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1. Introduction

Aine

'HE purpose of this paper is to eGect a geometri-
zation of thermodynamics by a development of

the axiomatic approach initiated by Caratheodory
(1909)*, and developed by Born (1921).The elegance
and power of this approach have been recognized only
slowly, and, although it has been occasionally ex-

*See references in Bibliography at end of article.

pounded by various authors (Born, 1949; Buchdahl,
1949, 1954, 1955; Chandrasekhar, 1939; Kisenschitz,
1955; Lande, 1926; Margenau and Murphy, 1943), the
subject has not progressed to any extent since 1921.
That it is being tat.en up at all is in large measure the
result of the eGorts made in this direction by Max
Born.

In the writing of this paper discussions of those parts
of the subject which are adequately covered elsewhere
have been omitted. For instance, for the relation be-
tween the axiomatic and the conventional approach to
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thermodynamics, for the discussion of the ideal gas
case by the axiomatic method, and for the elementary
properties of PfaKan expressions, the reader is referred
to the expositions cited. Thus most of the material
presented appears here at least in a new form. It is
as a result of this geometrization of thermodynamics
that the third law appears in a novel form (Part III).

Only the elementary parts of thermodynamics (those
required in the discussion of the properties of gases, the
expansion of solids, etc.) are covered here. The exten-
sion of the basic concepts to gravitation, to the thermo-
dynamics of the electromagnetic 6eld, and to radiation,
is not attempted. It can be achieved, once the basic
concepts are established, with the aid of properly
modified definitions (see Guggenheim, 1949).

For ease of reference the. main results have been
numbered as theorems. There are ten theorems in Part
I, ten in Part II, and three in Part III. Six groups of
assumptions, denoted by (A1) to (A6), are required.
Assumption (A1) stipulates as known those parts of
physics which lie outside thermodynamics; (A3) stipu-
lates the existence of a certain partition; (A4) provides
an assumption about the existence of certain physical
processes from which the reversibility of a given process
can be inferred. The remaining three assumptions each
incorporate the elements of one of the laws of thermo-
dynamics as conventionally stated. The definitions are
denoted by (D1) to (D15).

Informal Characterization of Basic Concepts

Certain concepts which are essential to the geometri-
zation of thermodynamics are formally introduced at
appropriate points throughout the paper. It may help
the reader to see the underlying unity of these develop-
ments if some of these concepts are brieQy and in-
formally discussed here. The paper deals throughout
with sets of points in a suitably de6ned e-dimensional
thermodynamic phase space E. Thus, for properly
restricted ranges of the independent variables of a given
system, there will exist a set of points P with the fol-
lowing properties: for any two points A, 8 of P, there
exists an adiabatic linkage between the states which
these points represent (the states, and the points which
represent them, will be denoted by the same letter).
The term "linkage" is meant to express that an adi-
abatic process which carries A into 8 is just as satis-
factory as an adiabatic process which carries 8 into A.
The requirement that processes of both types shall exist
is much more restrictive and is not wanted. The first law
of thermodynamics is concerned largely with the proper-
ties of such sets of points P. The possibility of drawing
a continuous curve in E such that every point on the
curve belongs to a given set P is not seriously discussed
until the treatment of the first law has been completed
(i.e., in Part II). For any given set of points P, one is
now led to look for those subsets of P (if they exist)
which fill an e-dimensional volume in E. The second

law deals only with such subsets, which are denoted
by y, and it is essential that these subsets y be open
(i.e., they must exclude boundary points). When one
has finished with the second law, certain questions are
left unanswered. For instance, can a set P contain the
boundary points of any of its subsets y? Can a set P
contain points which are neither in any of its subsets p
nor on the boundaries of such subsets? A third law of
thermodynamics becomes therefore absolutely essential
in the present approach if ambiguities are to be avoided.
It settles the two questions which have just been raised,
as discussed in Part III.

This paper aims not only at developing these new
concepts, but also at removing certain de6ciencies of
the axiomatic approach as currently expounded. Some
of these de6ciencies will now be enumerated. A 6rst
group of criticisms can be directed against ambiguity
in definitions. The terms "quasi-static" and "re-
versible, " as applied to physical processes, are often
regarded as synonymous, and the precise meaning of
each left in doubt. Again, the term "diathermanous, "
as applied to a partition which allows thermal equi-
librium to establish itself, is nowhere fully defined. The
di@cutly in devising a good definition is that one re-
gards the notion of heat and of thermal equilibrium as
still unknown when defining this term. It is often be-
lieved sufficient to regard a partition as diathermanous
if it forces one new relation upon the parameters of the
systems that it separates. The precaution, for instance,
of excluding a partition which moves so as to equalize
the pressures in the two compartments is usually
omitted. The term "adiabatic, "as applied to partitions,
presents new difficulties. It is usual to introduce adi-
abatic enclosures in the axiomatic approach partly to
give a de6nition of thermal energy in terms of purely
mechanical quantities. This, however, leads to an
unusual sense of the word "adiabatic, " since this word
is usually understood to mean that there is no exchange
of thermal energy. An adiabatic enclosure, therefore,
allows an exchange of electrical and electromagnetic
energy; it also allows changes in long-range forces
applied from the outside, as in adiabatic demagneti-
zation. If, however, a definition is used at the outset
which allows for all of these inAuences, then it cannot
be claimed that thermal energy has been defined in
purely mechanical terms. %e shall deal here with this
dilemma by introducing the term "adiabatic" in a
restricted sense 6rst and extending it later. A second

group of minor criticisms can be directed against the
usual statement of Caratheodory's principle and against
the proof of the theorem on PfafFian equations which is
due to Caratheodory. These considerations do not refer
to the domain of de6nition of the Pfaffian equations for
quasi-static adiabatic processes, although this is, in
fact, of considerable importance for changes in the
state of aggregation of systems and for a discussion of
states at the absolute zero of temperature. This limi-
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tation in the current expositions is the result of the
assumption that the thermodynamic phase space is
adequately represented by an Unbounded space. This
procedure is avoided here. A third criticism can be
directed against the fact that the conventional treat-
ments do not deal with any of the formulations of the
third law.

While it is hoped that the above criticisms cannot be
directed against the present work, the exposition given
here has required such extensive reformulation of the
conventional arguments of thermodynamics, and the in-
troduction of mathematical tools which are new to this
field of study, that the present paper is probably also
not free from objections. Suggestions concerning the
improvement of the presentation would therefore be
particularly welcome.

PART I: THE FIRST LAVf

2. The Nature of Thermodynamics

For the foundation of thermodynamics it is necessary
to make the following assumption:

(Al) Given any physical system which can be modi-
fied within certain defined limits, a finite set of finite
macroscopic variables x~, x~, .

, known from other
parts of science, can be listed and measured quanti-
tatively, such that knowledge of a set of values of
these variables de6nes one of a known sequence of
equilibrium states of the system. Macroscopic non-
thermodynamical information is assumed known.

The above variables, to be denoted by x, are called
thermodynamic variables; these define the state of the
system, its thermodynamic state. The circumstance
that the variables are macroscopic and refer to equi

librium states is the main axiomatic criterion which
distinguishes the thermodynamic variables from non-
thermodynamic ones. The variables x, therefore, may
include pressure, volume, molecular concentrations,
etc. , which can all be measured by known methods.
There may also be electrical variables; for instance,
when the thermodynamics of 6elds is discussed. If a
variable x can have the value zero, the variaMe y = 1/x
cannot be used instead of x, since the variables x must
all be finite by (A1).

It follows from (A1) that the population of the
separate quantum states of the particles constituting
the system need not be deducible from thermodynamic
information. Assumption (A1) implies, therefore, that a
clear division can be made in any given case between
thermodynamic and nonthermodynamic variables; and
that the maximum number n of independent thermo-
dynamic variables can be determined. Beyond a certain
range of the variables x~, x2, - -, x„,a phase change may
occur (e.g. , a liquid phase may disappear), and a new

set of independent thermodynamic variables, y~, y2,
~ ~ ~, y, becomes appropriate. The physical interpre-
tation of the set of x's will dier, in general, from that of

the set of y's, and m need not equal n. Thus, for a given
physical system, several entirely diferent sets of inde-
pendent variables will, in general, be appropriate,
depending on the approximate thermodynamic state of
the system. For the satisfactory foundation of thermo-
dynamics, the value of n and the interpretation of the
x's, must, therefore, be left arbitrary.

The following definition is required:

(Dl, a) Given a physical system, and its approxi-
mate thermodynamic state, a thermodynamic vari-
able is said to be appropriate to this system in this
approximate state if, and only if, this variable enters
into the speci6cation of the approximate state.

(Dl, b) Given a physical system, and its approxi-
mate thermodynamic state 5, the maximum number
n &~ 2 of independent appropriate thermodynamic
variables are made the coordinates of an n-dimen-
sional phase space E(S). This is called the thermo

dynamic phase space of the system appropriate to the

given state 5.
(Dl, c) Given a physical system, which can be
modified within de6ned limits, the symbol E denotes
any one of the thermodynamic phase spaces which

may be appropriate to the system.

The phase space 8 must have the properties with
which phase spaces in other parts of physics (e.g. ,
classical mechanics) are usually endowed. However,
this informal remark is insufhcient for the present
purpose, since the precise topological properties of E
are required later on (e.g. , in Sec. 9). In order to com-
plete the definition (D1), some standard definitions
from elementary topology must be given (Alexandroff
and Hopf, 1935).

A metric is set up in a set I of points by associating
with every pair of points a,b&X (Q stands for "is
contained in") a non-negative number p(a, b) which has
the following properties (a, b, c+X):

(i) p(a, b)=0 if, and only if, a an.d b are the same
point (identity axiom);

(ii) p(a, b)= p(b, a) (symmetry axiom);
(iii) p(a, b)+p(b, c) &~ p(a, c) (triangle inequality).

Two metrics p, p in X are said to be eqlivalent if, for
any x&X and for each fixed a&X, as p(a, x) tends
to zero, so does p(a, x), and conversely. Let now X„
(r=1, 2, , n) consist of the set of all real numbers,
and a metric p„(a,b) (a,b&X„) which is equivalent
to

~
a b~ . For instance—, one may choose p„(a,b)

= ~log(a/b) ~. Each of the sets of points X, will serve
as a coordinate axis in our thermodynamic phase space,
and the choice of metric which has been allowed enables
one to "plot" observed quantities logarithmically, or
in other ways, provided only that the metric used is

equivalent to the usual distance function
~

a b~ . It may-
be noted, though this remark is not required later, that
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the topologies induced by the metric p„ in the set X,
is identical with the usual topology of the real line.

With any two sets of points X&, X2, one may as-
sociate the set of all pairs (xi,x2), xi&Xi& x2&X2. This
new set is called XiXX~.The formation of productst' is
an associative operation, so that there is no distinction
between (XiXX~)XX3 and X&X(X2XX~), which are
both denoted by X&XX2)&X3. The phase space E
consists of all u-tuples (xi,x2, x„), x,&X;.Hence

(Dl, d) F. is the set XiXX2X ~ ~ XX~.

One may de6ne a metric in E which satisfies the three
axioms above. For instance, one might define p(a, b)
=1 when ahab for all a,bi+F-. This is, however, an
"unnatural" metric, i.e., it is not equivalent to the
usual metric. There exist, however, an in6nity of natura]
metrics for F.. If a=—(xi, ,x ), b= (xi', —,x„'), and

p~&1, these are

1/y

1

No particular metric will be used in this paper, and all

results are independent of this choice, provided that
the metric chosen is equivalent to one of the above
metrics.

The preceding discussion, using (A1) and (D1),
leads to

Theorem I. Given a physical system which can be
modified within defined limits, then

(a) To every phase space F which may be appro-
priate to the system a natural metric may be assigned.

(b) Every equilibrium state of the system is repre-
sented by a point in an appropriate phase space E,
but not conversely.

The converse is excluded, because there will in general
be points of 8 which lie outside that range of the
variables x, for which this phase space is appropriate.

3. Changes Which are Adiabatic in a
Restricted Sense

The following definition is required:

(D2, i) Suppose a system is in equilibrium and
contains two part systems which are physically
separated from each other by an object O. If the
equilibrium conditions of the total system can be so

adjusted that, upon withdrawal of 0, the two part
systems attain a new equilibrium state, then 0 is
called a partitioN An enclosu. re is an object with

similar properties, except that it separates a system
inside the enclosure from a system outside it.

t These products should strictly speaking be called Cartesian
products, in order to distinguish them from the products intro-
duced in Sec. 9.

(ii) An idea/ partition is an object 0 with the fol-
lowing properties: (a) it is infinitely thin; (b) when
inserted into a system which is in equilibrium, it does
not change this equilibrium state; (c) a situation
exists such that a system which contains 0 and is in
equilibrium, changes to another equilibrium state
when 0 is removed.

An example is a wall separating two chemically reacting
species. Another example is provided by the semi-
permeable membrane. In theoretical developments it
is often convenient to hypothesize ideal partitions in
order to avoid extraneous eGects which the partition
might have on the ideal experiments under considera-
tion. Two partitions will be defined in this paper (in
(D2, iii) and (D4)). To compare the properties of ideal
partitions with those of real partitions, it suffices to
imagine real partitions to be arranged in an ordered
series, such that the properties of the members of the
series approach more and more closely the properties of
the particular ideal partition under discussion.

The definition of our first partition follows.

(D2, iii) An arbitrary physical system E shall be
placed inside an enclosure Ii, and shall be allowed
to attain an equilibrium state ~. The changes in long-
range forces (electric, magnetic, gravitational) acting
on Ii from the outside shall be kept negligible. Then
Ii is said to be adiabatic in the restricted sense, if it
has the following property. E remains in equilibrium
(whatever physical processes take place outside F),
unless there be mechanical changes produced in E
by movement of parts of F (or by transmission.
through the walls of F). If, as a result of such change,
a new equilibrium state c' is established, the process
linking e and e' is said to be adiabatic in the restricted
sense.

It follows that the mechanical operation of stirrers and
pistons from the outside is allowed in a restricted
adiabatic process. Any other change which is brought
about by a combination of mechanical and non-

mechanical methods, or by nonmechanical methods
alone, or which involves an exchange of mass, or a
change in the long-range forces, is not adiabatic in the
restricted sense.

One can build on (D2) in the following way.

(D3) A set of points in F, such that between any
two points of this set a restricted adiabatic change is

physically realizable, and no point that can be in
the set is excluded, is denoted by the syInbol o..

By Theorem (1), and (D2), a restricted adiabatic
change is associated with two points, e, e' in the same

(or in different) phase spaces. From those that are
associated with a pair of points in the same phase space,
the set n is constructed. The change has to be realizable

in one direction, i.e., from e to e', or from ~' to c. For
some pairs of points it may be realizable in both di-
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rections. The states which the system assumes during
the process need not have representative points in E
or in n, since some or all of these states can be non-
equilibrium states. Whether the definitions (D2), (D3)
are useful cannot be stated on the basis of (A1), since
all conceivable sets n may in fact contain no points at
all (such sets are said. to be "empty").

It has been seen that, given a system which can be
modified within defined limits, several distinct phase
spaces E~, E2, ~ may be required to represent the
equilibrium states of the system. It is also possible that
several distinct sets of points n exist in any one of these
phase spaces. Let them be denoted by n&, n2,
numbering consecutively as one passes from E& to E2,
from E2 to E3, etc. If a set of points n is referred to,
any one of the sets of points n„ is meant.

As an example, suppose that a phase space E con-
tains only three points A, 8, C, and that the given
system is in one of these, A say. Suppose, further, that
restricted adiabatic processes exist which take A into
8 and A into C, but that 8 and C cannot be linked in
this manner (though it may be possible to link 8 and
C by some other process). In virtue of (D3), E contains
two sets n. n~, which contains A and 8, and n2, which

contains A and C. However, this type of situation will

be excluded by Assumption (A2), which will now be
discussed.

4. A Restricted Statement of the First Law

Experimental studies on the dissipation of mechanical
work by friction led to a generalization which can be
introduced into the theory in the form of the following
assumption.

(A2, i) Restricted adiabatic processes exist, and if
two points can be linked to a third by such processes,
they can be linked to each other by such processes.

(ii) The mechanical work done in such processes is
independent of the intermediate states.

Assumption (A2, i) can be used to rule out the type of
situation envisaged at the end of Sec. 3, since it leads
to an immediate proof of the following theorem.

Theorem (2). Two nonempty sets of points n, n' in
8 are distinct if, and only if, no single restricted
adiabatic process can be found which links a point
of n with a point. of n'.

Assumption (A2, i) also shows that the concept of a set
of points n is useful, since there are such sets which are-
nonempty.

Consider (A2, ii) next. This is a restricted statement
of the first law of thermodynamics, in which the notion
of energy and temperature are still assumed unknown.
But it follows from this statement, for instance, that
the same amount of mechanical work, whether applied
by a stirrer or by another mechanical method, has to

be done in order to link two given equilibrium states of
a given Quid.

For the mechanical work, the following conventions
will be made. It will be reckoned positive if work is
done on the system, and negative if work is done by
the system in the sense that, if W(a, b) is the mechanical
work done on the system to bring it from a state a to a
state b, then the mechanical work to be done for the
reverse process, where possible, is W(b, a) = —W(u, b). If
the work done in a process is known to be independent
of the intermediate states of the system, a typical
increment will be denoted by bW. If, however, it must
be assumed to depend on the intermediate states (until
proved otherwise) then a typical increment will be
denoted by 6'W'.: If the set n contains curves and the
increments are assumed to become infinitely small, HV
is associated with an exact differential d8', and 5'8'
with a diGerential d 5", which is taken to be inexact,
until and unless the contrary is established. A similar
notation will be employed for other quantities. The
notation emphasizes that the existence of diBerentials
cannot be assumed when the set n is discussed,

Consider now two points n~, n2 of n, and let the
mechanical work done in linking them by a restricted
adiabatic process be BW, using (A2, ii) to justify the
notation. Suppose it is also possible to link these points
by a process which is not necessarily adiabatic in the
restricted sense. Such processes are brought about by
performing work which may be mechanical or non-
mechanical, or a combination of the two. Since (A2) no
longer applies to such processes, let b'8'„, denote the
mechanical part of the work done during this process.
This may now depend on the intermediate states.

Consider

Q (8'Q+O'W, )=W(1,2) (2)

is independent of intermediate states.

(v) O'Q is defined entirely in mechanical terms.

6'Q —=8W,—8'Wma

as a quantity which is associated with the second
process, and which may be an inexact diGerential, if
points lie infinitely close together in n. Hence,

Theorem (3). O'Q has the following properties.

(i) If a process is adiabatic in the restricted sense,
then O'Q=O for every increment of it for which it is
defined.

(ii) If 8'QW0 for some increment of the process, then
the process is not adiabatic in the restricted sense.

(iii) 8'Q is defined for any process linking two states
represented by points in n, and for no others.

(iv) For all processes specified under (iii), the sum
(integral)
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Any attempt to decide whether the converse of
Theorem 3 (i) is true or not leads on to the following
question:

(Ql) Does a physical process exist which links two
states of the set o., is not adiabatic in the restricted
sense, and has 8'Q=O for every increment of it for
which it is de6ned?

The assumptions made so far do not suffice to answer
this question. If the process envisaged under (Ql) exists,
then the converse of Theorem (3, i) and the converse
of Theorem (3, ii) are both false. If it does not exist,
these two converse results are true. In fact, a process
of this type exists (see Sec. 6).

5. Heat Exchange and Thermal Equilibrium

Consider again the enclosure F of (D2), which is
adiabatic in the restricted sense. During the experiment
to be described, however, no mechanical work shall be
transmitted through it, and the long-range forces
acting on Il must remain constant. Suppose the space
inside Ii is divided into two parts by an ideal partition
G whose full area is in intimate contact with an ideal
partition II, which is adiabatic in the restricted sense.
Let two physical systems E&, E&, whose sets of thermo-
dynamic variables are denoted by x&, x& respectively.
be in equilibrium in the two spaces. Assume that neither
system contains, or is enclosed by partitions (see
(D2, i)), apart from a container whose sole purpose is to
prevent an exchange of mass between the system and
its surroundings. The systems are otherwise arbitrary.
Denote the equilibrium (thermodynamic) states of Ei
and E2 by e& and e2, respectively. Upon withdrawing P,
x& and x2 may change until equilibrium is again estab-
lished. Let the 6nal states be denoted by e~' and e~'.

Let the same procedure be repeated with system E~
and a third system E3, the initial states being such that
the 6nal states are e&', e3' for E& and E3, respectively.
The partition G is supposed to be of such a nature that
if the procedure be repeated finally with systems E&
and E3, then it is possible to choose initial states such
that the 6nal states are ~2', e3' for E2 and E3, respec-
tively. The nature of G must now be specified further.
It will be required to be a diathermumoes partition,
whose de6nition follows.

(D4) A partition G is said to be diathermanous if it
is rigid and 6xed in position; it must not allow the
exchange of mass, electricity, or electromagnetic
radiation; given the initial thermodynamic states,
the 6nal thermodynamic states must, in all experi-
ments of the type considered, be uniquely determined
by single functional relationships of the form
f»(xi, xs) 0; if in=the foregoing threefold repeated
experiment these relations are

fis(xi, xs) =0, fss(xs, xs) =0, fsi(xs, xi) =0, (3a, b, c)

then any two of these relations shall imply the third.

This last restriction is sometimes called the zeroth law
of thermodynamics.

If a partition G satisfying (D4) exists, f the equilib-
rium which establishes itself across it may be supposed
to be the result of a change of a physical quantity, s
say, on either side of G. In anticipation of later results, )
one may speak of an "exchange" of s. The equilibrium
may be called "s equilibrium. " During the whole
experiment, the systems on either side of 6 cannot
exchange mechanical work, since 6 is rigid and fixed;
nor can they exchange mass, electricity, and electro-
magnetic radiation. Hence s, if it exists, must refer to
some other thermodynamic quantity. Indeed, there
may be a choice of thermodynamic quantities to which
it may refer: s, s', s",

It becomes desirable, therefore, to de6ne

(DS) Given the states ei, cs of Ei and Es respectively,
suppose two partitions G, G' exist which satisfy (D4),
and have the equilibrium conditions f»(xi,xs)=0,
f»'(xi, xs)=0, which refer to s equilibrium and s'

equilibrium, respectively. Then s and s' are said to
be independent if a pair of systems E&, E2 in states
e&, c2 exist such that the two conditions do not imply
each other.

It is clear that there is no need to distinguish between
s and s' if they are not independent. An example of such
dependent quantities is obtained if one takes s' to be
the name given to the quantity s'. Let there be m

independent quantities s: si, ss, , s (ris)0). If a
partition allows r&~2 independent quantities 2: to be
exchanged simultaneously, it is conceivable that they
may grader certain circlnzstaeces react on each other in
such a manner that only a single equilibrium condition
can be found, instead of the r diBerent equilibrium
conditions, which one would expect if each of the r
quantities behaved as if the other r—1 were absent.
We shall refer to this eGect as "interaction" between
variables. Hence

Theorem (4). If there is no interaction between the
independent thermodynamic quantities s&, 2'

when they are simultaneously exchanged, then each
partition. G, which satisfies (D4) allows the exchange
of only one of them.

For if r of the m diferent s's are exchanged, r equilib-
rium conditions of the form (3a) have to be fulfilled

by (DS), whereas a single condition is stipulated in

(D4).
It may be observed that it would be meaningless to

suppose that the exchange of another variable s aheuys
accompanies heat exchange, and always interacts with
it so as to produce a single equilibrium condition. Since
heat exchange is de6ned in terms of partitions such as

f, Owing to the ideal properties of this partition, the term
"exists" is to be understood as implying merely existence as /he
lsmst of partitions which can actually be constructed (see (D2)).

II See remarks following Theorem 6.
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G, its resolution into component phenomena would
require additional physical processes and definitions.

The theory has now ws branches in which one z is
allowed to the exclusion of the others; which one is
studied depends on the additional properties of the
quantities z„, provided there are such quantities, which
enable them to be separately distinguished and named.

In order to make progress, we require:

(A3, i) A partition G satisfying (D4) can be found,
such that the quantity z can be referred to as "heat
exchanged. "Elementary physiological statements "2
is warmer than 8, 8 can gain heat from 2" are as-
sumed familiar. (This assumption is completed at the
end of Part I).

One can now develop the thermal branch of the theory
in terms of ordinary language. Exchange of z (without
a suffix) shall correspond to an exchange of heat, and s
equilibrium to thermal equilibrium. By Theorem (4),
and the remarks following it, the possibility that other
z s, if they exist, are involved in this branch of the
theory can be neglected.

Transfer of heat has been introduced by (D4) and
(A3), and, therefore, is strictly defined for systems
which are free of all partitions. By (A1) the existence
of systems which contain real partitions (as contrasted
with ideal partitions) can be assumed. By regarding
such systems as a large number of homogeneous systems
in contact, it follows that these can also partake in heat
exchange. In the rest of this section, and also in the next
section, the detailed mature of the experiment considered
at the beginning of the section will not be involved,
so that the restriction to systems that are free of par-
titions, which this experiment requires, must not be
expected in this work. The only step needed to remove
it from the present and the following section, is to infer,
from the existence of heat exchange between systems
which are free of partitions, the existence of heat ex-
change between arbitrary systems, in the manner indi-
cated above. When the detailed form of Eq. (3) is
required, as in Sec. 7, however, the restriction to sys-
tems which are free of partitions appears again; it is
finally elucidated in Sec. 7.

It will be seen in Theorem (6) that heat can. be
measured quantitatively in terms of mechanical con-

cepts. For the moment, assuming some measure of heat
to exist, let us inquire what its properties must be.

Let a measure of the gain of heat be denoted by z,
the same symbol used for the actual name of the thermo-
dynamic variable involved. An increment of heat will
be denoted by 8'z, and by using the 5 notation (see Sec.
4). It will be taken as positive if "heat is gained" by
the system, and as negative if "heat is lost." The
meaning of such statements is assumed known by
(A3, i). Consider now any process (adiabatic in the
restricted sense, or not) which links two states repre-
sented by points in 0..The properties of z can be inferred

through (A3) from the experimental procedure laid
down at the beginning of this section. The properties
derivable from this procedure are:

Theorem (5). 5's has the following properties.

(i) If a process is adiabatic in the restricted sense,
then 8'z=0 for every increment of it; no exchange of
heat occurs.

(ii) If 8'z/0 for some increment of a process, then
the process is not adiabatic in the restricted sense;
exchange of heat occurs.

(iii) 8'z, when nonzero, can be defined for those
processes which involve exchange of heat; and in
addition, they must involve electric and electro-
magnetic effects and changes in externally applied
long-range forces to a negligible extent only.

Property (i) is due to the fact that there can be no
exchange of heat in the processes defined in (D2) (iii).
Any attempt to decide if the converse of Theorem
(5, i) is true leads one to the following question, which
can be answered only if additional assumptions are
made:

(Q2) Does a physical process exist which: links two
states of the set 0., is not adiabatic in the restricted
sense, involves electric and electromagnetic effects
and changes in externally applied long-range forces
to a negligible extent, and has 5'z=0 for every incre-
ment of it?

If the process envisaged under (Q2) exists, then the
converse of Theorem (5, i) and the converse of Theorem
(5, ii) are both false. If it does not exist, these two con-
verse results are true. In fact, depending on the nature
of the system under consideration, a process of the type
(Q2) may exist (see Sec. 6).

Consider now two states of a system, with the fol-
lowing properties:

(T1) They are represented by points in n.

(T2) They can be linked by a process E for which
electric, electromagnetic effects and changes in long-
range forces are negligible.

By (T1), Theorem (3) applies. For any process which
links the two states, Eq. (1) can be used, therefore, to
give a value to 6'Q for this process. By (T2), Theorem
(5) applies. Therefore, in principle, a value can be given
to 8's (as well as 5'Q) for any process P which links the
two states, although how precisely the magnitude of
8'z is to be determined must still be specified. In view
of the similarities between Theorems (3) and (5), the
question arises if 5'Q can be taken as a measure of 8's
for any process E which links two states with properties
(Ti) and (T2).

To deal with this question, it is desirable to introduce
the following assumption, which is based on experi-
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mental work connected with the mechanical equivalent
of heat.

(A3, ii) For a given process I' which links two states
with the properties (T1), (T2), 8'Q) 0 implies 8'z) 0
for this process, O'Q&0 implies 8'z(0 for this process,
and conversely.

Since the sign of 8's has been defined above, but riot
its numerical magnitude, (A3, ii) gives the closest cor-
relation between b'Q and b'z which at this stage can be
introduced into the theory. It is permissible, therefore,
to define the method of measuring 8's as satisfying the
following condition. If any two processes I', I'& and I'2

say, which link the same or diferent pairs of states
satisfying (T1) and (T2) are compared, then if (O'Q)i) (8'Q)& then also shall (8'z)i) (8'z)2, and conversely.
The same condition shall hold when the inequality
sign is reversed. This stipulation implies that, whatever
measure of 6's is actually adopted, an instrument which
measures b'Q can, by recalibration. , be converted into
one which measures 8's. Hence,

Theorem (6). For any process whichlinks two states
which are represented by points in n, 8'Q may be
taken as a measure of the heat gained by the system
(b'z), provided electric and electromagnetic effects,
and changes in externally applied long-range forces,
can be neglected.

An immediate consequence is the following. In the
experiment used to define a diathermanous partition
(see (D4)) the values of b'z have by (A3, i) opposite
signs for the two systems E&, E2. In fact, by Theorem 8,
below, the values are equal and opposite. In this sense,
one can speak of an exchange of heat. Suppose next that
a system is brought from a state u to a state b by a
process I', so that the system gains an amount of heat
5'z(a, b)=5'Q(a, b). For any inverse process p', which
starts with b and ends with a, the amount of heat gained

by the system is

b'z(b, a) =b'Q(b, a) = S'Q(a, b) = b'z—(a,b). —

This follows immediately from the change in sign of
every term in Eq. (1), Sec. 4, when the terminal states
are interchanged.

Another consequence of Theorem (6) is that the
amount of "heat gained, " as so far defined, can be
expressed entirely in mechanical terms. The reason is
that 52' has been defined up to now only for processes
linking two points which can also be linked by a process
that is adiabatic in a restricted sense.

Some comments are now required on the restrictions
imposed on G. (a) Since G does not allow the exchange

of mechanical work, it is not a partition which can be
used for processes which are adiabatic in the restricted
sense. But the requirement that 6' must not be a par-
tition which can be used in this way is clearly not a
sufEcient specification (as has sometimes been stated).

Any partition which allows the exchange of mechanical
work and of electricity only would satisfy this require-
ment, but could clearly not be used, instead of 6, in
the discussion of thermal equilibrium. (b) Again, if one
of the systems E&, E2 had a restricted adiabatic en-
closure as part of it, the initial states of these systems
would always coincide with their final states, and the
conditions (3) would not imply any restriction for the
variables concerned. (c) If the systems Ei, E2 were
allowed to contain restricted adiabatic partitions, then,
by suitably matching the partitions on both sides of
the diathermanous partition 6, one may conceivably
find pairs of physical systems Ey, E~ such that the
equilibrium condition is always expressed by more than
a single condition (3a). Partitions of this type are not
allowed, therefore, in E~ and E~. (d) If the partition
B, rather than 6, were fixed in position, then the par-
tition 6 might move, when H has been withdrawn, so
as to equalize the pressures in the two enclosures. In
this case, G would be connected with the idea of me-
chanical equilibrium, but not with thermal equilibrium.

Another comment concerns the introduction of the
zeroth law of thermodynamics into the defi, antioch of
diathermanous wall. This is essential, since this law
could not be inferred from the remainder of the Defini-
tion (D4). It enables one to define a function which will

be called an "empirical temperature" in the thermal
branch of the theory (see Sec. 7).

Mechanical
Thermal
Other

Diathermanous

No
Yes
No

Restricted
adiabatic

Ves
No
No

Adiabatic

Yes
No
Yes

6. Energy. Generalizations

By Theorems (3, iv) and (6) it is seen that heat gained
and mechanical work done add up to a constant for
processes which link two given states, and are otherwise
arbitrary within wide limits. It is convenient, therefore,
to regard mechanical work done and heat gained as
manifestations of a more fundamental quantity, to be
called energy. Thus, the convention that heat gained
shall be measured by the quantity 8'Q, defined in (1),
leads to

Theorem (7). Given two states represented by points
in n, the sum of mechanical and thermal energy
expended in any process which links them is fixed,
provided electric and electromagnetic e8ects, and
changes in externally applied long range forces, are
negligible.

Once this idea of energy is introduced, the knowledge
that there are other forms of energy is extra-thermo-
dynamical in origin, and may be assumed by (A1).

TABLE I. Allowed changes of energy by closed partitions
(all changes in long range forces assumed negligible).



FOUNDATIONS OF THERMODYNAMI CS

Consider now the first column of Table I. The 6rst
entry is "No" by (D4). The second entry is "Yes" by
(A3). The last entry is "No" by (D4) and by Theorem
(4). It follows, in fact, that a diathermanous partition
is one which allows the exchange of only thermal
energy, and no other. By (D2) the entries in the second
column are as shown. By (D2) and (D4) neither par-
tition allows the exchange of mass.

The generalization of the results of the preceding
sections requires

(D6, i) A closed system is one which can exchange
energy, but not mass, with its surroundings.

(ii) A physical system undergoes an adiabatic change
if, and only if, it does not exchange thermal energy.

(iii) An ideal adiabatic enclosure is an infinitely thin
enclosure which does not allow the exchange of
thermal energy or of mass.

This definition enables one to complete Table I. If no
energy other than mechanical and thermal energy
existed, an adiabatic enclosure and a restricted adiabatic
enclosure would be identical. To show that they are
diferent, one must use the fact that other forms of
energy exist. One must also note, for example, that an
electric current for the supply of a heating coil can be
taken through the walls of an adiabatic enclosure, but
not through the walls of an enclosure that is adiabatic
in the restricted sense. Note that (D6, ii) does not
require the terminal states to be equilibrium states, nor
does it imply that the system involved be closed.

It is now desirable to generalize Secs. 3 and 4 by
replacing "restricted adiabatic changes of physical
systems, " by "adiabatic changes of closed systems"
throughout. The idea that the system is closed is
already implied by the qualification that a change be
adiabatic in a restricted sense. In Sec. 3 the result of
this generalization is to replace the sets of points n by
a correspondingly defined set P.

(D7) Given a closed physical system, a set of points
in E, such that between any two points of this set an
adiabatic change is physically realizable, and no
point that can be in the set is excluded, is denoted
by the symbol P. Whether boundary points of P
belong to P is not laid down (this is decided in Part
III).

There may again be a number of distinct sets of points
P, P', P"

In Sec. 4 one can now introduce the stronger, experi-
mentally verified, assumption (A2, i) with the term
"restricted" omitted, and

(A2', ii) The energy supplied to a closed system in
an adiabatic process, linking two states of P, is inde-
pendent of the intermediate states,

The analog of Theorem (2), holds in consequence. In
Eq. (1) 8'Q is now explicitly taken to denote an incre-
ment of thermal energy, but 55', and 8'8"„can now
denote increments of any form of nonthermal energy
(excepting energy derivable from rest mass) given to
the system. This interpretation makes Theorem (3, v)
inapplicable, but the rest of this theorem holds exactly,
provided o. is replaced by P in (iii). The interpretation
of (iv) yields now, instead of Theorem (7),

Theorem (8). In order that two states of the set P
of thermodynamic states of a closed system may be
linked by a physical process, the same amount of
energy must be supplied, whatever the nature of the
process used.

The advantages over Theorem (7) are manifest. It is
the most general form of the first law of thermo-
dynamics for closed systems, and a special case of the
law of conservation of energy. The latter is, strictly
speaking, not part of equilibrium thermodynamics,
since it can also deal with nonequilibrium systems,
such as colliding particles. The 6rst law for open systems
is still under discussion (see, for instance, Tolhoek and
de Groot, 1952), and in any case it is outside the scope
of the present paper.

One can now deal with Question (Q1) of Sec. 4 (using
the interpretation of the symbols as given there). The
process envisaged in (Q1) is not adiabatic in the re-
stricted sense, and therefore involves the exchange of at
least one increment~( h'1V&0 of nonmechanical energy
by (D2). For every increment of the process 8'Q=O,
so that the mechanical work M expended is the same
as the mechanical work expended in the corresponding
restricted adiabatic process. Thus two states can be
linked: (a) by a restricted adiabatic process, using energy
M, and (b) by the process envisaged in (Q1), using
energy (Zb'E)+M. Hence, if the process exists, then,
by Theorem (8), Z5'X=0. Such processes exist since
this situation may be realized, for instance, by flashing
a pencil of light along a nonabsorbing path through
the system while the original process (a) is carried out.

The process envisaged in (Q2) exists if two points of
n can be linked, without change in the externally ap-
plied long range forces, by supplying-nonthermal, non-
electric, nonelectromagnetic energy to the system. In
order to ensure that the process is not adiabatic in the
restricted sense, some of the energy supplied must either
involve exchange of mass or exchange of nonmechanical
energy. Thus, if the allowed modifications of the system
include a change of mass, such processes exist.

For adiabatic processes the corresponding question is:
given a closed system, does a nonadiabatic process
exist, which links two points of P, and has 8'Q=O (no

II ~&t»egard to the 8 notation, it should be noted tbat tbe
increments 5'Q have points of 0, as end points, since 8'Q is not
otherwise dined. On the other hand, the end points of 5'Ã need
not lie in a.
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exchange of thermal energy) for every increments By
(D6) there are no such processes. Hence

Theorem (9). Consider a process linking two points
of P. It is (i) adiabatic if, and only if, 8'Q= 0 for every
increment of it; (ii) nonadiabatic if, and only if,
O'Q&0 for one increment of it.

Since only differences in thermal energy and total
energy have been used, the quantities involved are
defined except for an arbitrary additive constant. If a
standard state of the system, denoted by the sufFix "o"
is selected, the internal energy of a system in a state 1

may be de6ned by

Ui= Uo+Z2'5W = U2+W(0, 1), (4)

where (2) has been used. The internal energy is defined
here in terms of any form of nonthermal energy (ex-
cepting energy derivable from rest mass). But if one con-
fines attention to restricted adiabatic processes, then V
is determined in terms of mechanical quantities only.

Each distinct set of points P in the phase space E
has its own function U, since by (D7) no adiabatic
process can be realized which links points belonging
to different sets.

where C is an arbitrary function. By the zeroth law of

thermodynamics, one of the consequences (6) must be

(3c), which does not involve y2. Hence a function p
must exist, such that for C =f, y2 drops out of (6), and

(6) implies (3c). Hence functions ti, t2, pi, p2 must exist

such that

(7a)

Here pi(y2) is a nonzero function for, if it vanishes for

some case of thermal equilibrium, (3a) and (3b) become

equivalent to 2o2=$2(y2), froin which it is not possible

7'. The Empirical Temperature

Consider again the threefold repeated experiment of

(D4). Let w, be one of the variables included in the set
denoted by x; (j=1,2, 3), and let y, denote the remain-

ing set of variables. Hence one can use (3a) and (3b)
to determine functions pi and g2, such that

22'2 f1 (xl)y2) $2(r2)x2) ~

Even though it may not be possible to solve (3a) and

(3b) algebraically to yield the functions p&, g2 it will be

possible to determine them as two families of curves.

Equations (3a) and (3b) are then fully equivalent to

Eq. (5). All consequences of these equations must

therefore be of the form

to infer (3c). Hence, one can define

4 (~2) —A(r2)
t2(x2) —=

|t i(r2)

The functions t are called "empirical temperatures. "
Suppose that for two different sets of values xi'&x~"

of xi the empirical temperatures, on a certain scale,
turn out to be the same: ti(xi') = ti(xi"). Then, by (7a),
yi(xi', y2)=pi(xi", y2), and, therefore, if f„(xi',x2)=0,
then also fi2(x,",x2)=0. In such a case, the final
thermodynamic states of the two systems that have
come into equilibrium with each other as specified in
(D4) are not always N22iquety determined by f»(xi, x2)
=0, and this is in contradiction with (D4). It follows
that xi'Wxi" implies ti(xi') Wti(xi") if the variables y2
are kept constant. Similarly, if, for a given set of values
xi there are two empirical temperatures ti(xl) Wtl (xl)
then the 6nal thermodynamic states of the two systems
are again not uniquely determined by fi2(xi, x2) =0. It
follows that the function t;(x;) has no turning points or
finite lengths of zero slope, when regarded as a function
of one of the variables of the set x, the others being kept
constant. Functions of this type are called strictly in-
creasing (x)y implies f(x))f(y) for all x, y within the
range of definition), or strictly decreasing (x)y implies
f(*)&f(r)).

The temperature function t(x) is not uniquely deter-
mined by these considerations. For if t'(x) be any
strictly increasing or strictly decreasing function of its
argument, t'Lti(xi)j, t'I t2(x2)$ can be used instead of
ti(xi) and t2(x2), respectively. The curves t (x)= constant
are called the isotherms of a system in the thermo-
dynamic phase space E.

These considerations lead to

Theorem (10, i) For any two systems j, k that are
free of partitions, and can be in thermal equilibrium,
functions t, (x;), t2(x2) exist, such that if t;=t2, then
they are in thermal equilibrium, and conversely;

(ii) the functions t(x) are not uniquely defined, but
each function t(x) is a strictly increasing or a strictly
decreasing function of each of its arguments when the
others are kept fixed.

Theorem (10, i) was already stated in essentials by
Caratheodory (1909), but the publication of an ana-
lytical proof was neglected for many years (Miller,
1952).

The restriction to systems which are free of partitions
in Theorem (10) has its origin in the restrictions im-
posed on the experimental arrangement discussed in
Sec. 5. One can now ask to what extent this restriction
can be relaxed without affecting the essentials of the
experiment. From the point of view of this section, the
crucial requirement of the experiment is that the final
equilibrium state of the two bodies be uniquely deter-
mined by a single functional relationship, which has
now been interpreted as an equality between the
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empirical temperatures. It follows that nothing in the
argument which has taken us to the present point is
altered if the bodies contain partitions, provided only
that each system has a single empirical temperature.
In other words, the only type of homogeneity on which
one must insist is that the bodies be free of adiabatic
partitions and vacuous spaces. Theorem (10) will be
interpreted in this sense (see, for instance, (A4), below).

For each of the other m —1 branches of the theory,
if they exist, concepts analogous to internal energy,
thermal energy, and temperature can be similarly
defined. However, if several of the variables s~, s2,~, s are simultaneously present, considerable diK-
culties can then arise concerning the interpretation of
6'Q, as defined in Eq. (1).It is not worth pursuing these
speculations, and in all that follows attention is con-
fined to situations in which the e6ect of the remaining
tn —1 s s, if they exist, can be neglected. This ambiguity

may also be removed by restricting attention at the
outset to systems whose e thermodynamic variables
include n —1 arbitrarily variable external parameters,
plus one other coordinate which may later be identified
as the internal energy, the entropy, or some other
purely thermal variable. This was the procedure
adopted by Caratheodory (1909) by concentrating on
his eilfache Systeme.

It is now easy to show that the empirical temperature
must vary with at least one of the n thermodynamic
variables. For if the temperature t is a constant for the
specified, range of variation of all variables, then the
equation t=t(x)=constant expresses a relation be-
tween the variables, and. they are therefore not all
independ. ent. This contradicts our hypothesis. Suppose
next that the temperature depends only on the internal
energy U of Eq. (4). In this case let the system be
adiabatically enclosed. This does not restrict the other
thermodynamic variables (which determine 6'5'). Then
in the equation 5'Q=5U+6'W, O'Q must be zero for all
changes in the variables which determine 5'8'. But, by
hypothesis, none of these changes affect the empirical
temperature t, and therefore, by hypothesis, they do
not acct U. It follows that 6'lV =0 for aB such changes.
This means, by the conservation of energy, that there
is a relation among the n —1 supposedly independent
variables which determine 6'5'. This persists when the
adiabatic enclosure is removed, and contradicts our
assumption that all e variables are independent. Hence
from (ii)

Theorem (],0, iii). If the e independent variables of
a, system be xi (internal energy), x2, , x., then the
empirical temperature depends on at least one of the
variables x2, , x„.

There is a final question which has to be considered.
Given a physical system and its approximate thermo-
dynamic state, does the sum of all the sets of points P,
corresponding to the thermodynamic phase space E,

exhaust all the points of E which represent equilibrium
states) In other words:

(Q3) Is there a physical system which can take up
an equilibrium state that cannot be realized by
adiabatic methods P

Such a state, if it exists, is not linked to any of the
states represented in P by (D7), and processes leading
to this state, or from this state, must involve the
exchange of thermal energy with a heat reservoir.
There is nothing in the assumptions made so far which
would enable one to dispose of the possibility envisaged
in (Q3). It is necessary, therefore, when speaking about
the states represented in P, to describe them as adi-
abatically attainable equilibrium states (see, for example,
Theorems (14, iii). Question (Q3) is discussed again in
Sec. 12.

Consider now a device which, in attaining equilib-
rium with a physical system S, disturbs 5 only to a
negligible extent, and which measures nonthermal
quantities (e.g. , a mechanical or electrical variable)
when equilibrium has been attained. Suppose also that
the reading obtained from this device increases or
decreases as S gains (or loses) heat, provided only that
the device remains always in a state which lies within
its range of calibration. Such an arrangement is called
a thermometer. If it is regarded as system "E&," and
separated from an arbitrary (homogeneous) system
"Em" (in the sense of Sec. 5, above) by a diathermanous
partition, the condition for equilibrium f»(x&,x&)=0 is
equivalent to ti(xi) = tm(x&). The device, if it exists, can
be used, therefore, to set up an empirical temperature
scale.

Completing (A3), the obvious assumption is made
that

(A3, iii) thermometers exist!

Therefore, (A3) introduces the basic results of calorime-
try into the theory.

Any scale of empirical temperatures may be set up
in two alternative ways, typified by the following
example. One may take as the empirical temperature
indicated by a mercury-in-glass thermometer either the
length of the mercury thread or the length of the column
which is unoccupied by mercury. Thus, while the em-
pirical temperature is a strictly increasing or strictly
decreasing function of the thermodynamic variables
(Theorem (10, ii)), the direction in which it increases
is left unspecified. This introduces a first important
element of choice into the present developments:

(Cl) The empirical temperature scale may be chosen
so that heat tends to Qow, either from places of high
empirical temperatures to places of low empirical
temperatures, or else so that it Bows in the reverse
direction.

The present section might have been introduced
immediately after assumption (A3, i), but it has been
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held over for convenience of exposition. That empirical
temperatures can be discussed after the first law may
seem strange, and requires comment. The reason is that
the thermodynamic state of a system can in fact be
dehned satisfactorily in terms of: the external parame-
ters, the arbitrarily assumed value Ug for the internal
energy of a suitably chosen standard, state, and the
energy W(0, 1) required to bring the system adi-
abatically from the standard state into the state of
interest (see Eq. (4)). It may be necessary to evaluate
W(0, 1) by finding the energy required to bring the
system adiabatically from the state of interest into the
standard state. This result is due to Assumption (A2'),
and does not depend on the existence of a temperature
function. The existence of this function is an additional
property of thermal phenomena, introduced by As-

sumption (A3, i), and is not required for the formulation
of the erst law.

PART II. THE SECOND LAW

8. Quasi-Static Processes

The set P may, or may not, contain parts of curves.
In this section some implications of this possibilityg are
considered. .

In many cases the forces which act on the system of
interest so as to produce a change of state can be
characteristic, at least in part, of the device which
induces the change. Therefore, they cannot be used, in

general, to characterize the system of interest. This
applies also to the work done, J'd'W, as the thermo-

dynamic variables are changed. For, in this case too,
the forces exerted by the device which induces the
change, and the resistive forces exerted by the system of
interest, need not be equal. It is desirable, therefore, to
consider J'd W in the limit in which the time deriva-

tives of the thermodynamic variables tend to zero
(Caratheodory, 1909).We define, therefore,

(D8, i) A process is said to be quasi-static if, and

only if, it consists exclusively of a sequence of static
equilibrium states. A process is nonstatic if it is not
quasi-static.

(ii) A curve AB in a phase space is said to "repre-
sent" a physical process, if every one of the sequence
of states which constitutes the process is represented

by a point on AB, and conversely.

Since nonstatic processes involve nonequilibrium
situations, they cannot be represented in 8 or P in the
sense of (D8). Their representation requires a phase
space E', which has more than e dimensions and has
E as a subspace. This may not always be possible in

$ When curves ofP are mentioned in this or the following section,
one ought to add each time the phrase: if they exist. The same
remark applies to poiets of the interior of P, which are discussed
in Sec. 9. However, it is more convenient to omit this phrase, and,
instead, to point out here that this qualification is understood in
this section and the next.

practice. Thus, in the case of turbulent Row the number
of eRectively independent variables can become
intractably large. A curve C which "represents" a
nonstatic process linking equilibrium states, has the
following properties: (i) The terminal points of C are
in E; (ii) all points of C are in E'; (iii) a point of C is
not in E. To every point of C there now corresponds a
fully defined physical situation. This includes velocities
and accelerations, temperature and concentration
gradients, in the components of the system. One can
therefore de6ne the "state" of a system undergoing a
nonstatic process (for use in (D8 ii) and elsewhere) by

(D8, iii) The states of a system undergoing a non-
static process are in one-one correspondence with the
points in a suitably defined phase space (such as E').

Also,

(D8, iv) A physical system is said to undergo a
reversible process, if another process exists which
can force the identical system to pass through an
identical sequence of states in reverse time order.

This shows that the forward and backward part of a
nonstatic reversible process, if one exists, are repre-
sented by the same curve in E'.

It is to be noted that (i) involves the notion of
equilibrium states, but not of time, whereas (iv) in-
volves the notion of time, but not of equilibrium states.
The basic assumption about these processes is

(A4, i) The increment of nonthermal energy sup-
plied to a system of interest (assumed free of adi-
abatic partitions and vacuous spaces) in a quasi-
static change has the form

(9)

where the a's are "external parameters, " and arbi-
trarily variable within their specified limits of vari-
ation. The independent thermodynamic variables
can be taken to be the internal energy U, and the
Q—1 Qs.

(ii) Consider two states of static equilibrium,
~' (of the same physical system), which differ in-
finitesimally in the sense that they are represented
by position vectors r, r+dr in an appropriate phase
space. Then a physical process exists, represented
by +dr in this phase space, which enables one to
pass from e to e', and another process exists which
enables one to pass from e' to e.

A quasi-static method of supplying heat to (or ab-
stracting heat from) a system is to place it into contact
with a sequence of heat reservoirs whose temperatures
diRer from each other in6nitesimally. This method may
be limited by the nonavailability of temperatures, and
corresponding heat reservoirs, outside a certain range
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of temperatures (see Sec. 16). Such temperatures,
however, cannot be represented in P, because they are
not (adiabatically) attainable.

The concepts introduced by (DS) and (A4) can be

applied both to purely mechanical systems and to
purely thermodynamic systems, since these statements
contain no reference to the set of points P. Therefore,
they can also be applied to mechanical systems in which

generation of heat occurs. General results to be deduced
about these processes are valid, therefore, for both
mechanical and thermodynamic systems.

By (1), (4), and (9), the adiabatic condition 5'Q=O
takes the form

d'Q=—dU —Q p,day
—=Q X;d*;=0

t=2

for quasi-static adiabatic processes. Here x&, x2, . , x„
are the independent variables for the thermodynamic
phase space of interest, and the X's, are appropriate
functions of the x's. It is convenient to de6ne the e-
dimensional vectors

Here r denotes the position of the vector v in P relative
to a convenient origin. The equation for every incre-
ment of a quasi-static adiabatic process then takes the
form

d'Q=—v(r) dr=0, (12)

where the " " denotes the scalar product. A vector
v(r) is de6ned at all points of those curves in P which
represent quasi-static adiabatic processes.

The following results can be deduced.

Theorem (ll) Consider a system which is free of
adiabatic partitions and vacuous spaces.

Curves representing quasi static processe-s:

(i) Every quasi-static process is represented by a
curve in E, but not conversely.

(ii) Every curve in P represents a quasi-static
process.

(iii) For every increment of a quasi-static process
which is represented in P, an equation of the form
(9) is valid.

Reversibility:

(iv) Every quasi-static process is reversible, and
conversely.

(v) If a process is irreversible, then the system which
undergoes this process passes through a nonequilib-
rium state, and conversely,

Quasi-static adiabatic changes:

(vi) If a process is quasi-static adiabatic, then it is
represented by a curve in P, but not conversely.

(vii) If a process is quasi-static adiabatic, then, for
every increment along its representative curve in P,
d'Q satisfies an equation of the form (12), and
conversely.

Pro

(i) By (D1) and (DS) every quasi-static process is
represented by a curve in K The converse fails, since
a curve in 8 may lie outside the range of the variables
for which physical processes are possible (see Theorem
(lb)). (ii) A curve in P represents a sequence of equi-
librium states. A physical process corresponds to such a
sequence by (A4). The converse may fail. For some
equilibrium states which are represented in E may not
be included in the corresponding set P, as discussed in
connection with (Q3), Sec. 7. Therefore, there may be
quasi-static processes represented in E, but not in P.
(iii) holds as already discussed. Its converse is not
stated, but it follows from (ii) in the form: if an equa-
tion of the form (9) applies to a curve in P, then a
quasi-static process exists which corresponds to it.
The results (iv) and (v) follow from (DS) and (A4).
The two converse results hold for the following reason.
A nonstatic process involves nonequilibrium states,
and, therefore, nonvanishing velocities also, gradients
(of temperature, concentration, etc.), or the like. On
reversing the process, at least one of these quantities
must be reversed, so that the reverse process cannot
involve the same "states." It follows from (DS) that a
nonstatic process is irreversible. Hence a reversible
process is quasi-static, and the converse results hold.
(vi) supplements (ii) in an obvious manner. It follows
directly from (D7). The converse must be excluded for
the following reason. Consider a curve in P; then a
quasi-static process corresponds to it. Also any two
points on this curve can be linked by an adiabatic
process in virtue of (D7), and such a process can involve
nonequilibrium states. No assumption has been made
which would enable one to assert that a process cor-
responding to this curve exists which is at the same time
quasi-static and adiabatic. For such processes one must
turn to the result (vii). This follows from what has been
said here, and by Theorem (9).

As a simple example of these concepts for a purely
mechanical system, consider a rigid body which is
projected forward and backward between two perfect
springs. The process is nonstatic by (DS) and, therefore,
irreversible by Theorem (11, v). If the springs are im-
perfect, so that heat is dissipated, these conclusions
remain valid. The system is then no longer a purely
mechanical system.

The converse results of Theorems (11, iv) and (v)
amount to a proof that nonstatic processes are ir-
reversible. It must be emphasized that this result
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depends on the meaning given here (Dg, iii) to the
"states" constituting a nonstatic process. By including
velocities and gradients in the specification of a "state, "
and by requiring the same "states" to be passed through
in reverse time order for reversibility, it follows im-
mediately that nonstatic processes are irreversible.
However, these de6nitions are not the only possible
ones. A system of dednitions can be given, which is
equally reasonable, and allows for the existence of
nonstatic reversible processes. **But this would lead to
a use of technical terms which diverges considerably
from current usage in thernsodyeamics, and this possi-
bility will therefore not be pursued here.

9. De6nitions Required to Elucidate the
"Interior" of g

It is now desirable to add to (D1, c), some further
topological concepts. They will be introduced by
deanitions which are sufficiently general for our pur-

pose; utmost generality has not been regarded as
desirable.

(Dg, i) Given any set of points E, a subset X of E,
a metric p in E, and a real number 8&0, Ux(y, 8) is

set, of all points s, where y, s( X, such that

p(y, s)(g, Thus U~(y, 5)= Us(y, 6)AX.'tt' Ux(y, 6) is
called an X-neighborhood of the point y of X.
(ii) If with every point of a set of points X it is

possible to associate at least one X-neighborhood, X
is called a neighborhood space.

The particular set of points E defined in (D1, c), is a
product of metric spaces. It may be made into a neigh-
borhood space by the following device. Given any
Xi neighborhood of a point xi( Xi, any Xs neighbor-
hood of a point xs( Xs, etc. up to X„,regard theproduct
of these e neighborhoods as an 8 neighborhood of the
point (xi,xs, ,x„) of E. This convention will be made
for every set of e neighborhoods, each neighborhood

being defined on one of the coordinate axes. In this way
one can use freely the idea of neighborhood in E,
without introducing a metric in K

The following dehnitions are also required.

(Dip, i) The closure, X*, of a subset X of E is the
set of all points y of E such that any neighborhood
of y meets X. If X=X~, X is called a closed set.

(ii) The compliment C(X) of a subset X of E is the
set of all points of 8 which are not in X.
**The process in the above example may then become reversible

in the new sense. This would be in agreement with current usage
in mechanics, provided the springs are perfect; but it would be in
disagreement with current usage in thermodynamics. It seems
desirable, however, to have a nomenclature, such as the one
adopted here, which is applicable to both mechanical and thermal
phenomena.

jt If A and B be two sets of points, A A B is the set of all points
common to both A and B. It is called the product of A and B,
and must not be confused with the Cartesian product of (D1, d),
Sec. 2.

(iii) The frontier, F(X), of a subset X of E is the set
of all points which belong both to the closure of X
and to the closure of the compliment of X, i.e.,
P(X)=X*n C(X)*.
(iv) J(X) is the set of points x of X which have an
8 neighborhood which is also an X neighborhood.
These are the "internal" points of X. If every point
of X is an internal point, X is called an open set.

In order to illustrate these definitions, consider a finite number
of finite arc A in 8, which may or may not intersect. The term
"arc" shall include the end points of the arcs. Then A* coincides
with A. C(A) is the whole of E, except for the points on the arcs.
C(A)* is therefore E. Now F(A) =A*A C(A)*=AD E=A If we.
now form the difference between the set of points A and the set
of points which constitutes its frontier and belong to A,
A —A A F(A), the resulting set of points is empty (i.e., it contains
no points). This need not be so. Let Bp be the set of all points
within a circle of finite and nonzero radius, let B1 be any set of
points of F(Bp), let B2 be an isolated point elsewhere in E, and
let B=Bp+BI+B2.F(Bp) is clearly the set of points which con-
stitutes the circumference of the circle. One finds

B*=Bo+F (Ba)+Bs C(B)=E Bo Br B—2,
— —

C(B)*=E Bp+F(BO)—+B2,

so that F(B)=F(BO)+Bs. Note that the frontier oi B snd the
frontier of Bp need not coincide. Hence if one subtracts from B
the points of B which lie on the frontier of B one Gnds

B [Bo+B +B—7A fF(Bo)+B j=BO+Br+B2 Bi Bs=Bo—. —
These are just the "internal" points of B. The result J(B)=B
—B~ F(B) is true for all sets of points B.

A set y will be defined in (D11) as J(P). Therefore y is an open
set, and p'=pyF(y)

It is easy to see that every point of the set p has, for a
given &, a p neighborhood which can differ considerably
from the corresponding E neighborhood. In other words,
when one moves an inhnitesimally small distance away
from a point of p, one may leave p. For many thermo-
dynamic purposes, such points have rather special
properties, and, therefore, have to be considered sepa-
rately. Suppose, for instance, that P consists of all
points lying within, and on the boundary of, two circles
which have no points in common, and that it contains
also the points on a line joining the two circles without
passing through them. Then a set y, defined as J(p),
contains the points lying within the two circles. There-
fore, p consists of two separate regions, each region
being connected, f) but every point of y has ay neighbor-
hood which coincides with the corresponding E neigh-
borhood. In other words, one can pass an in6nitesimally
small distance away from any point of y, and still be in
p. When the set p is referred to in the sequel, it is under-
stood that any one of these open, connected subsets of
E is meant. The following definition is of a predomi-
nantly thermodynamic nature.

(Dl1, i) With any subset p of E, a subset y of p is
associated, and defined by y—=J(p).

ff A set X is connected ii it is impossible to find two closed non-
null subsets XI, X2 of X such that X=XI+X~, XIIX~=0.



FOUNDATIONS OF THERMOD YNAMI CS 377

(ii) A point y of y is called an'i point if, and only if,
every y neighborhood of it contains a point which is
adiabatically inaccessible from y.

(iii) A point y of y is called an u point if it is not an
i point.

The following elementary properties follow.

Theorem (12, i) Every point of y has, for a given h,

a y neighborhood which coincides with the cor-
responding E neighborhood.

(ii) A point of y of y is an a point if, and only if,
it has a y neighborhood, such that all points of this
neighborhood are adiabatically accessible from y;
(iii) Every point of y is either an a point or an i point;

(iv) An a point becomes an a or an i point, and an
i point remains an i point, if nonstatic processes are
disallowed.

The result (iv) is due to the fact that a state may be
adiabatically accessible from a given state either by a
quasi-static process or by a nonstatic process. Only the
former process can with certainty be described by a
PfaKan form (9), Sec. 8. Thus the theory of these forms
does not sufhce to identify i points. For, although every
p neighborhood of a point y of y may contain a point
which is adiabatically inaccessible from y by quasi-
static processes, this point may become adiabatically
accessible if nonstatic processes are used. This completes
the enumeration of the elementary properties of a
points and i points.

The definition of the set of points P is based on the
adiabatic linkage of equilibrium states, for which the
direction in which the process is possible is of no interest.
The introduction of u points and i points into the theory
makes it possible to discuss the direction in which
adiabatic processes can take place, since (D11) deals
with adiabatic accessibility of neighboring points from
a given point.

The following properties are less elementary.

Theorem (13) Consider a set of points y for a
physical system (assumed free of adiabatic partitions
and vacuous spaces), and suppose that for all quasi-
static adiabatic processes ZX,dx;=0, the X's are
6nite, continuous, and differentiable functions of the
x s.

(i) If all points of y are i points, then d'Q has an
integrating factor (Caratheodory's theorem). The
converse holds only for systems in which nonstatic
processes are disallowed.

(ii) If d'Q has no integrating factor, then y contains
an u point. The converse holds only for systems in
which nonstatic processes are disallowed.

(iii) If each i point of y, (if there is one), has a y
neighborhood, every point of which is again an i
point, if the X's are analytic functions of their

arguments, and if nonstatic processes are disallowed
for the system, then the points of y are ei.ther all
e points or all i points.

(i) Carathhodory's proof of his theorem requires only
trivial changes. The construction of cylinders, on which
it depends, may have to be applied to several regions,
since E may contain curves ABCD such that AB and
CD lie in y, while BC lies outside 7. The existence of
level surfaces, and hence of an integrating factor, can
then be inferred for both parts of p. Conversely, the
existence of an integrating factor, so that d'Q=MQ say,
implies the existence of level surfaces &=constant; now
a quasi-static adiabatic process connects only those
points which lie on the same level surface, since d'Q =0
for every increment of such a process. Thus, provided
nonstatic processes are disallowed, all points of p are
i points. The need for this restriction is also clear from
Theorem (12, iv). (ii) follows from (i). It is stated
separately to avoid the misconception that the absence
of an integrating factor implies necessarily that aQ'

points of y are a points (this error has appeared jn the
literature, see T. Ehrenfest-Afanassjewa, 1925). (iii)
Under the assumptions stated, the existence of an i
point y implies, by (i), the existence of an integrating
factor for the region of i points surrounding y. In this
region the 6e(e—1)(e—2) equations

fBX, BX„i (BX„BX„i
I+X,

I

L. ax„ax, ) E ax, ax„&

(BX„BX'I

+XI — I=O (p,or=1,2, ~) (13)
I ax, ax, )

must be satisfied, by the usual theory of differential
equations. Since the X's are analytic in their arguments,
it follows by analytic continuation that these conditions
must be satisfied throughout y. But Eq. (13) is suKcient
as well as necessary for the existence of an integrating
factor. Hence, using the converse of (i), all points of y
are i points. (iii) follows.

It follows from Theorem (13, iii) that, for a large
class of differential forms d'Q=ZX;dx;, al/ points of y
are either a points or i points when nonstatic processes
are disallowed. Though this result is not required in
the sequel, it may be of interest to link it with the
general theory of Pfaflian forms (Theorem {13, iv),
to follow). This result, which is also not used again in
this paper, will now be derived.

If the X;(xi, ,x„) are analytic, the vector v(r)
= (Xi, ,X„) of Eq. (12) can at the point (xi, ,x„)
be brought into one of the forms (k&e)

'
(1,0,x2,0,x4,0, ,xg i,0,0, ,0) (k odd) (14)

V=)
I (O,xi,O,x3,0, . ,xi, i,0,0, ,0) (k even) (15)

by choosing suitable curvilinear coordinates. Equations
(14) and (15) are called the canonical forms for v {see,
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for instance, Goursat, 1922; Schouten and van der
Kulk, 1949). k is called the class of the PfaKan form.
Consider arbitrary but fixed points I'= (Pl, ,P„),
Q = (ql, ,q ) of p, which it is desired to link, if possible,
by quasi-static adiabatic processes. For such processes

dxl+xldx3+S4OS5+ ' ' '+xk ldxk (k odd) (16)

.xldx2+x3dx4+ +xk ldxk (k even). (17)

In case (14), define intermediate points A, 8 by

(pl &2 p3 r4 p5 ' ' ' rk—1 pk 'qk+1 ' ' '
q )

(ql&2q3&4q5 ''' rk —lqkqk+1''' q ) ~

The straight line I'A lies in the hyperplane xi=pl,
x,=p.. . Sk ——pk, so that the process represented by
I'A is quasi-static adiabatic in virtue of Eq. (16). The
same argument applies to the straight line BQ. Along
AB

fO'Q= ql pl+~2(q—3 p3)+r4(—q5 p5)—
+. +rk 1(qk —pk),

and this can be made zero by appropriate choice of one
of the r's, provided only k ~&3. It follows that along AB

Oxl+f2OS3+r4OS5+ ' ' '+rk ldxk =0, (18)

so that this line too represents a quasi-static adiabatic
process.

123 the case of Zq. (15), define intermediate points

C, Dby
C= (r„P„r3,P4, r5, .)rk „Pk,qk~. . .q„),

(~lq2r3q4r5 ''' rk—lqkqk+1 '''
q ).

The previous argument is easily amended to apply to
the straight lines PC, CD, DQ. The r's must this time
be chosen to satisfy

rl(q2 —p2)+r3(q4 —p4)+ . .+rk—l(qk —pk) =0,

and this is always possible provided k&3. Then along
CD

rldx2+t'3OS4+ ' ' '+t'k ldxk 0 (19)

so that this line represents also a quasi-static adiabatic
process.

Thus, provided all intermediate points required lie
in y, all points of y are u points for PfaKan forms whose
class exceeds 2. If k=2, only two variables occur in
Eq. (15), and an integrating factor exists, so that all
points are i points. Thus,

Theorem (13, iv) If all the coefficients of a Pfaffian
form O'Q =ZX;dx; associated with quasi-static
changes are analytic, and the required intermediate
points lie in y, and if nonstatic processes are dis-
allowed, then (a) the points of y are either all 43

points or alii points. (b) If a point of y is an i point,
then d'Q has an integrating factor, and conversely.
In this case, all points of y are 3 points and the class

of the Pfaffian form is k= 1 or 2 (&n). (c) If a point
of y is an 43 point, then d'Q has no integrating factor,
and conversely. In this case, all points of y are a
points, and the class k of the Pfaffian form satis6es
3&k&m.

Part (b) of this result is stronger than Carathhodory's
Theorem (13, i), and part (c) also goes beyond
Carathhodory's theorem. Part (a) is based on slightly
different assumptions than Theorem (13, iii), although
it is very similar to it.

10. The Existence of Entropy and of
Abso1ute Temperature

The preceding two sections have prepared the ground
for the possibility of curves being contained in the set P.
These considerations may be anchored to physical facts
by introducing into the theory the following assumption,
which represents a generalization from experimental
Andi. ngs.

(AS) Consider any physical system which is free of
adiabatic partitions and vacuous spaces, and for
which the functions X;(xl, ,x„) (j=1, ,23) are
finite, continuous, and differentiable throughout y.
Then (i) y contains a curve satisfying d'Q=O;

(ii) All points of y are i points.

This is a modified form of the principle of Caratheodory.
It makes the considerations of Secs. 8 and 9 applicable
to thermodynamics, since the set p is now nonempty for
the important class of systems which are free of adi-
abatic partitions and vacuous spaces.

The following results can now be deduced.

Theorem (14) Consider a physical system which
satisfies (A1) to (A5).

(i) Every point of p lies on a curve representing a
quasi-static adiabatic process.

(ii) d'Q has an integrating factor and, in whatever
form it is chosen and whatever the empirical tem-
perature scale (t), it may be written in the form
d'Q=TdS, where T depends only on t, and S is
independent of t.

(iii) T, S, and OT/dt are either all nonpositive or all
non-negative for adiabatically attainable equilibrium
states which do not lie on the boundary of the set y.
They are thermodynamically undelned for other
states.

(i) Since every point of y has the property of Theorem
(12, i), it follows that the existence of a curve C in 7
implies the existence of an inlnity of curves in p. Since
vector v(r) of Eq. (12) is defined at every point of C,
it is delned, therefore, at all points of some y neighbor-
hood of every point of C, i.e., in an e-dimensional region
of y. In virtue of A5 (ii) and Theorem (13, i), Sec. 9, the
equation O'Q=ZX;dx; has therefore an integration
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factor ), which is finite and nonzero:

d'Q =Ada. (20)

From the ordinary theory of differential equations the
whole of & is filled, therefore, with hypersurfaces, for
each of which p is a constant. Every curve on such a
surface satis6es d'Q=O. Since d'Q=ZX;dx; is the
general expression for an increment of thermal energy
quasi-statically supplied to the system, each such curve
represents a quasi-static adiabatic process by Theorem
(11, vii). (ii) Since v(r) is de6ned throughout y, so is
d'Q=Xd@. By (10), Sec 8, .

Hence

Xg=1,
BUX= —p
Bxj

(j=2,3, ,~).

Bp

BU

Bp BU
-p; (j=2,3,",e).

Bxg Bxg

The 6rst of these equations shows that Bp/BU is not
zero and therefore that the equation g=g(U, ap, ,a~)
can be solved for U. Hence p can be used instead of U
as one of the independent thermodynamic variables of
the system. Similarly, by Theorem (10, iii), the em-

pirical temperature can be used instead of one of the
other variables, a2 say. With these explanations, one
can now show in the usual way (Born, 1921) that

d'Q =X(t,@,ap, ~ ~,a„)dp =X (tp,@,ap, ,a„)

Xexp, g(t)dt dQ.
tp

(21)

Here t0 is regarded as a standard empirical temperature,
and

g(t)—= (a logX/at)e, .p, " . (22)

This result is obtained by considering any two systems
which satisfy the requirements of (AS), and supposing
them to be in thermal equilibrium with each other, but
otherwise isolated. If C is an arbitrary constant, let

and S both have the sign of C, and so has

dT(t)
=«xpEg(t) l.

dt

This proves (iii). In fact dT/dt is never zero, since g(t)
is a 6nite function for points in y. Note that T is defined
only for states represented in p, i.e., for adiabatically
attainable equilibrium states which do not lie on the
frontier of P. A temperature and an entropy can, how-
ever, be associated with points on the frontier of y in
the following way. If f be a point of F(p), then
f=lim„„(g„), g„ in y; one can now defime T(f)
—=lim„„T(g„), S(f)—=lim„„S(g„), provided these
limits exist. This procedure can be followed w'ith

respect to every point on F(p), whether the point is
in P or not. Hence there may be points oltspde P with
which an absolute temperature can nonetheless be
associated. It will be seen that states at the absolute
zero of temperature are of this type.

The law for the addition of entropies can now be
deduced in the usual way (Born, 1921).

It is clear from Eq. (23) that there is a second
element of choice in the present development of thermo-
dynamics:

(C2) Entropies and absolute temperatures may be
both non-negative or both nonpositive (i.e., the
quantity C in Eq. (23) may be positive or negative).

In addition the choice (Cl), exists. In virtue of Theorem
(14, iii) this can now be reformulated:

(Cl') Given the sign of C in Eq. (23), the choice of
the empirical temperature scale may be such that
heat tends to Qow either from places of high absolute
temperature to places of low absolute temperature,
or else so that it Rows in the reverse direction.

In order to deduce further properties of entropy and
absolute temperature, the following de6nitions are
convenient:

T(t)=Cexp g(t)dt, —
-"go

a ~S—=— )(t @p, a, p, a)g (23)

be the definitions of absolute temperature and of

entropy, respectively. Then

d'Q= TdS, (24)

where T depends only on the empirical temperature
and 5 is independent of it. Since ) is finite and nonzero,
so is T. These results can be shown to be formally
independent of the choice of either integrating factor
P.) or empirical temperature scale (t) (Caratheodory,
1925). (iii) X will be chosen positive, which is always

possible, so that g(t) is real; it follows from (23) that T

(D12, i) A physical system is said to be in a definite
configuration if it can be characterized by a 6xed set
of values for the m —1 external parameters.

(ii) If an increment of thermal energy 8'Q, when

added to a system, produces a change 5T in absolute
temperature when the external parameters are kept
6xed (or are changed in a certain speci6ecl manner),
then the heat capacity of the system under these
conditions is defined as 5'Q/5T in the limit when

5 Q—4 (i.e., it is T(BS/BT), if the process is quasi-
static).

(iii) A variable x has a lower bound if a number xp

exists such that x cannot have a value x&xo, and for
any positive y x can have a value x(xp+g. xp is
called. -the lower bound of x. The upper bound is

de6Ded sjpqlgrly.
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TABLE II. Comparison of various temperature scales. C is the
quantity introduced in Eq. (23).

Heat tends to lio
from high to low

empirical tem-
peratures.

C&0 C &0

Heat tends to flow
from low to high

empirical tern-
peratures.

C)0 C(0
Tendency of heat Qow

in terms of absolute
temperatures.

If supply of heat produces
a quasi-static change,
the absolute tempera-
ture of the system (as-
sumed in fixed configu-
ration and free of
adiabatic partitions and
vacuous spaces):—

Set of corresponding
absolute temperatures
for specific temperature
scales.

Type

high~low low~high low-+high high-+low

increases decreases decreases increases

T
0
1

10

I

0-1—10

II

=1TR=-T
1
0.1
0

III

1TI=-
T

-0.1
0

IV

The main possibilities which arise from choices (C1),
(C2) are detailed in Theorem (15), and Table II.gj

Theorem (15) Consider the set of points 7 of a
system which satisfies (A1) to (A5). Result (i) is
independent of (C1) or (C1') and (C2).

(i) The absolute temperature is a strictly increasing
or strictly decreasing function of the empirical tem-
perature, and therefore also of each of the e thermo-
dynamic variables when the remaining e—1 are kept
fixed.

Results (ii) to (iv) depend on (C2), but not on (C1)
or (C1'), and the amendments in round brackets
apply if absolute temperature is nonpositive.

(ii) The temperatures and entropies of the adi-
abatically attainable equilibrium states of the system
have lower (upper) bounds To, So&~0(TO,SO~(0).

(iii) The system can exhibit negative (positive)
temperatures only if it is in a nonequilibrium state
)or if it is in an equilibrium state which is not adi-
abatically attainablej for which "temperature" is
defined nonthermodynamically.

(iv) For a fixed configuration the internal energy
increases (increases), when heat is supplied to the
system; if the heat is supplied quasi-statically, the
entropy increases (decreases).

Results (v) to (vii) depend on (C1'), but not on (C2),
and the amendments in brackets apply if heat Bows
from low to high absolute temperatures.

(v) %'hen heat is supplied to the system in a fixed
configuration so as to produce a quasi-static change,
the absolute temperature increases (decreases);

f$ A special system which can exhibit either positive or negative
"temperatures" has recently been considered by Ramsey (1956).
It may be seen by inspection of his Fig. 2 that this system exhibits
properties in agreement with those which are stated in theorem 15.
The choices (C1) and (C2) preferred in that paper correspond to a
system of Type IV according to the classification proposed in
Table II.

(vi) The quasi-static heat capacity T(BS/BT) of the
system in a fixed configuration is positive (negative);

(vii) If two parts of the system, when it is adi-
abatically isolated, attain thermal equilibrium quasi-
statically, then the change in entropy is non-negative
(nonpositive).

Result (viii) depends on both (C1) and (C2).

(viii) 85/BT is positive for a configuration of the
system if heat tends to Qow from higher to lower
absolute temperatures and absolute temperatures are
non-negative; 85/BT is negative if one of these two
conditions is not fulfilled; it is positive if neither of
these two conditions is fulfilled.

(i) follows from Theorem (10, ii) and the fact that
dT/dt is positive or negative. (ii) follows from Theorem
(14, iii), and (iii) follows from (ii). The clause in square
brackets must be added since the question (Q3) has
not been answered. An example of (ii) is provided by a
spin system which is partially aligned by a magnetic
field + ~V~, when the field is changed to a negative
value in a time which is short compared with the time
of relaxation of the system (Purcell and Pound, 1951).
In such cases the entropy can be estimated by statistical
mechanics, and hence the "temperature" defined as
O'Q/85. (iv) For a fixed configuration d'W=O, so that
by Eq. (10) d'Q=dU. Therefore, the internal energy
increases if heat is supplied. If the process is quasi-
static, d'Q= TdS and (iv) follows. (v) If thermal equi-
librium is established quasi-statically, a difference of
absolute temperature is removed by passage through
equilibrium states only, so that if heat Bows to regions
of lower absolute temperature, the temperature of that
region increases (external parameters being assumed
fixed); if heat flows to regions of higher absolute tem-
perature, the temperature of that region decreases. To
complete the proof of (v), it must still be shown that a
fixed configuration cannot lose or absorb a finite amount
of heat, and remain at constant temperature. This
would mean that the absolute temperature, and, there-
fore, the empirical temperature, is not a strictly in-
creasing or decreasing function of its arguments, in
contradiction with Theorem (10, ii). This theorem
applies because of the assumption made in (A5) that
the system is free of adiabatic partitions and vacuous
spaces. (vi) and (viii) are immediate consequences of
(v). (vii) If a small increment of heat is transferred
quasi-statically (as explained in Sec. 8) from a part
of the system which is at a higher absolute temperature
T2, to a part at a lower temperature T~, in the process
of reaching equilibrium, then the change of entropy is
85=8'Q(1/Ti —1/T2))0. If heat tends to flow to the
higher temperature, however, 85= 8'Q (1/T2 —1/Ti) (0.
(vii) follows. The possibility 85=0 must be allowed; it
applies when the two parts of the system are in equi-
librium in the first place.
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It is not claimed in Theorem (15, vii) that once the
choices (C1), (C2) have been made, the changes of
entropy in an adiabatically isolated system are always
non-negative (or nonpositive). This statement is, in
fact, true, but it depends on the properties of nonstatic
adiabatic processes about which nothing is said in (vii).
These processes therefore must be investigated next. It
will be seen in the following section (Theorem (16, iv))
that the restriction to quasi-static process in parts (iv)
and (vii) of the above theorem can, in fact, be removed.
The restriction to quasi-static processes in (v) and (vi)
remains, and is brieQy discussed at the end of the fol-
lowing section.

11. Nonstatic Processes

One can now deduce the following result.

Theorem (16) Consider a system which satisfies
(A1) to (A5). The following results are independent
of the choices (C1) and (C2).

(i) Every curve in p, for every increment of which
d5=0 and T is finite, represents a quasi-static adi-
abatic process, but not conversely.

(ii) Two hypersurfaces of constant entropy, which

belong to diferent values of the entropy, do not
intersect in y. Any curve in y which represents a
quasi-static adiabatic process lies in such a hyper-
surface.

(iii) Any two points of y which are on hypersurfaces
of diGerent constant entropies can be linked by an
adiabatic process; and such a process is nonstatic.

(iv) In nonstatic adiabatic processes, linking states of
unequal entropy, the entropy of the system aheays
either increases or decreases (this merely presumes a
choice (C1) and (C2) to have been made once and
for all).

(i) is a consequence of Theorem (9, i) and Eq. (24). The
converse must be excluded, since there may be quasi-
static adiabatic processes which are represented by
curves on the frontier of P. (ii) is self-evident, since all
complications which may arise from boundary proper-
ties of p are excluded when attention is restricted to y.
(iii) Any two points of y can be linked adiabatically by
the definition of P and y. If the two points lie on hyper-
surfaces which belong to different entropy values, the
process cannot be quasi-static adiabatic, since d'Q

=dS=O for every increment of such processes. Given
that it is adiabatic, it follows that it is therefore non-

static. (iv) Consider the entropy values 8 attainable by
arbitrary adiabatic processes, which commence at a
fixed state whose entropy is 50. Since any two points
of P (or y) can be adiabatically linked by definition, the
values of S comprise a continuous range of entropy
values. The value So is contained in it, since the quasi-
static adiabatic processes are contained among the

arbitrary adiabatic processes. If So is an internal point
of this interval, all neighboring values of the entropy
can be attained from the initial state. Since the external
parameters are also arbitrarily variable within y by
(A4, i), it follows that (A5, ii) would be violated.
Hence So is an end point of this range. Therefore the
entropy can either not decrease or not increase in
arbitrary adiabatic changes (provided, of course,
definite choices (C1) and (C2) have been made). By
varying the initial state in an arbitrary manner, it is
seen that, for the entropy to be a continuous function,
the sense in which it changes in nonstatic adiabatic
processes is the same for the whole of 7. (iv) follows.

Theorem (16, iv) leads immediately to the following
result.

Theorem (17) Consider a system which satisfies (A1)
to (AS), for which definite choices (C1) and (C2)
have been made, and which is adiabatically enclosed.
Then, either

(a) its entropy cannot decrease, and the adiabatically
inaccessible points in every y neighborhood of a given
point in y are the points of lower entropy (the "real"
world); or

(b) its entropy cannot increase, and the adiabatically
inaccessible points in every y neighborhood of a given
point in y are the points of greater entropy (the
"reversed" world).

It is clear from this result that the present develop-
ment of thermodynamics allows for a third choice
between alternatives:

(C3) Thermodynamic statements can be inade about
the "real" or the "reversed" world (in the sense of
Theorem (17)).

The three choices which have been enumerated will not
be eliminated by special assumptions, since the founda-
tions of thermodynamics may easily be developed for
any of the eight possibilities generated by the choices
(C1) to (C3). But in Part III attention will be confined
to statements about "regular" systems (see Sec. 16)
for which certain definite choices (C1) to (C3) have
been made.

Consider now the reversible adiabatic processes.

Theorem (1S) For a system which satisfies (A1) to
(As):
(i) any reversible adiabatic process links states of
equal entropy of the system.

(ii) the converse of (i) fails.

(i) Reversible adiabatic processes are quasi-static (by
Theorem (11, iv) and are represented, therefore, by
curves in P (Theorem (11,i)). Since they are reversible,
it follows from Theorem (17) that the entropy of the
whole system must remain constant during such
processes. (ii) The converse of (i) may be disproved



with the aid of the following example. Consider the
usual ideal piston and cylinder arrangement for e6ecting
adiabatic changes in an ideal gas. Suppose that the
motion is transmitted via a toothed wheel, and that the
moveable arm of a 6xed ratchet slides smoothly on the
teeth, which are rigid. The gas, cylinder, toothed wheel,
and ratchet form the system which is being studied, and
which is adiabatically enclosed. The piston is supposed
to move in a quasi-static manner. The ratchet arm falls
under gravity from one tooth to the next, thus dissi-

pating mechanical energy which is turned into heating
the gear wheel. The machine undergoes therefore a
nonstatic (and irreversible) process. Since the system is

free of adiabatic partitions, the heat generated will be
conducted to the gas, so that it no longer undergoes a
strictly adiabatic process. However, all the compli-
cations arising from the ratchet can be avoided by
noting that the time required for the ratchet arm to
fall from one tooth to the next is independent of the
mass of the arm. If this is made in6nitesimally small,

the ratchet can still operate, but the energy dissipation
becomes also very small. In the limit it actually
vanishes, but the process remains irreversible, because
of the purely mechanical constraint, imposed by the
ratchet, which prevents the wheel being turned back-
wards. One can think of other limiting situations of this

type. This establishes (ii).
It may be supposed that the arrangement considered

under (ii) is inadmissible because it represents a limiting

situation which cannot be realized. However, this

attitude would be inconsistent with that taken up in

the rest of this paper: ideal partitions have been de6ned,
and their existence has been postulated. But they can

be regarded as "existing" only in the sense that actual
partitions can be arranged in a series in such a way that
a particular property of an ideal partition may be ob-

tained by extrapolation to a limiting situation. The
arrangement considered under (ii) is of a similar type,
and is therefore admissible (see also footnote in Sec. 5).

It is now convenient to return to the de6nition of

heat capacity in general, (D12, ii), and its relation to the

qlasi-static heat capacity which enters into Theorem

(15, vi). For simplicity consider a system of type I (see

Table II).Suppose also that the only external parameter

is the volume V, and that this is kept constant while an

increment of heat d'Q() 0) is added to the system. For
this simple situation it follows from (D12) and d Q
&~TdS (Theorem (17a)) that the heat capacity at con-

stant volume satisfies

either (A) 0&C.&T(&S/&T).,
(B) T(BS/BT),(C,&0.

(A) holds if addition of an increment of heat raises the

temperature, and (B) if it lowers it. (A) holds with the

equality sign if the system undergoes a quasi-static

process. But, by Theorem (15, vi), (B) does not hold

for quasi-static processes. If situation (B) can arise for

systems of type I at all, therefore, it can arise only if
the system undergoes a nonstatic process.

The possibility of situation (B) for a system of type
I will be established by example. Consider a box which
contains a real gas in one part of it, separated from a
vacuous part by a partition. At all temperatures
T+0.(o)0) the partition is unstable and collapses.
Now add an increment d'Q of thermal energy to the
system when it is in equilibrium, with gas at tempera-
ture T, and the total volume fixed at V. The partition
collapses, the gas expands, and, when equilibrium re-
establishes itself, the temperature has fallen, so that
this is indeed a situation of type (B). The collapse of
the partition and the expansion of the gas makes the
process nonstatic.

The example just considered, and similar examples
of this type, show that rather unusual effects are, in
fact, avoided by restricting attention to systems which
are free of adiabatic partitions and vacuous spaces. It
will be recalled that these two restrictions are all that is
left of the original restriction to systems which are free
of partitions of all kinds, introduced in Sec. 5 (and
relaxed in. Sec. 7) in connection with diathermanous
partitions. Since these two restrictions are often satis-
fied for systems considered in thermodynamics, they
have been introduced into our general theory in as-
sumptions (A4) and (A5). This does not remove case
(B) from the physical situations to be considered in
this paper. As an example of case (B) which is not ruled
out by forbidding the use of adiabatic partitions, one
need only think of a partition with a sharp melting
point whose only purpose is to prevent an endothermic
reaction from occurring.

12. Survey of Physical Processes Used

Figure 1 shows some of the relationships established
in Theorems (11), (16), and (18). Additional relations
can be deduced from these theorems by the logical rule
that if A implies 8, then "not 8" implies "not A."
Some of these additional relations are also shown in
the 6gure.

It has been found impossible to prove certain converse
results. In particular, it has been seen that the develop-
ment of thermodynamics allows for the existence of the
following classes of processes:

(Pl) Nonadiabatic processes which include equi-
librium states that cannot be achieved with adiabatic
processes (see (Q3));
(P2) Irreversible adiabatic processes linking states
of equal entropy (see Theorem (18)).

It may be conjectured that the class (p1) is empty.
An argument which makes this conclusion plausible is
as follows. An equilibrium state represented by a point
A in E, which cannot be reached by adiabatic methods,
can be reached only by methods involving the exchange
of heat with a heat reservoir. If the reservoir has to
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P r oce s s r epr e s cut ed by curve in y'
for which dS - 0 and 7 i's finite

16

R ever sible
adxabat&c ~ 11 (xv)
process

Quasi - s tatic
adiabatic 11

proces s

- Process represented
{vii) by curve in P for

which d'Q - O.

Process
repr esented
by curve in g

P ocess represented
by curve inP

Adiabatic process
linking s tate s of
unequal entropy,

Adiabatic process
linking states of
equal entr opy

Quasi-static ~ Reversible
process Process

ll {iv}
lr r ever s ible

adiabatic
process

Non- static
adiabatic
process

Irreversible ~ ~ &on-static
Ui'

process- pl oces 8 Adiabatic
pr ocess

P r oce s s linking
states of equal

entr opy

Flo. 1. Classification of processes for a system which satisfies (Af} to (AS}.A~8 means that a process of type A is
always a process of type 8, but that the converse is not necessarily true. A 8 means that a process of type A is always
a process of type 8, and conversely. The numbers refer to the theorems used.

give up heat, an entirely equivalent eGect could be
produced by dissipating an equal amount of mechanical
energy, by friction with the surface which would other-
wise be put into contact with the reservoir. This as-
sumes that the system has a solid surface there. If it is
Quid, stirring should be an equivalent adiabatic pro-
cedure. Hence, if the reservoir has to give up heat, an
equivalent adiabatic procedure should be possible.
There is now no need to consider the case when the
reservoir has to subtract heat from the system. In
order to show thy, t A is in P, it suKces to show that an
adiabatic process exists which links A to a point in P.
Thus, assuming the usual choices in (C1) to (C3), if
2 is a "low entropy" state, one can act adiabatically
on the system, until a state is reached which is repre-
sented in P. If A is a "high entropy" state one can act
adiabatically on a state which is represented in P until
A is reached. Adiabatic linkage is established in either
case. This argument is probably physically sound, but
it cannot lay claim to mathematical rigor.

For most purposes it will be satisfactory to regard as
equivalent: (i) reversible adiabatic processes and adi-

abatic processes which link states of equal entropy;
and to regard also as equivalent: (ii) irreversible adi-
abatic processes and adiabatic processes which link

states of unequal entropy. However, this identi6cation
is permissible only if a proof has been given, or a con-
vention been made, which ensures that the set (P2) of
physical processes is empty.

There are three other classes of physical processes
which are of interest in connection with Part III, and
it is convenient to de6ne them here.

(P3) Nonadiabatic processes which include non-
equilibrium states that cannot be achieved with
adiabatic processes (see Sec. 15, below).

This corresponds to (P1), except that nonequilibrium
states are now considered instead of equilibrium states.

For reasons which will become obvious at the end of
this section, it is convenient to use a different symbol,
P(x), for the next class of processes.

P(x) Processes used to vary the temperature of a
given physical system, which has x as an external
parameter, in the following manner. For systems of
types I and IV (see Table II), heat reservoirs at and
above the initial temperature, T» say, of the system,
are assumed available. By using these reservoirs
quasi-statically, and effecting a quasi-static adi-
abatic change in x, the system can be brought into
a state having a different (lower) temperature, Ts
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say. A heat reservoir at this temperature may now

be constructed, and the temperature of the system
may be changed again by a repetition of this type of
procedure. Throughout these processes the other
external parameters must have fixed values (see
(D12, i)). For systems of types II and III, heat
reservoirs at, and below T1 are assumed available,
and changes of x are used to raise the temperature
of the system.

The last class of processes may be defined as follows:

(P4) Processes which can be used to achieve tem-
peratures that cannot be obtained by processes of the

type P(x) (see Sec. 16, below).

It is usual to assume that each of the classes (P1) to
(P4) of physical processes is empty, but this does not
follow from the assumptions which have been made
here.

13. CARNOT'S PRINCIPLE)[ ((

The results of Theorem (17) can be applied im-

mediately to a thermodynamic (Carnot) engine, which

in each cycle passes through the same sequence of

physically accessible states, withdraws an amount

Q, from an infinitely large heat reservoir of constant

temperature Ti, delivers an amount Qs to a similar

reservoir at temperature Ts(&Ti), and exchanges no

other heat with its surroundings. The condition that the

change in entropy per cycle be non-negative is

(25)

The bottom signs apply to the reversed cycle, and have
a meaning only if the engine can be reversed. The work

done per cycle is W=Qs —Qi, and the efliciency is
y—=W/Qi, so that Eq. (25) yields

Tl- T2 Tl- T2
y( (forward), y)~(reverse), (26)

Tl T1

Here we have assumed Theorem (17,a). If (17, b) holds,
one finds instead of (20)

T1 T2 T] T2
y)~(forward), y&~(reverse). (27)

T1 Tl

From Eqs. (26) and (27) one may conclude:

Theorem (19, a) If Theorem (17, a) holds, then a
Carnot engine has an efliciency (Tr—Ts)/T, if it is
reversible, and cannot be more eS.cient if it is ir-
reversible (real world).

~[ () In this section it is assumed for simplicity that all systems
considered are of type I (see Table II).

(b) If Theorem (17, b) holds, then a Carnot engine
has an efliciency (Ti—T&)/Ti if it is reversible, and
cannot be less efficient if it is irreversible ("reversed"
world).

This shows that for reversible Carnot engines
y= (2'i —Ts)/Tr both in the "real" and the "reversed"
world (Ruark, 1925).It also shows that the assumption,
which is often made, to the effect that an irreversible
engine must diBer in efficiency from a reversible one, is
incorrect, if the limiting cases of Theorem (18) are
allowed (see also Bridgman, 1943, p. 123). As an
example of the eGect of an irreversible process, consider
the working of a Carnot engine when there is a leakage
between the heat reservoirs (Ehrenfest-Afanassjewa,
1925). In the real world heat will leak from the hot to
the cold reservoir and decrease the efficiency of the
engine. In the reversed world, i.e., if Theorem (17, b)
holds, heat will leak from the cold to the hot reservoir,
and increase the eKciency of the engine.

The other formulations of the second law (due to
Lord Kelvin and to Clausius) can now be deduced and
discussed. The following de6nition is required.

(D13) Consider a situation in which bodies are
heated or cooled and in which mechanical work is
done. %'e de6ne as thernsodyeamicully eqli~aleet a
situation in which the system of interest goes through
the same sequence of absolute temperatures and the
same changes of energy and entropy, but in which
the following differences are introduced. (a) Heating
and cooling is done by establishing contact with
infinitely large heat reservoirs. (b) The source or
sink of mechanical work is arranged to be an ap-
propriate Carnot engine.

The argument may be formalized as follows:

II—5' denotes the withdrawal of heat from a heat
reservoir, and its conversion into mechanical work.

8'—II denotes the utilization of mechanical work to
heat a reservoir.

h —c denotes the transfer of heat from a body to one
cooler than itself.

c—h denotes the converse process.

A—&8 indicates that 8 is a necessary accompaniment
of A when a working Quid is taken through a cyclic
process con6ned to physically accessible states.

The required principles are

Theorem (20, i) If heat is converted into work by
taking a working Quid through a cyclic process then,
for the thermodynamically equivalent situation,
H W—+h—c (Kelvin s princi—ple, real world). Simi-
larly, for the reversed world, 8'—H—+c—h. Both
results hold for both worlds if all processes involved
are reversible.
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(ii) If heat is tra, nsferred, by taking a working Quid

through a cyclic process, from a body to one warmer
than itself, then, for the thermodynamically equiva-
lent situation, c h —+W—H—(Clausius's principle,
real world). Similarly, for the reversed world,
h —c~H —8". Both results hold for both worlds if
all processes involved are reversible.

(i) Regard the working Quid as the system of interest,
and confine attention to the thermodynamically equiva-
lent situation. Heat is withdrawn from a reservoir whose
entropy decreases by s say (s)0). We are interested
only in the change of entropy after a complete cycle,
so that the change in entropy of the w'orking Quid may
be neglected (it gains as much as it loses in a cycle).
All bodies taking part in the process are regarded as
adiabatically enclosed, and at the end of the cycle the
total change of entropy is non-negative. It follows that
there has been a gain 5 of entropy in a part of the
system, such that 5—s &~ 0, Hence 5&~ s& 0. The
processes represented by the change 8 of entropy are
thermodynamically equivalent to processes of type
h —c. Hence, for the thermodynamically equivalent
situation, H —W~h —c. If all processes are carried out
reversibly, it follows immediately that 8'—II~q —h.
For a reversed world entropy has a tendency to decrease,
and one must start with a process 8'—H in which
entropy increases. One can then infer the need for a
process c—h (in which entropy decreases). Clausius's

principle may be deduced by a similar argument, or it
may be deduced from Kelvin's principle as follows:
c—h is true by hypothesis, hence h —c is false, and "not
h —c" is true. By (i) H W~h c, so tha—t "not h ——c"—+

"not H —S'." This implies either W' —B or else that
there is no interchange of mechanical and thermal

energy. This last possibility is easily ruled out, and
Clausius's principle follows. Similarly, Kelvin's principle
can be deduced from Clausius's principle.

PART III. THE THIRD LAW

14. Deducible Properties of the Hypersurface
T=O

In passing from the properties of y to those of P this
question arises: are physical systems such that the
boundary points of p can be adiabatically linked with
the internal points of y. If so, such points are in P. In
addition other points may be in P, which are neither in

y nor on F(y). It is desirable, therefore, to trace, in the
first place, those consequences of the assumptions
already made, which throw light on the properties of
the boundary points of P.

Special interest attaches in this connection to those
points of E for which T=O, and a special symbol is
desirable for this set:

(D14) The set of all those points of an appropriate
phase space 8 of a system which correspond to states

at the absolute zero of temperature will be denoted
by b.

The set of points PA 8 represents those states of the
system which, though at the absolute zero of tempera-
ture, can nevertheless be adiabatically linked with the
rest of P. The study of this set is conveniently divided
into two parts by using the result P—J(P)=PA F(P);
this is the set of those points on the frontier of P which
belong to P. Thus one may write P=y+Pn F(P), so
that PA 5=yA 8+PA F(P)A 8. It is shown in Theorem
(21) that 7n 8=0.

Theorem (21) Consider a system which satisfied
(A1) to (A5). Then

(i) ~ns=o;
(ii) Every curve which lies in the set Pn 5 represents
a quasi-static adiabatic process;

(iii) If a point L of PAR has an E-neighborhood N,
such that all points of N for which T)0 (or T(0,
depending on the choice (C2)) lie in P, then all 8

neighborhoods of I.contain points which are not in P.

(iv) For every point in the set PA 8 one can. Qnd a
point of 5 which is infinitely close to it and does not
belong to P.

(i) If the temperature To, introduced in connection
with Theorem (15, ii), satisfied To)0, (or To(0,
depending on the choice (C2)), then the temperature
T=O has not been reached by adiabatic processes. It
follows that no part of the hypersurface T=0 lies in P.
If Tp=0, take the absolute temperature as one of the
thermodynamic coordinates in E. Since T is a strictly
increasing or a strictly decreasing function of all the
thermodynamic variables concerned, by Theorem
(10, ii) all points of the surface T=0 lie on the frontier
of P, and are, therefore, not a part of 7. Hence (i) holds
again. (ii) Every curve in P represents a quasi-static
process by Theorem (11, ii). It represents an adiabatic
process if d'Q=TdS=O for every increment of it
[Theorem (9, i)]. (iii) Consider an n-dimensional F-
neighborhood, E say, of a point I. for which T=O. 3T

is to be such that for every state represented in X, T~&O.
We shall show that if all points of N are in P, then one
has a contradiction with (AS). It will be assumed that
entropy is among the independent thermodynamic
variables. If all points of IV are in P, then N contains
parts of hyperplanes of constant entropy and some of
these meet the hypersurface T=O in P. Now pass from
any point in N which is also in y (i.e., not on the frontier
of P) along the hyperplane of constant entropy, on
which it lies by Theorem (14, i) until the hypersurface
T=0 is reached. Pass, on this hypersurface, to any of the
neighboring hyperplanes of constant entropy, and along
them back to the neighborhood of 1.By (ii) the proc-
esses represented by the curves traced in this manner
are quasi-static adiabatic, so that L, is an u point. Since
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this contradicts (AS), all 8 neighborhoods of I. contain
points which are not in P. This proves (iii). (iv) is a
restatement of this result in diferent terms. For con-
sider a system, which can be modified within certain
limits at the lowest attainable temperature compatible
with this specification. If the set PAR is empty, there
is nothing to be proved. If the set PA 8 is not empty,
consider any point I' of the set. Then, by the preceding
argument, in every 8 neighborhood of I' there are points
which do not belong to P, even if all points of this
neighborhood. belong to F(P).

One can conclude that for every physical system that
satisfies (A1) to (AS) every 5 neighborhood contains a
nonenumerable infinity of points representing states
which are not in P (i.e., they are not adiabatically
linked with states having T)0). However, the possi-
bility of a limited adiabatic attainability of the absolute
zero, at critical points or in critical regions of the sets
8, still exists. An example is furnished by any set of
points 6 which lie in Pal such that all points of G
belong to the same value of the entropy. This is still
compatible with the requirement that all points of p
are i points and adiabatically linked with each other.
The principle of the unattainability of the absolute
zero goes beyond the present conclusions, in requiring
that the set PA 8 be empty for all systems.

Consider a system which is free of adiabatic partitions
and vacuous spaces, and can exist within certain ranges
at temperatures T)0 (or T&0, depending on the
choice (C2)). Our deductions so far may then be ex-

pressed (somewhat loosely) as follows: The range of
absolute temperatures that can be mutually and adi-
abatically linked with each other have a lower bound
Tp)~0 (or upper bound Tp&~0, depending on the choice
(C2)). If Tp=0, Tp is usually not adiabatically linked
with temperatures for which TWO, but it nsay be so
liuked iu special cases. If Tp)0 (or Tp&0, depending
on the choice (C2)), no statement can be made about
the adiabatic linkage of To, though in this case the
absolute zero is certainly not adiabatically linked with

temperatures T/0. These conclusions are independent
of the direction in which heat tends to Bow or entropy
tends to change.

The discussion in this section has largely been con
fined to those points (if any) on the frontier of y which

lie on the hypersurface T=0. The reason is that curves
in this surface represent quasi-static adiabatic processes,
so that our assumptions can be applied to such curves.
However, as has been seen, one can even in this case
argue only in a hypothetical manner of the form: if a
certain point is in PA 8 then certain other properties
must follow. It is therefore seen that an additional
assumption is required, since there is no clear-cut
specification of which points of F(P) belong to P and
which do not belong to P.

A boundary point of y is a point which is the limit of
an infinite sequence of points of y. But, since the

number of experiments which can be performed is Gnite,
the introduction of this concept needs some justi6cation.
The explanation is that p is in fact usually of a very
simple nature geometrically and it is assumed by (AS)
that the variables can be continuously changed within
the given ranges of variation in y (though not, as has
been seen, in P). It is for this reason that curves can
occur in y, and that the question of boundary points
arises.

15. The Boundary of g: A Generalized
Unattainability Principle

A possible way of stating the conventional unat-
tainability principle is to assert "Pn 5=0 for all
systems, " so that the points for which T=O do not
belong to the points which are adiabatically linked with
temperatures T/0. Viewed in a more general way, the
unattainability principle becomes an assumption which
regulates the status of the boundary points of P. Now
the sets P have other boundary points —those, for
instance, at which changes in a state of aggregation
occur. On one side of such a boundary, and for an
appropriate range of variables, a set of points P;, must
be used, while on another side of the boundary, and for
an appropriate range of variables, a set of points
P~(k& j) may have to be used. Since the points on
this type of boundary are adiabatically attainable, and
should therefore belong to the set P;, or P~, or both,
it is no use stipulating that a/t boundary points of sets
P shall not belong to these sets: PA F(P) =0. We must

- formulate our requirement in a diferent manner.
For this purpose denote by yo the value of any

thermodynamic variable y which has the following
properties: (a) no equilibrium system exists which can
exhibit values y) yp (or, alternatively, no equilibrium
system exists which can exhibit the values y(yp); (b)
an equilibrium system exists which exhibits a nonzero
range of variation of y. (a) ensures that a point for which
y= yp cannot lie in the interior of P (i.e., in p), but only
on the frontier of P or else outside the closure of P.
This would enable one to take heat Qow as an example
of y, when yp would have the value y=0. Condition (b)
rules out this type of variable. However, entropy and
absolute temperature are two examples of physical
variables which fulfil both condition (a) and (b), since
they both have an upper or a lower bound (see Theorem
(14, iii)). Let g be the set of all points on the hyper-
surface y=yo of any variable y, in any phase space E.
Our assumption is

(A6, i) OAF(y)=0 for all variables y introduced
above, and all sets of points y. All boundary points
of y not excluded by this condition belong to P.
(-) F(~)=F(v)
The effect of (i) is to make the points on F(y), at

which phase changes occur, part of the appropriate sets
P. These points are linked, therefore, by adiabatic
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processes to the remaining points of P (for all sets y).
On the other hand, the surfaces for which y=yo lie
outside the sets p. Hence the value y=yo is (for all y)
not adiabatically linked with the rest of P (for all P).
The values yo, therefore, are not attainable by adi-
abatic processes from any point of P. This is a general
unattainability principle.

In order to complete (A6), it is convenient to examine
various unattainability principles for yo.

(Ul) (a) pA g=o for all systems.

(b) The value y=yo does not occur in the specifi-
cations of equilibrium states which are adiabatically
linked with other values of y.

(U2) The value y=yo does not occur in the specifi-
cations of attainable equilibrium states of systems.

(U3) The value y=yo does not occur in the specifi-
cations of states which are adiabatically linked with
other values of y.

(U4) The value y=yo does not occur in the specifi-
cations of attainable states of systems.

It is clear that (U1, a) and (U1, b) are equivalent, that
(U2) implies (Ul), and that (U4) implies (U3). Con-
versely (U1) implies (U2) for all conceivable yo only
if it can be established that an equilibrium state which
cannot be attained adiabatically from some point in
some set P can also not be attained by any nonadiabatic
method. Thus (U1) implies (U2), and (U1) and (U2)
are therefore equivalent, if the class (P1) of physical
processes (see Sec. 12) is empty. If it is not empty one
cannot state without further assumptions if (U1) implies

(U2) or not. Similarly, one can be sure that (U3) and
(U4) are equivalent only if the classes of processes (P1)
and (P3) are both empty. There is, however, a real
difference between the first two propositions (Ul) to
(U4), and the last two. For the last two exclude the
possibility of yo being attained even in a transient non-
equilibrium state, whereas the first two deal only with
the unattainability of yo in equilibrium situations.

The assumption (A6, i) implies unattainability
principles of the type (U1), and, if the class of processes
(Pl) is empty, it also implies unattainability principles
of type (U2). (U3) and (U4) are of a more general
nature, and cannot be inferred from (A6, i).

An obvious application of the generalized unattaina-
bility principle (A6, i) is provided by the absolute
temperature T, and is independent of the choices (C1)
to (C3). Let To be again the lower bound (or upper
bound, depending on the choice (C2)), of the adi-
abatically linked absolute temperatures. By Theorem
(15, ii), (A6, i), and Theorem (21, i), a critical tempera-
ture T, exists subject to 0&T,&TO, such that T, is not
an equilibrium temperature which is adiabatically
linked with the rest of P. The sets of points P, therefore,

do not contain points which represent states whose
temperatures satisfy 0& T& T,. The absolute zero of
temperature is therefore unattainable in the sense (U1).
This unattainability is thus seen to be implied by
(A6, i). Similarly the lower (or upper) bound of the
entropy is also (U1)-unattainable. This represents a
second application of the generalized unattainability
principle.

(A6, i) settles which boundary points of y belong to
P, but it does not settle completely which boundary
points of P belong to P. Thus, any completely isolated
point or arc of P is in F (P) but is not in F(y), so that
whether or not it is to be counted as part of p is not
decided by (i). This question is settled by (A6, ii)
which asserts that there are no such points because
F(p) and F(y) are in fact identical.

It has been seen that (Ul)-unattainability of a value
yo of a variable y does not enable one to infer any of the
stronger unattainability principles. To achieve this an
additional assumption is required, and will now be
stated.

(A6, iii) For the values yo of (A6, i) (U1)-unat-
tainability shall imply (U4)-unattainability.

This makes the lower (upper) bound of the absolute
temperature and of the entropy unattainable by all
processes.

16. Entroyy Proyerties Engendered by the
Unattainability Principle

In the preceding pages, it has been seen how only
minor verbal changes are necessitated by the various
choices (C1) to (C3), while the basic structure of
thermodynamics is independent of them. This section
concludesgg the exposition of the new approach, and it
will be used to illustrate incidentally how, if one is not
interested in these various choices, simple and correct
statements can be made which do not refer to these
choices at all. For this purpose one merely requires the
following definition:

(D1S, i) A physical system is said to be regular if it
satisfies (A1) to (A6) and is of type I (see Table II).

It follows that a regular system is free of adiabatic
partitions and vacuous spaces, exhibits in equilibrium
a single positive absolute temperature; in nonequi-
librium heat tends to Qow to relatively low absolute
temperatures, and, when isolated, its entropy cannot
decrease. Hence, from Theorem (15, viii). BS/8T is
positive for any state, represented by a point in y, of
any configuration of a regular system. This implies that
the entropy near T=O must be assumed finite for any
configuration of a regular system.

$'Il The Iast two sections of this paper are devoted to certain
comparisons with previous work.
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S(x,T) //'

FIG. 2 FIG. 3 Fro. 4 Fro. 5

FIGs. 2 and 3. Attainability of the absolute zero by processes of type E(x).
FIG. 4. Unattainability of the absolute zero by processes of type P(x).

Pro. 5. Possible entropy-temperature characteristics of a regular system near the absolute zero for conFigurations
generated by a variable external parameter x (x&&x2&x~ &x4).

The following definition is also helpful:

(D1S, ii) Let S(x,T) denote the entropy of a con-
figuration of a regular system as a function of
absolute temperature and an external parameter x,
the remaining external parameters being fixed. If

lim/S(xt, T)—S(xs,T))=0
2'-+0

for all functions S(x,T) of all systems, then Nermst's

heat theorem will be said to be valid.

Consider now (Figs. 2 to 4) possible entropy-tem-
perature curves for two con6gurations of a regular
system near T=O. It is assumed that all curves drawn,
and the space between them, lie in y, except for the
points for which T=O. It is also assumed that all
changes in external parameters can be carried out in a
quasi-static adiabatic manner.

We now wish to consider what properties of the
entropy are required by the (U2)-unattainability of the
absolute zero. For this purpose, let the ueattaieability
principle (A6) be forgotterl; and let configuration 2 in
Fig. 2 represent the state of a system with a magnetic
field (H) applied, configuration 1 without magnetic
field, all other external parameters being the same in
the two cases. If a heat reservoir at temperature T~ is
available, one can start at P, magnetize to reach Q,
cool by contact with the reservoir to reach R, and.
demagnetize to reach S.This provides a lower tempera-
ture T2 for a new heat reservoir. Now repeat the cycle
to reach T=O, via points T and U. Since contact with
heat reservoirs has taken place, this process is com-
patible with (U1)-unattainability, but violates (U2)-
unattainability, of the absolute zero (and, therefore,
it violates also (U4)-unattainability). This has been
achieved by using processes of the type P (H), defined
in Sec. 12.

What general conditions must be imposed on the
entropy in order to prevent the construction of processes

which could, in principle, be used to attain the absolute
zeros A partial answer may be formulated as follows:

Theorem (22) Consider the entropy-temperature
characteristics S(x,T) of a regular system near
T=O, x being one of the external parameters. Assume
(i) the only boundary points which need to be
considered are those for which T=O; (ii) only proc-
esses of type P(x) are allowed. Then the necessary
and sufficient condition that the absolute zero be
unattainable by this system is that S(x,O) be inde-
pendent of x (Nernst's heat theorem for the con-
6gurations of the system generated by the variable
x). Unattainability inay be understood here in either
of the senses (U2) and (U4).

By Theorem (15, viii), and by hypothesis (i) of the
theorem (BS/BT),)0 for T)0. For a small increment
b,x, and for a temperature T close to absolute zero we
can write

hS= S(x+hx, T) S—(x,0)= (BS/B—x)rex+ (BS/BT) T.

If (BS/Bx)r does not converge to zero as T~O, one can
find a pair of values (Ax, T) which reduce dS to zero.
By assumption (i), therefore, there exists a quasi-static
adiabatic process from the state (x+Ax, T) to the state
(x,0); the end point of this process is at the absolute
zero (Fig. 3). This situation must be ruled out for un-
attainability of the absolute zero. It is in fact excluded
if, and only if, (BS/Bx)r—+0 as T—+0. Since

S(x+~x,T) S(*,T)= (BS/Bx),~x-,
this implies, if hx is fixed and T tends to zero,

limt S(x+Ax,T)—S(x,T)j=0

for all values of x. Hence the system satis6es Nernst's
heat theorem for the configurations generated by al-
lowing the external parameter x to be variable. Analo-
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gous theorems hold if other choices are made in (C1)
to (C3).

By Theorem (15, i) a set of independent thermo-
dynamic variables is furnished by the absolute tempera-
ture and the e—1 external. parameters, so that one can
write

(28)

and this vanishes for quasi-static adiabatic processes.
Hence, provided BS/BTNO, which holds by Theorem
(15, viii), Sec. 10, a change hx in x produces a change
in the absolute temperature given by

(BS/Bx) r—AT= Ax
(Bs/BT),

(29)

for the configurations generated by varying one only
of the external parameters. Theorem (22) may be
interpreted, therefore, as implying that Ax must in-
crease beyond all bounds to produce a further lowering
of the temperature as the absolute zero is approached,
because (BS/8 )~x0 as T—&0.

The following simple calculation illustrates the un-
attainability of the absolute zero, by, varying an external
parameter only, for configurations which satisfy
Nernst's heat theorem. Suppose

S(x„T)=aT, S(x„T)=bT, a&b&0,

where S(x,o) has been taken as the zero of entropy. If
a reservoir at temperature T~ is available, change the
external parameter to reach configuration 2 (Fig. 4),
cool by contact with the reservoir, and then change the
external parameter to reach con6guration 1 by a quasi-
static adiabatic process. This makes a lower tempera-
ture T2 (b/a) Ti av——ailable to act as another reservoir.
After e cycles of this type a temperature

T„+i (b/a) "Ti——
is obtained. It is clear that the absolute zero cannot be
reached in a 6nite number of steps. Note also that the
flatter the entropy curve of the second con6guration,
the more efficient the process.

The additional assumptions (i) and (ii) in Theorem
(22) must now be considered. (i) is very useful in ruling
out a large variety of complicated entropy-temperature
characteristics. A simple example of a situation which
i,s ruled out by (i) is given in Fig. 5. The solid lines,
apart from the coordinate axis, belong to F(P) The.
system of interest can exist only for two non-overlapping
continuous ranges of the external parameter x, and
quasi-static adiabatic processes which link them cannot
be carried out. It follows that if (i) is omitted in
Theorem (22), but (ii) is retailed, then the condition
stated in the theorem is no longer necessary, though it
remains sufhcient to insure the unattainability of the
absolute zero. Thus, in spite of (U2)-unattainability
s(*„o)ws(x„o).

It may be supposed. that the separation between the
branches of P near the 7=0 axis can be interpreted as
due to disordered parts of the system which have been
frozen in, and therefore, cannot be linked by reversible
adiabatic processes, unless a certain minimum tempera-
ture is exceeded during the process. Such systems are,
of course, of considerable importance (Simon, 1927),
but this interpretation is inadmissible, unless new
conventions are made, since the preceding discussion
is con6ned to equilibrium states.

Assumption (ii) is required for definiteness: it speci-
fies the processes which may be used to reach the
absolute zero, and one then looks for conditions which
are necessary and sufficient to ensure that the absolute
zero cannot be attained with the aid of such processes.
Suppose now that assumption (ii) is dropped, so that
any process may be used to cool down the system, but
asslrnptiori, (i) is retained Th.en the condition. stated
in the theorem is still necessary to ensure unattaina-
bility; but it is not possible to show that it is also
sufFicient, unless an additional assumption is made. A
suitable assumption would be to presume the class (P4)
of physical processes (see Sec. 12) to be empty.

In the present axiomatic approach, therefore, one
arrives at the following result (which deviates from
the result conventionally stated):

Theorem (23, i) The principle of the (U4)-unattaina-
bility of the absolute zero does not imply Nernst's
heat theorem.

(ii) Nernst's heat theorem does not imply the (U4)-
unattainability of the absolute zero.

(i) is proved by using the system of Fig. 5 as example:
even though one may suppose that the absolute zero
cannot be attained by the system it violates Nernst's
heat theorem (in our formulation (D15, ii)). (ii) is
proved by observing that Nernst's heat theorem, by
itself, does not exclude the possibility of a process of
type (P4) being available to attain the absolute zero.

It may be thought desirable to investigate the conse-
quences which can be deduced if certain thermody-
namic relations are supposed to hold at the absolute
zero. An interesting attempt to do this is due to
Bennewitz (1926) but, as is shown here (Secs. 17, 18)
and elsewhere (Landsberg, 1954), it is unfortunately
difFicult to carry out such an investigation in a rigorous
manner. It may suffice, therefore, to summarize the
relations of implication which have been obtained in
this paper. These are shown in Fig. 6.

The remaining two sections deal briefly with some
previous work.

17. Comments on the Relation between the
Unattainability Principle and the Second Law

It is well known that Nernst (1912) attempted to
deduce the unattainability principle from the second
law. De6ning a perpetuum mobile of the second kind.
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FIG. 6. Relations among unattainability principles assuming the variable y in (A6), and in (Ul) to (U4),

to be the absolute temperature T, and yo to be T=O.

as an engine which can convert all the heat energy in
a reservoir (above the zero point energy) into me-
chanical work, he took the second law in this form:

(N) It is impossible to construct a perpetuum mobile
of the second kind.

He then considered a Carnot engine whose lower
isothermal is at T=O, and which therefore converts
all the heat energy of the high temperature reservoir
into mechanical work. Invoking (N), he then inferred
the unattainability principle. Einstein (1912) objected
to this argument on the grounds that the slightest
irreversibility would detach the low temperature
isothermal from T=O; and he pointed out that this
was an instance where the eGect of irreversibility was
of qualitative importance. He argued that the process
can therefore not be carried out in practice. Bennewitz
(1926, p. 172), on the other hand, remarked that no
part of Nernst's cycle contradicts the second law, and
that therefore the unattainability cannot be inferred.

It will be shown now that Bennewitz's comment is
unsound. It is well known (Theorem (19a)) that the
efFiciency of a Carnot engine (in the real world) satisfies

T1 ~2
(B)

~1

Bennewitz, in his comments, took this result as the
formulation of the second law. But (B) is not a satis-
factory formulation of the second law', since it allows
the possibility of a perpetuurn mobile of the second
kind (by chosing Ts=O). On the other hand, (N) leads
immediately to g&1 for any Carnot engine. Thus a
discussion of Nernst's view which takes Carnot engines
as basic, should start with a statement of the second
law which is not of the form (B), but of the form

~1 T2
(B') ~& &1

T$
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instead. Bennewitz's comment then becomes invalid.
This criticism is in broad agreement with remarks by
Simon (1951). In this paper other discussions of this
problem are also reviewed (see also Simon, 1930, 1937;
Epstein, 1936; Cross and Eckstone, 1942; Schottky,
1943).

In our terminology, the whole controversy is one as
to the status of certain boundary points of an open
set of points 7, any two of which can be linked by
adiabatic processes. In mathematics the status of such
points is often the subject of a separate assumption.
Nernst assumed that, in the absence of information to
the contrary, the points could be regarded as belonging
to the set. Einstein suggested that they should not
belong to the set. From the axiomatic point of view,
ho~ever, both views represent an additional postulate.
Once this is appreciated, it would seem just as satis-
factory to increase the number of postulates by intro-
ducing an unattainability principle immediately, in-
stead of following either of the two suggestions just
discussed. This view of Einstein s remarks as intro-
ducing a new postulate may be regarded as a develop-
ment of Simon's (1951) comment that Einstein's
argument does not seem to be directly connected with
Nernst's train of thought.

However, even if this view (that an additional
assumption enters as soon as boundary points are
considered) is adopted, one can still extract a useful
piece of information from the Nernst cycle. In the
simplest case this cycle can be represented in a two-
dimensional T-5 diagram. One can now argue as follows.
Suppose a contirieous portion of the axis T=O lies in
P, and that the points T)0 also lie in P (subject to
restrictions on the ranges of the variables). One can
then use the Nernst cycle to show that this contradicts
(N), and is therefore impossible. One arrives at pre-
cisely the conclusion stated in Sec. 14. Generalizing
these considerations to an e-dimensional phase space,
one obtains Theorem (20, iii). But it is to be emphasized
that (U4)-unattainability of the absolute zero is not
implied by this result. ***

Bennewitz (1926) considered the somewhat different
problem as to what thermodynamic relation must be
assumed to be valid at T=0, so that an unattainability
principle may be implied. He concluded that the
condition

(BU/BT)„= (BF/BT)„at T=O

is sufFicient, where U is the internal energy, Ii the free
energy of the system. This condition is equivalent to

—S=T(BS/BT)„at T=O. (30)

If, however, the processes P(x), Sec. 12, are used,
condition (30) is found to be insufhcient. This is easily
seen by considering Figs. 2 and 3 for the case S(0)=0.
Equation (30) is then satisfied, but the absolute zero

***Isolated points of the 7=0 axis may still lie in P.

can nevertheless be reached. Equation (30) is therefore
not sufficient to ensure (U2)-unattainability of the
absolute zero.

4b 4V—aT'=- —r~
3C V

(33)

so that (31) is fulfilled. By Eq. (32b), the curves of
constant entropy are as shown in Fig. 2, where con-
figuration 1 corresponds to V= V~, configuration 2 to
V= V2( V~. Thus, ordinary finite quasi-static adi-
abatic changes of volume would suffice to reach the
absolute zero, although (31) is fulfilled.

This shows that caution must be exercised when
arguing simply from (29). A fuller discussion must lead
to Theorem (22), or a similar result.

Another approach (Simon, 1937; Fowler and Gug-
genheim, 1939) considers processes P(x) as discussed
in Sec. 16. The assumptions made in this argument are
that entropy is a strictly increasing finite function of
the temperature for each configuration, and that any
two configurations of the system can at any temperature
be linked by quasi-static adiabatic processes. These
assumptions furnish for the present purpose, the
same logical foundation as that supplied by assump-
tions (A1) to (A5) of the present paper, together with
the special assumptions of Theorem (22). In fact this
theorem reproduces, in a modified form, the arguments
of these authors. Nonetheless, their conclusion that the
unattainability principle implies Nernst's theorem
divers from the conclusion arrived at in this paper,
(Theorem (23)).The reason is that, in accordance with
the axiomatic nature of the present approach, the two

18. Comments on the Relation between the
Unattainability Princiyle and Nernst's Theorem

To what extent does Nernst's theorem go beyond the
unattainability principle) This question has been
discussed by two different methods, which led to two
diGerent answers.

Bennewitz (1926) used equations such as (28) and
(29), and concluded that unattainability was ensured
by requiring

—AT—4 as T~O (for ail finite bx). (31)

This is not sufficient to ensure that two diferent
con6gurations must reach the same value of the entropy
as T—&0. It was concluded that Nernst's theorem goes
beyond the unattainability principle.

However, it can be shown by example that (31) is
not an adequate expression of the unattainability
principle. Consider a regular system whose only ex-
ternal parameter is the volume V, and whose free
energy is given by (a, b, c positive constants)

F= (a bT cT'*—)V, —S= (b+-,'cT'&)V. (32 a, b)

By Eqs. (29) and (32)
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special assumptions of Theorem (22) cannot be invoked
as general laws; indeed, regarded as general laws, they
are certainly wrong.
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