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1. INTRODUCTION

~

~

~

E may by the term polarization indicate the
properties of electron beams resulting from a

preferred orientation of the electron spin. These prop-
erties are analogous to some extent to the polarization
of light. The electron spin was proposed by Goudsmit
and Uhlenbeck on the basis of spectroscopic evidence
within the framework of the old quantum theory. The
nonrelativistic Pauli spin theory, the Dirac wave equa-
tion, and the more recent discovery of the anomalous
magnetic moment of the electron and its explanation by
quantum electrodynamics are the landmarks in the
development of the theory of the spinning electron. The
bulk of the evidence confirming the theory has been
somewhat indirect, e.g. , evidence concerning bound
electrons. However, the existence of polarization prop-
erties for free electron beams is perhaps the consequence
of the electron spin in which it shows up in the most
direct way.

In this review paper, we shall discuss the formal
description of electron polarization, the different ways
of producing and detecting electron polarization, and
experiments with polarized electrons. The topics which

are of present interest will be dealt with most exten-
sively. An earlier review of the subject was given by
Rosenfeld (S43)* (to which the author feels much

indebted). Of other summarizing treatments given by
Mott and Massey (S 49) and by Sommerfeld (S 39) the
former deals extensively with polarization by Coulomb

* See table of references at end of article.

scattering at heavy nuclei, to which we refer therefore
for a more extensive representation of the theory of this
subject, than is given here in Sec. 3.

f= clif l+C2$2) (2.1)

in which ft and $2 are two orthogonal wave functions,
e.g. , I for the case of electrons (a) two opposite spin
orientations perpendicular to the momentum p, or (b)
two opposite spin directions parallel and antiparallel
to y; II for the case of Photons (a) two plane polarized
waves with perpendicular polarization planes (b) two
right and left circularly polarized waves.

A wave function P of the form (2.1) characterizes a
totally polarized beam. If we have a certain ideal polari-
zation detector (e.g., counting photons with linear
polarization in a certain plane only) the detector may
be characterized by the wave function of the quanta to
which it responds fully

Pdet —
C detlt, +C detP (2 2)

The probability of a response of the detector to a
quantum given by (2.1) is

II'=
I 8""14)I'=

I
~""*"+~""*"I (2 3)

A partially polarized beam should not be represented
by a single wave function, but by an "ensemble" of pure
states, each characterized by one wave function. The
quantum-mechanical description of such an "ensemble"
is a density matrix (or statistical operator) p (see, eg.
R 38, R 39), which is a 2&&2 matrix in our case of two
fundamental states

p2~ p22

(2.4)

Here p is Hermitian, has eigenvalues positive or zero,
and is normalized in such a way that

ptt+pn=1 (2.5)

2. FORMAL DESCRIPTION OF ELECTRON POLARI-
ZATIO¹, COMPARISON WITH PHOTON POLARI-

ZATIO¹, INFLUENCE OF SLOWLY VARYING
ELECTROMAGNETIC FIELDS ON

ELECTRON POLARIZATION

In quantum mechanics the description of the polari-
zation of beams of electrons and photons is analogous
to an appreciable extent (P 27, R39, P 49, P 51a,
P 51b, P 53h, P 54b, P 54c, R 55a). As we are concerned
only with the polarization aspect of the waves, we shall
compare plane waves of quanta with the same mo-
mentum y only. A definite state of polarization given by
a wave function P may be written as
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The special case of a totally polarized beam, characterized
by the wave function f (2.1) corresponds to a density
matrix

Cl ClC2

C]. C2 C2

(2 6)

Similarly the detector given by )Pd't according to (2.2)
can be characterized by a density matrix p ". The
probability 8' (2.3) of a response may now be expressed
as the trace of the product of both density matrices

W= TrLP pd"]. (2 7)

The equality of (2.3) and (2.7) is easily verified. Gener-
ally the expectation value of an operator n for the state
p is given by

(t2) =Tr(tip]. (2 8)

0

0 0
(2 9)

by a unitary transformation. However, the use of the
density matrix is only essential, if we have a quantum-
mechanical "mixture, " representing an "ensemble" of
states. It is always possible to diagonalize P, but
generally one obtains (one can always choose p'&~ p" &~ 0)

p' 0

0
(2.10)

The density matrix (2.6) of a pure state can always be
brought into the simple form

e.g., P and the complex ratio c2/cl specifying the
polarization state of the totally polarized component,
admixed to the unpolarized component. As a physical
beam contains many quanta, a fourth parameter for
the total intensity should be added for characterizing
such a beam, as hitherto P as well as p represented the
state of one quantum only. We may say that we have
a polarization measurement of a physical beam with
respect to a certain orthogonal basis ($1,$2) if we meas-
ure the intensities Ij and I2 for detector settings
Pd"=i/1 and Pdet=iP2. We may express the result of a
measurement by

so that
Il/I2 Pl 1/P22) (2.12)

{a) two states of linear polarization with per-'
pendicular planes of polarization, (b) two other
states of linear polarization making angles of 2r/4 i (A)
with the planes of polarization in (a), (c) the two
states of left and right circularly polarized light. ,

A different way to characterize the state of polariza-
tion is by giving the expectation values of the Pauli 0.

matrices. We shall call them t 1, f'2, t 2 For a p.ure state
we may write

P{|t1) 2) =Pll P22 (Il 12)/(11+f2). (2.13)

In order to specify the polarization completely, the 3
relevant parameters should be determined, e.g., by
polarization measurements with respect to 3 linearly
independent bases. For these bases we could take for
photons:

instead of (2.9). While one may consider a pure state
)P= clgl+C2)P2 as a "coherent" superposition of )Pl and $2,
a density matrix, specifying a quantum-mechanical
mixtlre

0 T 0
=P +(P' —P")

0 T 0 0

02= (1—P)
p 1

0
+P (2.11)

0 0

0 0

with weights (1—P) and P, respectively. We may call
P(0 (~ P ~( 1) the degree of polarization. A general density
matrix is characterized by 3 independent parameters,

(P=p' p") can be consider—ed as the "incoherent"
superposition of the unpolarized beam

1 p

p 1
2

and the totally polarized beam

T 0

with

CyCy CyC2

, =2(1+(.~),
C2C1 C2C2

i 1 C1C2 +C2C1 ) f2= Z(clc2 C2C1 ))
f2= Icl]2—JC2J2.

(2.14)

{2.15)

To a 2-dimensional unitary transformation of the com-
plex pair of numbers (cl, c2) corresponds a real 3-dimen-
sional orthogonal transformation in the space of the
( vectors. For pure states ( is a unit vector, for mix-
tures

~ (~ &1, and it is easily shown that

pdet 1 (1+(det. a)

the probability for detector response becomes

(2.17)

W= Trfp p "]=-'(1+(( ") (2.18)

which is valid for pure as well as for mixed states (note
that Tr()rl]= TrLo2]= Trt a2]=0; TrL1]=2). Orthogo-
nal (pure) states are characterized by unit ( vectors of
opposite direction. Up to this point, the formal develop-
ments are equally valid for electrons and photons. We

(2.16)

If the density matrix characterizing the polarization
detector is also written in the form (2.14),
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shall now specify, and come to the point where distinc-
tions should be made for both cases.

A. Specification to Electrons

For the case of electrons, it is of course well known
that ( represents the direction of the electron spin (i.e.,
the spin angular momentum) in the nonrelativistic
Pauli spin theory. Often ( is specihed by the angles

(x,co) in polar coordinates, so that

fi=sinx cos&o, ps=sing sinco, fs ——cosx, (2.19)

so that
c,/c, = Ltg(x/2)) exp(ior) (2 20)

In the relativistic Dirac electron theory, we have
4-component wave functions instead of the 2-component
wave functions of the Pauli spin theory. However, a
definite polarization state can still be specified by (2.1),
where Pi and Ps are two mutually orthogonal, positive
energy solutions. Up to constant factors the (space
components of the) spin angular momentum is (are)
given by p*irtt, the magnetic moment by p*( prr)/-
(both measured in the laboratory system). The direction
of ( according to (2.15) is given by f*(si(1 p)e—jp,
which is not a part of a relativistic covariant. However,
we shall continue to use the vector ( derived in this
way in the Dirac theory. ( can be considered as the
spin direction, if the electron is transformed to rest.
The use of ( is convenient in the following respects:
(a) |; can be calculated from the large components Ps
and P4 of the Dirac wave function only; (b) the direc-
tion of ( remains unchanged if the electron is accelerated
by an electric field (see later); (c) an unpolarized beam
can be considered as an ensemble of electrons with spin

( pointing isotropically in all directions.
If we had taken the direction of the spin angular

momentum or the magnetic moment in the laboratory
system, (a), (b), and (c) would no longer be valid. We
shall speak of transverse polarization of an electron beam
if the direction of the spin is perpendicular to the
momentum, of /ongitudinaL potarisation if the spin is
parallel or antiparallel to the momentum. As 3 inde-
pendent bases, for which we may determine P(gi, fs)
[compare (2.13)) in order to determine the state of
polarization completely, we can choose Lcompare the
similar situation for photons mentioned in the foregoing
as (A)$

(a) two states of transverse polarization with
opposite spin direction, (b) two other states of
transverse polarization turned over an angle
of ~/2 relative to (a), (c) the two opposite
states of longitudinal polarization (parallel and
antiparallel).

As we have just seen, the polarization of electron
beams in Dirac theory may be expressed by 2&(2
matrices, if one considers only positive energy states.
However, one needs also a 4&(4 representation in certain

calculations of polarization e8ects by means of the
Dirac equation and perturbation theory. This repre-
sentation is defined in the following way. If

P=e exp[(i/A)p x], (2.21)

represents a wave with polarization ( (normalized to
one particle per unit volume), then we put (X, @=1,

, 4 indicate the Dirac components; (+) indicates
that we deal with positive energy solutions)

Eisf+i (()= BiBs . (2.22)

The explicit expression of I' i+i (() may be written in the
following way with the aid of the p and 0 Dirac matrices
(P 51d, P 53i, P 54c):

&"'(()=-'L1—(cp/E) . (c i—(~c'/E) ps+I' ~
—(cp/E) pirr+ (cp&&(IE) ps~+ J parr), (2.23)

with
K= (rnc'/E) (+c'p(p ()/E(E+rnc')
J= g+—c'p(p ()/E(E+nic'). (2.24)

E= (p'c'+rn'c')& is the energy of the electron, ni its rest
mass. P&+'(() may also be written in a way which is
clearly relativistically covariant. f For this we refer to
the Appendix.

B. Syeci6cation to Photons

The developments of Eqs. (2.1) . (2.18) are valid
for photons as well as electrons. For photons the wave
function f can be considered as a complex vector poten-
tial. In order to make a distinction from the case of
electrons, we may replace (ci,cs) by (ai, as), ( by g,
e by oi. Hence, we may write (2.1) for photons in
the form

A exp (ik x) =aiAi exp (ik x)+asAs exp (ik x).
In order to agree with some optical conventions, we put

so that, as for 01, 02, cr3,

(o1,2 = 1, o)go2= io)g) etC.

It follows that for a pure state

81@] 8162

(2.26)

(2.27)

with
5s=aias +asar,

b=i(aias —asar ). (2.28)

We may represent the real vector ( by means of two
angles n and P

Pi= cos2P cos2n,

Ps=cos2P sin2u, ~

$s ——sin2P.

(2.29)

t We denote the scalar product of a and b hy a b; the vector
product by ahab.

Jri 0 y ~0 1y t0 i~—
), (225)

LO —1) (1 0) Ei 0 )



280 H. A. TOLHOE K

Fin. 1. Diagram of a complete analyzer for polarized light, consisting of a X/4 plate and a Nicol prism. Light propa-
gates "slow" through the X/4 plate when the electric vector is in plane (1), "fast" when in plane (2); it is admitted
by the Nicol when in cross-hatched plane. The state of polarization may be characterized by the angles o. and p for
the analyzer setting for optimum transmission and by the intensities transmitted for maximum and minimum trans-
mission. (Figure from P 49.)

These angles are the angles which determine the setting
of an ideal analyzer (consisting of a )I./4 plate and a
Nicol prism) for light (see Fig. 1). This description of
the polarization of photons goes back to Stokes (see
P 1852 and P 49). The positive and negative unit vec-
tors in the 1, 2, 3 directions may designate the polariza-
tion states (a), (b), (c) mentioned under (A). It should
be stressed that the electron spin ( is a direction in
physical space; the 3-dimensional vector g determines
a "polarization space, " which divers from ordinary
physical space. The meaning of the directions of the
coordinate axes in g space is not fixed by the choice of
the coordinate system in physical space, but requires
an additional fixation, for example, a choice of a certain
plane (e.g. , a plane of scattering in some process), such
that Ai determines linear polarization in that plane.
This has as a consequence that invariant formulas for
physical processes may contain ( in invariant combin. a-
tions with other vectors in physical space such as the
momentum y, giving, for example, y ( or yX(, while

the components of g occur separately (see, e.g. , the
formulas for Compton scattering in Sec. 4).

C. Expression of Transition Probabilities with the
Aid of Density Matrices (P 51d, P 54b, P 54c)

We may make a few remarks concerning the expres-
sion of transition probabilities with the aid of density
matrices (here again we do not specify to photons or
electrons) for calculations including polarization effects.

If a system is prepared at time I,=O in a state po it will
have developed in a time t to a state p(t) (if the Hamil-
tonian is H)

p(t) = expL —iHt/h]ps expLiHt/A] (2..30)

The probability for having a response from a detector
p
"at time $ is now given by

S'(O det) =Tr(p"'p(t)]
=Trfp~'"exp( —iHt/h)ps exp(iHt/A)]. (2.31)

In scattering experiments, we are interested in transi-
tion rates R(0—+det) = (1/t)P(~det) (for small times t)
determining cross sections. For transition rates, it is
supposed that p~" is a kind of partial density matrix
referring to the detection of scattered states, but not of
unscattered states. The usual formula of perturbation
theory may be expressed in density matrix notation as

R(0—+det) = (2'/h)dt(E) TrLp "QpsQt]. (2.32)

Here dt(E) is the density of fina states; 0 is the per-
turbation part of the Hamiltonian (in first-order per-
turbation theory) Note the. symmetry between ps and
pd" in the formulas.

In calculating polarization eGects in specific physical
processes involving photons and electrons according to
(2.32), ps and ps" are given in their polarization de-
pendence by operators of the form (2.23) and (2.27),
and for the result, traces have to be taken over Dirac
p and 0 matrices for electrons, and + matrices for
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photons. A convenient feature of expressing the polari-
zation dependence of a transition probability by ( and

g vectors is that, if one has to average a result for some
unobserved polarization, it is done simply by dropping
the term in the ( or f of the relevant quantum; the
result is linear in all ('s and $'s (while it is quadratic
when expressed in terms of (ci,c2)'s), and orthogonal
states are determined by opposite ( or g directions. It
is done less simply when using the (ci,c2) representation
for polarization. However, in a result for photons the
(cia&) have the advantage over g in that they determine
a direction in physical space, which may occur in simple
invariant combinations with other physical vectors.

FIG. 3. Deflection of
an electron beam in a
magnetic field. Magnetic
field perpendicular to the
plane of the figure; short
arrows: spin orientation.
The polarization remains
longitudinal.

D. The Infjuence of Slowly Varying Electric and
Magnetic Fields on Polarized Electron Beams

This inQuence on electron beams consists, in general,
both of a change in the momentum vector y and in the
spin direction ( (P 51c, P 28c, P 29b, P 29g, P 30b,
P 35b, S 49, P 55b). We may give a quantitative
quantum-mechanical derivation of these influences by
looking, with an external electromagnetic field, for solu-

tions of the Dirac equation, which become plane waves
if the electric charge e—&0. It is suQicient to consider
only small deviations from plane waves (to first order
in e), for in this way we obtain a differential law which
determines entirely the "continuous refraction" and
change of polarization in an electromagnetic field. We
may give the results for the Dirac electron in the follow-

ing way. We consider a plane wave progressing in the
x direction. We consider'separately transverse and
longitudinal (i.e., perpendicular or parallel to y) electric
fields (5) and magnetic fields (8).We give the resulting
change in kinetic momentum An (we have to distinguish
between the kinetic momentum ~ and the total mo-
mentum y—related by n =y —(e/c)A —in case there is
a vector potential), the angle Ay over which the beam
is deflected, and the angle An over which ( is rotated, if
we proceed over a distance x in the x direction.

(a) Tronsverse Electric Field 5 in the y Direction

dm: =0, Am, =0,
Av„= (eE5/pc')x, Ay(S) = (eEI/p'c')x, (2.33)

An(S~) = [em/(E+ntc') $x,
rotation about the z axis. (2.34)

It follows that

~~(m, )/~~(m)=E„„/E with E„„=E ~c. (2.35)

Hence we see that in the nonrelativistic limit (hn(Q~)/
67(Q)~i2 (v/c)' for v~0) the beam is deflected, and the
spin direction remains the same. This is represented in

Fig. 2. Hence we see that by deQecting a low-energy
electron beam of longitudinal polarization over an angle
of v./2, the polarization is transformed into transverse
polarization. This could be compared with the trans-
formation of circular polarization of light into linear
polarization by means of a X/4-plate. For relativistic
energies of the electrons, a transformation of longi-
tudinal into transverse polarization can also be achieved

by a transverse electric 6eld, but the deflection angle
should then be (v/2)/(1 —E~;„/E).

(b) Longitudinal Electric Field 5
Av.„=0, Acr, =0, Av = (eES/pc')x, (2.36)

ao(S„)=0. (2.37)

Hence, it follows that acceleration (or deceleration) by
a longitudinal electric field leaves the electron polariza-
tion (direction of () unchanged.

FIG. 2. Deflection of an electron beam in an electric field; non-
relativistic approximation. Dotted lines: electric field lines; short
arrows: spin orientation. The polarization changes from longi-
tudinal to transverse.

I

(c) Transverse 3Eognetic Field I in the s Direction

Ax =0, Ax, =0,
(e8/c)x, —Ay(8) = —(e8/pc) x, (2.38)

5a(g~) = —(eQ/pc) x, rotation about the s axis, (2.39)

~.(~.)/&v(~) =1 (2.40)

Hence, we see that a transverse magnetic field rotates
the direction of the beam at the same rate as the elec-

tron spin (see Fig. 3), so that a magnetic field leaves,

for example, a state of transverse polarization un-
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changed. This is valid for relativistic as well as un-
relativistic energies.

(d) Longitudinal Magnetic Field 8
hn =0, Dn„=0, Air, =0, (2.41)

An(p„) = —(e8/pc)x, rotation about the x axis. (2.42)

The direction and magnitude of the momentum are not
changed, but the electron spin precesses about the g
axis. This is analogous to the rotation of the plane of
polarization of light by a quartz plate (or solution
of sugar).

The rotations of the electron spin mentioned in (a),
(b), (c) were calculated directly from the Dirac equation.
For the real electron, the g value is not quite equal to 2,
and we have to multiply the precession rate of the spin
(which is a consequence of its magnetic moment) by
g/2= 1+n/2n+ (according to quantum electro-
dynamics). As a consequence, the spin precession in a
magnetic 6eld is slightly faster than the deflection
of the orbital motion, so that a change from trans-
verse polarization can occur, although only for about
i~Lg/2 —1$ '=250 "cyclotron" revolutions of the elec-
tron trajectory. The mathematical description of the
motion of the electron with anomalous magnetic mo-
ment was considered in detail by Mendlowitz and Case
(P 55b). For this purpose, an appropriate description
may be achieved by using the Foldy-%outhuysen trans-
formation (see also P 54a).

The fact that the influence of (nearly homogeneous)
electric and magnetic fields on polarized electron beams
can simply be represented by a rotation of the spin
vector ( about a certain axis has the following immedi-
ate consequence. If an unpolarized beam, which can be
considered as an "ensemble" of electrons with (pointing
isotropically in all directions passes through such an
electric or magnetic 6eld, the distribution of ( directions
remains isotropic; hence, the beam stays unpolarized.

One may think of obtaining polarized electrons by
means of a kind of Stern Gerlach experiment s-ending

electrons through a strongly inhomogeneous magnetic
field (although still varying on a macroscopic scale).
However, in a well-known argument going back to
Bohr and Mott (see T 29 and S 49 for a more precise
quantitative discussion of this argument), it is shown
that a splitting of an electron beam according to spin
orientation cannot be attained in this way: the in-

homogeneity of the magnetic field causes a spreading of
the charged electron beam (the particles of the Stern-
Gerlach experiment are electrically neutral), which is
so large that the spreading arising from the different
orientations of the magnetic moment in the inhomo-
geneous magnetic field is not detectable.

In analogy with the polarization of light by reflection
at a mirror, one may think further of the possibility of
obtaining polarized electron by reflection of a beam by
a sudden change of potential (Malus effect). A discus-
sion of this possibility in a number of theoretical papers

b&eikz+r —leikru&(g—+) (3.1)

(X=1, 2, 3, 4 is the Dirac index. The asymptotic be-
havior for a pure Coulomb 6eld divers somewhat from
(3.1) in its radial dependence, see (S 49), but this is not
essential for the following). If we put for convenience,
03=3 and b4 ——8, it may be generally shown that for a
spherically symmetric potential N3 and N4 have the form

u3(8, imp) =A f(0) Bg(8) exp( iy),—~—
u4(8, q) =Bf(8)+Ag(8) exp(ip) I.(3.2)

led to a simple proof that it is also impossible to obtain
electron polarization (P 29a, P 29e, P 30b, P 30d, P 31b,
P 33b, P 35b, P 35c) in this way (this proof is repro-
duced in S 39).

Thus it appears, generally speaking, that all the fore-
going proposals in which the electromagnetic fields are
varying on a macroscopic scale are unable to produce
electron polarization. However, in the next section it is
extensively discussed how electron polarization can be
achieved by an electric 6eld varying on an atomic scale.

There is not necessarily a sharp distinction between
a variation of the fields on a macroscopic and on a
microscopic scale. A combination of very strong mag-
netic fields (of the order 10' gauss) and very weak elec-
tric fields (of the order 10 i v) provides a kind of
transition case where fields varying on a macroscopic
scale, but small enough (10 ' v) to distinguish between
discrete quantum states, may produce electron polariza-
tion according to proposals by Bloch and Dicke (see
Sec. 7 for the further discussion).

3. POLARIZATION OF ELECTRONS BY COULOMB
SCATTERING AT NUCLEI; THEORY

AND EXPERIMENT

In the end of the last section, the impossibility of
obtaining polarized electrons with various arrangements
using electric or magnetic fields varying on a macro-
scopic scale, was discussed. It was first shown by Mott
(T 29, T 32) that the Coulomb field of a nucleus may
cause electron polarization if an electron is scattered in
this 6eld. Here we deal with a strongly iehomogerIeols
electric field varying on a microscopic scale. The physical
cause underlying the polarization eGect is that the
scattering for a certain angle is aGected by the spin
orbit coupling, caused by the interaction of the rnag-
netic moment of the electron with the magnetic 6eld
which a moving electron experiences in an electric 6eld.
The eGect is calculated quantitatively by considering
the solutions representing the scattering of an electron
wave, according to the Dirac equation with a spherically
symmetric electric potential. This potential is either
taken to be the undisturbed Coulomb field of the nu-
cleus, or this 6eld corrected for the screening by the
atomic electrons. The relevant solutions of this equation
may be written, as to their asymptotic behavior, in the
form (if the incident waves are propagating in the
positive z direction)
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pl=i(1+(1 ~),

p2=k(1+(2 ~)

(3.4)

(3.5)

The relation between. (A,B) and (44&,N4) given by (3.2)
may be expressed by means of an operator

Q= f(8)+ig(8)[o, sing —o„cosy], (3.6)

with the aid of which the polarization dependent cross
section can be expressed in a form analogous to (2.32)

I(pl p2 (1 (2) Tr[p20plQ ] (3 7)

The result obtained by carrying out the traces over the
0 matrices may be written in an invariant form, without
any reference to a particular coordinate system

I(pl, p2, (l, (2)
= -',I(8)[1+(, (,7+-', [D(8)/sin87

x [(i (nlXn2)+(2' (nlXn2) 7
+ [P(8)/sin'4r][ —((I ~ 112)((2'nl)+((l'nl) ((2'n2)]
+-,'[G(8)/sin8]{ (nl n2) [((l.n2) ((2 nl)

+ ((1'nl) ((2'n2)] [((1'n2) ((2'n2)

+((1 »)(4 nl)7) (3.8)
with the abbreviations

I(~)= Ifl'+ Igl',
D(~) =i(fg* f*a), , —
F(~)=fg*+f*g,
G(~) =2IgI'.

This formula has in its dependence on (l or (2 a form
as given by (2.18), which makes it easy to treat any
case of partial polarization. Therefore, the form (3.8)
represents the scattering and its polarization dependence

The functions f(8) and g(0) have to be determined
from the detailed solution of the Dirac equation. It is
important to note that (3.2) characterizes the scattering
completely: the formula contains the directional de-
pendence as well as the polarization dependence. We
may, for instance, calculate the total intensity I(8,p)
scattered in a direction (8,p) if the initial polarization
is given by (A,B)

I(~ ~)=(l& I'+IN I')/(IAI'+I&I') (33)

However, the result obtained in this way does not ex-
press the complete directional and polarization de-
pendence of the scattering. We then have to include
the initial polarization of the beam, as well as the
polarization, which is observed after the scattering.
The differential cross section including the dependence
on both polarizations, may be expressed as I(pl, p2,

(1 (2) where pl and p2 are the initial and final electron
momenta, (1 and (2, the initial and final electron
polarizations (we call further nl and n2 the unit vectors
in the direction of pl and p2, so that nl. n2= cos8). We
call the density matrices for the initial state and for the
polarization sensitive detector of the scattered electron
p& and p2 respectively

in a very explicit form and the further discussion of
polarization in single or double scattering can be made
using (3.8) only, without corning back to the wave
function (3.2). From (3.8) we may draw immediately
the following conclusions:

1. If a polarized electron is scattered, which has a
spin direction perpendicular to the plane of scattering
before the scattering, this spin direction is not changed
by the scattering.

2. If an unpolarized beam is scattered, it has a degree
of polarization of

a(~) =D(~)/I(~),

after the scattering and the direction of ( after the
scattering is perpendicular to the plane of scattering.

3. The ratio of the intensities in both directions with
a certain scattering angle 8 for a given scattering plane
for an incident beam with degree of polarization P
(and ( perpendicular to the plane of scattering) is
given by

[1+& (~)7/[1-& (~)7.

4. The intensity after double scattering of an un-
polarized beam under angles 8& and 8& is given by

I(A,A, p) =1+8cosy
& 8(%,8l) =a(A)a(82) (3.9)

(q is the angle between the first and the second plane
of scattering).

5. The determination of the unpolarized scattering
and the normal double scattering experiment allow
only the determination of two of the four real functions
(namely; I(8) and D(8)), which may be formed from
the two complex functions f(8) and g(8) according to
(3.8a). However, it follows from (3.8) that the other
two functions F(8) and G(8) are by no means un-
observable in principle. A measurement might be carried
out, e.g., by means of a triple scattering experiment
such that one can say that in the second scattering the
initial as well as the final polarization, ((l and (2) are
observed.

We have somewhat digressed on the consequences of
(3.2) in order to facilitate the vizualization of the
situation concerning the electron polarization by Cou-
lomb scattering. (The presentation of the theory given
here, makes use of discussions presented in P 5kb and
P55b.) For the same purpose, it may be Iuseful to
consider the figure concerning the double 'scattering
experiment [Fig. 4; for simplicity we take everywhere
the scattering angle m./2; a=a(8=~/2). ]We take the
points Q, It!, S, T, U, and V in the same plane. The
beams are scattered at E. and T. The intensities are
measured at U and U; the intensities of the different
beams are given in Fig. 4; I, I', and I"are constants.
The relative intensities measured in U and U, when
starting with an unpolarized beam may be obtained by
incoherent superposition of both cases (a) and (b) in
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FIG. 4. The intensities
are given for double scatter-
ing (at right angles) and
spin orientations "up" and
"down". The beams are
scattered at R and T. in-
tensities for double scatter-
ing of an unpolarized beam
are obtained by taking the
sum so that different in-
tensities result in U and V.

the figure. Thus we obtain

IrJ= tsI" L(1+a) + (1—a)'7=I"(1+a')

Iv= ,'I"[(1+a)-(1—0,)+(1+a)(1—a)7

=I"(1—as),.
hence,

I~/Iv (1+a')——/(1 —u') = (1+5)/(1—5)
with

(3.10)

(3.11)

being a special case of (3.9). We note that the intensity
is larger in U than in t/'; the double scattering has
according to (3.9) a minimum for p =0, and a maximum
for q =m. This is in contrast with the double scattering
experiment for photons (Barkla's experiment) where we
have maxima for q =0 and x, and minima for q = 2m

and gx'.

We will limit ourselves to quote some results and to
give references for the theoretical calculations providing
numerical values for 6 and u. Mott (T 29) calculated
as the value for 6 for double scattering with sir ——tFs= z/2
at nuclei with charge Ze

6= (nZ)'P'(1 —P') (2—P') '
(P=@/c). (3.12)

This is only valid for o,Z(&1. It shows that 8~0 for
P~O and P~1, which remains true for higher Z. Only
for higher Z, the values of 6 become suKciently high to
be easily observable. Numerical calculations are then
required for precise values of b. Values for 8 as a func-
tion of % for tlt=tls=z-/2 and Z=79 (gold) were
evaluated in 1932 by Mott (T 32), for Z=80 (mercury)
in 1940 by Bartlett and Watson (T 39, T 40a), both for
the undisturbed Coulomb field. Sauter (T33) derived
Mott's result (T 29) in a somewhat different way, and
made an estimate of the inQuence of the screening by
atomic electrons in a first approximation. The influence
of screening was evaluated numerically by Bartlett and
Welton (T41a), by Massey and Mohr (sit ——tls ——z/2)
(T41b), by Mohr (T43b) and by Mohr and Tassie
(T54), while Bartlett and Welton as well as Mohr
considered the dependence of 6 on the scattering angle. f
We quote some theoretical results in Table I. It is seen
that remarkably high values for the asymmetry for
backward scattering angles and energies around 400 kev

1 Extensive calculations of the polarization asymmetries by
means of the Univac computer were made by N. Sherman (T 56)
for 2= 13,48, and 80 and for scattering of electrons at point nuclei.

are predicted. Values for 6 for positons were calculated
by Massey (T 43a). The polarization effect for positons
is much smaller than for negatons to the extent that it
must be nearly impossible to establish the polarization
eGect for positons experimentally. Curves for b and
@=+6are given in Figs. 5 and 6 as a function of the
electron energy according to the calculations of Bartlett
and Watson (T 39, T40a) and Massey (T43a). The
accuracy of the older theoretical values given in the
table and the curves should not be overestimated.

For a long time (until 1942) experimental results on
double electron scattering failed to show any polariza-
tion effect. Careful experiments by Dymond (E32,
E 34a), G. P. Thomson (E 34b), and Richter (E37)
gave negative results. The same is true for earlier ex-
periments (P 28a, P 29c, P 30a, P 32a), or the asym-
metries which were obtained in these experiments are
now considered to have been of instrumental origin.
The difFiculty in the experiments is to be sure that one
observes real single scattering. The experiments were
mainly done with thin gold foils. A polarization which
is smaller than for single scattering, may originate in
the following ways: (a) inelastic scattering with ioniza-
tion or excitation of the scattering atom; (b) exchange
scattering; if the scattered electron changes its position
with an atomic electron, the polarization will be lost;
(c) multiple scattering; if the iinal scattering angle is
obtained by a succession of small angle scatterings, the
polarization will be negligible as in small angle scatter-
ing nearly no polarization effect exists; (d) p/ural scatter

i'; we shall speak of plural scattering if the final

negatons
162008

.positons
2006
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g~+ssgatons

,. /

8
positons QS

~as
0.4

0 0.1 02 03 0,4 GS 0.6 0.7 ' 03 09 1.0 1.1 14s A 14
E14n(MeV)

FzG. S. The asymmetry percentage 2005 in a double scattering
experiment as a function of the energy for negatons and positons
(Z=80) Lafter the data calculated by Massey (T 43a), Bartlett
and Watson (T 40a) j. Scattering angles: 90'.
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TABLE I. Theoretical results for the asymmetry (2005) in a double scattering experiment for a number of scattering angles
e7& ——nie ——e7, at different electron energies Ez; for scattering by gold (Z=79) and mercury (Z=80).

Author

Bartlett and Welton (Z=80) (T 41a)
Mohr and Tassie (Z= 79) (T 54)
Mohr (Z=79) (T 43b)
Sherman (Z= 80) (T 56)

.Z
100 kev
121 kev
392 kev
128 kev
(IS=0.6)
205 kev
(P= 0.7)
341 kev
(P= 0.8)
661 kev
(P =0.9)

450

0
10
0.0

60

1
1
0.8

75 90

1.8 9.6
6 16
0 16
5.1 14.7

105 120

19.8 22.6
25 33
70 90
26.9 36.0

0.0 1.0 5.2

0.1 1.0 4.5

0.1 0.7 2.7

14.0 26.5 38.0

11.7 23.1 36.8

7.2 15.3 27.8

135

24.0
32

140
34.9

41.0

43.1

150

17.2
25

190
22.7

165o

5.2
11
10
7.1

30.0 10.2

39.8 15.8

51.0 28,9
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FIG. 6. The asymmetry percentage 200 ~u
~
in a single scattering

experiment of a totally polarized beam as a function of the energy
for negatons and positons (Z=80) (after the same calculations
as Fig. 5). Scattering angle: 90 .

scattering is the result of two scatterings over rather
large angles. Examples of the geometry involved in
plural scattering are shown in I'ig. 7. The contribution
by plural scattering to the total scattering is appreciable
in particular if the first scattering occurs in the direction
of the foil and if the two scattering angles are both
smaller than the total scattering angle (as the differ-
ential cross section increases rapidly for smaller angles).
The influence of the causes (a), (b), and (c) for de-
polarization were discussed by Rose and Bethe (E 39b).
A criterion for the foil thickness that multiple Coulomb
scattering is negligible compared with single scattering
was given earlier by Wentzel (R 22). It follows that
scattering foils of thicknesses of the order 10 ' cm, as
were used in the above-mentioned experiments, are thin
enough for the first three causes of depolarization to be
negligible. The negative results of the earlier experi-
ments are now considered to be a consequence of the
depolarizing influence of plural scattering for foils used
in the reflection position under an angle of s./4. LKikuchi
(E 39a) obtained positive results with a polarizer foil
as thick as 10 ' cm; it is now believed that his asym-
metry was of instrumental origin. ) Before recognizing
the inhuence of plural scattering, it was investigated
whether nuclear potentials would be possible, which
would explain the negative results for the double
scattering experiment (T 35, T 40b). It was found

that the required forms for the nuclear potential were
rather implausible. Landau stressed the importance of
multiple scattering for depolarization (E 40b), but the

-greater importance of plural scattering seems now to
be certain.

The importance of plural scattering, and the appreci-
able deviation from unity of the reAection-transmission
ratio, were first studied and recognized by Chase, Cox,
and Goertzel (E 40a, E43a) and by Pethukhov and
Vyshinsky (E 41). A further study of it was made by
Ryu L(E 50, E 53b); the discussion in E 48 contains an
error). We may call the ratio of the real scattering
intensities (including plural scattering) to the intensity,
which would exist for single scattering only, 1+r and
1+t for the reflection and transmission position, respec-
tively. If scattering over ~/4 shows a negligible polariza-
tion effect compared to scattering over an angle of ~/2,
the quantity 8 characterizing the asymmetry in double
scattering will be reduced to an apparent magnitude
of 8/(1+r)' and 8/(1+t)'. The ratio R= (1+r)/(1+t)
was determined experimentally under several condi-
tions. Shull, Chase, and Myers (E 43b) obtained
E= 1.55 at 400 kev for a foil of 4.1)(10 ' cm thickness
and Ryu, Hashimoto, and Nonaka (E 53b) obtained
2=1.4 at 100 kev for a foil of 5)&10 ' cm thickness (see
the references for further data). Theoretical estimates
can give a rough explanation of these values. Having
the importance of plural scattering in mind, the first
successful double scattering experiment was made in
1942 by Shull, Chase, and Myers (E 43b). In order to
avoid the plural scattering depolarization the more
recent experiments use the foils in positions b, d, or e
(Fig. 7). It is seen from the figure that a plurally
scattered electron, in these cases, must have suffered
at least one scattering over an angle of ~/2 or more, so
that for these electrons also a substantial polarization
effect should be expected. It is not easy to eliminate all
instrumental asymmetries in the experim. ents. In this
respect it is advantageous to use a symmetric position
for the polarization detector foil with two counters
(see Fig. 7 positions d and e).

We have summarized the most important of the
experimental data on the asymmetry in double scatter-
ing experiments in Table II. Comparing the theoretical
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FrG. 7. The geometrical situation concerning plural scattering for different positions. Drawn lines: incident
and singly scattered electrons; dotted lines: plural scattering with same total scattering angle; most important
if the first scattering is in the plane of the scattering foil.

and experimental values of the Tables I and II and
Fig. 5, we see the following. The value of 5 obtained
by Shull c.s. at 400 kev for 8~——8~——90' is in good
agreement with the theory. The experiments of Ryu c.s.
show qualitative agreement with the theory in the
following respects: 5 increases with the energy and with
the scattering angle in the region for 0 and E~;„ for
which he measured. No theoretical values taking screen-
ing into account are available for all values of 8 and
E~;„, for which he determined 5, but it is clear that
quantitatively the increase of 8 with 8, found by Ryu,
is far less marked than found in the theoretical calcula-
tions; further, his experimental values are generally
lower than the theoretical ones, sometimes even by a
factor two. In the experiments, the influence of plural
scattering was decreased by a favorable geometry as
explained before. But it may be that part of the dis-
crepancy can be explained by a correction, still to be
made because of plural scattering. However, it is im-
probable that this would explain the discrepancy com-
pletely (E53b). The results with 82——78' quoted in
Table II seem rather high compared with the theoretical
values of Table I. The approximate proportionality of
u with Z, according to the theory, agrees within experi-
mental error with the results of LouiseLL, Pidd, and
Crane.

In view of these results, a continued experimental
and theoretical investigation of this e8ect would cer-
tainly be desirable. In particular, it would be important
to have: (a) an experimental investigation of 5 for
8=90', , 150' for 8=400 kev, in order to check the

high values of h calculated for these parameters; (b)
more precise theoretical values for 6 as a function of
both E and 8, and a careful theoretical study of the
dependence of 8 on the screening 6eld.

Scattering by a thin gold foil might be used to detect
the Polarisation of electrorls, which is produced by some
other method than scattering (see Sec. 5). In such other
cases, the available intensity of the polarized electron
beam will often be rather Limited. This may easily cause
an intensity problem for measuring the scattered elec-
trons. With respect to the intensity, the arrangement d,
Fig. 7, such as used by Louisell, Pidd, and Crane, may
be the most favorable. The single scattering occurs in
a somewhat forward direction (higher cross section),
and even the use of somewhat thicker foils may be
possib1e, because the plurally scattered electrons should
also show quite some polarization effect here. On the
other hand, backward scattering (position e, Fig. 7),
may have the advantage of a larger polarization effect,
but it has a smaller intensity (see Table I). Hence, the
choice of position d or e should be made after more
careful theoretical and experimental investigations as
indicated above. Further, the counting rate may be
increased by using rather large solid angles for the
counters. In this way, it might be possible to count
fractions up to IO ' or 10 4 of the electrons incident on
the detector foil of a good polarization detector.

We may mention here the negative results of quite
a number of experiments done in the years 1929—1935,
which tried to detect electron polarization effects by
double reflection at mirrors or double scattering by



ELECTRON POLARIZATION, THEORY AN D EX PERI MENT

TABLE II. Experimental results for the asymmetry in double scattering experiments
with scattering angles 81 and 8& and at electron energy B.

Observer

Scattering foils
Element and posi-

tion of foil Thickness

Electron
energy Ekin

(kev)
scattering angles

Observed
asymmetry

2008

Shull, Chase, and Myers
(E 43b)

Au —Au
transm. pos.

under 45'

4.1X10 ~ cm 400 90' 90' 12 ~2

Shinohara and Ryu (E 49)

Ryu' (E50, E52a, E 52b,
E 53b, E 53c)

Au —Au
(a) (b)

Au —Au
(a) (b)

5X10 cm

5X10 ~ cm

90

60
80

100
120

60
80

100
120

60
80

100
120

90'

105'

120'

135'

78'

105'

120'

135'

9.0+0.6

7,9+2.2
9.9+1.6

13.2+2.2
14.7~1.7

9.1+2.2
11.8~2.0
14.0a1.3
17.8+0.8

7.3~1.0
13.5~1.0
14.3~1.1
16.2~2.1

Louisell, Pidd, and Crane
{E53a, E 54)

Au —Au
(a) (b)

Au —Ag
(a) (b)

0.135 mgicm'

0.135 mg/cm2
0.23 mg/cm2

420

420

90'

90'

78'

78'

8.9+1

a Transmission position under about 90' —~~81 with the beam.
b Perpendicular to the beam.
e Ryu measured far more numerous values of 25; however, the values given here cover about the range of variables which he used. Z =79 for Au;

Z =49 for Ag.

Debye-Scherrer diffraction (P 29d, P 29f, P 30c, P 30e,
P 32b, P 33d, P 34a, P 34b, P 35a).f These negative
results were understood theoretically by the study of
electron scattering by a periodic electric field (crystal
lattice) in a number of papers (P 28b, P 31a, P 31b,
P 33a, P 33c, P 35c). Polarization effects vanish in
first approximation. A polarization effect exists for the
second approximation, but this depends on the dimen-
sions of the crystal and is vanishingly small, except for
crystals which consist of such a small number of atoms,
that we come back to Coulomb scattering by atoms.

4. POLARIZATION RELATIONS IN COMPTON SCAT-
TERING, CORRELATION BETWEEN ELECTRON

POLARIZATION AND CIRCULAR POLARIZA-
TION OF PHOTONS (P 38) P 49,

P 54b, P54c, P 54d)

In phenomena involving photons and electrons, a
close correlation generally can be expected between
electron polarization and circular polarization of pho-
tons, as both these polarizations are associated with a
spin angular momentum. This can be very well illus-
trated by the polarization eGects in Compton scattering.
We may express the differential cross section for
Compton scattering, including all polarization eGects,

$ It may be useful to say that we did not mention a number of
papers of this period by E. Rupp, stating positive results, as it
appeared later that they were unreliable; see E. Rupp, Z. Physik
95, 801 (1935) and C. Ramsauer, Z. Physik 96, 278 (1935).

in the following form:

do/dQ=roo(k'/kp')C (ko, k, (p, (,(p, () (4.1)

where rp ——e'/mc' is the classical electron radius, ko is
the initial photon momentum, no=kp/~koan k is the
final photon momentum, n=k/ski, P is the polariza-
tion vector for the initial photon, g is the polarization
vector for the final photon, P is the polarization vector
for the initial electron, ( is the polarization vector for
the 6nal electron.

In order to fix the meaning of g' and g, we have to
specify the meaning of the 1- and 2-states for the initial
and Anal photon. We shall choose

A'=A = (k Xk)/ikoXki,

Ao'= (koXAi')/ iko i; Ao ——(kX Ai)/ ski.
(4.2)

C 0+4 1+4'2+4'8+i'4y (4 3)

In this way, the 1- and 2-directions specify photons,
linearly polarized in and perpendicular to the plane of
scattering.

The complete expression for the cross section is
complicated, because so many independent vectors are
involved. C(kp, k, P, (,P, () is a linear function of the
polarization vectors, and can be separated into 16
terms, according to the 16 difterent ways of choosing
sets of polarization vectors. We shall write
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where

C 0 is independent of polarizations,
C'i= 4'x(4')+C'i(4)+4'i((')+4'~((),
c.=c.(V,~)+C.(&',~)+c.(e,c)+c.(~,~)

+c.(C,()+C.(&,&') .
C3 and C4 depend on 3 and 4 polarization vectors,
respectively.

In a feasible experiment, not all of the polarizations
will be observed; at present, only exyeriments in which
at most two polarizations are involved have been per-
formed. To obtain the cross section for some definite
experiment, one should average over unobserved initial
polarizations and sum over unobserved 6nal polariza-
tions. Since —g and —( represent states orthogonal to
g and (, the averages and sums merely cancel the un-
observed terms. For example, if we observe (P and (,
the experimental cross section is

d.:,idQ=l '(k'/k')[C(e, &, (', ()
+c (&', —

&, r', &)+c(c, t, —~', ~)
+~(&' -& -~' ()) (4&)

or

We discuss the three polarization e6'ects in Compton
scattering involving polarized electrons, which seem to
be nearest to an experimental test.

A. Production and Detection of Circular Polariza-
tion of y Quanta by Comyton Scattering

with Polarized Electrons

ln this respect the cross sections do ()P, (P) and
do ((,P) are of importance. As an example, we give

do((' (')/dQ= ', rp'(-k'/kp')[(1+cosV)

+ (kp —k) (1—cos8)+PP sin%
—Pp'(1 —cos8)(' (kp cos8+k)). (4.17)

In case we investigate the cross section of circularly
polarized photons (without linear polarization) and the
electron polarization vector is parallel (or antiparallel)
to ko the cross section simplifies to

do'(P, (P)/dQ= —r (k /k P)

X [(1+cos'8)+(kp —k) (1—cos8)
—E(1—cost) cos8(kp+k)). (4.18)

I' is the product of the degrees of polarization of the
photon and the electron (I' is positive for a left circu-
larly polarized photon and an electron spin parallel
to kp). We may write this cross section as

do p/dQ=2rp'(k'/kp')

X[Cp+C ~(&')+C'~(()+C'p(P, ()) (4 6)

The results found for CO, , C2 are the following
(units are used in which mc'=1, 5= 1, c=1; it is as-
sumed that the electron is initially at rest):

C p
——p' [(1+cos'8)+(kp —k) (1—cos8)),

(4.19)do/dQ= do p/dQ+Pdo. ~/dQ,

C, (gp) = ~~bp sin%,

C, (g) =-;P, sin a,

c (V)=c.(&)=o, (4.10)

C p((', ()=
p [(1+cos'8)$~'$~+2 cos8((p'$p+$p'$p)

+ (kp —k) cos8(1—cos8) gpogp), (4.11)

C,(P, (P) = —
p Pp'(1 —cos8)(' (kp cos8+k), (4.12)

C, (g, (P) = —xp(, (1—cos0)(' (kp+k cos8), (4.13)

C, (P,()= —
xsam, '(1—cos6)[( (kp cos8+k)

—(1+cos6)(kp+k)
X (kp —k+2)—'( (kp —k)), (4.14)

C,((,()= —x~p, (1—cos8)[( (kp+k cos8)
—(1+cos8)(kp+k)

X (kp —k+2) '(' (kp —k)), (4.15)

C', ((',()=
p {((' ()[(1+cos'e)+ -'(k, —k) sin'a)
—p(kp —k)[(P (np+n)( (no+n)
+('(npXn)( (npXn))
+-', (kp+k) (1+cos8)(('X() (npXn)

+ (1+cos8) (kp —k) (kp —k+2) '(
(kp —k)(' (np+n)

—(1+2 cos8—cosV) (kp —k+2) '(
(kp k) qP. (kp k) ). (4.16)

6 0

COS e

FIG. 8. The fractional change in the differential Compton cross
section resulting from entirely polarized initial electrons with spin
in the direction of the incident circularly polarized photon. The
change is plotted as a function of the scattering angle 8 of the
photon. (Figure from P 53d.)

where do p is the Klein-Nishina expression without

(4.g) polarization and do~ gives the part sensitive to spin and

(4.9)
circular polarization. Integration over dQ gives for the
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polarization dependent part of the total cross section

1+4ko'+5ko' 1+ko
u,/2~re'= ln(1+2ko). (4.20)

2kp'ko(1+2ko)'

04

In Fig. 8, the ratio (do r/dQ)/(do o/dQ) is represented as
a function of angle showing the change of sign of the
polarization eGect in the differential cross section for
forward and backward directions. Figure 9 shows the
polarization dependent part 0.~ in the total Compton
scattering cross section. The change in sign occurring
in 0~ for 1.25 mc'=0. 65 Mev can be understood from
the difference in sign for dot/dQ for forward and back-
ward directions, and from the fact that the forward
Compton scattering becomes more and more pre-
ponderant for higher energies.

The experimental possibilities of detecting effects in

Compton scattering depending on (o require the availa-

bility of polarized electrons at rest for the initial state.

165 mC THORIUM (MsThi) FOLLOW ER~
CATHODE

p+pbE LUC I TE I IGHTPlp~

MAGNET
SHIEL D

I(TI) MAGNETIC SHIELDSQ-
AROUND 5819

Fio. 10. Arrangement of equipment in the polarization experi-
ment by Gunst and Page. The variation of the transmission of y
rays from a strong source through an iron bar with the magnetiza-
tion is measured (change of total Compton scattering cross sec-
tion). (Figure from P 53d.)

circularly polarized components (l.c.p. and r.c.p.) of the
unpolarized beam give exponential factors in the trans-
mission for the magnetized bar which sum to

—', exp[ —NLvo r]+r exp[+NLvar]
= cosh[NLvo r$ = 1+z (NLvo r)s& (4.21)

where N=number of atoms/cm'; v=number of polar-
ized electrons per atom. (See Fig. 10.) It follows from
(4.21) that we can write approximately for the relative
change of the transmission T' by magnetization

[T(v) —T(0)j/T(0) =-', (NLvor)'. (4.22)

0.02 eo 02
It follows further that the transmission ratio of l.c.p.
relative to r.c.p. photons is given by

a.d/5
gaoo ' 0.0 p'

0
R =exp[2NLvo r$. (4.23)
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The measured change in counting rate amounted to
0.59+0.09%%u~, which gives with v= 2.06 an experimental

0.1

2.62 Mcv

k (mC2
40

FIG. 9. The polarization-sensitive part 0.1 of the total Compton
cross section for the same polarizations as in Fig. 8 (in units 2mp ).
The part independent of polarization is os. (Figure from P 53d.)

L( C,

These are available in magnetized ferromagnetic ma-

terials. The binding of these electrons does not play an
essential role at the 'energies which are mostly used in

the study of the Compton effect. Unfortunately the

degree of polarization I' averaged over all electrons of
the atom is never very high. For iron one has I' =2/26
=8% at saturation of the magnetization. The circular
polarization-polarized electron eGect in Compton scat-
tering was first detected experimentally by Gunst and

Page (P 53d) in 1953.
~j They measured the differences

in transmission T of an iron bar 30 cm long and 3.8 cm

in diameter for 2.62-Mev y rays (of ThC") for mag-

netized and unmagnetized iron. For a bar of length I.
there arises a diGerence in transmission for magnetized

and unmagnetized iron with initially unpolarized pho-

tons which can be understood as follows: taking the
unmagnetized transmission as unity, the left and right

~~
A positive result for the circular polarization effect in Compton

scattering reported earlier by Clay and Hereford (P 52b) is
now considered to have been of instrumental origin (private
communication).

FIG. 11. Diagram of the apparatus used in the Kamerlingh-
Onnes Laboratory in Leyden for producing and measuring circu-
larly polarized p rays. The change of the differential Compton
cross section is measured by changing the relative orientation of
the circular polarization of the y rays emitted from the polarized
nuclei in the cryostate and the direction of magnetization of the
scattering iron S. The magnet M„(with coil 8) determines the
direction of polarization of the nuclei; the magnet M, (with coil
~) determines the direction of magnetization of S. The T rays
are detected by the Naf (Ti) crystal C& with photomultiplier E3I&.
(Figure from P 55e.)
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value of o,/n. rpP=O 08.9+0 00.7 in good agreement with
the theoretical value 0.093. It follows from (4.23) that
the y rays transmitted through the bar must have had
a degree of circular polarization P=10% (at an inten-
sity of about 10 counts/sec).

The same polarization eGect was used in 1955 at the
Kamerlingh-Onnes Laboratory in Leyden (P 55f) to
detect the circular polarization of the 1.17- and 1.33-
Mev y rays from polarized Co" nuclei. (See Fig. 11.)
A source of 110 pC Co" was contained in a crystal
cooled down to 0.006'K by adiabatic demagnetization.
In this way a degree of circular polarization as high as
75 jo was attained. It was detected by the polarization
effect in the forward Compton scattering differential
cross section. The measured changes in counting rate
when changing the relative orientation of circular
polarization and polarized electrons amounted up to
3/o. The polarization effect could be measured with an
accuracy of 10'Po. The agreement of the theoretical
value (including the mechanism of polarization for the
nuclei in the crystal) with experiment was satisfactory.
In 1955 Trumpy also reports a detection of the circular
polarization of gamma rays from polarized neutron
capture by means of a transmission measurement
analogous to that of Gunst and Page (P 55e).

B. Production of Polarized Electrons by Cornpton
Scattering of Circularly Polarized Photons

The relevant cross section is

do(g', ()/dQ= —,'rP(k'/k, ') ((1+cos'6)
+ (kp —k) (1—cos8)+$q' sin'8
—ppP(1 —cos6)[( (kp cosB+k)

—(1+cos8) (k +k) (k —k+2) '( (k —k)]). (4.24)

If we write this cross section as

(cc—P cc e +P cc (4.26)

where e~ and e, are the'unit vectors in the directions
of the perpendicular vectors

p= kp —k and q= k —y(k y)/p'. (4.27)

For diagrams of P„"and P," (which might be called
degree of transverse and longitudinal polarization)
we refer to P 54d. The total degree of polarization
Pcc [(p cc)2+ (P cc)2]c is plotted in F&g. 12. All the
data were calculated for (~'——0 and $p' ——1 (complete
circular polarization) of the initial photon.

C. The Polarization Correlation between the
InitiajL and Final Electron

If we observe the polarizations of the initial and Anal

electron, we may write the relevant cross section as

dr(( ()/dQ = 2rp (k /k )[C'p+ep((, ()]
=F(1+( ("). (4.28)

This defines the polarization vector ("of the scattered
electron and its degree of polarization P-=

~

("
~
. We

note the following consequences of the general for-
mulas: (a) in the classical limit kp=0, P-=1, and

(b) for forward scattering of the photon,
cos6= 1 P-= 1, and (-= (', (c) if (' is perpendicular to
the plane of scattering, where f~P is the absolute value
of (' then

do (P, ()/dQ =S[1+( (-], (4.25)

we can say that (- represents the state of polarization
of the Compton scattered electron. We write

1.0
CP„,

0.8

0.e —=

0.4

k=40

X k;-1

k ="/p

P"=[(1+cos'0)+(kp —k) (1—cos8)] '
&& (1+cos'8)i'~P, '~ (4.29)

(sc —pcc(p

Curves for P" according to (4.29) are shown in Fig. 13.
Analogous to Compton scattering one may also ex-
pect correlations between electron polarization and
circular polarization of the gamma radiation in other
quantum processes involving photons and electrons,
such as bremsstrahlung, pair production, and positon
annihilation.

S. METHODS OF PRODUCING POLARIZED
FREE ELECTRONS

0.2

~ ~
-'kO -0.8 -0.5 -OA -0.2 0 0.2 0.4 0.4 0.8.

cos 0

FIG. 12. Production of polarized electrons by Compton scatter-
ing of (entirely) circularly polarized photons at unpolarized elec-
trons. Total degree of polarization of the final electrons as function
of the scattering angle of the photons.

We want to enumerate and discuss concisely the
possibilities which, in principle, can produce polarized
free electrons.

(a) The only method up to now, in which it was
shown experimentally that polarized electrons were
produced, is the Coulomb scattering at heavy nuclei
discussed in Sec. 3.

(b) Contpton electrons ejected by circularly polarized
pkotons will, in general, have an appreciable polarization
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8 =aZc. (5.1)

The couple acting in an electric field I on the magnetic
moment p= eA/2mc of an electron moving with velocity
e=nZC is of the order

M = (e/c) @ti=nZC (eA/2mc) = (e'/2mc') 5Z. (5.2)

For a spin Rip the spin angular momentum has to
change by an amount A, which may occur in a time T
of the order of A/M

T=A/cV = 2Amc'/Z5e'. (5.3)

We want to compare this time with the time t in which
the field 5 has to act in order to liberate the electron
from the bound state in the Coulomb Geld with binding
energy Z'(e'm/A') corresponding to a momentum

p =me'Z/A. The time t required for a force et to cause

(see Sec. 4). These photons could be obtained by trans-
mission of y quanta of a very strong source through a
bar of magnetized iron or from polarized radioactive
nuclei emitting y quanta (see Sec. 4). Numerical values
for this effect according to the theory are available. The
main problem is whether it would be feasible to obtain
experimentally intensities, which allow the measure-
ment of the electron polarization.

(c) ComPton electrons ej ected by Photons from mag
netized iron (or another ferromagnetic material; see
Sec. 4 for the theory). The difficulty for observing this
effect will again be the experimental problem of in-
tensities. Moreover, the degree of polarization will be
at most about 8/o (the average degree of polarization
of the electrons in iron magnetized to saturation), so
will not be very easily measurable even at a sufhcient
intensity.

(d) Ejection of bound polarized electrons from mag
revised Roe could be performed by other methods than
Compton scattering. We may think of 1. the photo
electric effect (see P 30b), 2. cold emission, 3. secondary
emission or scattering of electrons at magnetized iron It.
seems that these methods have not been considered in
much detail theoretically. An attractive feature of the
photoelectric effect is that it seems possible to obtain a
higher degree of polarization for the ejected electrons
than the average one for all electrons. By choosing a
suitable photon energy, photoelectric emission of the
unpolarized electrons of the deeper lying shells would
not be possible, so that the average of the polarization
for the photoelectrons may be appreciably higher.

It was suggested implicitly that the three methods
mentioned above would not change too much the
polarization of the bound electrons during the process
of ejection. We may make an order of magnitude esti-
mate of the chance of a spin Qip in the photoelectric
effect according to Mott (S 49). I.et us suppose that we
have an electron bound in the ground state of the
Coulomb field of a nucleus with change Ze. It has a
velocity of the order

pSC

IQ

0.8—

0.6

0.4

0.2 k=40

a momentum change p is of the order

t= p/eS =Zem/SA.

Comparing T and I, we see that

T/t= (nZ) '

(5.4)

(5.5)

Hence, for low Z we may conclude that T)&t, so that
the spin has "no time to Aip" during the photoemission.
We can say that the photoelectric effect is a result of
the electric vector and that the influence of the photon
angular momentum (polarization) on the electron polar-
ization is negligible. This holds, e.g., for visible light
causing photoemission of outer electrons of the atom.
The estimate (5.5) shows that T may become of the
same order as t for high Z and electrons of the lower
bound states. Hence, it might be that, for example,
some electron polarization wouM result for photoelec-
trons liberated from high Z elements by circularly
polarized p quanta.

(e) In addition to magnetized iron, another source
of bound polarized electrons can be provided by an optical
method, which was proposed by Kastler (P 50) and
realized by Kastler c.s. (P 52a) and by Dicke and
Hawkins (P 53e, P 55a). If we have, e.g. , sodium vapor
in a magnetic Geld, the Zeeman splitting causes different
energies for the different Inagnetic quantum numbers
mp. By exciting an appreciable fraction of the atoms by
irradiating the vapor with radiation of the resonance
frequency in the direction of the magnetic field, an
appreciable "polarization" of the atoms is obtained.

0
1.0 -0,8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1.0

CO/

FIG. 13. Production of polarized electrons by Compton scatter-
ing of unpolarized photons at electrons which are initially com-
pletely polarized perpendicular to the plane of scattering. Degree
of polarization of the final electrons as function of the scattering
angle of the photons.



This entails a polarization of bound electrons and of
the nuclei. The polarized electrons of the excited state
may be ejected by absorption of a second photon. If the
energy of the second photon is chosen su%ciently low,
so that only excited electrons can be ejected, one may
even attain totally polarized (low-energy) electrons.
As two photons have to be absorbed by the same atom,
it is again difficult to obtain a sufhcient intensity of
electrons. This method was indicated and realized by
R. H. Dicke (1950, private communication), who ob-
tained 10' electrons/sec in this way, with a computed
polarization of 20—30%. However, he did not succeed
in detecting the polarization. As Coulomb scattering at
heavy nuclei is only a suitable detector of polarization
for electrons of at least, say, 50 kev, one should either
first accelerate the low-energy polarized electrons to
such an energy, or look for a detector of electron
polarization effective for low-energy electrons.

(f) The p radiation emitted from polarized p radi-o

active nuclei will, in general, be polarized. (P 51d). Cer-
tain nuclei can be polarized in crystals cooled down by
adiabatic demagnetization to a few hundredths of a
degree (see, e.g., R55b). If the P-radioactive nucleus
changes its nuclear spin (which has a certain direction
before the emission) during the P decay, this angular
momentum is transferred to the electron and the neu-
trino emitted in this process. This gives rise to a prefer-
ential direction for the spin of the emitted electron. The
calculation of the degree of polarization can be made
according to the general principles of the theory of P
radioactivity, making use of perturbation theory and
Dirac wave functions, and following the general prin-
ciples indicated in Sec. 2. In particular, the 4&(4 matrix
(2.23) is used. As an example, we give the transition
probability for P emission of an electron with energy E
(including the rest mass) and momentum p, using a
detector set for spin direction (~" (this formula is
derived for pure Gamow-Teller interaction)

2

E(E,p, t;~")= (G'/16~4) pEq' 4r L1+ (2/E)rt (~"

+&~/~(~+1»(. ')(V" p)j (56)

(units are used such that h= 1, c= 1, m= 1). Here G is
the Fermi coupling constant; J'4r the nuclear matrix
element, q the neutrino momentum; the unit vector g
is the axis of polarization of the nuclei (axis of rotational
symmetry for the nuclear orientation). A is proportional
to the nuclear polarization. If I; and I~ are the initial
and final nuclear spins, we have

where

while a~ is the probability that the initial nucleus has
the magnetic quantum number M with respect to
the axis q. (We normalize such that

We may write the result (5.6) as in Sec. 2 as a multiple
of -', L1+( (~e4]. The value of ( for the spin of the elec-
trons emitted with momentum p determined in this
way is

(=~Le/&+ (n u) u/&(&+ 1)j.
Hence we have, in particular:

(5.9)

(1) pJ g (electrons emitted perpendicular to the
nuclear polarization axis; E=1 for low-energy electrons
in our units)

( (~/~) transverse polarization,
(5 10)

degree of polarization: 2=A/E '

(2) y~~g (electrons emitted in the direction of the
nuclear polarization axis)

longitudinal polarization,c„=Ay
degree of polarization: I'=A

The experimental situation is such that values for f~
and A of order unity can be attained, e.g., for Co"
nuclei. Hence, one can say that the electrons emitted
in the nuclear polarization experiments with these
nuclei are highly polarized. The detection of the electron
polarization has not yet been attempted and is dificult
because (a) only P rays from the surface of the crystal
come out of the source; (b) since the source is in a
cryostat in these experiments, the detection of the
polarization should occur within the cryostat or the P
rays should come out of the cryostat, both of which are
dificult experimentally; (c) it seems dificult to obtain
an intensity of the electrons sufhcient to detect the
polarization.

(g) By a combined Use of eery strong magnetic fields
(10' to 10' gauss) and very weak electric potentiats (10 '
to 10 4 volt), it may be possible to trap electrons of a
definite polarization. These polarized electrons may
then be removed from the trapping potential, retaining
their polarization. Although space charge severely
limits the number of electrons which can be trapped at
a time, a rapid repetition of the trapping and "blow-
out" procedure may provide a current of polarized
electrons which is sufhcient for many experiments: say
30 electrons could be trapped at a time and the pro-
cedure could be repeated 3000 times a second; then an
electron current of about 10' electrons per second would
result. They are essentially low-energy electrons, al-
though they may be accelerated, of course, to higher
energies, retaining their polarization. Detailed pro-
cedures for trapping electrons in this way were made by
Bloch (P 53a) and Dicke; see Sec. 7 for the details.
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0. METHODS OF DETECTING ELECTRON
POLARIZATION

Since in any experiment on electron polarization a
polarizing device as well as an analyzer will be required,
we shall now also enumerate the possibilities for
analyzers.

(a) The only method which has been successful up
to now in experiments for detecting electron polarization
is the Coulomb scattering at heavy nuclei discussed in
Sec. 3.

(b) Another phenomenon which will depend to some
extent on the polarization of the incident electrons is
the scattering by magnetised iron. One may try either to
detect an effect in the total cross section (transmission
through a foil of magnetized iron) or in the differential
cross section for a scattering angle favorable for sensi-
tivity to the polarization eGect. It should be expected
that the quantum-mechanical exchange scattering,
which provides the dependence on the relative orienta-
tion of the spin polarization of the incident and the
bound electron, is most eGective at lower energies than
method (a). An attempt to use this effect was made by
R. H. Dicke in 1950 (private communication) who
produced polarized electrons according to method 5(e),
and tried to detect the polarization of the electrons
(after acceleration) by measuring the transmission
through a thin (=10 6 cm) magnetized iron foil. A
theoretical estimate of the inQuence of the polarization
led one to expect a small but measurable eGect, which
could not be detected however. An early attempt fol-
lowing this line of thought was made by Myers and
Cox in 1929. They sent P rays of Ra through two foils
of magnetized iron, in which the relative direction of
magnetization was changed (P 29h). They failed to
detect any observable eGect in the transmission.

(c) It may be possible to nMasnre the spin angular
momentums carried by electrons with longitudinal polar-
ization in a mechanicaL way (L. Marton, private com-
munication). If such electrons fall on a suspended disk,
a torque may be measured as a consequence of the
polarization. The condition of a torque arising from the
linear momentum of the incident electrons and an
asymmetric geometry should be avoided. This will be
most feasible for low-energy electrons.

(d) When exciting atoms by means of exchange scat-
tering with low energy polarized elect-rons, the excited
state may be polarized (have an oriented total angular
momentum). The atom may be placed. in a magnetic
field, and pass to a lower level with emission of circg-
larly polarized tight (E. S. Dayhoff, private communi-
cation). If circular polarization is detected for the light,
it follows that the incident electrons were polarized.

It is remarkable that it is more difficult to think of
methods of detecting polarization, which seems apt for
realization, than of methods of producing polarization.
Except for the four proposals just mentioned, scarcely
any other method has been devised. In the proposals for

resonance experiments by Bloch and Dicke (discussed
in Sec. 7), the detection (as well as the production)
makes use of the combination of strong magnetic and
weak electric fields, but this method of detection de-
pends on the specific energies with which the polarized
electrons are produced there, and cannot be considered
as a genera/ method of detecting electron polarization.

'V. EXPERIMENTS WITH POLARIZED ELECTRONS;
DETERMINATION OF THE g FACTOR

OF THE FREE ELECTRON

In the preceding sections, diGerent possibilities for
production and detection of polarized free electrons
were discussed. In addition to production and detection,
one may make further experiments with the polarized
electrons. We may summarize the various possible
purposes of different experiments as follows: (1) Testing
the theory concerning the polarization of electrons (see,
e.g., Sec. 3). (2) Determination of the g factor of the
free electron (see later). (3) Indirectly investigating
the degree of polarization of bound electrons, a quan-
tity useful for knowledge of the solid state. LThe circular
polarization experiment in Compton scattering de-
scribed in Sec. 4 allows, in principle, the determining of
the average degree of polarization of the bound elec-
trons. Similar information might be obtained if one
could measure, e.g., the degree of polarization of elec-
trons ejected by photoeffect from magnetized iron (see
Sec. 5).) (4) Detection of the polarization of p rays from
polarized p-radioactive nuclei, which may give useful
information for nuclear physics and concerning the
mechanism of the polarization of the nuclei (see
Sec. 5).

Up to now, the experiments have had the first two
aims. In the rest of this section, we shall discuss in more
detail experimental procedures which were carried out
or proposed in order to determine the g value of the
free electron. This is of special interest in relation to
testing the value g= 2(1+a/2s. + ~ ) given by quantum
electrodynamics, which deviates by about 1 part in a
thousand from the g=2 of simple Dirac theory. This
value was found to be in agreement with the g value
determined for electrons bound in an atom, but it would
be of interest to have an independent determination for
the free electron in order to have an independent check,
perhaps even of higher accuracy.

Two main directions of approach can be distinguished
in the proposals for measuring the g value of the free
electron.

(a) Between the production and the detection of the
electron polarization a constant magnetic beld is used;
the precession angle of the magnetic moment in the
magnetic field is measured.

(b) The freqmency at which a spin Pip occurs is de-
termined by a resonance experiment in a constant mag-
netic field. For this purpose, a radio-frequency field is
applied after the electrons are produced in a definite
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in ex eriment of Louisell, Pidd, and Crane, with a magnetic field between
d' 1 toth Ch tio of th h . (Fithe two scatterings. The electron spin precesses in a plane perpen icu ar o

from P 54e.)

state of motion and polarization and before they hit the
detector, which may detect the spin Rip.

(a.1) An experiment of this kind was performed by
Louisell, Pidd, and Crane (P 54e, P 53f, P 53g) in the
following way. A double scattering experiment was per-
formed with 420-kev electrons with gold foils of 0.13
mg/cm' as polarizer and analyzer foils (compare ig.
14).The polarization was attained by scattering through
n n 1 of 90' using the polarizer under 45' in thean ange o, u

transmission position. The scattered beam ib hit the ana-
f '1 d'cularly' the two electron counters

0
were placed so as to have a scattering angle of 78 .
These counters were scintillation counters consisting o
an anthracene crystal, Lucite light pipe, and photo-

dbmultiplier. Polarizer and analyzer foil were separate y
a distance of 725 cm; the electrons went through a brass
tube of 15 cm diameter; a single layer of copper tubing
on the brass tube provided a solenoid through which a
current of about 60 amp, provided a homogeneous

magnetic field caused a precession of the electron spin
of about 5 complete turns (=1800'). The precession
could be measured by turning the analyzer counters
about the axis of the brass tube. In this way, the phase
of the polarization asymmetry was eterm'determined for
several solenoid currents. Instrumental asymmetries
were eliminated by comparing the counting rates oc-
curring for a polarizer foil of aluminum (low Z) w ic
gives only a negligible electron polarization. In addition

periodic focusing of the slightly divergent beam (aper-

ture 2.25'). Focusing occurs at distances in which the
cyclotron (orbital) motion perpendicular to the axis o
the tube has made an integral number of revolutions.
Hence, if the g value were 2, the focusing would occur
at the same distances at which the spin precession a
completed an integral number of turns. It follows that

e can determine g by comparing the spin precession
and the electron focusing, which can be measured ind-
pendently. By making such a relative measurement, it
is not necessary, for example, to make an absolute ca i-
bration of the magnetic field. The experiment resulted
in a determination of the g value with an accuracy of
half a percent: g= 2.00&0.01.

(a.2) A proposal for an experimental setup, which
may allow an accuracy of about 1 in 10', was given by
Crane (P 53c, and private communication) and its con-
struction has begun. Instead of using a continuous
electron current, a pulsed beam of electrons is used,
which is trapped in a constant magnetic field (a kind of
betatron field) so as to make 1000 to 10 000 revolutions
before being scattered the second time. The number o
revolutions for a pulsed beam may be determined from
the time of flight 7. As we explained in Sec. 2, the
anomaly of the electron magnetic moment may cause
the electron polarization to change from transverse
polarization to longitudinal polarization (and reverse)
in about 250 revolutions. If the magnetic field is ar-
ranged in this way, one should expect a result for t e
measured asymmetry as a function of the number o
revolutions as represented in Fig. . 0 g, 37 will ive the
c't

'
f ~'2 from unity. So if v- can be measured toaeviation o g
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1%, the g factor may be determined to about 1 part
in 10'.

A thorough theoretical investigation of different
aspects of the double scattering experiment with a
magnetic fieM was carried out by Case and Mendlowitz
(P 53b, P 55b, P 55c). In particular, they considered
the depolarization, which may occur for polarized elec-
trons carrying out many cyclotron revolutions. They
conclude that a careful experiment may allow a deter-
mination of the g factor to at least one part in 10'.

(b.1) A resonance experiment might be possible if the
electrons in a double scattering experiment could be
trapped for a sufFicient number of cyclotron revolutions
in a magnetic field between the two scatterings (see
S 43 and P 51c). In order to obtain an accuracy for the

g value of 1 part in 10', one would like to have at least
10' cyclotron revolutions in this experiment. It is not
necessary here to use a pulsed beam as no time-of-Bight
measurement would be required. However, it seems
most attractive in connection with the trapping problem
to use some periodic device. As is clear from the above
the resonance frequencies for the cyclotron motion ~,
and for the spin Qip ~, will be very close. By a relative
measurement of both frequencies, one obtains directly
the value for g/2. In order to obtain a good measurement
of +„it will be necessary that its determination should
not be disturbed by the close-lying strong resonance at
co.. This may be diS.cult experimentally and require a
cyclotron motion which is disturbed very little.

(b.2) A different proposal for a resolance expennMnt
with low-energy electrons was made by Bloch (P 53a).tt
As in the preceding proposal, the g value would be de-
termined by measuring the ratio pi./pr, . This method
makes use of the stationary states of an electron in a
homogeneous magnetic field; if we have a field of mag-
nitude P in the s direction, the energies of the eigen-

functions of the Hamiltonian are characterized by 2

quantum numbers l and np, (we give the result in the

asymmetr

v, (z)

v,(tv'(z)

v,(z)+ v" (z)

FIG. 16.Electric trapping potential V, and magnetic "blow-out"
potentials V ' and V " in the experiment proposed by Bloch for
measuring the magnetic moment of the electron. A magnetic
"blow-out" potential V,"occurring as a result from a gradient in
the magnetic field {and dependent on the state of motion of the
electron) will blow out all electrons from the electric trap V, ;
a magnetic potential U ' would leave part of the electrons in
the trap.

nonrelativistic limit)

2
8

Zi „,—— + (2l+1+gm, )8pp,
2m

(7.1)

l=0, 1, 2 ~ is a quantum number related to the
orbital motion of the electron in the x, y directions.

rN, =~-,'is a quantum number for the spin angular
momentum in the s direction.

p, o is the Bohr magneton.

The wave functions are limited in the x and y directions,
but not in the s direction; the motion in the s direction
can be confined to a limited region by an electric
trapping potential (see later) such that p, is negligible.
For high l, solutions are obtained corresponding to
electrons moving in circles in the magnetic field. For
low l, e.g. , l=0, 1, one obtains smeared out wave
packets. For l=0, we have a wave packet, which is
largely confined to a region with radius r =0.8&10 ' cm
for +=1000 gauss. Neglecting the term PP/2' in (7.1),
we have a system of energy levels which is degenerated
for g=2:

0 for l=0, m, = —
2

2pp8 for 1=0, m, =+-',
and I= 1,

4p(@ for l= 1, ni. =+-',
and l= 2, m =—1

8 2~

I

$000
1

2000
number of= revolutions
(from x)

$ In the following discussion, the author has also profited from
a private communication of Dr. O. Frisch who is also considering
this experiment.

FIG. 15.Asymmetry to be expected in a different double scatter-
ing experiment proposed by Crane, for measuring the anomalous
magnetic moment of the electron. The electron performs many
revolutions in a magnetic field, which changes the polarization
from transverse to longitudinal in about 250 revolutions. Hence
the observed asymmetry should vary with a period of about 1000
revolutions, which period X0 is a direct measure for the deviation
of g from its Dirac value.

For 8=1000 gauss: pp. =&a.=1.8X10iP sec '; App=2y+
=10 ' ev. The degeneracy is removed by the anomaly
of the magnetic moment. If the magnetic field is slowly
varying with s, the energy acts as a magnetic potential
energy pushing the electron to the value of s with the
lowest energy

V ' '=$2t+1+gm, )P(s)pp. (7.3)

Suppose we apply, in addition, an electric trapping
potential

(7.4)
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where p(z) may approximate near the origin

z (z) =nz' —-', n(x'+y'), (7.5)

or for a more extended region near the s axis

p (z) =nz' —ps4 —-', n (x'+y')
+3Pz2 (x2+y2) +3P (x2+y2)R (7 6)

which represents a potential turning down again some
distance from the origin so that V, has a well-defined
depth D. (See Fig. 16.) If we have the two potentials
V and V, simultaneously, and if an appreciable
gradient 88/Bz is established, part of the electrons may
be "blown out" of the electric trap by the magnetic field
gradient (it may even be that all states except 1=0,
m, = —-', are removed) (see Fig. 16).

The experiment will consist of a repetition of the
following cycle (a homogeneous constant field remains
throughout the experiment) .

(i) Trapping phase; the electric trapping potential
(which is maintained in stages (ii), (iii), (iv) and a
gradient 88/Bz are established in such a way that elec-
trons in states up to a certain P, m, =+—'„and P'= P+1,
m, = ——', are trapped.

(ii) The gradient 88/Bz is removed; the same electrons
remain trapped.

(iii) 2 radio frequency fi-eld is applied, which will

cause transitions P~P+1, P'—+t"+1 at a resonance fre-
quency oi, and transitions m, = —-', -+m, =+si at a
resonance frequency co,.

(iv) The gradient 88/Bz is again established, in case
of a resonance oi„ the states P+1, m, =+-'„and P'+1,
m, = ——', will be "blown out"; for a cv, resonance, the
state P', m, =+-,'will be "blown out. "By observing the
blown out electrons, after acceleration, by an electron
multiplier, one may observe the resonance frequencies
co, RIll GO, .

The experiment has many difhculties: the depth D
of the trapping potential should be very small (of the
order 10 ' v). Such potentials at the axis may be at-
tained by a cylindrical enclosure (say of radius 5 cm)
divided into rings with potential differences partly as
small as 0.02 v. Only a small number (say 5 to 10),
electrons can be trapped at a time (space charge is one
of the limiting factors). However if the cycle is repeated
at a rate of, e.g., 180 or more per second, a sufficient
number of "blow-out" electrons may be ejected so that
the resonances can be observed. For this purpose, it is
also necessary that the states of motion of the trapped
electrons have a sufhcient lifetime: the vacuum should
be good enough (10 ' mm Hg) so that collisions are
rare, and the energy exchange through radiation with
the surroundings has to be considered. But in spite of
the difliculties the experiment may be quite feasible.

(b.3) A resonance experiment rather analogous to
(b.2) was proposed and tried experimentally by R. H.
Dicke in 1947—1949 (private communication). This

proposal also has a trapping phase, a phase in which
the radio-frequency is applied, and an ejection phase.
However, the details of the trapping procedure (in
which carefully adjusted electric potentials and strong
magnetic fields are also used) are different. The experi-
ment gave sharp cyclotron resonances but failed to give
spin resonances; the latter fact could only be under-
stood by an involved consideration of details of the
experiment.

8. POLARIZATION OF POSITONS

Positons as well as negative electrons can be polar-
ized. Coulomb scattering by heavy nuclei provides a
means for producing and detecting polarization for
positons as well as for negatons. This eRect was calcu-
lated for positons by Massey (T 43a, see also Sec. 3),
but found to be much smaller than for negatons. This
can be qualitatively understood by remembering that
the region most eRective for the polarization eRect is
the neighborhood of the nucleus. The positons penetrate
less in this region than the negatons because of the
opposite charge. The other methods of producing or
detecting polarization for electrons given in Secs. 5 and
6, cannot be applied to positons, with the exception of
P rays from polarized radioactive nuclei (e.g. , one
knows quite well how to polarize the P+ emitters Mn",
Co56 Co58)

One may ask whether special methods of detecting
positon polarization can arise from the annihilation
process of polarized positons. If positronium is formed
with polarized positons, the '5 state will have a prefer-
ential spatial orientation (the 'S state is spherically
symmetric). Annihilation of polarized positons stopping
in matter containing polarized bound electrons may
show eRects depending on the relative spin orientation.
However, it seems dificult to use one of these possi-
bilities for the detection of positon polarization.

9. CONCLUDING REMARKS

The subject of polarization of the free electron deals
with the very fundamental aspect of matter which is
formed by the fact that the electron has a spin. In spite
of the fact that the theory of a number of important
consequences was treated thoroughly about 1930, it
was 1942 before it became clear that theory and experi-
ment are at least qualitatively in agreement in this
field. It is gratifying that the uneasiness, which lasted
for some time because of the negative results of the
experiments on electron polarization was satisfactorily
resolved. Generally speaking, the experiments on elec-
tron polarization are far from easy, and numerous
theoretical predictions in the field were not yet checked
by experiment. In spite of its intrinsic interest, this
Geld of research has always been somewhat out of the
Qow of the main eRorts in experimental research prob-
ably because physicists had already gained a firm belief
in the quantum mechanics of the spinning electron on
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the basis of other experimental data. Ke all hope that
the experiments to determine the g factor of the free
electron with a high accuracy will be successful in the
next few years, so relating this field with the recent
developments of quantum electrodynamics.
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APPENDIX. RELATIVISTIC NOTATION FOR THE
ELECTRON SPIN PROJECTION OPERATOR

(P 53i, P 54c, P 55d)

The spin projection operator Pl+&(() may be written
in a clearly relativistically covariant form with the aid
of Dirac y matrices. Take instead of Nq the positive
energy solution zvz with the same spin direction but
normalized to one particle per unit volume ie the rest
system. If we write

Pg„&+&(()= —w&, tf&„(tI&„=u „*pz), (A1)

then we have the relation,

P "&(()= —P"&(()pz(E/~c')

Pt+& (() may be written in the form

P &+& (()= ', $1 (i/mc-) p„v—a s„v t» tl—„„vi~"&5—, (A3)

(A2)

with

p.= LI&, (i/c) Ej,
s.= (s',i(p ()/~c),
s'= (+(p. ()p/m(E+s&tc'), 1

(A4)

(A5)

v'"'= ( 'iv' v4,vtv v'v', sv'v'v4 —sv'v'v') (A6)

p„ is a 4-vector; s„ is a (pseudo) 4-vector. The expres-
sions &pv&»p and &pv&&"&f are a (pseudo) 4-vector and a
4-tensor. A product of two antisymmetric 4-tensors T„„
and S„„may be written with the aid of two pairs of
3-vectors (F,G) and (F',G')

T„„S„„=FF'—6 6'. (A7)

For ns„„, these 3-vectors are

F=m'= (E/rmc') I; (p i.')p/m(E+tttc'—), l

(Ag)6=—(p X ()/s&tc.

The vectors s' and m' are the directions for the spin
angular momentum and the magnetic moment, re-
spectively, of an electron with momentum y (for p=O,
one has (=s=m) having ( as spin direction in the co-
ordinate system in which the electron is at rest. If a
wave function f transforms according to

4'=st (A10)

P i+& (()—P i+&P(() PQ-) P—(+& (A12)

where P &+~ is the projection operator for positive energy,
and P(() the projection operator for spin direction (.
These operators may be written in the following form:

Summuries:

Pi+& =-', L1—(i/tttc) p„vaj,
P (()= lL1—s.v'"'j
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