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1. Introduction

N recent years certain ferromagnetic materials called

ferrites have become commercially available and are
gaining increasing importance in various applications.
The chemical constitution of the ferrites is expressed by
the formula MO-Fe;03, where M symbolizes a metal.
Thus magnetite, FeO-Fe;03, is a natural ferrite known
since antiquity, but the important step of replacing
FeO by oxides of other metals was carried out but
recently and led to the development of numerous arti-
ficial ferrites. The crystal structure of practically all
of these new substances is the same as that of magne-
tite, namely, the body-centered cubic “spinel” lattice.
In their electric characteristics the ferrites are semi-
conductors. It was just their low conductivity combined
with a high magnetic permeability which originally
attracted to them the attention of physicists and engi-
neers since it made them a most valuable material for
transformer cores.!

However, later investigations by F. F. Rogers? re-
vealed in the ferrites another property of equal practical
importance: they possess a remarkably high Faraday
effect, a characteristic fitting them for various useful
applications in the microwave field. It is this aspect of
the electromagnetic field in ferrites which will form the
subject of the present paper. In this relation these sub-
stances may be characterized as nearly gyromagnetic,
a term that describes a hypothetical medium of the
following properties.

The displacement D does not present anything un-
usual in the gyromagnetic medium and is related to the
field strength E by the familiar equation

D=¢E, (1.1)

where the dielectric constant e is an isotropic scalar
either real or complex.

Let now a permanent magnetic field Hy be produced in
the medium by an external source. This field (called
exciting or permanent) produces in the medium a mag-
netic anisotropy of such a nature that the induction B
and the strength of field H of an additional periodic

* Supported by the Hughes Aircraft Company.

1 For the properties of ferrites and the history of their develop-
ment see J. L. Snoek, New Development in Ferromagnetic Materials
(Elsevier Publishing Company, Inc., Amsterdam, 1947); C. A.
Donencali, Phys. Rev. 78, 458 (1950); Blewett, Plotkin, and
Blewett, “The properties of ferromagnetic ferrites” (Brookhaven
National Laboratory).

2 F. F. Rogers, J. phys. radium 12, 305 (1952).

magnetic field, superposed upon Hy, stand in the relation

B=(wH, (1.2)
where (i) denotes the tensor,
w1y, ik, O
)= [—ilf, p1, O J (1.3)
0: O: M3

In the usual way, Eq. (1.2) stands for the three com-
ponent equations

By=u1HAwH,y, By=—1ixH +uiH,,
Bz=#3sz

where the coordinate 2 is chosen so as to coincide with
the direction of the permanent field H,.

Usually the parameters ui1, us, & of the tensor (1.3)
are taken to be real and positive. It may be remarked,
however, that no part of our theory will invoke the
Hermitean character of the tensor. Hence, all the re-
sults will remain valid, if the diagonal elements u1, u3
should be considered complex.

It is true that the real ferrites of nature do not
rigorously conform to the definitions (1.1) and (1.2).
The approximation is, however, sufficiently close so
that the investigation of a gyromagnetic medium has
great practical importance. In general, the discussion will
be formally mathematical and questions of the physical
nature of ferrites will be left aside.? However, two things
must be mentioned as relevant to the formal theory.

(1) The laws (1.1) and (1.2) hold only for periodic
fields since e and the components of (k) are functions of
the frequency w. Hence, the field vectors will be sup-
posed to contain a time factor of the form exp(—iw?).
This factor will be generally omitted, but its existence
permits of using interchangeably the notations

(1.4)

(1.5)

where % is any field quantity, ¢ the time, ¢ the velocity
of light 4% vacuo, and &, the wave number,

ko=w / C. (1 6)
(2) The parameters ¢, u1, us, k are also functions of the
permanent field H,. Hence, they can be treated as

spatially constant only in the cases of such experimental
arrangements in which the permanent field is homo-

U= 0u/dt= —iwn=—1ikou,

3 Investigations about the physical causes of gyromagnetism in
ferrites are, among others, due to D. Polder, Phil. Mag. 40, 99
(1949); C. L. Hogan, Bell System Tech. J. 31, 1 (1952); C. Kittel,
](E’lhysl.)Rev. 73, 155 (1948); C. Kittel, J. phys. radium 12, 291

951).
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geneous within each ferrite.* In this paper they shall be
always regarded as spatially constant.

It was shown by C. H. Papas that in rarefied and
ionized gases, such as exist in the upper atmosphere or
in electric discharge tubes, a permanent magnetic
field produces an anisotropy of the dielectric constant
which assumes tensor character expressed by the

scheme,
€1, i€/, 0
()=|—1¢, e, 0].

0, 0, €3

1.7)

At the same time the magnetic permeability u re-
mains scalar and close to unity. A medium of these
properties is called gyroelectric.’ In view of the sym-
metry of Maxwell’s equations, the theory of gyro-
magnetism contained in the following sections can be
readily adapted to this case by means of the simul-
taneous substitution e—u, (u)—(¢), E-»H, H—>—E.

Occasionally more general media than the gyro-
magnetic and the gyroelectric are mentioned in litera-
ture, but their discussion will lie outside the scope of
this paper. This applies, in the first place, to the so-
called gyrotropic medium in which both the dielectric
constant and the magnetic permeability have tensor
character, so that the Egs. (1.3) and (1.7) are valid
at the same time.® However, no substance of nature is
known to possess such properties while the mathe-
matics involved is necessarily cumbersome permitting
only of treating comparatively simple special cases.
In the second place, a medium of still greater generality
was envisaged by B. D. H. Tellegen: the possibility is
admitted that an electric field can produce magnetiza-
tion and a magnetic field can cause polarization. There-
fore, the components of the vectors D, B are related
with those of E, H by a linear substitution with six
rows and six columns.” Although such processes are not
entirely unknown, the Hall effect being a case in point,
the general investigation of the Tellegen medium is not
sufficiently interesting to justify entering here into its
formidable mathematical difficulties.

PART I. GENERAL THEORY
2. The Basic Equations

Wave propagation in a gyromagnetic medium was
treated theoretically by several authors; the conditions

4 Some considerations relating to nonhomogeneous constants in
gyromagnetic media can be found in a paper by H. Suhl and L. R.
Walker, Bell System Tech. J. 33, 1133 (1954).

®C. H. Papas, A Note Concering a Gyroelectric Medium
(Office of Naval Research Report No. 4, California Institute of
Technology, May, 1954). Even before Papas, large Faraday
effects were observed in vacuum discharge tubes by Goldstein,
Lampert, and Heney, Phys. Rev. 82, 956, (1951). See also H.
Suhl and R. C. Walker, Bell System Tech. J. 33, 579 (1954).
In earlier work by E. V. Appleton, Proc. V. R. S. I. Washington
(1927), and D. R. Eartree, Proc. Cambridge Phil. Soc. 27, 143
(1931), the influence of the magnetic field on wave propagation in
the ionosphere was investigated without formulating it in terms
of a tensor permeability.

8 W. L. Ginzburg, Theory of Propagation of Radio-Waves in
the Jonosphere. (Russian) 1949,

7B, D. H. Tellegen, Phillips Research Repts. 3, 81 (1948).
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in wave guides were considered by Kales® and Gamo?
and, in greater detail, by Van Trier®® and by Suhl and
Walker''; some problems of the propagation in an open
space were discussed by Gintzburg.? However the
analysis of the following sections proceeds on somewhat
different lines.

Under the conditions specified in Sec. 1, Maxwell’s
equations can be written as follows:

—iékoE—“— VXH, 1koB= VX E,
v-E=0, V.B=0.

Since we shall be interested only in states of vanishing
free charge, the simplest way of treating these equations
is to regard the electric strength of field E as a kind of
vector potential from which the magnetic field is de-
rived by the relations,

(2.1)

H=— (i/ko) (W) VXE, (2.2)
where (u™1) is the tensor reciprocal to (u),
M, K, 0
(ﬂ—ll)= {_1K) M; 0 J) (2'3)
0, 0, M,
with
M=,u,1/d, K:_—K/d; M= 1/#37 (2.4)

d=u?—«2
The remaining two equations of the system (2.1) can

then be regarded as the basic field equations for the
determination of the vector E. They take the form,

ek’ E=VX[ (w1 )VXE], (2.5)
v-E=0, (2.6)
while the equation V- 3=0 is satisfied identically.
However, it is desirable to throw these equations
into a more convenient form. For this purpose we first
write out Egs. (2.5) in Cartesian coordinates:
d*E

62
[ek02+M3V2— (Mg—M)—]Ex—{—iK :
9z* 9z?

oE,

d dE,
+a—[ W= =ik ]=o,
Z

ox ady

92 0*E, L
[€k02+M3V2“ (Ma—M);]E,,—iK @)
Z

0972
OE

9 2 OE,
+——[(M3—M)—+iK-———] =0,
0z ady ox

0 f0E, OE,
[ek02+MV2]E,—iK~( — )=0.
dz\ dx  Jy

8 M. L. Kales, N. B. L. Report No. 4027, August 8, 1952.

9 H. J. Gamo, Phys. Soc. Japan 8, 176 (1953).

0 A. A. Th. M. Van Trier, Appl. Sci. Research B3, 305 (1953).

1 H. Suhl and R. L. Walker, Phys. Rev. 86, 1922 (1952);
Bell System Tech. J. 33, 987 (1954).

2 M. A. Gintzburg, Repts. (Doklady) Acad. Sci. U.S.S.R. 95,
489,753 (1954).
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At this point it is helpful to introduce the two linear

combinations,
Q1,2=Ezﬂ:Ey, (28)

where the subscripts 1, 2, respectively, refer to the
upper and lower signs.

Now the second equation (2.7) is multiplied by =1
and added to the first. To the third equation is added

d y0E, OE, OJFE,
=k—(
dx Jy 0z

0z
The result is

62
[k02e+M3V2+ (M =Mk K)— 2]@
Z

=(M— Msth)i(—a—:I:ti)Ez,L (2.9)

dx dy

[ko e+Mv2q:K—]E iK——(—:Fz— 0

7

where the upper sign refers to Q; and the lower to Q.

It was pointed out in Sec. 1 that the coordinate z
represents a preferred direction imposed by the perma-
nent field H. It is well to bring out the different footing
on which z stands by writing,

V2=V 2+ 9%/022, (2.10)
where
2 9
Vpi=—tt—oy (2.11)
d0x? 992

denotes the Riemannian operator in the (x,y)-plane.

In a similar way,
(i)
ox dy

will represent the two dimensional gradient in the

(x,y)-plane.
Equations (2.9) acquire now the more concise form

(2.12)

. 82
[ek02+M3vp2+ (MiK);;]Q
2

/9 0

= (M—Ms:l:K)—(“-—:ti~)Ez,
dz\dx OJy

o (2.13)

62
lek(,?—l—MV,,?—i— (M:FK)B—JE,;
Z

49 d
=+K— (———:Fi—— Q.
dz\dx Oy J

These expressions, together with the Eq. (2.6), can
be taken as an alternative form of the basic equations.
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3. Final Form of the Basic Equations

Equations (2.13) are suitable for eliminating, re-
spectively, E, and Q. Operating upon the second equa-
tion with (M — M ;+K)(9/3z)(3/0x=13/9dy) we find

L=0,
where the symbol L denotes the operator,

62

L= { €2ko4+eko2[ (M+M3)Vp2+2M;~2]+MM3Vp4
Z

02 0t

+[M(M+Ma)—K2]Vp2~—+(M2~K2)——]- 3.1)
022 0zt

On the other hand, operating with FK(d/9z)
X (8/3xF19/dy) on the first equation leads to an ex-
pression of exactly the same form for E,,

L(E,)=0.

It should be noticed that, while Egs. (2.15) are differ-
ent for Q; and Q. (= sign), the operator (3.1) is the
same for both, so that Q; and Q, satisfy the same equa-
tion of the fourth order. Inasmuch as

E,=5(Q0:11+Q2), E,=—3%i(01—0Q2),

the components E,, E, must also satisfy the same equa-
tion. Therefore, we can summarize our results in the
vector equations,

L(E)=0,
v-E=0.

(3.2)
(3.3)

This new system contains the same number of equa-
tions as the system (2.5), (2.6) from which we started,
namely, four equations. Nevertheless, it would be a
mistake to think that the two systems are completely
equivalent. The difference lies in the fact that the
Eq. (2.5) is of the second order, while the Eq. (3.2) is
of the fourth order. Therefore, the new system (3.2),
(3.3) has far more integrals: it contains all the solutions
of the system (2.5), (2.6) and in addition a comparable
number of spurious solutions. Hence, only solutions may
be used which also satisfy Egs. (2.5), (2.6) or the Egs.
(2.13) equivalent to them. It is sufficient for them to
fulfill one of the Egs. (2.13) because the other can then
be deduced from (3.2). We select, therefore the second
equation (2.13) as a subsidiary condition which must be
satisfied in order that the solutions of the system (3.2),
(3.3) have physical reality.

It is convenient, however, to simplify that equation
by an appropriate transformation. This can be done by
eliminating from it the component E. by means of
Eq. (3.3) or in component form,

(3.4)

dE, (6E, dE,

ox ox dy
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The subsidiary condition is first differentiated with
respect to z, and then (3.4) is substituted, with the
result

9 02
—[ (ek®+M VZ)E,—H'K—E,,-I
dx dz2 |

s} 0?
-}———[— IK—E + (ek?+M Vz)Ey] =0.| (3.5)
ay 022

This is the final form of the subsidiary condition. It
has the advantage that in the process of transformation

the double sign has disappeared so that it represents a
single equation.

4. Theory of the Fourth-Order Equation
Let ® denote a function satisfying the equation
L(®)=0, (4.1)

where L is the operator (3.1) of the preceding section.

It was explained above that the coordinate z repre-
sents a preferred rectilinear direction fixed by the na-
ture of the gyromagnetic medium, while the coordinates
in the plane normal to z can be chosen arbitrarily. Under
these circumstances it is no loss of generality if we
restrict ourselves prima facie to cylindric systems of
coordinates whose generatrix has the direction z. Then
the operator V,2 in (3.1) is independent of the coordi-
nate z which therefore becomes cyclic, that is, it enters
into the equation only as a differential. This has the
consequence that the function can be built up of partial
solutions of the form

P (x,y,2) =’ () exp (iv2), 4.2)
where v is a constant. Hence, it is permissible to write
d/9z=1y, (4.3)
and to represent L in the simplified form
L={MMV A+ (M~+M;) (ekt— My)+ K2V 2
[ (eko’— My*)— K1}

It is obvious that the operator can be split into two
factors

L=MMJV2+k2]-[V2+k2E], (4.4)

where

kR =[ (eko?— M~*) (M+M3)+ K>/ MM,
ki?k?=[ (eko®>— M~*)?— K>y*]/MM.
Introducing the abbreviation,
=L —M3)?(eko®— M) +2(M+ M)
X (ek?— M) K>+ K*(K*+4M M 3)v* ]},
the explicit expressions become

k2
1 =L (ke —My?) (M +Mo)+ K2y [1/2M M. (4.5)

2

Inasmuch as k; and ks are never equal, the general
solution (4.2) is
&=3;+P,, (4.6)

where the two terms satisfy two ordinary wave equa-
tions,

(Vp2+k12)(I>1= 0, (Vp2+k22)q>2= 0. (47)

In application to the vectors E, which satisfy Eq.
(4.1) in all three of their components, some additional
remarks must be made. In view of the result (4.6) the
potential E is divided into two vector parts,

E= E1+ Ez.

For a given frequency w the two part vectors have
different wave numbers (%1 and k,) and therefore differ-
ent velocities of propagation. Thus, it is hardly con-
ceivable that Eq. (3.3) could be satisfied in any other
way but by each part separately,

v-Ei=0, v-E;=0.

The same is true with respect to the subsidiary condi-
tion (3.5). Therefore, the two partial wave potentials,
E, and E,, are entirely independent as long as they
propagate in the open space, but the independence
ceases as soon as they hit a boundary: the boundary
conditions, in general, establish a linkage between the
two partial potentials.

5. (TEM)-Modes. Faraday Effect

Before treating the problem of wave propagation in
its generality it is well to dispose of a few solutions re-
lating to special or singular conditions. An interesting
case arises when the component E, of the vector poten-
tial is identically zero (E,=0). Inasmuch as our final
equations (3.2), (3.5) were obtained by elimination of
E, and of dE,/9,, it is not obvious that they still hold
in this case. At any event, it is more convenient to fall
back on the form (2.6), (2.13) of the basic equations
which now become

[ekd+MsV 2+ (M£K)32/0:2J0=0,  (5.1)
a9 9
— —:Fi——)Q=O, (5.2)
dz\ox 0Jy
oE, OF,
+—=0. (5.3)
ox 0Oy

Taking into account the definition (2.8) of Q and the
relation (5.3), one can write Eq. (5.2) as

9 (aEz aE,,) 0

dz\ dy Ox '

The variable z being cyclic (see preceding section),
the solutions are of the type

(5.4)

E=C(x,y) expivz. (5.5)
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Equation (5.4) then becomes
dE./9y—9dE,/dx=0.
From this, together with (5.3), follows,
ViE.=V,2E,=V,’0=0. (5.7)

The two equations contained in (5.1) take now the
form

(5.6)

[eki— (M~+K)y*](E.+iE,)=0,
[ek— (M — K)y*|(E,—iE,)=0.

Since they must be satisfied simultaneously, there
are two possibilities:

(a) ek’— (M+K)y*=0, } (5.8
E,—iE,=0;

(b) eko?>— (M —K)v*=0, } 59)
E,+1E,=0.

We first consider the case that the components E.
and E, are independent of x and y, that is, the coeffi-
cient C in Eq. (5.5) is a constant vector. The vector E
represents then a plane wave propagating in the pre-
ferred direction z. Our results show that the gyromag-
netic medium can support two such plane waves with
the respective propagation constants

va=Lek/ (M+K)T, vi=[eke?/(M—K)]". (5.10)

According to Egs. (5.7), (5.8) the components £, and
E, are of the same magnitude but in case (a) the phase
of E, is advanced by 7/2 compared with the phase of
E_,; in case (b) it is retarded by the same amount. This
means that the two waves are circularly polarized in
opposite senses (Faraday effect).

In the ferrites the parameters e and p; (Sec. 1) are
both large and « approaches u1 as to the order of its
magnitude, whence M and K are small as defined by
Eqgs. (2.3). Conversely, the propagation constants
ve and v, are both large and considerably different
making for a large difference in the optical paths of the
two waves. The large Faraday effect is one of the most
striking and important characteristics of the ferrites,
and its value for practical applications was first pointed
out by Hogan.? It offers the possibility of building into
a wave guide a device called a circulator which is an
analog to the quarter-wave and half-wave plates of
optics. As is apparent from Eqgs. (5.8) and (5.9), the
sense of rotation of vector the E in space is the same for
positive and negative propagation of the wave. This
property makes it possible to obtain unilateral propa-
gation by combining the circulator with suitable
polarizers.®?

In view of Maxwell’s equations (2.1) it is a matter
of course that in a plane wave the electric vector and

13 An up-to-date review of the experimental possibilities of

ferrite devices is due to Fox, Miller, and Weiss, Bell System Tech.
J. 34, 5 (1955).
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the magnetic induction are transverse to the direction
of propagation. In the particular case when this direc-
tion is 2, the vectors B and H lie both in the plane
normal to 2, according to the fundamental relations
(1.2) and (1.3). In the terminology of the wave-guide
theory our plane waves represent thus (TEM)-modes,
that is, modes in which both the electric and the mag-
netic field strengths are transverse to the propagation.
Returning to the question of (TE)-modes outlined in
the beginning of this section, i.e., of modes in which the
vector E is transverse to the z direction, it is easy to
see that there do not exist any others than the plane
waves just discussed. Indeed, when the coefficient C of
Eq. (5.5) is not a constant vector, the components
E. and E, satisfy the Eqgs. (5.7) and represent harmonic
functions of the variables x, y. This fact combined with
the validity of the relations (5.8) and (5.9) cannot be
reconciled with the physical requirements of a mode.
The harmonic functions are not appropriate for the
unlimited medium because they necessarily possess
singularities in some part of the field. Neither are they
suitable for wave guides having the z-direction as their
axis. In this case, the tangential component of E must
vanish at the boundary and, according to Egs. (5.8)
and (5.9) the normal component will also vanish. But
it is known from the theory of potentials that such
boundary conditions cannot be satisfied. We shall see
in Sec. 7 that (TM)-modes are also impossible.

Thus the (TEM)-modes in air filled coaxial guides
have no analog in wave guides filled with a gyro-
magnetic medium.

6. Two-Dimensional Solutions

The fourth-order equation is also inconvenient when
the field is independent of the coordinate z. This im-
plies y=0, so that such solutions represent cylindric
waves propagating in planes normal to the preferred
direction. Equations (2.13) are now reduced to

(MV 2+ ek E.=0, (MsV2+eko?)Q=0.
The last equation is equivalent to the two
(M 3V 24 ek E=0, (M3V,*+ek)E,=0, (6.2)

to these must be added the transversality condition (2.6)
in the form

(6.1)

dE, OE,
dx

=0. (6.3)

dy

Tt is apparent that the field defined by these equations
can be represented as the superposition of two inde-
pendent systems of modes.

(1) Longitudinal Modes (E,=E,=0)
B0,
(MY 2+ ek?) E,=0.

(6.4)
(6.5)
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Since in this case

N e

the magnetic field, according to Eq. (2.2), lies in the
(%,y)-plane and is expressed by

H= (PL) VpEz,

0,
VoX=(Sp)Vs (Sp)= (_1

b

6.7)
iK, —M
(Pr)=— (i/ko) () (Sp)=(i/k0)(M h ) 6.8)

We shall see in Secs. 11, 12, and 13 that these modes
have considerable practical interest.

(2) Transverse modes (E,=0)

Equation (6.3) shows that the components E., E,
can be derived from a Hertzian function ¢ by the opera-
tion (S,)V, or

provided that this function satisfies the equation
(M 3V 2 eko?)p=0. (6.10)

The magnetic field is longitudinal and equal to

H,=H,=0, H,=—ikoeMsp. (6.11)

7. General Field Expressions

We shall now develop the consequences of Egs. (3.2)
and (3.3)

L(E)=0, v-E=0, (7.1)

when the subsidiary condition (3.5) is used in its general
form. Taking into account Eqs. (4.3) and (4.7), it can
be written as

d a
—[+7E,+icE,J+—]—icE,+7E,]=0, (7.2)
ox ay

with the abbreviations

r=M(R+v*)— ek, o=Kv. (7.3)

As was brought out in the preceding sections this im-
plies that the component E, neither vanishes identically
nor is independent of z.

The relation (7.2) points to the existence of a Hert-
zian function from which the two-bracket expressions
may be derived by differentiation. Since this function
is indeterminate to the extent of an arbitrary constant

factor, it may be denoted by (72—,
1E,+i0E,= (12— o2 011/ 3y, }

(7.4)
—ig Byt 7Ey= — (rt—o?)dI1/ 0.

If we resolve with respect to E., E,,

oIl  dII
E,=ig—+ 17—,
dx  dy
(7.5)
oIl oIl
Ey=—r—1ic—.
ox dy

By substituting into the divergence equation (7.1),
we obtain
0E,/0z=14iyE,= —i0V 1.

Inasmuch as IT must satisfy the same equation as its
derivatives, namely, L(II)=0, and the operator L has
the form (4.4), it follows that

v, Il=£11, (7.6)

where #? is either %i® or k2% as defined by Eq. (4.5).
Hence,

E.=— (ok*/v)I1=—1i(ck?/v*) 311/ dz. (1.7)

The results (7.5) and (7.7) can be summarized in the
tensor equation,

E=(Sgp)vII, (7.8)
io, T, 0
Sg)=|—7, fio, 0 ] . (7.9)
0, 0, —ick*/y?

Although this result was obtained under the assump-
tion that the factor depending on z is exponential
(namely, expiyz), the fact that the tensor is even in y
shows that Egs. (7.8) and (7.9) remain valid also when
the factor is of the form cosz or sinz.

The magnetic field is obtained with the help of the
relations (2.2) which lead to another tensor equation

H=+(Sp)VL, (7.10)
a, b, 0
(Sa)=]—1b, a, 0, (7.11)
0, 0, g
with the abbreviations,
a=[Mr—K*(v*+k%)]1/ke, b=—Keky,
[Mr—K*(v*+£) ]/ ko % 12)

g=— M /key".

With the help of Egs. (7.3) for 7 and (4.5) for %% it
can be further shown that

(7.13)

This relation is helpful for testing that all of Max-
well’s equations are satisfied.

Unlike the relation (7.8) the validity of the formula
(7.10) is limited to the exponential form of the factor
depending on z in the function II. However, this limita-
tion disappears when it is written in the alternative
form

Ll"*g':'réko.

=—1(Sk)V(011/dz). (7.14)
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This equation possesses the same generality as (7.8).
It must be borne in mind that the Egs. (7.8) and (7.14)
represent two systems of solutions since the parameter
k in them can assume either the value ; or k.

8. Completeness of the Solution

An important question may obtrude itself on the
reader. Do the solutions obtained in the preceding
section represent all the modes possible under the
specified limitations (E,>0, 0E,/d27£0)? An answer
to this question can be found by going to the limit
k=0 (or K=0): if the system (7.8) and (7.10) is com-

When « is assumed to vanish, the medium described
in Sec. 1 becomes a uniaxial crystal with the principal
permeabilities ui, u1, uz. The electromagnetic field in
them is described by equations resulting from Egs.
(2.5) and (2.6) when k=K =0. Since the properties of
such a medium have been much studied and are well
known, it will be sufficient briefly to summarize their
characteristics. The basic equations in them have then
two solutions.

(1) The system of (TE)-modes is derivable from a
Hertzian function subject to the equation

plete the transition to the limit should produce from it V201+k2®1=0, k2= (ck?—Mv%)/Ms (8.1)
all solutions possible in a medium without magnetic
activity. so that
6<I>1 a(I)l
Ea:= -, 2= Ez=0,
dy ox
(8.2)
6¢I>1 3(1)1 =
H,=—(v/pko)—, Hy=—(v/vko)——, H.=(ik:*/usko)®:.
Jx ay
(2) The system of (TM)-modes results from a function ®, satisfying the equation
Vp%2+1622¢2=0, ]C—z = (Ekog—M’)ﬂ)/M, (83)
with
0P, 0%, -
e =" v =" E.= — (iks’/7)®s,
dx dy
(8.4)

6@2 6@2
H,=— (koé/’y)"—, Hy= (k05/7)—~7 Hz=0
dy dx

Equations (7.8) and (7.10), valid in a gyromagnetic
medium, are more unified in form since they are repre-
sented by a single set of expressions and not by two
different sets that appear in the magnetically inactive
medium. However, it must be recalled that the set (7.8)
and (7.10) is double because the wave number % in it
can assume either of the two root values &, or k; of
Eq. (4.5).

For very small values of K the parameter f of
Eq. (4.5) assumes the expression

/= (M—Ma)(ékoz—M’f) _
+ K2 (M4 M+ 2M 5y k) (M — M)
There follows for %2,
kl=ke+ K22 (1+v2/k2)/ (M —M3)Ms, 8.5)
kt=F2— K> (1+~%/k2)/(M—M3)M.

At the same time the constant r defined by Eq. (7.3)

becomes ~
=M (FB*—k2?). (8.6)

Now it is possible to carry out the transition to the
limit of extremely small K. It is sufficient to consider
the “vector potential” E since the magnetic field is

determined by it through Eq. (2.2). Thus we shall be
concerned only with Egs. (7.8).
(1) k=ky, in this case the limiting values for K—0 are

ri=M (k2—Fk2?). (8.7)

This is finite, and o= K+* is negligible by comparison
so that we must let =0, whence

oI 91l
E;,z’tk(ﬂ'l———, Ey= —’ikoTl——,

ay dx
This becomes identical with (8.2) when

H1= (i/leo)qh,

E,=0.

because II; obviously satisfies the Eq. (8.1).
(2) k=k., the limiting value is in this case

o= K} (14-v*/k?)/ (M — M3).

Here 7 is negligible compared with ¢ so that we must
let 7o=0, whence Eqgs. (7.8) reduce to

d(oIly) d(oIl,)
= 1k0 y y = 7 0
ox dy

(8.8)

5 Ez= (Uko](;gz/’y)ng.



10 PAUL S. EPSTEIN

Of course, the transition must be carried out in such
a way that, while o goes to zero the product ¢II; remains
finite. Comparing these equations with (8.4) we see
that the two sets are identical when

oIly=— ik,

since the function II, satisfies Eq. (8.3).

These considerations constitute the proof that our
equations (7.8) and (7.10) contain indeed all possible
modes (apart from some of the degenerate cases dis-
cussed in the Secs. 5 and 6). It is interesting to notice
that the components E, and H , are always different from
zero. While in a magnetically inactive medium every
vibrational state can be represented as a superposition
of a (TE)-mode and a (TM)-mode, this is not the
case in the gyromagnetic medium. As was shown in
Sec. 5 the only state in which E and H are transverse
to z is the plane wave in the unlimited space [which is
a (TEM)-mode].

PART II. SELECTED APPLICATIONS
9. Boundary Conditions

In practice the gyromagnetic medium (ferrite) is
necessarily restricted, it is bounded by surfaces ad-
jacent either to a metallic conductor or to a more or less
perfect insulator, which may be the vacuum, a dielectric
or another ferrite. In the microwave region metals can
be safely regarded as perfect conductors, so that the
boundary conditions at conducting surfaces are

E.=0, @

where the subscript ¢ indicates a tangential component.
On the other hand, at an insulating or partially con-
ducting boundary the tangential components of E and
H must be continuous in passing from the gyromag-
netic medium (unprimed) into the adjacent (primed)
one,

Eg= Et’, Ht= Ht’. (II)

Our equations (7.6), (7.8), and (7.10) represent the
solution of the field problem in general cylindric co-
ordinates, in which the choice of the mesh system in the
plane normal to the preferred direction z is entirely
unrestricted. However, the necessity of satisfying
boundary conditions in the form (I) or (II) introduces
restrictions. In the first place the principal method of
satisfying these conditions—we may even say, the only
practicable method—is the method of separation of
variables. Let the parameters #, v of the mesh system
in the (x,y)-plane be orthogonal, and the element of
length dI be defined by the usual form,

dP= U%du’+V?ds*.

By separation of variables is meant that the Hertzian
function satisfying Eq. (7.6) can be represented as the
sum of partial solution each being the product of factors
of only one of the parameters %, v, z, respectively,

namely,
II=®(u)¥ (v) expiyz.

It is known that separation is possible only in elliptic
coordinates™ and their degenerations (Cartesian, polar,
parabolic). It is then possible to satisfy the boundary
conditions if the boundary surfaces are of the forms
u=const, v=const, or z=const. Even in the case of
isotropic media the method is straightforward for all
types of elliptic coordinates only when the boundary
conditions are of the form (I). In the case of the type
(II) only plane and circularly cylindric boundaries are
convenient to handle, while eliptic and parabolic
cylinders lead to an infinity of simultaneous equations
for the coefficients of the partial solutions, which
seriously impair the usefulness of the method.

In the second place, the properties .of the gyro-
magnetic medium, as expressed in Egs. (7.8) and (7.10)
introduce additional limitations in satisfying the
boundary conditions. Indeed, the transverse com-
ponents of E and H are according to these equations,
of the general type of

Eu=[ vt
o

IV (v
av

+ (Co/ V)@ (u) )] expiyz, (9.1)

etc. where Cy, Cs are two constants. Let us consider
any cylindrical boundary, for instance #=1,, at which
the components E, of the incident, reflected and trans-
mitted waves must satisfy the conditions (I) or (II).
A necessary prerequisite for fulfilling these conditions
in a simple and direct way is that the factors depending
on the variable v, changing along the boundary, be the
same in both terms of the expression (9.1). This means
that 9¥/dv and ¥ must have the same analytic struc-
ture, which is only possible when ¥(v) is an exponen-
tial. For any other function ¥ (v), the boundary condi-
tions of either form will result in an infinite system of
simultaneous equations.

There exist two systems of coordinates in the elliptic
family, in which the separation factors are exponential.
(1) Cartesian coordinates where the factors depending
on x and y may assume the form expiaw, expiBy; (2)
circularly cylindric coordinates where the azimuthal
factor may be exp(inp), # being a number and ¢ the
azimuth. Thus the number of physical systems amen-
able to straightforward treatment is very limited and
restricted to: (1) plane waves with their reflections
from plane discontinuities; (2) rectangular wave guides;
(3) circular wave guides with their axes in the preferred
direction. Besides the conditions must be such as to
make the relevant separation factors exponential (and
not trigonometric).

4. Weber, Math. Ann. 1, 1 (1869); see also P. S. Epstein,
Enzyklop. der Math. Wiss. V 24, 505 (1915).
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We repeat that the preceding conclusions apply
only to cylindric boundaries parallel to the principal
direction z. Remarks about satisfying the boundary
conditions at the plane surfaces z=const will be made
in discussing the individual examples.

10. The Plane Wave

A special case of a plane wave was mentioned in
Section 5. We wish now to treat the general case when
the plane wave has the arbitrary direction of propaga-
tion 2z’ under an angle ¢ to the preferred direction z.
If the x-coordinate of the Cartesian system x,y,2 is
is chosen normal to the (z,2')-plane, the propagation
vector lies in the (y,2)-plane and the Hertzian vector II
describing the wave according to the Egs. (7.6), (7.8)

2M — (M — M) sin?9-£[4K?2 cos?d+ (M — M ;)? sin%d
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becomes independent of x and equal to

IT=exp:(ky-+vz) =expik’s’. (10.1)
From z’'=1y sind-+-z cosd there follows,
k=Fk'sind, y=F cosd, (10.2)
. k=ryigd, k' =7/cosd. (10.3)
The wavelength in the direction of propagation is
N=2x/k' =2x cosd/7, (10.4)
and the parameter 7 of Eq. (7.3) is
7= (M~y?/cos?®) — ek¢®. (10.5)

Equation (4.5) determining %, permits calculating y
in terms of the angle ¢, with the result,

2= eky?

(10.6)

[ M2— K2+ MM sig%]

The double sign shows that the medium can support
in any direction two different plane waves. The limiting
cases of this formula, #=0 and ¢==/2, are already
familiar: the case #=0 leads to Eq. (5.10) and the case

. S=m/2 yields v=0, k?=eko’/M or k?=eke*/Ms;, in
conformity with Egs. (6.1) and (6.2).

The components of the electric vector E are readily

obtainable from Eq. (7.8);

E,=iryIligd, E,=—ovyIligd,

10.7
E,=ovyIlig?. ( )

Of particular interest are the components in the
directions %/, 9’, 2’ associated with the direction of
propagation 2z’ so that 9’ lies in the (y,2)-plane and »’
coincides with x,

E,=E,cosd¢—E,sind, E, =E,sind+E, cosd,
whence

Ey=E, Ey=—(c/sind)yIl, E,=0. (10.8)

The components E,- and E, are, in general, not equal
in absolute value and possess a phase difference of 7/2.
Therefore, the waves they represent are elliptically
polarized, and the sense of the polarization is opposite
in the two waves because it can be shown that the
parameter 7 is positive in one and negative in the other
in conformity with the double sign in Eq. (10.6). As
is well known, it is an immediate consequence of Max-
well’s equations (2.1) that in a plane wave the electric
vector E and the magnetic induction B are both trans-
verse to the direction of propagation and orthogonal
to each other. Hence, in relation to its elliptic polariza-
tion the induction B has the same characteristics as E.
However, in view of the tensor relation (1.2), this is
not true of the magnetic strength of field H. As a
consequence of this relation H is not transverse but

has a component in z’-direction. Besides, in addition
to the rotation of B around this direction, H possesses
another rotation about the preferred axis z imposed
by the tensor (u™).

The most significant difference between the ellipti-
cally polarized plane waves just discussed and the
familiar analogous waves of an isotropic medium is as
follows. In the isotropic medium the elliptically
polarized plane wave can be always decomposed into a
superposition of two independent linearly polarized
waves. This is not possible in a gyromagnetic medium
where the expressions (10.1) and (10.7) represent the
irreducibly simplest type of wave motion. This fact
has an important bearing on the problem of the reflec-
tion of plane waves from an infinite conducting plane or
from an infinite plane of discontinuity separating an-
other medium. If the media are isotropic the problem
can be reduced to the reflection of linearly polarized
waves with fixed directions of the vectors E and H.
In the boundary plane only one component E, and
one component H; need be considered, and therefore,
the boundary conditions reduce to one equation, in the
case (I), and to two equations, in the case (ITI). The
conditions are then satisfied by one appropriately re-
flected wave (I) or by one reflected and one transmitted
wave (IT). It is different when the media are gyro-
magnetic, the elliptic polarization of the plane waves is
then irreducible and entails constantly changing direc-
tions of E and H. Hence, it is necessary to consider two
components E, (at right angles to each other) and two
components H, The boundary conditions amount to
two (case I) or to four equations (case II). To satisfy
them, respectively, two or four new waves are needed.
These waves are available because the medium can
support plane waves of two kinds (k=#; and k=£,).
Thus an incident wave produces two reflected waves
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(of the kinds %; and k,) in its own medium and two
transmitted waves in the adjacent medium.

Apart from this complication the mathematics of
the problem is straightforward because the Hertzian
vector in Cartesian coordinates has here the simple form
I =expi(ax+By+vz) which remains covariant in
transformations to other systems of Cartesian coordi-
nates. This expression is thus always a product of three
exponential functions and permits of easily satisfying
the boundary conditions at any plane surface, as was
brought out in the preceding sections for the analogous
case of side surfaces. Though cumbersome, the calcula-
tion of the reflected and transmitted fields is in all cases
entirely elementary. However, the practical interest of
the reflection coefficients of plane waves is so limited
that it would not justify the space necessary for the
detailed analysis.!s

Suffice it to treat here a very simple case of reflection
which has some theoretical interest in connection with
the contents of the later Sec. 13; it is a case of a two-
dimensional field in the sense of Sec. 6. Let us consider
a plane polarized incident wave propagating in air and
possessing the field

E,® =expiko(x cos{+y sing),

(10.9)
H,P=sin{E,®, H, "= —cos{E,®.

The negative half-space (x<0) is filled with air, the
positive (x>0) with a gyromagnetic medium having z
as its preferred direction. The wave (10.9) falls on the
surface of discontinuity, x=0, under the angle ¢ to the
normal. The transmitted field is then described by
Egs. (6.4), (6.5), and (6.7) and is, therefore, also linearly
polarized. Hence, the conditions are not much different
from those in an isotropic medium: there is only one
transmitted and one reflected wave. The field of the
reflected wave is

E,® =R expiko(—x cos{-+1 sing),
} (10.10)
H,®=gin{E,®, H, B =cos{E,®.
Introducing the abbreviation,
k3= (¢/ M) ko= nsk,
the transmitted wave follows from Eqs. (6.6) and (6.7)

E, M =T expiks(x cos{’+y sing”)
H, (M= (—iK cos{’-+M sing’)nsE, D,
H, "= — (M cos¢’+iK sing’)nsE, (0.

(10.11)

(10.12)

The boundary conditions (II) are in this case:
EW+EM®=F ™. g ,O4+H ®=H (T for x=0. In
addition to

ng sing’ =sin¢ (10.13)

15 Coefficients of reflection of plane waves were calculated by
M. A. Gintzburg? for several cases, including even the more
general problem of the reflection from a plane-parallel slab of a
gyrotropic medium of special orientation.
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they lead to the equations,
14-R=T,

} (10.14)
cos{(1—R)= (M cos{’+1K sin’)n;T.

Thus, the expressions (10.10) and (10.12) for the
reflected and transmitted fields are completed by the
explicit values of the coefficients,

R=[cost—n3(M cos{'+iK sin¢’)]/
[cosi+n3(M cosy’+iK sing’)],
T=2 cosg/[cost+n3(M cos¢’+iK sing’)]. J
Worthy of attention is the asymmetry of R and T
with respect to &=¢ (and therefore, to 4={’) which has

its origin in the helical character of the preferred ferrite
axis.

(10.15)

11. Rectangular Wave Guide with Transverse
Permanent Magnetization

Let the longitudinal direction of a wave guide filled
with a gyromagnetic medium be denoted by x, and let
the coordinates y, z of its cross section lie between the
limits, v
(11.1)

If z is the direction of the permanent magnetic field,
itis possible to have in the wave guide a two-dimensional

wave in the sense of Sec. 6, and to apply Egs. (6.5) and
(6.7). Indeed, modes of the type

O<y<l, 0<z<h.

E,=E,=0, E,=sinBy expiax, (11.2)
with

o+ =ks’= (¢/ M)k, (11.3)

can be made to satisfy all boundary conditions at the
walls of the guide. The conditions at the walls z=0,
and z=/ are E,= E,=0, which are satisfied identically;
at the walls y=0, y=I/, they are E,=FE,=0, which
require

B=nm/l, (11.4)

where # is an integer. Thus, the final expression of the
field is

E,=sin(nmy/l) expia.x, (11.5)
== (ks?—n’n?/ %)}, (11.6)

and according to Eq. (6.7), the magnetic field is
H,= —iki [ Ka sinBy+ Mg cosBy | expiaz, 4

= —ko [ Ma sinBy+ K cosBy] expiax.

The propagation constants a, are, thus, discrete with
the spectrum (11.6). For a given value of k;, the
constant a, is real as long as n<mwks/l, beyond this
‘“cutoff,” the propagation constants are imaginary
and the modes (11.5) become inhomogeneous, or
evanescent. In microwave practice it is desirable to have
only one mode in the wave guide. This is accomplished
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by choosing the frequency w so that =/l <k; <2x/I; then
all the modes except the fundamental (z=1) are in-
homogeneous. If a higher mode should get excited, it
dies out in a short length of the wave guide and only the
fundamental mode remains. Thus, for practical ap-
plications, only the case n=1 is of interest.

Since the sine factor in Eq. (11.5) is independent of
an, it is possible to solve the problem of reflection of the
wave from a plane shorting plate, say, at x=0. The
boundary conditions at the shorting plate are E,=0,
E,+E,® =0, which are, obviously, satisfied by a
reflected wave differing from the incident only in that
a, and E,®) are negative. The combined field of the
incident and reflected waves is then

E, %% =2 gsin (nwy/l) sina.

This leads, finally, to the solution of the problem
of parallelepipedal cavity resonator of the length L in
the x-direction. The boundary conditions at both ends
are satisfied when a=mx/L, m being another integer.
Hence the characteristic frequency of the cavity reso-
nator becomes (because of w=cksM/e?),

w*= (wc)*(M/ )L (n/D)*+ (m/L)*].

It must be borne in mind, however, that the con-
stants M and e are both functions of w (Sec. 1), so that
we have here an implicit equation for the determina-
tion of w.

The other two-dimensional solution of Sec. 6 given
by Egs. (6.9) finds no application in rectangular wave
guides because the conditions E,=E,=0 at the walls,
2=0 and z=%, would be compatible only with the
trivial case of E vanishing everywhere.

(11.8)

12. Rectangular Wave Guide with Transversely
Magnetized Ferrite Lining

The wave guide which we wish to consider now is of
the same shape and size as that of the preceding section
but it is only partially filled with ferrite. The ferrite is
restricted to a plane parallel layer along the wall y=0,
extending to the interface at y=d, while the remaining
space, d <y </, is air filled.

Within the ferrite Egs. (11.2), (11.3), and (11.7) of
the preceding section remain valid. In the air-filled part
the corresponding expressions are, obviously, omitting
the factor expiax,

E.©=C sinB(y—1),

H,©=ikiCBo cosBo(y—1), (12.1)
H,®=—kiCa sinBo(y—1),
E+BeE=Eed. (12.2)

By this choice the conditions at the walls of the wave
guide are satisfied. There only remains to fulfill the
boundary conditions at the interface, y=d, namely,
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E,=E,© H,=H,9, or explicitly,
sinBd=_C sinBo(d—1),
. (12.3)
Ka sinfd—+MpB cosBd=CBy cosBo(d—1).
These equations are compatible when
1gBo(d—1)=Bo[ M cotgBd+Ka . (12.4)

Inasmuch as both 8 and 3 are functions of a through
the relations (11.3) and (12.2), this is the equation for
the determination of the propagation constant a.
The equation is of a transcendental type which possesses
an infinity of roots accounting for the « spectrum. We
shall not enter here into the numerical calculation of
the roots.

It should be pointed out, however, that in this
system the problem of reflection from a shorting plate
is by no means simple. Equation (12.4) is not sym-
metric in ==« so that waves with positive and negative
directions of propagation have different propagation
constants and consequently also different values of 8
and B,. This causes the failure of the method of finding
the reflected field, successfully used in the preceding
section.

Further problems capable of solution with trans-
versely magnetized ferrite in a rectangular wave guide
are: (a) longitudinal ferrite slabs touching two walls of
the guide and parallel to the other two (with mag-
netization parallel to their free surface).!*1¢ (b) circular
ferrite post, provided that its radius is small compared
to the distance from either wall parallel to its axis.'”

13. Reflection from Ferrite Filling a
Rectangular Wave Guide

We consider an infinite wave guide of the same shape
and size as in Sec. 11. However, only its positive half
(x>0) 1s filled with a gyromagnetic medium (mag-
netized in the transverse z-direction), while the nega-
tive half (x<0) is air filled. Let an incident wave be
moving in the air-filled half in the positive x-direction,
we wish to discuss the problem of its reflection and
transmission upon hitting the interface at x=0. As a
matter of fact, our purpose is not to find workable ex-
pressions for the coefficient of reflection and transmis-
sion but merely to give an example of the type of
mathematical difficulties which are involved in all but
the simplest cases in the theory of gyromagnetic media.

It is convenient to choose the unit of length in such a
way that the width of the wave guide, I, becomes
equal to m, so that the range of variability of y is
0<y<m. The incident wave in the air-filled half shall
then be represented by the mode )

E,® =sinmy expicomX,

_ . _ } (13.1)
H, D= — ki g, sinmy expicom®,

16 Lax, Button, and Roth, J. Appl. Phys. 25, 1413 (1954).
7P, S. Epstein and A. D. Berk (to be published).
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where
Qom = (k02__ m"’)*.

On the other hand, the following reflected modes are
possible
E.,.® =sinny exp(—iao.%),

} (13.2)

H .., B =Fk¢ g, sinny exp(— oot ’
, y exp

and according to Egs. (11.5) and (11.6), the transmitted
modes,
E,.T)=sinny expia.x,

(13.3)
Ho D =—ki [ Ma, sinny+Kn cosny | expia,.x.l

The boundary conditions at the interface (x=0) are
EW+E,®=FE,D, HO4+H,®=H, D, (13.4)

These conditions cannot be satisfied by choosing the
reflected and transmitted waves as single modes. Mathe-
matically this is apparent from the structure of the
factor depending on y in H,,™ which contains two
terms with sinzy and cosmy; thus it cannot be matched
for all values of y with H,,® and H,,®. The under-
lying physical cause can be seen by the following con-
sideration. As far as the electric vector is concerned,
the waves (13.1), (13.2), and (13.3) can be regarded
as superpositions of two plane waves, for instance,

E, = —1; expi(my-+aomx)+3i expi(—my-+aomx).
Each of these modes consists of two plane waves of
equal amplitudes and opposite phases, including
oppositely equal angles with the interface. However, it
was shown in Sec. 11 that the reflection of a plane
wave of this sort is asymmetric, a consequence of the
gyroidal properties of the ferrite. Thus, the fields in the
two media cannot be joined together if they are ex-
pressed by single modes.

In view of this we represent the reflected and trans-
mitted waves in the most general form available,
namely, as the superposition of all possible modes,

ED=Y T,E,.™, (13.5)

n=1

©
E, B) = Z RnEnz(R);
n=1

with similar expressions for H,®) H,(T, We shall con-
sider the only case interesting in practice, when the
incident wave is the fundamental mode and the fre-
quency is such that all overtones are inhomogeneous,
m=1, a=ila|, (for n>1). (13.6)

Then the boundary conditions (13.4) lead to the
following explicit equations,

siny+ >, (Rn—T'») sinny=0,

n=1

- (13.7)
ao1 siny— X [(aonRn+Ma,Ty) sinny
n=1
+Kn cosny]=0,

for all values of y between 0 and 7. The following rela-
tions will be useful

f sinmy sinnydy= f cosmy cosnydy

0 0
{ 0, for m==n,

im, for m=n.

0, for (m—n) even,

sinmy cosnydy= ‘
j; 2m/(m2—n?), for (m—mu) odd.

Multiplying the first equation (13.7) by sinmy and
integrating from 0 to = gives
Ti=Ri+1, T.=R, (forn>1),
so that the second equation can be transformed into

(01— May) siny— H cosy
— Z Rn[(al)n_l"Man) sinny+Kn Cosny]:()‘ (13.8)
n=l1

When K is small (K<1), this system can be resolved
with respect to R, by successive approximations.
Letting

RnZRnO+KRn/+K2Rn”+ tt
with the abbreviations

A =a01-—Ma1, Bn=a0,.+MOl1.,

one finds,
Rl =A/B1, .Rll:(),

o (8)2,4+B1>§ L_# g
S e (139
' x) B 5By, (d—1)

Only the homogeneous part of the reflected wave
(n=1) is of practical interest because the inhomo-
geneous modes (z>1) do not carry any energy.

However, in ferrites K is not small and, therefore, the
computation of the reflection meets with great difficul-
ties. The multiplication of the expression (13.8) by
sinmy(m=0, 1, 2, - - - 0 )—or, alternatively, by cosmy—
and integration from O to « leads to an infinite system
of simultaneous linear equations of a rather slow con-
vergence. We shall not write out this cumbersome set of
equations because we do not know of any practicable
method of resolving them.

14. Circularly Cylindric Coordinates

When the magnetization is longitudinal the boundary
conditions at the walls of a rectangular wave guide
cannot be satisfied by single modes. Indeed, the re-
quirements that E, must vanish both for =0, x=1/;
and y=0, y=I, are then contradictory. According to
the criterion at the end of Sec. 9 the condition at

‘#=0, x=I; entails the exponential character of the

factor depending on v, that is, expiBy. However, with
such a factor it is impossible to fulfill the conditions
at y=0, y=/,. On the other hand there is no such
difficulty in circular wave guides.
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If a cylindric system 7, ¢, z is introduced with its
origin in the axis z of the wave guide, Eq. (7.6) for the
Hertzian function becomes

OI 19II 1941
4 4

T T 'rk2H=0, (141)

o r or 1?9y

so that it can be represented as
MI=C.(kr) expi(no+v2), (14.2)

where C,(kr) denotes the general cylindric function of
the order #, and %k can assume the values % or k. of
Eq. (4.5).

The electric and magnetic fields follow from the
Egs. (7.8), (7.10). Leaving out the factor expz(no+vz)
in all components, we have

E.=i[koC.' (kr)+ (n7/r)Ca(kr) ],

E,=—[krC,/ (kr)+ (na/r)Cn(kr)], (14.3)
E.= (Fa/v)Cnlkr).

H,= ’Y[kacn, (k?’) - (nb/r)Cn (k?’)],

H ,=—iv[kbC, (kr)— (na/r)Cn(kr)], + (14.4)

H,=1iv*C, (k7).

This type of wave is materially different from the
plane wave propagating in the preferred direction
discussed in Sec. 5. To make this clear it is best to
consider the conditions for large values of the argument
kr and to identify C,(kr) with the Hankel function of
the first kind whose asymptotic expression for ¥<1, is
H,© (x)~(3rx)~* expixz. Thus the Hertzian function
gains the expression,

I~ (3nkr)—* expi(kr+ne+vz).

At a given point it represents a wave possessing » and
¢ components of propagation, it may be called a
divergent helical wave.

It 1s apparent that the phase difference between the
two transverse components of E is ir while their
absolute values are different. Therefore, the waves
represented by (14.3) and (14.4) are elliptically polar-
ized and in general the degree of elipticity changes with
the distance » from the axis since the ratio of the axes
of the ellipse is equal to the absolute value of the ratio
E,/E,. It will be seen that this ratio is not the same for
n and for —n, and this is not surprising in view of the
remarks made above, since +#» and —# characterize
two quite distinct modes of the system. In comparison
with the conditions in an isotropic medium there is the
important difference that the two modes, +#» and —#,
are asymmetric so that they cannot be combined to form
a wave with linear polarization. Indeed,

ITE.(n)+E.(—n)]=[ikeC,' (kr) cosne
— (n7/r)Ca(kr) sinne] expivz,

LE,(n)+E ,(—n)]=—[krC, (kr) cosne
+i(na/r)Cn(kr) sinng] expiysz.
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For the same sign of #, the characteristics of the
elliptic polarization are different for £=£%; and k=k,,
which also constitute two different modes. It was shown
in Sec. 9 that 71 and 7, have opposite signs.!®

15. Circular Wave Guide with Longitudinal
Magnetization

If the whole infinite wave guide is filled with a gyro-
magnetic medium, the function C.(kr) in Eq. (14.2)
must be identified with the Bessel function J,(kr)
which is the only cylindric harmonic without singu-
larity at r=0. Hence,

=7 ,(kr) expi(no+vz). (15.1)

It is convenient to choose the radius of the wave guide
as the unit of length (r=1). The boundary conditions
at the walls are then

E,(1)=E,(1)=0. (15.2)

It is clear that the expressions (14.3) cannot be made
to satisfy these conditions; however, there are two such
expressions available since the parameter £ can assume
the value %, or k;. We shall call them tke first and the
second system of solutions and shall designate them,
respectively, by the indices (1) and (2). Thus we can
build up the Hertzian,

= AT+ AL, (15.3)

This combination can satisfy the conditions (15.2) for
all values of z and ¢ only when the factor expi(neo+v2)
is the same in both terms so that it can be canceled out.
Therefore,

Y1=Ye=Y, M=N2=n.

This leaves, however, k15 ks, because the two param-
eters are different functions of .
The boundary conditions become now

A1E1¢(1)+A2E2¢(1)=0)

AEn (D)4 AsEa. (1)=0. (154)
They are compatible when,
Elv(l)EZz(1)_E2¢(1)E1=(1)= 0,
or according to (14.3)
[RariT A ()00 n (k1) YT n(k2)
— [karo o’ (ko) 10T o (ko) Jos2T n(k1)=0. (15.5)

Inasmuch as both %, and % are functions of propaga-
tion constant v, this relation serves to determine the
permissible values of v in the modes (15.3) of propaga-
tion for a given frequency w. Indirectly it also de-
termines the permissible values of k; and k, which
shall be, therefore, called the roots of Eq. (15.5).

The ratio of the coefficients becomes

AofAr=—E2T n(R1)/ kX n(k2), (15.6)

18 Curves relating to the magnitudes of the Faraday effect were
calculated by Gamo.?
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where ki, k, satisfy Eq. (15.5), while the Hertzian can
be written explicitly as

= [kzzjn(kZ)]n(klr)—klzjn(kl)Jn(k2r)]
Xexpi(no+vyz). (15.7)

In view of the definitions (4.5) of k1 and k. the bracket
expression in Eq. (15.7) is independent of the sign of
4. This makes it possible to reflect the wave from a
plane shorting plate. The total Hertzian, comprising
the incident and the reflected waves, is then

M =[A1J (k) + AT (k)] expine sinyz.  (15.8)
When the propagation constant is chosen as
y=ym/l, (15.9)

the expression (15.8) represents the field in a cylindric
resonance cavity of the length /. Equations (15.5) and
(15.8) jointly define the spectrum of characteristic
frequencies of such a cavity.

16. Coaxial Wave Guide with Longitudinal
Magnetization

Under more general conditions than in the preceding
section the expressions become rather cumbersome.
Therefore, in the remaining part of this paper we shall
be satisfied with a schematic demonstration how solu-
tions can be obtained without writing them out in
detail.

Let the coaxial wave guide have the outer radius 1 and
the inner R. The boundary conditions are

E,=E.,=0, for r=1, r=R. (16.1)

Since the singular line =0 of the partial differential
equation (14.1) is now excluded from the range of the
variables, in addition to Eq. (15.1) can be used the
solution

=N, (kr) expi(no+vz), (16.2)

with the Neumann cylindric function as a factor.
Solutions containing Neumann functions will be charac-
terized by bars. The components of E and H are then
obtained by identifying C,(%r) in Eqs. (14.3) and (14.4)
with N, (k7). Two values of % being always available,
the complete expressions of E, and E, become

Eo=A1Ey g+ AsEs y+A:E1 g+ AsEs,,
Ez =A lElz +A 2E2z "]"A’/I ZElz +-A-— 2E—2z-

Substituted into the boundary conditions (16.1)
these expressions lead to a system of four simultaneous
equations which are linear and homogeneous in the four
coefficients A. The compatibility condition is

(16.3)

Ei,(1), Ex,(1), E1,(1), E(Q1)

EL(1), Ex.(1), E.(l), E.Q)|_

Buy(®), Eay(®), Ery(®), Eap®)| " 10
Elz (-R); E2z (R), Elz (R); EZz (R)

EPSTEIN

This is the equation which takes the place of (15.5)
for the determination of the permissible propagation
constants y. With respect to the reflection from a
plane shorting plate exactly the same considerations
apply as in the case of the preceding section. To
obtain the joint fields of the incident and the reflected
waves it is only necessary to replace the factor expiyz
in the potentials II and II by sinyz. The characteristic
frequencies of a coaxial resonance cavity of the length
I are then determined by the simultaneous equations
(15.9) and (16.4).

17. Circular Wave Guide with Coaxial Ferrite Core

Let us consider an infinite circular wave guide inside
which are two concentric and different gyromagnetic
media. The inner fills a solid cylinder of the radius R,
the outer the hollow coaxial cylinder outside up to
the radius r=1. The inner is longitudinally magnetized ;
let the outer cylinder be characterized by unprimed
letters k1, ko the inner by primed &y, k..

In the outer cylinder the field can be represented in
the same way as in Sec. 16 by Egs. (16.3) to which
must be added the expressions for the magnetic com-
ponents of the same form. The inner (primed) region,
7 <R, contains the singularity, =0, so that only Bessel
functions may be used in its description. The repre-
sentation of the field is, therefore, that given by Eqgs.
(15.3) in conjunction with (14.3). It can be written as

F'=A/B/+A/Ey, H=4/H/+A/+H,. (17.1)

The accents at E/, H’ indicate that the wave numbers
in them are &1/, ko’ characterizing the inner (primed)
medium. _

Altogether our expressions contain six coefficients 4,
and correspondingly there exist six boundary condi-
tions: namely, two at the outer boundary, r=1,

E,(1)=E.(1)=0, (17.2)

and four at the interface, r=R,
E,(R)=E/(R), E.(R)=E.(R),

H«’(-R):H‘p’(R)’ H.(R)=H,(R). (17.3)

Thus the complete set of condition becomes

A1E1 (1) + A 2B (1) A1l ,(1)+A,E5,(1)=0,
A1E1, (1) +A3E,, (1) +A:E 1, (1) +A:E,,(1) =0,
A1E1o(R)+ A2 B2 o (R)+A1Fh1 o (R)+A5E5 o (R)
—AIIEI«:’(R)—A2'E2¢'(R)=0;
ArE1o(R)+ AsEs.(R)+A1E1.(R)+-A,E5.(R)
—A/Ey (R)— A4 By, (R)=0,
A 1H1¢(R)+A 2H2¢(R)+A1ﬁ1¢(R)+fIZFIZ«:(R)
—A/H,,/(R)— A H,,' (R)=0,
ArH 1, (R)+AsH . (R)+AH 1. (R)+A.H,.(R)
— A H(R)—A4./'H:,'(R)=0.

(17.4)
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The vanishing of the determinant of this system
provides the relation determining the permissible
values of the propagation constant.

When the outer medium is ¢sofropic, for instance air,
the equations are still valid but with a different defini-
tion of the unprimed components. In this case the first
and the second system are, respectively, represented by

Ey.=—i(n/r)Cn(kr),
Hyy=— (ky/uko)C./ (kr),
Eqy=kC,' (kr),

Hy,= —i(nkoe/yr)Cu(kr),

The case of the isotropic outer medium is of great
importance because it corresponds to the conditions in
ferrite circulators. It is indeed an essential theoretical
problem to investigate what influence the axial ferrite
core has on the wave propagation in the isotropic space
around it. Unfortunately Egs. (17.4) are rather involved
and, especially, the determination of the roots of their
compatibility condition would require very cumbersome
numerical calculations. However, it is possible to form,
in a qualitative way, an idea about the nature of the
resultant modes when the materials of both media are
nonabsorbent. This can be done by the following suc-
cessive steps. (1) From the principle of conservation of
energy it may be concluded that the characteristic
values of &, ki, ko’ resulting from the compatability
condition are always real. Hence, the real or imaginary
character of all the components given by Egs. (14.3),
(14.4), (17.6), and (17.7) is determined solely by the
occurrence in them of the explicit imaginary factor i.
(2) When the coefficients A, A2 are replaced by 4,=1D,
and A,=:D and Egs. (17.4) are written out in terms
of the cylindric functions, the factor 7 can be canceled
from those equations in which it appears, and the
whole system becomes entirely real. This means that
all the ratios of the 4 and D coefficients are real, includ-
ing A1/A1, D/A1, D/A+. (3) To bring out the influence
of a reversal of the sign of # upon the coefficients it is
helpful to compare the case under discussion with the
case when the inner medium is isotropic (like the outer).
Under the latter conditions the system (17.4) acquires
a remarkable symmetry: when the sign of # is reversed
and at the same time also the signs of D and D, the
equations remain the same. This means that (for con-
stant A1) the coefficient A, is symmetric in 47 and the
coefficients D, D are antisymmetric. When the inner
medium is gyromagnetic no such symmetry exists, all
three coefficients A1, D, D are entirely asymmetric with
respect to £#.

Writing out the components £, and E, in detail we
find, omitting the factor expi(ne—+vz),

Ev=—i{ (n/r)[ AT n(kr)+ AN, (kr)]
+E[DJ . (kr)+DN ' (kr) ]},

E1¢= kCn’ (k?’),

Eyp=1(n/7)Cn(kr),
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the (TE) and (TM) modes of Sec. 8 (with M=M3).
In both systems the potential is

&=C,(kr) expi(no+v3),

k1=k2=k= (eukoz--'yz)%. (175)
Consequently Eqs. (8.2) and (8.4) lead to the follow-
ing expressions omitting the factor expi(ne-+v3):

where

Elz=0,

H1¢="'(n‘y/uku7)Cn(kr), le:i(kz/uko)cn(kr) } (176)
Ey=— (B*/v)C(kr),

Hy,= (kkoe/v)Cy' (kr), H,,=0. } (7.7

E«’:l?[A T (kr)+ AN A (kr) ] _
— (n/r)[DJ n(kr)+DN ,(kr)].

When the inner core is absent, these expressions re-
duce each to a single term; for instance, the term with
A1, for (TE)-modes. It is clear that the modes +#» and
—n are in this case elliptically polarized in opposite
senses but otherwise symmetric so that linearly polar-
ized waves can be obtained by combining them. The
presence of an inner cylinder of different material causes
the appearance of the three additional terms. But, as
long as the material of this core is isotropic, the sym-
metry of the +#» and —» modes remains unchanged
because of the symmetric properties of the coefficients
mentioned above. It is different when the core material
is gyromagnetic: the coefficients 4, D, D are then
asymmetric and affect the respective ellipticities of the
+# and —# modes to quite different extents. In conse-
quence there does not exist any combination of the
two modes having linear polarization.

As already mentioned, the quantitative evaluation of
this effect requires laborious numerical calculations. In
the case of an extremely thin ferrite core (RK1) Van
Trier gave a first approximation for the characteristic
value of %, but the magnitudes of the coefficients 4 and
D remain undetermined even for this case.’?

Finally, it is interesting to note that the respective
parity in 4y of every component in Egs. (17.6) and
(17.7) is the same as in Eqs. (14.3) and (14.4). There-
fore, the system (17.4) is invariant with respect to a
reversal of the sign of v, so that the modes moving in
the positive and negative directions have the same
spectrum of propagation constants. This makes it
possible to solve the problems of reflection from a
plane shorting plate and of the characteristic frequencies
of a cavity resonator in the same way as in the two
preceding sections.
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