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I. INTRODUCTION

entiation of an original function is replaced by a multi-
plication process when the function is Laplace trans-
formed. ' Second, various transforms may be employed
to change a known function of a variable such as time
to the corresponding function of another variable such
as frequency. The resulting function may often be more
useful than the original function. In addition, an easily
measured function such as the response of a system to
a forcing step-function may be transformed to yield a
desired function such as the distribution of relaxation
times of the system which would itself be more difficult
to measure directly.

In general, integral transforms of the type we shall
consider convert a given function, say f(s) of the vari-
able z, to another function g(w) of the same or different
variable. We may write, therefore,

g(w) = Ei(w, s)f(s)d»,
Ci

HERE are a number of quantities which may be
used to characterize a linear system. In this work

we shall be concerned both with the problem of how
much information about the system each such pertinent
quantity can yield and with the interrelations between
these quantities. A central part of the discussion will
deal with the integral transform relationships between
the real and imaginary parts of a complex function of
frequency which contains complete information con-
cerning the behavior of the system after excitation with
an arbitrary stimulus. This complex function may be an
input or transfer impedance or admittance, a transfer
ratio, a complex susceptance, etc.

A great many fields of science involve linear systems
or nonlinear systems whose deviation from linearit
may be neglected. The fundamental importance of the
linear system has ensured that many of the relation
with which we shall be concerned have long been known.
It is our aim to give a consistent and reasonably corn
piete derivation and discussion of the older relation
and to show how useful new relations may be gener
ated. The recent appearance of extensive tables o
integral transforms"* makes the transform relation
with which we shall be concerned of considerable prac
tical usefulness.

There are several reasons why integral transforms ar
of interest. First, mathematical operations with a trans
formed function may often be simpler than with th
original function. For example, the operation of differ

~ References and notes are given at the end of this article.

where E is a function of both zv and s called the kernel,
w and/or s may be complex, and Ci denotes a path in
the complex plane. If f(s) is known and Ei and Ci
specified, g(w) may then be obtained if the integration
can be carried out. On the other hand, the above equa-
tion is also a linear integral equation for f(s) when g (w),
E1, and C» are specified. If s and m are real variables,
it is a Fredholm equation of the first kind. The solution
may be formally written as

f(s) = Eg(s,w)g(w)dw,

another integral transform and integral equation.
For each integral transform, there will be another

relation which converts the transformed function back
to the original function. This relation will also usually
be an integral transform itself although it may some-
times be written in terms of algebraic operations only.
For all practical purposes, there is unique one-to-one
correspondence between a function and its transform
and between the transformed function and the original
function. When the kernels K1 and E2 are equal and
the paths of integration the same for the forward and
inverse transforms, the relations between f(s) and g(w)
are said to be reciprocal, and they are termed conjugate
functions. When these quantities are equal save for a
minus sign as in the Hilbert transform, ' the relations
are skew-reciprocal.
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These general statements may be illustrated specifi-
cally by means of the one-sided Laplace transform.
If one changes the variables to conform with later usage,
the Laplace transform of a function of time f(t) may
be written

g(p)= " e "f(-t)«,

where p is a complex (frequency) variable. The inverse
transform is given by

c+'too

f(t) = " e'"g(P)dP (t&0),
27I t C—%M

where c is a real constant. ' It is also worth noting that
an algebraic Laplace transform inversion formula is
known for obtaining f(t) from g(p) which requires
knowledge of g(p) for real values of p.'

Integral transform relations of the types discussed
herein have been employed in quantum mechanics, '
in quantum 6eld theory and the quantum theory of
scattering, ~ viscoelasticity, ~" circuit theory, "dielec-
tric theory, ""magnetic resonance, ""etc. This is by
no means an exhaustive list. The integral relations
between the real and imaginary parts of a complex
function of frequency such as an impedance are gener-
ally known among physicists as the Kronig-Kramers
relations. ""Because of their importance, they have
appeared and been used in a number of diferent 6elds.
A rather complete bibliography pertaining to these rela-
tions has been given by Murakami and Corrington. "

Although everyone feels that he intuitively knows the
meaning of the term linearity, it may be well for us to
discuss the matter briefly. One of the most fundamental
de6nitions of linearity is that involving the differential
(or integral) equation or equations which the system
satisfies. If this equation is of the first degree with con-
stant coeKcients, it is a linear differential equation and
the system described is linear by de6nition. The re-
sponse of a linear system to two or more superposed
inputs is the sum of the responses to the individual in-
puts. This property is an immediate corrollary of the
fact that the system satisfies a linear diGerential equa-
tion; it is equivalent to the statement that the principle
of superposition" applies to the system. Note that a
linear system is not retroactive and there is no hys-
teresis. In the present work, we shall restrict considera-
tion to time-invariant linear systems. The structure of
such systems is independent of time; therefore, the
coeKcients of the differential equation(s) of the system
are also time-invariant.

II. BASIC RELATIONS

A linear system may be characterized by a detailed
description of its parts and their interconnection or by
its response to a disturbing force (mechanical force,
voltage, current, etc.). The excitation functions most

useful for such characterization are the unit impulse, '4 "
the unit step, ' ~ and steady-state sinusoidal excitation.

We may define the system function S(i~) as the com-
plex ratio of output to input amplitudes for steady-state
sinusoidal excitation of radial frequency co. More
generally, it may be considered as a function S(p) of a
complex frequency variable p. S(p) may then take on
values over the entire complex p plane instead of only
on the ior axis of this plane. As we shall see, such a
generalization is extremely useful. The system function
may represent a driving point function, such as an input
or transfer impedance or admittance, or a transfer ratio,
depending upon the nature of the exciting force applied
to the system and upon the point in the system at which
the response is measured. Similarly, let us define A (t)
as the system response to a unit step function No(t), and
B(t) as the response to a unit impulse 5(t). As is evident,
both No(t) and 8(t) are applied at t=0. For t(0, the
system is usually taken to be at rest.

The requirement of system linearity may be expressed
mathematically by the principle of superposition. If the
response of the system to an excitation f(t) is given by
r(t), we may write"

t

r(t)=~r f(r)B(t r)dr (t&—0),

and

f
f(t r)B(r)—dr,

0—

t'df( )
r(t)= f(0)A(t)+ I A(t r)dr, —

~() dv

(2)

The lower limits of integration in (1) and (2) are written
as 0—instead of simply 0 to account for the possibility
that f(r), B(r), or A (r) involve impulse functions. The
quantity 0—may be represented by —~, where lim e—+0.
These real convolution integrals, "' are basic in de-
termining the response of a system to an arbitrary exci-
tation applied at t=0. In the first expression, r(t) has.
been represented by means of a superposition of system
responses to delayed unit impulses 8(t r), whereas in—
(2) the superposition is carried out for responses to the
unit step function No(t —r). The integrals of Eqs. (1)
and (2) may sometimes be difFicult to evaluate exactly
and approximation methods may have to be employed. "
When graphical integration is used, for example, de-
termination of r(t) for each selected value of time
requires a separate approximate integration. Since the
system response to arbitrary excitation may be ex-
pressed, as above, in terms of its impulse-function or
step-function response, these quantities are of primary
importance and fully characterize the system transient
response.
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The Laplace transforms of the above equations are
particularly simple. They are'8

R(P) =&(p)P(p), (3)

R(P) =P@(p)~(p) (4)

In the above equations, p=o+i&o, where 0 and ~ are
real, + is the radial frequency, and 0. is a constant. The
quantities R(p), F(p), Q(p), and 5(p) are the Laplace
transforms of r(t), f(t), B(t), and A (t), respectively.

It is clear that the temporal response of the system
can be immediately obtained whenever it is possible to
carry out an inverse Laplace transformation of the
products in (3) or (4). The form of the equations shows
these products to be equal. This method of obtaining
the system transient response is also often of great
usefulness.

Next, if we set 8(p) and PS(p) equal and take the
inverse Laplace transform of the resulting equation,
we obtain

dA (t)
B(t)=A (0)S(t)+—

dt

identically zero for t(0,"it will usually be convenient
in the present work to adhere to this restriction. A
linear system is not retroactive; if an excitation is
applied at t= 0, there can be no prior response, and thus
all pertinent time functions must be zero for t&0. This
restriction is often called the causality condition. It
may be noted that the step-function response, A (t), is
often called the indicial admittance" or the decay func-
tion" of the system. On the other hand, the unit im-

pulse response, B(t), is the system Green's function. ""
It is also often termed. the system weighting function. ' "
Its weighting character is evident from Eq. (1) which
shows that the system output at a given time depends
on the input at that time and on that at aH earlier times
with the weighting of earlier inputs being determined.

by B(t).
It is often useful to consider the real and imaginary

parts of the system and network functions separately
in the limit of 0.—&0, so that p—+m. To obtain the desired
relations, we may begin with the equations

S(p) = B(t)e "'dt—=Z)B(t)),

a relation between the system responses to unit impulse
and to unit step. This equation may be integrated to
yield the inverse relationship

and

Q(p) = A (t)e
—"dt—=@LA (t)),

A (t) = B(r)d7, (6)
where the symbol 2 represents the Laplace transform
integral operator. These equations may also be written
in the useful inverted forms

where the lower limit of integration is again extended to
0—to ensure that the range of integration encompasses
the region at t =0 yielding a contribution from 5 (t) . Since
B(t) and A (t) may sometimes contain impulse functions,
they are not necessarily zero at t =0.On the other hand,
when system excitation is applied at t=0, they are
identically zero for t (0. For simplicity, we shall

generally omit further mention of this fact in the rest
of this work. Now Eqs. (3) and (4) represent the
I aplace-transformed relations between the response of
the system and its excitation. Therefore, 8(p) and

PK(p) may each be identified with the system func-
tion S(p)." Let us introduce the new terminology
$(p)=—Q(p), where Q(p) will be called the network
function" to distinguish it from the system function.
Elsewhere, "Q(p) has also been termed an immittance"
kernel; such nomenclature is, however, not suKciently
general since Q(p) may be related to a system transfer
ratio instead of an input or transfer impedance or
admittance.

We have now established the relations

S(P)=+(P)=PQ(P)— (7)

It is thus evident that the system function is the Laplace
transform of the response to unit impulse. Although it
is not necessary to imply the usual restricted interpreta-
tion of the Laplace transform that the time function is

B(t)=~ 'LS(p)3 (10)

A(t)=~ 'LQ(p)J (11)

where 2—' denotes the inverse Laplace transform
operator. '

These equations show the intimate relationship be-
tween the system function expressed in terms of the
complex frequency variable p and the temporal response
of the system. The alternative possibility of using
Fourier instead of Laplace transforms in the above
equations will be discussed later.

We may now define the quantities

and

limS(p) =S(ia) =P((u)+i—T(co),

S ) —=Q(i(o) =J((u) —iII((u).
(P

lim
a~0

p

(12)

(13)

Note that S(ia&) is a complex function of the real radial

frequency ~.It is the quantity which would be measured

with sinusoidal excitation and may represent an input
immittance, a transfer ratio, or a transfer immittance.
The network function, Q(i~), is more of a derived

quantity, although it is of great importance. Character-

istically, it may represent a complex magnetic or electric
susceptance or may be merely related to a transfer ratio
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specified by the corresponding 5(ica). If J(ca) and H (ca)
are proportional to the real and imaginary parts of the
complex dielectric constant of a lossy capacitance, for
example, it is clear that P(ca) and T(ca) are proportional
to the real and imaginary parts of the admittance of
the system. The relations between the real quantities
in (12) and (13) are of particular interest although their
derivation is not an easy task. There are four equations
connecting the four real quantities of interest. To obtain
them, we may write the equations

and

limS( +ai )ca=lim[(a+ica)Q(a+ica)],
a~0 o~0

limQ(a+ica) = lim[(a+ica) 5(a+ica)].
o~0 o~0

(7')

(14)

Now, using the definitions (12) and (13), rationalizing,
and separating into real and imaginary parts, we obtain

P(ca) = lim{o Re[Q(a+ica)] —ca Im[Q(a+ica)]}

=caH(ca)+lim{a. Re[Q(a+ica)]}, (15)

~
o Re[5(a+ica)]+ca 1m[5(a+ica)]

J (ca) =lim
o~0' a2+~2

(17)

H(ca) = lim
o—+0

ca Re[5(a+ica)]—o- Im[5(a+ica)]

a2+~2
(18)

Equations (15) through (18) represent the desired con-
nections in a fairly general form. Unfortunately, they
still cannot be used in this form without explicit knowl-
edge of the functions 5(a+ica) and Q(a+ico). We have,
thus far, failed in finding a rigorous method of simplify-
ing them further. In addition, the rationalization leading
to (17) and (18) may not always be allowable, depend-
ing on the form of 5(a+ica).4' The difhculty arises from
the fact that terms of the form lima —+0[f(a)5(a+ica)]
are not necessarily equal to limo.—+0[f(a)5(ica)].

To further simplify (15) through (18), we must recall
the following representations of the delta or first-order
impulse function and its first derivative, the doublet
impulse. 4'4'

orb (ca) = lim[a/(a'+ca') ],
n.8'(ca) = —lim[2caa/(a2+ca2)'].

o'—+0

(19)

(20)

First, we see that if terms such as o Re[Q(a+ica)] or
o Im[Q(a+ceo)] should be proportional to either of the
above forms or to higher derivatives of the delta func-
tion, these terms would not go to zero in the limit fT—4.
We have been unable, however, to 6nd any reason-
able forms for Q(p) for which these terms do not

T(ca) =lim{ca Re[Q(a+ica)]+a Im[Q(a+ica)]}

=caJ(ca)+lim{a Im[Q(a+ica)]}, (16)

vanish, and we suggest without proof that they must
always go to zero if Q(p) is an analytic function of
the complex variable p. An example is Q(p) = 1/p. Then,
lima —4{aIm[Q(a+ica)] is ~cab(ca), which is identically
zero. Note that this Q(p) is nonanalytic at p=0. Thus,
for all practical purposes, we are justi6ed in writing

P(ca) = caH(ca),

T(ca) = caJ(ca).

(15')

(16')

It may be noted that these last results may be alterna-
tively derived from some of our later integral trans-
forms; for example, if we integrate (34) by parts and
substitute (23), we obtain (16') directly.

The simplification of (17) and (18) is more com-
plicated. Here, for example, either of the terms
o Re[5(a+ica)]/(o'+of) or ca Im[S(a+ica)]/(a2+co')
may possibly yield delta functions or their derivatives
in the limit 0.—+0. Nevertheless, whenever the rationali-
zation leading to the forms (17) and (18) is allowable,
we have again failed to discover any reasonable cases
for which it is invalid 6rst to carry out the limit o.—+0
for 5(a+ica) separately in these equations, then to
complete the limiting process for the remaining func-
tions of 0.. This procedure is equivalent to using the
relation Q(ica) =lima 4[5—(i)/ca( +aire)] instead of the
correct form (14). The result is

J(ca) =ca 'T(ca)+irci(co)P(ca),

H(a&) =ca 'P(ca) ~b(ca) T(ca). —

These results hold only when the rationalization lead-
ing to (17) and (18) is allowable. a They show that it is
not correct in general to divide through (15') and (16')
by co to obtain the desired relations; instead, 5(co) terms
must be added to account properly for the singular case
ca=0. Again, we suggest that as long as S(p) is an
analytic function of p, (17') and (18') will always
represent a valid simplification of (17) and (18). As an
example, we may consider S(p) =p, which is analytic
except at p= ~. Then, (18) yields zero identically and
so does (18') when it is noted that P (ca) =0 and T (ca) =ca.

The results (17') and (18') also hold for some functions
such as S(p) = (p —1) ' which are not analytic in the
entire finite part of the right half of the p plane. On
the other hand, they fail for a nonanalytic function
such as S(p) =p*=o i ca-

Finally, we may replace P(ca) in (17') by P(0) except
when P(ca) is an impulse function (see end of Appendix
II). As we shall see later, P(ca) is an even function of ca

and T(ca) an odd function. Therefore, P(ca) may be ex-
panded for small co in a series which may contain a
constant term, P(0), plus powers of ca'. Since negative
powers are physically unrealizable, the term n.8(ca)P(ca)
in (17') must be finite or an impulse function but may
be zero. On the other hand, when T(ca) is expanded in a
series around co=0, it is found that the series can contain
only terms in oP" ', where m=0, 1, 2, 3, -. . . Only the
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term containing co ' can yield a nonzero value in
z5 (pr) T(pr) and. the nonzero value obtained when ~o

' is
actually present in the series is proportional to &o '8(pr),
a quantity discussed in Appendix II. We may now re-
write the final simplified forms of (17) and (18) as

A (t) = (2/rr) S,LJ (pr)], (27)

methods of Appendix III to yield

B(t)=J(")~'(t)+(2/ )~.LP( )3, (25)

B(t)=P(")~(t)—(2/ )~.LT( )1, (26)

J (pr) =or—'T(po)+rrtr(po)P(0), (17")
A(t) =J(~)~(t)+(2/~)~. LH(~)3. (28)

H(po) = po 'P(pr) —re(or) for 'L(aT(or))„=p}. (18")

These relations are applicable so long as P(or) and T(&o)
are not impulse functions and the rationalization leading
to (17) and (18) is allowable. "

Next, let us separate Eqs. (8) and (9) into real and
imaginary parts. We find"

P(po) = lim
~

B(t)e "cospptdt= S,LB—(t)j,o'~0 Q 0

(21)

T(&o) = —lim
o—+0 g 0

B(t)e "sinortdt—=—F,LB(t)j, (22)

J(po) =lim A(t)e "cospotdt= 5.)A—(t)],o~0 j0

and

(23)

H(or) =lim A (t)e "sinortdt—=P,LA (t)j. (24)
~ oJ

0

We have not actually carried out the limit 0.—4 in the
above equations because the exponential factor may be
required for convergence in certain cases. In such cases,
0. may be set to zero after integration. The above equa-
tions are generalized Fourier sine and cosine transforms, '
which we denote symbolically with the operators 5,
and P, . These results underline the importance of the
B(t) and A(t) functions, since they show how simple,
well-tabulated integral transforms may be employed to
obtain the four real quantities P(pr), T(or), J(or), and
H(or) from B(t) and A(t). Note that the above trans-
forms may also be considered as real Laplace trans-
forms with o taking the place of p. A simple case
where the convergence factors are necessary is given
by B(t)=up(t); for this choice of B(t), S(p) =p ' and
S(ipo) =rr5(po) —i&a '. If S(ipo) is interpreted as an input
admittance, the system is an ideal inductance. 4' It
should be mentioned that if B(t) or A (t) contain 8(t),
the range of integration in the above equations must
be extended slightly negative to cover the region around
t=0. We have hitherto indicated such extension by
writing the lower limit as 0—;from now on, we shall
omit this refinement and let it be understood when
necessary. It is usually then convenient to take 0 =0 and
to extend the lower limit to —~; this procedure is
allowed since B(t) and A(t) may be taken identically
zero for any finite nonzero negative t. We shall assume
that this extension will be made when necessary.

Equations (21) through (24) may be inverted by the

P( )=P(-)—(2l )+.+.LT(r)l

Similarly, (25) and (22) give

T(~)=~J(~) (2/~)~. ~.LP(—r)j
We also readily find the additional relations

(29)

(30)

J(~)=J(~)+(2/~) ~.~.LH(r) j, (31)

H(~) = (2/~)~ &.LJ(r)l (32)

Although the above relations are written in terms of
generalized Fourier sine and cosine transforms, the con-
vergence factors will usually be unnecessary and the
transforms will then degenerate into ordinary sine and
cosine transforms of which extensive tables are avail-
able. '' Even when the convergence factors are neces-
sary, the desired integrals may often be found tabulated
directly44 or may be obtained from Laplace transform
tables. These tables, together with the properties of
delta functions, make it usually a simple matter to
evaluate any of the previous F, and 5, transforms in
practical cases. It shouM be pointed out that connec-
tions of the form of (29) and (30) without the P(po)
and J(~) terms and expressed as ordinary Fourier

If the above functions of cv involve impulse functions
at the origin such as tr(po), 0 may be taken zero in the
convergence factors, the lower limits of integration may
be extended to —~, and the factor 2/rr replaced by 1/rr.
This procedure is valid because all the integrands are
even functions of ~. This and earlier statements con-
cerning the evenness and oddness of the above functions
of or are easily verified from Eqs. (21) through (24).
Thus, for example, J(&u) can only be even since or is
involved on the right of (23) only in the even function
cosset.

The above results show that the impulse and step-
function responses can be obtained from the real and
imaginary parts of S(ior) and Q(no). If J(~) and P(~)
are nonzero, however, it is clear that A (t) and B(t) are
only fully determined by J(&o), not by any of the other
three quantities. Thus, if J(po), which may typically be
the real part of a complex or anomalous dielectric con-
stant, is known for all frequencies, then the indicial
response A(t) is fully determined. This quantity, in
turn, determines Q(p) and S(p) through (9) and (7)
so that J(~o) contains complete information about the
system and speci6es it completely.

It is next of interest to obtain direct transform rela-
tions between P(or) and T(or) and between J(or) and
H(po). Substituting (26) in (21) yields
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sine and cosine transforms have been mentioned by
Titchmarsh. 4'

The above relations may be transformed, as shown in
Appendix IU, into the more familiar forms

2 -"yT(y)dy
P(~) =P(")——--

M

(29')

2cp "P(y)dy
T(cp) =cpJ(~) ——--

~p GO

(30')

2 -"y&(y)dy
J(~)=J(~)+- '-

7l +
p P 03

2cp ~" J(y)dy
II(cp) =—--

7l ap M —g

(31')

(32')

P(cp) =A (0)+F,
dA (t)

dt
(33)

dA (t)
T(cp) = —6,

dt
(34)

A useful relation may also be produced by substituting
(17') and (18') in (32'), then multiplying both sides of
the equation by co. The result is

2~' "" T(y)dy
P(~) =P(0)+

y(cp2 —y')
(35)

which has been derived previously by Bode."

These are just the Kronig-Kramers transform rela-
tions."""Their expression in (29) through (32) as
double (generalized) Fourier transforms shows that
they are somewhat analogous to the Stieltjes transform
which is an iterated Laplace transform. 4'

The bar through the integral in the above equations
indicates that the principal value is to be understood.
The Kronig-Kramers relations are of great importance
in circuit-theory" and in magnetic and dielectric
susceptibility measurements. Aside from the limiting
values at infinite frequency, which are often zero, they
show that measurements over all frequencies of im-
portance of one component, such as the real part of an
impedance, allow the value of the corresponding com-
ponent to be calculated for any frequency. The relations
are thus useful whenever it is easier or more convenient
to measure one component of S(icp) or Q(icp) than the
other. Note that (29') and (31') become particularly
simple when the values of P(cp) and J(cp) at zero fre-
quency are required and ~ is taken zero. Some mathe-
matical considerations pertaining to the Kronig-
Kramers relations have been given by Gross."

There remain a few more general relations of some
interest. Substitution of (5) into (21) and (22) yields

Other interesting relations may be formed, e.g. , by
multiplying (21) by P, and (22) by 7,. The results are

s,[P(~)]=r,m, [a(t)),
S,[T(~)]= —S.a,[B(t)].

(36)

(37)

2p ~" P(y)dy
S(p)=pJ( )+-

p'2+ y2

2, "yT(y) y
(p)= ( )——

pr ~ p p'+y'

2p ~" J(y)dy
Q(p) =-

J p2+ y2

2 ("yH(y)dy
Q(p) =J(")+-

~ J p2+y2

(38)

(39)

(41)

where the convergence factors have been omitted as
unnecessary. Since all the integrands are even functions,
the integrals may be divided by two and limits of —~
to ~ taken when desired. Although these integrals have
a superficial resemblance to the Kronig-Kramers rela-
tions, they are not principal values. If, however, p is
taken as o+icp in t.he above equations, and the limit
cT—4 carried out, the right side of each reduces to S(icp)
or Q(icp) as the case may be with either the real or
imaginary term expressed by means of a Kronig-
Kramers transform. The expression (38) is an alterna-
tive form of a relation given first by Cauer" "who ex-
pressed it as a Stieltjes integral. Somewhat less general
and complete forms of (38) and (39)"and of (41)4' have
been given by Gross. It is not surprising that Eqs. (38)
to (41) exist, since we have already shown that a real
function such as J(cp) may be transformed to yield A (t),
and A(t) then transformed to Q(p). The above equa-
tions simply represent the elision of two transforms into
a single transform. They are obviously useful in showing
how S(p) or Q(p) can be calculated from knowledge of
one of the real functions on the right plus the value of
J(cp) or P(pp) at in6nity.

Now, as shown in Appendix IV, the right-hand sides
are equivalent to the Kronig-Kramers integrals. We
have thus shown that these ubiquitous relations apply
between functions of time as well as of frequency. They
are not conjugate in the time domain as they are in the
frequency domain, however.

Finally, it is desirable to obtain direct transform rela-
tions between S(p) and Q(p) and the real and imaginary
parts of S(icp) and Q(icp). Such relations may be ob-
tained by substituting (25) and (26) into (8) and (27)
and (28) into (9). Such substitution yields equations
involving the product operators ZP, and ZS, . These
products. may be simpli6ed by changing the order of
integration and carrying out one integration. We obtain
the results
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and

S(iu)) = B(t)e '"'dt—=S,[B(t)j, (42)

Q(i&v) = A (t)e '"'df=—p.[A (t)j,
Oo

(43)

The integral transform relations between A(t) and
B(t) and Q and S are often presented"4" 4' 43 in the
form of exponential Fourier transforms such as

P()-
I i&

(29) (25) (2

= B(&) =

I
(26)l (2

I I

I I
'I l

T(&) =
(I7 )

H(&):
l

ii I

I

) I(28) (32)
I (&i)l

I

=A(t) = I

&) (27) I

I

I

I

J()

where the symbol F, denotes the exponential Fourier
transform. The above relations may be obtained from
(8) and (9) by taking 0 =0 and rewriting these equa-
tions as bilateral transforms, which is, of course, per-
mitted since A (—t) =B(—t) =0. Most of our previous
results can be obtained from (42) and (43), but they
will not then include the convergence factors such as
exp( —o/) which arose naturally from our present start-
ing point. The lack of convergence factors makes ex-
treme care necessary in the interpretation of such equa-
tions as (42) and (43) when the integrands contain
functions of b(t) or No(t). The integrals may not then
exist in the classical Riemann-Lebesgue sense. These
difficulties may be avoided by interpreting the integrals
in the sense of distribution theory, " 5' which is equiva-
lent to a mathematically consistent extension of the
meaning of the integrals beyond those of Riemann and
Lebesgue. Such complications are, however, auto-
matically avoided in the present treatment and, al-
though distribution theory promises to be of consider-
able usefulness in linear-system theory, we shall not
consider it further herein except insofar as some of its
results are used in Appendix II.

It should be noted that when they converge (42) and
(43) are often very useful because they yield S(iar) and
Q(ia&) directly by means of a well-known, tabulated
integral transform. On the other hand, the Laplace
transform relations (8) and (9), while they are more
convergent, yield S(p) and Q(p). Although it is always
possible to obtain S(ia&) and Q(i~) from S(p) and Q(p)
by separation into real and imaginary parts and by then
taking the limit o-~0 properly, it is often convenient to
obtain these quantities directly in a single transform
step. It is, of course, just when the exponential Fourier
integrals do not converge properly that care must be
taken in carrying out the limit o.~0 in passing from S(p)
and Q(p) to S(ice) and Q(i(o).

The interrelations between the quantities character-
izing the linear system are presented in pictorial form
in Fig. 1. Lines with arrows on both ends indicate a
reciprocal relationship. Knowledge of either function
connected by such lines allows the other to be uniquely
determined in one step. Lines with only a single arrow
indicate that the function at the arrow end of the line

may be determined directly from knowledge of the
function at the other end. The numbers in parentheses
are the equation numbers specifying the given trans-

FIG. 1. Diagram showing the connections between the
various quantities characterizing a linear system.

form. Finally, dotted lines indicate that the function at
the arrow end can only be determined within a constant
(which may be zero) from the function at the other end.
The constant is, of course, not arbitrary, but is fully
determined by the system considered. It is worthwhile
pointing out that there are no solid paths leading away
from any function where a dotted path originates. "
There thus exists no multiple sequence of operations
whereby such a "weak" function alone can in general
yield full knowledge of the complete system. Note that
of the four functions I'(co), T(a&), II(&u), and J(~), only
J(co) is not weak in the above sense. It is the only one
of the four which contains complete information about
the system.

A simple example with which to illustrate some of the
foregoing results is given by a series RC circuit. If the
system function is taken as the input admittance, it is

1 GP

I'((u) =-
R n'+(u'

(45)

T(cv) =
R n'+(u'

(46)

The inverse Laplace transform of S(p) is

o.
B(t)=—8(t) ——e

—".
R E

(4&)

Equation (6) now yields

A(t) = e—
E.

(48)

The same result could have been obtained directly by
transforming Q(p) = [R(n+p)j '. lt is now easily
verified that (21) and (22) yield I'(ar) and T(au) as given

1 p 1
S(p) = —=——1—

R a+p R n+p

where n= (RC) '. Upon expansion of (44) into real and
imaginary parts, one 6nds on then letting o.~0 that
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by (45) and (46). Similarly, (23) and (24) immediately
yield the correct values

and

J(o))=-
R n'+(o'

(49)

(50)

which are just Debye dispersion equations with the time
constant wp=RC=cK . It is also easy to show that all
the transform relations between A (t) and B(t) and the
functions of frequency hold.

The Debye dispersion equations are of great impor-
tance in dielectric"" and magnetic studies" both be-
cause of their simplicity and their generality. They
appear in systems which contain only one kind of
storage element, such as capacitance, inductance, or
mass, together with dissipation. When the equilibrium
condition of such a system is disturbed, it decays to the
original or a new equilibrium state exponentially with
a single time constant as shown in (48). In the next
section, we shall discuss systems exhibiting many re-
laxation time constants and continuous distributions of
such time constants. When two different energy storage
mechanisms, such as both inductance and capacitance,
are simultaneously present in a system, it may exhibit
resonance and a definite resonant frequency; then, the
Debye equations will no longer be applicable. This case
of resonant behavior is discussed in the final section.

It is next of interest to allow the capacitance C to
become in6nite. Thus, n—4, and the system degener-
ates to a resistance R alone. Then S(p)=1/R and

Q(p)=1/Rp. On carrying out the limit n—+0 for the
above results or calculating directly from these values
of S(p) and Q(p), we obtain

P(co)=R '

T(cu) =R 're)5(or) =0,

B(t)=R-'S(t),

J(a)) =R-'rrtI((o)

EI(ca) =R

A (t) =R—'u, (t).

(51)

(52)

(53)

(54)

(56)

We have, therefore, obtained the surprising result that
a pure resistance yields nonzero real and imaginary parts
for Q(m). Thus, just as an ideal reactance involves a
delta function as its Kronig-Kramers conjugate pair, an
ideal resistance also leads to a delta function at the
Q(ice) level. It is interesting to observe that it is the
second term only in (17') which contributes to J(~)
when this quantity is calculated from T(~) and P(co).
Note that both Kronig-Kramers relations hold for the
J(&o) and H(~) of (54) and (55). All of the above results
could, of course, have been obtained by taking S(p) as

the impedance of a parallel RI. circuit and allowing I.to
go to zero.

The conditions of physical realizability of a linear
system are well known" "";we shall merely summarize
them here. First, it is obviously necessary that the
temporal response of the system to excitation, e.g. , A (t)
or B(t), must be real and not complex. Further, as
discussed earlier, the response must be zero for t(0 if
the system is initially quiescent. If Eq. (10) or (11) is
evaluated by complex integration with 0-=0, for t&0
the path of integration may be closed with a large semi-
circle in the right-half of the complex p plane. For the
integral to be zero, as required by the fact that there
can be no response before excitation, it is necessary that
the sum of the residues of poles within the semicircle be
zero. If this condition is met for a nonzero number of
poles in this region, these poles will lead to transient
response which grows indefinitely with increasing time
rather than to "constant" or decaying transients. Such
behavior is only possible (for a limited time) with an
active system, which can itself supply power to the
output irrespective of the input source of power. "The
system is thus unstable. For a passive system, it is
therefore necessary that there be no poles in this region,
(with the possible exception of the points p=0, p= atr;

see later discussion) and S(p) is then analytic there.
Thus, for a passive system with loss, the transient re-
sponse must eventually approach zero at suKciently
long times. In this case, B(~)=0 and A (~)=P(0)=0.
For lumped constant systems, 5(p) is also a rational
algebraic function of p. It is then termed a positive real
function. ""Such a function satisfies the conditions
that S(p) is real when p is real and that Re[5(p) j&~ 0
when o-&~0. This last condition ensures that there are
no negative resistances in the system, since their pres-
ence would render the system active. For such a posi-
tive-real 5(p), the highest powers of p in the numerator
and denominator of 5(p) can differ by unity at most.
The poles and zeros of S(p) are restricted to the i~ axis
of the p plane and to its left-half. Further, any nonreal
poles or zeros must occur in conjugate complex pairs,
and any poles on the real axis must be simple with
positive-real residues.

If S(p) is a positive-real function, the system must
satisfy an ordinary linear differential equation with
constant coefficients. The coefficients must themselves
be positive-real. Note that the condition of analyticity
of S(p) requires that the Cauchy-Riemann conditions
hold between its real and imaginary parts (0/0). 63

Then, the real and imaginary parts with o.—+0 are also
connected by Hilbert transforms. ""In the special case
of even real part and odd imaginary part, the Hilbert
transforms immediately simplify to the Kronig-Kramers
relations. "When B(t) and A(t) are zero for t(0 as
required by the causality condition, Eqs. (21) through

(24) show that the real and imaginary parts of 5(ice)
and Q(iver) will indeed be even and odd in &o as stated
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earlier. Thus, for an analytic S(p), the real and imagi-
nary parts of S(m) will obey the Kronig-Kramers rela-
tions. The converse statement is not necessarily implied;
in the present work and elsewhere" we have derived
such relations between the real and imaginary parts by
methods which do not explicitly require that S(p) be
analytic in the entire right half plane. Note that even
if S(p) is a positive real function, Q(p) need not be.
This conclusion is immediately evident from the fact
that if S(p) is a positive real function, the highest
powers of p in the numerator and denominator of Q(p)
can diGer by zero, minus one, and minus two at most.
Elsewhere, we have shown that if Q(p) is a rational
function of p having unity numerator and a denomi-
nator containing a sum of terms with finite, integral,
positive powers of p, then Q(p) satisfies the Kronig-
Kramers relations. "

The foregoing integral relations are, of course, of
far wider scope than is indicated by their usual re-
striction to rational positive real functions. For ex-
ample, they also apply to irrational functions such as
S(P)=[P+aj '. The impulse response for this system
function is readily found from the transform tables to be
B(t) =[4m. 'f/' exp( —at). The equations also apply to
meromorphic functions, to entire functions, and to
multiple-valued functions such as S(p)=tan '(aP ')
=ir/2 —tan '(p/a). This last is an interesting choice;
the corresponding impulse response is B(t) = sinat/t, from
which we readily obtain P(~) = (ir/2)[NO((o) Np(~ a) J
and T(a&) = (1/2) ln

~
(&u

—a)/(co+a) ~. Here, the fre-

quency response of the real part is that of an ideal
resistor until +=a; thereafter, it is zero. It may be
pointed out that when S(p) is not a simple rational
(or meromorphic) function of p, the system need not be
made up of lumped elements, and it will in general,
satisfy a linear partial differential equation or several
such equations, as in the case of a transmission line.

input monotonically decreases, or relaxes, towards zero.
Examples of such systems are RL and RC circuits and
over-damped RLC circuits.

There are several equations any one of which might
be taken as the fundamental relation between experi-
mental results and the distribution-of-relaxation-times
function G(r) For example, it is quite possible to start
the analysis with a relation between the step function
response of the system A (t) and an integral transform
of G(r). Such an equation can be justified directly from
physical reasoning. "We shall, however, begin with the
following equation from which the above relation will
later be derived

t."G(r)dr
Q(P) =)

0 1+pr
(57)

The physical meaning of this equation is quite clear.
The network function p 'Y(p) =Q(p) for simple Debye
dispersion is [1+p7oj '; in (57) such a function is
averaged over a distribution G(r) of relaxation times.

It should be emphasized that Eq. (57) is written for
a network function Q(p) which satisfies the condition
Q(~)—=J (~)=0. Such a definition allows us to elimi-
nate J(~) terms which would otherwise appear in
equations such as (57). When J(~)AO, it is a simple
matter to rede6ne a new Q(p) for which Q(~)=0 by
subtracting J(~) from the original Q(p).

In order that the distribution function G(r) be
physically reasonable and realizable, it must satisfy
certain conditions. First, it must be real and always
positive for any real value of the real variable v between
0 and ~. It is also physically unreasonable to allow it
to have poles within this span although it may contain
delta functions if there are isolated lines in the spectrum
of distribution times. Finally, it must, from (57), be
normalized so that

III. DISTRIBUTION FUNCTION RELATIONS

Dielectric constant measurements are often analyzed
in terms of a distribution of relaxation times. """It is
assumed that when the observed results cannot be ex-
plained in terms of simple Debye dispersion, which in-

volves only a single relaxation time, they instead arise
from processes which lead to an entire line spectrum or
continuous spectrum of relaxation times. Such a con-
nection between observed results and a distribution of
relaxation times is of considerable generality and will be
considered in detail in the present section. Even though
it was originaBy introduced to treat nonresonant ab-
sorption of the Debye type, it is formally applicable as
well to resonance measurements, as we shall show later.

It should be noted, however, that the results of this
section are less general than those of the previous one.
There, all equations applied to the general linear system.
Here, we are only concerned with relaxation systems;
that is, linear systems whose response to a step function

We shall usually take J(0)= 1. If any given Q(p) has a
J(0) different from unity, it may be normalized by
dividing by J(0) unless this quantity is zero, infinite,
or an impulse function at the origin. When Q(0) does
not exist, Eq. (58) is meaningless but (57) will still hold
over the rest of the range of p provided the choice of

G(r) is such as to make the integral convergent ex-
clusive of the point P=O. We shall usually assume that
such normalization has been carried out. It is pertinent
to mention, however, that from a purely mathematical
viewpoint many of the above conditions on G(r) are
too restrictive. For example, it may be negative over
part of its range, and it need not be normalized nor
normalizable, provided only that the integral (57) is
convergent.

Equation (57) is more general than that of most
previous work. Usually, ' " an analogous relation is
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written in terms of ice instead of p. The integral over
G(r) then yields Q(ipp) instead of Q(p). Although it is
always relatively easy to pass directly from Q(p) to
Q(i~), it is sometimes more diflicult to go in the reverse
direction, from knowledge of Q(ice) to that of Q(p). This
transition may, of course, be carried out by means of
the integral relations between J(pp), A (t), and Q(p) pre-
sented in the last section, but these transforms may be
dificult, if not impossible, to evaluate in certain cases.
It is therefore valuable to begin with a single transform
relation between G(r) and Q(p). Whenever Q(m) rather
than Q(p) is desired from G(r), (57) may be written in
the more conventional form

t "G(r)dr
(ice) =

~ p 1+zcvr
(59)

This equation yields the well-known additional relations

and

t" G(r)dr
~(-)=

~p 1+(~r)'
t" (a)r)G(r)dr

H(~) =,
~ p 1+(a)r)P

(60)

(61)

Equation (57) may be easily transformed to several
more useful and familiar forms. In (57), let X—= r ' and
X 'G(X ') =D(X), a new distribution function. Then (57)
becomes

and

1
t
"G(r)dr

Q(p)=-
P"o P '+r

5 (P) = ~~ii~&t G(r)j (62')

where now S(~~„~ indicates that the independent variable
of the Stieltjes transform is p '.

Now, on substituting (9) for Q(p) in (57') and multi-

plying both sides of the equation by 2 ', the inverse
Laplace transform operator, we obtain

(1) dX
A(t)=~ED(q)j= ' G

Ex)
(63)

We have thus easily obtained the relation mentioned

t
"D(X)D,

Q(p)= =—«P(&)j=—OLD(7)) (57')
&p p+X

The symbol 5 denotes the Stieltjes transform" "";it
is an iterated Laplace transform as indicated. We may
also write from (57)

~(p) =PQ(P) =PgLD(&)3 (62)

These are useful relations since tables of Stieltjes trans-
forms exist. '

Another method of transforming Eq. (57) is to divide
numerator and denominator by p. Then, we obtain

D(X)=2 '[A(t)]=X 'GP ').

We may then obtain G(r) from

G(r) = r—'D(r—').

(64)

(64')

The above results, therefore, enable us to obtain G(r)
if the inverse Laplace transform of A (t) can be found.
We thus see that A (t) occupies an intermediate position
between the distribution function D(X), its inverse
Laplace transform, and the network function Q(p), its
direct Laplace transform.

Equation (63) may be inverted less formally than in
(64) by using Fourier's integral formula, as shown by
Titchmarsh. "The result may be written for our case as

F00

G(r) = A (iy) e'&'dy (r)0),
2m~ ~

(65)

an exponential Fourier transform. As Titchmarsh points
out, such an equation can only hold when A (t+iy) is an
analytic function regular for t)0. The above result
therefore depends upon the possibility of analytic con-
tinuation of A(t) in the complex plane. Equation (65)
was 6rst used in connection with relaxation distribution
functions by Simha. '

Next, it will be of interest to consider the direct in-
version of the above Stieltjes transforms. Later, we

shaH show how inversion may sometimes be accom-
plished by transforming the pertinent quantities to the
Mellin transform plane, then using relations which hold
there, and 6nally transforming the desired quantity
back. to the domain of the original variables by means
of an inverse Mellin transform. Often, however, this
final transform is difficult or impossible to carry out.
Titchmarsh" has given a result, however, which is often
easy to use. Applied to (57') it yields,

Z

DO) =—LQ(l '-)-Q(~ -'.)j
2x

(66)

This equation also depends on the feasibility of analytic
continuation of Q(p) and hence on its analytic character.
When D(X) is a delta function of X or a sum of such

functions, a limiting process must be carried out. First,
Eq. (66) may be simplified by recognizing that the two
functions on the right are conjugate. Ke obtain

D(X) = m
—' ImLQ(he

—'~)]

=limir ' Imt Q( —X—ip)Q,~0

(66')

earlier between G(r) and the step function response.
Alternatively, this equation could have been used to
derive (57). An equation relating B(t) and a transform
of G(r) may be derived in a manner similar to that
leading to (63); such a relation is unnecessary, however,
since once A (t) is known, B(t) may be obtained from (5).

When the inverse transformation exists, we may also
write from (63)
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and
J(~)=L1+l~rol) ',

(dr p ln((prp)
H((p) =

prL((prp)' —1)

(68)

(69)

I

Since the logarithm in (67) is multiple-valued, separa-
tion of Q(p) into real and imaginary parts in the limit
o.—+0 is not unique, and the sign of ((prp) in (68) may be
either plus or minus. However, for J((p) to represent a
realizable system, it is necessary that it be even in co

as shown. A functional dependence of the form (68) is
often found in dielectric constant measurements when
there is a wide distribution of relaxation times such as
is often found in a distributed system. When (66) is

applied to (67) we obtain

where the second form shows explicitly the limiting
process represented symbolically in the preceding equa-
tion. A result equivalent to (66') was first given by
Gross in connection with viscoelasticity theory. "

An example of a case to which (66) or (66') may be
applied without limiting is given by

Q(p)=L1+(p"))-L1+=p" ~(p")) (6»

For later reference, we may write the real and imaginary
parts of the corresponding Q(p(p) function; these are

(60) or (61), the resulting functions must be correctly
of even and odd parity respectively in co. This result
follows from the fact that G(r) does not contain &p and
that (60) involves it only as (pP and (61) as (pf((pP) T.he
fact that any G(r) function will lead to J((p) and H(pp)
functions of proper parity does not ensure, however,
that these functions belong to a Q(p) which is an ana-
lytic function of p in the right half p plane or that the
causality condition holds. An example is the function
of (67); it will only be analytic if an infinite system of
Riemann sheets and cuts are used to make it single-
valued.

We may also apply Titchmarsh's result to (62')
to yield

or

G(,) = (S(r—ie '-) -S-(r i—e'-)),-
2Ã

G() )= —~-'Im|S(ze-'. ))
(72)

= —limn ' ImLS( —X—ip)).
e-+0

With S(p) =pQ(p), (67) and (72) again give (71).
If we use Eqs. (59), (60), and (61) as definitions of

Q(nu), J((p), and H((d) in terms of G(r), we may derive
a number of additional interesting relations by doubly
transforming G(r) in various ways. Some results thus
obtained are

2) v0
DP)=

~L1+ (Xrp)')

From (64'), G(r) is then

(70) -Q( )=~ .~.lG(», (73)

~( ) =« i )& LG( ))=+ ( i )&LG( )) (74)

»((p)=&(it )& LG(r))=& (v )&LG(r)) (75)

G( ) =(2/-. )L1+(.I")')-' (»)
a continuous distribution. Since Q(0)=J(0)=1, G(r)
is normalized to unity. Finally, since in the present case

(70) is listed in the table of Stieltjes transforms' it may
be readily verified that (67) is the transform of (70)
as specified by (57').

Equation (71) represents too wide a distribution of
relaxation times to be physically realizable. It will be
noted that it speci6es that there are some relaxation
times present having any arbitrary finite value. Phys-

ically, however, there is a short relaxation time limit

and no relaxation times shorter than the limiting value

can occur. To make (71) physically realizable, it is

necessary to take G(r) =0 for r(r;„Since r;, .the

shortest possible relaxation time, may be much shorter
than v0, such a limitation may not affect the frequency
response as exemplified by (68) and (69) until ((prp)»1.
Thus, although one may measure a J(&p) dependence of
the form of (68) over a wide range of (p, there must

finally be a deviation from such response at suKciently

high frequencies. This deviation wiH take the form of a
final more rapid decrease of J((p) with increasing &p than

that specified by (68).
It is worth emphasizing that when a G(r) (continuous

or discontinuous) is used to calculate I((p) or H((p) from

Equation (73) only holds so long as G(—r) is taken
zero, a physically reasonable assumption. In the above
equations, 5, is the exponential Fourier transform; 0.

may usually be taken zero in the generalized Fourier
sine and cosine transforms, thus converting them to
ordinary Fourier transforms; and Z (~~„~, 5:,(~~„~, etc. ,
denote that the independent variable of the transform
is ~ '

~ lt may be noted that these equations may be
formally inverted by multiplying through with the
proper inverse transform operators, yielding G(r) in
terms of transforms of (pQ(f(p), (pJ((p), and»(pp). The
results obtained are difFicult to apply, however, and
may not hold in general.

Next, we shall consider how many of our earlier in-

tegral transform equations may be inverted by means
of Mellin transform relations. %e shall denote the
Mellin transforms of pertinent variables by lower case
letters. If OR is the Mellin transform integral operator, 4'

then ORl J((p)) =j(s), where s is the complex indepen-
dent variable of the Mellin transform. Our results
depend upon an equation given by Titchmarsh. If a
transform relation can be written in the form

W(x) = K(xy)F(y)dy,
J0
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it is then easy to show that operating on both sides of
this equation with 5R yields formally

tn(s) = k(s) f(1—s), (77)

where k(s) is the Mellin transform of the kernel E(xy)
written as E(x). This result depends upon an inter-
change of the order of integration after applying the
Mellin transform.

We may now take the Mellin transform of all of our
pertinent previous integral relations, then use (77) to
obtain the corresponding Mellin-transform relation.
This procedure applied to our previous results leads to
a large number of equations, most of which are sum-
marized in their most useful forms in Appendix V. These
equations show that if a function such as g(s) is known,
it is possible to obtain a desired quantity such as j(s),
a(s), q~(s) etc. , by algebraic manipulation alone. Then,
if the inverse Mellin transform of the desired quantity
can be obtained, either through the use of tables' or by
complex integration, 4' the original integral equation
relating the known and the unknown quantities, e.g. ,
G(r) and Q(p), will have been inverted. This procedure
is often very useful since it makes available another
table of transforms as an aid to inversion; it fails, of
course, when the inverse transform does not exist or
cannot be found.

The relations between the Mellin transform quan-
tities h(s) and j(s) and q„(s) are of particular interest.
It will be noted that these quantities are related as the
sides of a right triangle with the included angle between

q„(s) and j(s) being z.s/2. Similarly, J(~) and H(~) are
at right angles in the complex Q(ice) plane. Here, of
course, the angle included between

I Q(ia&) I
and J (&u)

depends on co.

Next, we may make use of a well-known Mellin-
transform convolution integraP' which states that

t'&l~ 'I f(~)&(~)5= Fl — I&(y)—
~js (y)

(78)

This relation may be used to derive some new equations
from the relations given in Appendix V. It may first be
mentioned that applying (78) to a(s) =I'(s)g(s) yields
(63) immediately. In a similar fashion, (66) and (72)
may be proved. All the previously given integral trans-
forms, such as the Kronig-Kramers relations, may be
regained in the same way.

To apply (78) in order to derive further relations, we

shall 6rst use the following inverse Mellin transforms

ing to quantities like A(x —i). This operator, which may
be termed a complex delta function, is analogous to an
ordinary delta function except that the real path of
integration does not include the point in the complex
plane (off the real axis) where its argument is zero. For
example, we so de6ne this quantity that

pQO

~[&(~—s)]= x -'S(x—s)d~

[six/2]a 1 — Mf~sfs (81)

Now, on using the above results, Eq. (78), and Eq. (11)
of Appendix V, we obtain the new relations

Z

G( ) =—I:J( ') —J(— ')]
AT

1
G(r) =—[H(ir ')+H( —ir ')]

2X
G(X-') =—Re[H(he-"')5

2X
=lim —Re[H( —iX+e)]. (83)

a~0 &

It will be noted that these equations are similar to (66)
and (72). Further, their validity again depends upon the
possibility of analytic continuation of J(to) and H(co)
into the complex plane. The above complex delta func-
tion method of obtaining Eqs. (82) and (83) is only one
of several possible methods. We give it here because we
shall make further use of such functions later. Equation
(83), expressed in a different form, was first obtained
using other methods by Fuoss and Kirkwood. "Both
equations have been given previously and discussed by
GrOSS 10,11,13

In Fig. 2, we show as a Qow diagram some of the
relations which spring from the original connection be-

A(t, )

(i~),(40)

2X
G(}t-')=—Im[J (}e-'-»)]

2A,
= lim—Im[J( —iX+e)], (82)

&~0 ~

X'$

BR r sin—= sent($ —s)+A(x+s)5,
2

(79)

G(~) =
)(

%$ Z

5R—' cos—=—[h(x—i) —A(x+i)5.
2 2

In the above equations, we attach only a formal mean-

FIG. 2. Diagram showing the connections between the relaxa-
tion-time distribution function G(v) and other quantities charac-
terizing the linear system having the G(r} distribution.
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Q(ice) = L1+uoro$
—

~, (85)

and showed that it too was useful in analysis of dielec-
tric relaxation measurements. In this equation, the
constant P may range from zero to unity. It is note-
worthy that although this function cannot explain all
data showing a distribution of relaxation times, it
leads to J(u&) and H(o&) functions of proper parity, its

Q(p) is analytic, and it therefore can represent a class
of physically realizable systems.

Fuoss and Kirkwood69 suggested for H (~) the function

H(~) =2L(~l~-) +(~-l~) 3 ', (86)

where ~ and n are constants and 0&n& 1. Here, H(ar)
is obviously not an odd function of ~ inside this range.
Macdonald" has used the above H (&o) to obtain J(co) by
means of one of the Kronig-Kramers transforms for
several fractional values of n. The resulting J(co) func-
tions are neither even nor odd as written. Nevertheless,
the fact that co enters one of the Kronig-Kramers rela-

tween G(7 ) and Q(p). As in Fig. 1, the numbers on this
diagram are the equation numbers of the connecting
relations. Since we have assumed that constants such
as J(~) and P(~) have been removed by normaliza-
tion, the use of dotted lines as in Fig. 1 is unneces-
sary here.

Earlier, we mentioned that the hypothesis of a dis-
tribution of relaxation times has been extensively used
in interpreting dielectric constant measurements. For
example, Cole and Cole" suggested the use of the net-
work function

Q( )=L1+(' o)' 7 ' (84)

for dielectric systems with a distribution of a relaxation
times, and the real and imaginary parts of this function
have been found very useful in interpreting experi-
mental results. There is a single relaxation time when
the constant o. is zero and an infinitely broad distribu-
tion when n is unity. It is obvious that the Q(p) function
corresponding to the above form of Q(i~) is not an
analytic function of the complex variable p when
0(n(1. As a consequence, the J(~) and H(~) func-
tions derived from (84) represent a noncausal system.
The situation may be saved by putting in the neces-
sary ~a&~ and sign ~ factors in J(cu) and H(a&) to force
them to have the proper parity. They will then not be
the real and imaginary parts of the nonanalytic Q(p).
The actual dependence of J(&o) and H(s&) on ~0 for real
positive co will not be changed by these additions, and
they may thus still be used for interpreting dielectric
constant measurements. Further, forcing J (co) and H(co)
to have the correct parity in ~ ensures that the integral
transforms yielding these functions from G(7) will give
the correct results and that the G(r) obtained from J(co)
or H(co) will specify a causal system, as it should for
physical realizability.

I ater, Davidson and Cole" presented the function

tions only as oP and the other only as cof(i02) shows that
they must, of necessity, yield only even or odd functions
of co, as the case may be. This result is independent of
the form of J(~0) or H(~) since these functions appear
under the integral sign only as functions of the inde-
pendent variable y. Hence, Macdonald's results should
have been written to show that J(co) was in fact even
in or. Again, such addition will not change the functional
dependence of J(ru) on co for real, positive co. These
results show that for the H(cu) of (86) to represent a
physical system, it must be rewritten in a form which
makes it of odd parity. In such a form, it and the J(co)
results with corrected parity will satisfy the Kronig-
Kramers relations.

As we have noted earlier, the Kronig-Kramers rela-
tions are usually derived on the assumption that for the
function considered, S(p) or Q(p), there are no poles
whatsoever in the right half of the complex p-plane.
Elsewhere, " the present authors have derived these
relations by means of Mellin transforms directly from
the integral relations between. J(co) and H(&u) and G(r)
This derivation makes no explicit use of the condition
of analyticity, and it is therefore pertinent to inquire to
what extent the Kronig-Kramers relations hold for
nonanalytic functions. In a passive system, S(p) and

Q(p) must be analytic in the finite, nonzero part of the
right half plane, but they need not be if the system is
active.

We may begin by distinguishing for our present
purposes three types of nonanalyticity. A function may
not be analytic only at p=O or p= ~, it may not be
analytic at isolated points in the right half plane (ex-
cluding p=O and p= ~), and it may not be analytic
anywhere in this half of the p plane. The first type is
represented by the functions S(p) =p ' and p, corre-
sponding to an ideal (passive) capacitance and induc-
tance, respectively. Now, it is easy to show the real and
imaginary parts of the S(i~) functions corresponding
to these choices satisfy the Kronig-Kramers relations
(and our other integral transform relations) as long
as the pertinent integrals converge. For S(p)=p ',
P(&u) =vr8(~), and T(&u) =—

u& '. Equation (29') yields,
if one uses this value of T(&a),

(87)

Similarly, if we use P(co) in (30'), we 6nd (on changing
the limits of integration to accommodate the delta
function)

(88)

For S(p) =p, on the other hand, we have P(co) =0,
T(~) =~, and J(~)= 1. We find that (29') is not con-
vergent but that both (30') and (35) hold.

The second type of nonanalyticity is exemplified
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by the function $(p) = (p—1) ' which is not analytic
at p=1. A function of this type is found to satisfy
the Kronig-Kramers relations only when a mathe-
matical artifice is employed. If we write its $(m) as
—[(—1)'+~') '—m[(—1)'+co'j '& we see that it in-
volves a negative resistance. The impulse response is an
ever-increasing function. Hence, the system is unstable.
On applying the Kronig-Kramers relations to P(cu) and
T(co), we obtain, for example, the integral

When only a single relaxation time 7.0=AC is present,
G&zci(r) = 5(r r—o) and Z(p) is the input impedance of
the capacitance and resistance in parallel. The caret
over 6(z&) is intended to indicate that it is directly
re1ated to a system function rather than a network
function Q(p). The fourth possibility is to analyze in
terms of series resistance-inductance branches. Then
the pertinent equation becomes

2' CO

&(~)=—-- (89)
~ "o [(—1)'+X'j[~'—y'3 (—1)'+~'

A

G R (r)dr

$(p)=~(p)= I

~0 1+pr
(91)

It is desirable to point out that the above arrangement
is by no means the only possibility. %'hen we are con-
cerned with a distribution over values of a single con-

stant, there are, in fact, three other possibilities.
e may write an equation identical to (57) but with

the Q(p) for a single relaxation time equal to Z(p)/p
instead of I'(p)/p and interpret Z(p) as the system
function of a resistance and inductance in parallel. The
distribution function for this case may be designated as
Giiii, i (r). All the succeeding equations will be the same

but analysis will then be in terms of parallel RI. circuits
having different 1./E time constants.

Another possibility is to analyze a system into
branches containing a capacitor and resistor in parallel.
Instead of (57) we must then write

A

G tii c& (r)dr
$(p) =Z(p) = ~~ . (9O)

Jo 1+pr

The correct result is only obtained if we carry (—1)' iu
this form so that [(—1)'j'* becomes —1. Vnder these
conditions, the other Kronig-Kramers pair yields the
correct result for P(u&) as well.

It must not be supposed that all systems involving
negative elements require the above artifice. A system
may involve a negative resistance and still be stable. An
example is $(p)= (p —a)/(p+b), whose impulse re-
sponse is B(t)=h(t) (a+b)—e " This $.(p) has no poles
in the right half of the p plane but its P(&u) is negative
for cu((ab)i. All the integral transform relations hold
for this function. Finally, it is easy to establish that the
Kronig-Kramers relations cannot hold for a function
which is nonanalytic in the entire plane or entire right
half plane. Such a function is $(p) = (p*) '= [o.—io&j '.

The prior discussion of relaxation-time distributions
has been in terms of distributions of series RC-type time
constants as indicated by (57). For a single time con-

stant, we have used the Q(p) related to the admittance
of a capacitor and resistor in series and have obtained
a distribution of relaxation times by weighting this
function with the distribution function G(r), which will

now be designated

G (r).

The discussion thus far has dealt only with systems
containing energy storage of a single type, inductive or
capacitative or their mechanical analogues. When both
types are present in the same system, as in the EI.C
circuit, there may be a distribution of damping time
constants v- and an entirely separate distribution of
resonant frequencies ouo as well. The distribution func-
tion must then be a function of both ~ and ~0 and must
be connected to a system or network function by means
of a double integral over these variables. Elsewhere, 32

we have shown that if the distribution function is such
that the double integral converges, the real and imagi-
nary parts of the network function with which it is con-
nected satisfy the Kronig-Kramers relations. Further,
we shall show later that a simple RI.C circuit without a
distribution of v- or coo may be formally represented by
means of a series RC distribution function by using the
artifice of the complex delta function. f

The above discussion of distribution functions has
been tacitly restricted to input impedances or ad-
mittances and their corresponding network functions.
Sometimes, however, it is desirable to obtain the distri-
bution of relaxation times connected with a transfer
ratio such as amplifier gain, filter response, etc. , instead
of that of the previously considered two-terminal func-
tions such as complex dielectric constants or magnetic
susceptibilities. Here, therefore, we shall brieAy consider
the two simplest connections between a transfer ratio
and its corresponding distribution function, Gr(r).

The cases to be discussed are those in which the
transfer ratio is composed of the additive responses of
simple RC 61ters of either the low- or high-pass type.
Since the transfer ratio of such a low-pass 6lter may be
written in the form $(p) = (1+pro) ' where ro= RC, the
transfer ratio of the corresponding low-pass device with
a continuous or discontinuous distribution of relaxation
times is simply given by our basic equation (57) with
Q(p) replaced by $(p) and G(r) by Grl. (r), where the
subscript L is added to denote a distribution function
connected with low-pass response. It is thus evident
that all the previous distribution function equations

j Note added in proof. —B.Gross, Lineare Systeme, Supplement
to Nuovo cimento 3, 235 (1956),has recently treated EI.C systems
in a different, more general manner.



INTEGRAL TRANSFORM RELATIONS 407

apply to the present case with only minor changes of
notation necessary.

The high-pass case is slightly more complicated since
its elemental transfer ratio is (pro)/(1+pro), where rp

again equals EC. On averaging such a function over a
distribution of relaxation times, Grir(r), we obtain

~" rGr~(r)dr
S(p) =

p)
0 1+pr

or
t." rGrH(r)dr

a(p) =
1+dp

t'" hrlr(r)dr
(57"')

1+pr

wheregrir(r) = rGr~(r). In both the high- and low-pass
cases we have assumed, as usual, that the Gr(r) func-
tions are normalized to unity. Since we have once more
ended with a form of the basic equation (57), the earlier
equations of this section again apply.

It should be noted that the present results refer
specifically to transfer ratios which show limiting fre-
quency response slopes no greater than the 6 db/octave
obtainable from a single EC section. %hen the fre-
quency response curve shows slopes less than or equal
to this value, the response may be correlated with a
distribution of RC relaxation times of the present type.
On the other hand, when greater limiting slopes are
present, the relaxation-time distribution function ob-
tained by straightforward application of the above
formulas may be negative over part of its range. When
such behavior occurs, it is clear that a more complicated
initial transfer ratio than that of a single RC section
should be used in establishing a connection between the
transfer ratio and its distribution function.

IV. ILLUSTRATIVE EXAMPLES

Throughout the previous sections of this work we
have included simple examples where they seemed
pertinent. In this concluding section, we shall present a
few more examples to illustrate the application and
applicability of the preceding formulas.

The 6rst example is that of a series EC circuit, for
which the normalized network function (derived from
an admittance) is Q(p)=[1+rpp] ', where rp=RC
The indicial admittance is readily found from (11) to be
A(t)=7p ' exp[ —t/rp]. From (65) this result leads to
G(r)=r rp b(r rp )=b(r rp) using Appendix II.
As expected, the spectrum is a single line with the time
constant rp. If, alternatively, we make use of (66'),
we find D(X) =lim o—+0 (orp 'rr '/[o'+ro P(1—Xrp)P]}
= rp 'b() —rp '). The corresponding G(r) is that above.
A slightly diQerent result is obtained if we calculate
G(r) from J(~) or H(ur) using (82) or (83). The former
yields G(r)=b(r rp)+b(r+rp). When G(r) is calcu-
lated from H(oi), the second term again appears but is
then negative. It is clear that this term will contribute
nothing to the integrals involving G(r) because integra-
tion extends only over the range of positive v. The

S(p)=(2/b) 2 [p+(~/b)+(~'/b)(&+o)'] ' (92)
n=o

On using (10) to obtain B(t), we find

B(t)= (2/b) P exp( —[u+pr'(rt+-', )'](t/b) }. (93)
n=o

This result, which may also be written as a Jacobian
theta function, suggests that it would be pertinent to
analyze the system into parallel EC branches. Since we
are here dealing with an impedance, we may use Eq.
(90) to obtain the distribution function G&iic~(r). We
shall work first with the corresponding D P,), which may
mostreadilybefoundfromtherelationD(X)=Z '[B(t)]
corresponding to (64). We obtain

D(l )= (2/b) 2 b(l —[(~/b)+( '/b) (~+l)']} (94)
n=o

The corresponding G(r) is

- —28 m'2

G(r)=(2/br) E -+—(~+p)'
n=o

2 - —1.

Xb r —+—(n+-')'—
b b

(2) a s'
n

(b) ~o b b

Xb r—-+—(~+-,')'
b b

(95)

This result shows that even though we are dealing with
a distributed system, its input impedance may be repre-
sented by an infinite number of parallel EC's. Such
in6nite line spectra are characteristic of meromorphic
functions, which are generalizations of algebraic rational
functions. The latter involve only a 6nite number of
relaxation times. In the above example, the number of
relaxation. times at v-=0 is zero; as 7- increases, the
number (or weight of the line) increases until it reaches

second term may be eliminated by arbitrarily defining
G(r) =O.for r(0. It is interesting to note that in this
example the complete G(r) derived from the even J(co)
is even in r while that derived from H(pp) is odd in r.

Next, we shall consider the input impedance S(p)
=tanh(a+bp)&/(a+bp)&. For convenience, we shallnot
normalize this quantity to unity at p=O. This S(p) is
'the short-circuit input impedance of an idealized
transistor;" thus, it represents a distributed system.
Since S(p) is a meromorphic function, it may be written
6rst as 'an infinite product involving its poles in the
complex p plane, then as an infinite series of partial
fractions. "This transformation leads to
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a maximum at T=b/[a+ (pr/2)27. There are no relaxa-
tion times greater than this value. Note that G(T) is
entirely positive; it is not normalized to unity because
S(0) was not so normalized.

Since it is not in all cases practical to carry out the
inverse Laplace transformation which led above to

D(X), it is sometimes necessary to use Eq. (66') or its
equivalent instead. Here, we may use (66') with the
function Q replaced by S. We shall show how such an
analysis is carried through for the present input im-

pedance as an illustration of the method for more
complicated cases than considered previously. We must
evaluate

D(li) = lim —Im
e~o&

tanh (a—Q, —ibo) ~

[a—bX —ibo]'
(96)

Since e will vanish, we may expand the square root
and obtain [a—Q, —ibo]~(n —iP), where n= [a—9.7&,

P= ho/2a. Since the quantity P will also disappear as o

goes to zero, it may be treated as an infinitesimal and
only first-order terms in P retained. The process of
rationalizing (96) and taking the limit must be carried
out very carefully; for example, it is incorrect to ra-
tionalize the tanh function separately. " Instead, we

must first rationalize the denominator, written in the
form (n iP) cosh—(n —iP). We find that the imaginary
part of (96) yields, for sufficiently small P,

slnJ1n cosho.' —o,'

D(X) =lim
~ ' pr[n sinhn+coshn]2

coshn=0. Now, on applying the Gross-Pelzer expansion
formula to (96"),we find

(2/b) (a—bi%..) ib(X—X.)
D(l)= Z

~=o (a—baal„)' sinh'(a —bX„)l

00=- g b(Z —Z.), (96"')
b n=o

where li„= (a/b)+(22+12)2/b. Comparison of the final
result with that of (94) shows that they are identical.

The next example is concerned with what may be
termed the complete Lorentz dispersion formula. Con-
sider a system whose un-normalized Q(iM) function is a
complex dielectric constant e= c~—i&2. Then the corre-
sponding I,orentz dispersion J(M) function is" "
J(M) = pl= p~+2 (pp O00)

1+Mo(M+Mo)To 1—Mo(M —Mo)To
X + . (97)

1+(M+M p) Tp 1+(M Mp) Tp

For convenience J (M) has been written in terms of con-
ventional dielectric quantities; however, the same type
of dispersion may occur in magnetic systems as well. ~
As long as coo is not zero, it represents resonant absorp-
tion, as distinguished from the simple nonresonant ab-
sorption of the Debye type to which it reduces when
coo =0.

In order to obtain the indicial admittance A (t), Eq.
(27) may be applied and tabulated transforms used. '
The result is

( (2 cosh&i

!p2+!
En sinhn+coshn)

sinhot. cosha —n n cosh'

$n sinhn+ coshn]2 n sinhn+ coshn
(96')

A(t)=o„b(t)+(«—p )Tp 'e "'o

X [COSMpt+MOTo SinMot], (98)

showing that the system response to a unit step function
is a damped sinusoid for ~0)0, apart from the delta
function response to the o„ term. Now (98) may be used
in (24) to give H(M). We find

—b (cosh+)

o. sinhn

—8[cosh(a —bib) ']
(96")

[a—8 ]l sinh(a —8)'*

The second equation follows from the fact that an

integral over D(P,) can only be different from zero when

The delta function may be further simplified using the
results of Gross and Pelzer" given in Appendix II. The
zeros of the delta function occur when o. and cosho. are
zero. However. the factor multiplying the delta function
is also zero for n=0; hence this value of n does not
contribute to D(1%,).We may therefore treat the quantity
u/[u sinhn+coshn] inside the delta function as a con-

stant and remove it to the outside, obtaining

sinho. coshn —n
D (X)=— 8[coshn]

el(n Sinhn+ COShn]

H(M) =o2—2 (op o~)

M70
X — + . (99)

1+(M+Mo)'To' 1+(M
—Mp)'Tp'

The quantity MH(M) =P(M) is propo—rtional to the power
loss of the system. The maximum value of H(M) occurs

=To '[1+(MpTO)']'*. Next, we may use (98) to
obtain Q(P) and S(P). Equation (9) yields

To p+ (Mo +To )
Q(P) = o-+ («—o-), . (100)

. p +2TO p+ (Mp +Tp )

Note that when Mp ——0, Q(P) may be factored to yield
the Debye dispersion formula. The network. function

Q(p) here represents the dielectric constant of the sys-
tem as a function of the complex frequency variable p.



INTEGRAL TRANSFORM RELATIONS 409

The system function S(m) corresponding to the given
Q(no) is the input admittance of the system or a quan-
tity proportional thereto, as was tacitly assumed by the
designation of A (t) as the indicial admittance.

The system function wiH be a physically realizable
positive-real algebraic function of p. It may, therefore,
be represented by a finite number of lumped resistances,
capacitances, and inductances. In view of the great
generality and physical importance of the complete
Lorentz dispersion formulas, it is pertinent to ask what
the structure and element values would be of a lumped
constant system which had the same system function,
indicial admittance, etc. To obtain such a representation
we may write the system function as follows

II
lK

f.-6~
2

'7 /[E. -E, «)]

&QOOQQQ&

& &'/[e -& ] f!+(&~)']

S(p) = I'(p) =p~-

2&o p +(~o +&0 )p
+k(«—~-)

p'+2~o 'p+(~0'+~a ')

GOQ 70

p'+2ro 'p+(~o'+~0 ')
(101)

In this form, the last two terms on the right may be
readily identified as parallel branches each involving
resistance, capacitance, and inductance. It wiH be noted
that the input admittance is written in terms of four
(measurable) constants cn, E„, To, and &oo which charac-
terize the system. Further, the numerical factor which
converts dielectric constants into capacitances has been
taken to be unity for convenience in writing (101).If
we continue to represent capacitance in terms of its
corresponding. dielectric constant, the element values
and structure of Fig. 3 are readily derived from S(p)
written in the form (101).This is not the only possible
lumped constant representation of complete Lorentz
dispersion, but it is probably one of the simpler and
more useful forms.

%hen we exclude e„, the two capacitances are equal
and so are the two inductances. Because of such

equality, there is only one resonant frequency. The
limiting low-frequency capacitance is eQ, the high fre-

quency limiting value is e„.It will be noted that in the
limit coQ~O, the circuit of Fig. 3 does not reduce to the
simple Debye form of a resistance ro/(« ~„J in series
with a capacitance )co—e J; instead all three branches
remain, and the inductances are not zero. For such non-

resonant absorption, however, each branch is critically
damped and the over-all circuit has the same system
function as that of the above resistance and capacitance
in series. In this limit, it is not possible to determine
from measurements of 60 6, and 7.0 whether the system
contains inductance (or mass in the vibrating spring
case) and is critically damped, or whether it consists

only of a resistance and capacitance, or their mechanical
equivalents. The representations are electrica]ly equiva-
lent and either is valid,

4'T. /[6 -f ] [~+(&o&) ]

Fxo. 3. A lumped-element circuit realization of a system
exhibiting complete Lorentz dispersion.

The complete Lorentz dispersion formulas admit
either under-damping or critical damping; over-damping
is not allowed by the equations. On the other hand, what.

may be termed simple Lorentz dispersion" allows all
three possibilities. Such dispersion is obtained. , for ex-

ample, from a system such as an electron of mass ye

bound to an equilibrium position by Hooke's law forces
and subject to a damping force proportional to velocity.
It may be represented electrically by a resistance,
capacitance, and inductance all in series. 7Ve have
shown elsewhere how the Kronig-Kramers equations
may be applied to such a system. "

Our present expressions for resonant absorption apply
no matter what the ratio of absorption line width to
resonant frequency. They may be usefully simpli6ed in
the often encountered case for which the ratio is very
small by essentially neglecting terms involving (&a+coo)

compared to those involving (&o
—&eo)." The following

forms for H(&v) have been used,

Q) To

H(co) =A — — A
. 1+ (&d

—(do) Tp

(102)
1+ (M —(do) 7'0

where A is a constant. It will be noted that even the
6rst form given is not correctly of odd parity in or. The
proper parity of this equation may be obtained, how-
ever, by writing co as )o&~ in the denominator. Although
the above result was derived only for the case of absorp-
tion lines narrow compared to the resonant frequency,
it has been applied by Lacroix to the case where the line
width is comparable to the resonant frequency. "
Lacroix applied the Kronig-Kramers transform equa-
tion (31') to the first form of (102) and obtained the
corresponding J (co). The result was properly even in co

but was quite complicated and involved logarithmic
functions of cv and ~0. We wish to point out that the use
of (102) is not theoretically justified in the wide line
case and that it would have been far preferable to use
the complete Lorentz dispersion formulas instead. The
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it proves simplest to substitute (98) in {65).We obtain

(pp —p-)
G(r) = (1+icuprp)

t1 1
)(exp ip~( ————ip~p

))
f1 1

+ (1—i(opTp) exp ice
(

—+i pip )
dko—

) I

(cp —p) 1 1
(1+lcdpT p) A ———fpip

277 o 7 7o

1
+ (1—zpppT p) A ———+Zpip

7o J

7o

(pp p~)7'p — 1+'LMpl p

2T (1+uuprp)

'To

1—zMoTo .

~ —z~o&o

7Q

=(pp —«„) Re A r
1+ipipr p.

(103)

In obtaining this result, we have used the results of
Appendix II but have written the resulting delta func-
tions as h(x) instead of 5(x) because of the appearance
of a complex argument. When (103) is substituted in
{57), we immediately obtain the result (100) on re-
membering that the A(x) operator is the same as an
ordinary delta function except that it involves a com-
plex argument yet a real path of integration. It is thus
only a formal substitution operator. f.

f Note added in proof. —H. Pelzer, Technical Report L/T332,
British Electrical Research Association, 1955, has recently given
a rigorous definition of the delta operation in the complex plane.
The resulting complex delta function divers from the present
6 function.

appearance of logarithmic terms implies that there does
not exist a simple electric circuit of lumped elements
equivalent to Lacroix's system, as there is for the com-
plete Lorentz dispersion system. Further, the J(&v) of
the latter, given by (97), is far simpler than that ob-
tained by I acroix.

Finally, we wish to examine the consequences of a
brute-force application of the distribution of relaxation
time formulas (57) through (65) to the complete Lorentz
dispersion equations, which as we have seen, involve
inductances, or their mechanical equivalents, as well
as capacitances, To obtain

G (r) =G(7),
C

To conclude this section, we have presented in Table I
some of the examples already discussed in the text as
well as some new results. All of the functions appearing
in this table are defined in reference 2. For example,
Ep(x) is Macdonald's modified Bessel function. Where
possible, we have normalized so that J(0)=1 and
J(~ )=0. The constant r p must, in general, be greater
than zero, Further, it is usually necessary that t~& 0 and
Re(p) )0 or —r p for all the transforms of a given row
to hoM. For those positions filled with a line, we have
reasons to believe the indicated quantity is zero, in-
applicable, or infinite. These reasons are associated
either with the presence of unbounded integrals or the
impossibility of carrying out the inverse Laplace (or
Mellin) transforms for certain classes of functions. 4"
Thus, for certain functions such as A(t) =sin(t/~p)/t,
the corresponding a(lb, ) =2 'LA (t)j is zero (except for
a possible set of measure zero) or nonexistent, and the
analysis of the system in terms of a distribution of
relaxation times is impossible except perhaps formally
in terms of the artifice of the complex delta function.
The systems for which this is the case are not relaxation
systems.

The empty positions in the table represent situations
where we have not obtained explicit results for the
corresponding quantities but have no especial reason to
believe them nonexistent. It will be noted that in
several cases we have given values for g(s) even when
there is no corresponding G(~). These values of g(s)
were obtained by means of the Mellin transform relation
g(s)=LI'(s)j 'a(s), (Res)0). The existence of a g(s)
obtained in this fashion does not imply the existence of
G(p-); it. is, however, what the Mellin transform of G(~)
would be if G(r) existed.

Since J(0)=Jp" G(r)dr=g(1), it is apparent that
g(1)=1 is the normalization condition. All values of
g(s) in the table reduce to unity for s=1 except that
of No. 18 for which J(p~) and G(7) cannot be nor-
malized. Note that for Eq. (28) to hold for No. 19,
it is necessary to adopt the convention that lim~ —+~ of
J (~)= sin(

f

pi
[ rp) is zero. It will be readily apparent that

the results of the table apply as well after the following
change of nomenclature: Q(p)~S(p), J(ca)~P(co),
H (co)~ T(pp), A (t)—+8 (t—), G(r)—+G(r), and g (s)~g(s).

There are a number of new results in Table I. In
principle, any one of the quantities of a given row may
be selected, and any or all of the others obtained by
carrying out the proper direct or inverse integral trans-
forms. For an arbitrary function, many of the pertinent
transforms will, however, be impossible to carry out.
Those cases where all or most of the positions of a row
may be filled with functions expressible in closed form
should be cherished, as Campbell and Foster have
pointed out for the 5(ipse), 8(t) connection. "By sum-
marizing and codifying all the transform relations which
obtain between the various quantities of the table, we
have available Hilbert, Fourier cosine, Fourier sine,
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Fourier exponential, Laplace, Stieltjes, and Mellin
transform tables to help in 6lling in the positions of a
rom after one of its elements is selected. In addition,
direct integration, real or complex, is often helpful, as
are the tables of Bierens de Haan. "Finally, the various
direct Stieitjes inverse relations such as (66') may often
be useful.

For example, row 4 was started by taking j(&u) and
H(~) from the table of Hilbert transforms. Similarly
the J (&v) and H (&o) of row 15 were obtained from Bierens
de Haan's table. The J(~) and H(~) of No. 5 were first
obtained from the Mellin transform table by noting that
the necessary relation j(s)= $ctn(~s/2))h(s) was satis-
fied. The G(i-) of 11 was selected as an interesting choice
when it was discovered that it was listed in the table
of Stieltjes transforms.

Rows 10, 11, 15, 16, 18, 19, and 21 are believed to be
wholly or partly new. The Q(p) and A(t) connections
for the others are to be found in the Fourier integral
tables of Campbell and Foster. ' These tables are based
on the Fourier integral connection exempli6ed by Eq.
(43) and its inverse, with ice taken as p. Impulse and
discontinuous functions are handled by a limiting
process which is explicitly by-passed in the correspond-
ing Laplace transforms. These tables are extremely ex-
tensive and give many hundreds of useful Q(p) and
A (t) (or S(p) and B(t)) pairs.

There is an apparent disagreement between the re-
sults of row 16 and the transform of the same Q(P) given
in the Campbell-Foster tables (No. 632). The difference
arises from the fact that our single-sided Laplace trans-
form yields an A (/) defined only for t &~0. On the other
hand, the exponential Fourier transform used in the
Campbell-Foster tables is two sided and for the present
Q(P) is used to obtain a transform applicable in the
diferent range —~ & t& ~. The Kronig-Kramers rela-
tions and many of our other transforms do not, there-
fore, apply to such functions as they do for all the
functions given in Table I.

It is worth pointing out that a roundabout path
through one or more diferent integral transforms can
often give new transforms which might be dificult to
obtain directly. For example, the g(s) values of rows
5, 7, and 10 are new Mellin transforms not listed in the
tables. In these cases, G(r) and g(s) were obtained by
calculating G(i-) from A (i), a(s) from A (t), and g(s)
from a(s). Further, the transform method is often the
simplest method of separating a complicated Q(p), such
as that of row16, into its real and imaginary parts in the
limit p—+m.

The G(r) and A (t) of row 4 are of particular interest.
Note that G(7) is not normalized since J(co) cannot be
normalized at ~=0. In measurements on dielectrics, it
is often found that the current which Rows when a
constant voltage is applied or removed is proportional
to t " for long periods of time with the exponent near
or equal to unity. "'~" This current is just the indicial

admittance A (t), and it will be seen that the A (/) of
row 4 is of this form. The corresponding distribution
function is proportional to v ".Although it is physically
obvious that a material cannot be characterized by a
distribution of relaxation times of arbitrarily increasing
weight or density as v approaches zero, this distribution
may nevertheless still be an excellent approximation
over a wide range of t and v. Similar remarks apply to
the G(r) of row 18 which is also unnormalized.

Recently, a method of making measurements on di-
electric materials has been described in which the system
response to a linearly rising applied voltage is meas-
ured. " Such a ramp voltage is proportional to the
integral of N0(/) which may be denoted u i(t) =t (t&~0).
It is of interest to calculate the response of the system
characterized by row 4 of Table I to such excitation,
taken as f(t)= at. Either Eq. (2) may be used or the in-
verse Laplace transform of Eq. (3) carried out using the
results of row 4. Either procedure gives as the system
ramp response, r(t)=2al'(i) cos(vari/2)(t/i. 0)' "/m(1 p)—
It is clear from this result that such a measurement on
such a system would aGord a sensitive method of de-
termining z when this quantity is close to unity. On
carrying out the limit v~1, the above result becomes
just r(t) = a, a constant and the first derivative of f(/).
Note that the v " relaxation distribution function we
have been considering here may be related to the excess
or Ricker (frequency) '-type noise observed in semi-
conductors and vacuum tubes. "

The G(~) of row 21 is particularly simple since it
specifies a constant density of relaxation times between
Yi and ~~ and none outside this region. The G(r) of row
16 is of interest since it has an essential singularity at
v=0 and oscillates in sign as ~ increases. To approxi-
mate this G(7) by means of a large number of discrete
relaxation times, it would be necessary to use active
elements to obtain the negative relaxation times re-
quired by negative values of G(r) This result s.hows that
a J(co) of the form expI —

~

&u
~
~0) can never be obtained

or even well approximated by means of an additive
combination of even an infinite number of passive EC
branches of diferent time constants. On the other hand,
all completely positive distribution functions, either
continuous or discontinuous, may be approximated by
a finite number of such branches; as the number of
branches is increased, the response of the resulting sys-
tem will approximate closer and closer to that of the
system associated with the exact distribution function.

As a 6nal example of the usefulness of transform
methods in treating physical problems, it is of interest
to mention that an application of (generalized) Kronig-
Kramers dispersion relations" to the problem of pion-
nucleon scattering has recently resolved, on the basis
of causality, a choice between several competing as-
sumptions which had been suggested as possibilities in
the theoretical treatment of this interaction. "

In the present work, we have approached p from the
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standpoint of its being a complex variable 0.+i~. On
the other hand, it may also be interpreted from the
operational viewpoint as the operator p=d/dt "". This
latter interpretation, which may be related to di8eren-
tial equations of infinite order, is discussed at length by
Davis" and is the basis of the Heaviside operational
calculus. In addition, our functions are related to poten-
tial theory. For example, in the region where Q(P) is
analytic, Re[Q(p)] and Im[Q(P)] may be considered
to be scalar potential functions, such as the velocity
potential and (negative) stream function of fluid flow.
Both functions satisfy I.aplace's equation and are
termed harmonic or conjugate functions.

The relation between S(p) or Q(p) and potential
theory can be exploited in a number of ways, one of the
most familiar being the use of an electrolytic plotting
tank. Here the analogy is with ln[S(p)], for example,
and system gain and phase are then made analogous
with the potential and the stream function along the
ice axis, respectively. "Guillemin" has also discussed a
potential analog using dipoles or double layers from
which the real part of S(P) may be obtained. In this
connection, the J(a&) and H(&u) of row 12 of Table I are
associated with the problem of determining the poten-
tial due to a charged disk. '"

In this work, we have not attempted to discuss in
detail all the possible applications of the transform
method to physical problems since many books have
been devoted to various aspects of this subject. In-
stead, we have preferred to gather together, codify, and
extend where possible the transform relations pertinent
to a linear system. We have not striven for the highest
mathematical rigor; in the application of the present
results to physical problems such matters as the validity
of inversion of order of integration in a double integral
are usually easily settled in individual cases of interest.
Further, the precise conditions under which the trans-
forms hold are discussed at length in the references al-

ready cited. Our approach has, therefore, been largely
pragmatic and formal. Although it may not be entirely
satisfactory to mathematicians, it is our hope that the
results will be of use both to physicists and to those
concerned with circuit theory.

B. Generalized Fourier Cosine Transform

g(y) =lim t f(x)e cosxydx
~ OJ 0 —=~.(.)Lf(x)]=5'.[f(x)]

The limiting operation denoted by limcr —+0 is assumed
included in the definition of the integral transform
operator P,.

2
f(*)=5 ( ) '[g(y)]=-& (.)[g(y)],

+c(y) +c(z) = 1 +c(z) +c(tt)1
—1 1 —1

2
&~() = +(.) ~

—1

7r

When f(x) is an impulse function of order n=1 (i.e.,
8(x)) or higher,

g(y) = f(x)e '*~ cosxydx

11ma~0

t0 e~&2 and even

(—1) '" ')"y" ' n) 1 and odd.

When f(x) is an odd-order impulse function, the inverse
transform is (see Appendix III)

1 QO

f(x) =-~.(*)[g(y)]=— g(y)e "cosxydy
7r ~~p

limo~0

C. Generalized Fourier Sine Transform

g(y) =lim f(x)e '* sinxydx= F,(»[f—(x)]=—P,[f(x)7
0

Here c is a constant which is greater than 0-, where 0-,
is the greatest lower bound of a for which

limT —+~
~ f(t) ~

e "dt—(~.
lime~

A. Laplace Transform
2

+s(y)+s(x) 1 +s(z) +s(y)y +s(z) +s(x) ~

—1 1 —1 —1

7rg(P) = e "'f(t)«=~(.)l f(t)]=—&[f(t)]
0 When f(x) is an impulse function,

APPENDIX I. SUMMARY OF INTEGRAL TRANSFORMS * =+~(*) g y = +~(*) g y

P is the complex variable o+icv.
g(y) =lim I f(x)e '~*~ sinxydx

o'~0 gc+i00

f(t) = . " g(p)""dp= &'Lg(p)]. —
27l Z

tE odd

t&0
(—I)""y" ' n) 0 and even.

Further, when f(x) is an even-order impulse function,



INTEGRAL TRANSFORM RELATIONS 415

the inverse transform is (see Appendix III)

1 1
f(*)=-~ (*)Lg(X))=i~— g(X)e "»nxXdy

7r o —+0 ~

D. Exyonential Fourier Transform

g(y) = I f(x)e '*&d—x=r.—t(f(x)),

~00

f(x) =— g(~) e'*"dy=—&.-'Lg(y)).
2' QQ

E. Hilbert Transform

1 ""f(y)dyg(x)=--
7I e'

(g) S—
y»"g(y)dy(x)=--

y —x

The integrals are Cauchy principal values and relate
the real and imaginary parts of a complex function
S(x) =g(x)+if(x)

Here c is a constant greater than e, where e is the
greatest lower bound of e for which

limT —+~
x' 'I f(x) Idx(~.

limb —4
We have not given detailed conditions for the validity

of all the above transforms. These matters are dealt
with at length in, e.g., references 4, 14, 25, 45, 53, 63,
'and 75. For our purposes, it is generally sufFicient that
the integrals involved converge absolutely to a 6nite
value.

APPENDIX II. IMPULSE FUNCTION RELATIONS

The unit impulse functions of eth order, N„(x) are
usually known to physicists as the unit step the unit
impulse or Dirac delta function, the unit doublet, etc.,
for x=0, 1, 2, , respectively. We adhere to these
conventions in the present work by designating these
functions by the symbols ep(x), ()(x), ()'(x), etc. This
appendix comprises a collection of useful representations
of these functions and relations which they obey.

ep(x)= b(x)dx= 1 (x)0)

F. Kronig-Kramers Transforms

G. Stieltjes Transform

I
"f(x)dx

g(y) =
x+y

—=&(.) I:f(*)]
=—gLf(x)) —=&(.)~(-)I:f(x))

1
f(x) = lim —ImLg( —x—ic)).

e~0 ~

H. Mellin Transform

g(s) = f(x)x' 'dx= sent(f(x)).
— —

s is a complex variable p+in.

2 ""Xfb)dX
g(x) =—--

7K'p x —y

2x ""g(y)dy
(x) =—--

y' —x'

The integrals are Cauchy principal values and relate
the real and imaginary parts of a complex function
S(x)=g(x)+if(x) Here the . real part is even in x,
the imaginary part odd in x. Further, S(~) and
LS(x)/x)„are taken zero for simplicity.

f
xr(x)dx=O x~(x)=0

(except when f(x) is not regular at x=0)

f(x)()(x—a)dx= f(a)

(except when f(x) is not regular at x=a)

S(—x) =S(x) S(ax) =a-'S(x) (a)O)

8'( —x) = —lI'(x) x()'(x) = —() (x)

f(*)~'(x) = f(o)&'(x) f'(x)~(*)—
(except when f(x) is not regular at x=0)

1
l)(x) =— e+* *dn

2K QQ

2
b(x) =—--

~ 0 y X

1
l)(x) =lim-

~p ~ n'+x'

f(x) =
27TZ

f c+ioo

x 'g (s)ds =mt '—
$g(s))— — 1 o.'

()(x—a) = lim-
~p

m n'+(x —a)'
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1 sinnx
b(x) =lim—

- —x2/4ka .
e

b(x) =lim (k)0)
(4z.kyar) '

b(x) =lim e "'~'
g~oo

b'(x) =—[b(x)]=
dX 2'

b'(x) = lim
a~p ~ (~2+x2) 2

(—1)" sin{ (ft+1) tan '(rr/x) }
b&"'(x) =lim rs!—

a~p ~ (~2+xs) —', (n+1)

1
b(x) =lim — e ' cosxtdt

a~0~ Q 0

1 1=—P,[rtp(t)]= lim —2& &[cosxt]

—1
b'(x) =lim te "' sinxtdt

a—+0 ~ j0
1

= ——r.,[t]= lim
0

Zi &[t sinxt]

b(x' —a') = (2a)
—'[b(x—a)+b(x+a)] (a)0)

b(x ' —
y ') =xyb(x —y) = x'b(x —y) =y'b(x —y)

1 f(x)b(x a)—
b(x —b) =-

- ( —b)'+I b( —)f( )]'

Z[Np(x)] =P '

&,[Np(x)]=orb(y)

$,[Np (x)]=y
—'

Z[b(x)]=1
Z[b(x—a)]=e- &

Z[b'(x)] =p

~,[~'(x)]=0

$ 1Vote added in proof.—P. Gross, Lineare Systeme, Supplement
to Nuovo cimento 3, 235 (1956), has pointed out (p. 292) that
this expansion for eLh(z)g applies only for simple zeros of h(z).
An expansion involving both b(x —x„) and 8'(x—x„) is necessary
when higher order zeros are present.

b[h(x)]=lim-' n n'+[h(x)]'

1 f(x)h(x a) —b(x—x„)

7r [h(x)]'+[f(x)b(x—a)]' Ik'(x„)
I

where h(x„)=0, h(a)WO. These last two relations were
first given by Gross and Pelzer. si)

V,[S(x)]=1
S,[b(x)]=0
8[b(*)]=y-'

m[S(x)]=0 (s&1)

~.[b'(*)]=—
y

8[b'(*)]=y-'.

Note that co ' in the above is approached as a limit from
the right and should actually be denoted (rp ')+. In
evaluating Q(t'oi) we have taken

0 2 0 2

lim —= lim — =0
a—+0 &2 2 2 o'~0 &2 2

W lim = [z-b(rp)]'.
r-+p e2+~2

We shall discuss products of impulse functions and of
impulse functions and functions singular at the origin
below.

In passing from Eq. (14) to Eqs. (17) and (18) of the
text, a partial rationalization was carried out which led
eventually to the useful forms (17') and (18') for J(o~)
and H(in). For all rational system functions which are
nonsingular at the origin, we believe such rationalization
is valid. This class includes positive real functions as a
subclass. In addition, if S(p) is analytic in the right-half
plane (with the possible exception of the point at
infinity), (17'), (18'), (17"),and (18")will hold. Hence,
it is apparent that these equations are applicable to a
large class of important functions.

Here, we are interested in the form of S(p) necessary
for the above rationalization to be invalid. In general,
we may state that it will be invalid whenever S(p) has
a denominator whose real or imaginary part is propor-
tional to 0-, for 0- an in6nitesimal. In this case, either
Re[S(o.+tip)] or Im[S(rr+irp)] will be of the form
a f(rp)/[g(ep)a'+h(pp)] where f(rp), g(rp), and k(cp) are
functions of rp or constants. Then in either (17) or (18)
will appear products of terms whose individual limits
(e~0) would be delta functions. Such products are
diKcult to interpret and are meaningless without further
interpretation. They may be avoided in individual cases
by multiplying out the denominator of (14) as it stands,
rationalizing, and finally taking the limit cr—+0. An
example where this process is necessary is the D(X)
of Eq. (96).

Another example of interest is that where S(p) =p-i.
Then,

0 Ad

Q(sip) = lim [o+ioi] '~lim
o~0 a2~OP

I

- (o' —pp') —2srpo
= lim [(o'—cp')+2icpo. ] '= lim

0~0 n-+P ~4+2&2~2+&4

2Q)0—lln1 $ = —rp-'+iz b'(pp).
(r~0 ~2 ~2 2
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Other functions for which the rationalization is in-
valid are S(p) = sechap, S(p) = cschtsp, etc. In obtaining
Q(sso) directly from (14) for such functions, it is gener-
ally necessary to neglect higher order terms involving
0 before rationalizing as was done, e.g. , in passing from
(96) to (96'). Functions of this type lead to J(&o) and
H(oo)'s which may involve terms such as o[f(so)] and
hence may be expressed, in general, as series of terms
involving 8(to —so ), 22=0, 1, 2, The neglect of
higher order terms in o- will not lead to ambiguities
unless such neglect introduces a possible impulse func-
tion at the origin as it would in the case S(p) =p '.
There, if we neglect 0' when it erst appears, we obtain

Go 21600

Q(ioo) =lim
t
—0021 224osr] '=lim

0'—+0 amp ~4+4~2&2

—llm z
r~p ~4+4~2&2

To evaluate the remaining limit, we must divide through
by 4'', but such division introduces a possible additional
term b8(so) where b is a constant. Therefore,

1 (T

H(oo) = lim +bb(so)
2so o'+ (so/2)2

=srto 'b(so)+bb(so)

It is by no means clear that this result is either correct
Or equalS the preViOuS H(so) = —sr''(so); hOWeVer, SOme

light will be shed on the matter by the following
considerations.

The question of products of impulse functions and of
impulse functions and functions singular at the origin
may be treated by means of the distribution theory of
Schwartz. "04~~ These matters have been investigated by
this means by Giittinger, "whose results we shall sum-
marize and extend for our present purposes as follows.
First, products of the above types are generally non-
commutative and nonassociative. For such products we
shall use GOttinger's "o" symbol in place of the usual
multiplicative dot. Functions such as x ' must be con-
sidered in terms of their principal values when they
appear in products like x ' o 8(x); we shall omit ex-
plicit reference to this fact and let it be understood. In
addition, for the following formulas, the argument of
the impulse functions will always be x and will be
omitted. The constants c and c' below are arbitrary,
finite, complex constants. The prime denotes diGerentia-
tion with respect to the argument.

Now if f(x) is an indefinitely differentiable function
and A and 8 are improper operators, or distributions

~~
Pote added sss proof Adifferent method .—of handling such

products has been developed by B. Gross, Lineare Systeme,
Supplement to Nuovo cimento 3, 235 (1956).

such as 5(x) or x ', then

f o A= fA=Af,
f o (A o B)=A o (Bf)=A o (fB).

Ke may also require that the distribution law of differ-
entiation of an ordinary product applies to the present
class of products, so that

(A o B)'=A o B'+A' o B.

The following product relations then hold'":

5&"' o 240
———Q c,b&

r=o

S&-& o S=c.+,S
S&» o S-=c~,, „S

x o 5"=xb"=0

Qo O No =No2 =Qo

240 0 ss= (1jcp)8
~ 0 No= —co~

No =8st

6 o 6=Ã=cg8

5 o 5'=c~5' —c25

5' 0 8=c26

x 'o 6=co'6

8 o x '= —5'+cp'ls

x ' o 5'=cp's5'+ct'8

x 2 0 5 =ciY+2c2 s1

rgll+ lg

x 2 o 5=c~'5

8 o x '= —,'5"—cp'8'+ci'8

x ' o 8"=co's5"+2cr'8'+2C2's1

x 0 5'=8' o x=x8'= —8

x o 5"=8"o x=x5"=—2b'

x o (x ' o 5) =0

x o (8 o x—') = ss

xo (x
—'o5')= —cp'8

x o (s5' o x ') = ss'

x 'ox '=x 2+CA

x ~ox 2=x 3—cg

x 'ox '=x '.

The c and c' constants are not equal in general. A
scrutiny of the parity of these equations suggests that
c2„and c2„' can be taken zero without changing the
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result of integrating the product operators from —~ to
+&a. For example, adding b'(x) o 8(x) and the same
quantity with x negative yields 5'(x) o (i(x) —8'(x) o 6(x)
=0=2c28(x). Hence, c2 ——0.

It is now clear that the second calculation of H((o)
above in which 0' was neglected yields an ambiguous
result since we do not know whether the (o '8((o) term
is really (o 'ob((o) or 6((o) o(o '. Making the latter
choice and using the above expression for the product
we 6nd

H ((o) = —~rb'((o) —co'~b (~)+b8 ((o) = —s.b'((o),

since the even terms on the right cancel because H((o)
must be odd. For the same reason, 8((o) terms in H((o)
cannot contribute anything in any of the integrals in-

volving this quantity.
As a further indication that H((o) really is —xp'((o)

and J((o) = (o ' for Q (P) =P ', we may note that A (t) = t.
The Fourier sine and cosine transforms of g (t) lead to
the above H((o) and J((o). In addition, this value of
A(t) may be recovered from either J((o) or H((o) by
integration by parts. For example,

1
A (t) = —lim —

i e 'i "i(o ' cos(&)d(d,

seen that the expressions (17') and (18') for J((o) and
H(oi) do not lead to unique results for some functions.
Here, we wish to investigate the possibility of rewriting
these results in such a form that they will hold uniquely
for all functions of interest. It turns out that such a
revision can be accomplished by writing the products
occurring in (17') and (18') as improper type products
and making a specific choice of some of the arbitrary
c; and c,' constants. The results are

J((o)=T((o) o(o '+xP-((o) o 8((o),

H((o) =(o-' o P((o) 7'((o—) o T((d),

with cg„=c~~'=0 (v=0, 1, 2 ), and c=s c,.

These formulas for J((o) and H((o) may be checked
by direct comparison with the results obtained on ex-
panding Q(p) =p "and S(p) =p' ", r(=1, 2, 3, For
example, we have considered the case Q(p)=p '. To
obtain the corresponding J((o) and H((o) directly, an
expression for 8"((o) as a limit is required. If we differ-
entiate the result given earlier in this appendix for 5 ((d)
or use the expression for 6( & ((o) we find

2CL 34) Q
8"((o) =lim—

X' Q QP

A(t) =lim
7l 6)

2t
= lim —~ e

—"co ' sintcoCko
(r-+0

2t
=lim —tan '—=t.

0

e
—~l ~ t t

—( ost(o +—,I (o e I i slnt(od(d

Qo X QQ

On using this result, expanding Q(p), and taking the
limit a~0, we find J((o)= —(x/2)b" ((o), H((o) = —(o

—'.
Further, for S(p) =p ' P((d) = —(o ' T((o) =x8'((o). It
is readily verified that the above 0-product relations for
J((o) and H((o) are consistent with these results.

APPENDIX III. INVERSION OF TWO
TRANSFORM RELATIONS

%e first require inversion of an equation of the form

It has been mentioned earlier that if an equation of
the form f(x) =ug(x) holds, then, in general, we can
only infer that f(x)/g (x) =a+b5(x) in the case when in
the limit x=0, f(x)/g(x) &~. If f(x) is—an impulse
function, the quotient f(x)/g(x) must also be inter-
preted as either [g(x)] ' o f(x) or f(x) o [g(x)] ' and
the principal value taken when integrating. These con-
siderations impose certain restrictions on Q(p) =S(p)/p.
Since this equation is de6ned without the added delta
function term, the quantity p cannot be identically zero.
When ~=0, we must interpret lima —+0 as implying
that we can approach arbitrarily close to the point p= 0
along the 0. axis but cannot reach it; in this sense it
may be considered a limit point only.

Since S(p) and Q(p) are uniquely related, the real
and imaginary parts of S(i(o) and Q(i(o) must also be
so related. As we have seen, for any specific choice of
S(p) or Q(p) all the real and imaginary parts can be
calculated. It is therefore evident that the relations
between the quantities J((d) and P((o) and T((o) and
between H((o) and P((o) and T((o) cannot involve arbi-
trary constants and must be unique. We have already

F((o)= f(r)e "'cos(ordr.

F((o)e '" cos(otd(o

e "cos(ot i f(r)e "'cos(drdr d(o,

which becomes, on inverting the order of integration on
the right,

J,f(r)e ' e '" cos(ot cos(ord(ot dr

QO

f(r)e "' d7'.
o'+ (r t)' o'+(r+t)'—

I.et us multiply both sides by e " cos~tdkv and integrate
from 0 to ~ . We obtain
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If we next carry out the limit o-~0 on the right, we the desired result. It is easy to show from the initial
obtain and final value theorems of the Laplace transform that

F (a&)e
—'" cos~td~

2 40
f(r)e "'[6(r t)+—b(r+t)jdr.

Assuming that f( r) is—zero for any nonzero positive
value of r, we may extend the lower limit of integration
on the right to —~; then carrying out the integration
yields

limo~0

On differentiating this equation with respect to t and
using (5), we obtain

p00

B(t)=A (0)8(t)—— cvJ(&u)e "sincvtd&o.
X p

limo~0

Next, using (16'), we find

2
B(t)=A(0)5(t) —— T((u)e '" sin~tda, -

m'40
limo-+0

F((o)e cosa)td(o= —Lf(t)+f(—t) j,
Jo 2

where we have let o-' go to zero. Ordinary functions for
which f( t) =0—give—the desired result

2 f 2
f(t) =— F(co)e '" coscotdco =F. ')F (co)j=—S,LF(~)].

~~o 7r

limo —+0

However, if f(t) is proportional to 8(t), the relation
becomes

00 1
f(t) = F(&—u)e '" cosa&tdu= —&,[F(u))

~ "o 7r
limo~0

because 8(—t) =5(t). For f(t) to equal 8(t), it is obvi-
ously necessary that F(~)=1 (see Appendix II). We
shall assume that the definition of 5', is extended to take
care of terms in f(t) proportional to 5(t) in the above
manner. Then if u is a constant, we have

P,taj=amb(t).

The inversion of (22) and (24) is somewhat more diffi-

cult if proper account is to be taken of the values of
S(uv) and Q(ia&) at co= ~. These values are, of course,
F(~) and J(~) and will often be zero.

We shall first invert (22) using an indirect method.
The earlier part of this appendix establishes Eq. (27)

2
A (t) =— J(~)e—" cos&utda&.

A(0) =F(~),

A(~) =F(0).
The inversion of (24) may be carried out in a com-

pletely analogous manner to the above by going down
another step in p. The above results made use of rela-
tions between the inverse Laplace transforms of

Q(p) =S(p)/p and S(p). We may define a new function

V(p) =Q(p)/p and use relations between v(t), the in-

verse transform of V(p), and A (t). v(t) and A (t) will of
course be related in the same manner as A (t) and B(t)
Since the initial value theorem shows that v(0) =J (~),
we immediately obtain (28). As in the preceding S,
inversion, if the time function involves an impulse
(e.g. , doublet impulse) at the origin, then the factor 2/~
multiplying the result must be changed to 1/ir. This
follows from an inversion analogous to that of the first
part of this appendix. Such an inversion of equations
involving 5, instead of F, yields

00

f(t) —f(—t)=— F(a)e ' sino)tda.
7l 0

limo~0

We see that if f(t) involves a function such as F(~ ) ti(t)
which is even at the origin, this method of inversion does
not yield this term, and the preceding method must be
employed. Similarly, if a function odd at the origin such
as 5'(t) is involved, the above equation becomes

~
00

f(t) =lim — F(~)e '" sinu&tdco.
-

0

The inversion of an equation involving 5, in the first
part of this Appendix yielded

2
f(t)+f(—t) =— F(co)e ' cos&vtd~.

It is necessary to point out that if f(t) here involves
8 (t), the above inversion will not yield this term in f(t).
This observation is pertinent to Eq. (25), where we
have added a term J (~ )5'(t) in the expression for B(t).
Its presence can be justified by a technique similar to
that which introduced the term A (0) 8(t) in (26) from
the inversion of (22).

APPENDIX IV. TRANSFORMATION OF THE
KRONIG-KRAMERS RELATIONS

Equation (29) may be written as

~00

F(co)=F(~)—lim — e " cosa&x
o,o'~O~ g 0

p00

T(y)e '" sinxydy dz.
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On interchanging the order of integration, we obtain

2
P(a&) =P(~)—lim — ~ T(y)e

0,0'-+0 ~ J 0

tities characterizing a linear system.

p(s) = —ctn—t (s) = cos—s (s)
2 2'

X e " cos~xsinyxCh dy
= I'(s) cos—b(1—s), (1)

2

1=P (~ )—lim — T(y) e
a, o'-+0 ~ J 0

t(s) = —tan —p(s) = —sin—s, (s)
2 2'

y+(o CO

X + dy.
-~"+(y+~)' a"+(y—~)'-

Now let 0'~0 and collect terms; then

2 -"yT(y)e "dy
P((o) =P(~)—lim —--

0 y
—

GO

= —I'(s) sin—b(1—s), (2)
2

2 x's —2 x'$

b(s) =—I'(s) cos—p(1—s) =—I'(s) sin—t(1—s)
7r 2 7r 2

I (s)
sinvrss„(1 —s), (3)

where the X sign denotes that the Cauchy principal
value of the integral is indicated.

'
In a similar manner, Eq. (30) yields

—2
T(co) = lim I'(y)e

&,~r'~0
0

""
e

' sin~x cosxydx d'yj0

s„(s)=sec—p(s) = —csc—t(s) =I'(s)b(1 —s),
2 2

(s) —e
—im s/2s (s)

b(s) = (1—s) a(s —1),

x's %$
j(s)= ctn—h (s) =cos—q„(s)=—csc—d (s)

2 2 2 2

(3)

(6)

—1= lim
~

I'(y)e
0', o'~0 & J 0

co+y co

+
-a"+(~+y)' a"+(~—y)'-

=—csc—g(1—s) = I'(s) cos—a(1—s), (7)
2 2 2

VIS x's X' %$
h(s) = tan —j(s)= sin—q„(s)=—sec—d(s)

2 2" 2 2

Again on letting 0.'—+0 and collecting terms, we obtain

—2(o r" I'(y)e "dy—
T((o) = lim —--

0 ~2 y2

When P(y) is proportional to h(y), this integral may
be written

—~ t'"&(y)dy
T((o) = J„y

APPENDIX V. SYSTEM RELATIONS IN THE
MELLIN TRANSFORM PLANE

In this appendix, we summarize some of the most
useful relations between the Mellin transforms of quan-

Since the convergence factors e & in the above in-
tegrals are superfluous, the limit o.—+0 has been carried
out explicitly before integration in writing these inte-
grals in the text.

=—sec—g (1—s) = I'(s) sin—a(1—s), (8)
2 2 2

2 VIS

a(s) =I'(s)g(s) =I'(s)d(1 —s) =—I'(s) cos—j(1—s)
2

I'(s) 2 x's
sinn-sq„(1 —s) =—I'(s) sin—h(1 —s), (9)

7r 7r 2

2 mrs

g(s) = Li'(s)l 'a(s) =d(1—s) =- cos—j(1—s)
7r 2

1 2 VIS=—sin~sq„(1 —s) =—sin—h(1 —s), (10)
7r 7r 2

2 x's 2 7l s 1
d (s) =—sin—j(s)=—cos—h(s) =—sin~sq~(s)

7r 2 7r 2 7r

I (s)=g(1 —s) = sin7rsa(1 —s), (11)
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1l S 7l S

q, (s) =sec—j(s)=csc—It(s) =tr cscssd(s)
2 2

=w csc~sg(1 —s) =I'(s)tt(1 —s), (12)

tI;„(s)=e—' ' 'tI„(s). (13)

It is worth mentioning that an equation equivalent
to the extreme left and right sides of (12) has been given
by Van Der Pol and Bremmerss (the example at the
top of p. 254) as an interesting property of electrical
networks. The present appendix shows that this equa-
tion is one of many similar relations which apply in the
Mellin plane for linear systems.

Note that. in the above we have assumed that possible
nonzero J(oo) and I'(~) terms have been eliminated
from Q(p) and S(p) by normalization. It will be seen
that the Mellin transforms of S(p) and S(ico) have been
denoted by s„(s) and s;„(s) respectively; a similar con-
vention has been adopted for the transforms of Q(p)
and Q(ico). A few of the above transform relations in-
volving j(s) and It(s) have been derived previously. "
Note that the normalization condition for G(r) is simply
that g(1)=1 Lor g(1)=J(0) if Q(iso) has not been
normalized so that J(0)=1].
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