247 (—-9) 2404 (—10)




COULOMB EXCITATION

The classical treatment of the excitation process
given in Sec. IT A leads, after symmetrization of the
cross sections, to expressions of the same form as (15)
and (18) [see (II A.88) and (II A.89)]. The entire

difference between the classical and guantal cross sec-

tions is contained in the f functions, which in the
classical case depend only on £, and correspond to the
limiting values of the quantum-mechanical functions
f(nlyg) for N>,

In most practical cases the quantal f functions differ
only slightly from the classical limit. It is thus con-
venient to write

fx("?uf)=fx(f)Rx(77n§); (II CZI)

10° 11— T T T T T T T 3
g ( :

f 7.: oo,g ]

A\ \ S, (7= 3} :

10 = =
o M1 ;

- |
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T T
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[

1707

a
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T% [TTTT
!

1

10°} %
N §
_ £4 ]

10°E

gofl— 1 1 | L1 I [
o 05 7 15

F16. I1.4. The total excitation cross section functions fj(£) in
the classical approximation. In the limit of large values for »;,
the f functions approach those obtained from a classical de-
scription (see Secs. IT A.1 and II A.2). The classical f functions
for the lowest electric and magnetic multipole orders are plotted
against the parameter £ The data are taken from reference 56.
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TasBLE IL.4. Classical f functions for E3, E4, and M2 excitations.
The entry is given by a number and the power of ten (in paren-
thesis) by which it should be multiplied. The data are taken from
reference 56.

£ fE3(§) fEs(§) fm2(§)

0.0 3.797 (=2) 2.862 (—3) 1.936 (—1)
0.2 3.532 (—2) 2.729 (—3) 1.233 (—1)
04 2.723 (—2) 2.330 (—3) 0.577 (—1)
0.6 1.736 (—2) 1.760 (—3) 2.301 (—2)
0.8 0.956 (—2) 1.176 (—3) 0.920 (—2)
1.0 4722 (—3) 0.705 (—3) 3.378 (~3)
15 0.593 (—3) 1.370 (—4) 2.433 (—4)
2.0 0.565 (—4) 1.870 (—5) 1.562 (~5)
40 1.308 (—9) 1204 (—9) 1.560 (—10)

where f1(£) is the classical f function and where
the quantum effects are contained in the correction
factor Rh.

The classical f functions have been calculated!!5
for excitations of order El1, E2, E3, E4, M1, and M2
and the results are presented in Tables I1.3 and I1.4 and
Figs. I1.4 and ILS.

The functions were obtained from (II A.31) and
(IT A.54) with the orbital integrals I,,(8,¢) given by
(IT A.26). For the evaluation of these integrals, see
Secs. 1T E.4-6.

The quantal f functions have been computed in the
case of E1% and E25™—6.62 excitations.®® The function
fEa(ns,£) is given in Table IL.5 and the correction factors
Rex(n:,£) for A=1 and 2 are illustrated in Fig. IL.6.

The fg1 and fgz. functions have been obtained from
(I1 B.48) which for A=1 reduces to

6472
fEl("]i,E)-: 9 kikjboEl, (II C22)
with
boP'=3 {U| My, 2|2+ 0+1) | My, 22, (I C.23)
1=0
For A=2 one obtains
fr2(ni, &) ot bo®? (II C.24)
Ny &) =——"1NMN .
with m 25 0
w (31(1—1
boE2= ‘_(__) s, 1—3!2
=0 (2(21—1)
3(141)(1+2)
— | My 82
2(214-3)
11+1) (2141
() )[Mu_3|2 . (II1C.25).

(21—1)(214-3)

62 The quantum-mechanical calculation of the electric quadru-
pole cross section was first performed for £=0 and for a particular
value of 7; by direct numerical integration of the radial matrix
elements by Daitch, Lazarus, Hull, Benedict, and Breit, Phys.
Rev. 96, 1449 (1954).

82 Note added in proof.—Recently, the quantal f function for
M1 excitation has been given by L. C. Biedenharn and R. M.
Thaler (to be published in Phys. Rev.). This reference also con-
tains the coefficient a; describing the angular distribution of the
v rays from an M1 or mixed M1+ E2 excitation process.
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Fi16. IL.5. The total excitation cross-section function fr:(¥) in the classical approximation. The data are taken from reference 56.
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TaBLE ILS. Total f function for £2 Coulomb excitation. The
total f function for E2 excitation, as obtained from the complete
quan(tium—mechanical calculation,?:0 is listed as a function of
7s and £.

&
75\ 0

0.5 0.321
1 0.620
1.5 0.754
0.812
0.842
0.858
0.869
0.875
0.881
0.886
0.888
0.890
0.895

0.1 0.2 0.3 0.4 0.5 0.6

0.344
0.614
0.732
0.784
0.810
0.825
0.834
0.840
0.847
0.851
0.854
0.855
0.859

0.307
0.528
0.624
0.666
0.688
0.700
0.708
0.713
0.719
0.722
0.724
0.726
0.729

0.243
0.409
0.480
0.512
0.529
0.538
0.545
0.548
0.553

0.556
0.558
0.559
0.561

0.295
0.346
0.368
0.380
0.387
0.392
0.395
0.398
0.400
0.401
0.402
0.405

0.203
0.237
0.253
0.261
0.266
0.269
0.271
0.273
0.275
0.276
0.276
0.278

0.1350
0.1570
0.1672
0.1726
0.1759
0.1779
0.1793
0.1810
0.1819
0.1825
0.1829
0.1844

[ S
w

LT
wn

8 O

2/
/M

0.8 1.0 1.2 14 1.6 2.0

0.0553
0.0640
0.0680
0.0702
0.0715
0.0724
0.0730
0.0737
0.0741
0.0743
0.0745
0.0751

0.0244
0.0259
0.0267
0.0272
0.0275
0.0277
0.0280
0.0282
0.0283
0.0283
0.0286

0.00887
0.00939
0.00968
0.00986
0.00996
0.01005
0.01015
0.01021
0.01024
0.01027
0.01035

0.00312
0.00330
0.00340
0.00345
0.00349
0.00352
0.00356
0.00358
0.00359
0.00360
0.00363

0.001130
0.001162
0.001181
0.001194
0.001203
0.001214
0.001221
0.001225
0.001228
0.001238

0.0001287
0.0001306
0.0001319
0.0001328
0.0001339
0.0001345
0.0001350
0.0001353
0.0001363

[7 BT BV 1

g XN v

The radial matrix elements in (23) and (25) have been
evaluated by the methods described in Sec. IT B.4. The
sum over / must be extended to /~300 for large 5, and
small £, while the convergence for large £ is much
more rapid.

II C.3. Differential Cross Sections

The differential excitation cross sections are obtained
from (15) and (18) by replacing f(7:,%) by df(d,n:8),
where ¢ is the deflection angle in the center-of-mass
system [see (II B.32) and (II B.33)]. These functions
have so far only been evaluated®® in the classical limit
n— 0 in which they are equal to the df(#,£) given by
(IT A.29) and (II A.51). The results for excitations of
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order El1, E2, E3, E4, M1, and M2, are given in
Fig. I1.7, and for E1 and E2 excitations also in the
Tables I1.7 and IL.8.

The quantum corrections to the differential cross
sections are expected to be greater than for the total
cross sections. An indication of the effect of these cor-
rections is provided by a comparison with the results of
the Born-approximation treatment which corresponds
to the limit #;= §=0, and which for E2 excitations leads
to an isotropic distribution of the inelastically scattered
particles? (see Sec. IT E.2).

II.C.4. Angular Distribution of
De-Excitation v Rays

The angular distribution of the 4 rays following
electromagnetic excitation is given by (II B.83).

For E1 excitations the distribution can be written

W (3y) =14a.71(n;,£) AP Py(cosd), (1L C.26)

where the 4,® coefficients refer to the hypothetical
v~y correlation of Fig. IT.2 and may be obtained from
(IT A.70). The coefficients a.®! are given by (II B.84)
and (IT B.85) which for A=1 reduce to

-1
a2m(7)i;£)= (bom)—l D ] My, [ 2
l 21+1
(+1)(1+2)
——— My, 2|
2141
6l(1+1)
——— M, M,
201+1

Xcos(oy1(n)—ora(n)) f, (ILC.27)

where b is given by (23). The numerical results®-® for
aF! are shown in Fig. I1.8.

In the classical limit p;—« or »—0 the value of
a:"(n;,¢) is equal to @ Pl(¥) which is given by [see

TaBLE I1.6. Normalization for the angular distributions given in Fig. I1.7. The absolute values of the classical differential f functions
may be obtained from the relative values given in Fig. IL.7 by employing the absolute normalization given in the present table. For
electric excitations, the table gives df/dQ at #=180°, while for magnetic excitation the value given is for $=90°. The entry is given by

a number and the power of ten by which it should be multiplied.

£=0.0 £=0.2 £=0.4 £=0.6 £=1.0 £=20 £=4.0
df 51 (180°,8) /dQ 1.40 (0) 562 (—1) 195 (—1) 640 (=2) 639 (=3) 1.66 (=5 841 (—11)
df£2(180°.£) /dQ2 558 (—2) 3.89 (—2) 196 (—2) 8.60 (—3) 1.32 (=3) 676 (—6)  7.37 (—11)
dfps(180°,£) /dQ 456 (—=3) 376 (—3) 236 (=3) 126 (=3) 271 (—4) 251 (—6)  5.58 (—11)
df54(180°,£)/dQ 516 (—4) 447 (—4) 320 (—4) 197 (—4) 546 (—5) 839 (=7)  3.57 (—11)
d1(90°8) /dg 258 (—1)  1.63 (—=1) 723 (=2) 276 (—=2) 325 (=3) 897 (—6)  3.16 (—11)
dfar2(90°.8)/d22 694 (—3)  5.64 (—3) 345 (=3) 177 (—=3) 344 (—4) 230 (—=6) 2.36 (—11)

% A WKB calculation was given in reference 59.
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TasiE IL.7. Classical differential cross section function for E1 excitation. The table lists df51/dQ as a function of ¢ (in degrees) and £.56
The entry is given by a number and the power of ten by which it should be multiplied.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0 © 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 1.838 (2) 0.595 (2) 0.783 (1) 0.827 (0) 0.791 (—1) 0.714 5—2) 0.620 (—3) 0.525 (—4)
20 4630 (1) 2792 (1) 1052 (1)  3.342 (0) 0.976 (0) 2709 (—1) 0727 (—=1)  1.904 (—2)
30 2.084 (1) 1.420 (1) 0.724 (1) 3.236 (0) 1.346 (0) 0.535 (0) 2.066 (—1) 0.779 (—1)
40 1194 (1) 0839 (1) 4843 (0)  2.520 (0) 1.234 (0) 0.581 (0) 2664 (—1)  1.196 (—1)
50 0.782 (1) 0.551 (1) 3.373 (0) 1.898 (0) 1.015 (0) 0.524 (0) 2.645 (—1) 1.309 (—1)
60 0.558 (1) 3920 (0) 2462 (0)  1.446 (0) 0.813 (0) 4438 (—1) 2370 (—1)  1.245 (—1)
70 4.244 (0) 2.954 (0) 1.877 (0) 1.127 (0) 0.653 (0) 3.682 (—1) 2.037 (—1) 1.111 (-1)
80 3.379 (0)  2.331 (0)  1.485 (0)  0.902 (0) 0.531° (0) 3053 (—1) 1727 (=1) 0964 (—1)
90 2.792 (0) 1.909 (0) 1.213 (0) 0.740 (0) 4.391 (—1) 2.554 (—1) 1.463 (—1) 0.828 (—1)
100 2.379 (0) 1.613 (0) 1.021 (0) 0.622 (0) 3.703 (—1) 2.165 (—1) 1.248 (—1) 0.712 (—1)
110 2.081 (0) 1.401 (0) 0.881 (0) 0.536 (0) 3.185 (—1) 1.864 (—1) 1.078 (—1) 0.617 (—1)
120 1.862 (0) 1.245 (0) 0.779 (0) 4714 (—=1) 2.795 (—1) 1.634 (—1) 0.944 (—1) 0.541 (—1)
130 1700 (0) -~ 1.131 (0) 0703 (0)  4.236 (—1)  2.503 (—1) 1459 (—1) 0841 (—1) 4.814 (—2)
140 1.581 (0) 1.047 (0) 0.648 (0) 3.885 (—1) 2.286 (—1) 1.328 (—1) 0.764 (—1) 4.360 (—2)
150 1496 (0) 0988 (0) 0.608 (0) 3.634 (—1) 2131 (—1) 1.234 (—1) 0707 (—1)  4.026 (—2)
160 1.440 (0) 0.948 (0) 0.582 (0) 3.466 (—1) 2,026 (—1) 1.170 (—=1) 0.669 (—1) 3.799 (-2)
170 1407 (0) 0925 (0) 0567 (0) 3.369 (—1) 1966 (—1)  1.133 (—=1) 0647 (—1)  3.667 (—2)
180 1.396 (0) 0.918 (0) 0.562 (0) 3.338 (—1) 1.946 (—1) 1.121 (-1) 0.640 (—1) 3.623 (—2)
\05\ 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 4.0
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 4.365 (—6) 3.573 (—7) 2.890 (—8) 1.840 (—10) 1.140 (—12) 0.693 (—14) 4.144 (—17) 2.449 (—19) 0.894 (—41)
20 4.898 (—3) 1.243 (—3) 3.117 (—4) 1911 (-5) 1.142 (—6) 0.669 (—7) 3.863 (—9) 2.204 (—10) 0.569 (—22)
30 2.893 (—2) 1.059 (—2) 3.839 (—3) 4919 (—4) 0.615 (—4) 0.754 (=5) 0911 (—6) 1.089 (—7) 4.613 (—17)
40 0529 (—1) 2.311 (—2) 0.999 (—2) 1.826 (—3) 3256 (—4) 0571 (—4) 0986 (—5) 1.685 (—6) 2.566 (—14)
50 0.639 (—1) 3.084 (—2) 1.474 (—2) 3.296 (—3) 0.720 (—3) 1.547 (—4) 3.279 (-=5) 0.688 (—5) 0.818 (—12)
60 0645 (—1) 3.311 (—2) 1.684 (—2) 4.266 (—3) 1.058 (—3) 2.581 (—4) 0622 (—4) 1482 (—5) 0.642 (—11)
70 0.598 (—1) 3.192 (—2) 1.690 (—2) 4.643 (—3) 1.251 (=3) 3.317 (—4) 0869 (—4) 2.255 (=5) 2.301 (—11)
80 0.532 (—1) 2912 (—2) 1.582 (—2) 4.587 (—3) 1.305 (—3) 3.662 (—4) 1.015 (—4) 2.790 (-5) 0.511 (—10)
90 4.643 (—2) 2.582 (—2) 1.427 (—2) 4.286 (—3) 1.265 (—3) 3.685 (—4) 1.062 (—4) 3.033 (=5) 0.832 (—10)
100 4.030 (—2) 2.263 (—2) 1.264 (—2) 3.880 (—3) 1.173 (—3) 3.502 (—4) 1.035 (—4) 3.034 (=5) 1.097 (—10)
110 3.507 (—2) 1980 (—2) 1.112 (—2) 3458 (—3) 1.060 (—3) 3.213 (—4) 0.965 (—4) 2.877 (-5) 1.251 (—10)
120 3.078 (—2) 1741 (—2) 0.980 (—2) 3.066 (—3) 0.947 (—3) 2.893 (—4) 0877 (—4) 2.639 (—5) 1.288 (—10)
130 2737 (—2) 1.547 (—2) 0871 (—=2) 2.727 (—3) 0844 (—3) 2.588 (—4) 0.787 (—4) 2.380 (—5) 1.236 (—10)
140 2473 (—2) 1.396 (—2) 0.784 (—2) 2452 (—3) 0.758 (—=3) 2322 (—4) 0.707 (—4) 2.137 (-5) 1.136 (—10)
150 2278 (—2) 1.283 (—2) 0.719 (—2) 2240 (—3) 0.690 (—3) 2.110 (—4) - 0.641 (—4) 1.934 (—5) 1.024 (—10)
160 2.145 (—2) 1.205 (—2) 0.674 (—2) 2.092 (—3) 0.642 (—3) 1957 (—4) 0.592 (—4) 1.784 (=5) 0.927 (—10)
170 2.067 (—2) 1.159 (—2) 0.648 (=2) 2.004 (—3) 0.614 (—3) 1.865 (—4) 0563 (—4) 1.692 (—5) 0.863 (—10)
180 2.041 (—2) 1.144 (—2) 0.639 (—2) 1975 (—3) 0.604 (—3) 1.834 (—4) 0.553 (—4) 1.661 (—5) 0.841 (—10)
(IT A.75)] (IT A.70). For some of the most frequently occurring
3 transitions these coefficients are given in Table IT.11.
. COSE The a coefficients of (29) are tabulated as functions of
a2E1(E)=—%+f 3]1,111,_1 cost 0d0 —— T —
’ sin®- 10
B ) £1 ~5=07-10
A e 09} -
cos—
. 2 P £2 |
x f ClTo ]+ T —ds} . (1C28) & o] ﬁ
0 s <
sin’®— B §=10
2 o7l- JE=07
For E2 excitations the angular distribution of the R 0
T g v 0 02 04 06 08 10 n
rays is given by [ : : : , -
o 5 3 2 15 10 7

W (8y) =140a272(n:,£) A 2P Py(cosd)
FasE2 (0, ) Ay ® Py(cosd,), (1L C.29)

where the A;® coefficients may be obtained from

Frc. I1.6. Quantum-mechanical corrections to the classical
total f functions. The ratio R gx(n;,£) between the quantal and
the classical total f function for A=1 and 2 [see (IL C.21)] is
plotted as a function of #;™* for different values of £ The data are
taken from references 59, 60, and 61.
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1 1 " =
60 120 » 180 4 60 120 +

180

04 T

Fic. IL7. Angular distribution of the inelastically scattered particles in classical approximation. The
classical differential excitation cross section functions d f)(8,£)/dQ are plotted as a function of ¢ for fixed
values of £ The electric multipole cross sections are normalized to unity at 180°, while the magnetic are
normalized to give a total cross section of unity. The absolute’values can be obtained by means of Table
IL.6. The data are taken from reference 56.
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TasLE I1.8. Classical differential cross section function for E2 excitation. The table lists dfg2/dQ as a function of # (in degrees) and £.56
The entry is given by a number and the power of ten by which it should be multiplied.
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n; and £ in Tables I1.9 and II.10 and are illustrated as functions of £ and » [see (10)] in Fig. I1.8.57-0.64,65

These coefficients have been computed from the expressions

(IT C.30)

= b, F2/byE2,

akE2 (77'5; E)

where o2 is given by (25), while

[ My, 782

3(14-1) (142) (14-3)
(214-3)*

|
i

[ My o2 (?
(21—1)?

31(—1)(1—2)

|

6(—1)I(1+1)

Mo 73M ;73 cos (th (m) —01-2 (m))

(21—1)?

!Mﬁﬁp_

L(I+1) (21— 3) (214+1) (21+35)

(21— 1)2(21+3)?

61(1+1) (14-2)

M 0,7 3M 173 cos(a1(n:) — oura(ns)) }, (I1 C.31)

(214-3)*

8 The coefficients 2”2, given in references 58 and 59, contain a numerical error responsible for the somewhat irregular behavior.

We are indebted to Dr. L. C. Biedenharn for discussions concerning this point.

6 A WKB calculation for special values of 7; and £ has been given by F. D. Benedict, Phys. Rev. 101, 178 (1956).
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F1c. I1.8. Gamma-ray angular distributions following Coulomb excitation. The coefficients axZ*(»,£) which describe the
angular distribution of the gamma rays following Coulomb excitation (II C.26) and (II C.29) are plotted as a function

g(f) £ for different values of the parameter ». The classical limit corresponds to »=0. The data are taken from references 59,
, and 61,
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TaBLE IL.9. Gamma-ray angular distribution coefficients @2#%(y;,£). The coefficient ¢2#2 which describes the angular distribution
of the gamma rays following £2 Coulomb excitation [see (II C.29)] is given as a function of #; and & The data are taken from ref-
erences 59 and 60.

}E\ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.6 2.0
0.0 0.50 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
0.5 0.20 0.800 1.142 1.325
1.0 0.07 0.501 0.809 1.002 1.130 1.223 1.285
1.5 —0.00 0.372 0.660 0.843 0.970 1.065 1.132 1.228 1.290 1.334 1.360
2.0 —0.02 0.307 0.577 0.758 0.884 0.971 1.046 1.144 1.210 1.256 1.290
2.5 —0.03 0.270 0.526 0.707 0.831 0.922 0.993 1.089 1.158 1.206 1.242 1.270
3.0 —0.04 0.247 0.497 0.673 0.793 0.882 0.956 1.053 1.122 1.171 1.208 1.237 1.279
40 —0.04 0.220 0.462 0.633 0.752 0.841 0.909 1.008 1.075 1.125 1.163 1.192 1.235
5.0 —0.04 0.204 0.440 0.606 0.724 0.813 0.878 0.979 1.046 1.095 1.131 1.162 1.207
6.0 —0.05 0.194 0.426 0.589 0.705 0.794 0.859 0.959 1.026 1.075 1.110 1.142 1.185
8.0 —0.05 0.178 0.408 0.569 0.685 0.769 0.838 0.934 1.000 1.048 1.086 1.116 1.159

10.0 —0.05 0.173 0.399 0.557 0.672 0.758 0.823 0.919 0.984 1.030 1.069 1.099 1.143

12.0 —0.05 0.170 0.393 0.549 0.661 0.748 0.813 0.908 0973 1.019 1.057 1.087 1.130
16.0 —0.05 0.165 0.387 0.540 0.651 0.735 0.803 0.894 0.959 1.005 1.043 1.072 1.115
© —0.05 0.150 0.361 0.510 0.619 0.700 0.763 0.853 0.915 0.961 0.996 1.023 1.064

and

. 9U(1—1)(1—2)(1—3) " 9141 (14-2) (14-3) (1--4) [ "
= - 2,1 °|°— 2l

T 16(20—1)2(2141) 16(214+1) (204+-3)?
91— D)I(141) (142) (214+1) 15(1—2) (1= D)I(1+1)
- M3+ Mo, M 178 cos(o1(ns) — o12(n5))
4(21—1)2(214-3)? 4(20—1)*(214-3)

1S1041) (142) (14-3)
4(21—1) (21+3)?

Mo, i3M 173 cos(o1(ns) —o1y2(n5))

105 (21— 1)I(14-1) (14-2)
8(21—1) (20+1) (214-3)

MH.z, z_3Mz__2_ fz COS(O'H_z(‘qi)—a'l_Q(‘ni)) . (II C32)

The classical limit (g% or »=0) is obtained from the formula (IT A.76) which in the case A= 2 reduces tot!:56.66

&
COSE
bo®2(§) = f (3| La2|*+ [ To0|*+3 | 15,2 [?) ﬁdz?, (II C.33)
’ sin®-
&
COSE
b2E2(£)=f (%l]zzlz—' lIzolz-{'—% I[g,_2,2—3[20(122+lg,_2) COS!?) 0(11}, (II C34)
’ sin®—
D4
Cos—
b 9 9 9 9 105 2
b4E2(E)=f (——[12212———l120I2—-—l[z._212+—120(122+12,_2) COS’(Y———]m[z,_Z COSZI’)——d'l?. (II CSS)
0 64 16 64 16 32 0
sin®—

%6 The y-ray angular distribution coefficients of references 11 and 56 contain errors of sign as pointed out by Breit, Ebel, and Benedict
(Phys. Rev. 100, 429 (1955)), who have re-evaluated the distributions for certain values of ¢ (see also F. D. Benedict and G. Tice,
Phys. Rev. 100, 1545 (1955)).
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TaBLE II.10. Gamma-ray angular distribution coefficient a4#(n;,£). The coefficient 452 which describes the angular distribution
of the gamma rays following E2 Coulomb excitation [see (II C.29)] is given as a function of n; and £. The data are taken from refer-

ences 59 and 60.

/ore

0.0 0.1 0.2

ni 0.3 0.4 0.5 0.6 0.8 1.0 1.2 14 1.6 2.0
0 +0.0625 —1.500 —1.500 —1.500 —1.500 —1.500 —1.500
0.5 40016 —0.007 —0.179 —0.338 .—0.463
1.0 40002 +0.020 —0.040 —0.114 —0.183 —0.241 —0.291 —0.368
1.5 0.000 +0.026 —0.006 —0.054 —0.101 —0144 —0.182 —0.242 —0.289 —0.324 —0.352
2.0 0.000 +0.027 +0.006 —0.031 —0.069 —0.104 —0.136 —0.188 —0.229 —0.262 —0.288 —0.309
2.5 0.000 +0.027 +0.011 —0.020 —0.053 —0.084 —0.112 —0.159 —0.197 —0.227 —0.251 —0.272 —0.303
3.0 0.000 +0.027 -+0.014 —0.013 —0.043 —0.071 —0.097 —0.141 —0.176 —0.205 —0.228 —0.247 —0.278
4.0 0.000  +0.026 +0.017 —0.006 —0.033 —0.058 —0.080 —0.120 —0.151 —0.178 —0.199 —0.218 —0.246
5.0 0.000 +0.025 -+0.018 —0.003 —0.027 —0.050 —0.071 —0.108 —0.137 —0.162 —0.182 —0.200 —0.221
60 —0.001 +0.025 40018 -—0.001 —0.023 —0.045 —0.065 —0.100 —0.128 —0.151 —0.171 —0.188 —0.217
80 —0.001 +0.024 +0.019 -+0.001 —0.019 —0.039 —0.058 —0.090 —0.117 —0.139 —0.157 —0.173 —0.199
100 —0.001 +0.024 -+0.019 -0.003 —0.016 —0.036 —0.053 —0.08¢ —0.109 —0.130 —0.147 —0.162 —0.185
120 —0001 +40.023 --0.019 -+0.004 —0.013 —0.034 —0.051 —0.081 —0.105 —0.124 —0.142 —0.157 —0.177
160 —0.001 +0.023 +0.020 +0.005 —0.010 —0.031 —0.048 —0.076 —0.100 —0.118 —0.135 —0.149 —0.174
o —0.001  +0.022 +0.020 +0.007 —0.009 —0.024 —0.039 —0.064 —0.085 —0.101 —0.116 —0.128 —0.146

It is seen from the figures and tables of the a coeffi-
cients that the deviations from the classical limit are
considerable even for rather large values of ;.

In the limit of £-0, the curves for »£0 would exhibit
rapid variation and would approach the Born approxi-
mation values which are appreciably different from
those of the classical approximation (see Sec. IT E.2).
Since the region of rapid variation corresponds. to
71 it is outside the domain of Coulomb excitation
experiments.

For M1 excitations the angular distribution of the v

rays in the classical approximation is given by (see
1T A.74)

W (8,) =144,V Py(cosd,),  (II C.36)

where the 4,® may be obtained from (II A.70). It is
noted that for mixed multipole excitations, the y-ray
angular distribution contains additional interference
terms, 562

The angular distribution of the +4’s following other
multipole excitations, as well as the angular distribution
for specified direction of the inelastically scattered pro-
jectile, may be obtained in the classical approximation
from the formulas of Sec. II A.4 using the tabulated
values of the orbital integrals (see Table II1.12 and
reference 88). ‘

The polarization of the decay v rays is obtained by
replacing 4™ Py(cosd,) in (26), (29), and (36) by the
appropriate expressions which depend also on the

polarization angle y.,, and which are given in Sec. II A
[see (IL A.70) and (IL A.78a)].

II C.5. Survey of Approximations

We here summarize the various effects which have
been neglected in the formulas considered in the earlier
parts of this Section.

%62 See reference 62a, where it is also shown that Eq. (36) re-
mains valid in the quantum-mechanical treatment, provided spin
effects are neglected.

a. Relativity effects.—The relativistic treatment of the
excitation process (see Sec. II B.1) involves a modifica-
tion of the excitation functions, but the correction terms
are at most of order 12/c%, where v is the projectile
velocity. The effect of the projectile spin, which is not
included in (15) and (18), again implies corrections to
the electric excitation cross section of order 22/¢2 or less,
while the corrections to the magnetic excitations are
of relatively greater significance and may be obtained
from (II B.30).5¢

It is noted that the treatment of the nuclear structure
is fully relativistic, provided the expressions (II B.16
and 17) for the multipole operators are employed.

b. Screening by the atomic electrons.—The screening of
the nuclear Coulomb field by the atomic electrons gives
rise to a minor modification of the projectile orbit. The
effect is, however, very small, since the distance of
closest approach, 2a, even in heavy atoms and for
proton energies as low as one Mev, is an order of magni-
tude smaller than the radius of the atomic K shell. The
attraction from the electrons implies a small accelera-
tion of the projectiles during their passage to the center
of the atom, which results in a small increase in the
effective energy in the Coulomb excitation process. This
energy increase amounts to about 10 kev in a heavy
atom (Z»~80). An effect of similar magnitude but
opposite sign results from the vacuum polarization
which implies a small increase of the order of one-half of
a percent in the repulsion between the nucleus and the
projectile at distances of a few times the nuclear radius.®

There are also various processes by which the pro-
jectile may lose small amounts of energy in traversing
the atom (e.g., ionization of K, L, --- shells, or
bremsstrahlung (see Sec. III B.3)). These effects are
connected with the influence of straggling on the
Coulomb excitation yield, and are of minor importance.

c. Attenuation effects in angulor distributions—The
atomic electric and magnetic fields may cause a pre-

67 L. L. Foldy and E. Eriksen, Phys. Rev. 95, 1048 (1954).
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TaBLE II.11. Some v-y angular correlation coefficients. The
table gives the y-y angular correlation coefficients, 4(2), for
values of the spins I, Iy, and Iy which may occur especially often
in Coulomb excitation experiments. The excitation process is
assumed to be pure E2 and the de-excitation is assumed to proceed
by mixed M1 and E2 radiation; 6% is the ratio between the in-
tensities of E2 and M1 gamma radiation, and the sign of é is
defined as in Eq. (II A.70).

Ii Iy Iss A As@
0 2 0 0.3571 1.143
—0.2504-0.86608-+0.25052
172 3/2 1/2 0
1442
1/2 5/2 1/2 0.2857 0.3810

—0.20004-1.0145+0.10206% —0.4354
1/2 5/2 3/2
1482 14-8%
—0.07143+-0.3622540.03644? 0.4976
32 52 32
1482 1462
3/2 7/2 3/2 0.2186 0.1282
—0.15304-0.88454-0.0364¢2 —0.2280
32 1/2 52
1482 1442
—0.02554-0.14725+-0.0060752 0.4054
5/2 72 52
1482 1462
5/2  9/2 5/2 0.1870 0.07204
—0.1310+4-0.8095--0.008525% —0.1572
5/2 92 71)2
1482 14-82
—0.00597-4-0.03685+0.00038952 0.3430
72 9/2 12 i
1442 1+4-8°
7/2 11/2 7/2 0.1688 0.0500
—0.11824-0.7625 —0.0064952 —0.1231
72 1172 9/2
1462 14-8%
0.00454—0.029354-0.0002562 0.3030
9/2 11/2 9/2
1482 14-8%
9/2 1372 9/2 0.1570 0.03881

cession of the angular momentum vector of the excited
nucleus, giving rise to an attenuation of the angular
anisotropy of the emitted radiation.®® In most cases one
expects the largest effect to arise from the quadrupole
coupling to the electric field. This coupling may be
especially strong at the interstitial positions reached by
the recoiling nucleus. The conditions are somewhat
similar to those encountered in the « decay of the very
heavy elements, where the a~y correlations are observed
to be appreciably attenuated® even for lifetimes as

% H. Frauenfelder, Chapter XIX of Befa- and Gamma-Ray
Spectroscopy (edited by K. Siegbahn) (North Holland Publishing
Company, Amsterdam, 1955).

% See e.g., J. O. Newton, Progress in Nuclear Physics (edited by
O. R. Frisch) (Pergamon Press, London, 1954), Volume 4, p. 256.

MOTTELSON, AND WINTHER

short as 5-1071° second.” The excited states involved
in these a-y correlations are expected to have especially
large quadrupole moments (see Sec. V B.2). It may thus
be concluded that a lower limit to the lifetimes for which
the attenuation effects may be of significance in Cou-
lomb excitations is of the order 1071 second.

d. Higher order interaction effects.—In Secs. IT A and
B, the probability for exciting the nucleus is treated in
first-order perturbation theory. Under most experi-
mental conditions so far studied, the probability for
excitation in a single encounter is very small, and such
a treatment therefore well justified. The influence of
higher order effects giving rise to multiple excitations is
considered in Sec. II D. Such effects become of special
importance in the case of high projectile charge and
large bombarding energies.

II D. Higher Order Excitation Effects

In the theory of Coulomb excitation presented in the
preceding sections, the probability for excitation of the
nucleus was calculated in lowest order perturbation
theory. In most of the experiments which have so far
been performed, this approximation is well justified
since the excitation probability in a single encounter is
very small compared to unity. Thus, for an E2 excita-
tion with £=0 the excitation probability, in a backward
scattering, is given by [see (I A.2) and (II A.28) and
Table 11.8]

P=d0’E2/d0'R

A4

=207

4EMW3B (E2), (IID.1)

1*Zy

where B(E2) is measured in units of €?- (1072 cm?)2.

As an example, one finds for 6-Mev « particles on a
target with Z,=70 a value for P of about 0.01 for
B(E2)=5 corresponding to the largest transition prob-
abilities encountered (see Table IV.2).

It is seen, however, that the probability, P, may be-
come appreciable for large bombarding energies, which
may especially be employed with highly charged pro-
jectiles.” Moreover, even when the probability is small,
higher order effects may be observed if the direct
transition to the final state is weak.

We shall in this section consider the treatment of
higher order effects based on the classical description
of the projectile orbit, and briefly discuss a few
applications.

II D.1. Cross Sections to Second Order

To second order in the charge of the projectile, the
amplitude for a transition from the initial nuclear state

7 While none of these lifetimes has been directly measured,
they are expected to-be similar to those for the first excited states
in Th?? and U8 inferred from the Coulomb excitation cross
sections (Table IV.2).

7 See G. Breit and J. P. Lazarus, Phys. Rev. 100, 942 (1955).
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1 to the final state f is given by The summation in (2) is to be performed over all inter-
= mediate states z, including the initial and final state.
bis (“’H‘Z bizr, (IID.2)  The frequencies w1, ws, and w, are given by
where b;; is the first-order amplitude (II iA.6) and wr=(E,— EJ)/h,
where?? we=(E;—E,)/#, (IID.4)

w'——wl—l—wz:—" (Ej—E,)/h,

where the energies of the initial, intermediate, and final

. states are denoted by E,, E,, and Ej, respectively.

X giost f dt{z|3e(t) |iei?. (I D.3) In the evaluation of the double integral (3), it is
o convenient to introduce the unit step function

1 0
bosr= o L 101

1 © gmili=te 1 >7 -
e(t—1)=—lim — dg= [ (IID.5)
50+ 2ms J_  q+16 0 <t
We then get
. 1 * d i © biz(wl—l—g)b,/(wg—q)
biy=—1lim — f i 2 (w2—q) = 3Dz (w1) bz s (w3) +—C f dg, (IID.6)
5—-0* 21 J_o, q+16 2r J_ q

where @ stands for the principal part of the integral.

In the focal system the b;; are pure imaginary and for electric excitation are given by [see (IL A.14), (IL A.16),
and (IT A.24)]

Y IAY (—I)I‘J_M‘( I;
v o 2241

bis(w)=—1

f N 1_r
M. a Mf)<lil|m(E7\)HIf)a YM(Z;O)I)\,‘(ﬂ,‘E). IID.7)

Thus, the last form of (6) represents a decomposition of b;.; into real and imaginary parts.
Inserting (7) into (6) one obtains the following expression for the amplitude to second order:

pyo— — i s (2 l)h_M”( )[(1 IV CER) 1S 55 o+ Ton, (11 D.8)
3 = M 3 3 .
! n = it \ean o« anhhii
where

27TZ18 (_. 1))\l+)\2+1i+1f+k+x (2k+ )2
Tix=: > (Lo (BN ||1.)

h? 2k aghrth (2>\1+1)(2>\2+1)

A k
X{I z!lfm(EM)HIf)l ; ][Bk,_x(xmasw)—iak,_x(xlngl&o)]. (I1 D.8a)
I

z

We have here employed the relation (II A.6) and have introduced the real functions ax« and B« through the
definitions

)\1 Kz k m™ ™
arc(Ahebr162,9) =2 ( )Y)\IMI('_, 0) Ykznz(—, O>I>\1Ml(0,EI)I)\2M2(197£2), (IID.9)
: wimz \fy Mo K 2 2
and
A A R T T 1 ©dg
BrcAh2E12,9) = 2 ( )Y)\l.‘tl(’“, 0) Ykznz(—, 0)—@[ —Dun (8, 14+ E)aws (3, £2—¢). (11 D.10)
piez \uy M2 K 2 2 Vo &

The two indices refer to the two transitions in the double excitation; thus &1=w1a/v, f2=wsa/v, and &= &1+ £,
The differential cross section to second order is obtained by inserting (8) into (II A.5 and 4) and may be written
in the form

do=doP4-doD4do®, (IID.11)

The first term is the first-order excitation cross section (IT A.28). The second term represents the interference
between first-order and second-order transitions and receives a contribution only from the imaginary part of (6)
(the real part of (8a)). Additional terms of the same order of magnitude as the third term in (9) (proportional
to Z1*) may arise from cross terms between first- and third-order terms in the transition amplitude.
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Performing the summation over the magnetic quantum numbers, the two last terms in (11) take the form

Z16 3 3
doD = (— 1)’i+’f167r3(—-) a® sin='-dQ
hv 2

A }\2l(Ii[lm(E}\)Hlf)(fillfm(EM)“szlz”m(E)\z)”If)
A (1) (20 1) 2Aa+1) (21:41)

X2 (—I)MYMG, O)Im(l?, £ £9)Bx s (N h2£185,9), (I1D.12)

X 3 (_1))\+)\1+)\2{>\
2,A,A 1,22 Iz If I,;
and
Z18 4 &+
do@®= 161r4(—) a? sin—*—dQ
o 2

(TS| (EN) [T XTI (EN) L X s | 9 (ENY) LT X = [|M(EN) [T 5)

(__ 1)7\1+)\1’+)\2+)\2’
zz'A1A1’ M2’

)\z}{k A

k
XX (2k+1){
kx I, I, I; I, If

Since the summations over the magnetic quantum num-
bers have been performed, the summation index z (or ')
in (12) and (13) refers only to summation over different
energy levels.

Also intermediate levels with energy well above that
of the final state may give a significant contribution,
since B« for large &1 (=~ —£») behaves approximately as
£ in contrast to the strong exponential dependence
on £, which is characteristic of I,(£1) and thus also of
arc. Even for an intermediate energy transfer (E,—E;)
comparable with, or larger than, the projectile energy,
the above results remain valid provided only that
E;—E; is small compared to the projectile energy. In
fact, as may be seen in more detail from a quantum-
mechanical treatment, the effective energy loss of the
projectile in the intermediate state is that associated
with those values of &£ which contribute the main
part of the integral in (10), and which are of the
order £/2.

In the summation over the multipole orders in (12)
and (13) the main contribution will usually arise from

the lowest value of A compatible with the spin and parity .

selection rules for the nuclear matrix elements.

The coefficients ay, and 8. needed for the evaluation
of the cross sections (12) and (13) may be calculated
from the classical integrals I),. For A=2 and positive &,
these are given in Table 11.12.7 The I,, for negative
arguments are obtained by means of (II E.54).

The angular distribution of the ¥ quanta following
Coulomb excitation will also be subject to second-order
corrections.” Since the second-order amplitude (8) has
the same dependence on the magnetic quantum num-

2 For A=1, 3, and 4, the Iy, are tabulated in reference 88.

8 Breit, Gluckstern, and Russell, Phys. Rev. (submitted for
publication).

A MEMIRAR (D0 1) (2h+-1) (2N +1) (20 +1) 21:41)

)\ !
’ }[akx(hkz&fz, DarcMNEE D)

FBrcAA2E1E2,9)Br(AA £/ E,9)]. (I D.13)

bers as the first-order amplitude (7), the angular distri-
bution to second order is obtained from (II A.80-81)
by the substitution

(LR (EN) 1) Sni—
(LM (EN T )Syu+Trs.  (I1D.13a)

II D.2. Interference Effects

An interesting case where interference between the
first- and the second-order terms in (2) may become
significant is that in which the intermediate state z is
one of the magnetic substates of the final nuclear level.”
The transition z— f then occurs through the interaction
of the projectile with the quadrupole moment of the
final state.

From (6) and (7) one obtains for the order of mag-
nitude of b.,; [see (IT C.7) and (IT C.8)]in the caseA=2

Aqd 10
Mev S
big  Z:iZ5* ’

bizf

(II D.14)

where the quadrupole moment Qy, which is measured
in units of 10~2* cm?, is related to the reduced matrix
element through [see (IT A.18) and (V.32a)]

5}
(E) Qo= (Tl (ED) 1)

x( 1Q2I—1)

H
) . (IID.15)
@I+1)(T+1) (2T +3)

If the initial state (ground state) also possesses a
quadrupole moment (Z;21), a corresponding effect
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arises from intermediate transitions to the substates of
this level.

A more detailed calculation has been made for the
particular case I;=0, I;,=2, and §=§=0.4. For the
differential excitation cross section at 90° one obtains
from (12)
d0’90°=d090°(l)[1+1.5521_1Z2_2A léEMev%Qf:l- (II D16)
Effects of similar order of magnitude are expected in the
angular distribution of the de-excitation vy rays.™"

It is of interest that the interference effects con-
sidered are linear in Q and thus provide a means of
determining not only the magnitude, but also the sign
of the quadrupole moment of the excited state. The
present estimates indicate, however, that the effects
become of significance only for high bombarding energies
and thus especially for heavy ions.

II D.3. Double Excitations

Another important second-order effect is that of a
double E2 excitation leading to a final state which
cannot be reached directly from the ground state by
an E2 excitation. The order of magnitude of the cross
section for such a double excitation may be obtained
from (6) and, provided E, X Ey, is given approximately
by [see (ILA.2) and (II A.4)]

OE2, Egzia—zam(ll—alz)am (Iz—>If). (II D17)
A direct numerical evaluation of (11) for the specific
case I;=0, I,=2, and I;=4, and for &= £,=£=0 gives
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Z1e 4
TE?2, E2=0240("“) a’
#v

X B(E2, 0—2)B(E2, 2—4), (I1D.18)

which corresponds rather closely to (17).

On account of the large values of B(E2) in collective
excitations, the cross section (18) may become appreci-
able for large bombarding energies (see numerical esti-
mates in Sec. V B.2). Also excitations of higher order
than the second may become feasible. The correspond-
ing cross sections can be estimated in analogy to (17).

The excitation of the I=4 state may also take
place by a direct F4 transition with the cross section
(IT A.30). For & =§,=£=0, the ratio of the two cross
sections is found to be

O B2, E2 A.Z:® B(E2,0—2)B(E2, 2—4)
=21 . (IID.19)
Fuer  €*B(E4, 0—4)

OE4

If one would employ the single particle estimate
(I1 A.58) for the B(ZMN) one would obtain a value of
about 1/3 for the ratio (19) in the case of 20-Mev «
particles. However, if the E2 transitions are of collective
type, the ratio (19) may be several orders of magnitude
larger.

The cross section for the excitation of the I=4 state
also contains an interference term between the direct
E4 transition and the double E2 transition. As an
example the differential cross section at 90° has been
evaluated from (12) and (13) for the case £=0.2,
£,=0.4, with the result

doge= d0'90°(1)|:1 +O.17(

The square root of the reduced transition probabilities
B(EX) is to be taken with the sign of the reduced
matrix elements.

II D4. Polarization Effects in Elastic Scattering

The virtual excitations also give rise to a modification
of the elastic scattering cross section.” 7% Such polariza-
tion effects are especially simple to estimate if the fre-
quencies of the virtual excitations are large compared
to the inverse collision time (£;=—£2>1). Under these
conditions, one may for each position of the projectile
consider the static polarization of the nucleus and
derive the resulting potential which reacts on the
projectile.

Expanding the interaction (IT A.8) and (IT A.9) in
multipoles [see (II A.10)] one obtains by a perturbation

" P. Debye and W. Hardmeier, Physik. Z. 27, 196 (1926).

% N. F. Ramsey, Phys. Rev. 83, 659 .(1951), and Malenka,
Kruse, and Ramsey, reference 7.

76 Breit, Hull, and Gluckstern, Phys. Rev. 87, 74 (1952).

Z1*A1 B(E2,0—2)B(E2,2—4)\} 724, B(E2,0—2)B(E2, 2—4)
) +0.4 ] (I1 D.20)
Erey e*B(E4, 0—4) Ebev e?B(F4, 0—4)
calculation
Vool(rp) =4mZs%? 3 A1)~ 2,222
=1
B(EM, i—3)
——— (IID.21)

2741 Ei— Ez

for the potential energy of the projectile, arising from
the nuclear polarization. In obtaining (21) we have
averaged over initial orientations M; of the target
nucleus and summed over M ,; thus, the sum over z only
refers to summation over different energy levels.

A similar term in the potential energy may arise from
the polarization of the projectile if this is a composite
nucleus.

The effect on the elastic scattering cross section may
now be obtained by inserting V. as a perturbing
potential into the Schroedinger equation for the scatter-
ing process.” If the scattering can be treated classically
(7>>1), the polarizing effect may also be obtained by
inserting (21) into the classical equations of motion.



472 ALDER, BOHR, HUUS,

If the target nucleus possesses a spin, additional
effects on the elastic scattering cross section may arise
from the interaction of the projectile with the static
electric moments of the nucleus. For aligned target
nuclei this interaction gives rise to changes in the cross
section linear in the nuclear moments. This linear term,
however, vanishes when averaged over the orientations
M, but there remains a second-order term which may
be comparable with the effect of (21).

In most cases, it is to be expected that the principal
polarization effect arises from the quadrupole inter-
action, on account of the high excitation frequencies
associated with the main part of the dipole oscillator
strength. For many nuclei the most important quadru-
pole excitations have rather low frequencies (see
Chapter V), and it may then not be possible to consider
the nucleus simply in terms of its static polarizability.
In such cases £1=—§:;<1, and it becomes necessary to
treat in more detail the coupled motion of projectile
and nucleus.

II E. Appendices
II E.1. Emission of Bremsstrahlung

The emission of bremsstrahlung in the collision be-
tween the projectile and the nucleus, which constitutes
an important background effect in the Coulomb excita-
tion experiments (see Sec. III B.3), may be treated in
close analogy to the nuclear excitation process. The first
theoretical treatments of the bremsstrahlung process
were based on a classical description of the particle
orbit.”” The quantum-mechanical theory of the electric
dipole bremsstrahlung was given by Sommerfeld.”®

The cross section for scattering of the projectile into
the solid angle d© with emission of a photon with wave
number between ¢ and ¢-+dq is given by [see (II B.2),
(I1 B.9), and (II B.25)]

m, 7)fR

47r2ﬁ4 v T

1
<1Wk, - f i Adr
c

We have here assumed the nucleus to be infinitely heavy
and have neglected the spin of the projectile. The matrix
element represents a transition from an initial state
with no photons present to a final state with one photon
of multipole order A, u, and parity . Using the multi-
pole expansion (II B.4), we obtain from (1) by means

2
XY dgdq.

Apm

(ILE.1)

7 H. A. Kramers, Phil. Mag. 46, 836 (1923); G. Wentzel, Z.
Physik 27, 257 (1924); see also L. Landau and E. Lifshitz, The
Classical Theory of Fields (Addison-Wesley Press, Cambridge,
1951), pp. 197 ft.

78 A. Sommerfeld, reference 44, pp. 495 ff.
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of (ILB.7)
(\1)g2M
T 0 aE AL U
X [ (ks |91, (ENp) [ ko) | 2
+ [k [0, (M) [ ki) |2} dgd®, (IL E.2)

ms2c vy

where the multipole moments 9, (A,u) are defined by
(II B.16) and (II B.17) by replacing j, by j,.

In the nonrelativistic case, the multipole moments
are given by (II A.13) and (II A.39). For the electric
part of the bremsstrahlung cross section, which is the
most important, one thus obtains

mic 2 Z126 'I)f 2)‘+1 O\+1)
da'E-——( ) —
hc v x AL@A1) 1172

X | (k| Y ru(0,0) | ki) | 2dQdg.

(IIE.3)

The effect of the nuclear recoil may be taken into ac-
count by replacing m; with the reduced mass mo and the
multipole moment in (3), which refers to the center of
the nucleus, by the combined moment of projectile and
nucleus with respect to the center of mass. The latter
replacement simply corresponds to the substitution

Zl—)(A 1+A 2)_)" [Z1A 2)‘+(— 1))‘Z2A 1)‘]. (II E4)

The reduction of the matrix element in (3) to radial
matrix elements can be made in complete analogy to
the case of Coulomb excitation [see (II B.45)7, and the
resultant cross sections can be derived directly from
(ITB.47) and (II B.48). For the total electric cross
section for emission of a photon in the wave-number
interval dg, one obtains

dog=

> dog,

=1

(II E.5)

with

2
dop= —(A 1+ A" Z1A M (— 1) 2,42 ( )
Vs

dq
Xa2(qa) M2 fpb(n;,6)—, (I1E.6)
q

and

o) 60FDRE
Itk A= DU+

Iy A\ 2
X3 <21+1><2zf+1)( N 0) | Muap |2 (TE7)

Lilf

In these expressions, ¢ is the symmetrized distance of
closest approach defined by (IT A.86).

The radial matrix elements are defined by (II B.46)
and can be expressed in terms of hypergeometric func-
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tions, as is shown in Sec. II B.4. The bremsstrahlung
matrix elements, however, are more elementary than
the Coulomb excitation matrix elements, since they can
all be expressed, from the monopole matrix elements
(II B.56), through recursion formulas (see, e.g., 11 B.68).

We shall here especially consider the electric dipole
bremsstrahlung, in which case the matrix elements can
be directly related to the £1 Coulomb excitation matrix
elements.” The connection®® is given through the equa-
tion of motion

d21' Z12282
me—= T, (ITE.8)
dt? 78
which leads to
21Z262
(s |rY 1, k)=~ (ky|r 2V k) (IIE.9)
Mow?
or
Z1Z282
My 1= — 5ig1
Mow?
4y
=——aM; 12 (ITE.10)
(Wz_ 1)1'2) 2

By inserting (9) into (3) and comparing the result with
the Coulomb excitation f function (IIB.34), cne
obtains®
=] furup. (rean
e1®(n5,8)=—| ——| fm1(n,,§). (L E.
£ (nitn,)?

The dipole bremsstrahlung cross section thus takes
the form

3 62 Z1 Z2 2
dom=— —_—)

2w? ke Al Ag
h\? dg
x (—) néfor(nad) s (I E.12)
Mc q

where M is the proton mass. Introducing numerical
values for the constants involved, one obtains [see
(Irc.8)]

Zl 22 2
dogi=1.225-10-87,27 _____)
Ay A,

dE,
XA1Enev™ fi1 (?71',5)? barns

z

(I E.13)

where E, is the photon energy. If one inserts for
SfE1(n5,€) in (12) the exact expression (IT E.64), one gets
the bremsstrahlung formula of Sommerfeld. Numerical
values for the fz; function are given in Sec. IT C.2.8

7 C. J. Mullin and E. Guth, reference 4.

® See also L. C. Biedenharn, Phys. Rev. 102, 262 (1956); K.
Alder and A. Winther, CERN report T/KA-AW-4 (1955).

81 S, Drell and K. Huang, Phys. Rev. 99, 686 (1955) have
evaluated the Sommerfeld expression for the bremsstrahlung in a
specific case by expanding in powers of £ [see (II E.66)].
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The relative intensity of consecutive multipole con-
tributions to the bremsstrahlung is at most of the order
(ga)?=[£(v/c) 2. The magnetic multipole contributions
are reduced with respect to the electric ones by a factor
(v/c)*. Thus, in most cases, the electric dipole brems-
strahlung strongly dominates. However, due to the
factor Z1/A1—Zs/As, the E1 cross section may vanish
for a-particle bombardment on light nuclei. In such
instances, the bremsstrahlung is mainly of electric
quadrupole and magnetic dipole type.

The angular distribution of the bremsstrahlung v
quanta may also be evaluated in a similar way as the
angular distribution of de-excitation y quanta in
Coulomb excitation (see Sec. I A.4 and Sec. II B.5).
For pure electric A-pole bremsstrahlung, one has the
following angular distribution function

Wkikf(Q,y)
=2 | X (& [P Vu(6,9) |1k)D,M®) |2, (T E.14)
"
where the rotation matrix D(®) represents the transi-
tion amplitude for emission of a 2*-pole photon in the

direction @, and with polarization o. By the usual
technique of y-y correlation, one obtains from (14)

Weas (@)= 3 (ks |72V, | ko)k, I SV lk;>*

pp'k
A Ak ANk
SO [
1 -1 0 —u Mok
X (2414 ().

For A=1, the matrix elements are proportional to the
dipole Coulomb excitation matrix elements, and in this
case one has by comparing with (IT A.68) and (II B.82)

Wi (Qy) =142 3027 (3,0,14,8) Vie(Qy), (IL E.16)

(II E.15)

where the a coefficients are those occurring in (IT A.66).
If one integrates over all proton directions, one obtains
in the electric dipole case3*®

W (8) =14+%a27"(n;,8) Po(cosd,), (ILE.17)

where &, is the direction of the y quantum with respect
to the incoming beam of projectiles. The coefficient a,*!
is defined by (IIB.84) and (II B.85) and is given
numerically in Sec. IT C.4.

II E.2. Born Approximation

Under experimental conditions where the Coulomb
repulsion is sufficiently strong to prevent the projectile
from entering into the nucleus, the parameter 5 is large
(see introduction to Chapter II). Although the Born
approximation cannot be applied in such cases, it

8 The angular distribution in the classical treatment has been
considered by G. Wentzel (reference 77).
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Fi1c. I1.9. Comparison of quantal, classical, and Born approxi-
mation for E2 Coulomb excitation. The total f functions for E2
Coulomb excitation as given by the quantum-mechanical, classical,
and Born approximation calculations are plotted as functions of
ns for the case of vanishing energy loss (¢=0).

nevertheless provides an interesting limit of the general
theory presented above. Moreover, for high energy pro-
jectiles with 7<1, some of the Born approximation
results may find application, although under these
circumstances the effects of the penetration of the pre-
jectile into the nucleus must also be taken into account.
In the Born approximation, the initial and final
scattering states are considered as plane waves and the
matrix element in (II B.34) thus takes the form

(ks [r=110,(0,0) [ ki)

=4rir f nED Mgy Vy,(K), (I E.18)
0

where we have used the expansion

ei(ki—kf) of — eiK-r

=Y 47t (K") Y 1m(K) V1 * (0,0) (11 E.19)
Iim

and denoted the difference between the wave numbers
for the initial and final state by K. The integration over
7 in (18) leads to

(ks [T (6,0) | ko)
it
K27y,(K),

i (I1 E.20)

and the differential cross section function [see (I1B.34)]
is thus given by7?%#

167
a”—zkikf l ki'— kf l 2—44Q,

d Ex=
/ Cx+1)11]2

(11 E.21)

The total cross section function is easily obtained by
integration over the angles. Since

I k-,,—kf l 2= kiz—l—kfz'— Zklkf COSI},

8 R. Huby and H. C. Newns, reference 4.

(ILE.22)
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one finds, for A5#%1,

1672
fE)\=
A=DLEAFD)UT
X{(nitns)? D — (ny—n)? 0D}, (I E.23)
and for A=1
327 it
Far=— I (I E.24)
9 =N

These expressions are expected to coincide with the
exact quantum-mechanical expressions for 7;<7;<1.
A comparison for the case A=2 and £=0 is shown in
Fig. I1.9. It is seen that the Born approximation results
deviate appreciably from the exact ones already for
rather small values of 7.

As regards the differential cross section given by (21),
it is of interest that the angular distribution is isotropic
in the especially important case of A= 2,

For large values of 7, the Born approximation greatly
overestimates the excitation cross section. This is associ-
ated with the neglect of the Coulomb repulsion which
implies that the small distances give too large a contri-
bution. Thus, the expressions (23) and (24) also do not
show the adiabatic behavior for large values of £ One
may improve the approximation by introducing a cutoff
in the radial integral (18) for small distances.® If one
choses this cutoff at the distance of closest approach,
2a, one obtains values for the total cross section in
rather good agreement with the exact theory for small
values of £ However, the differential cross section re-
mains essentially incorrect for > 1.

The angular distribution of the de-excitation v
quanta can also be easily evaluated in the Born ap-
proximation. According to (IT A.68) and (II B.82), one
obtains by means of (20)

A A OR\T! A Ak
S T
1 -1 0 e \p —u O

X f | 72u(K) |2K?4dQ, (IT E.25)

where the integration is over all directions of k;. In the
case £=0, the polar angle for K is equal to w/2+¢/2,
where & is the deflection angle, and the integral is thus
proportional to [see (22)]

™ T ¢
f Y)\y (_—]L_, 0)
° 2 2

The sum over u can then be evaluated explicitly with

2

(1—cos?)?sinddd. (11 E.26)




COULOMB EXCITATION

the result®
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2A(A\+1)T(2A—5/2)T'(2A—2)

E\

For A=1 one obtains
aFl=1,

(IT E.28)
while for A=2

—1
d2E2—-2‘

and a.F2=+%. (IT1 E.29)

It is also of interest to consider the radial matrix
elements in the Born approximation. The radial wave

TN 1) — B 1) T (20— F/2—5/2)T (2t k) 2—2)

(I1 E.27)

Litl,—A+2
(=)

functions are in this case spherical Bessel functions and
the matrix element takes the form

Muya1= f Ji(k)r 1y (ka)dr, (11 E.30)
0

the evaluation of which leads to8®

T k\Y
Mlil!—)\—l=.___ki)\—2 —_
) 2)\+1

where F is the ordinary hypergeometric function
(II E.84) which, in this case, may be expressed by
elementary functions. A special discussion of the radial
matrix elements in the limit of large I is given in
Sec. ILE.7.

II E.3. Excitation by Means of Elecirons

Although the present article is concerned with electro-
magnetic excitations produced by heavy projectiles, we
shall in this paragraph briefly consider the nuclear
excitations by fast electrons.® This process has been
treated in the Born approximation®” which is expected
to be valid for light target nuclei. We shall give here an
equivalent treatment which leads to cross sections in a
form analogous to those derived for Coulomb excitation.

2

16
(150 i)y =——— KN Y (— 1) (1M | M (EN, —
Ap

AN

—(I My |U(MN, —p, K) | LM )

—I—z(I;M;IEm(CA, M, K II;M,))\

The wave numbers K and « represent the momentum
and energy transfer in the collision and are given by

K=k,—ky, (IIE.34)

8¢ A. Erdélyi et al., Higher Transcendental Functions (McGraw-
Hill Book Company, Inc., New York, 1953), Vol. I, p. 171.

85 P. 401 of reference 40.

8 For recent experimental results obtained in high energy
electron scattering, see J. H. Fregeau and R. Hofstadter, Phys.
Rev. 99, 1503 (1955).

- 87 L. L. Schiff, Phys. Rev. 96, 765 (1954), which also contains
references to earlier work.

li—LAA1
r+3)r (———T—)

F(l,+lf-)\+2 lf'_ Li—\+1

- k’2) (IT E.31)
2 3 2 s vf 2’k,-2 ’ .

The general expressions (II B.8) and (I B.25) for
the transition matrix element and the cross section are
equally wvalid for electron excitations. In the Born
approximation, the wave functions for the scattering
states are plane waves

| k)= | u)eix-, (IT E.32)
where |u) is the spinor and k the wave number of the
electron. It is in this case convenient to perform the
integration over the coordinate r already in the expres-
sion (II B.8) and afterwards to perform the integration
over the wave number ¢ of the photon. This leads to the
following result for the transition matrix element

o rary ) K
uy K) |15 z>‘E2‘_—;2*'E>< &V (K)
(or 0| ms)
"-f——‘LKY)\p(K)
KZ_K2
<qulu">1m(l<) . (IT E.33)
K2
and
AE
K= (I1 E.35)
ke

The operator Lk is defined by (II A.35) and operates
on K. In the derivation of (33), we have used the
identities

[emLii@ v

=2m%%(g~ K)Lx V. (K), (1L E.36)
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and

f £y X L(jx(g7) Vru (0,0)) 7
= 272125 (g— K)KXLgV»,(K). (ILE.37)

The nuclear transition operators IM(EAu,K) and
M (MM u,K) are defined by (II B.16) and (II B.17),
where « is to be replaced by K. Whereas in the Coulomb
excitation the wave number dependence of the multi-
pole moments is usually unimportant, since (kR,<&1),
the K dependence of the nuclear moments in (33) is
essential. The last term in (33) arises from the multipole
expansion of the instantaneous Coulomb interaction,
and the transition operator involved is defined by

M(CA,p,K)= 2A41) 1K
Xfpn]'x(Kf)Yx,‘(Qzﬁ)d'r. (I1 E.38)

In the limit K—0, this operator approaches the moment
(IT A.11).

While the multipole moments 9(EX) and 9T(MN)
vanish for A=0, the moment (38) also gives rise to
electric monopole transitions.”

The differential cross section (II B.25) is now easily
obtained by performing the summation over the electron
spin indices and the nuclear magnetic quantum num-
bers. Using the identity

> (ki- KX LV, (K)) (k- KX L V3 (K))*
AQ+D (A1)

8T

[K%k;-k;— (k;- K) (ks K) ], (IT E.39)

mic® ki ky K
4 +—+———42 cos?
Rkks ks ki kiks
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and similar relations, one obtains

do= Z do—m‘f-z doan,

A=0

(11 E.40)

where

dr(\+1) K2 A
dom= (—) —[ B(C\K)V L(9)
he/ ALAHDIT k2 IN+1

+B(ENK)Vr(9) ]dxz, (I1 EA1)

dr(\+1) K2
o (ﬁo) AL &2
X B(MN,K) Vo (8)d.

(I E.42)

The reduced nuclear transition probabilities B(\,K) are
given by (IIB.23) in terms of the multipole matrix
elements involved in (33). The dimensionless functions
Vi(8) and V() are given by

2k 2k A 4-Am2c i — P — K

Vi=hit; - . (IIE43)
kedhr— K —2(k; K) (k,- K
VT=k,-k,( i e M ), (I1 E.44)
K2(K2—K2)2

and may also be expressed in terms of %;, ks, and & as

V(@)= X (IL E.45)
ki ky 2
——|————— 2 cosﬂ)
kf k k/ k,’ kf Kk?
( ) +( +4——- —+-——) —2 (2——[—2————— cos?+2 cos?d
ks kiks\k; ki ky ki Riky
r( (I1 E.46)
k: ky ki ks« 2
(——l———-2 cosﬂ)[ +———-2 cosz?]
kr ki ky ki kiky

It is noted that the angular dependence of the cross
sections is contained not only in the functions V' and
Vr and in the factor K2}, but also in the nuclear transi-
tion probabilities.

II E4. Classical Orbital Integrals

The orbital integrals I,(¢,£) [defined by (IT A.26)]
are the basic functions in the classical theory of Cou-
lomb excitation. In addition they provide an approxi-
mation, valid for # or / large compared with unity, for

the radial matrix elements in the quantum-mechanical
treatment [see (II B.100) and Table IT.17.

In this paragraph, we shall discuss some properties
of these functions, which are given by the integral

5,(8,8)= f ¢it (e sinhutw)

[coshw+e+i(e2—1) sinhw
(e coshw—+1)2#

dw, (II E.47)
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with

1

S (I1 E.48)
sin(¢/2)

0
I)\p, (0,&') =e (1r/2)€f g—te coshwgitw,

—w

Numerical values of I,(8,£) calculated in this way are
given in Table I1.12 for A=2 and for A=1, 3, and 4 in
reference 88.

A series representation of the classical integrals can

In-\(8,8)=2* sm*g exp[ g(__._ ot_)]{li(z\iz_s)_lz

2 (2a—1)!
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Values of 15, may be obtained directly by a numerical
integration of (47). However, due to the oscillations of
the integrand, which are especially pronounced for
large £, it is convenient to translate the path of integra-
tion by an amount of (r/2), whereby one obtains

[ sinhw+e— (e2—1)# coshw ]*

dw. (11 E.49)
(e sinhw--1) M= '

be obtained by performing the limiting process n— oo
in the radial matrix elements. For the integrals with
u=—N\ one gets directly from (II B.58) by a simple
confluence [see (II E.105)]

Wo(—22+1, —A+1—13¢ —A+144¢; 2, 2%)

+2 Qe[ (—A—i8) 2y (—N14-i8, A-14i§, —A+14iE; 2, z*)]}, (I1 E.50)

with
¢
z=§ cot——i)= —i(3/2)
2 2

(IL E.51)

2 sin—
2

We have here used the relation (II B.100) between the
radial matrix elements and the classical integrals, and
the limiting formula (II B.102). The confluent Appell
function ¥, is defined in (IT E.105). The integral with
p=NX is given by (II B.59) which leads to the relation
(3,8 = (=121, s\ (—9, £). (IIE.52)
The integrals with |u|\ can be obtained from the
expression (II B.62) by inserting the expansion of the
function F3 in terms of F, functions (II E.104) and
(IT E.97) and then performing the confluence. In this
way, one obtains, however, a nonterminating series of
¥, functions (see reference 45). A more convenient form
is obtained by means of the recursion formulas for the
orbital integrals. These may be derived from the recur-
sion relations for the radial matrix elements (see Sec.
11 B.4) by performing the limit y—c. From (II B.72)
one thus obtains the following relation

s 6[22

2¢ 1) Py
—Izo(ﬂ E) 2 tan?—
3 2

)+£(I 22 t12—2)

&+ ¢
-+ (tansa— tang) (Izz— I2,_2). (II E53)

As a function of the parameter £ the classical integrals

8 K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab
Mat. fys. Medd. 31, No. 1 (1956)

possess the symmetry property
I)\u(ﬂ') - E) = I)\,—u (072)7

which follows directly from (47).

For £=0, the integrals may be evaluated in terms of
elementary functions (see Sec. IT E.6).

In the limit of £>1, the integrals decrease exponen-
tially, reflecting the adiabatic character of the excitation
process, and the resultant f functions contain the factor
¢27¢.89 More detailed expressions appropriate to this
limit have been obtained by the method of steepest
descent.?

As a function of & or e the classical integrals have
symmetry properties of the type (52). For d== (or
e=1), the orbital integrals are independent of u. For
91 (e>1), the I), are simply related to the integrals
for straight line orbits, as is discussed in Sec. II E.7.

(I E.54)

II E.5. Electric Dipole Excitations

For A=1, the classical integrals can be expressed in
terms of Hankel functions.®-® By a partial integration,
one may write (49) in the form

e (TIDE o
f e—zc coshw+iéw
(e—=1)

X (1 sinhw-+€F (e2—1)? coshw)dw,

I, 1 (8,8 =—

(II E.55)

which, by means of the integral representation

K,(3)= f g2 cosht ity (II E.56)
0

for the Hankel function of imaginary argument,” can

8 I.. Landau, reference 1.
% G, Wentzel, Z. Physik 27, 257 (1924).
9 See Vol. II, p. 82 of reference 84.
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2 for all the integrals

). The subsequent columns give the values of I3, for the £ value indicated ; these entries are given in the form of a number followed

,£). The first column gives the deflection angle ¢ in degrees. The second column gives the valuesof Aand u (A
by the power of ten by which it should be multiplied. The data are taken from reference 88.

TaBiE I1.12. The classical orbital integrals for E2 Coulomb excitation. The table lists the values of the classical orbital integrals
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TaBLE I1.12.—Continued.
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TaBLE II.12.—Continued.

£=4.0

£=2.0

£=18

¢=1.6

E=1.4

Au

—-10)

~—

2.546 (—12)
2972 (=9)

1.411

—6)

~—

2.342 (=T7)
7455 (—5)

6.737

0 (=7)
(—95)
(=4

o
338

D vl vt

5

2.374 (—6)
5.574 (=95)
5.031 (—4)

7.613 (—6)
1.587 (—4)
1.269 (—3)

~e |
NN

30°

AUNNAN
oHANN
R
U
S8BT
333
AN v 00

N
~o |
AN
o
[

0

3.074 (—3)
8.700 (—3)
. 2.041 (—2)

5.000 (—6)
1.645 (—35)
4.629 (—5)

—-2)

~—

2.306 (—3)
5.628 (—3)
1.202

—5)

~—

7437 (—6)
1.909
4426 (—3)

3.085 (—3)
6.224 (-3)
1152 (—-2)

5.552 (=3)
1.084 (—2)
1.945 (—-2)

9.942 (—-3)
1.874 (—2)
3.251 (=2)

1.770 (—2)
3.211 (—2)
5.365 (—2)
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be expressed by
Iy, 11(8,8) = — 28— x/2t
(e—1)}

x[mg(se):t Kis(se)]. (I E.57)

€

The K’ represents the derivative of the function (56)
with respect to the argument.

The integral over the square of Iy, 11, which is needed
for the total cross-section function [see (IT A.31)7, can
also be expressed in terms of Hankel functions by means
of the Lommel integral formulas.? This leads to

2

; K (DK (D). (I E.58)

3
fr(®=—

In the limit of £-0, this expression diverges with the
following asymptotic behavior

3272 2
In—(1—wt+---). (II E.59)
9 ¢

fE1(5)=

The number v is given by

y=e=1.781---, (I E.60)

where C is the Euler constant.
In the limit £>1, one obtains from (58) the following
asymptotic formula

o art(140.0186 10 - )
9\/38 218¢~ .

fr(®)= (IT E.61)

Also the quantum-mechanical formulas for the elec-
tric dipole excitation cross sections can be expressed in
an especially simple form. The matrix element between
the scattering states in (IT B.34) is equivalent to that
involved in the bremsstrahlung cross section (see Sec.
IIE.1) and may be evaluated by expressing the
Coulomb wave functions in parabolic coordinates,’

The resulting expression for the differential f function
may be written?9 8.8

2mniny e

9&2 (eZﬂ‘m'_ 1) (627"][_ 1)

3
del(ﬂ,"’li:E) =

d d
X—1 —x— , F('—ini) _iﬂf, 17 x) ] 2 dQ7 (II E62)
dx dx

where F is the hypergeometric function (I E.84) of the
variable

4y
£
92 See p. 133 ff of reference 40.

sin®-. (IL E.63)

r=—
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For the total f function (IT B.39) one obtains?® %5

327t

e2mni

HE)=— (—x0)
fE1(n3,8) o ety "
d . .
X__iF(_'”H: -y, 1; xo) 127 (I] E64)
X
with ’ .
NN
o= —— (IT E.65)
£2

Since the variable x, is always larger than unity, it is
necessary for the numerical evaluation of (64) to use
the analytic continuation (IT E.87) of the hypergeo-
metric function. After differentiation one obtains in
this manner

( ) 327!'3 NNy 1
’71‘;5 =
I 0 £ evt—1
1 1
Xgmt—F(im, M4, 1~i£;—)
i Xo

1
X[F(l—im, —ing, 141§, ——-)
%o
1
+e"*"F(1—inf, —iny, 1—1&; —)]
Xo

+mznf}, (I1 E.66)

where 727, implies the addition of terms with »; and
1y interchanged, and where

o=2arg{T G (in:)/T (ins)} +EIn| o |
In the limit of £&1, the expression (66) reduces to
3272

9

(II E.66a)

27
Fa(no)= (ln?-l-\//(ﬁ—@e{‘ﬁ(in)}), (I1 E.66b)

where ¢ is the logarithmic derivative of the I' function.

The classical limit (n—®) of fr1(n:,%) may be ob-
tained by performing a confluence in the hypergeometric
functions in (64). This leads to the expression (58).

The E1 Coulomb excitation process is closely related
to the problem of the excitation and ionization of atoms
by fast charged particles. The atomic stopping power
may thus be written in the form

1 dE .
——=3 om(i—f)(E;—E)),
N dx 7

(I1 E.67)

where N is the number of atoms per unit volume and
dE/dx the energy loss of the particle per unit path
length.
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In order to compare (67) with the usual form for the
stopping power, it is convenient to introduce the atomic

oscillator strength for the transition +— f defined by
8 m
siy=— ——B(E1;i—f)(E;—E;), (II E.67a)
9 ¢h?

where m is the electronic mass and where s;; is normal-
ized in such a manner that the total oscillator strength
equals the number of electrons in the atom. The expres-
sion (67) may then be written in the form [see (I1 B.37)]

1 dE 7%t 9
——=am 2 Si—fm(ns,ti5), (ILIE.67b)
N dx mv? 5 32x?

where 7 and £ refer to the collision between the incident
particle and an atomic electron; the influence of the
nuclear field on the motion of the particle is of minor
importance. In the case of collisions with fast particles,
the values of &;; for the important transitions are small
compared to unity, so that we may use the asymptotic
form of fg; for £K1.

When the collision can be treated by classical
mechanics (7>>1), it is thus seen from (59) that (67b)
gives the classical stopping formula.®* In the opposite
limit of #n<1, where (24) applies, one obtains the
stopping formula derived in Born approximation.®? The
more general quantum-mechanical expression for the
stopping power,”¢ valid for all 9, is obtained from (67b)
by inserting (66b).

IT E.6. Limit of £=0

In the limiting case of £=0, several expressions from
the general theory of Coulomb excitation reduce ap-
preciably. In the  classical theory, the exponential
factor in the orbital integrals (47) disappears and the
resulting integrals can be performed explicitly in terms
of elementary functions.® Thus, one obtains

-]
Iha(8,0) = (€— 1)+ f ¢in (e cosp—1)*1deb

—¢0
=(2m) (A —1)le¥(2—1)—ND+1/4
1
xP,‘_%-*H(—). (I1 E.68)
€

We have here introduced the azimuthal angle ¢ of the
projectile given by [see (II A.22)]

(e2—1)} sinh w

tan¢ =——————, (II E.69)
e+cosh w
and the limits ¢, are
T &
¢o=tan_1(€2—1)%=5——2-. (II E70)

% (a) N. Bohr, Phil. Mag. 25, 10 (1913); see also reference 19.
(b) H. A. Bethe, Ann. Physik (5) 5, 325 (1930). (c) F. Bloch,
Ann. Physik (5) 16, 285 (1933).

MOTTELSON, AND WINTHER

In the last expression in (68) the integral has been
expressed in terms of Legendre functions of half-integer
order.

For the lowest multipole orders, one obtains the
following explicit expressions

&
Il, i](l’,O) =2 sin;,

2 ¢
Is, 1 2(8,0) =~ sin’>—,
3 2
0 T ¢
IT90(8,0)=2 tan2—|:1 - tan—],
2 2
L4 10(80) 4 319
3, +3(3,0) =— sin®-,
PEREY ST
& ¢
sin®- | 2+4sin?—
2 =% ¢
I3.:|;1(0,0)=2 - tan—|,
D 3
cos*— (ILE.71)
L nd(8.0) 4 419
 44(8,0) =— sin*—,
b 35 2
& ) ¢
sin‘—| 849 sin?>~—2 sin*—
2.0 2 2 3x—9 &
I 12(83,0)=2 - tan—|
b 20 4 2 2
cost—
0
345 tan®-
D) 2 11 7=—2 2
[40('0,0):2 tanL } —_——
2 3 6 2 3
3 sin’— 2 tan—
2

The differential f functions are given directly in
terms of these integrals by means of (II A.29) and
(IT A.51) and the results are illustrated in Fig. IL.7.

The total f function is obtained from df by an inte-
gration over the deflection angle ¢. This integration can
also be simply performed, and one obtains

8rtym? 1

87278 2
fE3(0)=——(——~a) =0.03797, (IIE.72)

49 \45
) 8"2(”2 5) 0.1936
S0 =25\ 3675) =016

For A=1, the f functions diverge in the limit £-0.
9 See p. 159 of reference 84.
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The a coefficients in the angular distribution of the
de-excitation v rays (ITI A.75) also involve ' integrals
over ¢ of the orbital integrals. From (IT A.75), (IT A.76),
and (IT A.77) one obtains

a?1(0)=1,
217%2—208
27?2 (0) =———=—0.05425,
3r2—16
(IT E.73)
44172 —4352
a4F*(0)= ——— = —0.0007587,
48(372—16)
dng(O) =1.
1 1
My =My, e ———
2k |IH14in|
1 1
My =Mye = - —,.
6 |I4+1-+in| |1+2+4in]
1
=2+ 1— 7429 Imy (I+1417) ],
L aa) @) -
k 1

My s t=Mys i t=

k

15 |I+1Fin| |IH2+Hin| [i43+in|

483

Also in the quantum-mechanical treatment, the case
£=0 is especially simple. For the matrix elements with
l;—1l;= =X\ the last term of (II B.58) vanishes (forA>1)
and the first F, function is unity. For £=0, one thus
obtains for these matrix elements

My 23 E=0)= My, 7 1(£=0)
CO—D'P| T(+1+in)
@A—=1)! |[T(4+A+1419)

where n=n;=1;. This formula may also be seen to hold
for A=1. The matrix elements with |l;—I;| <\ may
most easily be obtained by means of the recursion
formulas (II B.72) and (II B.68). For the lowest multi-
pole orders, one obtains the following expressions?

= (2k) , (ILE.74)

(I1 E.75)

Myyi =My,

3104 1) (14-2) 2I-1) (23) [ 141 +in |

X3 |I4+-14in | 2[20+1—mn+27 Smp (I4+-14in) 1= 1(+1) 2141)}.

The imaginary part of the logarithmic derivative ¢ of
the I' function can be expressed by elementary functions
through the relation

gmp (I+1-+1in)
1

!
=g cothmy+9"1—29 >
=0 7% +-?

(IL E.76)
In the classical limit (p—), the matrix elements (75)
are related to the above calculated orbital integrals (71)
by means of (IT B.100).

To obtain the differential and the total f function as
well as the y-ray angular distribution functions, a sum-
mation over the angular momentum has to be performed
[see (11 B.48), (I1 B.50), and (II B.85)]. For large I,
the terms in these sums decrease as /=21, For A=1, the
total ffunction as well as the & coefficients diverge, and

one obtains
a1 (9,0)=1. (AT E.77)

For A>1, the convergence is rather slow and may be

improved by employing the Euler sum formula. It
should be pointed out that the convergence for £#0 is
more rapid due to the adiabatic cutoff for high ’s; the
sum then becomes a geometric series.

I1 E.7. Limit of Large Orbital Angular Momenta

An interesting limit of the Coulomb excitation matrix
elements is that of >>1.9¢ As pointed out in Sec. II B.6,
the radial matrix elements in this limit can be expressed
by means of (II B.100). This result can be obtained by
employing the WKB approximation or by performing a
confluence in the explicit expressions for the radial
matrix elements, and holds for >>1 irrespective of the
value of 7.

If I>>y, the deflection angle of the associated classical
orbit is small (#=29/1) and the orbits approach straight
lines. It is thus of interest to compare the I, with the
corresponding integrals for straight line orbits given by

9% For A=2 these results have been given by L. C. Biedenharn
and C. M. Class, Phys. Rev. 98, 691 (1955).

96 This limit has been studied by Gluckstern, Lazarus, and Breit,
reference 18.
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[see (IT A.24)]
w [p-+dve e

I3t (3 =M. tw?, dt
An ( 18 (43 7)];08 [p2+(w)2]%0+”+1)

©  [14isinhw]*
— e—)\f ezEe smhw—__._._.dw, (II E78)
" (coshw)>#

where p is the impact parameter. We have introduced
the parameters #=2a/p and e=p/a which, for p>>a,
correspond to the deflection angle and eccentricity of
the hyperbolic orbit with the impact parameter p.

The integral (78) is the same as the limit of (47) for
e>1 except for the phase factor e#». The effect of this
factor may be seen by transforming (47) according to
(49). In the latter form the phase factor ¥ can be
neglected for large e and we thus have the relation

Inu(8,8) = e~ IV, 549, 8), (IL E.79)

holding for 9<1.

The large difference between the orbital integrals for
straight line and hyperbolic orbits in the case of £>1 is
associated with the fact that for such values of £ the
integral is very sensitive to the impact parameter. Thus,
an increase of p by the amount a, which represents the
order of magnitude of the displacement during the
collision, implies a reduction of I, by a factor of the
order of that involved in (79).

Since the I,,* corresponds to the neglect of the
Coulomb force on the motion of the projectile, these
integrals are for large / related to the Born approxima-
tion radial matrix elements by an equation analogous
to (IL B.100). From (79) we thus obtain

My @DE 1,1 (Born appr.), (I1 E.80)

holding for Z;, I/>>1. This relation shows that the
Coulomb phase in the wave functions, for large /, gives
rise to a simple factor, independent of 2.9

The integral (78) can be expressed by means of the
Whittaker function % in the form

£ —1)/2
I)\"at(ﬂ’g) = (_. 1) (\tu)/2¢—1 (.2_)
€

—Ap+1
XTI (———2——) Wo_sre,—a2(28¢). (11 E.81)

Plag _Z)_I‘('v)l‘(ﬂ—a)
Y B (r—a)

I'(7)L (a—8)

MOTTELSON, AND WINTHER

For large values of e £ one obtains by employing the
asymptotic expansion of the Whittaker function?-8

2T
A1—u
o(%5)
2

X ekeg i1 [2(2 )~ OtutD) /2,

I)\#at(ﬁ,g) ~

(II E.82)

For the radial matrix elements in the limit >>1, one
thus obtains the result

B2 2w
My te—o

4 AF1—p
"(57)
2

X EO—u=1)12(2] /)~ OckutD 2,

o (Untri2E

(I E.83)

A more accurate result may be obtained by an expan-
sion of the Born approximation radial matrix elements

(31) employing (86).

II E.8. Some Properties of Hypergeometric Functions

In this paragraph, we shall collect some formulas for
hypergeometric functions which are of interest in the
theory of Coulomb excitation.!

The ordinary hypergeometric function of one variable
is defined by the series expansion

F(a,ﬁ,’y; z) =Z a"ﬂmzm’

m Ymhh:

(11 E.84)

where

T'(a+m)
=

—W=a(a+1)‘ .. (a—;—m—l). (IL E.85)

This series is only convergent for |z| <1. However, the
analytic continuation can again be expressed by hyper-
geometric functions. We note especially the Kummer
transformation

Plafyy; 8)=(1—z)<F (a, y—B,7; —ZI) (I E.86)
z——-

and the relation in terms of the reciprocal argument

(=2 F (e, 1 =7+, 1-B+a; 1/2)

(—2)"fF (8, 1—y+8, 1—a+B; 1/2). (11 E.87)

T (@T'(v—6)

97 In the applications of the relations (79) and (80) in reference 96 the exponential factor has been omitted.

9 See p. 274 of reference 84.
9 See p. 278, reference 84.

100 Most of these formulas may be found in reference 84 or in the treatise by P. Appell and J. Kampé de Feriet, Fonctions

Hypergéométriques efc. (Gauthiers Villars, Paris, 1926).
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The analytic continuation is also given by the integral representation

r'() !
F(aByy;2)=—— f w1 (1— )71 (1 —uz)~*du, (II E.88)
T (y—,)
valid for ®Re8>0 and Re(y—B)>0.
When one of the parameters a or 8 tends to infinity while z becomes small, the function (84) approaches the
confluent hypergeometric function

lFl(ay'Ys z) hm F(a,ﬁ,’y,

m (I E.89)
" 'vmm'

which is convergent for all z.
From the formula (86) one obtains the Kummer transformation for the confluent function

1Fi(a,y; 2)=e4Fi(y—a, v; —2). (I1 E.90)
An integral representation of the function 1F, is given by

I'(v) !
1Fi(ayy; 8)=——""— f e*te1(1—) 714, (IT E.91)
I (@I (v—a)
valid for Rea>0 and Re(y—a)>0.
Among the hypergeometric functions of more than one variable, the simplest are the so-called Appell functions.
We shall here be concerned with the functions Fy, Fs, and F; deﬁned by the series

m+7ﬁmﬂn, | X l <1
Fl(aaﬂyﬁ R ERS ;y) Z —— ”‘y" ) (II E92)
Yyt 0! ly] <1
am—i—nﬁmﬁn
Fz(a,B,ﬁ By =2 ————amyr x|+ |y <1, (ILE.93)
mn Y'Y n 'wmin!
amanlﬂmfgn le <1
F3(a’a ,:3)6 Y3 % )y) Z ——‘———x’”y” y (II E.94)
e yli

whose regions of convergence are indicated.
These functions have properties similar to those of the hypergeometric functions of one variable. Thus, for the
function F, there exist transformations of the Kummer type

X y
F2(a,B7B,"Y”YI; x;y)= (1 y)—an(a, ﬁ: 'Y :8 Y 'Y y T ——_)
1—y y—1
¥ y
aty—1 xty—1

For special values of the parameters, the Appell functions reduce according to the following relations

= (1-—x~y)““F2(cx, =8, 'Y,_)B,} s 'Y,; ) (II E95)

xy
F (aﬁﬁlsa;a; x’y) = (l_x)—ﬂ(l—y)—ﬂ,F(ﬁy ‘3/: a; ), (II E96)
2 (1—2)(1—9)
X
Fiaf 1 29)= (=92 Fo( B, 0=, 8, v —— ), (I E97)
-y
y
Fl(‘x’ﬁiﬁlﬁ’; x:y) = (l—y)_ﬁ’Fa(a, YT—a, 67 ; V5%, -—r_ (II E98)
-y

The analytic continuation of the function F3 can be expressed by four F; functions of the arguments 7%, y~!
as follows:
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F3(ad 8,875 %,9)

T (E—aT(E'—)
T (y—a—a)

T (B—a)T (@'~
TN () (y—a—B)

| EZ))II:EZ')P?:—(Z—(:S (=) 2(=9) < Fo( B+ +1-7, 8, o/, f+1~a, o +1—; i i)

T AT (' —F)

T(@T@)I (y—B—8)

The analytic continuation of the function Fj can, in the general case, not be expressed in terms of Appell functions,
but may be given by the integral representation

FZ(a,ﬁ,ﬂ',‘Y{Y'; x’y)

11
<—x)—a<—y>—u'F2(a+a'+1—~/, o at1—6, d'+1—f'; -, —)
Xy

11
(_x)_“('—y)_ﬁ'Fz (a+ﬂl+1—7) «, ﬁ’: at+1-8, B,+1'—a,; ) _)
%y

11
(—x)“*(—y)""Fz(ﬂ-l-B’-i-l—% 8,6, 8+1—a, f'+1—a'; -, -)- (I1E.99)

xy

_ INCOINCD)
T ET (v—E)T (v'—8")

valid for Ref>0, ReB’>0, Re(y—pB)>0, and Re(y’—pB’)>0. One of the integrations can be performed according
to (88) yielding the result

1 1
f f dudoub=128"1 (1— 1) 1-8-1(1— ) ¥ ~#"1(1 —sm—y)— (1L E.100)
0 0

INCD) !
Fay(a,8,8' 7Y 2y)=—— f d””ﬁ'_l(l‘“v)"'_ﬁ'_l(l—vy)""‘F(a B, v; ) (IT E.101)
S @Iy —8) o Y
A similar integral representation of Fi is given by
, Iv) ! ,
Fl(axﬁyﬂ Y5 x;y) = < f duua—l(l__u)'y—a—l(l ““x)"ﬁ(l“—%y)—ﬁ ’ (II E102)
I'(@)T'(y—a) Yo

valid for Rea>0 and Re(y—a)>0.

There exist a large number of relations by which one may expand one Appell function in terms of other hyper-
geometric functions. An expansion of F, is obtained from (101) by transforming the F function according to (87)
and (86). By the integral representation (102), this leads to

P(ﬂ)r('yl)r('y_ﬁ)r(ﬁl—a)(_ )_a( y )a—7'+1
TG —a) O \y—1
(1'_ ! m 1— '+a m
xZ e (= 1)="Fs( 8, —m, a—r+14m, 75, —
m (1= +a)um! 1y
TONCC-ANS) (_y_)HIH
T(NT (T (' —8") y—1
1=a)m(1=7"+8)m
> V)
m (14 —c)mm!

A similar relation for F3 is given by

F2(ayﬁ;6177771; x:y) =

%
(y— 1)"”F1(ﬁ, a—p'—m, ' —'+14+m, v; %, -1—) (ITE.103)
-y

(’Y_ﬁ_ﬂl)mam’

Y|

x
(—y)mF1(7—ﬁ+M, a, al+'m'; 'Y+m; __i y) (II E104)

F3(a;a,7676'77; x;y) = (l_x)—a Z )
m x—

For large parameters, the Appell functions reduce to confluent functions. Thus, for the F; function with 8, 8’

large, one obtains
Amin

xy
\Ilz(a:’YfY,; x:y) = lim F, (ayﬁaﬂly'Y}'Yl; ) _) = Z xmy", (II EIOS)
Bifrro B B'7 mnymy.min!

which is convergent for all x and y.



COULOMB EXCITATION

CHAPTER III. EXPERIMENTAL CONDITIONS

In the present chapter, we consider the conditions for
the experimental investigations of the Coulomb excita-
tion process. Section IIT A deals with the requirements
on the ion beam, and the following sections treat the
problems connected with the observation of the nuclear
excitations. These can be detected by observing either
the v rays (III B) or the internal conversion electrons
(III C) which are emitted in the decay of the excited
states. It is also possible to detect directly the inelas-
tically scattered projectiles (III D).

III A. Beam Requirements

The range of projectile energies which can be em-
ployed in the excitation of a given nuclear level is
limited on the low-energy side by the condition that the
collision time must not be longer than the nuclear
period, since otherwise the collision becomes adiabatic
and the excitation cross section small. On the other
hand, for too high bombarding energies, the projectiles
may penetrate into the nucleus, and the interpretation
of the observed excitations then becomes more difficult
due to the onset of proper nuclear reactions.

For the Coulomb barrier we may write

Z1Z262
B— 9

R

(I11.1)

where R is the effective radius of interaction which may
be represented by

R=reAs+op. (IIL.2)

The radius of the projectile is denoted by p and is taken
to be zero in the case of protons. If one neglects p and
assumes 7o=1.5X 107" cm, one obtains the approximate
estimate

EB&“ZlZgA 2_% Mev. (III3)

Even for bombarding energies somewhat smaller than
(1), there may be a significant quantum-mechanical
penetration of the barrier. This effect is less important
when heavier projectiles or target nuclei are involved
(see Fig. II1.1). Furthermore, even if the cross section
for compound nucleus formation exceeds that for
Coulomb excitation, it may still be possible to observe
the latter effect, since the compound nucleus usually
decays predominantly into other channels than that cor-
responding to the inelastic scattering (see Sec. IV A.5).

The low-energy limit to the bombarding energy may
be expressed by the condition #51 [see (IT A.27)7.
According to (II C.13), this condition may also be
written

ey 20.221(A1/ Z1)}(Z2AEnvev)t, (II1.4)

where Emev and AFEney are the bombarding energy and
the excitation energy in Mev. In (4) we have neglected
the center-of-mass corrections and the relative energy
loss AE/E.
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F1c. III.1. Cross sections for compound nucleus formation.
The figure gives theoretical estimates of the cross sections as a
function of the ratio E/Ep, where E is the kinetic energy in the
center-of-mass system, and where Ep is the height of the Coulomb
barrier. The curves are labeled H for protons and « for a particles,
whereas the numbers indicate the charge number Z; of the
target element. The cross sections are taken from the tables given
by J. M. Blatt and V. F. Weisskopf [ Theoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952)], and correspond
to an effective interaction radius given by (IIL.2) with 7o=1.5-10"13
cm. The value of p is taken to be zero for protons, and 1.2-107% cm
for o particles.

If the conditions (4) and E<Ep are expressed in
terms of £, one obtains, employing the estimate (3)

Ay Ao\t ABEey
(_‘__2) M <t
Zy Z» 13

(ITL5)

for the usable range of £ values.

From (5) it follows that the various types of acceler-
ated ions can be used in approximately the same range
of & values. Moreover, it is seen that, by employing
sufficiently high bombarding energies, it may be pos-
sible to excite levels with AE as high as 5 Mev. Since,
however, AE must be small compared to E, it is neces-
sary in the Coulomb excitation of such high-lying levels
to employ high energies, and thus rather heavy pro-
jectiles, especially in the case of light target nuclei.

For a given value of £ the cross section for an
excitation of multipole order EN is proportional to
Z2(A1/Z4)™3 [see (IT C.13), (I C.15), and (II C.16)];
thus, the largest cross sections are obtained with the
heavier projectiles. The advantage of the heavier pro-
jectiles is even greater in the case of higher order
excitations (see Sec. II D).

In order to obtain the same ¢ value for the different
projectiles, it is necessary that they be accelerated to
energies which are proportional to Z;(41/Zy)}. For a
given acceleration voltage this may be approximately
achieved, provided the ions can be completely stripped
of electrons. However, if this is not the case, the relative
magnitude of the excitation cross sections obtainable
with different projectiles depends essentially on the
available voltage. ,
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Fic. IIL.2. Relative excitation- cross sections for different
projectiles. The curves show the ratio of the theoretical E2 cross
sections for Coulomb excitation with deuterons, « particles, and
carbon ions, to those for protons of the same energy. The ratios
also depend on the excitation energy AE and the atomic number
Z, of the target nuclei, but can be expressed approximately as a
function of the single parameter E(Z:AE)~%.

For projectiles having the same energy, the cross
sections for E2 excitations are compared in Fig. IT11.2.
The cross sections are proportional to the mass of the
projectiles when the excitation energy is so low that the
£ values are much smaller than unity. In such cases, the
excitations are best produced by bombardments with
the heavier particles, in contrast to the higher lying
levels which are more easily excited by means of pro-
tons. In the case of thick target experiments the yield for
protons is always larger than for heavier projectiles of
the same energy, due to the larger range of the protons.
On the other hand, the background radiations produced
by a-particle bombardments are in general considerably
smaller than those produced by protons (see later dis-
cussion), and this may, therefore, often be a compen-
sating consideration.

Apart from the question of which type of projectile
provides the optimum conditions for Coulomb excita-
tion under given experimental circumstances, it is often
a great advantage to be able to compare the yields for
different projectiles. Not only does such a comparison
constitute a very direct test of the Coulomb excitation
character of the process, but it may also yield additional
information about the multipole order and the excita-
tion energy (see Sec. IV A.1).

The absolute values of the excitation cross sections
depend on the reduced transition probabilities B(A).
The largest cross sections are associated with the col-
lective excitations of low energy, which are produced
by E2 transitions (see Chapter V). As an example,
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cross sections of the order of millibarns are observed for
the excitation of rotational levels in heavy elements
with 2-Mev protons. Because of the nonresonant char-
acter of the process, such cross sections imply thick
target yields of the order of 107 excitation per proton.
Thus, the demands on the current as well as on the
energy homogeneity of the beam are often rather
modest.

So far most Coulomb excitation experiments have
been performed by means of protons, deuterons, and «
particles, accelerated in electrostatic generators, It has
also been shown that it is feasible to make such experi-
ments with external ion beams from cyclotrons.2!

III B. Measurements of De-Excitation
Gamma Rays

IIT B.1. Detection Technique

The great sensitivity and simplicity of the scintilla-
tion spectrometers employed in +y-ray measurements

INTENSITY (ARBITRARY UNITS)
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Fic. IIL.3. Gamma rays from the Coulomb excitation of gold.
The figure shows the pulse-height spectrum observed with a
crystal scintillation spectrometer [Cook, Class, and Eisinger,
Phys. Rev. 96, 658 (1954)]. The excitation was produced by
bombardment of a thick Au target with 3-Mev protons. The
peaks C; and C. correspond to the transitions from the first two
strongly excited levels to the ground state, whereas the peak
a is due to the characteristic x-rays which follow the ionization of
the K shell. The 191-kev peak corresponds to a weaker excitation
of a level at 268 kev (see Table IV.2), and b is an escape peak
(Compton peak) belonging to the C; line.

have rendered these instruments the most widely used
detectors in experiments on Coulomb excitation. Typical
examples of the pulse-height spectra which have been
obtained in this way are given in Figs. II1.3, 4, and 5.

The comparatively poor energy resolution of the
scintillation spectrometers is often a disadvantage, espe-

101 Such experiments have been carried out in Ziirich with
7-Mev protons (private communication from P. Marmier) and

in Leningrad with 15 Mev (N¥)*** jons (Alkhazov ef al., see
reference 15),
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cially for low-energy radiation, where the background
of x-rays is large (see Sec. III B.3). Some improvements
can be obtained by using the spectrometer in combina-
tion with various absorbers. The absorption coefficients
are strongly energy dependent in this region and the
effect of the absorbers is therefore dependent on the
energy distribution of the radiation. This is illustrated
in Fig. IIL1.6, where the background peak is seen to be
suppressed relative to the peak due to Coulomb excita-
tion, when the absorber thickness is increased. In cases
where a peak is composite, this may be revealed by a
change in the shape of the peak when the absorbers are
introduced. The measurement of the absorption coeffi-
cient can also sometimes be useful in providing an
independent energy determination which makes it pos-
sible to avoid misinterpretations of the experimental
spectra, e.g., due to coincidences or to the so-called
escape peaks.
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Fic. II1.4. Gamma rays from the excitation of separated
isotopes of tungsten. The v rays are observed with a crystal
spectrometer and result from bombardments of thick WO targets
of the separated isotopes with 2.5-Mev protons. The pulse-height
spectrum is taken from McClelland, Mark, and Goodman [Phys.
Rev. 93, 904 (1953)]. The three v rays represent the first excited
states in the even-A4 isotopes.

The large yields for the Coulomb excitation processes,
which are encountered for low excitation energies, also
make feasible the use of proportional counters for the
detection. The comparatively high resolution of this
type of counter may in such cases be of greater impor-
tance than the correspondingly lower efficiency. The
Coulomb excitation of some of the heaviest elements has
recently been studied in this manner (see Fig. IIL.7) .10

Besides the efficiency and simplicity of the scintilla-
tion detector, the observation of the y radiation has
several other intrinsic advantages associated with the
relatively small scattering or absorption in the target.
This facilitates the measurements of angular distribu-

018 Note added in proof.—The very high resolution of the bent
crystal spectrometer has recently been employed in an experiment
performed with the high current (~100 mA) from a linear ac-
celerator (private communication from H. Mark).
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F1c. IIL5. Gamma rays from the excitation of europium. The
v rays resulting from a bombardment of a thick EusO; target
with 6-Mev « particles are observed with a crystal spectrometer.
The pulse-height spectrum is taken from N. P. Heydenburg and
G. M. Temmer [Phys. Rev. 100, 150 (1955)]. All three lines are
assigned to the isotope Eu'®; the C; and C; lines correspond to
the ground-state transitions from the first two rotational excita-
tions, respectively, whereas the Ca line represents the cascade
transition from the second to the first level.

tions, since the correction for the target thickness is
usually small. An example of the measured y-ray angu-
lar distributions is shown in Fig. TIL.8.

If one wishes to determine directly the total y-ray
yield, one may either employ a 2w-geometry,? or one
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Fre. IIL.6. Effect of absorbers in y-ray measurements. The
figure illustrates the effect of Cu absorbers inserted between the
crystal and the target when Ta is bombarded by 1.75-Mev
protons. The pulse-height spectra, obtained with a thick target,
are taken from T. Huus and C. Zupan&i¢ [Kgl. Danske Videnskab.
Selskab Mat.-fys. Medd. 28, No. 1 (1953)]. With a 3.5-mm copper
absorber the characteristic x-rays from the K shell are strongly
reduced, while the 137-kev C; line from the decay of the first
excited nuclear state is much less affected. The spectra also
show an escape peak associated with the x-rays.

12 N, P. Heydenburg and G. M. Temmer, Phys. Rev. 100, 150
(1955).
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Fi1c. II1.7. Gamma rays from U%% observed with a proportional
counter. The pulse-height spectrum is obtained with a xenon-
filled proportional counter when a target of U235 is bombarded by
3-Mev « particles. The figure is reproduced from data communi-
cated to us by J. O. Newton (unpublished). The lines correspond
to the ground-state transition from the first rotational state and
the cascade transition from the second rotational state.

may make the observations at an angle of 55 or 125
degrees with respect to the beam.!” For these angles, the
P function in (II C.26) and (II C.29) vanishes, and
since the coefficient of P4 in (II C.29) is almost always
very small, one observes a yield approximately propor-
tional to the cross section averaged over all angles.

IIT B.2. Thick Target Yields

The small scattering and absorption of the v rays in
the target make it possible to employ thick targets in
the measurements of the excitation cross sections and
of the angular distributions. The determination of the
cross section from the observed yield then involves
either a differentiation of the yield as a function of the
bombarding energy, or an integration of the theoretical
excitation function along the trajectory of the projectile
in the target.

It is convenient to express the result of the latter
calculation in terms of an effective target thickness 6FE,
which is related to the true thick target yield by

EN SE)\

¥=o(f) (dE/ds)o Ey

(IIL.6)

where ¥ is the fraction of the incoming particles which
produce the nuclear excitation and N the density of the
investigated atoms in the target. The stopping power
of the target material is denoted by dE/ds and is
evaluated at the bombarding energy E,. Thus, the frac-
tion 8E»/E, represents the ratio of the observed yield
to that which would result if the excitation cross section
o and the stopping power were independent of the
energy of the projectile and had the values correspond-
ing to the energy E.

The calculation of 6E)\ has been performed assuming
dE/ds~E~-%, This energy dependence represents

103 P, H. Stelson and F. K. McGowan, Phys. Rev. 99, 112 (1955).
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rather well the stopping power of protons and « par-
ticles in almost the entire range from the lowest
energies employed in Coulomb excitation experiments
and up to energies equal to the Coulomb barrier.1

By means of the theoretical excitation cross section
(IT C.15) one then obtains

RYON 1 fl ( )d{' (L)
=T un(7,$)—, .
Ey  un(v,$0) Yo ¢
where the functions #, are defined by
() =M A=) (). (IIL8)

The relations between the parameters (»{) and
(n:,€) are given by Egs. (II C.11) and (II C.12), and
the subscript zero indicates that the values correspond
to the bombarding energy E,. The values of 6\ com-
puted from these formulas are given in Fig. III.9 as a
function of &, for the case »—0, which corresponds to
the classical limit. The results are rather insensitive to
the assumed energy dependence for the stopping power,
due to the rapid variation of o with the energy of the
projectile for all but the smallest £ values. Even in the
extreme case of £=0, the value of 6E; will be changed
by only 89, of its magnitude if, instead of E—-% one
employs the rather different energy dependences E%3
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F1c. ITL.8. Angular distribution of vy rays from gold. The figure
shows the angular distribution of the two intense v rays resulting
from the Coulomb excitation of Au'®’ (see Fig. I11.3). The data is
taken from Cook, Class, and Eisinger [ Phys. Rev. 96, 658 (1954)].
The curves represent a least-square fit to the experimental data.
For the 555-kev « ray the distribution corresponds to the sequence
3/2(E2)7/2(E2)3/2 of spins and multipolarities (see Table IV.2).
For the 279-kev v ray the angular distribution indicates the
sequence 3/2(E2)5/2(M1+4+E2)3/2 with an E2 intensity of
approximately 409, in the decay radiation.

4 Cf. J. Lindhard and M. Scharff, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 27, No. 15 (1953).
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Frc. ITL.9. Effective target thickness. The curves give the ratio
8Ey\/E, which enters into the determination of the theoretical
thick target yields [see (II1.6)]. The ratio has been computed
from (II1.7) by means of the classical f functions (»=0) for
electric excitation of multipole order A=1, 2, and 3; the stopping
power has been assumed to depend on the energy of the projectile
as E-55, The abscissa gives the £ value corresponding to the
bombarding energy Eo.

or E~0-7 for the stopping power. The curves in Fig. II1.9
should thus be applicable to all target materials, in-
cluding compounds, and the uncertainties are expected
in most cases to be less than 29,. Also the effect of the
energy straggling, which is neglected in (8), is smaller
than this amount. ,

For finite values of the parameter v, slightly different
curves are obtained, but, to an accuracy of better than
a few percent, they can be found from the curves for
v=0 by multiplying with a correction factor which is a
function of the product »& or §o, only. This correction
factor C is given in Fig. TII1.10 together with a curve for
the determination of the £ value [see (IT C.12)].

For the angular distribution coefficients @;¥* appro-
priate to thick target measurements, one obtains in a
similar way the expressions

1

g
a1, )un (v,8)—
$o

ai” (V7§-0) = 1 )

g
f u)\(V,ﬁ‘)-—
% -

(I11.9)
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Fi1c. II1.10. Correction factor to the effective target thickness.
The quantity C gives the factor by which the value read from
Fig. II1.9 should be multiplied in order to take into account the
finite value of » [see (II C.10)]. This correction factor may be
represented approximately as a function of the single parameter
$o [see (IIC.4) and (ILC.5)]. The ¢ value (II C.12), to be
employed in the reading of Fig. IIL.9, can be obtained from the
v£q curve, which is shown in the present figure.
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where a;”* are the thin target coefficients [see (II B.83),
Fig. I1.8]. The values for the thick target coefficients
are to a good approximation the same as those for the
thin target coefficients, if the latter are evaluated for a
bombarding energy which is smaller than the actual one
by the factor (14-8E)/Es). The estimated errors are
less than three percent under the condition that the
coefficients can be considered to depend linearly on ¢
within energy intervals of the order of §E,.

The multiple scattering of the projectiles in the target
gives rise to an angular spread of at most a few degrees
for a target thickness of 6 E,.!% The effect on the angular
distribution of the v rays is thus of minor importance.

IIT B.3. Background Radiation

When one studies the radiations following Coulomb
excitation, it is of course not only important that the
absolute yield is sufficient to give a reasonable counting
rate, but also that the yield relative to the existing back-

195 See, for example, reference 19 and also T. Huus, Kgl. Danske
Videnskab. Selskab Mat. fys. Medd. 26, No. 4 (1951).
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Fic. IIL.11. Effect of impurities in y-ray measurements. The
pulse-height spectrum, obtained with a crystal, has been observed
in the bombardment of a thick LusOs target with 2.6-Mev protons
[McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 8955)].
In addition to the peak @ which corresponds to a 240-kev v ray
from the cross-over transition from the second excited state in
Lul?, other peaks are observed, arising from the presence of
light elements in the target. The peak b at 439 kev is assigned
to sodium impurities, and the peak ¢ at 490 kev to the O (p,y)
process. The peaks d and e at 0.843 Mev and 1.017 Mev, re-
spectively, are ascribed to inelastic scattering in aluminum,
contained in the target material as an impurity; nominal purity
of the sample was given as 99.9%,.

ground radiations is high enough to be detectable in the
actual experiments.

The background arises partly from external sources,
such as the radiations from the accelerator, or from
reactions with impurities in the target and with sub-
stances chemically bound to the element under investi-
gation. Thus, oxide targets emit a strong -y radiation in
the region of a few hundred kev when bombarded with
protons (see Fig. II1.11), and a line at 342 kev when
bombarded with & particles.’’? In addition to this type of
background, there is the background radiation due to
processes taking place in the atoms of the investigated
element itself. The production of the latter kind of back-
ground radiation can of course not be avoided. How-
ever, it can be discriminated against, if coincidence
measurements can be performed,°® or if the nuclear
decay involves a sufficient delay.®” When such possi-
bilities do not exist, the best that can be done is to
choose the experimental conditions so as to give the
smallest possible ratio of background to nuclear radia-
tion. It is therefore important to know how the atomic
processes depend on the various parameters of the
bombardment.

In the region of low y-ray energies, the most impor-
tant background process is the emission of the charac-
teristic x-rays which follow the ionizations produced by
the projectiles (see Figs. II1.3, II1.4, II1.6, and I11.13).

106 See, for example, reference 103, and G. M. Temmer and

N. P. Heydenburg, Bull. Am. Phys. Soc. Ser. IT 1, 43 (1956).
07T, Hyus and A, Lundén, Phil. Mag. 45, 966 (1954).
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The theoretical cross sections for the ionization of the
K shell have been computed in Born approximation for
nonrelativistic electron wave functions.®® The result
may be written in the form

ox™Z 1 (Exioy/ A1)4(36/22)210-% cm?,  (I11.10)

provided the K shell binding energy exceeds the maxi-
mum energy which a free electron can acquire in a
collision with the projectile. Even for bombarding
energies close to the Coulomb barrier, this condition is
fulfilled for Z,>40.

The experimental cross sections'® are found to be
somewhat larger than given by (10) for protons in the
energy range employed in Coulomb excitation; thus, in
the case of 4-Mev protons on tantalum, the observed
cross sections are about five times larger than the esti-
mate (10). The discrepancy has been ascribed partly to
the inadequacy of the Born approximation, partly to
relativistic effects in the electron motion.’® However,
the dependence of the cross section on the various para-
meters is approximately represented by the formula
(10). If these x-rays constitute the dominating back-
ground, it is of no advantage to employ bombarding
energies much higher than those for which the cross sec-
tion for Coulomb excitation increases approximately as
E*, because then the signal to noise ratio will begin to de-
crease. For E2 excitations, this condition corresponds
to £~0.5, as can be seen from Fig. II1.12. From Egs.
(10) and (II C.13), (II C.15), and (II C.17) it also
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Fre. IIL.12. Ratio of Coulomb excitation to production of
characteristic x-rays. The curve gives the ratio between the
theoretical cross sections for E2 Coulomb excitation and ionization
of the K shell, as a function of £ It is seen that an optimum is
obtained for a bombarding energy corresponding to £=0.5. For
this £ value the signal to noise is proportional to (4,/Z;)% The
same £ dependence of the signal to noise ratio applies to the back-
ground of & rays in the electron measurements.

108 W, Henneberg, Z. Physik 86, 592 (1933).

109 Lewis, Simmons, and Merzbacher, Phys. Rev. 91, 943 (1953);
T. Huus and C. Zupandic, reference 10 (on p. 17 of this reference,
read “larger” instead of “smaller”). 5

0 Lewis et al. (see reference 109), and D. Jamnik and C.
Zupanti¢, Kgl. Danske Videnskab. Selskab Mat. fys. Medd, 31,
No. 2 (1956).
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Fic. IT1.13. X-rays from internal conversion of the nuclear
excitation. The pulse-height spectrum, obtained with a crystal,
shows the relative strength of the K x-rays and the 137-kev +y ray
from tantalum bombarded with 3-Mev a particles [G. M. Temmer
and N. P. Heydenburg, Phys. Rev. 93, 351 (1954)]. No absorbers
were employed. The K conversion coefficient for the nuclear
radiation is about 1.7, and the major part of the K peak is there-
fore accounted for by the internal conversion of the vy ray. In
the case of proton bombardment the main part of the K x-rays
arises from the direct ionization of the K shell (see Fig. I11.6).

follows that at the optimum the signal to noise ratio
will be proportional to (41/Z1)% which is 16 times larger
for « particles than for protons. Thus, in the a-particle
experiments, the observed K x-ray peak is usually
small and can sometimes be accounted for nearly ex-
clusively by the effect of the internal conversion of the
nuclear radiation (see Fig. I11.13).

At y-ray energies well above the K shell binding
energy, one observes in the case of proton bombardment
a background radiation which can be ascribed to brems-
strahlung associated with the deflection of the protons
in the nuclear field™! (see Fig. II1.14). The cross section
for this process is given in Sec. II E.1, where it is shown
that the variation with the bombarding energy and the
angle of observation is the same as for the £1 Coulomb
excitation. If from Eq. (IT E.13) one computes the
corresponding thick target yield by means of Eq. (7)
for the effective target thickness (see Fig. IIL.9), one
finds that the total yield for all angles, multiplied by
E-Z352 to a good approximation is a function of the
parameter & only. This is confirmed by the measured
yields'® which furthermore show a ¢ dependence in con-
formity with the theory. Also the predicted absolute in-
tensity seems to be in agreement with the experimental
evidence'? within the rather large uncertainties of the
available data. However, the possibility exists that there
may be additional sources of background radiation,

m C, Zupan&i& and T. Huus, Phys. Rev. 94, 205 (1954).

112 Mark, McClelland, and Goodman, as quoted in reference 81.
Also the measurements in reference 111 agree within the experi-
mental error if the correct expression (II E.59) is used rather than
the expression (II E.24), which was employed in this reference.
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such as, e.g., bremsstrahlung associated with the ioniza-
tion of the inner atomic shells.

The E1 excitation cross sections, and thus also the
bremsstrahlung, increase with the bombarding energy
in very nearly the same way as do the E2 excitation
cross sections, except for the very high bombarding
energies, where the latter become relatively greater, as
illustrated by Fig. TII.15. In the region of the spectra
where the bremsstrahlung is the important background,
one thus obtains a nearly constant signal to noise ratio
in the case of an E2 excitation decaying to the ground
state (E,=AE). The signal equals the noise for a partial
B(E2) value (see Sec. IV B) given by

ZINM3 JZ1 Za\2/Zs\ 3
eB(EZ)z(———) . ————-—) (——)
4 1 4 1 A 2 85

100\ ¢? dE,
X (——-—) 2210748 cm¢, (TIL.11)
E, E,

where E, is measured in kev and where dE, is the reso-
lution of the spectrometer. For a cascade v ray, the
signal-to-noise ratio is usually considerably smaller than
for the ground-state decay, and increases with the
bombarding energy.

In the case of a-particle bombardment, the brems-
strahlung is very weak due to the fact that the projec-
tiles have nearly the same charge to mass ratio as the
target nuclei [see (II E.13)]. The continuous back-
ground is indeed also found to be very low in the
a-particle measurements, as illustrated by Fig. IILS.
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F16. II1.14. Proton bremsstrahlung. The figure shows the pulse-
height spectra obtained by bombarding thick targets of natural
W and Bi with 4-Mev protons [P. H. Stelson and F. K. McGowan,
Phys. Rev. 99, 112 8955)]. The C; peak is a composite peak
corresponding to the first rotational states in the even-4 isotopes
(see Fig. I11.4), whereas the 295-kev peak is assigned to the odd
isotope W8, The radiation in the region between the two peaks
can be ascribed to proton bremsstrahlung and has practically the
same yield for W as for Bi, which give no nuclear radiation,
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F16. II1.15. Comparison of theoretical cross sections for £2 and
E1 Coulomb excitation. The ordinate is proportional to the ratio
of the two cross sections, for the same value of £. It is seen that
the E1 and E2 excitation functions are nearly identical over a
wide range of ¢ values. The excitation function for the dipole
bremsstrahlung is the same as for the £1 Coulomb excitation
(see Sec.II E.1),and the curve therefore also represents the signal-
to-noise ratio for E2 excitation compared with bremsstrahlung.
Thus, high bombarding energies, corresponding to small £ values,
are the most advantageous as far as this type of background
radiation is concerned.

III C. Measurements of Conversion Electrons
III C.1. Detection Technique

The study of the internal conversion electrons emitted
in the decay of the excited states is to some extent
complementary to the y-ray measurements. For heavy
elements and low-energy transitions, an appreciable or
even major fraction of the excitations will decay by the
emission of such electrons, which may therefore be
rather easily detected. Moreover, the derived excitation
cross sections may be less sensitive to the value of the
conversion coefficients.

Figures II1.16-II1.20 show some spectra of conver-
sion electrons produced by Coulomb excitation. They
have been measured by double-focusing magnetic spec-
trometers of the wedge-gap type,'*® which are convenient
for the purpose. Such spectrometers readily allow the
target to be “viewed” from the same side as that turned
against the bombarding particles, so that the electrons
do not have to penetrate a target support. The com-
paratively high resolving power is often of particular
advantage, because of the great similarity of many of
the nuclear spectra (see Figs. I11.4 and II1.17), and
because of the relatively small energy difference be-
tween the successive transitions in rotational cascade
decays (see Figs. ITL.S and II1.16).

The fact that conversion electrons from more than
one of the atomic shells can be observed makes it
possible to obtain additional information by this
method. From the measured energy difference between
the K and L conversion lines one can unambiguously
assign the element in which the excitation has taken

18 Kofoed-Hansen, Lindhard, and Nielsen, Kgl. Danske

Videnskab. Selskab Mat. fys. Medd. 25, No. 16 (1950).
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place, and from the intensity ratio between the K and L
peaks one obtains information about the multipolarity
of the radiation (see Figs. II1.16 and IIL.17). With a
somewhat higher resolution it should also be possible
to determine the multipolarities from a comparison be-
tween the lines of the various L subshells. The theo-
retical angular distribution coefficients have only been
partially evaluated. For M1 conversion in the K shell,
the estimated anisotropies are rather small (see refer-
ence 31).

The strong interaction between the electrons and the
target atoms implies that in general thin targets have
to be employed in the experiments, if one wants to
preserve the high resolution. It is important that the
target be homogeneous and that the beam remains
focused on the same spot, in particular since the con-
version lines often appear on top of a strong continuous
background. Thick targets can be used when the elec-
trons have a relatively high energy, so that they can
penetrate with sufficient ease the layer corresponding
to the effective target thickness for the projectiles.

IIT C.2. Background Effects

If special precautions are not taken, there may be a
considerable background due to the large number of
scattered beam particles in the spectrometer, but it is
rather easy to trap these by means of an appropriate set
of stops. Also the background effects resulting from the
presence of light atoms in the target are relatively
harmless, since these elements have small conversion
coefficients and give negligible contributions to the
stopping electrons (see later discussion). This is an
advantage when, for practical reasons, one employs

COUNTS PER 30 MICRO COULOMB
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Fic. IIL.16. Internal conversion electrons from the excitation
of tantalum with protons. The figure shows the spectrum of
electrons from a 0.3 mg/cm? thin Ta target bombarded with
2-Mev protons [T. Huus and J. H. Bjerregaard, Phys. Rev. 92,
1579 (1953)]. The measurements are made with a magnetic
spectrometer of the wedge-gap type. The K, L, and M conversion
lines with the indices 1 and 21 are assigned to the ground-state
transition from the first rotational state of Ta!®!, and to the cascade
transition from the second to the first rotational state, respectively.
The large K/L ratios indicate predominantly M1 transitions.
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F1c. II1.17. Conversion electrons from the excitation of tung-
sten. The spectrum shows the conversion lines observed in the
bombardment of thin targets of natural W by 1.75-Mev protons
[T. Huus and J. H. Bjerregaard, Phys. Rev. 92, 1579 8953)].
The peaks labeled L', L”, and L'” are predominantly due to the
L conversion of the ground-state transitions from the first rota-
tional levels in the even-A4 isotopes W82 W18 and W18, The
strong continuous background at the lower momenta is due to the
production of stopping electrons. These conceal the presence of
the K lines, but the fact that these lines are not clearly visible
implies that the K/L ratios are small, in accordance with the E2
character of the transitions.

chemical compounds, such as oxides, for the target
preparation. Similarly, the target support gives rise to
no difficulties if it is made of light materials.

As in the case of the y-ray measurements, however,
atomic processes in the target element under investiga-
tion give rise to background effects which cannot be
avoided. The maximum energy which a free electron
can acquire in a collision with the projectile is less than
20 kev, even for bombarding energies close to the
barrier. Collisions with the outer atomic electrons there-
fore do not give rise to any significant background. The
tightly bound electrons, however, may be ejected with
much higher energies, and such § rays constitute the
main background radiation in the electron experiments.
The observed yield per energy interval can be repre-
sented approximately by the semiempirical expression™!

do~2Z2 (Bter/ A1) Z A Es"dEs1024 cm?,  (IT1.12)

where E; is the kinetic energy of the ejected electrons
measured in kev. The cross section increases very
strongly ‘with decreasing Es, as is illustrated by Figs.
III1.16-1I1.19. The yield of the § rays increases with Z,
in contrast to the total ionization cross sections [see
(10)]. 1t is therefore difficult to measure the conversion
electrons from the decay of the first excited state of the
very heavy elements, and for this reason the method
has been applied mostly to the study of somewhat
lighter nuclei.

The cross section (12) depends on the bombarding
energy and the type of projectile in the same way as
the cross section (10), and thus the largest signal to
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noise ratio for E2 excitations is again obtained for
£~0.5 (see Fig. I11.12). For bombarding conditions
corresponding to this ¢ value, the signal equals the
noise, as represented by (12), for a partial B(E2) value
(see Sec. IV B) given by

() () ()

dEs fAEN
x——(—) 108 cm?,  (IT1.13)
E; \ E,

where the excitation energy AE is measured in kev, and
where E; equals the energy of the observed conversion
electrons, also measured in kev. It is evident from (13)
that the B values corresponding to the noise are the
smallest for the heavier projectiles. Consequently, it
sometimes proves to be an advantage to use deuterons
rather than protons for the excitation of the lowest
states (see Fig. II1.19), even though the background of
penetrating radiation, which is always generated in
deuteron bombardments, gives rise to some difficulties.
If a sufficiently high acceleration voltage is available,
the best results are obtained with « particles (see Figs.
I11.18 and III.20).

In estimating thick target yields of ejected electrons
by means of Eq. (12), it must be taken into account
that they come only from a rather thin surface layer.
For heavier elements, the effective thickness of this
layer is approximately given by

~(E;3/50)? mg/cm?, (T11.14)
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F1c. II1.18. Conversion electrons from the excitation of gold.
For the assignment of the observed transitions, confer the level
scheme in Table IV.2. For the low electron energies the best
results are obtained with « particles, and this part of the curve is
reproduced from E. M. Bernstein and H. W. Lewis [Phys. Rev.
100, 1345 (1955)]. For the high energies, the spectrum has been
obtained by bombardment with protons. This part of the spectrum
represents results obtained by M. S. Moore and C. M. Class
(private communication).

114 See Huus, Bjerregaard, and Elbek, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 30, No. 17 (1956).
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Fic. III.19. Conversion electrons from the excitation of hol-
mium. The observed K, L, and M lines [Huus, Bjerregaard, and
Elbek, Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 30,
No. 17 (1956)], are associated with the first rotational state in
Ho!%5, The excitations were produced by the bombardment with
1.75-Mev deuterons which give a relatively small background of
stopping electrons (dotted line), as is evident from the com-
parison with the curve for protons of the same energy, which is
also shown in the figure. The arrow marks the cutoff due to the
counter window. The dashed line @ indicates the background
contributions from the generation of 8 activities and the produc-
tion of neutrons. The contribution from the latter effect alone is
indicated by the dashed line &.

where E; represents the energy, in kev, with which the
electrons emerge from the surface.

In principle, the ejected electrons can be used for
calibration of the target thickness, since the rate of
their production depends in a smooth way on the atomic
number of the target material. However, if the target
thickness is not considerably smaller than £,, the cali-
bration will be dependent on the homogeneity of the
targets. The calibrations may therefore usually be per-
formed more reliably by means of the intensity of the
elastically scattered projectiles which are not so easily
influenced by the structure of the target.

III D. Measurements of Inelastically
Scattered Projectiles

Perhaps the most straightforward method of detec-
tion in the Coulomb excitation experiments is to meas-
ure directly the inelastically scattered projectiles. This
method has the special advantage that each particle
group corresponds to the excitation of a definite level,
and that the yield is a direct measure of the cross section
for the excitation, irrespective of the mode of decay.
An example of a spectrum of inelastically scattered
protons in a heavy element is shown in Fig. IT1.21. The
measurements have been performed by means of a
magnetic spectrometer of high resolving power. Because
of the correspondingly small transmission, the particles
were detected by means of a photographic plate.

A high resolution can only be obtained with thin
targets, and a thickness determination must therefore

MOTTELSON, AND WINTHER

be included in the measurements. The elastic scattering
offers a convenient means for yield calibrations, and in
the present case it is even not necessary to know the
transmission of the spectrometer, since the solid angle
is practically the same for two lines which are close to
each other. However, a comparison cannot be made in a
single exposure due to the widely different intensities
and will, consequently, be dependent on the calibration
of a beam integrator. The uncertainties introduced in
this way are not of any great significance, in particular
if approximately the same currents are employed in the
two exposures. One thus directly compares the cross
sections for Coulomb excitation with the Rutherford
cross section, and the reduced nuclear transition prob-
abilities B(\) derived from such a procedure should
therefore be very reliable. At present, the accuracy of
the analysis is limited to some extent by the fact that
the differential excitation cross sections have only been
calculated theoretically in the classical approximation
(see Sec. II C.3).

The large cross sections for elastic scattering imply
that even extremely small contaminations in the targets
give rise to peaks in the spectra (see Fig. I11.21), but
these lines can be identified by the way in which they
move with respect to the main Rutherford line, when the
bombarding energy or the angle of observation is
changed. Elastic scattering from the target nuclei will,
however, give rise to a continuous background if the
beam employed for the bombardment is not com-
pletely free of energy degraded particles. Even if the
beam is passed through a magnetic analyzer before it
strikes the target, there may still be a significant back-
ground due to scattering from stop edges etc. For this
reason, it is in general preferable to observe in the
backward directions, where the elastic scattering rela-
tive to the Coulomb excitations is the smallest. The
ratio of the cross sections for E2 Coulomb excitation
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Fi16. I11.20. Conversion electrons from the excitation of tanta-
lum with « particles. The spectrum shows the conversion lines
from the decay of the first rotational excitation of Tals! [E. M.
Bernstein and H. W. Lewis, Phys. Rev. 100, 1345 (1955)]. The
background of stopping electrons is seen to be much smaller than
in the case of proton bombardments (see Fig. I11.16).
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Fic. II1.21. Spectrum of protons scattered from gold. The
figure shows the energy spectrum of protons scattered from a
0.1 mg/cm? thin Au target (B. Elbek, and C. K. Bockelman, to
appear in Phys. Rev.). The measurements were made with a
magnetic spectrometer of high resolving power, and the particles
were detected by means of a photographic plate. The exposure
corresponded to approximately 4 millicoulomb. The angle of
observation was 130° and the bombarding energy 6 Mev. The
energy intervals between the inelastic groups and the strong peak
from elastic scattering can be obtained from the calibration
curve shown in the figure. The two strongly excited states in Au'?
correspond to the peaks C; and Cs, and there is also an indication
of the more weakly excited 268-kev level (see Table IV.2). The
pfeak %abeled S is due to elastic scattering from a contamination
of sulfur.

and elastic scattering is proportional to 4:Z;72E3, and it
is therefore advantageous to employ high bombarding
energies. For energies of the order of the Coulomb
barrier, the signal to noise increases as 41Z1.

The energy region over which the inelastic groups can
be observed extends from the elastic peak down to the
continuous background from the target support. This
free region is related to the recoil energy; the extension
increases with the mass and energy of the projectile and
with the scattering angle, and decreases with increasing
mass of the nuclei in the target support. Light elements
in the target support may, on the other hand, give rise
to nuclear reactions with the emission of charged par-
ticles. Aluminum has been used as a support in experi-
ments with protons, at energies about 6 Mev.!16

Because of the great strength of the elastic scattering,
it is desirable that the spectrometer gives a very sharp
image, but even then the elastic peak will always have
a significant low-energy tail due to the energy straggling
in the target. In the study of the low excitation energies,
it is therefore necessary to employ very thin targets,
even when the observations are made on particles which
have penetrated the target and, thus, on the average
have lost the same energy.

In addition to the above-mentioned contributions to
the background radiation there will, just as for the v
rays and the conversion electrons, be contributions from
atomic processes in the target. Thus, the considerations
made earlier with regard to the effect of the brems-
strahlung also apply here, with the supplementary re-
mark that the backward angles of observation favor the

15 B, Elbek (to be published).
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E2 Coulomb excitations as compared to the E1 brems-
strahlung, for which the angular distribution is given
by the functions dfg1(¢) (see Fig. I1.7). The processes
leading to the ionization of the inner atomic shells,
which give rise to an important background in the
measurements on the decay radiations (see foregoing),
are of less importance in the detection of the inelastically
scattered projectiles, since the angular distribution of
the particles responsible for the ionization is expected
to be rather strongly peaked in the forward direction.

CHAPTER IV. NUCLEAR DATA OBTAINED FROM
COULOMB EXCITATION

In this chapter, we discuss the analysis of the experi-
mental results on Coulomb excitation in terms of the
theory given in Chapter II. This analysis confirms the
accuracy of the theoretical description of the excitation
process and leads to the determination of the nuclear
parameters involved in the theory. The chapter also
contains a compilation of the experimental results
that have been obtained from Coulomb excitation
investigations.

THICK TARGET YIELDS (RELATIVE)
- -
< N

3
Q&
T

L 1

PROTON ENERGY IN MEV

F1c. IV.1. Excitation functions for levels in Ta!8!. The figure
gives the thick target yield of the three v rays observed in proton
bombardment of Ta'®'. The experimental data are taken from
P. H. Stelson and F. K. McGowan, Phys. Rev. 99, 112 (1955).
The full drawn curves give the theoretical energy dependence of
the yield, assuming E2 Coulomb excitation [see (IL C.15) and
(II1.6) and Figs. IL.5 and 6 and II1.9 and 10]. The stopping
power has been assumed to vary as E9-55 and the curves are
normalized to the experimental value at 3.4 Mev, as indicated
by the large circles. The theoretical curves are rather sensitive
to the excitation energy AE. It is seen that the 137 kev and 303
kev vy rays have excitation functions with AE=E., and thus
represent ground-state transitions, while the 166-kev v ray has an
excitation function with AE=303 kev and is thus associated with
a cascade decay of a level at this energy (see Fig. V.7). For com-
parison, the excitation function corresponding to AE=166 kev is
drawn with a broken curve. The contribution to the 137-kev
radiation resulting from the 303-kev excitation decaying by
cascade has not been subtracted from the experimental yield.
The correction amounts to about 10%, at the highest bombarding
energies employed.
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Fic. IV.2. Excitation function for levels in F¥. The figure
shows the measured excitation cross sections for the 109-kev and
196-kev v rays observed in « bombardment of a thin target of
CaF; [Sherr, Li, and Christy, Phys. Rev. 96, 1258 (1954)]. The
theoretical excitation functions given by the full drawn curves
are obtained from (II C.15) and Figs. I1.4, 5, and 6, by assuming
E1 excitation with AE=109 kev for the 109-kev vy ray, and E2
excitation with AE=196 kev for the 196-kev v ray. The excitation
functions are not sensitive to the multipole order, but the assumed
values of N\ are those indicated by other experimental evidence
(see the references in Table IV.2). The theoretical curves are
normalized to the experimental cross sections at E,=1.55 Mev.

IV A. Analysis of Experimental Data
IV A.1. Excitation Function and Relative Vields

The theoretical expressions for the Coulomb excita-
tion yields as a function of the bombarding energy are
independent of the nuclear structure. It is thus possible
with considerable certainty to identify an observed
radiation as resulting from Coulomb excitation by a
measurement of its yield function. Examples of well-
measured yield functions are given in Figs. IV.1 and
IV.2. It is seen that the theoretical expressions repro-
duce the observed relative yields over a range in which
the cross sections vary by several orders of magnitude.

The yield function depends on the multipole order A
and the excitation energy AE, and may thus be used to
determine these two quantities. The sensitivity of the
yield curve to the excitation energy, AE, may often be
exploited to decide whether an observed radiation repre-
sents a ground-state decay or a cascade radiation from
a higher lying state. As an example, Fig. IV.1 clearly
shows that the observed 166-kev gamma ray in Tal®
originates from an excited state with an energy of about
303 kev. This fact is also directly confirmed by the
observation of coincidences between the 166-kev and
137-kev v rays (see Table IV.2). Similarly, the yield of
the 110-kev radiation from Tm!® has been shown to
indicate that this transition results from the excitation

MOTTELSON, AND WINTHER

of a 119-kev level decaying to a 9-kev state (see
Table 1V.2).

The possibility of determining the multipole order of
the excitation process on the basis of the yield curve is
illustrated in Fig. IV.3. While it would be rather easy
to recognize higher multipole orders (A\=3 or 4), it is
usually difficult to distinguish £2 from E1 on the basis
of the excitation function.*’ These two multipole transi-
tions have very nearly parallel yield functions, except
for small ¢ values corresponding to high bombarding
energies or low excitation energies (see Fig. II1.15).

An alternative method for determining the multipole
order of the excitation is provided by a comparison of
the yield for two different bombarding particles. If, for
instance, one choses bombarding energies corresponding
to the same value of £, the cross section for an excitation
of order E is, to a first approximation, proportional to
Z2(A41/Z1)™3 [see (IX C.13), (II C.15), and (II C.16)].
Thus, the ratio of the cross sections for proton and
alpha-particle bombardments would differ for £1 and
E2 excitation by about a factor of 1.6. This method for
determining A has been used, for example, to establish
the E2 character of the 446-kev transition in Na2 (see
Fig. IV.7) and of the 100-kev transition in W8 (see
Table 1IV.2).
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F1c. IV.3. Dependence of excitation function on multipole
order. The figure shows the thin target yield of the 68 kev y ray
observed in @ bombardment of Ge™ [G. M. Temmer and N. P.
Heydenburg, Phys. Rev. 96, 426 (1954)7]. The full drawn curves
give the theoretical excitation functions for El, E2, and E3
Coulomb excitation, assuming AE=68 kev [see (II C.15) and
Fig. I1.4]. The curves are normalized to the experimental value
at 1.4 Mev. The possibility of distinguishing in the present case
between E1 and E2 excitation on the basis of the yield function
is associated with the rather small ¢ values for the excitation
(¢=0.14 for E,=3 Mev).

158 Noie added in proof..—Recently, an E3 excitation process,
leading to the 40 kev isomeric level in Rhi%, has been identified
as of E3 type on the basis of the measured excitation function
(G. A. Jones and W. R. Phillips, presented at the Amsterdam
Conference on Nuclear Reactions, July, 1956).
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IV A.2. Angular Distribution of Decay Radiation

The angular distribution of the radiation following
Coulomb excitation provides information on the spins
and parities of the states involved as well as on the
multipole order of the excitation mode and the decay.

Extensive angular distribution measurements have
been made!” of the v rays from even-even nuclei which
should follow the unique 0(£2)2(£2)0 correlation which
is given by [see (IT C.29) and Table I1.11]

w (0) = 1+0.3570«2E2P2 (COSI?)

+1.1430,52P4(cosd), (IV.1)

where the coefficients a2 and a4 are characteristic of the
Coulomb excitation process. The observed distributions
have been analyzed to yield experimental values of
these coefficients which are seen in Figs. IV.4 and IV.5
to be in approximate agreement with the theoretical
values given in Fig. TL1.8. It seems that the small differ-
ences between the experimental and theoretical values
are not outside the experimental uncertainties.

As discussed in Sec. II C.5, there may be in certain
cases important effects on the angular distribution re-
sulting from the precession of the nuclear spin in the
excited state. In the present cases, however, these
effects are expected to be very small due to the short
lifetimes of the states involved [73=~1-10~1 sec for
Cd™ and 73=~4-107" sec for Pt'*, as determined from
the absolute yield of the Coulomb excitation of these
levels (see Sec. IV A.4 and Table 1V.2)]. Moreover, for
the excited states involved, the static quadrupole mo-
ments are expected to be small, even though the transi-
tion moments are rather large (see Sec. V C.2). Also the
higher order effects in the excitation process are ex-
pected to be small in the present circumstances (see
Sec. II D.2).118

Besides these investigations of the even-even nuclei,
a number of measurements of the angular distribution
of the v rays from odd-4 nuclei have also been made
(see, e.g., Fig. II1.8). The analysis of these experiments
by means of the theoretical expressions in Sec. II C.4
has yielded the spin determinations and multipole
assignments listed in Table IV.2.

In the frequently occurring case of an E2 excitation
followed by a mixed M1+ E2 decay, there may often
be an ambiguity in the mixing ratio § as determined
from the angular distribution of the v rays. This am-
biguity may be removed by a measurement of the
polarization of the y quantum!’ [see (II A.78a)7].

116 Tt has been suggested (reference 17) that the multiple scatter-
ing of the projectile in the target may give rise to an important
correction to the measured angular distribution of the v rays.
However, this effect appears to be very small under most experi-
mental conditions (see the comments in Sec. III B.2).

u7Pp. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc.
Ser. II, 1, 164 (1956).
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Fics. IV.4 and IV.5. Angular distribution coefficients a; and as.
The angular distribution of the v rays following E2 Coulomb
excitation depends on the excitation process only through the
coefficients ¢z and a4 [see (I C.29)]. The figures plot the experi-
mentally determined @2 and a4 coefficients as a function of the
proton bombarding energy; the data is taken from the thick
target measurements by F. K. McGowan and P. H. Stelson
[Phys. Rev. 99, 127 (1955) and unpublished data, quoted in
Goldstein et al. (Phys. Rev. 100, 436 (1955)]. The full drawn
curves give the theoretical thick target values for @ and a4
obtained from Fig. I1.8 by employing the thick target correction
described in Sec. TII B.2; the values of 8E; involved in this correc-
tion are taken from Fig. IT1.9.

IV A.3. Angular Distribution of Inelastically
Scattered Particles

The angular distribution of inelastically scattered
particles depends only on the multipole order of the
excitation, but not on the spins of the states involved.
The measured angular distributions of the inelastically
scattered protons from Au'*” are compared in Fig. IV.6
with the theoretical distributions for A=1 and 2, ob-
tained in the classical approximation (see Sec. IT C.3).
The exact quantum-mechanical angular distributions
have not so far been evaluated.

IV A4. Absolute Yields

From the measured absolute cross sections one may
derive the reduced transition probability B(E\) by
means of the theoretical expressions in Sec. IT C.2, and
the values obtained in this manner are listed in Table
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F1. 1V.6. Angular distribution of inelastically scattered
protons from Au®. The figure shows the differential cross sections
in millibarns per steradian for excitation of the 279-kev and
550-kev levels in Au®? with protons of 6 Mev (B. Elbek and C. K.
Bockelmann, to appear in Phys. Rev.) The full drawn curves give
the theoretical cross sections obtained from (II C.15) and Fig.
I1.7, assuming E2 excitation (see also Sec. II C.3); the B(E2)
values are determined so as to give the best fit to the experimental
points. The measured angular dependence of the cross sections
agrees rather well with the classical theory (the value of % in the
present experiment is about 5) and also the absolute values of
the cross sections are in approximate agreement with those ex-
pected on the basis of the y-ray yield measurements (see the B(E2)
values in Table IV.2). The angular dependence of the cross
sections is rather sensitive to the multipole order of the excitation
process. This is illustrated by the broken curves which give the
theoretical E1 differential cross sections, normalized to the same
total cross section as the E2 curves.

IV.2. The reduced transition probability also determines
the lifetime for the inverse radiative transition of order
E) [see (I A.56) and (IT A.57)7. One thus obtains for
the transition probability for v emission from the
excited state Iy to the ground state I;

T,(E1; I;—I)=1.59X108(AE)?

B(EL; T I)ZIFH L (IV.2)
X s L sec™ .
Tor1
and
T, (F2; I —I)=1.23X10-*(AE)S
2,
XB(E2; I—I;) sec™l,  (IV.3)
21

where AE is measured in kev and B(EM) in units of 2
(102 cm?)™.

In a number of cases, measurements are available of
both the cross section for Coulomb excitation and the
corresponding radiative lifetime, thus providing two
independent measurements of B(E\). The comparison
of these determinations is contained in Table IV.1; the
agreement appears in all cases to be within the experi-
mental error.

In many cases, Coulomb excited states may decay in
several modes, either to the ground state with a mixed
multipole transition or by a cascade to some other
nuclear level. In these cases, measurements of multipole
mixtures and branching ratios together with the abso-
lute cross section for Coulomb excitation provide a
determination of the absolute transition probabilities
for the alternative modes. In this way, a number of M1
decay probabilities have been determined (see Table
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V.5). In a similar manner, it has been possible to de-
termine the transition probabilities for certain E1
transitions representing alternative modes of decay for
levels in Se and Ag populated by E2 Coulomb excitation
(see Table IV.2 and the references given there).

IV A.5. Coulomb Excitation at Higher
Bombarding Energies

The above analysis refers to experimental arrange-
ments in which the bombarding energy is sufficiently
low that penetration into the nucleus can be neglected.
The electromagnetic interaction is then the only mech-
anism for exciting the nucleus.

Already for energies appreciably below the Coulomb
barrier, however, the projectile may penetrate to the

Tasre IV.1. Comparison of lifetime determinations with
Coulomb excitation yield measurements. The table lists, in
columns two and three, the spins of the nuclear ground state, 7,
and of the excited state, /. The measured half-lives, 71/s, listed in
column five, are taken from the review by A. W. Sunyar, Phys.
Rev. 98, 653 (1955) and the additional references listed below. The
number in parentheses in column five gives the power of ten for
the observed lifetime measured in seconds. The half-lives yield the
reduced transition probabilities B(E2; I;—I) by means of (IV.3)
and the relation (ry2)1=1.4Tv(E2) (14+6—2) (14+a) where
Ty(E2) is the transition probability per second for E2 v radiation,
while 82 is the ratio of E2 to M1 v-ray intensity, and « is the total
conversion coefficient. The values of § and « are taken from column
six of Table IV.2. The B(E2) values obtained from lifetime de-
terminations are given in column six in units of €2)X107 cm¢, and
are compared with the corresponding quantities obtained from
the Coulomb excitation cross sections (see column seven of
Table IV.2).

A similar comparison as for the £2 transitions in the table can
be made for the 110-kev E1 transition in F¥(ly=1/2, I=1/2). The
measured half-life of 7X 1071 sec yields by means of (IV.2) the
value 4.8X 107 ¢2 cm?, while the Coulomb excitation cross section
gives B(E1)=2.3X10"% ¢ cm?2.

Additional references for r1/2: Thirion, Barnes, and Lauritsen,
Phys. Rev. 94, 1076 (1954) (F; 110-kev transition); Fiehrer,
Lehmann, Leveque, and Pick, Compt. rend. 241, 1746 (1955)
(F®; 197-kev transition) ; H. Schopper, Z. Physik 144, 476 (1956)
(V®); F. R. Metzger, Phys. Rev. 101, 286 (1956) (Ge™ and Ge™);
F. R. Metzger, Phys. Rev. 98, 200 (1955) (Hg®?); H. deWaard,
Phys. Rev. 99, 1045 (1955), and R. E. Azuma and G. M. Lewis,
Phil. Mag. 46, 1034 (1955) (TI23); T. R. Gerholm (private
communication) (Pb¥7).

Coulomb
AE T1/2 Lifetime excitation
Nucleus Io I (kev) (sec) B(E2) B(E2)
oF19 1/2 5/2 197 6(—8) 0.01 0.003
23 Vo 7/2 5/2 325 1.0(—10) 0.008  0.006
32Ge™ 0 2 835 3.2(—12) 0.19 0.26
Ge™ 0 2 595 1.3(—11) 0.28 0.30
625m?%2 0 2 122 14(-9) 3.3 3.1
81 Gd1% 0 2 123 1.2(-9) 3.6 4.5
63 For168 0 2 81 1.7(—9) 5.7 6.8>
72HIf176 0 2 89  1.35(-9) 5.3 6.0
Hf180 0 2 93  1.4(-9) 4.9 5.0
7a W82 0 2 100 1.27(-9) 43 5.6
soHg!%8 0 2 411 2.1(—-11) 1.1 0.8
Hg!® 1/2  5/2 159 24(-9) 0.35 0.26
Hg?22 0 2 439  2.2(—-11) 0.8 0.5
aTE 172 3/2 280 14(—10)* 028  0.12
. 52Pb?7 1/2  5/2 569 9(—11) 0.031  0.028

a This value, obtained from a direct measurement of the delay, differs
considerably from the value deduced from the resonance scattering cross
section [F. R. Metzger and W. B. Todd, Phys. Rev, 95, 627 (A) (1954)].

b The unresolved transitions from all the even erbium isotopes are
assumed to have the same B(E2) value.
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nuclear surface and thus initiate proper nuclear reac-
tions. Estimates of the expected reaction cross sections
are given in Fig. ITL.1. In light elements, the radiation
resulting from such nuclear reactions is characterized
by a resonant structure which is superimposed on the
more slowly varying yield of the Coulomb excitation.
In heavier elements, the level spacing of the compound
nucleus is usually below the energy resolution of the
incident beam, and in addition the levels may overlap
due to the effect of neutron emission.

Even when the average cross section for compound
nucleus formation exceeds the Coulomb excitation cross
section, it may still be possible to observe the latter,
since the compound nucleus will usually decay prefer-
entially through other channels, such as (p,n), (a,n),
(a,p), and also the elastic channel (see Fig. IV.8).

Moreover, for light elements where the resonance
structure can be resolved, the cross section between
resonances may result mainly from Coulomb excitation,
and a quantitative determination of the Coulomb exci-
tation yield may then be possible (see Fig. IV.7). In
this connection it is significant that the interference
between Coulomb excitation and the contribution of a
particular resonance is confined to a few angular mo-
menta of the projectile, while the total Coulomb excita-
tion yield results from many angular momenta.

For bombarding energies equal to, or greater than,
the Coulomb barrier, the compound nucleus formation
takes place with a large probability. Still, the observed
inelastic scattering leading to the low-lying states of the
target, appears to result from a direct interaction, since
the yields greatly exceed those expected from the decay
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F16. IV.7. Coulomb excitation of sodium by protons. The figure
shows the yield of the 446-kev v ray from a thin target of NaCl
bombarded with protons. [G. M. Temmer and N. P. Heyden-
burg, Phys. Rev. 98, 1198(A) (1955) and private communication].
Between the resonances due to compound nucleus formation one
observes a smoothly rising background yield which may be
ascribed to Coulomb excitation. It is possible to determine the
multipole order of the Coulomb excitation by comparing with
the yield observed in the excitation with « particles (loc. cit.).
The dashed curves correspond to the cross sections expected for
A=1 and 2 on the basis of the observed cross section for excitation
with o particles (see IL C.15). The close agreement of the meas-
ured cross section with the theoretical curve for E2 excitation also
confirms that the yield away from resonances is primarily due to
Coulomb excitation.
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F16.IV.8. Gamma rays from Coulomb excitation and compound
nucleus formation in F*® bombarded with « particles. The figure
shows the thin target yields of the 114-kev v ray from the first
excited state in F® and the 1.28-Mev v ray from the first excited
state of Ne? formed by an (a,p’) process on F* [Sherr, Li, and
Christy, Phys. Rev. 96, 1258 (1954)]. For bombarding energies
below 1.2 Mev, the penetration of the « particle through the
Coulomb barrier is very small (see Fig. III.1) and the cross section
for compound nucleus formation is small compared to that for
Coulomb excitation. With increasing bombarding energy, ocomp
increases rapidly and soon becomes larger than gcu. However,
even for E,~2 Mev, at which energy the average value of ¢comp
is an order of magnitude larger than ocoul, the yield of the 114-kev
v ray is only very little affected by the compound nucleus forma-
tion, since the probability that the compound nucleus decays by
inelastic «-emission is small. Finally, for E,>2.5 Mev, the
Coulomb excitation yield of the 114-kev v ray is overshadowed
by the resonance yield from compound nucleus formation.

of the compound nucleus.’'® In these reactions one ex-
pects, however, besides the Coulomb interaction, an
important contribution to the direct excitation from the
interaction with the nuclear field. Moreover, the change
of the projectile orbit and of the electric multipole fields
when the projectile is inside the nucleus imply an
essential modification of the calculations given in
Chapter II (see, e.g., Sec. IT E.3).

In some cases, it may be possible to separate the
simple Coulomb excitation effect resulting from the
particles which have not passed through the nucleus, by
observing the inelastically scattered particles in the
forward directions. Thus, if n>>1, so that the projectile
orbits can be described in the classical approximation,
the particles passing outside the nucleus will be scattered
into angles less than a critical value ¢, This angle
depends on the ratio

(IV.4)

X=—"

Eg
between the projectile energy E and the Coulomb
barrier Eg [see (II1.1)] and is given by [see (IT A.22)

and (IT A.23)]
1

Fe=2 sin—l(
2x—1
115°

(for x22).

=~

(1V.5)
2x—1

18 See, e.g., P. C. Gugelot, Phys. Rev. 93,425 (1954) ; Schrank,

Gugelot, and Dayton, Phys. Rev. 96, 1156 (1954), and also the

review by H. McManus, Brookhaven report On the Statistical
Aspects of the Nucleus, 1955.
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Besides the particles resulting from Coulomb excita-
tion there may also be a contribution from the nuclear
interactions to the inelastic scattering in the forward
direction. The relative magnitude of the two contribu-
tions will depend on the transition matrix elements as
well as on the motion of the projectile inside the
nucleus. The conditions for observing the Coulomb
excitation appear to be the most favorable if the pro-
jectile has only a small chance of traversing the target
nucleus, as in the case of a particles incident on heavy
nuclei. Moreover, the strong increase of the £1 Coulomb
excitation cross section in the forward direction may
facilitate the detection of such excitations. The Coulomb
excitation origin of an observed inelastic scattering may
be tested if it is possible to measure the angular distribu-
tion or the dependence of the yield on the energy and
charge of the projectile.

For n <1, the quantum mechanical diffraction effects
are of more importance than the deflection in the
Coulomb field, and the angle J. loses its significance.

IV B. Compilation of Experimental Results

The results obtained from Coulomb excitation investi-
gations, reported in the literature or available to us by
private communication prior to approximately April,
1956, are summarized in Table IV.2. A description of
the entries contained in the various columns is given
below.

Column I. Nucleus

In cases where the element bombarded consists of
more than one isotope, the isotopic assignments of the
observed radiation have been made by means of

1. use of separated (or enriched) isotopes, as noted
under “comments” (column V),

2. identification of the observed radiation with that
found in other reactions where the isotope is
known, as indicated under “other processes”
(column IX),

3. the general systematics of the excitation energies
and cross sections for even-even nuclei, as listed
under “comments.” Thus, certain observed lines
which fit into the established trends (see, e.g.,
Fig. V.3) may be assigned to an appropriate even-
even isotope of the element investigated, while
observed lines whose energies differ greatly from
those of neighboring even isotopes can be ascribed
to odd-4 isotopes.

For some of the data, none of these methods of assign-
ment is available, or the radiation is known to be com-
posed of unresolved contributions from several isotopes;
in such cases, only the element is listed in column I,
and not the mass number.

Column II. Decay Energy

The energies of the observed decay transition follow-
ing Coulomb excitation are listed in kev. When the
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method of detection involves the inelastic particle
groups, the value listed in this column equals the excita-
tion energy. If the excitation is detected by means of
gamma radiation or conversion electrons, the observed
decay may represent a cascade from a higher excited
level. (See columns V and VIII for the information
available on this point.)

A separate entry is made for each experiment, and
the references are given in column ITI.

Column III. Bombarding Conditions

The range of bombarding energies is given in Mev.
The projectile used is denoted by, p, proton, d, deu-
teron, a, alpha particle, V, nitrogen ions. References are
given by means of an abbreviation, e.g., (M1) which
refers to the bibliography listed at the end of the table.
These references apply also to the decay energies and
yield measurements listed in the previous and succeed-
ing columns.

Column IV. Partial Reduced Transition
Probability eB(E2)

The column lists the information regarding the nu-
clear transition probability which can be derived
directly from the measured yield, assuming only a
knowledge of the energy and multipole order of the
excitation. Where the excitation energy is uncertain,
the listed values are based on the arbitrary assumption
that the decay takes place to the ground state. Since all
excitations identified so far have been found to be of
electric quadrupole type, with the exception of the
weakly excited 109-kev level in F'9, we have assumed £2
character in all except this one case.

The quantity listed in this column is the partial re-
duced transition probability eB(E2), where B(E2) [see
(IT C.15)] is measured in units of €2X10*8 cm?, and
where e is the fraction of the excitations which decay
through the observed mode. The detected radiation
indicated in parenthesis is denoted as follows:

(y) electromagnetic radiation,

(ex), (er), etc. conversion electrons from the K shell,
L shell, etc.,

(") inelastic protons.

Thus, if the detected radiation is a v ray (y;), the
decay fraction is given by

fi
> (4a)fi

%

e(ys)= (IV.6)

where f; are the relative intensities of the various vy
transitions by which the excited state may decay, and
a; are the corresponding total conversion coefficients.
In the case of conversion electron detection, the decay
fraction is given by (6) multiplied by the conversion
coefficient for the conversion line in question. For the
inelastic protons, e(p")=1.
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If the Coulomb excitation populates several levels in
the same nucleus, the radiation from the lower levels
may partly result from a cascade decay of a higher level.
In the determination of eB(E2), it is then necessary to
establish what part of the measured radiation is due to
the direct excitation of the radiating level. In most
cases, however, the correction for cascade is small com-
pared with the accuracy of the yield determinations,
and we have not attempted to include it except when
it has already been taken into account by the original
experimenters.

When the isotope responsible for the observed radia-
tion has not been assigned, eB(E2) has been calculated
assuming 1009, abundance for the responsible isotope.
Where no yield determination is available, only the
detected radiation is listed in this column.

Column V. Comments

This column contains a brief summary of other in-
formation on the observed levels, which has been ob-
tained from Coulomb excitation. The abbreviations
employed are

ex.func. AE=127 The measured yield as a function
of energy has been found to be consistent with
Coulomb excitation with an excitation energy AE
equal to the listed value, assuming multipole order
E2. If the yield function also determines the multi-
pole order of the excitation process, the notation
A=2 is added. While the excitation function is
rather sensitive to the excitation energy, it often
does not distinguish between E1 and E2 transitions
(see Sec. IV A.1).

sep.iso. The isotope assignment has been estab-
lished by Coulomb excitation experiments, employ-
ing enriched isotopes.

v(6) The angular distribution of the y radiation has
been measured. The spins and multipolarity of the
transitions which have been deduced  from the
observed angular distribution are indicated by
I.(EN)I;(L)I s, where I;, I, and I are the spins
of the initial state, Coulomb excited state, and final
state, respectively, while EX and L are the multi-
polarity of the Coulomb excitation process and of
the subsequent v radiation, respectively.

6 The ratio of the amplitudes of £2 and M1 vy
radiation in a mixed transition. For the definition
of the sign of §, see Sec. IT A.4 and Table II.11.

o(p):o(a) gives A=2. The measured ratio of the
Coulomb excitation cross sections for protons and
a particles implies E2 excitation.

ax, K/L The K conversion coefficient ax and K/L
ratio measured in Coulomb excitation experiments.

v(100)—y(200)coinc. The two indicated v rays are
found to be in coincidence.

v(100):4(200) The value listed is the measured in-
tensity ratio of two v rays assumed to originate
from the same excited level.
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Column VI. Multipole Order and Conversion
Coefficients of the Decay Radiation

For even-even nuclei, the excited states are assumed
to be of (2+) character and to decay by pure E2 radia-
tion. For odd-4 nuclei, the decays are often of mixed
M1 and E2 type, and the column lists the percentage
of the v decays which are of £2 type; the information is
obtained from the angular correlation measurements or
K/ L ratios. In a number of cases, the transitions can be
classified as AI=2, and thus as pure E2 decays, on the
basis of the rotational interpretation of the levels in-
volved (see column VIII). For some of the rotational
transitions with A7=1, where no other evidence is
available, the multipole mixture has been calculated
from observed branching ratios [ (V.10 and V.17); see
also Fig. V.77]. In these cases the £2 percentage is listed
in parenthesis.

In addition, the column gives the conversion coeffi-
cients employed in the derivation of the B(£2) values
in column VII. The listed values for the K shell con-
version coefficients ax for Z <50 are taken from the
calculations appropriate to a point nucleus.’® The
theoretical values for Z>350 include the effect of the
finite nuclear size.’ The L-shell conversion coefficients
ar, have been obtained from the ax values by assuming
a K/L ratio equal to that for a point nucleus.® The
total conversion coefficients, «, are obtained by assum-
ing a=ax+1.3az, in order to approximately take into
account the conversion in the higher shells.

Column VII. Reduced Nuclear Transition
Probability B(E2)

In cases where sufficient data are available, a total
B(E2) for the excitation process may be computed from
the eB(E2) values listed in column IV and the assumed
conversion coefficients (column VI). The B(E2) value
is listed opposite the radiation which represents the
ground-state decay mode of the level in question. The
value given is a weighted average of the various experi-
mental yield determinations.!*!

Column VIII. Level Scheme

The suggested level schemes are based on the Cou-
lomb excitation measurements as well as the evidence
from other sources indicated in column IX. Only levels
which have been observed in Coulomb excitation experi-
ments are included. The spin assignments listed in
parenthesis are based on the assumed rotational char-

119 Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83,
79 (1951) and Rose, Goertzel, and Swift, privately circulated
tables.

120, A. Sliv, privately circulated tables; see also L. A. Sliv,
J. Exptl. Theoret. Phys. U.S.S.R. 21, 770 (1951) and L. A. Sliv
and M. A. Listengarten, sbid. 22, 29 (1952).

121 There appears to be an unresolved discrepancy between the
y-ray yield measurements in the series of experiments reported in
(M1, M3, M4, and M6) and those of other experimenters (see
column IV). Rather than attempt to average such conflicting
determinations, we have arbitrarily omitted the former values
from the averages listed in column VIIL.
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COULOMB EXCITATION

acter of the excited levels. Where directly measured
lifetimes are available, the half-lives are listed, employ-
ing the following abbreviations: s (seconds), us (10~%
sec), mus (1079 sec).

The level populated in Coulomb excitation of an
even-even nucleus appears in all cases to be the first
excited, 2, state and no decay scheme is drawn.

Column IX. Other Processes

This column lists other reactions in which levels are
observed that may tentatively be identified with those
found in Coulomb excitation. The observed energies are
given in kev, together with the reaction involved.
References to the experimental work may be found in
Hollander, Perlman, and Seaborg, Revs. Modern Phys.
25, 469 (1953), and Nuclear Data Cards, edited by
K. Way et al., National Research Council, Washing-
ton D. C.

CHAPTER V. COLLECTIVE NUCLEAR
EXCITATIONS

An outstanding feature of the nuclear spectra re-
vealed by the Coulomb excitation studies is the sys-
tematic occurrence throughout the periodic system of
low-energy electric quadrupole transitions of a strength
greatly exceeding that which would be associated with
the excitation of a single nucleon. The estimate (II A.58)
of the reduced transition probability for a single proton
transition of E2 type gives!?

B(E2),p=3-10-544/3210~5 cm?. (V.1)

Thus, from a comparison with the observed B(E2)
values in column VII of Table IV.2, it is seen that
most elements exhibit £2 transitions of a strength more
than 10 times the single particle unit, and that in
certain regions transitions occur with a probability
exceeding this unit by a factor of more than 100.
These enhanced transitions are clearly due to the
cooperative effects of a large number of nucleons, and
indeed most of the observed levels can be interpreted
in terms of simple collective excitations of rotational or
vibrational type. Where this interpretation can be
made, the Coulomb excitation experiments yield valu-
able information on such collective nuclear properties
as the equilibrium shape, the deformability, and the
inertial parameters associated with the collective mo-
tion. In the present chapter, we shall outline the theory
of collective nuclear excitations and discuss the evidence
obtained from the Coulomb excitation experiments.

V A. Qualitative Considerations

In the analysis of nuclear excitation spectra it is
possible to distinguish between two different modes of

122 As already noted in Chapter II, the statistical factor appear-
ing in (IT A.58) is somewhat arbitrary; it is the factor appropriate
to a two proton excitation of the type (52)j-o—(j)s=2 in the
limit of large j.
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excitation, the first associated with the motion of indi-
vidual nucleons and the second with collective types of
nuclear motion.'?$:1?* One may think of the former de-
grees of freedom as representing the motion of the nu-
cleons in a fixed nuclear potential (the intrinsic nuclear
motion), while the latter are associated with variations
in the shape and orientation of the nuclear field.

Such a separation of the motion becomes possible
when the frequencies of the collective excitations are
small compared with those characterizing the intrinsic
nucleonic motion and is in many respects analogous to
the separation between electronic and nuclear motion
in molecules.

When this adiabatic condition is fulfilled, one may
treat the equations of motion for the nucleus in two
steps. First one considers the nucleonic motion for fixed
values of the collective parameters «, specifying the
nuclear field; the energy eigenvalues for this motion are
denoted by E;(a). The collective motion superposed on
the intrinsic motion is then given by a Hamiltonian of
the approximate form

Heon=E;(a)+31B;(a)d2 (v.2)

The functions E;(e) are referred to as the potential
energy surfaces of the nucleus and play a similar role
as in the treatment of molecular vibrations and rota-
tions. In the present discussion we are especially inter-
ested in the behavior of the potential energy surfaces
near the equilibrium shape.12s

The second term in (2) gives the kinetic energy of the
collective motion, which may be obtained by consider-
ing the nucleonic motion for slowly varying «. This
kinetic energy can be written as a quadratic expression
in the &, provided all the frequencies of the intrinsic
motion are large compared to those of the collective
motion, so that the intrinsic motion adjusts adia-
batically to the variation in a.

If the intrinsic motion possesses degenerate or close
lying energy levels, the adiabatic approximation may
partially break down. The nucleus must then be de-
scribed in terms of a coupled system of collective
oscillations and the low energy intrinsic degrees of
freedom in question.!?*

12 For a recent review of the nuclear independent particle model,
see M. G. Mayer and J. H. D. Jensen, Elementary Theory of

N@é%l)ear Shell Structure (John Wiley and Sons, Inc., New York,
1955).

124 Collective nuclear oscillations were first considered by N.
Bohr and F. Kalckar, Kgl. Danske Videnskab. Selskab Mat. fys.
Medd. 14, No. 10 (1937). The interplay between collective and
independent particle motion has been discussed by J. Rainwater,
Phys. Rev. 79, 432 (1950); A. Bohr, Kgl.¥Danske Videnskab.
Selskab Mat. fys. Medd. 26, No. 14 (1952); D. L. Hill and J. A.
Wheeler, Phys. Rev. 89, 1102 (1953); A. Bohr and B. R. Mottel-
s((l)géggl. Danske Videnskab. Selskab Mat. fys. Medd. 27, No. 16

125 The behavior of these surfaces for larger deformations has
been discussed in connection with the nuclear fission process
[N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939); D. L.
Hill and J. A. Wheeler, reference 124; A. Bohr, Proceedings of the
International Conference on the Peaceful Uses of Atomic Energy
(Columbia University Press, New York, 1956), Vol. 2, p. 151
(Geneva, 1956)7].
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F1c. V.1. Potential energy surfaces for even-even nuclei. The
nuclear potential energy V is plotted as a function of the deforma-
tion parameter 8, which may, for instance, represent the quadru-
pole eccentricity of the nucleus [see (V.6)]. The various curves
are intended to illustrate schematically the behavior of the poten-
tial energy surfaces for even-even nuclei as one moves away from
closed shells.

The curve a represents a configuration with only relatively few
particles outside of closed shells. As particles are added the
restoring force decreases though the spherical shape (8=0)
remains stable (curve b). Still further from the closed shell the
spherical shape may become unstable (curve ¢) and the nucleus
acquires a nonspherical equilibrium shape. With the addition of
still more nucleons the equilibrium eccentricity increases and
the minimum in the potential energy surface becomes sharper
(curve ). .

The curves all refer to the lowest intrinsic state. Additional sets
of potential energy surfaces are associated with each excited
intrinsic state.

Although the details of the figure have no quantitative signifi-
cance, the qualitative trends are suggested by simple considera-
tions (see the discussion in the text).

In the earliest treatments of collective nuclear oscilla-
tions, one attempted to estimate the potential and
kinetic energy in (2) by comparing the nucleus with a
liquid drop. It is found, however, that the shell structure
in the nucleonic motion has a profound effect on the
collective properties of the individual nuclei. Thus, the
potential energy surfaces depend essentially on the
nucleonic configuration and also the inertial parameters
B;(e) deviate from the hydrodynamical estimates.

The main features of the nuclear potential energy
surfaces are determined by the competition between the
particles in closed shells, which strongly prefer a spher-
ical nuclear shape, and the particles in unfilled shells
which tend to polarize the nucleus and bring about a
nonspherical equilibrium shape.!?® The latter tendency
is, however, counteracted by the residual interactions
between the nucleons, which must be added to the
interactions already included in the average field. The
residual interactions imply correlations in the nucleonic
motion which reduce the net polarizing effect. This
reduction is a result of the attractive short-range
character of the nuclear forces which favor states of
maximum spherical symmetry.1?

The influence of the residual interactions is the
greatest for small deformations of the nuclear shape, as
a consequence of the degeneracy of the particle motion

126 J, Rainwater, reference 124.
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in a spherical field. For large nuclear eccentricities, the
strong coupling of the individual particles to the nuclear
deformation removes the degeneracies, and the residual
interactions are then of less importance.

The dependence of the potential energy surfaces on
the number of nucleons in unfilled shells is illustrated
schematically in Fig. V.1. The figure refers to even-even
nuclei, for which the lowest intrinsic state for a spherical
shape possesses zero total angular momentum. The
spherical density distribution of such a state implies
that the average polarizing effect of the particles
vanishes. For an even-even nucleus, the spherical shape
thus always represents an equilibrium, which may, how-
ever, be cither stable or unstable. For configurations
with only relatively few particles outside of closed
shells, the deformation which would result in the absence
of residual interactions is small; the coupling between
the nucleons is then mainly determined by these inter-
actions and the spherical nuclear shape remains a stable
equilibrium. For sufficiently many particles in unfilled
shells, however, the deformation caused by the nucleonic
motion is large and thus only little affected by the
residual interactions; the strongly deformed shape then
gives the minimum in the potential energy surface, and
the spherical shape is unstable.

On the basis of these qualitative considerations we
consider briefly the general features of the collective nu-
clear excitation spectra for the different configurations.

For a closed shell nucleus, the special stability of the
spherical equilibrium shape'® implies that oscillations
in shape would have high frequencies. Since these fre-
quencies may be of the order of those involved in the
single particle motion, there may be no sharp distinction
between collective and single particle excitations of a
closed shell nucleus.!?

If one or a few nucleons are added to (or subtracted
from) a closed shell configuration, the low-energy
nuclear states may be approximately described in terms
of the motion of these added particles. There exists,
however, a weak coupling between this nucleonic mo-
tion and the oscillations of the closed shell core, which
implies a significant enhancement of the electric multi-
pole transitions between the low-lying levels.

As more nucleons are added to the closed shell con-
figuration, the description of the excitations in terms of
the motion of the individual nucleons becomes highly
complex, especially due to the effect of configuration
mixing. Moreover, the coupling to the closed shell core
increases.

Already for nuclei containing relatively few particles
in unfilled shells, however, one observes states in the
low-energy nuclear spectrum which can be approxi-
mately described in terms of simple collective oscilla-
tions. The collective behavior of the nucleons may be
understood from the fact that the potential energy of

127§, Gallone and C. Salvetti, Nuovo cimento (9) 10, 145 (1953).
See also the references in footnote 124.
128 D, Inglis, Phys. Rev. 97, 701 (1955).
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deformation decreases as one moves away from closed
shell configurations (see Fig. V.1); therefore, the fre-
quency of collective oscillation soon becomes smaller
than the main frequencies of the intrinsic motion.

In the vicinity of the closed shells, where the spherical
shape represents a stable equilibrium, the collective
excitations correspond to vibrations about this shape.
The frequencies of these vibrations are expected to
decrease fairly regularly with the addition of particles,
corresponding to the decreasing restoring force. Eventu-
ally, this tendency may lead to instability of the
spherical shape and a resulting nonspherical equilibrium
shape (see Fig. V.1).

For such deformed nuclei the collective spectrum
separates into excitations of vibrational and rotational
type. The first corresponds to oscillations about the
equilibrium shape for fixed orientation of the nucleus,
while the second represents a collective motion which
rotates the nuclear orientation while preserving the
shape. Such a separation becomes possible since the
nuclear deformation implies that a large mass transport
is associated with the rotational motion. This motion
can thus take place with small frequency and therefore
without affecting the shape (or intrinsic structure) of
the nucleus.

The simple character of the rotational motion gives
rise to many regularities in the rotational excitation
levels, which make them easily identifiable. The rota-
tional states are also especially strongly excited in
Coulomb excitation experiments, as a consequence of
their low energy and large electric quadrupole transition
probabilities. We therefore begin, in Sec. B, with a more
detailed discussion of this special type of collective
excitation.

The properties of the vibrational modes of excitation,
in spherical and deformed nuclei, are at present less well
established, but the Coulomb excitation process consti-
tutes one of the most promising methods for a further
exploration of these states. In Secs. C and D, we discuss
the general characteristics expected for vibrational
spectra and summarize the available evidence on these
excitations. Finally, in Sec. E, we consider briefly some
of the special features of the excitation spectra for
nuclei in the closed shell regions.

V B. Rotational Excitations

The occurrence of rotational spectra is a general
characteristic of nuclei possessing a nonspherical equi-
librium shape. For such nuclei it is possible to separate
between a collective rotational motion and the nucleonic
motion for fixed nuclear orientation. This latter motion
may again separate into vibrational and individual
particle components, but will in the present section
often be referred to simply as the intrinsic nuclear
motion, since the main regularities in the rotational
spectra are independent of the details of this intrinsic
structure.
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V B.1. Energy Spectrum

The rotational spectrum becomes especially simple if
the nuclear shape possesses axial symmetry, as appears
generally to be the case for the very strongly deformed
nuclei.!?*1% The angular momentum coupling scheme is
then similar to that of a linear molecule® and can be
characterized by the three constants of the motion: the
total angular momentum 7, its projection M on a space-
fixed axis, and its projection K on the nuclear symmetry
axis (see Fig. V.2).

Since there can be no collective rotations about a
symmetry axis (see footnote 147 later), the quantum
number K is a constant for each rotational band and
represents an intrinsic angular momentum. The rota-
tional spectrum for the nucleus has the same general
form as for a molecule and may be written!?

h2

Er= E0+'2‘;,‘{I(I+1)+a(— D (I+1)ok,3), (V.3)
N

where Ey is a constant depending only on the intrinsic
structure, while & represents the effective moment of
inertia about an axis perpendicular to the nuclear sym-
metry axis. The last term in the brackets, occurring only
for states with K=1, is associated with a decoupling of
the spin angular momentum from the rotational motion.
The decoupling parameter ¢ can be expressed as an
expectation value for the intrinsic motion.1%2.3 A similar
decoupling effect is well known from molecular spectra

(see, e.g., the uncoupling of the electronic spin from the

z

24
N~

F1c. V.2. Coupling scheme for deformed nuclei. For strongly
deformed nuclei possessing axial symmetry, the angular mo-
mentum properties may be characterized by the three constants
of the motion I, M, and K. While I and M represent the total
angular momentum and its component along the fixed z axis, the
component of I along the nuclear symmetry axis, 2/, is denoted
by K. The collective rotational angular momentum R is perpen-
dicular to the 2’ axis; thus K represents an intrinsic angular
momentum.

128 The principal empirical evidence for the axial symmetry is
the observed I(I+1) type of rotational spectra (see, e.g., Fig.
V.4). The preference for axial symmetry is also consistent with
theoretical estimates of the equilibrium shape for the nuclear
shell structure.

130 Rotational spectra for nuclei without axial symmetry have
been considered by C. Marty [Nuclear Phys. 1, 85 (1956) ].

181 A, Bohr, Phys. Rev. 81, 134 (1951).

132 A, Bohr and B. R. Mottelson, reference 124.

1S, G. Nilsson, Kgl. Danske Videnskab. Selskab Mat. fys.
Medd. 29, No. 16 (1955).
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rotational motion for 22 states, which leads to rotational
spectra with a=+-1 and a=—1).1%

The value of K for the nuclear ground state may be
obtained from a consideration of the individual particle
motion in the deformed nucleus. In such a nonspherical
field, the angular momenta /; and j; of a nucleon are in
general not constants of the motion, but for axially
symmetric nuclei the nucleon orbitals may be labeled
by the constant of the motion @, which represents the
projection on the symmetry axis of the total angular
momentum of the nucleon. States which differ only in
the sign of Q, are degenerate, since they are the same
except for the sense of the particle motion around the
symmetry axis. This gives rise to an especially simple
type of shell structure, in which the particles are filled
pairwise in states of opposite Q; with no net contribution
to K. Thus, for the lowest state of an even-even nucleus,
all the particles are in paired orbits, and we have K=0.
In an odd-A4 nucleus, the last nucleon occupies an un-
paired orbit, and K equals the Q of this orbit.!s?

This coupling scheme, which would apply for inde-
pendent particle motion, is somewhat modified by the
residual interactions between the nucleons. However,
there is evidence that these interactions can be con-
sidered as acting principally between paired nucleons,
so that the above classification remains valid for the
ground state of even-even nuclei and the intrinsic states
of odd-A4 nuclei corresponding to the different orbits of
the last odd nucleon.’®® On the other hand, the degrees
of freedom associated with the excitation of paired
nucleons may partly manifest themselves in collective
vibrational motion (see Sec. V D).

For nuclear shapes possessing reflection symmetry
with respect to a plane perpendicular to the nuclear axis,
the possible rotational quantum states are governed by
symmetry requirements similar to those applying to
homonuclear diatomic molecules.’®?38 Thus, for an in-
trinsic state with K=0, only even or odd values of I are
allowed, according to the symmetry of the intrinsic
state with respect to a rotation of 180° about an axis
perpendicular to the symmetry axis. In particular, for
the ground state of an even-even nucleus, only the even

13t See G. Herzberg, Spectra of Diatomic Molecules (D. van
Nostrand Company, Inc., New York, 1950), p. 222.

135 For calculations of the single particle states in deformed
axially symmetric potentials, see S. Moszkowski, Phys. Rev. 99,
803 (1955); S. G. Nilsson, reference 133; K. Gottfried, Phys. Rev.
103, 1017 (1956).

136 Compare the classification of the spins and parities of the
ground states and low-lying intrinsic excitations of odd-4 nuclei
with nonspherical shape in terms of the binding states of the last
odd nucleon in an ellipsoidal potential (B. R. Mottelson and S. G.
Nilsson, Phys. Rev. 99, 1615 (1955) ; K. Gottfried, reference 135).
Additional evidence is provided by the systematic occurrence of
unhindered « decay in odd-4 nuclei [Bohr, Froman, and Mottel-
son, Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 29, No. 10
(1955)].

137 A, Bohr, reference 124.

138 K. W. Ford, Phys. Rev. 90, 29 (1953).
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values

I=0,2,4,6, - (even pa.rity)v (V.4)

occur in the rotational spectrum.1??
For intrinsic states with K20, the allowed values of
the nuclear spin are

I=K, K+1, K+2, - -. (V.5)

The members of the band all have the same parity which
equals the parity of the intrinsic motion. Thus, for an
odd-4 nucleus with a single unpaired nucleon, the orbit
of this last particle determines the parity as well as the
K-value of the rotational band.

Even-even nuclei.—The Coulomb excitation experi-
ments have provided one of the most important sources
of information on the rotational excitations. These are
strongly populated by transitions of electric quadrupole
type, and in an even-even nucleus, one should thus
excite the first state (I=2-4) of the lowest rotational
band. It has also been found that the Coulomb excita-
tion induces just one strong transition in each even-even
nucleus far from closed shells. The excitation energy E.
of this state is a rather smooth function of the atomic
number and decreases as one moves away from closed
shells. The energy systematics of the first excited states
of even-even nuclei is shown in Fig. V.3.

The regions of large nuclear deformations are char-
acterized by especially small values of the excitation
energies £,, and, as will be discussed below, rotational
spectra are only expected in nuclei for which Es is less
than the critical value indicated by the dotted curve in
Fig. V.3. Such small excitation energies are found in the
light elements with 4~8 and 24, and in the heavier
elements with 150 <4 <190 and 4> 222.

These regions include just the nuclei for which the
number of particles in unfilled shells relative to those in
closed shells is especially large. In the mass region
40 <A <150 the conditions for the occurrence of large
deformations are less favorable, partly due to the effect
of the spin orbit coupling which breaks the major shells,
and partly due to the neutron excess which implies that
the closings of neutron and proton shells occur for
different nuclei.

The rotational interpretation of the states populated
by Coulomb excitation in the mass regions 150 <4 <190
and 4> 222 is confirmed by the observation of higher
excited states in the rotational band. These states which
are populated in radioactive decay processes are found
in even-even nuclei to have the spin sequence (4) with
energies corresponding to (3). (See Fig. V.4)1,

The Coulomb excitation of these higher states would
require either a transition of multipole order greater

13 For the spin-parity values of rotational bands associated
with vibrational excitations, see Sec. V D.1.

1“0 Evidence for rotational bands in the nuclei with 4 =24 and
25 is discussed by Litherland, Paul, Bartholomew, and Gove,
Phys. Rev. 102, 208 (1956). For the nuclei around 4 =8, the
consequences of the present description are similar to those which
follow from the a-particle model [see the review by D. R. Inglis,
Revs. Modern Phys. 25, 390 (1953)7].
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F16. V.3. Energy systematics of first excited 2+ states in even-even nuclei. The energies of the first excited 2+ states
of 'the even-even nuclei are plotted as a function of neutron number N and proton number Z. The black circles indicate
levels that have been observed in Coulomb excitation, while the open circles represent levels which have so far only been
observed in radioactivity or nuclear reaction studies.

The rotational spectra occur in the regions farthest from closed shells, where the excitation energies are lowest; in other
regions, the excitations have the character of collective quadrupole vibrations (see Sec. V C). The separation between these
two regions is approximately given by the criterion (9) which is illustrated by the dotted curve following the stable mass
region. Thus, the rotational spectra are found in the regions where the observed first excited states have energies less than
this separation line. For the value of J.i. in (9), we have used the relation (7) with Ro=1.24/3X 1071 cm, and have esti-
mated the higher order 8-dependent corrections by assuming 8 to have the critical value 0.6 with the interaction parameter
v=1.84"1/3 (see reference 145).

The figure is a representation of the systematics first discussed by G. Scharff-Goldhaber, Phys. Rev. 90, 587 (1953)"and by
P. Preiswerk and P. Stihelin, Nuovo cimento 10, 1219 (1953). The experimental energies are taken from Table IV.2, and
from the following compilations: F. Ajzenberg and T. Lauritsen, reference 187; P. M. Endt and J. C. Kluyver, Revs. Modern
Phys. 26, 95 (1954); K. Way et al., Nuclear Level Schemes, 40< 4 <92, Washington (1955). Additional data are obtained
from: Perlman, Bernstein, and Schwartz, Phys. Rev. 92, 1236 (1953) Pd!®® and Cd!8; L. Grodzins and H. Motz, Phys. Rev.
100, 1236(A) (1955) Sn'; C. L. McGinnis, Phys. Rev. 98, 1172(A) (1955) Sn'®; Farrelly, Koerts, van Lieshout, Benczer,
and Wu, Phys. Rev. 98, 1172(A) (1955) Sn'?2; M. J. Glaubman, Phys. Rev. 98, 645, 1172(A) (1955) Sn*??; Benczer, Farrelly,
Koerts, and Wu, Phys. Rev. 100, 955(A) (1955) Te'?® and Xe!28; R. S. Caird and A. C. G. Mitchell, Phys. Rev. 94, 412
(1954) Xe; H. N. Brown and R. A. Becker, Phys. Rev. 96, 1372 (1954) Er'®; A. H. W. Aten, Jr., and G. D. de Feyfer,
Physica 21, 543 (1955) Os'®; Aten, de Feyfer, Sterk, and Wapstra, Physica 21, 740 (1955) Os'*; M. W. Johns and S. V. Nablo,
Phys. Rev. 96, 1599 (1954) Os'? and Pt'%2; V. E. Krohn and S. Raboy, Phys. Rev. 95, 1354 (1954) Pb2*; I. Bergstrém and
A. H. Wapstra, Phil. Mag. 46, 61 (1955) Pb®¢; Mihelich, Schardt, and Segre, Phys. Rev. 95, 1508 (1954) Po°; I. Perlman
(private communication of work by Asaro, Harvey, Hollander, Perlman, Smith, and Stephens) Em2'8, Ra22 Th22, Th26,
Pu®, Pu?®?, Fm?*; T. O. Passell, UCRL-2528 (1954), U2, Pu$; O. P. Hok and G. J. Sizoo, Physica 20, 77 (1954) U22;
Asaro, Stephens, Harvey, and Perlman, Phys. Rev. 100, 137 (1955) Cm?%, Cm2%; Asaro, Stephens, Thompson, and Perlman,
Phys. Rev. 98, 19 (1955) Cfze,
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than E2, or a multiple £2 transition, and has not yet
been observed. For an estimate of the cross sections for
these processes, see Sec. V B.2.

The moments of inertia derived from the observed
rotational spectra of even-even nuclei in the region
150< 4 <188 are plotted in Fig. V.5 as a function of the
nuclear quadrupole deformation parameter 8. If the
nucleus is assumed to have spheroidal shape, B is
given by '

4 /m\ ¥ AR AR
( (V.6)

B=— —=1.06—,
3\5/ R, Ro

where R, is the mean nuclear radius and AR the differ-
ence between the major and minor semiaxis of the
spheroid. The values of 8 employed in Fig. V.5 are
obtained from the observed E2 transition probabilities,
which determine the quadrupole moment of the nuclear
shape [see (10) and (12) and Table V.27]. The moments
of inertia are plotted in units of the moment

Jrig=34 MR (14-0.318+ - - ), (v.7)

associated with a rigidArota.tion of a spheroid of mass
AM about an axis perpendicular to the symmetry axis.
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Fi1c. V.4. Energy ratios of rotational excitations in even-even
nuclei. The figure shows the measured ratios of the energies of
the higher rotational excitations to the energy of the first excited
(24) state in the regions 150<A4 <190 and A4 >222, where
rotational spectra are expected (compare Fig. V.3). The hori-
zontal lines are the limiting theoretical ratios obtained from (3),
assuming the higher states to have the spins 44, 6+, 84-; while
these spin values are experimentally established in only a few
cases, they are in all cases consistent with available data on the
decay scheme. The small systematic deviations from the limiting
expression (3), which increase with the approach to closed shells
and with 7, can be interpreted in terms of the perturbation of the
intrinsic structure produced by the rotational motion (compare
Sec. VB.4).

- The experimental data for the figure is taken from the com-
pilation in Chapter XVII in Befa- and Gamma-Spectroscopy, edited
by K. Siegbahn (North Holland Publishing Company, Amster-
dam, 1955), and from: A. H. W. Aten, Jr., and G. D. de Feyfer,
Physica 21, 543 (1955) Os'¥; Aten, de Feyfer, Sterk, and Wapstra,
Physica 21, 740 (1955) Os'¥; I. Perlman (private communication
of work by Asaro, Harvey, Hollander, Perlman, Smith, and
Stephens) Ra2, Th26 U224 Pu28 Pu, Cm?2, Cm*®; Asaro,
Stephens, and Perlman (submitted for publication) Ra??, Ra?2;
Goldhaber, der Mateosian, Harbottle, and McKeown, Phys. Rev.
99, 180 (1955) Th28; F. Asaro and I. Perlman, Phys. Rev. 99,
37 (1955) Th28; O. P. Hok, Phys. Rev. 99, 1613 (1955) Th?28
Th2o, T[22 TU24; Asaro, Stephens, Thompson, and Perlman,
Phys. Rev. 98, 19 (1955) Cfz50,

The empirical moments of inertia are seen from Fig.
V.5 to be appreciably smaller than S, and to increase
strongly with increasing 8. A simple classical model of a
rotational motion with these properties is provided by
a wave traveling on the surface of a liquid drop. As-
suming irrotational flow, this model yields the moment
of inertial®

St =24 MR?8%(0.894+0(5?)) (v.8)
for a nucleus of spheroidal shape. While the nuclear mo-
ments have some of the qualitative features of this irro-
tational flow model, it is seen from Fig. V.S that the
observed moments are considerably larger than $ipror.14

The nuclear moments of inertia can be interpreted in
more detail in terms of the response of the nucleonic

41 See, e.g., H. Lamb, Hydrodynamics (Cambridge University
Press, New York, 1916), p. 82 ff (see also reference 137).

142 See A. Bohr and B. R. Mottelson, Phys. Rev. 89, 316 (1953);
reference 132; K. W. Ford, reference 138; 95, 1250 (1954). For a
more detailed comparison with the potential flow model, including
the effect of higher multipoles in the nuclear shape, see T. Gustaf-
son, Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 30, 5
(1955).
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motion to the slowly rotating nuclear field.43:14¢ Tt is
found!45:146 that, for independent particle motion, the
effective moment of inertia would be approximately
that corresponding to rigid rotation, but that the re-
sidual interactions between the nucleons reduce the
moment, which then exhibits a dependence on 8 of the
type observed.'¥ Residual interactions so strong as to
break down the shell structure would reduce the mo-
ment to values approaching Simot. The observed mo-
ments indicate interactions about three times smaller
than this limit. The full drawn curve in Fig. V.5 corre-
sponds to a rough estimate!*® of the moments of inertia
for interactions of such a magnitude.

As one approaches the closed shell configurations, the
value of B decreases and, eventually, as a consequence
of the residual interactions, the nuclear deformation
collapses and the equilibrium shape becomes spherical
(see Fig. V.1). The nucleus then no longer possesses a
rotational spectrum and the collective excitations cor-
respond to vibrations about the spherical equilibrium
(see Sec. V C.1).

A criterion for the transition from vibrational to
rotational spectra may be obtained by noting that this
transition is associated with a change of the nucleonic
coupling scheme (see Sec. V A). For the nuclei with
spherical equilibrium shape, the coupling of the par-
ticles in unfilled shells is determined mainly by the
residual interactions, while the development of a stable
equilibrium shape is associated with a tendency of the
individual nucleonic orbits to align themselves in the
deformed nuclear field. Since, for completely inde-
pendent particle motion, the moment of inertia would
have the value (7) corresponding to rigid rotation, the
smallest moment compatible with the occurrence of
rotational spectra is expected to be a certain fraction of
SKiig. This fraction has been estimated on the basis of

43 D, R. Inglis, Phys. Rev. 96, 1059 (1954).

44 The nuclear moment of inertia is also related to the de-
pendence of the collective orientation angles on the nucleonic
coordinates. The introduction of orientation angles associated with
an irrotational collective flow has been considered by A. Bohr,
Rotational States in Atomic Nuclei (Ejnar Munksgaard, Copen-
hagen, 1954); G. Siissmann, Z. Physik 139, 543 (1954); H. A.
Tolhoek, Physica XXI, 1 (1955); S. Tomonaga, Progr. Theoret.
Phys. 13, 467 (1955); F. Coester, Phys. Rev. 99, 170 (1955); R.
Nataf, Compt. rend. 240, 2510 and 241, 31 (1955); Marumori,
Yukawa, and Tanaka, Progr. Theoret. Phys. 13, 442 (1955);
T. Marumori and E. Yamada, ¢bid. 13, 557 (1955) ; T. Marumori,
ibid. 14, 608 (1955) ; Lipkin, de Shalit, and Talmi, Nuovo cimento
(10)2, 773 (1955); T. Miyazima and T. Tamura, Progr. Theoret.
Phys. (to be published); T. Tamura, Nuovo cimento (to be pub-
lished; F. Villars (privately circulated manuscript); see also the
discussion of this approach in reference 145).

45 A, Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. 30, No. 1 (1955).

u46 S Moszkowski, Phys. Rev. 103, 1328 (1956).

147 In the special case of a rotation about a symmetry axis, the
moment of inertia vanishes, since a rotation of the field then has
no effect on the nucleonic motion.

148 This estimate (compare reference 145) is based on a “two
nucleon model” in which the nucleons outside of closed shells are
represented by two interacting nucleons in p states. Despite the
schematic character of this model, it may provide a qualitative
description of the competition between the residual interactions
and the nuclear shell structure.
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F1c. V.5. Dependence of moments of inertia on the nuclear
deformation. The empirical moments of inertia of even-even
nuclei in the region 150 <4 <188 are plotted as a function of the
nuclear deformation parameter 8. The figure is taken from refer-
ence 145 which employed empirical data on 9 and Qo which is
substantially the same as that contained in Table V.2. The
moments of inertia are plotted in units of the moment 9,
associated with a rigid rotation [see (V.7)]. The full drawn curve
represents a theoretical estimate based on a simplified model
(reference 148). The parameter, v, appearing in this estimate is
a measure of the strength of the residual interactions and the value
chosen has been adjusted to fit the experimental data.

For comparison the moment of inertia corresponding to irrota-
tional flow (V.8) is shown by the dotted curve.

the simplified model"*® mentioned above, which yields
a value of about one quarter of Jyi,. This would imply
that the transition from vibrational to rotational spectra
could be characterized approximately by a critical value

(E2)orit=~ 1312/ Frig (V.9

for the energy of the first excited state of an even-even
nucleus. Stable equilibrium deformations and rotational
spectra occur in this model only for even-even nuclei
with E, values smaller than (9). However, the coeffi-
cient in (9) may have an 4 dependence which would lie
outside the scope of this model. (See Fig. V.3.)

0dd-A nuclei—For odd-A nuclei, the E2 excitation
process can populate both the first and second rotational
excitations of the ground state [see (5)]. It is indeed
found that, in the regions where rotational spectra are

found in the even-even nuclei, the Coulomb excitation .

of odd-4 nuclei strongly populates just two states. The
energies of the states, identified in this manner as rota-
tional excitations, are listed in Table V.1. It is seen that
the ratios of the energies agree well with those calcu-
lated from (3). While the assumed spin sequence (5)
appears in all cases to be consistent with Coulomb exci-
tation data and with the evidence from the observed
radioactive decay schemes, unambiguous spin deter-
minations have been made in only a few cases (see Ta
and W in Table IV.2).

For the nuclei with ground-state spin Io=%, the ir-
regular sequence of the observed states reveals the
effect of the second term in (3). The value of ¢ obtained
from the observed levels is listed in column seven of
Table V.1. From the values of & and @, the position of
the higher members of the band can be calculated. -
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Although these levels are not populated by E2 Coulomb
excitation, they have been observed in a number of
cases in radioactive decays with energies rather accu-
rately given by (3).14° The values of ¢ can be approxi-
mately accounted for on the basis of the wave function
for the last odd nucleon.!?3:180

The rotational energy constants 342/ determined
from the odd-A4 spectra are listed in column five of
Table V.1. The corresponding quantity for the related
even-even nucleus, obtained by removing the last odd
nucleon, is listed in column six of the table and is seen

TaBLE V.1. Rotational states in odd-4 nuclei populated by
Coulomb excitation. The table lists the odd-4 nuclei in the regions
152<A4 <190 and 4 >222 which have been studied by Coulomb
excitation. The only nuclei omitted are the odd isotopes of Dy,
Er, and Yb for which it appears that the radiation from the lowest
excitations has not been resolved from that of the even isotopes.

The ground state spins /o, listed in column two, are taken from
the compilation of Hollander, Perlman, and Seaborg, Revs. Modern
Phys. 25, 469 (1953) and the additional references listed below.

The energies of the first excited state, £®, and of the second
excited state, E®, are listed in columns three and four. The E®
value in parenthesis is that calculated from (V.3), assuming the
spins Io+1, Ip+2 for the two excited states. The moment of
inertia parameter employed is obtained from the experimental
value of E® and is listed in column five. For comparison, the
corresponding parameter for the neighboring even-even nucleus,
obtained by removing the last odd nucleon, is listed in column six.

For nuclei with Io=1/2, the rotational spectra involve an addi-
tional parameter, “a.” For these nuclei, the moment of inertia
parameter and the value of “a” determined by means of (V.3)
from the measured values of E® and E® are listed in column five.

Additional references for Io: D. R. Speck, Phys. Rev. 101, 1725
(1956) (Gd##:157); D, R. Speck and F. A. Jenkins, Phys. Rev. 101,
1831 (1956) (Hf'"7.1%); K. L. van der Sluis and J. R. McNally,
Jr., J. Opt. Soc. Am. 44, 87 (1954) (U28); Hutchinson et al.,
Phys. Rev. 102, 292 (1956) (U%5); van den Berg et al., Physica
20, 37 (1954), and Bleaney et al., Phil. Mag. 45,991 (1954) (Pu2®),

s e
E® E® Ni & e
Nucleus Io (kev) (kev) (kev) (kev)
gsELutss 5/2 83 192 (190) 71 122
64G 158 3/2 60 145 (144) 72 123
Gd®"  3/2 55 131 (132) 66 89
65 L b159 3/2 58 138 (139) 70 79
oHO®s — 7/2 95 211 (211) 63 73
69 T m169 1/2 84 118. 74 80
(a=—0.77)
nLul? 7/2 113.8 251.0 (252.9) 76 78
7o HE7? 7/2 113 250 (251) 75 89
Hf17 9/2 121 262 (264) 66 90
73 Taldt 7/2 136 303 (302) 91 93
74 W18 1/2 46.5 99.1 78 100
(¢=0.19)
75Rel18d 5/2 126 286  (288) 108 112
Rel8? 5/2 135 303 (309) 116 123
92 U238 5/2 404 921 ( 924) 35 45
s 7/2  46.2 103.0 (102.7) 31 45
93 NP7 5/2 33.2 75.8 (75.9) 28 44
94 Pu%® 1/2 7.8 57.2 37 43
(a=—0.58)

49 Tm!®; S, E. Johannson, Phys. Rev. 100, 835 (1955); J. M.
Cork et al., Phys. Rev. 101, 1042 (1956); E. N. Hatch et al.,
Bull. Am. Phys. Soc. Ser. II 1, 170 (1956). W8; see Fig. V.8.
Pu?®; Hollander, Smith, and Mihelich, Phys. Rev. 102, 740 (1956).

150 B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. (to be published); see also the analysis
of the Tm!® spectrum in Z. Physik 141, 217 (1955).
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to be systematically somewhat greater than the odd-4
value. This difference appears to be associated, at least
partly, with the difference in the intrinsic excitation
spectra for even-even and odd-4 nuclei. While the first
intrinsic excitation of an even-even nucleus usually has
an energy of the order of a Mev in heavy nuclei, the
odd-4 nuclei exhibit excitations with an average spacing
of about two hundred kev, associated with the change
of orbit of the last odd particle.!® The occurrence of
low-lying intrinsic excitations in the odd-4 nuclei im-
plies that the intrinsic motion is less able to follow the
rotational motion in an adiabatic manner, with a
resultant increase in the effective moment of inertia
(see Sec. VB.4).

V B.2. Excitation Cross Sections

An especially valuable feature of the Coulomb excita-
tion process is the possibility of determining the absolute
transition probability for the excitation by a measure-
ment of the cross section. Since the rotational transi-
tions leave the intrinsic structure unaltered, the transi-
tion matrix element can be expressed as an expectation
value for the intrinsic structure, multiplied by a vector
addition coefficient. Thus, one obtains'®? for an E2
transition from a state 7,, K to another state I;, K of
the same rotational band, the reduced transition prob-
ability [see (IT A.18)7152

5
B(E2; I—I)) =Fe2Q02(Ii2KO |I21,K), (V.10)
T

where Qo is the electric quadrupole moment of the
nuclear shape, defined by

eQo= <K

In (11), p is the nuclear charge density and the angle ¢’
is measured from the intrinsic nuclear axis (2’ in Fig.
V.2). The wave function for the intrinsic nuclear state
is labeled by K.

fp72(3 cos?0’'—1)dr’ K>‘ (V.11)

For a uniformly charged nucleus of spheroidal shape,

Qo can be expressed in terms of 8, given by (6), and one
obtains

(V.12)

3
Qo= )1ZR02,6(1+0.16,8+- ),

(57

where Z is the nuclear charge number. Corresponding
to the fact that, for the strongly deformed nuclei, the
quadrupole moments are an order of magnitude larger
than those associated with a single proton, the transition
probabilities (10) are observed to be appreciably larger

161 See, e.g., the difference between the spectra of W82 and W18
(Murray et al., Phys. Rev. 97, 1007 (1955)) or between Pu?®$
(reference 176) and Pu?® (reference 149).

162 The relationship of the vector addition coefficients used in
this chapter to the equivalent 37 symbols employed in Chapter IT
is given by (IT A.17).
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than the single particle unit (1), in some cases by more
than a factor of a hundred.

The intrinsic quadrupole moments Qo deduced by
means of (10) from the observed cross sections for
Coulomb excitation of rotational levels are listed in
Tables V.2 and V.3.

For odd-4 nuclei, it is possible to compare the in-
trinsic quadrupole moments deduced from transition
probabilities with the expectation values for the quadru-
pole moment Q in the nuclear ground state, as obtained
from atomic hyperfine structure separations. The latter
quantity is defined by

f pr2(3 cos*9—1)dr|I, M=I>, (V.13)

eQ=<I, M=I

where the angle 8 is measured from the fixed z axis. For
a state of a rotational band, the moment Q is related

to Qo by
' 3K2—I(I+1)

=0, V.14
Q(I+1)(21+3) (V14

Q

TaBLE V.2. Moments of inertia and quadrupole moments of
even-even nuclei. The table lists the even-even nuclei which
exhibit rotational spectra and for which there exists evidence on
the transition probabilities. Column two gives the moment of
inertia parameter obtained from the energy of the first excited
state (24). Column three gives the intrinsic quadrupole moments
obtained from the measured transition probabilities by means of
(V.10). The data come partly from Coulomb excitations, see
Table IV.1, and the additional data given by A. W. Sunyar, Phys.
Rev. 98, 653 (1955). The deformation parameter, 8, in the last
column is obtained from the Qo values by means of (V.12),
assuming Ro=1.24% 10718 cm.

3n2
Nucleus (kse}v) (1 Olgoclm’) B
60N 160 130 48 0.25
625m152 122 5.7 0.28
Sm!64 83 6.7 0.33
64Gd1% 123 6.3 0.30
Gdrse 89 8.8 0.41
Gd1s8 79 10 0.46
Gd1eo 76 10 0.47
osDymo 86 78 0.35
Dy162 82 8.2 0.36
Dyté4 73 9.5 0.41
esEorod 90 7.8 0.33
Erles
Erl6s8 80 7.8 0.33
Erl70
70Y b170 84 7.5 0.30
Yb172
Ybi7 78 7.8 0.31
Ybl76
7o H {176 89 7.5 0.29
Hf178 91 8.1 0.31
Hf180 93 7.1 0.27
74 W182 100 71 0.26
184 112 6.5 0.24
Wwise 124 6.5 0.24
7605188 137 5.5 0.20
Ost88 155 5.1 0.18
90 Th?? 52 10 0.25
92U%8 44 11 0.28
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and, in the special case of the ground state (I;=K), one
obtains

Io(2I,—1)

=Q——mMm. (V.15)
(To+1)(210+3)

The smaller value of Q, as compared with Q,, reflects the
fact that, even for the state M =1, the intrinsic nuclear
axis is not completely aligned along the fixed z axis.

The intrinsic quadrupole moments obtained from the
spectroscopic Q values by means of (15) are compared
in Table V.3 with those derived from the Coulomb
excitation cross sections by means of (10). The two
determinations seem to be consistent, considering the
rather large uncertainties involved, especially in the
estimate of the nuclear quadrupole moments from the
measured hyperfine structure intervals.

As is seen from expression (10), the ratio of the cross
sections for the excitation of the first and the second
rotational state in an odd-4 nucleus is independent of

TaBLE V.3. Intrinsic quadrupole moments of odd-4 nuclei. The
table lists the odd-4 nuclei in the regions 152<4 <190 and
A>222 for which there is evidence on the nuclear deformation
from Coulomb excitation cross sections or spectroscopic hyperfine
structure measurements. The ground-state spins, o, are taken
from the references in Table V.1, and the intrinsic quadrupole
moments (in column three) are obtained from the experimental
transition probabilities in Table IV.2 by means of (V.10). The
spectroscopic quadrupole moments, Q, in column four are taken
from the compilation of N. F. Ramsey, Nuclear Moments (John
Wiley and Sons, Inc., New York, 1953), and the additional refer-
ences given below. From these moments, the intrinsic quadrupole
moments in column five are obtained by means of (V.15).

Additional references for Q: D. R. Speck Phys. Rev. 101 1725
(1956) (Gd1s:157) ; T, M. Baker and B. Bleaney Proc. Phys. Soc.
(London) 68A 1090 (1955) (Ho!%5); Bogle et al., Proc. Phys. Soc.
(London) 65A, 760 (1952) (Er'¢7); T. Kamei, Phys. Rev. 99, 789
(1955) (Lul?™; Tal®); Fred et al., Phys. Rev. 98, 1514 (1955)
(Ac®"); K. L. van der Sluis and J. R. McNally, Jr., J. Opt. Soc.
Am. 44, 87 (1954) (U#5); Korostyleva et al., J. Exptl. Theoret.
Phys. U.S.S.R. 28, 471 (1955) and N. I. Kaliteevskij and M. P.
Chaika, private communication (ratio between moments of U3
and U%5),

100l Qo
Nucleus Io (Coul. exc.) Q (hfs)
Eylss 5/2 7.7 2.5 7.0
64Gd15 3/2 8.0 1.1 5.5
Gdus? 3/2 7.7 1.0 5.0
65 L b!% 3/2 6.9
571’10165 7/2 78 N2 ’\’4
ssgrwl’“ y% .o ~18 ~20
m’ .
D A T
u X .
ToHRT 772 75
i %2 Ng 8 43 9.2
Tals! 2 X . .
7Rl 572 54 2.8 78
Re!l8? 5/2 5.0 2.6 7.3
soA 227 3/2 —1.7 —8
92 U238 5/2 14 ~6 ~17
U2 7/2 9 ~8 ~17
0sNp27 5/2 9
94 Pu® 1/2 8.3 0
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TaBLE V.4. Relative intensities of rotational excitations. The
table lists the odd-4 nuclei for which the cross sections for the
Coulomb excitation of the first two rotational states have been
measured. The ratio of the experimental transition probabilities
(compare Table IV.2) is listed in column three together with the
theoretical value (in parenthesis) obtained from (V.10). The
ground-state spins, o, are taken from the references given in
Table V.1.

Note added in proof.—A recent systematic study of the ratio of
B(E2) values obtained in Coulomb excitation of odd-4 nuclei
(G. Goldring and G. T. Paulissen, Phys. Rev. 103, 1314 (1956))
has yielded values in approximate agreement with those listed in
Table V.4. The one essential difference occurs for Hf!?, for which
the new measurements give a ratio of 0.22.

B(E2; Io—Io+2)

Nucleus Io m
ssELul® 5/2 0.28 (0.35)
wGd? 3/2 0.38 (0.56)
s Th1® 3/2 0.56 (0.56)
s7Ho1ss 772 0.24 (0.26)
nLul® %2 0.23 (0.26;
JHfT 2 0.26 (0.26
“Hiprm 972 0.07 (0.20)
wTaist 772 0.29 (0.26)
7oRelss 572 0.27 (0.35)
Rets? 5/2 0.39 (0.35)
0202 5/2 0.18 (0.35)
s 772 0.16 (0.26)
o N7 5/2 044 (0.35)

Q.15 Thus, a measurement of this ratio provides a
direct test of the nuclear coupling scheme. The available
evidence is collected in Table V.4 and compared with
the ratios calculated from (10).

The Qo values obtained from (10) are plotted in
Fig. V.6, and show similar general trends as previously
observed in the spectroscopic quadrupole moments.!%*
Thus, the nuclear deformations increase strongly as one
moves away from closed shell regions, reflecting the
polarizing effect of particles outside of closed shells
(see Sec. V A). A theoretical estimate of Qo may be
obtained by calculating the binding energies of the
individual nucleons as a function of the nuclear defor-
mation and minimizing the total nuclear energy .15 The
deformations calculated in this manner are shown by
the full drawn curve in Fig. V.6.

The excitation of higher members of the ground-state
rotational band (AI> 3) may be achieved by multiple
E2 processes. (See Sec. II D.3.) The cross sections for
such processes may become quite large for high bom-
barding energies, as may be employed especially with
heavy ions as projectiles. Thus, for 20-Mev « particles
incident on a target with Z,=90, the cross section for a

185 Such intensity relations apply quite generally to transitions
leading to different members of a rotational band. For applications
to B8 and v transitions, see Alaga, Alder, Bohr, and Mottelson,
Kgl. Danske Videnskab. Selskab Mat. fys. Medd. 29, No. 9
(1955); for « transitions see Bohr, Fréman, and Mottelson,
reference 136; for deuteron stripping reactions, see G. R. Satchler,
Phys. Rev. 97, 1416 (1955).

134 W, Gordy, Phys. Rev. 76, 139 (1949). Townes, Foley, and
Low, Phys. Rev. 76, 1415 (1949).

185 D, Pfirsch, Z. Physik 132, 409 (1952). S. Moszkowski,
reference 135; B. R. Mottelson and S. G. Nilsson, reference 136;
K. Gottfried, reference 135,
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F1e. V.6. Intrinsic quadrupole moments of deformed nuclei.
The experimental Qo values, determined from E2 transition
probabilities (compare Tables V.2 and V.3), are plotted as a
function of the nuclear mass number. The experimental un-
certainties are usually of the order of 10-209%,, but may be some-
what greater in the very heavy elements region. The full drawn
curve gives a theoretical estimate of Q¢ based upon an independent
particle description of the intrinsic structure (B. R. Mottelson
and S. G. Nilsson, reference 136 and Kgl. Danske Vidensk.
Selskab Mat. fys. Medd. (to be published).

second order E2 excitation of the 44 state of an even-
even nucleus is found from (II D.18) and (10) to be
about 50 millibarns, assuming Qo=10 barns.

While the cross sections for single or multiple £2
excitations of rotational states depend on the nuclear
quadrupole moment, the possible occurrence of higher
multipole moments in the nuclear shape can in principle
be studied by means of the Coulomb excitation of corre-
sponding multipole order populating higher members of
the ground-state rotational band. Thus, an E\ transi-
tion from the ground-state 7K to the rotational states
I;K would be characterized by the reduced transition
probabilities

B(EXN; I—1I )= (K |9 (EX0) | K)?
XINKO|IN K, (V.16)

where N, (EX,0) is the intrinsic X moment defined by
(IT A.11) with the coordinates referring to the intrinsic
nuclear system. The cross sections for higher multipole
excitation will usually be appreciably smaller than those
for multiple E2 transitions. Thus, if one assumes!®® g
value for B(E4;0—4) of 0.2¢2(1072* cm?)* in a nucleus
with Z,=90, one obtains from (II C.15) a cross section
of about 0.2 millibarn for £4 excitation of a 44 state
with 20-Mev « particles.

V B.3. Magnetic Dipole Decay of Rotational Excitations

Since the successive rotational states in an odd-4
nucleus have AT=1 [see (5)], the y radiation emitted

156 A recent analysis of the fine structure intensities in the o
decay of the heavy nuclei [P. O. Fréman, Kgl. Danske Videnskab.
Selskab Mat. fys. Medd. (to be published) ] indicates £4 moments
in the nuclear shape corresponding in some cases to values as
large as B(F4;0—4)=0.2¢2(102¢ cm?)!; the single particle unit
(IT A.58) for Zy=90 corresponds to B (E4) 0,01¢2(1072¢ cm?2)4.

MOTTELSON, AND WINTHER

in the decay of these states will in general be a mixture
of M1 and £2, although the excitation is of almost pure
E2 type (see Sec. IT A.3). The absolute E2 transition
probability can be determined from the cross section for
Coulomb excitation. Thus, a determination of the rela-
tive strength of the M1 as compared with the £E2
radiation in the decay of the first excited state will also
yield the absolute M1 transition probability. This in-
formation can be obtained from angular distributions or
internal conversion measurements on the emitted radia-
tion (or from the lifetime of the excited state). The
M1 transition probability in the cascade transition
(Io+2—1+1) can be determined from the relative
strength of M1 and E2 in this transition together with
the branching ratio between the mixed M1+ E2 cascade
radiation and the pure E2 cross-over (I,+2—1I,) decay
of the second excited state. If only one of these data is
available one may employ the rotational formula (10)
to provide the additional relation necessary for the
estimate of the absolute M1 transition probability in
the cascade radiation.

The magnitude of the M1 transition probabilities
between rotational states can be related to the gyro-
magnetic ratios, gx and gg, of the intrinsic and collective
motion. The reduced M1 transition probability from a
state I;K to another state I;:K of the same rotational
band (with K5£1) is given by 132

B(M1; L—J;)——( ) (gx—gr)2K?

X{(TAKO|TALLKY. (V.17)

The relative sign of M1 and E2 transition amplitudes
may also be determined from angular distribution
measurements (see Sec. IT C.4). This phase is related
to the sign of Qo and of gx—gr and is given by

$k— &R

signé = sign , (V.18)

(1]
where 6 is the ratio between the reduced E2 and M1
matrix elements for the transition (see Sec. IT A).
The static magnetic moment u of a state in the rota-
tional band may also be expressed in terms of the gyro-
magnetic ratios gx and gg. Thus, for K51, one obtains

K2

TIt1

For a band with K=4, the magnetic properties in-
volve an additional parameter by similar to the de-
coupling parameter, @, in the energy spectrum.!®® For
this case, the M1 transition probability and the mag-
netic moment may be written in the form

)221+1( .
oe) T41 R

X (A4 (=10,

(gx—gr)+1Igr. (V.19)

3
B(M1; I+1—-)=—o
64

(V.20)
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with
8K—ER
signd=sign 14+ (=1, (V.21)
and ’
u=m(gx—gze)
X[A—= QI+ (-1 ]+ 1gr. (V.22)

A measurement of both the M1 transition probability
and the ground state magnetic moment can thus yield
gx and g separately (and the value of b for K =% bands
if an additional transition probability or moment is
measured). The quantities gx and b, can be related to
the intrinsic nucleonic configuration, while gz provides
information on the rotational motion, and may be
compared with the value

—Z V.23
(gR)u'—Z, ( . )

corresponding to a flow of uniformly charged nuclear
matter.

The gr values obtained from Coulomb excitation
studies and ground state moments of nuclei with I3
are listed in Table V.5. The uncertainties in these values

TaBLE V.5. Magnetic properties of rotational levels in odd-4
nuclei. The table lists the odd-4 nuclei with ¢5%£1/2 for which
there is evidence on both the ground state magnetic moment, y,
and the M1 rotational transition probability. The ground-state
spins and magnetic moments in columns two and three are taken
from the references given in Tables V.1 and V.3 and the additional
references given below. The reduced M1 transition probabilities
B(M1) are obtained from the measured B(#£2) values and the
M1/E2 ratios given in Table IV.2 by means of the relations
(IT A.52) and (II A.53). From the values of u and B(M1) the
gyromagnetic ratios, g g and gk, are determined from (17) and (19).
Since (17) is a quadratic expression, there exist two sets of possible
gk and gg values, except in the case of Ta!8! where angular correla-
tion measurements have established the sign of (gx—ggr) by com-
parison with the sign of the quadrupole moment [compare (18)].
The g factors in columns four and five are listed in such a manner
that the first value of gz belongs together with the first value of gx.

The table does not include nuclei with 7o=1/2, since the mag-
netic properties of these nuclei involve an additional parameter
bo [compare (20), (21), and (22), and the analysis of the W8
spectrum in Fig. V.8]

Additional references for u: J. M. Baker and B. Bleaney, Proc.
Phys. Soc. (London) 684, 257 (1955) (Tb'%®); D. R. Speck, Bull.
Am. Phys. Soc. Ser. II, 1, 282 (1956) (Hf'77 and Hf'").

Nucleus Io n &R gK
ssEulss 5/2 1.5 0.5, 0.7 0.6, 0.5
64Gd15s 32 —030 03, —07 —05, 0.1
Gd? 3/2 —0.37 0.3, —0.7 —0.6, 0.1
65 L 169 3/2 1.5 0.1, 19 1.6, 04
s7H o165 7/2 33 03, 16 11, 08
7nLul?® 7/2 2.6 0.3, 1.2 09, 06
7oH 77 7/2 0.61 03, 0.1 0.1, 0.2
Hi 9/2 —047 02 —04 —02, 00
73 Taldt 7/2 2.1 0.2 0.7
75Rel8s 5/2 3.14 0.5. 2.1 1.6 09
Rel8? 5/2 3.18 0.5, 20 1.6, 10
92 U8 5/2 0.8 04, 03 0.3, 03
Us 7/2 —0.5 0.1, —04 —0.2, —0.1
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F1c. V.7. Rotational spectrum for Ta'®. The Coulomb excita-
tion experiments have determined the energies and spins (from
the angular distribution of the vy rays and measured conversion
coefficients) of the first two rotational excitations in Ta'8l, In
addition the absolute magnitudes of all the M1 and E2 transition
probabilities have been obtained by combining the Coulomb
excitation cross sections with the measured branching ratio
between the 167- and 303-kev v rays, and the M1 to E2 ratios
determined from the y-ray angular distribution and the conversion
coefficients (compare the data in Table IV.2). In addition, the
relative phases of the /1 and E2 radiation have been determined
for the 167-kev transition from the angular distribution in
Coulomb excitation and for the 136-kev transition from the y-y
angular correlation following the 8 decay of Hf'8! [F. K. McGowan,
Phys. Rev. 93,471 (1954); Heer et al. Helv. Phys. Acta 28, 336(A)
(1955) ; F. Boehm and P. Marmier, Phys. Rev. 103, 342 (1956)].

These results test the rotational interpretation of the observed
levels in the following ways.

(a) The spin sequence is that given by (V.5) in which we assume
K=7/2 as determined from the ground state spin, and the
parity is the same for all the states.

(b) The observed energy ratio of the I=11/2 and I=9/2
states is 2.234-0.02 which agrees with the ratio 20/9 obtained
from (V.3).

(c) The reduced E2 transition probabilities B(E2; 7/2—9/2),
B(E2; 7/2—11/2), and B(E2; 11/2—9/2) are found to have the
relative values 1:0.29:~1.3 which may be compared with relative
values 1:0.26:0.81 obtained from (V.10).

(d) The reduced M1 transition probabilities B(M1; 11/2—9/2)
and B(M1; 9/2—7/2) have a ratio of ~2 while the theoretical
value obtained from (V.17) is 1.53. Moreover the relative phases
of M1 and E2 radiation are the same in the 136- and 167-kev
transition as expected from theory (see V.18).

From the experimental data one determines a number of nuclear
parameters characterizing the ground state configuration in Tal8l,

(a) The moment of inertia obtained from the rotational energies
is given by 342/9 =91 kev. For a discussion of the interpretation
of this value compare Fig. V.5, Table V.1, and the comments in
the text.

(b) The intrinsic quadrupole moment determined from the E2
transition probabilities by means of (V.10) has the value Qo=6.8.
This quantity determines the quadrupole eccentricity parameter
which is found from (V.12) to be 8=0.25; see also the discussion
of Q¢ in Fig. V.6 and Table V.3.

(c) The M1 transition probability and its phase relative to
that of the E2 transition [together with the assumption of a
positive Qo_as indicated by spectroscopic evidence, (compare
Table V.3)] yields by means of (V.17) and (V.18) the value
gx—gr=0.5 for the difference between the intrinsic and collective
gyromagnetic ratios. This value, when combined with the meas-
ured magnetic moment, yields by means of (V.19) the separate g
factors listed in Table V.5.

are considerable, but the data may indicate deviations
from (23). In fact, one expects such deviations in odd-4
nuclei as a consequence of the especially large contribu-
tion of the last odd nucleon to the rotational moment
of inertia, and thus also to the rotational angular
momentum.

The analysis of rotational spectra in odd-4 elements
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F16. V.8. Low-lying energy levels in W%, The figure shows the
energies, spins, and parities of the low-lying states in W1,
populated in the 8 decay of Tal® [Murray, Boehm, Marmier, and
DuMond, Phys. Rev. 97, 1007 (1955)].

The Coulomb excitation strongly populates the first two
excited states of the ground state rotational band (compare
Table IV.2). The energies in this band reveal the effect of the
decoupling term in (V.3) characteristic of configurations with
K=1/2. From the energies of the (I=3/2) and (I=35/2) states
in this band, one can calculate the parameters 9 and a. Using
these parameters, the position of the (I=7/2) level calculated
from (V.3) agrees well with the observed level, while the calcu-
lated energy for the I=9/2 state is a few percent below the ob-
served value. Similarly, the relative energies in the (K=3/2)
band are found to deviate somewhat from those obtained from
(V.3). These perturbations have been interpreted in terms of a
coupling between the two bands resulting from the Coriolis
effect of the nuclear rotation. By suitably adjusting the matrix
element associated with this coupling, the observed energies have
been accounted for with great precision (A. K. Kerman, reference
157). The calculated energies are shown in parenthesis.

To a first approximation, the electric quadrupole transition
probabilities for the rotational excitations can be discussed in a
similar manner as for Ta'8! (see Fig. V.7), although for W8 the
data is less complete. However, the coupling to the (K=3/2)
band implies small deviations from (V.10), and leads especially
to enhanced E2 transition probabilities for the excitation of the
states in this higher band. The magnitude of the B(E2) values
for these transitions provide a direct measure of the admixed
amplitudes and can be calculated from the parameters involved
in the analysis of the observed energies. The observed B(E2) for
the population of the 292-kev level (compare Table IV.2) is in
good agreement with the analysis in reference 157, which, in
addition, predicts B(E2)=~0.1 for the excitation of the 209-kev
level. )

The magnetic parameters, gk, gr, and bo for the ground-state
rotational band may be obtained from the observed relative in-
tensities in the decay of the 207-kev and 99-kev levels together
with the estimated Qo value of 6.5 and the measured ground state
magnetic moment x=0.115 [P. P. Sogo and C. D. Jefiries, Phys.
Rev. 98, 1316 (1955)7]. By means of (V.20) and (V.22) one finds
50=0.28, gx=0.30, and gr=0.49, by a suitable choice of the
phases (A. K. Kerman, private communication). The coupling
between the bands has an appreciable effect on the magnetic
transition probabilities, which have been analyzed in detail in
reference 157.

As discussed in Sec. V B.4, the moment of inertia and the mag-
netic parameters determined directly from the ground state
rotational band contain contributions from the coupling between
this band and the K=3/2 band. In the present case where this
coupling has been determined from the analysis of the energy
perturbations, it is possible to derive the various parameters
which would characterize the ground state band in the absence
of this coupling. These ‘‘unrenormalized” values are found to be
(3h2/9)0=95 kev, (a)o=0.17, (bo)o=046, (gK)o=0.16, and (gR)o
=0.28 (A. K. Kerman, reference 157 and private communication).
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is summarized in the captions to Figs. V.7 and V.8,
which discuss the spectra of Ta!8! and W,

V B.A4. Coupling Between Rotational
and Intrinsic Motion

Rotational spectra of the simple form (3) are obtained
when the rotation is so slow that the intrinsic motion
can adjust adiabatically to the changing orientation ot
the nuclear field. The finite rotational frequency gives
rise to small nonadiabatic excitations resulting from
the Coriolis and centrifugal forces acting on the nucleons
in the body fixed coordinate system. To lowest order
in the rotational frequency, these virtual excitations
imply an increase in the energy of the nucleus propor-
tional to I(/+1) and thus provide the moment of
inertia associated with the rotational motion.!4%:14 To
higher order, the nonadiabatic effects give rise to a
coupling between the rotational and intrinsic motion,
which implies deviations from the rotational spectrum
(3) and the geometrical relations for the nuclear mo-
ments, e.g., (10), (14), (17), and (19).

In odd-4 nuclei the nonadiabatic excitations of the
last odd nucleon will play a special role, since these do
not involve the breaking of any pairs. As noted above,
in connection with the discussion of Table V.1, the
inertial effect arising from these excitations may be
largely responsible for the observed differences in the
moments of inertia of even-even and odd-4 nuclei.
Small deviations from the energy ratios (3) may arise
primarily from the higher order effects of the near lying
bands associated with the lowest states of the last odd
particle. Such effects have been detected (see, e.g.,
Table V.1 and reference 149) and a detailed analysis'®?
has been made for the spectrum of W18 (see Fig. V.8).
Even when the deviations from (3) are small, the
electromagnetic transition probabilities may be appre-
ciably affected. In particular the £2 transition prob-
abilities between the coupled bands may be strongly
enhanced. In the Coulomb excitation of W'#, an en-
hancement of this type has been observed and has been
related quantitatively to the observed energy perturba-
tions'® (see Fig. V.8). Further studies of this phe-
nomenon would provide valuable information on the
relationship between the rotational motion and that of
the individual nucleons.

In addition to the specific effects of the coupling
between close lying bands, rotational perturbations also
arise from the nonadiabatic excitation of higher lying
intrinsic states. An important part of such perturba-
tions may be described as rotation-vibration interac-

157 A, K. Kerman, Kgl. Danske Videnskab. Selskab Mat. fys.
Medd. 30, No. 15 (1956).

It is of interest that the moment of inertia 9, is much closer to
the moments of neighboring even-even nuclei than the effective
moment (compare Table V.1). The coupling between the bands
is seen in the present case to increase the effective value of gr;
this is opposite to the general trend for odd neutron nuclei sug-
gested in reference 146. .
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tions of a similar kind as in molecules. These interactions
imply an energy depression which in first approximation
is proportional to 72(7+1)2.1%2 In even-even nuclei, the
small deviations of the observed rotational energies
from the I'(I+1) ratios (see Fig. V.4) are indeed always
negative and increase systematically with increasing
rotational frequency; there is also some evidence that
these perturbations to first order are proportional to
Je ( T41)2.158

V C. Vibrations of Spherical Nuclei
V C.1. Classification of Vibrations

The shape oscillations of a spherical nucleus!®® may
be classified according to their multipole order A. The
excitation quanta, called phonons, have total angular
momentum A, parity (—1)*, and may be further char-
acterized by their component of angular momentum u
along a space fixed axis.

The vibrational motion is associated with an oscillat-
ing electric multipole moment, and it is convenient to
normalize the vibrational amplitudes ay, with respect
to the multipole moments (IT A.11) by the relation!®

3
ST(/(E)\,/.L) =Z—Z6Ro)‘a*)\,.. (V.24)

7
This normalization is chosen in such a manner that, in
the idealized case of a nucleus with constant density and
a sharp surface, the coordinates a», would define the
nuclear surface by

R(0,0)= RO(H—%‘: an¥(0,0)). (V.25)
3bw, 02346+
2bu, 024+
hy, ———— 2+
0+

F16. V.9. Quadrupole vibrational spectrum for even-even nuclei
with spherical equilibrium shape. The quadrupole vibrational
quanta each have an energy %w, and carry two units of angular
momentum. The resulting spectrum is indicated in the figure, in
which the total angular momentum values are indicated on the
right. The equality of the energy spacings and the degeneracy of
the different spin values are a consequence of the harmonic
oscillator approximation and will be removed by higher order
terms in the nuclear energy.

155 See, e.g., the accurately measured spectrum of Hf'3° (Mihelich
et al., Phys. Rev. 94, 794(A) (1954) discussed in Beia- and Gamma-
Ray Spectroscopy, edited by K. Siegbahn (North Holland Publish-
ing Company, Amsterdam, 1955), Chapter XVII, p. 487.

189 See, e.g., reference 137.

160 Equation (24) is meant to apply only to the matrix elements
between the vibrational levels, and thus merely to give the
normalization of the vibrational amplitude. Taken as a definition
for a), in terms of the nucleonic coordinates [see (II A.13)7, the
relation (24) would imply the assumption of irrotational flow for
thejcollective motion, an assumption which is not in general
expected to be valid (see reference 145 and Table V.7).
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For small amplitudes of oscillation, the energy may be
expanded in powers of ay, and of the time derivatives
a, and one obtains to a first approximation

Hcou=§ (3Bx |y [*+35Cx |anu]®),  (V.26)
"

corresponding to a set of independent harmonic oscil-
lators, with energy quanta

i\
ﬁw>\=ﬁ(——) .

By
While the classification of the nuclear vibrations in
multipole orders and the expression (26) are general
consequences of the spherical equilibrium shape and
small amplitudes of oscillation, the parameters B, and
C) depend on the more detailed structure of the nucleus.
The former represents the mass transport associated

with the vibration, and it is of interest to compare the
observed B, in nuclear vibrations with the value

(v.27)

13
(B)\) irrot=— —4 MR02, (V.28)
4w

corresponding to the surface oscillations of an irrota-
tional and incompressible liquid drop. The parameter
C, represents an effective surface tension which, within
the scope of the liquid drop model, may be obtained
from the surface energy appearing in the semiempirical
mass formula (see, e.g., reference 124).

The lowest frequencies of collective vibration are in
most cases expected to be of quadrupole type (A=2),
since a surface deformation with A=1 simply represents
a center-of-mass displacement.!®!

V C.2. Quadrupole Vibrations of Even-Even Nuclei

The vibrational excitation spectra have the simplest
character for the ground-state configuration of even-
even nuclei, for which the intrinsic structure does not
contribute to the nuclear angular momentum. The
quadrupole vibrational spectrum for an even-even
nucleus is illustrated schematically in Fig. V.9. The
exact equality of the energy separations as well as the
degeneracies which result from the harmonic oscillator
approximation (26) will be modified by higher order
terms in the nuclear energy (see, e.g., references 163
and 166).

The vibrational excitations are characterized by en-
hanced electric transition probabilities. These can be
expressed directly in terms of the parameters By and Cy,
since the vibrational amplitudes have been normalized
with respect to the electric multipole moments [see

161 Collective dipole oscillations (A=1) of the neutrons with
respect to the protons have been discussed in connection with the
nuclear photoeffect. Such oscillations have been estimated to have
energies of the order of 10-20 Mev [M. Goldhaber and E. Teller,
Phys. Rev. 74, 1046 (1948); H. Steinwedel and J. H. D. Jensen,
Z. Naturforsch. 5a, 413 (1950)].
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TaBLE V.6. Vibrational spectra in even-even nuclei. The table lists the even-even nuclei, for which the empirical data on the second
excited state is compatible with a 2+ assignment. The energies of the first and second excited states are listed in columns two and three,
and their ratio in column four. The E2 transition probability from the ground state to the first excited state (compare Table V.7) is
given in column five, in units of the single particle estimate (V.1). The cascade transition from the second to the first excited state may
proceed by M1 or E2 radiation, and the ratio of the components, as determined by angular correlations, or conversion coefficients, is
shown in column six. Finally, column seven gives the ratio of the reduced E2 transition probability of the cross-over and cascade radia-
tion from the second excited state. In the cases where the /1 admixture in the cascade radiation 1s unknown, the value for the ratio in
column seven corresponds to the assumption of pure £2 radiation for the cascade transition, and is then given in parenthesis. The table
is based on the empirical data in Table V.7 and on the references listed below.

Ea o B(E2;0-2) B(E2; 2'-0)
Nucleus (Mev) (Mev) Ey//Es Bsp(E2) (M1/E2)2142 B(E2;2'—2) Reference
26Feb® 0.81 1.62 2.00 0.2 0.01 s
25 N160 1.33 2.18 1.64 17 (3-1079) a
30Zn% 1.00 2.27 2.27 15 (0.1 a
Zn®6 1.05 240 2.29 11 (0.04) a
345€78 0.55 1.19 217 45 ~1 0.1 a
36Kr82 0.77 1.45 1.88 (0.01) a
Kr# 0.9 1.9 2.1 >0.1 a
202192 0.93 1.83 1.97 (0.06) a
14 Rul® 0.54 1.36 2.52 22 (0.02) b
Ru!%? 0.47 1.10 2.34 45 (0.15) [
s2Lel?? 0.57 1.26 2.21 26 0.1 0.01 d,e, f
Tel26 0.65 1.40 2.16 17 (0.004) g h
.Gl 0.39 0.86 2.20 ' (0.01) g, h
Xel28 0.46 0.98 2.13 (0.01) i
75 Pt192 0.32 0.61 1.90 0.025 0.008 i, k
Pt 0.33 0.62 1.88 50 small 0.01 i1
P16 0.35 0.69 1.97 38 0.05 <4-10™* d, m
soH g8 0.41 1.09 2.66 29 0.7 0.03 d, n, o-q
saPo?M 0.61 1.38 2.26 15 21

L. Marquez, Phys. Rev, 92,1511 (1953

P. Avignon, Compt. rend. 240, 176 (1955)

R.

M. J. Glaubman Phys. Rev, 98, 645 (1955).

B. Farelly et al., Phys Rev. 99, 1440 (1955).

M. L. Perlman andJ P, Welker Phys. Rev. 95, 133 (1954).
L. Koerts et al.. Phys. Rev. 98, 1230 (1955).

i N. Benczer ef al Phys Rev. 100, 955 (A) (1955).

i M. W. Johns and S. V. Nablo, Phys Rev. 96, 1599 (1954).

k H, W. Taylor and R. W Pringle, Phys. Rev. 99, 1345 (1955)
1 Mandeville, Varma, and Saraf, Phys. Rev. 98, 94 (195,

m M. T. Thieme and E. Bleuler, Phys. Rev. 99, 1646(A) (1955)
n D, Schiff and F. R. Metzger, Phys. Rev. 90, 849 (1953).

o C. D. Schrader, Phys. Rev. 92, 928 (1953).

pL. G. Elliot et al., Can. J. Phys 32, 153 (1954).

a D. Maeder e al., 'Helv. Phys. Acta 27, 3 (1954).

r Q. B. Nielsen, pnvate communication.

s Frauenfelder, Levine, Rossi, and Singer, Phys. Rev. 103, 352 (1956).

(24)]. Thus, for the one phonon excitation, one obtains
[see (IT A.18)]

B(EX; I=0—I=))

3 : g
— 4D ZeR ) ———. (V.29
Bt )(411' o ) 2(B\Cy)? (v.29)

In the harmonic oscillator approximation, the transi-
tions to higher states in the vibrational spectrum are
forbidden.

The static electric moments of the vibrational excita-
tions vanish to lowest order and are thus expected to
be small in spite of the large transition moments. The
smallness of the static £2 moments for the excited states
of an even-even nucleus is a characteristic feature of
vibrational as distinct from rotational excitations.

In the decay of vibrational states, M1 radiation is
forbidden even when AI equals O or 1, such as in the
transition from the second to the first 2 state in the
quadrupole vibrational spectrum. In fact, the magnetic
moment associated with the collective motion is propor-

Nuclear Level Schemes (40< A<92), edlted by Way, King, McGinnis, and van Lieshout, U. S. Atomic Energy Commission, Washington, 1955.

M. Steffen, Proceedings oflhe 1954 Glasgow Conference (Pergamon Press, London and New York, 1955), p. 206.

tional to the angular momentum and is thus a constant
of the motion which possesses no matrix elements be-
tween different energy levels.
The static magnetic moment of a vibrational excita-
tion is given by
p=gr1, (V.30)

where the collective g factor is expected to be similar to
that associated with the rotational motion of the de-
formed nuclei (see Sec. V B.3).

The transitions between vibrational states with AT=0
may also take place by emission of conversion electrons
corresponding to a nuclear electric monopole transition.
The matrix elements for these £O transitions may be
related to the vibrational parameters and the nuclear
compressibility.1%?

V C.3. Discussion of Empirical Data

Collective excitation spectra corresponding to vibra-
tions about a spherical equilibrium shape are expected

162 F. L. Church and J. Weneser, Phys. Rev. 100, 943 (1955).
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in the extensive intermediate regions between the closed
shell nuclei and the nuclei with especially many par-
ticles in unfilled shells and a resulting nonspherical
equilibrium shape (see Sec. V A). In these inter-
mediate regions, the low-lying excited states of even-
even nuclei are indeed found to exhibit a pattern which
resembles that of quadrupole vibrations about a spher-
ical equilibrium.16

The first excited states are always of 24 type and
the energies vary regularly with neutron and proton
number, decreasing as one moves away from closed-
shell regions (see Fig. V.3). Moreover, the cross sections
for Coulomb excitation of these states are found to be
an order of magnitude larger than for single particle
transitions, exhibiting the collective character of the
transitions [see (1) and Table IV.2].

In many cases, a second vibrational excitation with
spin 0+, 2+, or 44 has been observed in radioactive
decay processes. The energy of this second state is found
to be in almost all cases between 2 and 2.5 times that
of the first excited state, and the vibrational character
is especially indicated by the observed v decay. Thus,
when the second excited state is of 24- type, it is found
to decay to the first excited 24 state mainly by E2
radiation, although M1 radiation would be strongly
preferred, assuming single particle matrix elements. In
addition, the reduced E2 transition probability to the
ground state, which would be forbidden for harmonic
vibrations, is found to be in most cases several orders
of magnitude smaller than that to ‘the first excited
state.1%* These features are exhibited in Table V.6 which
lists the evidence on the vibrational spectra in those
cases where the second excited state has the 2+
character.

The observed deviations of the energy ratios from
those obtained in the harmonic oscillator approximation
may possibly be accounted for by higher order terms in
the collective nuclear Hamiltonian.'®® However, the
striking selection rule observed in the E2 decay of the
second 2-+ state suggests that the higher order terms
in the potential energy depend only on the parameter
B2=3", |as,|?, since otherwise this selection rule would
no longer hold.’®® The inclusion of such higher order
terms in 3 would leave the two phonon states with spins
2+ and 4+ degenerate, while in most cases the 0-
state would lie higher.

From the energy and B(E2) value for the excitation
of the first 2} state, one can determine the parameters
B; and C; by means of (27) and (29). The values ob-
tained, which are listed in Table V.7, exhibit the im-

163 G, Scharff-Goldhaber and J. Weneser, Phys. Rev. 98, 212
(1955).
J. Kraushaar and M. Goldhaber, Phys. Rev. 89, 1081

164 ]'.
(1953) ; R. M. Steffen, Proceedings of the 1954 Glasgow Conference
(Pergamon Press, London and New York, 1955), p. 206.

165 The deviations from the harmonic oscillator spectrum have
also been discussed in terms of the coupling of the collective vibra-
tions to high-frequency nucleonic excitations (reference 163).

166 M. Jean and L. Wilets, Compt. rend. 241, 1108 (1955) and
Phys. Rev. 102, 788 (1956).
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TABLE V.7. Vibrational parameters for even-even nuclei. The
table lists the even-even nuclei in the regions 4<150 and
190<4 <220 for which there exists evidence on the transition
probability to the first excited (2+) state. The energies, E., of
these states and the reduced transition probabilities, B (E2; 0—2),
are listed in columns two and three. The data are obtained from
the Coulomb excitation results in Table IV.2, from the lifetime
data in Table IV.1 and from the additional references given below.
From the values of Es=%w and of B(E2), the effective surface
tension C; and mass parameter B for quadrupole vibrations are
obtained from (V.27) and (V.29). The B; values are given in units
of (B2)irret [compare (V.28)7. In the immediate neighborhood of
closed shells, the observed excitations may be described in more
detail in terms of the excitations of the few particles outside of
closed shells (see Sec. V.E).

Additional references: Devons et al., Proc. Phys. Soc. (London)
69A, 173 (1955) (C* and Ne); F. R. Metzger, Bull. Am. Phys.
Soc. Ser. II, 1, 40 (1956) (Nif). The lifetime determinations for
Po*? and Po? from the a—v branching are discussed in refer-
ence 132.

E» B(E2;0-2) Ca
Nucleus (kev) (e2-10748 cmd) (Mev) B3/ (Bs)irrot
¢C12 4400 0.009 14 29
10Ne2 1630 0.045 5.8 3.6
20 T146 890 0.15 14 7.3
Ti® 990 0.083 29 12
26ed8 854 0.10 36 15
23 Ni%8 1450 ~0.1 77 10
Nijee 1330 0.12 59 9.0
30Zn % 1000 0.11 61 15
Zn%® 1040 0.087 86 18
32Ge™ 1020 0.077 120 23
Ge™ 830 0.23 32 9.2
Ge™ 593 0.29 19 10
GeT8 556 0.33 17 9.3
345e™ 635 0.21 32 15
Se® 567 0.43 14 8.1
Se’s 615 036 20 8.7
Se®0 654 0.23 34 13
Ses? 880 0.056 190 39
12Mo™ 871 0.29 67 11
Mo? 778 04 44 8.9
Mo 786 0.4 47 8.7
Mo'® 528 0.64 20 8.0
1Rl 540 0.30 48 18
Ru12 473 0.63 20 10
Ru!* 362 1.0 10 8.2
4Pd10¢ 556 0.50 34 12
Pdue 512 0.66 24 9.5
Pqs 430 0.89 15 8.3
Pdwo 375 1.0 12 8.5
15Caue 654 041 58 13
Cqau2 620 0.46 49 12
Cdm 550 0.55 37 11
Cdue 508 0.62 32 11
soLel?0 560 0.55 48 13
Tel22 570 0.47 58 14
Tel 608 0.39 77 16
Tel26 662 0.32 105 18
Tel28 750 0.28 140 18
Teld 850 0.26 170 18
soNd46 455 0.25 150 44
Ndus 300 0.69 36 23
62Sm148 562 0.50 100 18
Sm150 337 0.98 31 16
78 P11 330 1.7 39 13
P16 358 1.3 55 17
P8 403 1.4 60 13
s0H g8 411 1.0 88 19
Hgw0 370 0.7 120 30
Hg? 439 0.6 170 29
39 PH?08 803 0.14 1400 72
saPo?2 719 0.3 640 39
Po?14 606 0.6 270 23
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portant influence of the shell structure on the nuclear
vibrational properties. The effective surface tension Cs
varies strongly with respect to the liquid drop value,
which is of the order of 50 Mev throughout the mass
region considered, and the inertial parameter B, devi-
ates considerably from the value (28).

While no quantitative analysis of the nuclear vibra-
tional parameters has been given, some of the qualita-
tive trends of the data in Table V.7 can be understood
as consequences of the nuclear shell structure and the
residual interactions (see Sec. V A). Thus, the effective
nuclear surface tension decreases as one moves away
from the closed shell regions, as a result of the polarizing
effect of the nucleons in unfilled shells. While in the
regions of closed shell configurations the C, values con-
siderably exceed the liquid drop estimate, the C: values
are appreciably smaller than this estimate for nuclei
with many particles in unfilled shells, corresponding to
the approach to instability of the spherical shape (see
Fig. V.1). The inertial parameters By systematically
exceed those corresponding to irrotational flow. In
regions away from closed shells, the increase of the
inertia over that for irrotational flow is comparable to,
although somewhat larger than, that observed in the
rotational motion (see Sec. V B.2, and especially
Fig. V.5).

In the more detailed interpretation of the data in
Table V.7, it is necessary to take into account that the
nucleus does not oscillate as a homogeneous system
because of the different behavior of the particles in the
unfilled shells from those in the closed shell core. This
distinction is of special significance when the number of
particles outside of closed shells is small. For such nuclei
the vibrational energy is mainly associated with the
motion of these few particles; on the other hand, an
important and sometimes dominating part of the electric
quadrupole moment of the vibration arises from the
polarization of the closed shell core by the outside
particles. This accounts for the large values of the
vibrational parameters in Table V.7 for nuclei in the
vicinity of the closed shell regions; in fact, the ampli-
tudes «, normalized by (24), measure essentially the
small core deformation, and the kinetic and potential
energies per unit of a thus become very large.

With the approach to closed shell configurations the
collective description of the low-lying excited states
becomes less appropriate, and a more detailed analysis
may be given by considering the motion of the indi-
vidual particles outside of closed shells under the influ-
ence of their mutual interactions (see Sec. V E).

V C.4. Octupole Vibrations of Even-Even Nuclei

The odd parity collective vibrations of lowest energy
are expected to be of octupole character (\=3). In
even-even nuclei the one phonon excitation of this type
has 7=3 and negative parity, while the two phonon
octupole excitations give rise to states with =0+, 24,
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44, and 6. The levels with one quadrupole and one
octupole phonon have I=1—,2—, - .5—.

A rather low-lying (3—) state has been observed!” in
the spectrum of Gd'*?, and may possibly represent a
A=3 vibrational excitation. Such an interpretation
would imply a transition probability for £3 Coulomb
excitation appreciably in excess of the single particle
estimate (II A.58). It is of interest that odd parity
states of similar energy have also been observed in
neighboring deformed nuclei; in these, the coupling
between the quadrupole deformation and the octupole
mode may give rise to a lowest odd-parity excitation of
I=1— (see Sec. VD.4).

V C.5. Spectra of Odd-A Nucles

In the regions where the even-even nuclei exhibit col-
lective excitations corresponding to vibrations about a
spherical equilibrium, the spectra of the odd-4 nuclei
are somewhat more complex and in most cases less well
understood.

For the description of the low-energy spectrum of an
odd-4 nucleus, one must consider intrinsic degrees of
freedom in addition to the collective motion. The
intrinsic motion possesses a nonvanishing angular mo-
mentum which must be combined with the collective
angular momentum; moreover, low-lying intrinsic exci-
tations may arise from the change of orbital of the last
odd nucleon, such as in the case of the nuclear isomers.!68

The intrinsic nucleonic degrees of freedom are coupled
to the collective oscillations, since the latter involve
variations in the nuclear field. The effect of the coupling
to the quadrupole vibrations depends essentially on the

parameter!®®
S\? &
q= (_——) )
1 671' (hwzc'z) 3

where the coupling constant % is of the order of magni-
tude of the average potential energy of a nucleon. Thus,
as one moves away from closed shell regions, the
coupling is expected to increase as a consequence of the
decrease of the effective surface tension and of the
vibrational frequencies.!”

If the coupling could be neglected, one would obtain,
for each intrinsic state, a collective spectrum corre-
sponding to the phonon excitations. The states most
strongly excited in the Coulomb excitation are the one

167 H. Kendall and L. Grodzins, Bull. Am. Phys. Soc. Ser. II,
1, 164 (1956) and O. Nathan and M. Waggoner (private com-
munication).

168 See, e.g., M. Goldhaber and R. D. Hill, Revs. Modern Phys.
24, 179 (1952).

189 See reference 132. In this reference the strength of the coup-
ling has been discussed in terms of the parameter x=gj%.

170 In reference 132 the increase of the coupling as one moves
away from closed shells has been described in terms of the co-
herence of the individual particles in the unfilled shells in polariz-
ing the nuclear shape. In the present discussion the paired par-
ticles are included in the collective degrees of freedom and their
polarizing effect is thus reflected in the variation of the vibrational
parameters.

(V.31)
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phonon quadrupole excitations of the ground state con-
figuration. If the ground state has spin Io, these excited
states have spins Io+2, To+1, - - - | Io—2| and energies
of the same order of magnitude as the first excited state
in the neighboring even-even nuclei. The reduced
transition probability for the excitation of these states
is given by

12741
B(E2; I—I)=—

B(E2),
5 2001 (E2)sn

(V.32)

where B(E2)p, is the quadrupole phonon excitation
probability (29).

When the coupling between the intrinsic and collec-
tive motion is weak (¢<1), the effect on the energy
spectrum and transition probabilities may be obtained
from a perturbation treatment.!”

If one estimates the coupling strength ¢ employing
the empirical vibrational parameters in Table V.7, one
finds for most nuclei 1 <¢ <3 indicating an intermediate
coupling situation. With such values of the coupling
the stationary states represent a rather complicated
superposition of individual particle and collective
motions.!7

In a few regions (A4~20, 75, 105, 150, and 192), one
obtains ¢24. For such strong couplings, the last odd
particle may appreciably polarize the nuclear shape with
a resulting approach to the coupling scheme character-

‘istic of the deformed nuclei’®?17% (see Sec. V B). The
strongest transitions observed in Coulomb excitation
may then be approximately described as rotational
excitations.

In the limits of very weak or very strong coupling,
the dominant quadrupole transitions are associated with
a few simple excitations. For an intermediate coupling
situation the pattern is more complex, but there exists
an approximate sum rule which may be of use in the
analysis of such spectra. Thus, the summed quadrupole
strength > ; B(E2; I—I,) obtained by adding all the
low-energy transitions (i.e., with energies less than a
few times 7ws) is proportional to the average value of
(2 in the nuclear ground state, aside from a small contri-
bution due to the quadrupole transitions of the last odd
particle. The sum is, therefore, expected to be approxi-

17171, L. Foldy and F. J. Milford, Phys. Rev. 80, 751 (1950);
A. Reifman, Z. Naturforsch. 8a, 505 (1953) ; M. Trocheris, J. phys.
radium 14, 635 (1953); reference 132; A. K. Kerman, Phys. Rev.
92,1176 (1953); F. J. Milford, Phys. Rev. 93, 1297 (1953); K. W.
Ford and C. Levinson, Phys. Rev. 100, 1 (1955); B. J. Ragz,
thesis, University of Rochester, 1955; W. W. True, Phys. Rev.
101, 1342 (1956).

172 Intermediate coupling calculations have been given by K.
Ford, reference 138; reference 132; D. C. Choudhury, Kgl.
Danske Videnskab. Selskab Mat. fys. Medd. 28, No. 4 (1954);
reference 163; B. J. Raz, reference 171.

1% The near instability of the spherical shape for the even-even
nuclei in these regions is also indicated by the comparison of the
energies of the first excited states with the critical value drawn
in Fig. V.3.

174 See, e.g., the discussion of the spectra of Agl7.1® (F1, H4,
H7), Irt1% (D1), and Au’ (C1, G1, S4) ; the reference code refers
to Table IV.2.
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mately the same in odd-4 nuclei as in neighboring
even-even nuclei, except insofar as the last particle
polarizes the nucleus and thereby increases the sum. If
the nucleus possesses a ground-state spin Io>%, the
sum over the final states Iy should include also the
ground state quadrupole strength B(E2; Io—I,). The
latter quantity is related to the static electric quadru-
pole moment Q of the ground state by [see (13) and
(IT A.18)]

5 (Ie+1)(200+3)
B(E2; Iy—Io) =—=eQ>
167 Io(2Te—1)

, (V.32a)

a relation which is independent of the structure of the
nuclear state.

When the total strength observed in an odd-4 nucleus
is appreciably smaller than B(E2;0—2) for the transi-
tion to the first excited state in the neighboring even-
even nucleus, one may conclude that there exist strong
quadrupole transitions as yet undetected. A total
strength greatly exceeding this value implies an appre-
ciable polarization produced by the last particle and
may thus indicate that the coupling scheme is approach-
ing that of a deformed nucleus. In this limit the ground-
state strength contributes the fraction (1921401421l )?
=TIo(2Iy— 1) (T o+1)"1(21o+3)* of the total quadrupole
strength [see (10)]. For weak or intermediate coupling,
the relative contribution of the ground-state strength
to the total sum is expected to be smaller than this
fraction.

V D. Vibrations of Spheroidal Nuclei
V D.1. Classification of Vibrations

While the lowest collective excitations of the strongly
deformed nuclei correspond to rotations with preserva-
tion of shape, one may also expect these nuclei to
exhibit collective excitations which correspond to vibra-
tions about the equilibrium shape. Only scanty evidence
is at present available on such vibrational excitations,
but since the Coulomb excitation is well suited for the
exploration of these levels we shall briefly outline the
expected patterns.

For a nonspherical nucleus, the angular momentum
of a vibrational quantum is not a constant of the motion
due to the coupling to the nuclear rotation. Still, one
may characterize the symmetry of the vibrations by a
quantum number A which represents the number of
nodal surfaces and which, in the limit of small nuclear
eccentricities, corresponds to the multiple order. The
parity of the vibrations is (—1)*. For axially symmetric
nuclei, the vibrations may in addition be characterized
by the quantum number », representing the component
of vibrational angular momentum about the symmetry
axis. For given A\, the component » may take the values
0,+1---=\ but, in contrast to the vibrations of
spherical nuclei, the vibrational parameters B and C
[see (26)7, and thus also the frequency, depend on |»|
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F16. V.10. Quadrupole vibrations of an even-even nucleus with
spheroidal shape. The quadrupole vibrations of the nucleus about
a spheroidal equilibrium shape separate into two modes, of
which the one has »=0 (8 vibration) and the other |»|=2
(y vibration). The figure illustrates the ground-state rotational
band as well as the rotational bands associated with the first
vibrational excitation of these two modes (ng=1 and n,=1,
respectively). The figure is meant for illustrative purposes only
and no significance should be attached to the relative magnitude
of the two vibrational frequencies.

It is expected that Coulomb excitation will strongly excite the
two states (ng=1; I=2+) and (#w,=1; I=24). These states
decay by means of E2 radiation to the =0, 2 and 4 members of
the ground-state band with relative reduced transition probabili-
ties 1:10/7:18/7 for the g vibration and 1:10/7:1/14 for the
v vibration [compare (V.33)]. M1 radiation is expected to be
weak in these transitions, even when A7=0 or 1.

In an odd-4 nucleus, the ng=1 vibrational excitation gives rise
to a rotational band with K =K,, where K, is the ground-state
K value. The ny=1 excitation gives rise to two bands with
K=|Ko+2|.

as well as on A. In the special case of »=0, the vibrations
preserve the axial symmetry of the nuclear shape.

The rotational band associated with a one-phonon
excitation has K= |K,+»|, where K, is the intrinsic
angular momentum of the ground state. The band
contains the members /=K, K41, K42, - - - except for
a »y=0 vibration in a nucleus with a paired nucleonic
configuration (ground-state configuration of even-even
nuclei), in which case the band contains the states
I=0+, 2+, 4+, --- (for A even) or [=1—, 3—, 5—,
.-+ (for X odd).

V D.2. Transition Probabilities

The reduced transition probability of multipole order
EL for the excitation of a vibration with angular mo-
mentum component » may be written!’

B(EL; I.LK—IK;)=(K; |9 (EL,) | K;)?
X(I:LK K ;— K| LLI;K %, (V.33)

where the first factor contains the vibrational matrix
element of the electric multipole moment (IT A.11)
expressed in the intrinsic coordinate system. The second
factor in (33) gives the relative probabilities for the
excitation of the different members of the rotational
band associated with the vibration. The formula (33)

175 In the special case of K;=0 and K;>0 (excitation of »><0
modes in even-even nuclei), the value of B(EL) is twice that
given by (33).
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also applies to the radiative decay of a vibrational
excitation, and thus gives the branching ratios to the
members of the ground-state band.

If the electric multipole order, L, of the excitation
equals that of the vibration, X, the transition probability
(33) can be expressed in terms of the vibrational
parameters By, and C» by means of the relation
[compare (29)]

3 2
(K ;|90 (ENp) | K )2= (;—Zezm) (V.34)

2 (B )\wc)\y) %'

We here assume a normalization of the vibrational
amplitudes in analogy to (24).

V D.3. Quadrupole Vibrations

The lowest order shape vibrations have A=2 and are
of approximately quadrupole type. A deformation of
order A=2 and »==1 is equivalent to a rotation and
the only occurring quadrupole vibrations thus have =0
(B vibrations) or y===2 (¥ vibrations). The quadrupole
vibrational pattern expected for an even-even nucleus
is illustrated in Fig. V.10.

While theoretical estimates of the vibrational fre-
quencies are rather uncertain, due to the influence of
the shell structure, the empirical data on the spectra of
the even-even nuclei appears to indicate that the
quadrupole vibrational energies for the very strongly
deformed nuclei may be of the order of a Mev in the
heavy nuclei. States with some of the expected prop-
erties have been found in a number of even-even
nuclei.l’®17% The determination of the E2 transition
matrix elements would be of great value for the classifi-
cation of these levels, since vibrational excitations
should be appreciably stronger than single particle
transitions. As in the case of spherical nuclei, M1 radia-
tion is forbidden in the decay of vibrational excitations,
even when AI'=0 or 1. With decreasing deformation and
gradual approach to the transition region, where the
nuclear shape becomes spherical, the (2+) rotational
excitation increases in frequency and goes over into the
one phonon quadrupole vibration. The lowest vibra-
tional excitation goes over into a two phonon state and

176 See, e.g., Erl® (1.46 Mev) J. S. Fraser and J. C. D. Milton,
Phys. Rev. 98, 1173(A) (1955). W8 (1.22 Mev) Murray et al.,
reference 151; Alaga ef al., Kgl. Danske Videnskab. Selskab Mat.
fys. Medd. 29, No. 9 (1955). Pu28 (1.03 Mev) Rasmussen et al.,
Phys. Rev. 99, 42 and 47 (1955).

1762 Note added in proof.—Recent studies of the levels in the
one-Mev region in heavy nuclei of the even-even type have re-
vealed the systematic occurrence of states having many of the
expected properties associated with both - and B-vibrational
excitations (private communication from Asaro, Hollander, Perl-
man, Rasmussen, and Stephens; see also the review article on «
radioactivity by I. Perlman and J. Rasmussen, to appear in Hand-
book of Physics, edited by S. Fliigge). In this connection, it seems
likely that the 760-kev level excited in Th?? (see Table IV.2) is
a 2+ level corresponding to a B vibration. Its excitation cross
section would then indicate a B(E2) value several times greater
than the single particle unit (1).
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its frequency may thus decrease somewhat with the
approach to the transition region.!”?

V D.4. Octupole Vibrations

The lowest odd parity modes (A\=3) should resemble
octupole vibrations, and have »=0, =1, &2, and 4-3.

Recently, relatively low lying 1— states, and in some
cases also 3— and S— states, have been observed in a
number of even-even nuclei in the heavy elements
region’17 (see Fig. V.11 and Table V.8). Their sys-
tematic occurrence suggests an interpretation in terms
of odd parity vibrations,'® and the branching ratios in
the E1 decays to the ground-state rotational band [see
(33)] characterize the states as K=0 (and thus »=0)
in all cases (see Table V.8). The lower energy of the
y=0 mode as compared with the vibrations having
|v|=1, 2, and 3 may be associated with a prolate
nuclear shape.

The frequencies of these vibrations estimated on the
basis of the liquid drop model would be a few Mev in
heavy nuclei. However, as in the case of quadrupole
vibrations, the shell structure is expected to have an
important influence. Thus, the restoring force for odd
parity vibrations will be strongly reduced by the oc-
currence of near lying single particle levels of opposite
parity, which might even lead to stable odd parity
deformations.

In an even-even nucleus, the odd parity vibrational
levels of 1— type can be excited by an E1 transition
from the ground state; there are two such levels having
|»| =0 and 1, respectively. The transition probability
(33) depends on the displacement of the center of charge

TaBiE V.8. States of 1— type in even-even nuclei. The excita-
tion energies of the observed 1— states in the heavy elements are
listed in column three, while the energies of the first excited 2--
states are given in column two. The 1— states decay by El
radiation to the 04 and 2+ members of the ground state rota-
tional band, and the ratios of the reduced transition probabilities
are shown in column four. These may be compared with the
theoretical ratios obtained from (V.33) for the assignments K=0
and K=1 for the 1— states. The table is taken from Stephens,
Asaro, and Perlman, Phys. Rev. 100, 1543 (1955).

B(E1;1——0+4)/B(El;1 ——2+)

E(2+4) EQ-) theor. theor.
Nucleus (kev) (kev) exp. (K=0) (K=1)
ggRa222 112 242 0.48+0.15
Ra2 84 217 0.364-0.15
Ra2s 68 253 0.494-0.08
oo Thes 73 232 0s1x015( 050 200
Th228 58 326 0.434-0.08
94 Pu8 43 605 0.6034-0.15

541
416 6+ 5=
320 3-
253 -
210 4+ -0-
676 —— 2+
0 0+
K=0+
Ra 226

Fi1c. V.11. Level spectrum of Ra??%, The figure shows the levels
in Ra?® populated in the « decay of Th2® [Stephens, Asaro, and
Perlman, Phys. Rev. (to be published)]. The observed levels
appear to form two rotational bands, of which the first is the
usual ground-state band of even-even nuclei with K=0-+4 (com-
pare Fig. V.4). The negative parity levels form a rotational band
with K=0 as determined by means of (V.33) from the observed
relative intensities in the v decay of these states (compare
Table V.8).

As discussed in the text, the observed odd parity states may
be associated with a collective vibration of approximately octupole
type and with component »=0. The appreciably larger moment of
inertia observed in this band as compared with that in the ground-
state band may result from the coupling to the expected octupole
vibrational mode with |»| =1 (K=1-).

with respect to the center of mass. Since this vanishes
for a uniformly charged nucleus, the cross section is
expected to be relatively small. A contribution to the
nuclear dipole moment arises from the polarization of
the nuclear charge resulting from the Coulomb forces.
Estimates indicate that this effect would lead to B(E1)
values several orders of magnitude smaller than the
single particle unit (II A.58).

The excitation of the 3— states would involve the E3
moment [see (34) ], which is expected to be appreciably
larger than that of a single particle. The determination
of the cross section for E3 excitation would thus provide
crucial information on the interpretation of these states.
If B(E3) for such an excitation were 10 times the
value (II A.58) for a nucleus with Z=90 [i.e., assuming
B(E3;0—3)=0.2¢(10"2* cm?)?], the excitation cross
section for 20-Mev o particles would be about one
millibarn.

V E. Regions of Closed Shells

For nuclei with only a few particles outside of closed
shells, a rather detailed analysis of the low-energy exci-
tations may be obtained by considering these particles
as moving, under the influence of their mutual inter-
actions, in a fixed central binding field produced by the
closed shell core.18! The weak coupling between the par-

177 Thus the 633-Mev level in Os!® with I =2-- may represent
a -y vibration in the transition region (Johns ef al., Can. J. Phys.
34, 69 (1956) and Potnis et al., Phys. Rev. 102, 459 (1956)).

178 See especially Stephens, Asaro, and Perlman, Phys. Rev. 96,
1568 (1954); 100, 1543 (1955), and to be published.

17 See also the 960-kev level in Sm'% which appears to have
I=1— and K=0 [O. Nathan and M. Waggoner, Nuclear Phys.
(to be published).

180 R, F. Christy (private communication).

181 Detajled analyses of this type have been discussed, e.g., bly
D. R. Inglis, reference 140 (4 <16); D. Kurath, Phys. Rev. 101,
216 (1956) (4 <16); A. M. Lane, Proc. Phys. Soc. (London) 66A,
977 (1954) (4=13); J. P. Elliot and B. H. Flowers, Proc. Roy.
Soc. (London) A229, 536 (1955) (4 =18, 19); M. G. Redlich,
Phys. Rev. 99, 1427 (1955) (4=18, 19); S. Goldstein and I.
Talmi, Phys. Rev. 102, 589 (1956) (4 =38, 40); C. Levinson
and K. W. Ford, Phys. Rev. 100, 13 (1955) (4 =42, 43); W. W.
True, Phys. Rev. 101, 1342 (1956) (4 =204); D. E. Alburger and
M. H. L. Pryce, Phys. Rev. 95, 1482 (1954) (4 =206).
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ticles and the excitations of the core may be added as a
perturbation and principally contributes to the electric
moments associated with the particle motion. The dy-
namical effects of the core also imply a coupling be-
tween the outside particles!®? which may contribute an
appreciable part of the apparent interaction between
the nucleons.

To the extent that the dynamics of the core can be
described in terms of collective oscillations, an approxi-
mate expression for the resultant nuclear transition
moment may be simply obtained from (II A.13) by
including in the sum over % only the extra nucleons, and
replacing their charges e; by the effective radiating
charges e; given by'%?

3Z'¢ B /R\\
e’ =ert '——(—) ,
4 C)'

e/ v

(V.35)

where Z’ and C\' ‘are the charge number and effective
surface tension of the closed shell core. The coupling
constant & in (35) is the same as that employed in (31).

182 Reference 132, p. 27.

MOTTELSON, AND WINTHER

Estimates of C)’ for a closed shell indicate that the
induced charge is of the order of one unit.

Especially clear-cut examples of this effect are pro-
vided by the E2 Coulomb excitation cross section for
the first excited states in Pbh?*¢ and Pb?"7 (see Table 1V.2)
and the measured E2 decay rate!®® of the first excited
state in O'. In these configurations consisting entirely
of neutrons outside of closed shells, the observed transi-
tion rates imply an effective polarization charge of
about one unit.’841% A similar enhancement of the
electric transition probability is observed for the 196-
kev E2 excitation of F191% and in the £3 decay of the
3— states in O 187 and PbH28,188

188 J, Thirion and V. L. Telegdi, Phys. Rev. 92, 1253 (1953).

188 W, W. True, reference 171; J. Raz, reference 171.

185 The polarization charge (35) contributes not only to the
transition rate, but also to the static electric moments. Thus, the
very small electric quadrupole moment reported for OV [G. R.
Bird and C. H. Townes, Phys. Rev. 94, 1203 (1954)7] seems sur-
prising (see the detailed discussion by J. Raz, reference 171).

186 T Elliot and B. H. Flowers, reference 181.

187 See F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27,
77 (1955).

188 Elliot ef al., Phys. Rev. 93, 356 (1954).



