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I. INTRODUCTION

N the subject of annihilation of positrons in matter,
the annihilation process itself can be considered
to be well understood on the basis of quantum electro-
dynamics. The predictions of quantum electrodynamics
in regard to the properties of positronium have been
strikingly verified in dilute gases, where the positronium
atom can be treated as an isolated two-body system
with little interference from the other atoms of the
gas. The experiment of Deutsch and co-workers, which
established the radiative corrections in the fine struc-
ture splitting of the ground state of positronium, in
particular, has confirmed with impressive accuracy
the prediction of quantum electrodynamics. Such
experiments have given one considerable confidence
in the use of the annihilation process as a tool for
the investigation of the interaction of positrons with
matter under other circumstances. Surveys of the gen-
eral subject of positron annihilation have been given
by Deutsch! and by DeBenedetti and Corben.? Re-
cently the application of positron annihilation as an
experimental tool in solid state investigations has been
considerably developed, and we confine ourselves to
this topic.2*> Here the annihilation process is used to
investigate the low-energy electronic interactions which
precede the annihilation.

One of the great virtues of the use of positrons as a
tool is that a high-energy positron can penetrate into
the interior of the sample and then be stopped and
become a real member of the electronic system. This all
happens very fast, and from then on one need only
consider low-energy nonrelativistic interactions with
the surrounding matter. As discussed in more detail
later, the annihilation rate and the distribution in the
total momentum of the annihilation photons emitted
depend in many cases solely on the product of the
positron wave function times the wave function of the
electron being annihilated. Thus, experimental meas-
urements of the lifetime and momentum distribution
give useful information about the interior of the sample.
An important advantage of the positron annihilation is
that the information contained in the annihilation
process is transported to the observer in high-energy
gamma rays which escape without appreciable attenua-

* Work supported by the Office of Naval Research.

1 M. Deutsch, Progr. Nuclear Phys. 3, 131 (1953).

2S. DeBenedetti and Corben, Ann. Rev. Nuclear Sci. 4, 191

1954).

( 2a See also the recent reviews by S. DeBenedetti, by R. E. Bell,
and by M. Deutsch in “Beta- and Gamma-Ray Spectroscopy,”
K. Siegbahn, Editor (North-Holland Publishing Company,
Amsterdam, 1955), pp. 672, 680, and 689.

tion or scattering from reasonably small samples. This is
in contrast to, say, the method of soft x-ray emission,
where the surface properties of a solid under investiga-
tion may strongly influence the results. A drawback of
the positron method is that, as is characteristic in
atomic physics, the tool used for measuring the elec-
tronic structure itself changes the electronic structure.
The positron distorts the electron wave functions,
which must be corrected for in an interpretation of the
experimental data. Most of the experimental data
available so far have to do with the two-photon anni-
hilation rate which is the predominant mode of decay
in solids and liquids. Measurements of the three-photon
rate have established that the slow two-photon decay
which is observed in some insulators is associated with
positronium production. The three-photon rate does
not, however, give independent information since it is
proportional to the product of the fraction of positrons
which form positronium times the long lifetime, which
was first discovered by Bell and Graham. Both of
these factors can be determined from the lifetime meas-
urements alone. The three-photon annihilation experi-
ments have been very valuable in clarifying the nature
of the 7 component, and they will no doubt continue
to be of great practical value as an independent de-
termination of the parameters describing the two-
photon annihilation. In this review, however, we limit
the discussion to the two-photon mode of decay, since
it in principle contains all the information so far ob-
tained from the physical systems. In particular we
discuss the two-photon lifetime and angular correlation.

Each individual interaction of an electron or positron
with the radiation field can create only one photon.
The annihilation process must proceed, therefore, by an
intermediate state in which the original positron-
electron pair is still present; in addition, one photon
has been created. The photon has a momentum of the
order of mc¢, where m is the mass of the electron and ¢
the velocity of light. In the intermediate state, either
the electron or the positron must be recoiling with
approximately this same momentum. If the initial
momentum of the particle is small compared to its
change in momentum, as is the case with the slow elec-
trons and positrons in which we shall be interested, the
matrix element for the transition is to a good approxima-
tion independent of the initial momentum. The same
holds for the transition from the intermediate to the
final state, where the recoiling particle annihilates with
the other member of the pair and emits the second
photon. Therefore, the part of the second-order Hamil-

3R. E. Bell and R. L. Graham, Phys. Rev. 90, 644 (1953).
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tonian operator that produces a two-photon final state
of total momentum 7k is proportional to

Z Z dklbk25k1+k2.k, (1)

k) ks

where ak; and bk, are plane wave annihilation operators
for the electron and positron, respectively. The corre-
sponding point annihilation operators ¢(x1) and ¥ (xs)
can be introduced by means of the relations

1
aky=— fd3x1e—ik1"1ga(xl),
VYV

1
= f a5 (x3),

where V is the volume of quantization. Substituting
into (i) and simplifying, one obtains

f doxe-x o (X (). (i)

Particularly simple special cases are (1) the system
consists initially of only one electron-positron pair and
(2) the initial wave function of a many-electron problem
is a Slater determinant of orthonormal one-electron
wave functions. In the first case the annihilation opera-
tors in (ii) simply become replaced by the Schrodinger
wave function for the pair, evaluated for equal electron
and positron coordinates. In the second case, application
of (ii) to the Slater determinant yields as many terms
as there are electrons. Each term is a Slater determinant
of next lower degree and is multiplied by a numerical
factor formally identical to (ii). In each of these factors
the annihilators in (ii) are replaced by the “wave-
function product,” ¢(x)y(x), where now the functions
signify electron and positron wave functions, evaluated
at the same point. Thus, in case (2) the momentum
distribution of the two-photon states arising from the
annihilation of an electron-positron pair is obtained
by squaring the absolute value of the Fourier transform
of the “wave-function product.”

The total annihilation rate is easily obtained by tak-
ing the matrix element of (ii) between the initial and
final states, squaring the absolute value, and summing
over all final states of the matter system as well as
over all values of k. The result is proportional to the
expectation value, over the initial state, of the operator

[este@et)- wrepe. G
(iii) is simply the electron density operator at the
position of the positron, averaged over the positron
position. The proportionality constant can be estab-
lished from the ground state of positronium which
serves as a convenient reference case. There the electron
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density at the positron is 1/8wa¢® while the spin-
averaged annihilation rate as shown in the appendix,
is 2.01X10° sec™

II. IONIC CRYSTALS
A. Nonformation of Positronium

Positron annihilation studies have so far been carried
out on a limited number of different ionic crystals. Bell
and Graham? found that crystals of a-quartz and NaCl
exhibit only prompt positron decay, with lifetimes of
(2.0£0.3) X107 sec and (2.3£0.3)X 10 sec, re-
spectively. This behavior is in contrast to the almost
universal presence in gases! and the widespread occur-
rence in insulating solids and liquids® of an additional
relatively slow mode of decay. It is generally accepted
that this slow mode of decay is due to the formation of
positronium, which is probably best regarded as a
natural and common fate of a positron being slowed
down. If it is energetically possible for a positron
passing through an insulator to capture an electron, it
will generally do so, yielding a positronium atom more
or less isolated and ‘“‘protected” from the electrons
bound in the surrounding atoms.! The situation in
metals is much different, of course, and will be dealt
with in the next section. In metals the conduction
electrons are free to interfere with any positronium
atom which might be formed, and can either strongly
modify the positronium or prevent its independent
existence altogether. In insulators, however, posi-
tronjum formation seems to be a normal occurrence.
The ionic crystals evidently comprise a special class
in which the formation of a positronium atom, stable
with respect to subsequent dissociation, is energetically
not permitted.

The energetics of positronium formation in gases
were first discussed by Ore® and have been reviewed by
Deutsch.! Ore’s analysis can be applied, with very little
modification, to positronium formation in solids. In
Fig. 1(a) is shown an “Ore diagram” for an ionic crystal,
where for the moment the coulomb interaction energy
between the positron and the ions is not taken into
account. The left-hand portion shows the possible
initial states of the system and is shaded below V3, the
bottom of the conduction band. Positronium formation
by positrons of energy greater than V¥ can be ignored.
A positronium atom thus formed will break up in sub-
sequent collisions, resulting in a free positron of lower
energy and a free electron—(the latter now in the con-
duction band).®:7 The possible final states available to

4 The formation of positronium in condensed materials has been
discussed by P. R. Wallace [Phys. Rev. 100, 738 (1955)].

& A. Ore, Univ. Bergen Arbok, No. 9 (1949).

6 In the present analysis the excitation potential, Vi, plays a
different role than that discussed in reference 1. There, in the
case of gases, it represents a localized excited state which has the
secondary role of competing with electron capture. It does not
represent a state which can result from positronium break up,
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FiG. 1. The Ore diagram for (a) no energy shift (b) energy shift.
The energy shift destroys the Ore gap and prevents positronium
formation.

the system after the capture of an electron by a positron
are shown by the shaded region of the right-hand portion
of Fig. 1(a). Because of the requirement of energy
conservation, the capture process can only take place
if the two shaded regions overlap, forming the “Ore
gap.” The condition that there be an Ore gap is simply
V1> Vi—ry/2, where ry/2 is the positronium binding
energy of one-half rydberg, and V; is the ionization
potential (that is, the energy required to take an elec-
tron from the top of the valence band and remove it
from the crystal).

Thus we see that the ionic crystals, where the bottom
of the conduction band is below the ionization potential
(V1i<Vs), are on this account already somewhat un-
favorable for positronium formation. This general
feature is a result of the ordering of the ions in a regular
lattice and disappears when sufficient disorder is intro-
duced to destroy the conduction band. Then the Ore
diagram should be drawn from V; as the reference level.
The ionic crystals are also quite different in this respect
from the molecular crystals, where there is in general no
electron energy band not already filled which is sig-
nificantly below the ionization potential. This type of
crystal is thus in the same category as the gases, where
the Ore diagram is based on V; as the reference level,
ensuring positronium formation, or at least ensuring
the existence of the Ore gap. In gases the other factors
discussed below are also favorable.

In the ionic crystals there is an additional considera-
tion based on the energetics which must be introduced
into the Ore analysis, and which may also operate
effectively against positronium formation. This is illus-
trated in Fig. 1(b) and has to do with the lowest non-
positronium state of the positron in the system. Let Ep

and is therefore not used as the reference level in drawing the
Ore diagram. . . )

7 The breakup of the fast positronium atoms has been discussed
by J. A. Wheeler, Ann. N. Y. Acad. Sci. 48, 219 (1946).

RICHARD A. FERRELL

be the positron binding energy, i.e. the energy required
to take a positron out of this state and remove it from
the crystal. Then if positrons of energy greater than
Vi—Ep capture electrons the resulting positronium
atoms can break up again. The net result is to slow
down the positrons by excitation of electrons into the
conduction band. Thus this transitory formation of
positronium can be ignored and the only lasting posi-
tronium formation comes from positron energies less
than V1— Ep. The effect of binding of positronium to
the crystal is not shown in Fig. 1(b) but must also be
included. The criterion for the Ore gap must therefore
be modified to read V1—Ep>V;—ry/2— Ep or

(Vi—Vy)+Ep—Ep<ry/2, 1)

where Ep is the binding energy of positronium atoms to
the crystal. In analogy with general usage,® by which
the quantity V;—7V; is called the “electron affinity,”
we shall call Ep and Ep the “positron affinity’” and the
“positronium affinity’” of the crystal, respectively. The
condition that there be positronium formation, or at
least that there exist an Ore gap, is therefore simply
that the sum of the electron and positron affinities
minus the positronium affinity shall be less than the
positron binding energy of 6.78 ev. Thus we see that
the affinity of the crystal for positrons works equally as
effectively as the affinity for electrons against posi-
tronium formation, while affinity of the crystal for
positronium works in favor of positronium formation.
Before proceeding to discuss the affinities in more
detail, it should be mentioned that there is in general
an additional mechanism which operates against
positronium formation. This is the depletion of the Ore
gap by fast moderation of the positrons which happen
to fall into it. Whenever there are excited states of the
system below the reference level for the Ore diagram,
the positrons can lose energy and leave the gap before
capturing electrons.® This effect can be produced in the
case of gases by introducing a relatively small concen-
tration of a polyatomic gas. Since the latter has gener-
ally a large number of low-lying vibrational states, the
positrons lose energy much more rapidly than otherwise.
This results in a decrease, as has been observed by
Dulit ef al.,? in the percentage of positronium formation.
In the case of the ionic crystals the positrons may be
removed from the Ore gap by excitation of excitons,
whose energies lie generally one or two electron volts
below the conduction band,® and by excitation of
phonons in the optical band. It is conceivable that in
some cases this effect may so severely deplete the Ore
gap that, although Inequality (1) may be satisfied,
there is not enough positronium formation left to be

8N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Clarendon Press, Oxford, 1940), p. 73.

? Dulit, Gittelman, and Deutsch, Bull. Am. Phys. Soc. Ser. II,
1, 69 (1956).

W, Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), Chap. XII.



THEORY OF POSITRON ANNIHILATION

detected experimentally. This does not seem likely,
however, since requiring the depletion effect to pre-
dominate puts rather heavy demands on the slowing-
down mechanism. The latter would have to complete
with the relatively large electron-capture cross section.!
For this reason we ignore the effect of depletion in the
subsequent discussion.

To summarize the foregoing discussion, there are
three basic factors which must be called upon to ex-
plain the absence of positronium formation in the ionic
crystals:

(1) Electron affinity.
(2) Positron affinity.
(3) Positronium affinity.

These are, of course, general considerations, and can
be used to understand the behavior of positrons in any
insulating material.

The alkali halides are the simplest ionic crystals to
treat theoretically, and we now proceed to try to esti-
mate, for this special case, the relative importance of the
three factors listed in the preceding paragraph. Be-
ginning with (1), the electron affinity of the alkali
halides can be established experimentally, inde-
pendently of positron effects, and is of the order of an
electron volt.*~** We therefore pass on to (2), and
attempt a rough estimate of the positron affinity.

If one neglects the polarization of ions, he may as-
sume that the positron in an ionic crystal moves under
the influence of the Hartree-Fock self-consistent electro-
static field. The positron is repelled by the positive ions
and attracted by the negative ions, unless it penetrates
through the outer electron shells of the latter and
experiences the strong repulsive Coulomb fields of the
nuclei. Such a field for an isolated negative ion is shown
schematically in Fig. 2, where the repulsive field of the
nucleus is indicated by the dashed line. The minimum
in the curve will occur, in a very crude approximation,
at the Goldschmidt ion radius,’®'7 g, since the latter is
also roughly equal to the radius of the outer portion of
the electron cloud. The rapid rise in the potential for
radii less than e can be approximated by an infinitely
hard repulsive core. The potential is roughly a pure
Coulomb field for radii greater than a. Although the
true periodic potential in the crystal is, of course, not

11 The calculations of H. S. W. Massey and C. B. O. Mohr
[Proc. Phys. Soc. (London) A67, 695 (1954)] show that the cap-
ture cross section in a gas is of the order of atomic dimensions.
See also C. B. O. Mohr, Proc. Phys. Soc. (London) A68, 342
(1955).

12 See reference 8, pp. 73, 97.

181, Apker and E. Taft, Imperfections in Nearly Perfect Crystals
(John Wiley and Sons, Inc., New York, 1952), p. 246.

U, S(;Iitz, Revs. Modern Phys. 26, 7 (1954). See in particular,

. 83-87.

PP V. M. Goldschmidt, Skrifter Norskl Videnskaps- Akad.
Oslo I. Mat. Naturv. K1. 1926.

16 Landolt-Bornstein, Zahlenwerie und Funkiionen (1955), Vol.
I, Part 4, pp. 523-527.

17 G. Leibiried, Handbuch der Physik (Springer-Verlag, Berlin,
1955), Vol. VII, Part 1, pp. 132-143.
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F16. 2. Hard core idealization of the potential field around a
negative ion. The dashed curve shows schematically the true
potential.

that of an isolated ion, it will have in the immediate
neighborhood of the negative ions the behavior shown
in Fig. 2. Since the positron wave functions tend to be
concentrated about the negative ions, one can expect a
treatment on the basis of an isolated ion to give at
least an order-of-magnitude estimate for the positron
affinity. In other words, we treat the periodic potential
problem by the tight binding approximation 8
It is a straightforward mathematical problem to
solve the Schrédinger equation for the potential shown
in Fig. 2, namely,
V(r)=w, r<a and V({r)=—e/r,

r>a. (2)

For an arbitrary value of the energy, the solution which
is well-behaved as »—c is a confluent hypergeometric
function. Imposing the additional boundary condition
that the wave function vanish at r=a determines the
energy eigenvalue. Such a procedure has been followed
by Jastrow! in a somewhat similar problem, but is
mathematically more involved than the accuracy of the
present considerations warrants. Instead we satisfy
ourselves here with an estimate of the ground state
binding energy based on the Rayleigh-Ritz-Schrédinger
variational principle.?

As trial function we choosey (r) = (4n)~#x (r) /7, where
for r>a,

x()=C(r—a)e=t—ol,

©)

The normalization constant, C, in terms of the varia-
tional parameter, b, is given by C=2b—%. Introducing
the dimensionless parameter y=2aq/b, we find the ex-

18 Views similar to those of this paragraph have been expressed
by DeBenedetti, Cowan, Konneker, and Primakoff, Phys. Rev.
77, 205 (1950).

1 R. Jastrow, Phys. Rev. 73, 60 (1948). See also A. Sommerfeld
and H. Welker, Ann. Physik 32, 56 (1938).

2 L. Schiff, Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1955), second edition, pp. 171-172.



Fic. 3. Estimate of the energy of binding (in Rydbergs) of a
positron to a negative ion as a function of the hard core radius
(in Bohr radii).

pectation value of the kinetic energy to be

The expectation value of the potential energy is

© dr
n==ef =
7

= _ry(%)[v—%—-'ﬁe” Ei(-=9)1 )

The function
©  dx
Bi(-m=— [ e
v x

is tabulated by Jahnke and Emde2 Requiring the
expectation value of the total energy, (H)=(T)+(V),
to be a minimum yields, after differentiating Eqgs. (4)
and (5) and setting the sum to zero, the relation

a Y
—_—=— 6
a 2f (r) ©

F@)=1=2y—~"— By*++*)e" Ei(—7).

This gives for a lower bound of the binding energy,
measured in rydbergs, the value

(H)
——=f()-g(), (7)
ry

where

where
() =1+v*+ (*++"e? Ei(—1).

The right-hand side of Eq. (7) can be computed for
various values of . The core radii which correspond to
these energies can then be found from Eq. (6). The
result of such a computation is shown in Fig. 3. For
small values of a/a; the quantity —(H)/ry drops
rapidly, according to 1—4(a/ao). The plot of —(H)/ry

21 E, Jahnke and F. Emde, T'ables of Functions (Dover Publica-
tions, New York, 1945), pp. 1-9.
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vs a/ao then levels off for larger values of a/a, and in
the region 2<a/ao<4 gives a positron binding energy
which varies from 0.24 rydberg to 0.17 rydberg. The
accuracy of this approximate solution to the mathe-
matical problem posed by the idealized potential func-
tion of Eq. (2) can be established by considering the 2s
wave function of the hydrogen atom. This function
has a radial node at 7= 2a,, and for r > 2a, provides an
exact solution to our problem in the case a=2a,. The
corresponding exact value for the binding energy is
0.25 rydberg, in good agreement with the above approxi-
mate value.??

A check on our hard core idealization of the positron
binding problem in the case of the chloride ion is pro-
vided by Simons’® exact calculation based on the
Hartree-Fock self-consistent field.?* Simons finds a
binding energy of the positron in the ground state of
3.74 ev. From the Cl~ radius of 1.81 A, (see reference
16, and Table I later), we have a/ao=3.42, which gives,
according to Fig. 3, —(H)=0.175 ry=2.37 ev. Thus we
see that our procedure considerably underestimates the
true binding energy of a positron to a negative ion.
This is attributable mainly to incorrect choice of hard
core radius. As seen from Fig. 2, a more realistic choice
of effective core radius would be considerably smaller
than the Goldschmidt radius. Allowing for this we can
conclude that the binding energy of a positron to an
isolated halide ion amounts to 3-5 ev.

The above positron binding energy estimate for an
isolated halide ion can be applied to the positron bind-
ing to an alkali halide crystal, providing the effect of
the neighboring ions is taken into account. If it is
assumed that the effect on the positron wave function
can be neglected, the only effect of the surrounding ions
is to raise the energy by the Madelung term.? If ¢ is
one-half the interatomic spacing this amounts to 1.74
ry(ao/c) for a simple cubic crystal, and is of the same
order as the binding to an isolated halide ions. The
estimate obtained in the previous paragraph is there-
fore severely reduced, and it becomes questionable
whether there remains even a net positive positron
affinity.t In any case we can conclude that the sum of
the electron and positron affinities is of the order of
1-2 ev and falls far short of accounting for the absence
of an Ore gap.

It remains only to discuss (3), the positronium affinity
of the alkali halides. This is difficult to estimate ac-

22 The other ns wave functions of the hydrogen atom provide
additional checks. The next most tightly bound solution, however,
has its outermost radial node at 7.2a,, which corresponds to a hard
core radius outside the present range of interest.

2 1,. Simons, Phys. Rev. 90, 165(L) (1953).

2D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A156, 45 (1936).

25 See reference 8, p. 71.

t Note added in proof—The experiment of Madansky and
Rasetti [L. Madansky and F. Rasetti, Phys. Rev. 79, 397 (1950) ],
provides a method of experimentally settling this question. They
find that positrons do not diffuse through and leave thin films of
glass, mica, celluloid, and octoil. There must, therefore, be a net
positive positron affinity in these substances.
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curately, but simple considerations suffice to show that
it is probably very large, and negative. If a positronium
atom is to be brought into such a crystal it must be
introduced interstitially. But the interstitial space
available is extremely limited, since it is only that left
between packed spheres of 1-2 A radius. Thus, the
positronium atom is confined to a space of dimensions
at most of the order of 1 A. This greatly lowers its
internal binding energy (see reference 18), thereby
contributing, in the extreme case that there is no bound
state remaining, —ry/2 to the positronium affinity.
An additional contribution comes from the zero point
motion of the positronium atom. Even if it has enough
room to retain its identity as a bound system, the con-
finement of one of its center-of-mass degrees of freedom
to a “free run” of, say, 2ao, or about 1 A, results in
additional kinetic energy of the atom of (#2/8) ry=16.7
ev. This effect is peculiar to the positronium atom and is
due to its anamalously small mass.

Thus we see that there are two sources of very large
negative positronium affinity, more than adequate to
violate Inequality (1) and destroy the Ore gap. This is
doubtless a general feature of all the ionic crystals and
is essentially simply due to the fact that there is no
room in the crystals for a positronium atom.?® Such a
reason could have of course, been proposed at the very
start of this section, but it was thought desirable to
discuss the problem from the general standpoint of the
energetics of the electron capture process. The discussion
will also be useful as background for the next section
and for Sec. IV, where the solids in which positronium
is formed are studied.

B. Two-Photon Angular Correlation

As discussed in the preceding section, positrons which
enter an ionic crystal do not capture electrons because
there is no room in the crystal for the resulting posi-
tronium atoms. Better, the limited space available
to positronium atoms leads to a large negative posi-
tronium affinity, and consequently no Ore gap. In any
case, the positrons remain, during the slowing down
process, in nonpositronium states, and it seems likely
that they will become thermally moderated in a time
short compared to the annihilation lifetime of the
order of 1071 sec. This is because of the strong coupling
of a charged particle to the optical band phonons, and
may not be true in non-ionic crystals (see reference 4).
The small thermal energy may be neglected for the
present purposes, and the annihilation considered as
taking place from the ground state of the system of
positron plus crystal.

The lifetimes found experimentally are of the order
of magnitude of what can be expected on the basis of
the type of ground-state wave function discussed in

26 The need for room in order to have positronium formed in a
solid has been emphasized by V. L. Telegdi [Bull. Am. Phys. Soc.
Ser. IT, 1, 168 (1956)].
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the preceding section. There it was shown that the
positron wave function is concentrated about the nega-
tive ions into a bound s wave, with a maximum at
about the ion radius, a. The electrons on the other hand,
can be roughly thought of as uniformly spread out over
the volume of a sphere of radius ¢. Only the eight elec-
trons occupying the noble gas configuration come into
question. (The more tightly bound electrons are in a
region of high electrostatic potential and are conse-
quently never “sampled” by the positron.) Conse-
quently the ratio of the electron density at the positron
in terms of that in the positronium atom, which pro-
vides a convenient density unit for comparison, is

8 1 a0\ ®
_—“/ =48(“) ‘
(4n/3)a*/ 8mao® a

As stated in the preceding section, for the chloride ion
a/ay=3.42, giving for the above density ratio the value
1.20. Since the positron lifetime is inversely proportional
to the electron density, we divide the spin-averaged
positronium lifetime by this density ratio and obtain
4.16X 1071 sec for the lifetime of a positron bound to a
chloride ion. Since six of the eight electrons in the
noble gas configuration have p symmetry and vanishing
density at the ion nucleus, the uniform distribution
used above should probably be replaced by a non-
uniform distribution concentrated at a radius somewhat
smaller than the ion radius. Therefore the electron
density at the positron is probably larger than the
estimate given above. Thus it is likely that a more
exact calculation may give a lifetime only half as large
as our rough estimate, and thereby in agreement with
the experimental value? of (2.340.3)X1071 sec. Al-
though the present crude approach does not yield
reliable absolute values for the lifetimes it does predict
a dependence on the ion radius which it would be
interesting to check with further experiments on the
alkali halides. The lifetime should depend only on the
halide ion and should be proportional to the cube of the
ion radius. This quantity varies by a factor of 4.5 in
going from F— to I~. We should therefore expect F~
and I~ to exhibit significantly shorter and significantly
longer positron lifetimes, respectively, than Cl~=. There
may be some polarization of the electron shell by the
positron which may also somewhat reduce the lifetime
below the above rough estimate, but this effect is
evidently not large in the case of NaCl. Thus there
does not seem to be any difficulty in understanding the
lifetimes. We therefore proceed to interpret the recent
experimental results of Lang and DeBenedetti**® on
the angular correlation of the two photons given off by
the annihilation of positrons in crystals of the alkali
halides.

As explained in the Introduction, the probability

27 G, Lang and S. DeBenedetti, Bull. Am. Phys. Soc. Ser. II,

1, 69 (1956).
28 §. DeBenedetti, Bull. Am. Phys. Soc. Ser. II, 1, 115 (1956).
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that the two annihilation photons carry off a certain
amount of total momentum is proportional to the
absolute square of the corresponding Fourier transform
of the “wave-function product.” The latter is the
product of the wave functions of the annihilating posi-
tron and electron. Since we are dealing with crystals
we must consider that the wave functions, even in the
tight binding approximation, are Bloch waves spread
out over the entire crystal lattice. The positron is in
the state of lowest crystal momentum, and therefore
its wave function at any point in the crystal is simply
equal to 1/4/N times the wave function representing
the positron bound to the nearest halide ion. The
normalization constant depends on N, the number of
halide ions in the crystal. On the other hand, the elec-
trons with which the positron can annihilate possess
values of the crystal momentum which fill up the first
Brillouin zone. The wave function for an electron of
crystal momentum 7K is equal at any point to the wave
function representing the electron bound to the nearest
halide ion times (1/4/N)ei¥-* where x, is the position
vector of the halide ion. The Fourier transform corre-
sponding to momentum 7%k is therefore the factor

1
Pr(l)=— % o502
N =

times the Fourier transform for annihilation by an
isolated ion, where the sum extends over all halide ions.
The sum is negligibly small except when K is equal to,
or nearby equal to, k plus some multiple of the reciprocal
lattice vector. The total annihilation probability is the
absolute square of the Fourier transform for annihila-
tion by an isolated ion times

1
ZtFK(k) ]2=_,__ Z Z eik-(xn—xm) Z e—iK-(xn—xm).
K N2 n m K

The K sum is over the entire Brillouin zone. Since
X»— Xn, 1s a lattice vector the sum vanishes unless 7= .
Therefore

and the annihilation properties of a crystal are the same
as those of the constituent isolated ions, provided the
tight binding approximation applies.

Returning now to the wave-function product for an
isolated halide ion, we can replace in a very rough
approximation the positron wave function by

1

Y(r)=—-d(r—a). ®)
(4m)?

This possesses the spherical symmetry of the true wave

function, but exaggerates the peaking of it at the ion

radius to such an extent that ¥(») is no longer normal-

izable. This will, however, only affect the high momen-
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tum components of the Fourier transform and can be
taken into account later. Actually, the positron wave
function enters the analysis only through its product
with the electron radial wave function. Because of the
rapid fall off in the latter for r>a, and the fall off in
the positron wave function for 7 <a, the product will
be rather sharply peaked even if the positron wave
function is not. Thus, Eq. (8) is not necessary for the
following work but is introduced for convenience. The
final results are largely independent of it.

The Fourier transform can easily be evaluated by
introducing spherical polar coordinates with polar axis
along the momentum 7k, and making the well-known
expansion of the momentum factor®:

e_ik.,zg) 21H-1) (—1)451(kr) Pi(cosh). 9)

0 is the angle between the polar axis and the position
vector x, P; are the Lengendre polynomials, and j; the
spherical Bessel’s functions.® Let us first consider the
annihilation of an s electron, of wave function

1
¢s(7’)=(_47r—§Rs(r)-

Then, substituting from Eqgs. (8) and (9), the Fourier
transform reduces to

f e % 2ppd*x=a’R,(a) jo(ka), (10)

where all terms of the infinite sum have dropped out
except the one for /=0. The probability that the
positron and s electron will annihilate and yield two
gamma rays carrying away a total momentum of 7k is
therefore proportional to @‘R,(a)?jo(ka)®. It is con-
venient for purposes of subsequent integration to
approximate the 2-dependent factor by a simple Gaus-
sian adjusted to give the right fall off at 2=0. As shown
in Fig. 4 where the approximate curve (H,) is compared
to the exact curve (G), this procedure fails to reproduce
the weak secondary maxima of the spherical Bessel’s
function. These, however, arise from the approximation
made in Eq. (8), and as explained there, should be
neglected anyway. Therefore, dropping the factor a4,
the relative probability of s annihilation is approxi-

mately
(11)

The annihilation with the p electrons can be handled
similarly. With the above choice of coordinates, only
the m=0 state can annihilate and yield two photons
whose total momentum is in the direction of the polar
axis. Writing the wave function for such a state as
#p=(3/4m) R, (r) P1(cos), and noting that now only

Po(k)=R,(a)’e (ks

2 See reference 20, p. 104.
% See reference 20, p. 77.
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the /=1 term in the series expansion contributes, we
obtain

f %3 ydix= —iNBaR, (o) j1(ka).  (12)

Here we make the approximation

(3jl(p))2EG,,(p) _ (3sinp—f cos;))2
p p

~e P B=H,(p). (13)

This approximation is illustrated in Fig. 5, where the
abscissa is p=ka, as is also the case in Fig. 4. Defining
the relative probability for p annihilation as a=* times
the absolute square of Eq. (12), we have, approximately,

P (k) =1R,(a)(ka)2eFs, (14)

Experimentally it is not possible to measure directly
the probability distribution with respect to &, but only
the distribution with respect to one of the Cartesian
components of k. Therefore it is necessary to calculate
the integrals J° /" Ps, ,((k2+k,>+k.2)?)dk.dE, in order to
be able to make a comparison of theory with experi-
ment. In the present problem it is convenient to intro-
duce the variables

t=k.a/A/5 and u= (k2+k,>2)a?/5.

Then the probability distribution function for k. is
proportional to the function

- (1A
e

S

Xexp(—5¢2/3) fw exp(—>5u/3)du

= (14+¢?) exp(—¢?)+C exp(—5¢/3),

— Hs

(15)

---Gs
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Fic. 4. Comparison of approximate function (solid curve) with
exact function (dashed curve) for s electron annihilation.
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— Hp

Fic. 5. Comparison of approximate function (solid curve) with
exact function (dashed curve) for p electron annihilation.

where C= (3R;(a)/5R,(a))?. Although the precise value
of this constant depends on the particular halide ion
under consideration, it can be expected to be of order of
magnitude of, but somewhat smaller than unity. Figure 6
shows a plot of P({) vs { for the arbitrary choice C=0.6.
The individual contributions of s and p annihilation are
shown by the dashed curves. The general feature of the
composite curve, which holds over a fair range of values
of C, is that the s contribution produces a fall off in
P(¢) at small ¢, where the p contribution is practically
constant. The p contribution then falls off at larger ¢,
yielding a triangular-shaped composite curve which
has roughly constant slope over a wide range of {. Such
a two-photon angular correlation has been reported as a
general feature of the alkali halides by Lang and
DeBenedetti?”?8 They found that the several alkali
halides investigated all have approximately this tri-
angular distribution. They found further that the
“cut-off angle,” or the intercept of the linear portion of
the curve, extended down to the horizontal axis, is a
property primarily of the halide ion and is largely inde-
pendent of the alkali ion with which it happens to be
compounded. Such an extrapolation is shown in
Fig. 6 and yields an intercept of {=1.80. Introducing
0="%k,/mc, the projected angle between the two anni-
hilation photons, we find for the cut-off angle

0,=1.80X (5)%/mca= (15.53/a) (16)

milliradians, where ¢ is now measured in angstrom
units. Goldschmidt’s values for the ion radii'® give the
predicted cut-off values appearing in Table I under the
column “Theory.” The values reported by Lang and

TasiE I. Two:photon angular correlation cutoff
for the alkali halides.

Goldschmidt Cutoff angle (in 1073 radian)

Halide Ion radius a Theory Exp. (Lang and
ion (in A) 15.53/a DeBenedetti)
F- 1.33 11.68 10.6 (LiF)
CI- 1.81 8.58 8.0 (NaCl)
7.5 (KCI)
Br~ 1.96 7.92 e
I- 2.20 7.06 6.7 (KI)
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Fi1c. 6. Halide ion two-photon angular correlation as a function
of ¢=(amc/+/5h)-0, where 6 is the projected angle between the
directions of the annihilation photons and ¢ is the ion radius.
1.68 should be replaced by 1.80.

DeBenedetti are listed in the next column, and it will
be noted that the agreement with the present crude
theory is as good as could be expected. The basic
limitation in the accuracy of the present approach,
which neglects the influence of neighboring ions, is
indicated by the experimental difference between the
NaCl and the KCl cut-off angles, which amounts to
0.5 milliradian, or about 6%,.

Equation (16) is obviously dependent, although not
strongly, on the constant C. We have arbitrarily taken
the value to be 0.6 for all the halides. This value does
give the triangular-type distribution with about the
longest linear portion. The fact that such a long linear
portion is observed by Lang and DeBenedetti indicates
that the above arbitrarily chosen value may be fairly
close to the range of the true values. The latter could
be determined by more detailed Hartree-Fock self-
consistent field calculations. It is hoped that the present
very rough work may indicate the direction in which
refinements can be made and that it may serve to en-
courage more elaborate calculations.

III. METALS
A. Two-Photon Angular Correlation

As discussed in the preceding section, the probability
of observing a certain angle between the two photons
emitted by a positron and electron annihilating in a
solid depends on the Fourier transform of the wave
function product. Information can therefore be ob-
tained on the electron wave function provided the
positron wave function can be independently deter-
mined. Fortunately, this is the case, for the annihilation
process is sufficiently slow to allow the positron to fall
essentially into its ground state before the annihilation
takes place. The ground-state wave function has par-
ticularly simple properties and can, in principle, be
calculated to any desired accuracy. Although DeBene-
detti et al® have found that the time required for
thermalization of positrons by a metallic lattice is of
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the order of the annihilation lifetime, the work of
Garwin®® and the recent calculations of Lee-Whitings!
make it clear that the slowing of the positrons by the
conduction electrons is a much more important effect,
leading to a net thermalization time very much shorter
than the lifetime. Because of the smallness of the
thermal energy, (at least at room temperature), com-
pared to a characteristic electronic energy of the system,
such as the Fermi energy, the positron can be con-
sidered as in its lowest energy state of zero crystal
momentum. The wave function for this state is ex-
cluded from the volume occupied by the positive ions
in the metal and has a sort of “Swiss cheese’? structure,
being appreciably different from zero only in the inter-
stitial regions. In regard to the electron wave functions,
the modulation effects of the lattice on the Bloch waves
are generally greatest in the region of the ions, where
the positron wave function vanishes. Hence it is a
reasonable first approximation, in considering the
annihilation with the conduction electrons, to replace
the Bloch waves which appear in the wave function
products by unmodulated plane waves, with of course,
the same crystal momenta.® A further simplification
is suggested by the fact that in many metals the ions
occupy a relatively small fraction of the total volume.
It is therefore a useful additional approximation to
neglect the “Swiss cheese’” nature of the positron wave
function altogether. Experimental evidence on the
validity of these approximations will be discussed below.

When the above approximations have been made the
problem has been reduced to that of the annihilation of
a positron in a degenerate electron gas. With such an
idealization, various metals can differ from one another
only by virtue of different values of the density of
conduction electrons. The electron density » thus
plays a key role in the theory of positron annihilation
in metals, (and, indeed, in the theory of metals in
general). It is desirable to specify it in terms of the
dimensionless parameter 7,, which measures the radius
of the so-called unit electron sphere, in units of the
Bohr radius.®* By definition, the volume of the unit
sphere, 4rad’rs?/3, is equal to the volume per electron,
1/n. If one uses the relation n= (Lzp/A4) cm™3, where
L is Avogadro’s number, and z, p, and A4 the valence,
specific gravity, and atomic weight of the metal,
respectively, it is a simple matter to solve for r, and
reduce the resulting expression to the following formula
involving only dimensionless quantities:

7:=1.384(A4/pz)}.

%a R, L. Garwin, Phys. Rev. 91, 1571 (1953).

3 G. E. Lee-Whiting, Phys. Rev. 97, 1557 (1955).

3 This general picture has been given in the paper by DeBene-
detti, Cowan, Konneker, and Primakoff (see reference 18), and
has been given this graphic description by S. DeBenedetti (refer-
ence 28).

3 This approximation is suggested by remarks made in the paper
of Lanﬁ, DeBenedetti, and Smoluchowski [Phys. Rev. 99, 596(L)

1955) .
( u St)ze reference 10, p. 340. We follow D. Pines (reference 55
later) in defining 7, so as to be dimensionless.

(17)
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The Fermi momentum, %k, or maximum momentum of
an electron in the Fermi sea, is conveniently expressed
in terms of the parameter 7,. From n=£k/3m, one
easily obtains

ko=1.917/as. (18)

The two-photon angular correlation resulting from
annihilation of a positron in an electron gas is particu-
larly simple. The probability that a momentum #k is
conveyed to the photons is proportional to the absolute
square of the Fourier transform of the wave-function
product. But the latter vanishes except for the pair of
electrons with exactly the momentum #k, in which case
it is a constant independent of k. (For a discussion
of positron-electron correlation effects, which introduce
a velocity dependence into the annihilation rate, see
Sec. C later.) The probability distribution function is
therefore proportional to the function P(k), which
vanishes for k> ko and equals the constant 1/wk¢* for
k <ko. The distribution function for the z component
of momentum is consequently

Pu(k)= f f P((k2Ab 4B dkudly=1— (b ko).
19

This function represents an inverted parabola when
plotted against %, dropping to zero at the Fermi momen-
tum. Equation (19) does not apply for k.> ki, in which
case P.(k,)=0. The angle 6 between the two planes
defined by the two detector slits and the source is
linearly related to k. by 8=~7%k./mc. Hence the plot of
the number of counts vs 6 is also a parabolic function,
proportional to 1—(6/60)?, where the cutoff occurs at
the maximum angle (measured in milliradians) of

80=13.99/7,. (20)

The first experimental attempt to establish the con-
nection between the two-photon angular correlation and
the Fermi momentum was carried out by DeBenedetti
et al.1® They worked with the nonideal case of gold, in
which the excluded volume effect is not negligible and
tends to confuse the simple parabolic distribution.
Green and Stewart,* working with the more ideal cases
of the light elements, succeeding in establishing ac-
curately the relation expressed by Eq. (20) between the

Fic. 7. (After Lang,
DeBenedetti, and Smol-
uchowski). Two-photon
angular correlation for
sodium and aluminum.
The lower dashed line
indicates background in-
tensity.

[ 10
107 Radian

35 R, E. Green and A. T. Stewart, Phys. Rev. 98, 486 (1955).
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TaBLE II. Unit electron sphere radius (in Bohr radii) and parabolic
cut-off angle (in milliradians) for several metals.

7+=1.384(4/p2)}; 60=13.99/7,

Atomic wt Sp. Gr. Val. Rad. Ang,
Met A p z 7a 6o
Na 23.0 0.971 1 3.97 3.52
Mg 24.3 1.74 2 2.65 5.28
Al 27.0 2.70 3 2.07 6.75
Si 28.1 242 4 1.97 7.10
Cu 63.6 8.94 1 2.66 5.25

breadth of the angular distributions and the Fermi
momenta. These authors express their results in terms
of an effective Fermi energy, which they find agrees in
every case with the Sommerfeld value for the Fermi
energy. It seems however, desirable to avoid inter-
preting this type of experiment, which depends only
upon the electron momenta, in terms of electron ener-
gies. As discussed above, the annihilation is to a large
extent independent of the lattice effects which determine
the electron effective mass and Fermi energy. Lithium
is a typical example of a case where the values of the
Fermi energy determined from soft x-ray emission
((4.240.3) ev)*® and calculated from the energy band
band theory (3.4 ev)? differ appreciably from that
calculated on the basis of the Sommerfeld theory
(4.75 ev).

Work which clearly exhibits the parabolic distribu-
tion was published by Stewart®® and by Lang, DeBene-
detti, and Smoluchowski.®® Figure 7 has been prepared
from the Na and Al curves presented by the latter
group of authors. As is evident, the cut-off angles are
in good agreement with the values listed in Table II for
Na and Al, of 3.52 milliradians and 6.75 milliradians,
respectively. Mg is an intermediate case and has also
been measured by both Stewart and DeBenedetti ef al.
Both researchers find agreement with the value of 5.28
milliradians (also listed in Table II). The additional
element from this same row of the periodic table,
silicon, is a semiconductor. The small energy gap of
less than one electron volt indicates, however, that the
electrons are sufficiently loosely bound that the Bloch
waves are more like those in a metal than in an insulator.
One should thus expect a parabolic two-photon angular
correlation for the semiconductors rather than, say, the
triangular distribution found for the alkali halides and
discussed in the preceding section.” A parabolic distri-
bution in germanium has been reported by Lang and
DeBenedetti. Although no work has yet been reported

¢ 36 H) W. B. Skinner, Phil. Trans. Roy. Soc. (London) A239, 95
1940).

37 See reference 10, p. 440.

38 A. T. Stewart, Phys. Rev. 99, 594(L) (1955).

3 Lang, DeBenedetti, and Smoluchowski, reference 33.

4 Similar remarks apply to positron annihilation in super-
conductors, which should not differ in any appreciable respect
from annihilation in normal conductors. For references to the
experimental literature see B. Green and L. Madansky, Phys. Rev.
102, 1014 (1956). ‘
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FiG. 8. Comparison of approximate function (solid curve) with
exact function (dashed curve) for d-electron annihilation.

on silicon the cut-off angle is listed in Table IT and
should fall at 7.10 milliradians, according to Egs. (17)
and (18) above.

Returning to Fig. 7 one notes that there are small
tails to the parabolic distributions for both Na and Al.
In Na the tails are roughly linear and suggest the outer-
most portion of the triangular-type distribution found
in the alkali halides. Such a distribution could result
from the incomplete expulsion of the positron wave
function from the positive ion cores. The finite overlap
of the spherically symmetric positron wave function
with the radial wave functions of the core electrons gives
rise to a radial factor in the wave-function product
which has a peak in the neighborhood of the ion radius,
just as in the case of the alkali halides. The noble gas
configuration of the Nat ion is the same as that of F—.
Since the cut-off angle in LiF is 10.6 milliradians, one
expects about the same for the core annihilation in Na
(the tendency for the maximum in the wave function
product to occur at larger radii for a nonbound positron
may compensate for the smaller radius of the positive
ion). The cut-off angle of 10 milliradians, determined
from Fig. 7, seems to be consistent with this picture.
In Fig. 7 the linear tails have been extended inward.
The area of the resulting triangle, enclosed by the
dashed lines, is then to be attributed to core annihila-
tion, which consequently would amount to about 259,
of the total annihilation rate. Although this appears on
the surface to be fairly natural explanation of the Na
tails, it cannot be applied to Al, where the tails do not
seem to have the linear property. It is clear from first
principles that some core annihilation must take place
in these metals, but a rough estimate indicates that
considerably less than 259, of the annihilation rate can
arise in this way. We are therefore led to consider
additional effects which can give rise to the tails. But
before proceeding it is of interest to consider the noble
metals, for which, because of the large core consisting of
ten d electrons, core annihilation can be expected to be
more important than in Na and Al

The annihilation of a positron in a spherically asym-
metric state with a filled atomic 4 shell can be treated
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in the same way as the s and p annihilation. As in the
preceding section, we make the expansion of ¢~ in
terms of spherical harmonics. If the z axis is chosen
along the direction of k only the m=0 substate can
contribute. Integrating out the Fourier transform gives
a probability function proportional to (j2(ka))? where
the wave function product has been assumed to peak
fairly sharply at »=a. As in Sec. IIB, we fit the function
for small p= ka by the following convenient approxima-
tion:

(72(0))*=L(3/p*—1/p) sinp— (3/p) cosp]?
= (0*/15)*(1—p*/T+- - - )= (0*/15)* exp(—p*/7)
= (0*/15)*H 4(p).

This approximation is illustrated in Fig. 8 and is some-
what less accurate than the corresponding approxima-
tions in the case of s and p annihilation, since the
maximum falls at a larger value of p, and thus further
away from the region of good fit. The greater height of
the approximate curve is of no consequence here, but
it will be noted that the half-peak value of p is a factor
of 1.06 too large on the rising side of the curve and 1.19
too large on the descending side. A better fit is therefore
given by reducing the horizontal scale in the plot of
(0*/15)*Hd(p) by 1.12, the geometrical mean of the
above factors. It will be further noted that the plot of
(0*/15)*Hd (p) fails to reproduce the secondary maxima
in (72(p))% As explained in Sec. IIB, this is an entirely
satisfactory feature of this type of approximation.

In order to compare with experiment it is necessary
to integrate over two of the Cartesian components of k.
Proceding as in IIB, but making the slightly different
change of variable {=*k.a/A/7, u= (k2+k2a/7, the
distribution function for %, is proportional to

£©)=3 f (€2+1)? exp(—§2—4)du

= (145+¢%/2) exp(—¢3). (1)

This function is plotted in Fig. 9 and is very flat for
values of { less than unity. The half-maximum value is
¢{=1.64, corresponding, (including the scale factor of
1.12), to k,=3.88, or to an angle of

§4=14.98/a, (22)

F16. 9. d-shell two-photon angular correlation as a function of
= (amc/A/Th)-0, where @ is the projected angle between the
directions of the annihilation photons and a is the d-shell radius.
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where @ is measured in Angstroms and 6d in milli-
radians.

Figure 10 shows the two-photon angular correlation
curve for copper (prepared from the paper by Lang
et al®), and seems to exhibit d annihilation with the
above properties. According to Table II, the s electrons
should have a cut-off angle of 5.25 milliradians. A
parabola fitting the curve at small angles has been ex-
tended out to this angle and accounts for about one-
third of the total number of counts. The remaining
counts are spread out over a distribution which is flat
at small angles (as shown by the dashed line), and which
has a falloff at larger angles similar to that in Fig. 9.
The half-maximum angle of this broad component is
8.68 milliradians, corresponding to a core radius, accord-
ing to Eq. (22) of a=1.72 A. This value is considerably
larger than the half-nearest neighbor spacing of 1.27 A,
which is an overestimate of the ion radius. This latter
value would yield, according to Eq. (22) a half-maxi-
mum angle of 12.8 milliradians, in significant disagree-
ment with Fig. 10.

One is forced to the somewhat disappointing con-
clusion that, even in the metals with relatively the
largest cores, the tails in the two-photon angular correla-
tion do not directly reveal features of the cores them-
selves, but instead must be due to a breakdown of the
simplifying approximations introduced above. We turn
first to the excluded volume effect, since DeBenedetti
et al.! have emphasized that it can be expected to be
particularly important for the noble metals. Let the
true positron wave function in the metal be ¢(x). In
the interstitial region ¥(x) is a constant, which we take
to be unity, but inside the positive ions it drops to zero.
Being an eigenfunction of the crystal momentum
operator with eigenvalue zero, ¢¥(x) is a real positive
function of x and has the “Swiss cheese” structure re-
referred to above. Since the wave-function product is
now no longer a plane wave, k=K is no longer required
for the annihilation with a electron of crystal momen-

-20 -0 o 10 20
10”3 Radian

F1c. 10. (After Lang, DeBenedetti, and Smoluchowski). Two-
photon angular correlation for copper. The portion of the distribu-
tion above the upper dashed line is attributed to annihilation of
conduction electrons, uncorrected for the excluded volume effect.
The lower portion is attributed to expulsion of the positron wave
function from the region enclosed by the d shell. The lower dashed
line indicates background.

4 Reference 18. Our discussion follows that given there rather
closely.
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tum K. This relation must now be generalized to
k=K++x, where x is a reciprocal lattice vector. It is
convenient to write the wave-function product as

gb(X)eiK'x:GiK'x— (l_s[/)eiK-x,

where the first term can annihilate only into k=K, and
the second term alone contributes for K><0. Here we
continue to approximate the Bloch waves by plane
waves, since ¢(x) is assumed to vanish in the regions
where this is not a good approximation. A calculation
similar to that carried out in Sec. IIB shows that the
probability of annihilation into k=K+x, for k0, is
proportional to the absolute square of

1
I I
Y0 Yo

where the integration is now over the unit cell of volume
9o centered at one of the positive ions. This can be sim-
plified by using the expansion given in IIB of the
factor exp(—ix-x). Since the function (1—4) is spheri-
cally symmetric, only the /=0 term, 7o(«7), contributes,
where r=|x|. The above expression becomes, if we
carry out an integration by parts and use the identiy*

_j(),:jly

4o p* sinkr
fk=——f (A —y)—%dr
Yo Yo KY

4r 9 p*
=— (1—y) coskrdr
Vox Ik Vo
4r d = dy sinkr
=— r—- dr

vk Ok Vo dr kr

dr e dY f1(kr)
= — 1’3——'

Vo Yo dr Kr

dr. (23)

It has been permissible to extend the radial integration
to infinity since the factor (1—y) vanishes outside the
core. ¥ rises rapidly from zero to unity at roughly the
core radius ¢. The approximation dy/dr=~§(r—a) then
leads to

| fae|?= (ve/00)°Gp(ka) = (ve/v0)*H »(ka) (24)

where v,=4ma®/3, the excluded volume, equals roughly
the core volume. G,(xa) is the function defined in
Sec. IIB and is approximated by the Gaussian H ,(xa)
=exp[— (xa)?/5] (see Fig. 5).

The probability distribution for k=K« is obtained
by folding the distribution for K (the Fermi sea) into
the above distribution for x. Although « is confined to
points in the reciprocal lattice, for the present very
rough purpose we can consider it as a continuous
variable. The resulting folded distribution is also

42 See reference 20, p. 78.
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roughly a Gaussian, resulting in the same Gaussian for
the distribution of the z component of momentum. The
half-maximum angle for this distribution is

0.= (0.6920,>451.6a—2)3, (25)

where 6o is the parabolic cut-off angle previously de-
fined. All angles are measured in milliradians, while a
is in angstroms. Since the experimental curve for copper
(after subtracting the parabola—see Fig. 10) also
roughly fits a Gaussian, we can use the experimental
value of 6,=8.68 milliradians in conjunction with
Eq. (25) to determine @. This yields ¢=0.98 A, a
reasonable value. Since 7,a,=1.41A, it follows that
v./v0=0.34.

The intensity of the parabola relative to that of the
entire distribution provides an independent determina-
tion of the core volume. It is easy to show that the ratio
of the total number of counts in these two distri-
butions is

Fo= (1—2’1)6/‘110)/(1—7)0/1)0). (26)

By equating this to the experimental value of 1/3 one
finds v./99=0.40, in satisfactory rough agreement with
the preceding paragraph. Copper thus seems to be a
clear case of the excluded volume effect, and this is no
doubt true for the other noble metals. It is perhaps also
the case for the transition, rare earth, and actinium
series metals—all of which have large ion cores. Return-
ing now to the more ideal metals with smaller ion cores,
let us try to account for the tails in sodium by the ex-
cluded volume effect. The half-maximum angle for the
triangular distribution drawn in Fig. 7 is about 5
milliradians. If we replace the triangle by a Gaussian
with slope at the points of influection equal to that of
the sides of the triangle, the half-maximum angle is
larger than that for the triangle by the factor (2 In2)?
=1.177. Thus we set 6,= 5.9 milliradians and from Eq.
(25) determine a=1.41 A. This is larger than the core
radius'® of 0.98 A, but smaller than the unit sphere
radius of 7,00=2.10 A. It follows that v,/vo=0.30,
giving for the fraction of counts in the parabola, ac-
cording to Eq. (26) only about 579%,. The remaining
439, should be attributed to a broad Gaussian on which
the parabola sits. This value is excessive and the dis-
agreement between it and the rough earlier estimate of
259, is probably to be attributed to experimental
uncertainties in the shape of the tail, which lies fairly
close to background. We therefore invert Eq. (26) and
solve for v,/vo assuming Fo=3/4. This yields the fairly
reasonable values of 9,/70=0.20, ¢=1.23 A, and
0,=6.55 milliradians. Because of the Coulomb field
surrounding a positive ion, it is possible that the
positron wave function, considered as a function of
decreasing radius, drops essentially to zero before
the ion core is reached. In this way the excluded volume
can be greater than the core volume. If we however,
require @ to equal the core radius, then

95/09=0.10, F;=0.89, and 6,=7.90.
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This possibility, which would attribute to the excluded
volume effect a distribution broader than assumed in
the foregoing and containing only 119, of the counts,
is not excluded by the measurements of Lang ef al.,
and seems to be indicated by the more recent work of
Stewart (see below).

It is an essential property of the excluded volume
effect that it simply adds a broad smooth two-photon
angular correlation curve to the parabolic curve. The
abrupt cutoff of the latter curve is not affected, and
hence the composite curve should also show a dis-
continuity in slope at =6, This feature is present
(within the experimental resolution of one milliradian)
in the curves of Lang et al. for Cu and Na (Figs. 10
and 7). If we now however consider Al (Fig. 7), we
note a more gradual change in the slope at the junction
of the parabola with the tails. Some other failure of the
approximations made above, rather than the excluded
volume effect, must therefore be the reason for this
deviation in Al from the ideal case of annihilation in a
degenerate electron gas. The approximation which fails
in Al is clearly the neglect of the deviation of the Bloch
waves from plane waves. This deviation may be ap-
preciable, even in the interstitial regions, because the
Fermi surface in Al overlaps the zone boundaries. The
electrons slightly below the Fermi surface can thus be
thrown into momentum states slightly above the Fermi
surface by interaction with the lattice. The stationary
state wave functions, or Bloch waves, are thus mixtures
of plane waves. In the momentum representation, the
Fermi surface has become very much blurred, resulting
in a gradual rather than a sharp parabolic cutoff. This
effect shows up especially clearly in some recent work
of Stewart. Stewart has achieved sufficiently accurate
statistics that he is able to differentiate numerically his
experimental data, yielding the distribution function
P(k) itself, rather than the integrated quantity

1
Puk)=— f f P((k24k2+h D) kR,

wke?

If we denote differentiation of P (%) by P’(k) and intro-
duce u=*k2+k2 k= (u+k.2)? we find

02 sz

2k, dk.

du

2(utk,2)t

- f " P (kY

— f " P ik=P(k). @7

This procedure requires isotropy, in that P is assumed
to be a function only of the magnitude of k and not on
its direction. In the ideal case of an electron gas the
parabolic function Py(k2)=1— (k./k0)? yields, according
to Eq. (27), a step function for P which is unity for
k <kq and vanishes for 2> k,. This is of course, simply
the occupation function for the Fermi sea.
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Stewart’s® plots of P(k) (in arbitrary units) are
shown at the left of Fig. 11. The horizontal axis meas-
ures k£ in units of 2(mc/h)X10%=0.274a,7!, and the
position of %, is indicated by a vertical arrow pointed
downward. The P (k) curve for Al deviates significantly
from the ideal step function, indicating a strong effect
of the lattice on the Fermi sea. Na approaches much
more closely the ideal step function, which generally
should be the case in the monovalent metals. In these
the Fermi surface does not yet fill up the first Brillouin
zone and it is not possible for the lattice to scatter the
electrons out of the Fermi sea while still nearly conserv-
ing energy. There is consequently much less mixing in
momentum space than in the case of higher valence
metals. Stewart’s plot of P(k) for copper shows, for
example, the same abrupt drop at the Fermi surface
as does his plot for sodium. In Cu this step function is
superposed with the broad smooth Gaussian arising
from the excluded volume effect. Stewart’s plots of the
function k2P (k) appear on the right half of Fig. 11 and
show the distribution of counts with respect to the
magnitude of the momentum transferred to the anni-
hilation photons. These plots serve to magnify the high
momentum tails in P(%). The excluded volume effect
in copper thereby shows up especially clearly. The very
weak tail in sodium indicates that our above figures may
overestimate the excluded volume in this metal. A
more quantitative theoretical estimate of how large
9,/o should be in Na would require knowledge of the
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Fic. 11. (After Stewart.) Two-photon angular correlation for
sodium, and aluminum, and copper. The notation is explained
in the text.

4 We are much indebted to Dr. Stewart for supplying us with
this material in advance of publication.
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positron wave function y. Numerical computations of
¥ are in progress* for various monovalent metals, using
the self-consistent field inside the unit sphere and the
boundary condition of vanishing radial derivative at
the surface. It is hoped that these computations may
throw some additional light on the excluded volume
effect, and indirectly may yield some information on
the charge distribution in the ion cores from which the
positron wave function is expelled.

To summarize this section, the following three effects
in metals produce deviations from the ideal parabolic
two-photon angular correlation curve:

(1) Excluded volume effect.
(2) Deviation of Bloch waves from plane waves.
(3) Core annihilation.

There is definite evidence for (1) in the noble metals.
(2)does not seem to matter in the monovalent metals,
but is important in the multivalent metals. There does
not seem to be any evidence for (3).

B. Lifetime

In the preceding section the contribution of the con-
duction electrons to the total annihilation rate of a
positron in a metal has been discussed. The two-photon
angular correlation measurements make it possible to
identify this contribution and the experimental result
is that the positrons annihilate essentially only with the
conduction electrons. All metals investigated have
been found to have the uniformly short lifetime,
7= (1.540.7) X101 gec3:45:46 The total annihilation
rate for any metal is therefore roughly

A=71= (6.673) X 10° sec.

For studying the annihilation with the conduction
electrons the Sommerfeld free electron theory of metals
is a useful starting basis. The positive charge is con-
sidered to be uniformly smeared out so as to have no
effect on the electron motion, except for canceling the
average negative charge density of the electrons. In
this theory a metal is distinguished only by a certain
value of electron density, which is most conveniently
specified by the dimensionless unit sphere radius 7,
defined in Sec. A. As discussed in the Introduction, the
rate of annihilation is proportional to the electron
density at the positron. Taking this density equal to »

# R, Latter, (private communication).

4 S, DeBenedetti and H. J. Richings, Phys. Rev. 85, 377 (1952).

4 G. E. Minton, [Phys. Rev. 94, 758 (1954)] reports the longer
lifetime of (2.9£0.3)X107© sec for aluminum, which would
decrease all the experimental rates stated below by a factor of two.

Note added in proof—Dr. Minton informs me (private com-
munication) that in a subsequent measurement with refined
apparatus he obtained (2.4X0.3)X107% sec. This value is in
good agreement with a recent measurement by Gerholm [T. R.
Gerholm, Arkiv Fysik 10, 523 (1956)], who finds a lifetime of
(2.540.3) X107 sec for positrons in aluminum. Gerholm sug-
gests possible sources of a small systematic error in the work of
Bell and Graham, which might have made their lifetime values
too small by 1.0X107% sec.
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FiG. 12. Comparison of theoretical and experiment values for
the annihilation rate of a positron in an electron gas. See text for
notation.

and using as a convenient comparison the case
of positronium, where the spin-averaged rate is
No=21(1.25X101 sec)y1=2.00X10° sec! and the
density is 1/8mae®, we find a conduction-electron an-
nihilation rate of

>\Somm=>\0 . n(1/81ra03)“1
=No* (3/4mac’®) - 8wae®=12r,3X 10 sec. (28)

The Sommerfeld theory can be expected to apply to
real metals only in the cases where the more refined
theories indicate a Fermi energy approximately equal
to that given by the Sommerfeld theory. This is known
to occur only for the group of metals following Ne in
the periodic table, »iz., Na, Mg, Al, etc. Of these, only
the first three seem to have been studied with regard to
positron annihilation. The 7, values are 3.97, 2.67, and
2.07, respectively. Thus magnesium is an intermediate
case and we shall limit the discussion to the two extreme
cases of sodium and aluminum, which represent a range
of electron density by a factor of 7.02. Now using Eq.
(28) above we find for Na and Al rates which are smaller
than the experimental values plotted in Fig. 12 by
factors of 36 and 5, respectively. This has generally
been considered a serious discrepancy between theory
and experiment, particularly in the case of sodium, and
is especially evident from the curve labeled “Sommer-
feld” in Fig. 12, which shows Agomm in Eq. (28) plotted
S 7.

This discrepancy is actually more apparent than real,
and it is the purpose of this section to show that it can
be removed by a straightforward improvement in the
Sommerfeld electron theory. The essential shortcoming
of the above calculation is that the average electron
density has been used in computing the annihilation
rate, rather than the aciual density of the electrons at
the position of the positron. The actual electron density
at the positron is much greater than the average because
of the strong Coulomb attraction which the positron
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exerts on the electrons. The calculation of the extent of
this polarization of the electron gas about the positron
is inherently a quantum-mechanical many-body prob-
lem and must take into account, in addition to the
positron-electron attraction, the following three main
features: The repulsive Coulomb interactions between
the electrons, the Heisenberg uncertainty principle, and
the Pauli exclusion principle. The first of these opposes
the polarization, since the induced negative charge
screens out the positron charge and thus neutralizes the
agent causing the polsarization. The uncertainty prin-
ciple also opposes the polarization by preventing the
electron wave functions from collapsing about the
positron. The exclusion principle, on the other hand,
aids the polarization by permitting short wavelength
changes in the electron wave functions (corresponding
to the admixture of high-momentum components). The
uncertainty and exclusion principles are automatically
taken into account in any consistent quantum-mechan-
ical treatment of the problem. It is therefore the Cou-
lomb interaction of the electrons which makes an exact
treatment out of the question and an approximate
treatment difficult. This interaction is too strong to be
dealt with as a perturbation, but can fortunately be
transformed away to a large extent by a canonical
transformation, as shown by Bohm and Pines.#” The
electron-electron interaction which remains in their
theory is a much weaker short-range repulsion which
can be satisfactorily handled by perturbation theory.4
The Bohm-Pines theory can be used in the present
problem, and a brief outline of such a treatment is
given in the next section. Here we want instead to give
a cruder variational calculation of the polarization
which nevertheless takes into account all the important
effects, and which yields roughly the same result as the
more exact treatment.

The screening resulting from the polarization of the
electron gas considerably weakens the Coulomb field
around the positron, except at very close distances.
The effective potential about the positron is therefore
quite different from a true Coulomb potential. The long
tail of the latter would have an especially strong effect
on slow electrons, pulling them into the center of force
and causing them to annihilate more rapidly with the
positron. The effect of attraction by a pure Coulomb
potential is readily calculated and is sufficient to greatly
increase the annihilation rate and thereby reduce the
discrepancy between theory and experiment. The two-
photon angular correlation measurements, however,
show no predominant annihilation with slow electrons.
One thus has strong experimental evidence for the
screening of the positrons, which is similar to the
screening of impurity centers in a metal. The Fermi-
Thomas statistical model can be used to find the self-

47 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
8 D. Pines, Solid State Physics (Academic Press, Inc., New
York, 1955), Vol. 1, p. 367.
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consistent potential about the impurity.# In the present
problem, however, we need to know primarily the elec-
tron density rather than the potentia . For this purpose
the statistical model is too crude, yielding, as a matter
of fact, the value infinity for the electron density at the
positron. An additional difficulty is that the positron,
being a light particle, does not set up a central field
common to all the electrons. We therefore turn to the
following variational approach to the specific problem
of finding the density of electrons at the position of the
positron.

Consider that all the electron wave functions are
modified, relative to the plane waves, by the factors
1+4-Cee, which are practically unity for values of the
electron-positron separation 7 greater than the constant
2a. The constant C determines the enhancement factor,
(14-C)%, of the electron density at the positron. The
behavior of a factor of this type as a function of 7 is
illustrated by the curve labeled |¢| in Fig. 13. Repre-
senting the polarization by this factor, with undeter-
mined C and a, we choose as trial wave function

V= o (x0)I;(14-Ce~ ximx0/e) o,(x;),

where Xo and ¢, are the positron coordinate and wave
function, while x and ¢; are the coordinates and wave
functions of the electrons. The ¢; are normalized plane

9

| | | 1 !
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Fic. 13. Wave function and density enhancement factors as
functions of the positron-electron separation (in units of the unit
sphere radius).

4 J. Friedel, Advances in Phys. 3, 446 (1954), and references
therein,
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waves corresponding to the various momenta in the
Fermi sea. To avoid complications from the non-
orthogonality introduced by the electron-positron corre-
lation factors we de not antisymmetrize ¥. Rather, we
follow the less rigorous procedure of including the
effect of exchange between electrons of like spin by
introducing the exchange hole at a later stage.%

We now determine C and ¢ by minimizing the total
energy. Consider first the kinetic energy operator, T';
of the 7th electron. Applied to ¥ it gives a term propor-
tional to T';(1+4Ce 1xi—x0l/e) and a cross-term propor-
tional to k;- (x;—Xo), where x; is the wave vector of the
ith electron. Upon calculating the expectation values,
the cross-term vanishes in the integration over x;, while
the T;pi(x;) term yields #%k2/2m. A sum of this over
all N electrons gives 2NVE,, where E, is the Fermi
energy and is independent of C and a. Returning to the
part of the kinetic energy involving the correlation
factor, we see that the positron kinetic energy operator
yields a term just equal to that written down above.
[Here we can ignore the cross-terms proportional to
(x;—Xo) - (X;—Xo), since they vanish in the integration.]
Integrating these two equal terms over the relative
coordinate x=X;— X, gives

2 f (14-Cemela) (— 72/ 2m) V2 (1+-C—=12)d*x
e—-zla ﬁ? e-—-a:/a
=2wa’C? f ( — —) Vs a*x
(ra®*\ 2m (mwa?)?

=2mac(faf)2 f V100(8) (— 72/ 2m) Vo 2son () B

=2ra¢’aC? ry, (28A)

where ¥100 is the hydrogen ground-state wave function
and ry is the rydberg. Since X_:| ¢i|2=n=3/4was’r,
the expectation value of the total kinetic energy is

3 a
(T)=2NE¢+——C?ry.

753 Qo

The expectation value of the total potential energy is
composed of the positron-electron attractive part
{Vpe), and the electron-electron repulsive part (Vee).
Both of these parts depend only on the charge density

p=—ne[ (1+Ce %2 —1]= —ne(2Ce*/*4-C?% %1%,

The C? term in this expression represents a charge dis-
tribution confined closely to the region around the
positron. It therefore occupies a relatively small total
volume and possesses a relatively small total charge.
Its contribution to the total potential energy can con-
sequently be neglected provided C satisfies the in-

% E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).
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equality C*<2C or C<2. The effect of this approxima-
tion can be seen explicitly in the expression for (Vye):

ep s
(Vo= f —d3x= —47ne f (2Ce#le4-C2%2*%) xdx
x 0

(2C +C?%/4).

fao

The second term is less than one-fourth of the first
for C<2. Thus, the approximation of neglecting the C?
term in the charge density limits the accuracy of our
work to 259, (in the interval 0 <C <2, which, as we shall
see, is the interval of greatest interest). With this ap-

proximation,
12 7 a\?
<Vpe>= __3(_') C ry.
7 Qg

The calculation of (V.. is similar. Here we must,
however, take into account the exclusion principle,
which has been ignored so far, except in that the elec-
trons have been considered to be in different plane
wave states ¢;. But electrons of the same spin are also
required to be in different eigenstates of the position
operator, or in other words, the wave function must
vanish when the coordinates of two such electrons are
set equal. Our wave function ¥ does not have this
property, which is a defect which can be expected to
affect mainly the electron-electron interaction. We
correct for it by studying the result of properly anti-
symmetrizing ¥ in the simpler case of no positron pres-
ent. Then each electron is surrounded by an ‘“‘exchange
hole.”® The probability of finding two electrons of the
same spin at the same place is zero; it is small for all
relative separations smaller than a radius of the order
of magnitude of the de Broglie wavelength of the elec-
trons at the top of the Fermi sea. Since we are interested
in a screening cloud of still smaller dimensions, we can
take the exclusion principle into account by considering
that only electrons of opposite spin can be present and
interact within the screening cloud. Thus, the screening
results from the repulsion of two equal charge distribu-
tions, corresponding to the two different directions of
spin, each of density p/2. Their mutual Coulomb energy
is approximately

p(xl)p(X2)
e f
4]%;—X,|
62d3X1dX2
_n2c2ff —zllae—lea
[ 31— Xe|

212 e2d3x1d3xz
= (27a®)?C? f f

7r(2a)3 | X1— Xa|

29)

d3x1d%Xs

—2z2/2a

7 (20)°

The integral appearing here is the same as that en-
countered in the usual variation treatment of the he-
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lium atom,% and has the value 5a¢/8a ry. Substituting
this expression and the expression for # one obtains

w 45 ( a )5C2
ee)——{ — Iy.
2rs5\ ao

From Eqgs. (28A), (29), and (30) the expectation value
of the total energy of the system is 3VEo/54-3C ry/r,
where

(30)

3
H=—-aC?—
27,

45
12a2c+?x502. (31)

Here we have introduced the dimensionless parameter
a=a/r.a0. We minimize the energy by requiring 43¢/ de
=93¢/9C=0. In the differentiation with respect to «
the first term of JC gives a negligibly small contribution.
Dropping it introduces an error of less than 5%, in the
value for a. Thus we find

a=(16/75)}C-4. (32)

Substitution into Eq. (31) results in an expression
which, when minimized with respect to C, yields

C=(8/25)213% t=0.659r,1. (33)
Inserting this into Eq. (32) one obtains
=237t 1=0.686r,"%. (34)

It is interesting to note that the total displaced charge,
calculated from the values given by Egs. (33) and (34)
is independent of 7, and has the value —2.56e. It is
reasonable that this charge is numerically greater than
the inducing positron charge, since the average positron-
electron separation is smaller than the average electron-
electron separation. Thus the positive charge is able to
hold around it an induced negative charge of larger
magnitude. The positronium ion (see below) is a simpler
example of such a situation. In the present problem
there is no doubt a deficiency of electrons in the region
surrounding the negative charge cloud, since the system
is as a whole electrically neutral. This could be taken
into account, perhaps, by using a more refined trial
wave function in which the correlation factors were
sums of two exponentials.

The value of the optimal energy can now be calcu-
lated by substituting from Egs. (33) and (34) into 3¢,
giving 3= —1.793r,%. If the total energy of the system
is written as $NVE,+AE, we consequently have

AE=—1.793rs % 1y. (35)

This expression indicates an additional criterion for the
validity of the above approach. As 7, is increased, the
amount of lowering in the energy which Eq. (35) at-
tributes to the positron-electron correlations passes
eventually to zero. This is clearly not correct since in
the limit of low electron density the positron will not
correlate equally with all the electrons, but will capture

8 See reference 20, p. 175.
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a particular one of them and correlate strongly with it.
That is, positronium will be formed, resulting in a
lowering in the energy equal to the binding energy of
the atom: '

AE=—Eg=—0.500 ry. (36)

Equation (35) indicates less binding than this for values
of 7, in excess of 5.42. Thus our variational treatment
trial wave function is clearly too crude an approxima-
tion for low electron densities and should be generalized
to allow for different correlation factors C and « for
the various electrons.”? The validity calculation as it
stands is limited to values of 7, comfortably below 5.42.
This is roughly equivalent to the earlier restriction of
C<2, which according to Eq. (33) requires 7,<4.39.
From the above considerations it is clear that the
electron density at the positron will always be at least
equal to its value in positronium. At very low electron
density the annihilation rate will equal one-fourth that
of singlet positronium, since as a result of collisions the
positron will be passed on from one electron to another.®
Thus the momentum distribution of the positronium
atom will be just that of the electrons, and the two-
photon correlation may still be roughly parabolic
(albeit very narrow). The quantum-mechanical descrip-
tion of the ground state in the low density limit in-
volves a superposition of configurations. Each con-
figuration describes separately the positron correlated
strongly, (as described by the positronium ground
state wave function), with one particular electron of a
certain momentum, and uncorrelated with the rest.
Actually, the above statements concerning the
positronium atom apply equally well to the system
of two electrons bound to a positron—the so-called
“positronium ion.” The positronium ion is slightly more

% Important electron-electron correlation effects also set in at
these low densities. See, for example, J. S. Plaskett, Phil. Mag. 45,
1255 (1945).

5 The possibility of the existence of positronium in a metal,
undergoing continuous exchange of the electron partner, has been
mentioned by DeBenedetti and Corben (reference 18, p. 209).

Note added in proof—The negative result of the experiment by
Madansky and Rasetti [L. Madansky and F. Rasetti, Phys. Rev.
79, 397 (1950)7, is often cited as evidence of positronium forma-
tion in metals. It is reasoned that the experimental apparatus,
which contains an accelerating electric field, can only fail to
detect the positrons which diffuse through the metal foils if the
positrons leave the foils in the form of neutral positronium atoms.
An alternative explanation is, however, that the positrons, in
those metals where they remain free, are kept in the foils by the
image force at the surface, and never do emerge. This force arises
from the polarization of the conduction electrons and lowers the
energy of a positron when it is inside the foils by the amount
given by Eq. (35). In other words, the positive positron affinities
of the metals will always prevent the emergence of free positrons.
To decide specifically for any given metal if positronium forma-
tion takes place Inequality (1) can be applied. The positronium
affinity is difficult to estimate, but the electron affinity is given
by the work function of the metal. Recently Gerholm [T. R.
Gerholm, Arkiv Fysik 10, 523 (1956)7], has found evidence of a
weak ‘7, component” in aluminum, which he attributes to
orthopositronium. This result is difficult to understand on two
counts: (1) The high electron density in aluminum yields a
positron affinity which is energetically unfavorable for posi-
tronium formation. (2) The ortho-state, if it is formed, must be
quenched by rapid electron exchange.
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stable than the atom (by about 0.20 ev’%), and is
therefore a more correct low electron density limiting
form for a positron in an electron gas than positronium
itself. It is clear that electron capture will not stop with
the capture of one electron but will proceed until the
full quota of two electrons is captured by the positron.
Hylleraas, who has carried out a five-parameter
variational estimate of the positronium ion binding
energy, finds that good results are also obtained with
the following two-parameter function which includes,
besides screening, only radial correlation:

Y(r1,r9) =coe™ A1 4-co(r1—79)%] 37

r; and 7, are the distances of the electrons from the
positron and are measured in units of ao/k, where
k=L/2M, L=114-156C,, M =8+ 96C;. The normaliza-
tion constant is Co= (1/4w)N—%, where N=4+448C,.
Hylleraas finds that the expectation value of the total
energy of the system is minimized by ¢=0.05, which
yields £=0.734, N=6.4. It is now an easy matter to
evaluate the electron density at the positron. We square
the wave function, set alternately 7, and 7, equal to zero,
and integrate over the remaining variable, which we
denote by 7. This gives

2¢e* 4w f dr 1% (1+cr?)?
’ = (1--24¢,+360¢c) /N =0.485 /,

which, including the units of length, corresponds to a
density of 8k 0.485X (1/8ma,?), or 1.53 times the den-
sity in positronium. Hence the annihilation rate in the
positronium ion is about 3.06X10° sec™® corresponding
to a lifetime of about 3.27X 1071 sec. The accuracy of
these figures is of course limited by the approximate
nature of the trial wave function defined by Eq. (37),
but should perhaps be good to at least 10-209,.

Since we have fairly reliable expressions for the an-
nihilation rate in the two limits of low and high electron
density we can bridge the difficult intermediate region
by interpolation. Such a procedure is of course rather
arbitrary, but since we are dealing with large effects
the resulting accuracy should be sufficient for our
purposes. For high densities the annihilation rate is
based on Coulomb enhancement of the Sommerfeld rate
and is given by A=12r,3(1+C)?10° sec™L. Substitution
from Eq. (33) gives

A=12(rs#40.6597,%)2X 10° sec™, (38)

which is shown plotted as the “Enhanced” curve in
Fig. 12. For low densities Eq. (38) no longer applies
and N equals the positronium ion rate, as shown by the
horizontal “ion” line in Fig. 12. The positronium rate
shown by the lower dashed line, is included for com-
parison. In drawing the interpolation curve, we have
arbitrarily assumed that the intermediate region ex-

% E. A. Hylleraas, Phys. Rev. 71, 491 (1947).
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tends over the interval 2 <7, <35.5 and have tangentially
fitted a smooth curve at the end points to the high and
low density curves. The resulting curve, shown as a
bold line in Fig. 12, is within the experimental error of
the measured rates for Al but somewhat outside for Na.
Until the experimental errors are reduced we conclude
that there is no basic difficulty involved in understand-
ing the observed fast rates of annihilation with the
conduction electrons in metals. The low and inter-
mediate density range is, however, clearly in need for
much more careful study than that given here.

A word should perhaps be added concerning the less
ideal metals in which the effect of the ion lattice is more
pronounced and the Fermi energy differs from that
calculated on the basis of a degenerate electron gas.
Applying the Sommerfeld theory is less justified in these
metals than in Na and Al, but it may still be useful to
do so. It is particularly interesting to consider the other
alkali metals. These cover a fairly wide range of electron
densities,®® with the highest density given by lithium,
for which 7,=3.22, and the lowest density by cesium,
for which 7,=35.57. Potassium is intermediate, with
r,=4.87. The positron lifetime has been measured in Li
and K and found to be the same as in Na.5¢ An especially
interesting extreme case of low electron density is
cesium. With its large 7, value, cesium®” has an electron
density 2.69 times smaller than that of sodium, and
falls just within the low density region of Fig. 12,
where a conduction electron annihilation rate of
3X1079 sec™! can be expected.

C. Coulomb Effects

A wvariational approach such as that used in the
preceding section can only account for the gross fea-
tures of the positron annihilation in metals. To describe
the finer points, such as the dependence of annihilation
cross section on electron momentum, it is necessary to
have a detailed theory of metals which includes the
important effects of the Coulomb interactions. Such a
theory, the Bohm-Pines electron-plasma theory,*7:48
exists only for the idealized model of a gas of electrons
in a uniform smeared out background of positive charge.
This abstraction exhibits the most important features
of the metals, however, and will be dealt with exclu-
sively in this section. Our treatment will be limited
to relatively high electron densities where the Coulomb
interactions may be treated as perturbations. The
purpose of the present work is to show that the Coulomb

5 These values have been taken from a table appearing in the
following article on electron interactions in metals: D. Pines,
Phys. Rev. 92, 626 (1953).

56 S. DeBenedetti and H. J. Richings, Phys. Rev. 85, 377 (1952).

87 Lifetime measurements on this metal are in progress by B.
Green and L. Madansky (private communication).

Note added in proof—Dr. Madansky informs me that a pre-
liminary measurement yielded a lifetime of (3.74-0.5) X107 sec,
and consequently an annihilation rate of (2.7240.4)X10° sec™™.
This rate is significantly lower than that for the other metals,

and just agrees, within the experimental error, with the annihila-
tion rate of the positronium ion,
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field around the positron should result in not only the
enhancement of the annihilation rate discussed in B,
but also in a small probability for excitation of a plasma
oscillation upon annihilation of the positron. It does
not seem feasible to observe this effect experimentally,
since it would require exceedingly precise measurement
of the energy of the annihilation photens. There is,
however, evidence for a similar effect in the x-ray emis-
sion of metals. The close relationship of positron anni-
hilation and x-ray emission is discussed in Sec. D below.

In order to compute the positron-annihilation be-
havior of an electron gas it is necessary to calculate the
stationary state wave functions of the system to suffi-
cient accuracy, including the very vital Coulomb inter-
actions. Bohm and Pines succeed in doing this with a
canonical transformation which removes the strong
long-range part of the Coulomb interactions, leaving a
short range part which is sufficiently weak to be treated
as a perturbation. The stationary state wave functions,
under neglect of the short range interactions, are par-
ticularly simple in the Bohm-Pines representation.
They are Slater determinants of plane waves times
Hermite functions of the plasma oscillator variables.
If a positron is present in the electron gas it is neces-
sary to include its interactions with the electrons. The
resulting wave function for the coupled system can then
be expressed in the usual Schrodinger representation,
by inverting the Bohm-Pines transformation. From this
wave function the electron density at the positron could
be obtained, and consequently the lifetime. More de-
tailed properties, such as the annihilation rate for
various electron momenta could of course also be ob-
tained in this way.

A more convenient procedure than that outlined in
the preceding paragraph is to work entirely in the
Bohm-Pines representation, by carrying out the canoni-
cal transformation on the annihilation operators, as well
as on the Hamiltonian.’® Denoting the operator which
annihilates an electron of momentum 7%k by ax, we
make the Bohm-Pines transformation and obtain

i
a PP =exp(—1S/%)ax exp (iS/ﬁ)%ak—£[S,ak], (39)

where we neglect commutators of order higher than the
first. The operator S, in the notation of second quantiza-
tion is

S=——

m\Vw,?

2 X e (K—x/2)

«<kec K
X (4 ox*ax—x— A Fa*x_ax).

ie 27%3)*

Here we have made some rather drastic simplifications
of the expression given by Bohm and Pines.® V is the
volume of quantization, w, the plasma frequency,

5 The author thanks Professor Pines for helpful suggestions on

this point.
® Reference 47, p. 617,
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fik, the cut-off momentum, 4, and 4,* the annihila-
tion and creation operators for a plasmon® of momentum
ik, and ¢, is the unit vector along the direction of «.
Using the commutation relation

Lax ™t a5 ]= —Sxrxanrr,
we split Eq. (39) into
aBF= ak+dk'+ak”,

e f 2rh\}
a'= +—(
m\Vw,?

e /2rh \}
ak~=~—( ) 5 e (kbw/D A 0 (41)
m k<ke

3
Vo,

where

> e (k—x/2)A ax_s,

k<kc

(40)

The second of these operators has the interesting
property that it simultaneously annihilates an electron
and creates a plasmon. That such an event should occur
is not surprising since the annihilating electron leaves a
hole in the charge distribution. The surrounding elec-
trons tend to rush into this hole but their inertia carries
them too far, resulting in a plasma oscillation.

The probability of such an event as described above
relative to the normal mode of decay can easily be
estimated by considering the special case of k=0.
Then, according to Eq. (41), the matrix element for
excitation of a plasmon and simultaneous annihila-
tion of an electron, both of momentum #x, is — (e/2%m) -
2713/ Vw,*)t-k. The total probability of plasmon ex-
citation is found by summing over x:

P=(we’h/2m*w,*V) 3 &
k<ke
me?h  4xV ke 285 Eyry?
— _ A= —

= . A= — -
2w,V 8w S5t (hwy)?

. (aoko)a. (42)

E, is the Fermi energy and 8= k./ko, where %k, is the
Fermi momentum. Equation (18) and the corresponding
electron gas expressions Ey=3.67 ry/r,? and

hop=3.46 ry/r:t
reduce Eq. (42) to
P=0.07958%/(r,)*.

(43)

(44)

Since B is at most of the order of unity, the probability
for this mode of plasmon creation can never exceed a
few percent.®! Although Eq. (44) holds only for the

8 We follow D. Pines in using this term to denote the quantum
of energy associated with a plasma oscillation: D. Pines, Revs.
Modern Phys. 28, 184 (1956), this issue.

61 In reporting this result earlier, (R. A. Ferrell, Bull. Am.
Phys. Soc. Ser. I, 1, 138 (1956)), it was stated that this effect
increases the total annihilation rate in the case of no interaction
between the positron and the electron gas. This is, however, not
correct, since the second-order terms neglected in Eq. (39) will
cancel part of the first term, thereby compensating for the contri-
bution associated with plasmon creation. In general, if ¥ is the
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case of no interaction between the positron and the
electron gas it seems likely that the probability of this
mode of plasmon creation is small also in the case of
interaction. Therefore we neglect the ai’”’ term of a,B¥
in the subsequent work below.

The effect of the ay’ term of ax®¥ depends on the
density of plasmons in the electron gas resulting from
the interaction with the positron. This can be estimated
from earlier work® on the analogous problem of plasmon
creation by an incident fast electron. Here, although the
positron is at rest and can only create virtual plasmons,
the matrix element for the process is the same, except
for sign, as that given there in Eq. (5):

H/!=— 2weé*hw,/Vi®)h (45)

The energy required to create a plasmon in the state
of momentum #x is #w,. (Here we neglect both the dis-
persion of the plasma oscillations and the recoil energy
of the positron.) The probability amplitude for this
state, according to first-order stationary state perturba-
tion theory, is

cx=H//(—hw,)= 2me®/V*hw,)?}, (46)
so that the total probability of finding a plasmon in
the ground state of the coupled system is

An V. ke
P=Y o= f lcx|tdx
k<ke 83 0
=e*Bko/mhw,=p=r,/8. (47)
The last two expressions were obtained from Egs. (18),
(43), and Pines’® equation

B=0.353(r.)} (48)

for the cut-off parameter. The experimental work of
Watanabe® and the theoretical work of Quinn and
Ferrell® indicate that plasmons exist for wavelengths
20-409, shorter than Pine’s cut-off wavelength. This
difference is, however, not enough to alter significantly
the present semiquantitative results. For the sake of
convenience and simplicity we continue to use Pines’
expression.

ground state of the electron system and ¥, the various final
stationary states in which it can be left after annihilation then the
rate of transfer of momentum #k to the annihilation photons is
proportional to Zj| (¥y,ax¥) 2= (ax¥,ax¥) = (¥, I¥), where
Nyx=ax*ax is the occupation operator for the plane wave of
momentum #%k. The total rate is proportional to

2y (¥,900) = (T IW) =N (¥,¥)=N,

since ¥ is an eigenfunction of the total number operator 9= 2y My
with eigenvalue equal to the total number of electrons, N. The
total annihilation rate is thus independent of ¥ and the interac-
tions which determine it. We wish to thank Professor W. Kohn
for discussion on this point.

62 R, A. Ferrell, Phys. Rev. 101, 554 (1956).

6 Reference 48, Eq. (6.8).

8 H, Watanabe, J. Phys. Soc. Japan 11, 112 (1956).

% J. J. Quinn and R. A. Ferrell, Bull. Am. Phys. Soc. Ser. II,
1, 44 (1956), and paper to be submitted to The Physical Review.
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The first term of ¢x®¥ can annihilate an electron and
leave a real plasmon in the final state. The rate for this
process is P’ times the Sommerfeld rate. The latter is,
however, many times smaller than the actual total
annihilation rate. The relative probability that a
positron will leave a plasmon behind after it annihilates
is therefore, for the present consideration, negligibly
small. Evidence for such a weak effect in x-ray emission
will be discussed in the next section. Another effect of
the virtual plasmons comes from their annihilation by
the ay’ term of a;BF. The state of a zero momentum
electron hole and no plasmon is obtained by applying
b_.a., where b_, is the positron annihilation operator,
to the part of the ground state wave function containing
a plasmon and recoiling positron of momenta =7x,
respectively. The total coherent amplitude of this final
state, arising from the long-range interactions of the
positron with the electron gas, is

e [/ 2nh\}
Clr.=— ) D Koy

2m\ Vw7  x<ke

(49)

It is a straightforward calculation to substitute for ¢,
from Eq. (46) and use the electron gas expressions of
Eqgs. (18) and (43) to reduce Eq. (49) to ¢;...=0.13928%.
According to Eq. (48), 8 is the order of one-half in the
range of electron densities of interest, so that the long-
range coherent contribution to the annihilation is only
of the order of a few percent.

As shown in the preceding paragraphs, plasma effects
in the annihilation process are relatively minor. We now
deal with the short range interaction of the positron
with the individual electrons. This interaction, except
for sign, is the same as that between pairs of electrons.
The latter is expressed by the potential function

2
eik-r

¢ 2 4e
Ha.r.(r)=7[1——5i(kcf)]= 2 (50)

>ke VE2

where r is the relative coordinate of the pair of electrons.
The Si function is tabulated by Jahnke and Emde%5 and
H,.:., the short-range part of the Coulomb potential,
is plotted by Bohm and Pines.®® Let us consider anni-
hilation with the electron in the Fermi sea of momentum
7iky. This state is indicated schematically by the
“zero-order” diagram of Fig. 14. The dot at the center
of the diagram symbolizes the positron of zero momen-
tum. The effect of the interaction is shown in the lower
half of Fig. 14. The left-hand diagram exhibits a virtual
collision between the positron and electron, resulting in
an exchange of momentum #%k. Only exchanges which
take the electron outside the Fermi sea are permitted
by the Pauli exclusion principle. The matrix element
for such a collision is, according to Eq. (50), (with a
change in sign), —4me?/Vk?, while the energy of excita-

65a Reference 21, pp. 1-9.
96 Reference 47, Fig. 1.
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tion is (#2/2m) K+ |ki+k|2—k?) = (B2/m) (B*+k-k,).
Introducing the positron and electron coordinates, Xo
and x;, the wave function of the pair can be written, to
first order, as

W (Xo,%1) =¥ o+¥;
4 e K- (x1—x0)

=Vot— - — 1y,
° = B4k k)

Vdo
|ki+k| >ko

(51)

¥, is the zero-order product of plane waves for the
positron and electron, and the factor e (xi—x) converts
it into the first-order state indicated in Fig. 14.

Since ¥, is a common factor of the right-hand member
of Eq. (51), it follows that the effect of the Coulomb
attraction between the positron and electron is simply
to multiply the wave function by a factor which en-
hances the probability of finding the electron in the
vicinity of the positron. Explicit calculation of this
correlation factor, which we write simply as ¥/¥,,
is easy for the special case of k;=0. Carrying out the
integration in Eq. (51) and denoting the separation of
the pair by 7, one finds

¥/¥o=1

7e [sinkor

m™
~+coskgr— km’(———Si (kor) ) ] (52)
6.02L kor 2

Figure 15 contains plots of this function for r,=2 and
rs=4. The r,=4 curve very much resembles the corre-
sponding curve of Fig. 13, which was obtained from
the variational treatment. It will be noted that the
present curve contains the refinement that, outside the
immediate vicinity of the positron, the enhancement
factor drops below unity so as to give a more correct
value for the total screening charge.

ZERO ORDER

FIRST ORDER

%

F16. 14. Momentum diagram of zero-order and first-order
states in perturbation theory.
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The factor by which the annihilation is enhanced
over the Sommerfeld rate is

[/ [%o*| rmo= (1+Ciar)?,
where according to Eq. (51),

rs 1 i
S T
3.01 4 ) K2 (kKx1)

k>B
[K1+%]| >

Here all the momentum vectors are measured in units
of the Fermi momentum. The case k;=0 is again par-
ticularly simple yielding Co=7,/3.01. This result,
which can also be obtained immediately from Eq. (52)
by setting #=0, enhances the Sommerfeld rate by the
factors 2.77 and 5.42 for 7,=2 and 7,=4, respectively.
The corresponding values of 4.45 and 8.19, obtained
from Eq. (33) of the preceding section, are considerably
larger. The second-order effects of the positron-electron
attraction will increase the present enhancement factors,
and it is possible that most of the discrepancy can be
removed in this way. This point is still under in-
vestigation.

Concerning the momentum dependence of the en-
hancement factors, a detailed study has been carried
out and will be published elsewhere.’” Therefore, only
the results will be stated here. We find that the anni-
hilation rate for the fastest electrons is about 10-209,
greater than for the slowest. This is contrary to the
usual expectation that the slower the electrons are,
the more they should be deflected by the Coulomb field.
As a matter of fact, the enhancement factor for free
electrons is inversely proportioned to their velocity.%8
The electrons in a degenerate gas are not, however, free
in the sense that the motion of one electron is inde-
pendent of the existence of the others. The Pauli
exclusion principle plays a predominant role in the

20

0.5~

I 1 1 | \ J
(o] I 2 3 4 5 6
kor

F16G. 15. Positron-electron correlation functions for two different
electron densities as a function of the positron-electron separation
[in units of (Fermi wave number)™].

87 To be submitted to The Physical Review.
%8 See reference 1, p. 134.
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present problem, and it is the faster electrons near the
surface of the Fermi sea which are more nearly free in
the sense of being less restricted by the Pauli principle.
This effect is not very pronounced and tends to be
masked by the other effects discussed in Sec. A. As the
experimental data on metals continue to become more
precise, however, it will no doubt eventually be neces-
sary to allow for the momentum dependence of the
annihilation rate of the conduction electrons.

An additional complicating effect is illustrated in the
lower right hand portion of Fig. 14 and is due to the
short range electron-electron interactions. These virtual
collisions populate the states outside the Fermi sea
with a total probability per electron® of

I

0.39
6=—(————0.35+0.075ﬁ). (54)
29\ 8

8 varies from 6.59, for 7,=2 to the relatively large
value of 14.19, for r,=4. Although annihilation from
these high momentum states would contribute to the
tails found in the two-photon angular correlation, this
contribution is discriminated against by the large en-
hancement factors for annihilation from the Fermi sea.
In addition, the probability of a high momentum com-
ponent is probably overestimated by Eq. (54). As in
the case discussed above of the screening cloud around
the positron, the high momentum.admixtures due to
the electron-electron interactions produce Coulomb
holes which are bound closely to the electrons. But for
the annihilation it is not these Coulomb holes which
matter, but only those in the vicinity of the positron.
The latter are probably suppressed by the increased
electron density at the positron. We therefore conclude
that the contribution of the electron-electron inter-
action to the two-photon angular correlation tails is
probably in most cases negligible compared to that from
the excluded volume effect.

D. Relation to X-Ray Emission

The emission of x-rays by a metal is similar to the
process of positron annihilation. In both cases an elec-
tron drops into a “positive hole,” emitting electromag-
netic radiation. In the one case the “positive hole”
consists of one of the fixed positive ions which lacks an
electron in one of its inner shells, while in the other case
it is a positron free to move about through the metal.
In each case, however, the Coulomb field surrounding
the “positive hole” must produce important changes in
the electron distribution in its vicinity. As discussed in
the preceding two sections, this Coulomb field enhances
the positron annihilation rate manyfold. Although it is
not feasible to measure the absolute lifetime of the
“positive hole” in the case of x-ray emission, it is quite
probable that it is also many times shorter than would
be the case without the Coulomb attraction. Recently

% D, Pines, reference 48, p. 398.
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Fie. 16. (After
Skinner.)  Emitted
x-ray intensity for
sodium and copper
as a function of
photon energy (meas-
ured in electron volts,
above minimum en-

ergy).

Friedel™ has emphasized the importance of screening
in interpreting x-ray data. The purpose of this section
is to point out some similar Coulomb effects, suggested
by the preceding discussion of positron annihilation, in
the x-ray emission spectra of a few metals. The theories
of positron annihilation and x-ray emission are so
similar that it seems desirable that they should proceed
hand-in-hand. Advances in one field can be applied in
the other, and vice versa.

Although the physical phenomenon in x-ray emission
is practically identical to that in positron annihilation,
the relative transition rate to the various final states of
the system is measured as a function of the energy of the
final state rather than its momentum. Thus the two
types of experiments complement one another by study-
ing different facets of essentially the same phenomenon.
This is an additional reason for adopting a unified view-
point toward these two fields, and it is to be hoped that
a great deal can be learned about various individual
metals by correlating x-ray emission and positron
annihilation results on the same metal. A particular case
in point is sodium, whose emission spectrum is shown
in the upper half of Fig. 16.”* The sharp emission edge
at the right, representing the maximum x-ray energy,
corresponds to leaving the final system of no “positive
hole” and one less conduction electron in its ground
state. The rest of the spectrum corresponds to leaving
the system in an excited state, and would be expected
on the Sommerfeld theory to have a parabolic form with
a low-energy cutoff at an x-ray energy shifted to the
left of the emission edge by the Fermi energy. The
corresponding final state is that of a hole in the one-
electron plane wave state of zero energy. There exist,
of course, even higher excited stationary states of the
system, which consist of at least two holes in (plus one
electron outside) the Fermi sea. These, however, cannot

% J. Friedel, Phil. Mag. 43, 153, 1115 (1952).

™ The curves in Fig. 16 were prepared from those appearing in
the review article of H. W. B. Skinner, Repts. Progr. Phys. 5, 257
(1938).
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be excited by annihilating an electron from the ground
state if the latter has no holes to begin with.

The experimental spectrum has qualitatively the
expected parabolic shape, but does not exhibit the sharp
low-energy cutoff. Instead there is a small tail which
extends toward lower energies, and which can be inter-
preted as due to the presence of holes in the initial state,
arising from the electron-electron collisions. The effect
of these collisions was estimated by Skinner, and more
recently by Landsberg,” and is the same as discussed
at the end of the preceding section, in connection with
the tails in the two-photon angular correlation. The
estimate obtained there of §=0.14 for r,=4 would lead
to an excessively large tail, both for the positron anni-
hilation and the x-ray emission. But the reasons given
in Sec. C also apply here and result in a tail which is
relatively small compared to the main part of the emis-
sion band. We have not investigated this question
quantitatively, but it seems likely that satisfactory
agreement with experiment may be obtained in this
way. The Coulomb enhancement alone already reduces
the relative size of the tail by a very large factor.
Landsberg did not take into account these corrections,
and therefore was forced to assume an excessively weak
screened Coulomb interaction of the electrons in
order to obtain an effect sufficiently weak to agree with
experiment.”

Another metal in which the attractive effect of the
Coulomb field is likely to be important is copper, whose
spectrum is also shown in Fig. 16. Here the s electrons
will be pulled in to screen out the positive charge, while
the d electrons, being in a filled shell, are not as free to
correlate. The density of s electrons may therefore be
greatly increased at the “positive hole,” leading to a
proportionally larger x-ray intensity from the s band
than is generally assumed. This effect may help to ex-
plain the discrepancy between the predicted theoretical
curve (dashed line) and the experimental curve (solid
line).

According to the preceding section a small fraction of
the annihilations should leave the system in an excited
state of plasma oscillation. The analysis given there
applies also to x-ray emission, which is actually a
much better method of detecting the effect, since the
final states of the system are separated out according
to their energy. The Ly, 111 emission spectrum of mag-
nesium seems to exhibit this effect and actually contains
a weak broad line shifted toward longer wavelengths
by the Mg plasmon energy of 11 ev, measured from the
emission edge. Skinner™ also mentions such a line for
the Al Ly 111 spectrum, where the shift is 30 ev, or
twice the plasmon energy. The creation of two plasmons
upon annihilating the “positive hole” is possible but

72 P. T. Landsberg, Proc. Phys. Soc. (London) A62, 806 (1949).

% D. Pines, reference 48, p. 413, discusses the difficulty in rec-
onciling Landsberg’s screening length with the value obtained
from the Bohm-Pines theory.

" H. W. B. Skinner, reference 36, p. 121 and Fig. 9.
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would be expected to be less probable than single
plasmon creation. The absence of an emission line corre-
sponding to the latter is puzzling. The line might con-
ceivably be masked by the tail from the main emission
band. The absence of such a line in the Na Ly, 111 spec-
trum is probably due to an extreme case of screening, as
is possible in such a case of low electron density. The
work of Friedel™ indicates that there is probably some
sort of bound state around the “positive hole.” The
bound electron would screen out the long range inter-
action of the “positive hole”” with the plasma oscillators,
resulting in no polarization of the plasma and conse-
quently no virtual plasmons in the initial state.

Plasmon creation upon absorption of x-rays should
also occur in all metals which exhibit plasmon creation
upon emission. This is because the state obtained as a
result of the x-ray absorption must be expanded in terms
of the stationary states of the coupled system of the
“positive hole” and the conduction electrons. If there
is polarization of the plasma there will be nonzero
probability amplitudes in the expansion corresponding
to the stationary states of plasma oscillation. Thus the
absorption edge should appear reproduced and shifted
toward shorter wavelengths by the plasmon energy, and
show up in the so-called fine structure of the x-ray
absorption. The general appearance of such fine struc-
ture, correlated in a wide variety of metals with the
characteristic energy losses, was noted by Leder et al.”s
By making the tacit assumption that the fine structure
was exclusively of the Kronig type, or at least arose
from interaction with the lattice, these authors inferred
that the corresponding characteristic energy losses must
all be of a nonplasma nature. From the above discussion
it is clear that this assumption is by no means required
and that the Bohm-Pines plasma theory offers a quite
natural interpretation of the correlation noticed by
Leder et al.

1IV. POSITRONIUM IN INSULATORS
A. Lifetime

It is generally accepted that the long lifetime, or
“ry component,” discovered by Bell and Graham? in
many insulators, is due to the formation of orthoposi-
tronium. Orthopositronium, when isolated from other
atoms and perturbing fields decays by three-photon
emission. Consequently the two-photon counting rate
must be reduced in those solids exhibiting the 75 com-
ponent. This has been observed by Pond.”™ The three-
photon rate itself has been measured by DeBenedetti
and Siegel,”” Graham and Stewart,’® and Wagner and
Hereford.™ A typical case investigated by Bell and
Graham is shown in Fig. 17 where the logarithm of the

75 Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
76 T, A. Pond, Phys. Rev. 93, 478 (1954).

77 S, DeBenedetti and R. T. Siegel, Phys. Rev. 94, 955 (1954).
78 R. L. Graham and A. T. Stewart, Can. J. Phys. 32, 678 (1954).
7 R. T. Wagner and F. L. Hereford, Phys. Rev. 99, 593 (1955).
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FUSED_OUARTZ SAMPLE
%~ 35XI0"SEC (TI%)
v~ 1.8X10° SEC  (29%)

/

COINCIDENCE COUNTING RATE

7%
X +INSERTED DELAY, 10° SEC UNITS

Fic. 17. (After Bell and Graham.) Annihilation photon counting
rate for fused quartz as a function of time delay (in 107? sec).

annihilation rate of positrons in fused quartz is plotted
against time delay. They find, by extrapolating the
linear portion of the curve to the left, that the 7, com-
ponent contains 299, of the counts, with a decay con-
stant of 7o=1.8X10° sec. This is typical of the 7, values
found by Bell and Graham, which are all of the order
of 10~° sec. The 2s state of parapositronium happens
to have a lifetime eight times that of the 1s state, or
precisely 10~? sec. This coincidence has led Dixon and
Trainor® to suggest that this excited state of posi-
tronium is responsible for the 7, component. Longer
values of 73, up to 4X 107 sec, can be obtained by as-
suming rapid para-ortho conversion. Wallace* has
pointed out that the hypothesis of Dixon and Trainor is
untenable because of the rapid de-excitation of posi-
tronium which can be expected in solids. An additional
difficulty, although not so conclusive, is that the Ore
gap is always much smaller for the excited states than
for the ground state. The ground-state binding energy
of ry/2 must be replaced in Inequality (1) by ry/8, in
dealing with the energetics of 2s formation. Even if the
inequality is satisfied for the 1s state it may very well
not be satisfied for the 2s state. Therefore we must
regard capture into the ground state as the dominant
mode of positronium formation. The few positronium
atoms which are formed in excited states will quickly
break up, if there is no Ore gap for these states, or be
quickly deexcited to the ground state. In interpreting
the 7, component it seems that one should take only the
ground state into consideration.

Ortho-para conversion has been suggested by Bell
and Graham to account for their values of 75. There is,
however, no reason to expect such a conversion in the
insulators exhibiting the 75 component. These all con-
sist of atoms with closed shells, in which the electron
spins are paired off. There can therefore be no con-
version by electron exchange. (The situation is, of
of course, quite different in metals, as discussed in
Section ITIB above.) If the weak effect of electrostatic

8 W. R. Dixon and L. E. H. Trainor, Phys. Rev. 97, 733 (1955).



332

fields is neglected (see IVC later), one finds the ortho-
positronium atoms remain as such and have a zero
two-photon annihilation rate. The slow three-photon
rate would lead to a lifetime of ~10~7 sec, and can be
neglected here. Thus, the positron in orthopositronium
is stable with respect to annihilation with its own elec-
tron, and can only decay by “pickoff” annihilation with
an electron belonging to one of the surrounding atoms
in the solid.®

Of all the condensed materials exhibiting the 7. com-
ponent, liquid helium seems the simplest to deal with
theoretically. Most of our discussion of this case can be
applied to the general case of the insulating solids.
Graham et al.® report 7= (2.740.3)X107° sec. A
rough theoretical estimate is obtained from the average
density of electrons, which is most easily specified by
the radius, 7,'ao, of the unit atomic sphere. The present
parameter is primed to distinguish it from the somewhat
similar parameter used in the theory of metals. The
density of liquid helium at the boiling point® is 0.127
gm/cm?, from which one can calculate the atomic
volume. Equating the latter to 4m7,"%a¢®/3 one obtains
7s’=4.35. The ratio of the electron density to that in
positronium is consequently

2(4xr,%a6/3)"/ (8mac®) ' =12/r,/3=1/6.85,

corresponding to a lifetime of 3.42X10~? sec. This
value is of the right order of magnitude but slightly
longer than the experimental value of 75. Most of the
prompt 7, decay is presumably due to positrons which
have “missed the Ore gap” and are stopped without
forming positronium. These positrons are attracted to
the helium atoms by a polarization force and their
wave function is concentrated at the surface of the
atoms, similar to the situation around the negative
ions in the ionic crystals. Thus the nonpositronium
positrons are predominantly in regions of high electron
density, which explains their rapid annihilation rate.
It should be emphasized that the prompt mode of decay
is actually complex and composed of two parts. There
is a small percentage (one-third of the 7, percentage) of
parapositronium decay with the very short lifetime
of 1.25X107 gec. The bulk of the 7; component is
however made up of the nonpositronium decay referred
to above, and with generally somewhat longer lifetime.

There is also a weaker polarization force, of the Van
der Waals type, between a positronium and a helium
atom. It will considerably reduce the theoretical lifetime
of the orthopositronium atoms. Actually, there are two
different types of forces acting on the positronium
atoms, which tend to compensate one another. Besides
the attractive Van der Waals force there is the repulsive

81 The possibility of this process has been mentioned by R. L.
Garwin, Phys. Rev. 91, 157(L) (1953) and M. Dresden, Phys.
Rev. 93, 1413(L) (1954).

82 Graham, Paul, and Henshaw, Bull. Am. Phys. Soc. Ser. II,
1, 68 (1956).

8 C. F. Squire, Low Temperature Physics (McGraw-Hill Book
Company, Inc., New York, 1953), p. 66.
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exchange force. The positronium atom is excluded from
the interior of a filled shell atom, since the exclusion
principle does not allow the positronium electron to be
in a region already ‘“‘saturated” by electrons. The ex-
change force works in general against the pickoff
annihilation and is probably the dominant reason in
most materials for the long lifetime. The Van der Waals
force seems to compensate for this effect in liquid
helium, where we have seen that the pickoff rate is
already slow enough to account for the 72 component,
without the exchange force. Nevertheless, we make
here a rough calculation of the exchange force for
helium, which may serve as a prototype for cases where
the effect of exchange predominates. We shall also use
the result of the calculation in discussing the Ore
diagram for liquid helium.

Let the helium nucleus be at the origin, and the
coordinates of the spin up positron, the spin up posi-
tronium electron, and the spin up helium electron be
Xo, X1, and X, respectively. The spin down helium elec-
tron does not exchange and will be ignored here. Let the
positronium atom be relatively far away from the
helium atom, and with wave function ¥ (x)x(X), where
x=x;—Xo and X= (x;+Xo)/2. ¢ and x are the internal
and center-of-mass wave functions of the positronium
atom. The total potential energy consists of, aside
from the part belonging to the helium and positronium
atoms separately, (1) an interaction of the helium and
positronium electrons, (2) an attraction between the
helium electron and the positron, and (3) an interaction
between the helium nucleus and the positronium atom.
(1) is a minor effect in this type of problem and will be
neglected. It would of course have to be included in a
more exact treatment. An additional simplifying feature
of the present problem is that (2) may be neglected.
This is due to the tight binding of helium compared to
the relatively loose positronium binding. The overlap
of the electron wave functions is close to the helium
nucleus and far from the positron. Therefore we con-
centrate on (3) and calculate its expectation value.
The direct integral vanishes because of the symmetry of
Y=g |x—xl/2a0/(87a*)} with respect to interchange of
the positron and electron.® This leaves only the ex-
change integral

Eex=—fffd3X0d3X1d3X2¢*(X1)¢*(X2"'XU)

+X0 —2¢?
xX*(522 ) ? o (x (xi—x0)

X1
X1+Xo

¢ is the wave function of the helium electron and

8 In this respect the present problem is simpler than the well-
known analogous problem of the He—H short-range repulsion.
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vanishes except for values of the argument near the
origin. Therefore the remaining factors, for large
|Xo| =% can be approximated by setting x;=x,=0.
In this approximation we also have xo=2X so that
Eq. (55) becomes

Furm f X |x(X) U (X), (56)
where
4 ¢ (xy)
U(X)=ry e2X/e. f @x—— | @Pxopp(x3).  (57)
T X1

By inserting the approximate expression?® ¢ (x)=¢=%/2/
(wa®)}, where a=ao/Z’ and Z’ is the effective screened
nuclear charge of 27/16=1.687, it is a simple matter to
reduce Eq. (57) to

U(X)=(128/2") ry e2XI=, (58)

A somewhat more convenient form of this equation is
U(X)=0.824 ry ¢ (X200, (59)

which emphasizes the fact that the approximations on
which Eq. (57) is based fail completely for separations
less than one angstrom. The exchange energy is neg-
ligible for separations from 3a, out to 4.35a,, the radius
of the unit atomic sphere. It increases rapidly in the
neighborhood of X=2a, and tends to prevent separa-
tions of less than an angstrom. Such a short-range
repulsion, which must always be present, not only for
neutral atoms, but for ions consisting of filled electron
shells, guarantees a moderate pickoff annihilation rate.

From the above paragraph it is clear that if posi-
tronium is formed at all in an insulator the atoms in the
triplet state will exhibit the long 7 lifetime. Only the
question of the existence of the Ore gap remains. This
has been discussed in Sec. ITA above, where it is shown
that the determining factors are the (1) electron, (2)
positron, and (3) positronium affinities. These can be
estimated roughly for liquid helium. Beginning with
(3), let us replace the exchange repulsion with a rigid
sphere at a radius of 2a. Then the positronium atoms
have a “free run” from one helium atom to the next of
2(rs’ —2)ao=4.70a,, corresponding to a negative posi-
tronium affinity of 0.223 ry=3.03 ev. Both (1) and (2)
are also negative and probably fairly large. We need
here only the sum, which can be estimated very roughly
by using plane waves for both the electron and positron.
In calculating the expectation value of the total Cou-
lomb energy the direct integrals cancel. The exchange
integral for the electron-nucleus interaction is, if we
use the same notation as above,

3 —2¢?
Ey'=——— f f &*x18%% 9™ (X1) & (x2)
47y 3,3(1»03 X1

=(96/r,"*2"%) ry=0.409 ry=5.55 ev.
85 See reference 20, p. 176.
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The constant in front of the integral comes from the
normalization of the electron wave function. Thus, the
sum of the electron and positron affinities in liquid
helium is even more negative than the positronium
affinity. This would lead one to expect a higher per-
centage of positronium formation in liquid than in

. gaseous helium. This seems to be the case experi-

mentally.® Although the exact values of the affinities
will be affected by the adjustment of the wave functions
to the field of the helium atom, as well as by polariza-
tion effects, it is clear that Inequality (1) is easily
satisfied in the case of liquid helium.

The question of the existence of the Ore gap is diffi-
cult to answer in general. The answer can be found, in
any given case, from the affinities. As discussed in detail
in Sec. ITA, the most important factor is generally the
positronium affinity. For positronium formation there
must always be room in the material for the positronium
atom. This seems to be the case in liquid helium, and
is probably also the case in such amorphous substances
as fused quartz, Teflon, etc. The ionic crystals are un-
favorable in this respect because they are so closely
packed. The crystalline structure itself is, however,
not particularly unfavorable to positronium formation,
provided it is sufficiently open with enough space
between the atoms. An example is ice, which exhibits®
(at 77°K) a slow component with 7= (1.24-0.2) X107
sec. On the other hand, a noncrystalline structure does
not, by any means, guarantee an Ore gap. Examples are
liquid argon and liquid nitrogen, which do not exhibit a
75 component. The atoms in these liquids are heavier
than in helium and have less zero point motion. The
liquids are consequently more densely packed and
evidently do not provide enough room for positronium.
Thus, the regularity or irregularity in the arrangement
of the atoms of a substance seems to be largely irrele-
vant to positronium formation. The determining factor
seems to be the gross density, at least in the case of a
liquid or crystal. In the amorphous solids cavities and
defects may locally provide room for positronium atoms
even in cases where the gross density itself may not
be favorable.

N(8) (IN-RADIANY
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Fi16. 18. Two photon angular correlation for pickoff annihilation
of orthopositronium positrons in helium.
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F1G. 19. (After Bell and Graham.) The temperature dependence of
the long lifetime in Teflon.

The two-photon angular correlation for the pick-
off mode of decay is easily estimated. Because of the
looseness of the positronium binding, the positron
momentum can be neglected compared to that of the
tightly bound atomic electron with which it annihilates.
Thus, the two-photon angular correlation should
measure roughly the momentum distribution of the
atomic electron. A typical case is shown in Fig. 18,
where the number of counts to be expected from the
72 component in liquid helium is plotted against angle.
The essential general feature of the pickoff mode of
decay is that it gives a broad distribution, similar to
that from the nonpositronium part of the 7, com-
ponent. Such broad distributions have been bound
experimentally for fused quartz by Page et al.8% and
for Teflon by Stewart.?® Superposed on their broad dis-
tributions are narrow distributions of an intensity, as
they point out, somewhat greater than can be ac-
counted for by the decay of parapositronium alone.
The origin of this additional narrow distribution is
discussed in Sec. C below. The point to emphasize
here is that most of the 7, component appears in the
broad distribution, as should be the case for pickoff
annihilation.

B. Temperature Effect

In their investigation of the long lifetimes Bell and
Graham discovered a marked temperature dependence
of 7, for all solids investigated, except fused quartz.
(It may be that this substance would also show the
effect if raised to temperatures comparable to its melt-
ing point.) The lifetime generally increases with tem-

( 86 P)age, Heinberg, Wallace, and Trout, Phys. Rev. 98, 206
1955).

-
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perature. A typical example is Teflon, where 7, doubles
as the temperature is raised from that of liquid air to
room temperature. The results of Bell and Graham are
reproduced in Fig. 19. A particularly convenient way
of studying the temperature effect experimentally is
to measure the three-photon counting rate, which is
proportional to the population of orthopositronium.
This population is simply equal to the rate of ortho-
positronium production times 7.. As long as no signifi-
cant change takes place in the solid upon heating, one
may assume that the production rate is temperature
independent. This has been verified by Bell and Graham?
for ice, Teflon, and polystyrene, and it is probably safe
to assume that it holds provided no phase transition
occurs. When the latter happens, the energetics of the
Ore gap may change, thereby affecting the rate of
positronium formation. Wagner and Hereford have
measured the three-photon rate for a number of solids,
and their results for methyl alcohol, ice, and glycerine
are reproduced in Fig. 20. The ordinate can be taken,
according to the above discussion, as proportional to 7,.
The temperature effect is particularly striking in glycer-
ine, where the variation is by more than a factor of two.

The temperature dependence of 4 is perhaps the most
puzzling and least understood effect in the entire
subject of positron annihilation in solids. So far, the
most satisfactory explanation seems to be that of
Wallace, who suggests that the positronium atoms
adiabatically respond to the motions of the atoms or
molecules of the solid. Because of the repulsive ex-
change force discussed above, for any instantaneous
configuration of the solid the positronium atoms tend
to concentrate into regions as far away from the atoms
of the solid as possible. In other words, the positronium
atoms seek out “holes,” and thereby not only lower their
energy but their pickoff annihilation rate. The tempera-
ture effect results from the thermal agitation, which
produces such density fluctuations, or ‘holes.” An
individual positronium atom, for example, may happen
to be situated in a “hole” formed between two atoms
which happen to be displaced in opposite directions.
As the atoms move back together the positronium atom
will leave the region between the atoms and pass on to
some other location where there now happens to be a
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new “hole” present. A similar, but more idealized and
simpler situation is the trapping of the positronium
atom by an individual sound wave. The positronium
atom rides along in the trough of the wave and always
experiences a lower atomic density than is the average
for the crystal. At absolute zero there is no effect since
the sound wave is not excited. Near the melting point,
if we concentrate all the thermal excitation into the one
sound wave we might expect a maximum decrease in
atomic density in the vicinity of the positronium atom
of about 109%,. This density change is about the same
as takes place in the bulk density of liquid He upon
passing from the \ point to the boiling point. According
to Graham ef al.® a 309, increase results in the value
of 5. Thus, a general temperature effect of this order of
magnitude would be expected, but it is difficult to
understand the observed very large increases in 7s.

C. Narrow Component

A narrow component in the two-photon angular
correlation is strong evidence of positronium. It can
only result from decay of a positronium positron with
its own bound electron.?” Other modes of decay, such as
pickoff annihilation of positronium or annihilation of
nonpositronium positrons,’” give a broad distribution.
Furthermore, a narrow component is evidence that the
positronium atoms have been slowed down to relatively
low energies. For example, a half-breadth of 8= P/mc=2
milliradians, where P is the positronium momentum,
corresponds to an energy of

P2/Am= (mc*/4) (P/mc)*=10"mc?=0.5 ev.

This is twenty times the thermal energy of 0.025 ev
(at room temperature), but is nevertheless small com-
pared to the average energy the positronium atoms
possess upon formation. That thermalization should
not be complete is in agreement with Wallace’s*
estimate.

As mentioned in Sec. A, the narrow component
found by Page et al.%6 in the two-photon angular correla-
tion for fused quartz has an intensity somewhat greater
than can be accounted for solely on the basis of para-
positronium decay. According to Bell and Graham? the
percentage of orthopositronium formation in fused
quartz is 29%,. The parapositronium percentage must
amount to one-third of this, or about 109,. Figure 21,
which has been prepared from the paper of Page et al.,
shows the distribution for fused quartz (dashed curve
labeled “F”’) superposed on the broad distribution for
crystalline quartz (solid curve labeled “C”). They
estimate the area between the two curves at 1879 of the
total area under the fused quartz curve. Thus, there is
an additional 8%, which must be atrributed to ortho-para
conversion. Since there are no unpaired electrons to

87 Here we seem to differ from Wallace, reference 4, who would
attribute the narrow component to the decay of positrons bound
to the atoms or molecules of the solid.
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Fic. 21. (After Page,
Heinberg, Wallace, and
Trout.) The two-photon
angular correlation for crys-
talline (C) and fused (F)
quartz.
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exchange, the conversion must be due to spin flip by
magnetic fields. Although there was no static magnetic
field present in this experiment, the motion of a posi-
tronium atom across the electrostatic lines of force
produces a magnetic field in the positronium Lorentz
frame of

¥e=—(V/0)X 8=— (3mc)PX &, (61)

where & is the electric field vector and V and P the
positronium velocity and momentum, respectively. The
magnitude of 3¢ can be estimated from (299,/8%)
X1.8X107° sec, the effective ortho-lifetime without
competing pickoff annihilation. The free space ortho-
lifetime is longer than this by the factor 1.38X10~7
sec/6.5%X 1079 sec=21, which is in general given by the
formula8 14 (3¢/2190 gauss)?. Hence we find 3¢=9800
gauss. But P/mc=0, and the average value of 6 for
the narrow component of Fig. 21 is about 2 milli-
radians. Thus, from Eq. (61) we obtain

&=~ (2/6)30~107 esu=30 volt/A
=~2.5ry/eA=2.5 ¢/A% (62)

This is, of course, an extremely strong electric field,
but is of about the order of magnitude to be expected
in the interstitial regions of fused quartz, between the
Si*+ and the O* ions. Actually, as discussed in Sec. A
above, the positronium is probably localized at holes
and defects, where the electric field is considerably
weaker. Furthermore, positronium cannot exist as a
bound system in the presence of such a strong field
as that given by Eq. (62).¥ Even a field an order
of magnitude weaker would ionize the atoms at a fairly
rapid rate. Thus, although the mechanism proposed
here is qualitatively satisfactory, it seems to be much
too ineffective. The intensity of the narrow component
cannot be considered as understood at the present
time. A difficult but crucial experiment would be the
determination of the two-photon angular correlations
separately for the 7, and the 7, components. Using a

8 T. A. Pond and R. H. Dicke, Phys. Rev. 85, 489 (1952).
8 The author has benefited from a discussion with Professor M,
Deutsch on this point.
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Fic. 22. (After Stewart.) The temperature dependence of the
narrow component in Teflon.

Na? source, one could measure the correlation for the
prompt 7, component by requiring triple coincidence
among the Na? gamma ray and the two annihilation
quanta. Suitably normalizing the resulting curve and
subtracting it from the fused quartz curve obtained by
Page’s group should reveal directly the fraction of the
79 component which undergoes ortho-para conversion.

If one accepts some ortho-para conversion whose rate
is relatively temperature independent, one can under-
stand the high-temperature enhancement of the narrow
component found in Teflon by Stewart. Stewart’s
measurements at 77°K and 525°K are reproduced in
Fig. 22. There seems to be a much stronger narrow
component at the higher temperature. This can be
understood on the basis of the temperature dependence
of 75. As the temperature is raised 7, increases, which
must be due to a decrease in the pickoff annihilation
rate. The ortho-para conversion can then compete more
favorably, and a larger fraction of the 7, component
shows up in the narrow portion of the two-photon
angular correlation.

Additional ortho-para conversion can be ‘artifi-
ficially” induced by applying a strong external static
magnetic field, of the order of 10 000 gauss. The result-
ing enhancement of the narrow component has been
observed by Page ef al.,® while Telegdi*® has measured

(lg’sfs’stge, Heinberg, Wallace, and Trout, Phys. Rev. 99, 665

Note added in proof.—See also L. A. Page and M. Heinberg,
Phys. Rev. 102, 1545 (1956). At the International Conference on
Quantum Interactions of the Free Electron, University of Mary-
land, April, 1956, M. Deutsch reported that the 7, component is
split by an external magnetlc field into a complex decay consisting
of two parts—a situation already familiar from the experiments
in gases. The larger part decays with the zero field value of 72
and is attributed to the m==1 triplet states. The m=0 state
corresponds to the smaller part and has its decay rate enhanced
by the magnetic field.
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the associated decrease in the three-photon rate. These
experiments lend support to the general picture of
positronium in solids.

V. SUMMARY

The status of the theory of positron annihilation in
solids is on the whole encouraging. There is enough
agreement between theory and experiment to warrant
considerably more theoretical work. Especially in need
of further attention are the case of an electron gas of
low density, where there is likely to be positronium of a
sort present, and the case of positronium in insulators,
where the mysterious temperature effect and narrow
component still need explanations. Extension of the
experimental measurements to the alkali metals of
lower electron density might help to guide the theory
in the first case. In the insulators, measurement of the
two-photon angular correlation of the 7, and 7; com-
ponents separately would be of great importance.

In the case of the ionic crystals, further theoretical
work on the wave function of the positron should lead
to a value for the lifetime. It should be also possible to
estimate the extent of polarization. Further experi-
mental measurements of the lifetimes for various alkali
halides would provide a test of the calculations.

Another type of experiment suggested by the theo-
retical discussion of the preceding sections is the meas-
urement of the two-photon angular correlation for
oriented crystals. The excluded volume effect, being
associated with the periodic lattice, should show a
dependence on orientation. Thus copper should be a
particularly promising case to investigate. Crystals of
the alkali halides may also show some anisotropy, since
the field around the halide ions, which determines the
positron wave function, has by no means complete
spherical symmetric.

APPENDIX. THE ANNIHILATION PROCESS

In this appendix we evaluate the universal constant
of proportionality by which expression (iii) of the
introduction should be multiplied. The absolute anni-
hilation rate can then be calculated for any electron-
positron system for which the initial wave function is
known. Since we are only interested in slow electrons
and positrons we can achieve a great simplification over
the usual calculation®® of annihilation in flight, which
uses trace techniques so as to avoid introducing ex-
plicitly the electron and positron spinor wave functions.
Here the matrix element for the annihilation process
can be calculated for an electron and positron at rest.
For this special case the spinor wave functions are
especially simple, and the calculation is most con-
veniently carried out by introducing them directly.
The adjoint of the Dirac spinor for an electron at rest,

91 P, A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 361 (1930).
92W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, London, 1936).
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with spin in the xs-direction, is (1,0, 0,0). The elec-
tron with its spin flipped and recoiling along the nega-
tive x5 axis is easily shown to be represented® by

©, [2v2(2—1)17,0, [(VZ—1)/2v2 ]}

A positron at rest, with spin in the negative x3 direction,
is treated as a hole in the negative energy state repre-
sented by (0,0,1,0). These are the only spinors
which we need for the calculation. Let us calculate the
second order Hamiltonian matrix element for the crea-
tion, by an electron-positron pair in the singlet state,
of two photons propagating in opposite directions and
each circularly polarized along its direction of propaga-
tion, i.e. right circularly polarized. Taking the x; axis
along one of the propagation vectors one can write the
spin function of the electron-positron pair as (1/v2)
X (a1B2—Biez) where 1 and 2 denote the electron and
positron respectively. Since, from general principles,?
the triplet state does not emit two photons, it will be
sufficient to calculate the matrix element for the initial
wave function a:8s, representing a spin up electron and
a spin down positron, and multiply the result by V2.
The perturbation which couples the matter to the radia-
tion field is H’=ea-A, where the components of
= (a1, as, a3) are the Dirac 4X4 matrices and

2Nt e )
A=C('———) Z akrp'*e—th
V kr (wk)%

is the photon-creating part of the vector potential. The
&4 are unit polarization vectors transverse to the
propagation vector k, V is the volume of quantization,
and the other symbols have their usual meaning. If
we define

iy =2 (et tex) @

then the part of H' which creates right circularly polar-
ized photons is

2wk .
H, = Z%ec(——) D oGy Femx
Vo k
where )
iy * =27 (a0 iaxs*).
The energy denominator for the second-order process
is —V2mc® while the numerator contains, besides the

9 See reference 20, p. 327.
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factor [2%ec(2nh/Vw)t?, the product of the matrix
elements of ax between the initial and intermediate
states and between the intermediate and final states.
The spinors representing these states have been ex-
hibited above, and it is easily shown that the product
of the two matrix elements is simply (2v2)~1, the product
of the spinor components of the intermediate state.
This quantity is canceled by the factor of V2 which
makes our second-order matrix element correct for a
pure singlet initial state, and by a factor of 2, which
allows for the fact that the intermediate state in which
the positron recoils yields an identical contribution.
The second-order matrix element for the singlet anni-
hilation is therefore

H,® = —2ire*h?/ Vmic. (63)

According to time department perturbation theory,

the rate of annihilation, averaged over spin orienta-
tions, is

%Wp (E) | H®|*V (64)

times the expectation value of expression (iii) of the
Introduction. |H®|? is one-fourth the square of
H,® while the factor of V arises upon passing from
(i) to (iii). The density of the two-photon states with
respect to energy is

dwkdk V. Vmic
© d(2hck) 8x% AP

p(E) (65)

Here we have integrated the directions of the photons
only over 2 steradians, but have obtained an additional
factor of 2 from the left circularly polarized photon
states, which have the same second-order matrix
element. Substituting Eqs. (63) and (65) into (64)
gives mro’c where ro=¢*/mc? is the classical radius of
the electron. The annihilation rate is therefore wr¢%
times the expectation value of (iii). The latter is
$mao® for the positronium atom, which is a convenient
reference case. The positronium spin-averaged annihila-
tion rate is consequently

ro’c/8a®= (c*/8) (c/a0) =2.01X10° sec™?,

where a=1/137 is the fine structure constant.

(66)



