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in detail, "the dependence of the velocity on the wave-
length (dispersion) of the electron wave gives rise to
important eGects. It is still not obvious how these
patterns will be experimentally obtained. Neither of the
instruments so far constructed, even in a more developed
form, appears to be suitable. The wave-front splitter
of the German group, judging from the results of
Haine and Mulvay, " can be expected to run into the
geometrical coherence limit of the source before path
lengths of ten thousand wavelengths are obtained,
provided that the "aberrations" of their biprism do not
present a prior limitation. This path diGerence is still
far below the fundamental coherence limit of the
electron wave train. The NBS instrument, on the other
hand, although in principle avoiding any fundamental
limit set by the geometrical coherence of the source,
has the disadvantage for this application of being
achromatic and hence since its coherence pattern is
more or less independent of the initial wave train or,
at least, is not simply related to the more usual visi-
bility patterns.

As additional detailed theoretical studies of the
electron wave train are made, perhaps it will become
obvious that the coherence length of the electron wave
train is so long as to constitute no experimental limi-

"D. Gabor, Revs. Modern Phys. 28, 206 (1956), this issue.
~ M. E, Haine and T. Mulvay, J. Opt. Soc. Am. 42, 763 (1952).

tation to interference experiments. In the work pre-
sented here by Dr. Gabor and some unpublished
calculations of Professor Uyeda, it was indicated that
this may be the case.

Development work is continuing on electron inter-
ferometers at NBS under Dr. Marton, and in the
laboratories of Professor Mollenstedt in Tubingen. At
Nagoya, Japan, under the direction of Professor Uyeda,
a group is about to start another eGort to develop a
useful interferometer. The German group is continuing
the development of several different interferometer
geometries, having in common division of wave front
by the use of the Frensel biprism. The groups in
America and Japan are using the wave amplitude
dividing properties of crystalline lamella in diGerent
arrangements. There are theoretical and practical
advantages of both types of dividers, and only time
and further experience will tell which will prove to
have the greater utility. One thing does seem certain;
the electron interferometer will continue to develop.
By its use we will continue to expand our empirical
knowledge of the wave properties of the free electron
and in time be able to place our knowledge on the same
firm footing that has been achieved for light.

The support of the Ofhce of Basic Instrumentation
to the program on electron interferometry at the
National Bureau of Standards is gratefully acknowl-
edged.
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rNTRODUCTION

'HE last years have seen the successful realization
of the first electron interferometers by Marton,

and by Mollenstedt and Duker. '—'* In these instruments
a primary electron beam is split into at least two beams,
of which at least two are reunited at the photographic
plate or other type of receptor. The essential feature is,
that these interference phenomena arise by the inter-
section of at least two beams, in different directions.
In this they differ fundamentally from electron diGrac-
tion experiments, now known for over 30 years, in
which one beam only is observed at any point of the
receptor. Here the interference is between the ele-
mentary wavelets, which are split oG the primary beam
by the atomic scattering centers, and extinguish one
another outside a very small angle. f"

* References are listed at the end of the article.
t Thomson and Cochrane" have proposed "interfraction" as

a more htting name for this phenomenon.

On the other hand, experiments were known for
some time in which rea/ interferences were observed,
that is to say interferences between two scattered
beams, or between scattered beams and the primary.
First of these were the observations of Fresnel diGrac-
tion fringes at the edges of electron microscope objects,
by Boersch" and by Hillier, " in which the edge-wave
and the wave which had penetrated through a thin
foil with a certain change of phase was brought to
interference with the primary beam. Interferences
between two diGracted beams were first observed in
the electron microscope by Mitsuishi, Nagasaki, and
Uyeda" in 1951. See also Fues and Wagner, ' Menzel-

Kopp, "—"Pfister ' Rang, "—"Ito and Ito,"Niehrs, "
Hibi, Kambe, and Honjo, " and Farrand and Rees."
These arise, for instance in lamellar crystals, in which

the Qakes form slight angles with one another, or
blisters. We shall not deal in detail with these more or



THEORY OF ELECTRON INTERFERENCE

EZYZXZX//XZ/8/XZ/Ag WPZXPPPPPlr

Fzo. 1. Marton-
type electron inter-
ferometer. Coherent
beam splitting by
crystal diffraction.
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less fortuitous interferometers, but the general theory
to be developed will cover these too.

The purpose of this article is to provide a theory
for the use of experimenters in the further development
and utilization of interferometers, with special emphasis
on the problem of coherence, that is to say, on the
conditions in which interferences can be observed.
Such a theory did not exist so far because it was not
needed, except perhaps in connection with the electron
diffraction microscope (Gabor 2' Haine and Dyson").
Experimenters were mainly guided by light-optical
analogs, without being quite sure how far this analogy
could be extended. The need for an "adequately detailed
wave-mechanical treatment of the interference of quasi-
monoenergetic electrons" was voiced in particular by
J. Arol Simpson. '

Though the theory will be very general, it will be
useful to keep in mind the design of the only two
electron interferometers which so far have proved
successful, which are sketched out in Figs. 1 and 2. In
the Marton-type interferometer the beam traverses
in succession three thin crystalline laminae, at nearly
equal spacings. This is a rough equivalent of an optical
interferometer of the Mach-Zehnder type, and as it
turned out in the end, it happens to be a reinvention
of the now forgotten optical interferometer by Barus, 26

1911,who 6rst used diffraction gratings as elements in
an optical interferometer. Interferences up to the order
of 6000 wavelengths path difference could be observed,
at a spacing of the laminae of 3.5 cm, and an angle 0 of
about 0.027 radian. The two interfering beams crossed
one another at an angle of less than 10 ', else they could
not have been taken in by the aperture of a conventional
electron microscope lens, which was required for en-

larging the fringe spacing to a size at which they could
be resolved by a photographic plate. In fact, in success-
ful experiments this angle could not be made more
than 2.5)(10 '. With 60-kev electrons, ) =0.048 A
this gives a fringe spacing of 1650 A. At larger inter-
ference angles the fringes could not be kept steady
enough to be photographed. It is important to note
that in the Marton-type interferometer the two inter-

FIG. 2. Mollenstedt-Diiker-
type of electron 'interferometer.
Coherent beam crossing by
macroscopic helds.
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fering beams are deflected by appreciable angles, but
these are very nearly equal.

In the Mollenstedt-Duker interferometer, the inter-
ference angle is produced by macroscopic electric fields.
This instrument, schematically illustrated in Fig. 2,
is an electron-optical analog of Fresnel's biprism. Inter-
ferences up to the order of about 300 could be detected,
with very nearly the same interference angles and fringe
spacings as in the experiments of Marton, Simpson,
and Suddeth. The fringes are very luminous, contrasty,
and steady.

Up to the date of writing, neither of these instru-
ments has been put to use in the sense as light-optical
interferometers are used, that is to say, for the explora-
tion of the refractive properties of materials. It is one
of the chief purposes of this report to forecast, on
general theoretical grounds, whether such a use of
electron interferometers will ever be possible. Optical
interferometers would be useless if we had no other
objects than strongly fluorescent substances and frosted
glass, and some justifiable doubts have been expressed
whether all electron-microscopic objects do not belong
to these categories. Of course the very existence of
Marton's interferometer proves that thin crystalline
lamellae can be made so perfect as to be considered as
regular optical elements, but these are not typical
electron-microscopic objects. It will be shown though,
and it agrees with experience on Fresnel diffraction
fringes in electron microscopes, that su%ciently thin
noncrystalline foils need not diffuse so strongly as
to wipe out all traces of interference fringes.

The main interest of interferometric methods lies
in the fact that they enable us to determine the phase
(not only the amplitude) of diffracted beams, by com-
parison with a coherent background. This, in principle,
may open a new chapter in the determination of struc-
tures, in particular of small, somewhat irregular objects,
which are of chief interest in organic chemistry and in
biology. It will be shown that there exists indeed an
important field for such applications of interferometric
methods, though not an unlimited one. The limitation
is in the fundamental fact, hitherto mostly ignored,
that a material structure cannot deflect (diffract) a
beam without slightly altering its energy. In other
ypords, exactly elastic collisions do not exist. The small
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losses of energy swered in Brag g-rejections will,
beyond certain angles, shift the energy of the diGracted
beam outside the range of the primary beam, thus
destroying coherence. This eGect could be compensated
by various measures, such as broadening the primary
energy width, or making the phase comparison with
a beam which has suGered a similar energy loss, with
known phase. But these artifices will fail at a certain
limit which is set by what may be called de Broglie's
prirtcipte: It is impossible to explore a material structure
beyond a certain detail without destroying it. More
exactly, it is impossible to specify the position and
shape of the individual atomic scatters beyond a certain
limit; a small structure cannot yield more than a certain
amount of information about itself without being
destroyed. Roughly speaking this limit is at about 1 A,
about 5 times beyond the best resolution of present-day
electron microscopes. f. This is the fundamental limit
for electron interferometers, as well as for any other
exploring instrument, but there is a world of interest
this side of the limit.

There are of course many practical limitations,
chieQy of stability and of luminosity of the fringes,
but it is hardly possible to discuss these on a general
theoretical basis.

COHERENCE. GENERAL DISCUSSEOÃ

Consider two scalar wave 6elds W~(x, t) and W2(x, t)
superimposed in space, and assume, as is the case both
in light optics and in electron optics, that the only
observable quantity is the absolute square of the
resulting amplitude W~+W2, summed over a time long
compared with the duration of 8'», 8'2. This quantity,
which may be called the light sum is

S= ~ (Wg+ W2) (W2*+W2*)dt

= )I W2Wy dt+
J

W2W2 dt+) (W1W2 +Wl W2)dt

=Sg+S2+Sg2. (1)

The last term, S» may be called the mutual light sum.
If 8'», 8'2 have the character of a stationary series of
pulses, we can divide by the observation time (always
assumed as very long relative to the pulse durations),
and talk of a mutual intensity. Coherence is then
synonymous with the condition that S» is nonzero,
and not everywhere very small relative to S&+S2.

It is convenient to express this in spectral language.
Let w~(x, f), w2(x, f) be the Fourier transforms of

)This does not of course contradict the fact that x-ray in-
vestigations have specified the details of structure in the ele-
mentary cell of large crystals to well below 0.1 A. The information
contributed by the individual atom is very small, and the high
accuracies result from averaging over very large numbprp,

W», 52, i.e.,

W, (x,t) = wg(x, f)e2 'r'df

W2*(x,t) =

We have then

w (x f)e "r'df

Sl 2 ~ w~ (x,f~)w2*(x&f2)e' "r' r'&d f~df2dt+conj.

sin22r(f2 —f2) T
].im I i K ]zv22 dfydf2+ conj .

2 (f-f.)
t'wg(x, f)w2*(x,f)+w2*w2)df. (2)

This form appears mathematically identical with (1)
but it is more physical, because it can be given a
detailed physical interpretation in cases in which the
time functions are unobservable. The absolute values
of m», m2 are the spectral amplitudes, which can be
directly measured, and it may be noted that only the
relative phase has remained in the expressions wqw2*,

which is also a physical observable, because it can be
either calculated from the geometrical data, or directly
observed by comparison with a standard coherent
background. In brief, the transition from (1) to (2)
can be expressed by the simple rule that each frequency
interferes only with itself; as it were with a product of
coherent ba22d width artd effective time which is just urtity

In the case of light and of electrons the frequencies f
have of course no meaning as such; they must be
interpreted as energies, by Planck's rule E=hf. Equa-
tion (2) means therefore that only monoenergetic com-
ponents can interfere with one another. The overlapping
of the spectra of the two beams is an obvious necessary
condition of coherence. The sufhcient criteria are also
contained in (2), but in a less obvious form. They are
revealed by the following discussion.

Consider two beams in an interferometer, originally
issuing from a point source S, interfering at a receptor
point R (Fig. 3). In the neighborhood of R, we can
consider each monoenergetic component as a plane wave
with wave number k„=22r/X„. Let n~, n2 be unit vectors
in the direction of the wave normals at R. (These direc-
tions will be in general color-dependent. ) We can write,
therefore, in the neighborhood of E, if we take E as the
origin of the vector x

w~ (x,f)=amplitude factor
&(2: exp(ik„n, x+ix pha.se S—R).

The amplitude factors a2(f), a2(f) are real, and func-
tions of f only. The phase change from S to R is deter-
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mined by tracing the two rays between the source and
the receptor point, by the rules of geometrical optics,
and counting the wavelengths on them. It will be con-
venient to write, e.g. , for the first beam,

f ), R

phase 5—R= k„si where si ——— (Ms) i,
&. ~8

and the suSx means "along the ray 1." Therefore,
s~, s2 are the optical path lengths, reduced to the
optical space of the receptor point E. They are illus-
trated in Fig. 3 as straight tangents to the rays at R.
In general they will be color-dependent, both in direc-
tion and in length.

We have now for the interference product,

w, (x,f)ii2*(x,f)
=ai(f)a2(f) exp(ik, [(ni—n~)x+si —$2]).

In order to obtain convenient expressions we imagine
a~, a2 expanded in series of orthogonal Hermite func-
tions (parabolic cylindrical functions). It will be
sufhcient to consider the first term only for the dis-
cussion. Let us put, for the first beam,

ai(f) = aio exp[ —(f fo)'/4(hf—)']+
We now assume that the second beam has the same
spectral distribution, but shifted towards lower fre-
quencies by a loss frequency fl, ,

a, (f)= a„exp[—(f f,+f,)'—/4(af)']+
It may be seen that (Af)' has the meaning of the mean
square width of the intensity distributions, a&' or a2',
measured from the central frequencies, which are fo
in one case, fo fr, in the oth—er.

We now expand the phase diBerence s~—s2 to the
first order in the frequency diGerences

A„(si—$2) kp(si —$2) 0

FIG. 3. Schema of general
electron interferometer.

may be called the chromatic coefficient. It is the relative
change of the optical path-length diGerence, reduced
to the last medium, pro relative change of the wave
number. In the Mollenstedt and Duker interferometer
this is zero, because the deflection shifts the image of
the source only sidewise, leaving the length unaltered
in this approximation. In Marton's interferometer on
the other hand C= —1, because by the remarkable
achromatic properties of this instrument the difference
s~—s2 is proportional to the wavelength, hence in-
versely proportional to the wave-number k.

We have now, for the interference product

alii'2 a10a20 expiko($1 $2) exp[i% (nl B2)X]

0 0 L
)(exp

4(~f)'

dk
+ (Sl $2) D+k0 ($1 $0) ($1 $0).

df dk
k= ko

Substituting dk/df= 2m/v, where w is the group velocity
gives, after a little rearrangement and dropping of
suRixes,

k, (si—s2) =ko(si —$2)

2~
+i (&+C)(f—fo) . —

The terms under the curly bracket in the last ex-
ponential can be rearranged in the form

.2x

, f fo+ l f~ 2(~—f)'i (&+—C) (s »—)—
2(~f)'-

2x ko d
+—(si—s2) 1+ —(si—s2) (f fo)—

Sy $2 dk

The second term under the square bracket

L 2'—2 (6f)' —(1+C)(si—s2)
8(hf)' e

ko d
C= —(si —s2)

Sy—S2 dk

The frequency f occurs now only in the first square
(3) bracket, and the integral between infinite limits gives a

constant, which is of no interest. We thus obtain finally
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for the mutual light sum (or intensity) near R

Sls const expt ik„(nt —ns)x)
V

Geometrical
factor

2x
~ exp —2 d f—(1+C)(si—ss)

-2-

Y
Loss of coherence by

path differences

Y
Loss of coherence
by frequency shift

The expansion which we have chosen for the spectral
distributions has enabled us to separate the three
factors in the somewhat complex notion of coherence,
which can now be discussed one by one.

Geometrical Coherence

The first factor in Eq. (4) is not complete, because
so far we have assumed a point source, which assures
geometrical coherence. But we can easily complete it,
by introducing displacements bx, of the source, reduced
to the optical space of E, so that the factor becomes

expLik„(n, —ns) (8x„—5x,)j. (5)

For symmetry we have written here bx„ instead of x
for the displacement of the observation point.

If the wave normals intersect at a small angle p,
we have from (5) for the fringe spacing, or period p
the well-known formula

e

k„gp=2w.

In general, p is color-dependent, except in Marton's
interferometer, where it is a constant, because k„and @
vary inversely.

Equation (5) now gives also immediately the geo-
metrical condition of coherence. If we imagine the point
source shifted sideways by —,'p, the interference fringes
will be wiped out completely, and this is also the case

if it is replaced by a uniform line source of width p.
This too is a well-known result; the width of the source
image, reduced to the optical space in which the
fringes are observed must not exceed the fringe spacing.

There is no need to go into further discussion of
geometrical coherence, as in this respect there is no
difference between electrons and light, and in optics
the problem has received very full treatment. Michelson
and Rayleigh were probably the first to understand it
practically, and the theory has been worked out in
recent years very completely by Zernike, "Hopkins, "
Blanc-Lapierre and Dumontet, " 9'olf," and the
author. "

Loss of Coherence by the Path Difference
Exceeding the Train Length

It was considered almost as axiomatic in optics, that
waves could not be shifted relatively by more than
their "train lengths" without losing coherence. This is
also suggested by the form (1) for the mutual light
sum. It was a considerable surprise when it was realized
that the Barus-Marton type of interferometer distorts
the wave trains in such a fashion as to make the notion
of train length rather meaningless.

The second factor in Eq. (4),

2'
exp —2 Af—(1+C)(st —ss)

V

shows that the mutual intensity falls to e ' of its
maximum if the path diGerence is

Sy $2=
2vrh f(1+C)

Apart from the factor 1/(1+C) the expression at the
right represents what is commonly called the train
length. This is indeed a limiting factor in the Mollen-
stedt-Duker interferometer, but in the Marton instru-
ment the second factor is in6nity; hence, interferences

up to any order appear theoretically possible.
It may be noted that this does not, involve any

fundamental impossibility. Let us define the rms dura-
tion of the wave train in the same way as we have
defined the rms band width Df, and call it Dt. There
exists between these two the "indeterminacy relatioD, "
(Schwarz inequality)

6f ht & 1/4ir

which sets, at given frequency spread, a certain lover
limit to the train length, but there is no reason why it
should not exceed any limit upwards.

There are of course good practical reasons which
prevent obtaining interferences at very large path
differences; these are fully discussed in the article by
Marton, Simpson, and Suddeth, ' Carrying out the
mathematical process which led to Eq. (4) to higher

0 2

( E E~)/irr-
FIG. 4. Energy distribution in an electron beam from a hot

cathode, (classical), and its closest imitation by a chopped wave
gf constant amplitude and duration v..
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terms would also doubtlessly reveal limitations. But
this is a rather academic question, because, as will be
shown in the next section, the train length of electrons
as used in electron optics is enormous in terms of
wavelengths.

I
+(Rk Tg/8)

Loss of Coherence by Frequency Shifts

This is contained in the last factor in Eq. (4) and is
as expected. This factor can be precalculated without
knowledge of the geometry of the interferometer, from
the properties of its components and of the object; its
discussion will be left to the end of this article.

LI

r- wg/Z7

I 2k' t/A

ELECTRON WAVE TRAINS

In electron-optical experiments the primary electron
beam almost always issues from a hot cathode, with
temperature T, and is accelerated to energies very
much larger than kT. At the cathode surface, @=0
(more exactly in the plane of the potential minimum),
the distribution is semi-Maxwellian, that is to say
Maxwellian in the solid angle 2x. Let vo be the electron
velocity at this surface, in the x direction. The current
in the limits eo, d~o is then proportional to

exp( ;amp'/—k—T)iipdvp

Let these be accelerated by a voltage drop Ep/e, which
adds the energy Eo to the energy of each electron. At
this point the beam current in the limits E, dE is then
proportional to

expL —(E Ep)/kT]dE. — (6)

This is illustrated in Fig. 4. The mean forward energy
of the electrons in the beam is Ep+kT, to which must be
added kT for the transversal energy, which remains
unaltered by the acceleration. Note that we have
operated here with currents, not with particle densities.
The functions 8", zv of the previous section must be
also interpreted as streams deesi ti es, which for all
practical purposes means local densities multiplied by v.

So far we have followed the classical description, in
which each electron has a definite velocity. In the quan-
tum description, a hot cathode is not considered as
essentially diGerent from a radioactive preparate, say
a P emitter, and the description is complete if we know
the law (6) which is interpreted as the probability dis-
tribution of energies, together with the mean densities
in the stream. We can formally interpret the energies
as frequencies by Planck's formal, but we cannot ask
for details of time-space description beyond what is
contained in Eq. (6). This then appears as the "energy
spectrum" of a mixed oscillation, and if we want to
visualize the electron stream as a stochastic sequence of
wave trains, without knowledge of the phases, we can
legitimately go only as far as to specify the altocorrela-
tion fInc(ion of these trains. By the theorem of N.
Wiener, this is the Fourier transform of the energy
spectrum (6), and if we define the frequencies as

FIG. 5. Representing the beam emitted by a hot cathode by the
shortest equivalent wavetrain, and by the chopped wave of
closest fit. The ordinates are probability amp/itgdes, not
probabilities.

f=E/27rb, this is found to be, apart from an unim-
portant constant

e.(t)P,*(t+7)dt =const/$1/ (kTr/h)']. (7)

(The suffix "s" stands for stream densities. ) Physically
the expression means the mutual intensity of two
part streams, one of which is delayed by r against the
other. This is exactly what is required in the theory of
optical interferometers, such as Mach's or Jamin's, in
which one beam is delayed as a whole by mirrors or
other achromatic elements, and also for the theory of
the Mollenstedt-Duker interferometer. It is not suf-
ficient, as we have seen, for the Barus-Marton
instruments.

Though legitimately we cannot ask for any closer
description of wave trains, the concept is so helpful
to the imagination that one wishes to go a step further,
if it is possible with impunity. We can in fact go a
step further but not by describing the "real" wave
train, which has no meaning, but the shortest wave
train which is compatible with Eq. (7). One obtains
this by making all the phases coincide at the middle
point of the wave, which proceeds with the mean
velocity 8, corresponding to the mean energy Ep+kT.
This is

4, (x,t) = const/$1+ (2k T (3—x/8)/5)'j

and is illustrated in Fig. 5. It has mathematically the
same form as the correlation function (7), but is twice
as narrow. Its physical meaning is, that a hot cathode
could not be distinguished from a source which emits
probability-amplitude pulses of this shape (i.e., prob-
ability pulses of the shape of the sqgare of 4,).

It is of some interest to know the length of this
shortest equivalent train, which may be conveniently
defined as the chopped monochromatic wave train of
closest fit. It has been shown elsewhere, (GaborP') that
this is a wave train of a frequency corresponding to the
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mean energy Ep+kT, and of a duration

r =eh/kT= 2.4)&10 "/T sec.

Its energy distribution is of the form

(sinL-', pr(E —Ep —kT)/k Tj) '
fdE,

,'x(E-Ep —kT)—/kT
(10)

BORN APPROXIMATION FOR TINE-DEPENDENT
SCATTERERS

One-electron wave mechanics was so far found
appropriate for all electron optical problems, and it is
sufFicient also for the theory of interferometers, as it
breaks down only for inelastic losses so large that they
destroy the coherence altogether.

The most convenient mathematical approach for
these purposes is the Born approximation (see Mott
and Massey'4) because it operates with concepts which
have simple optical interpretations. It will be sufficient
to use the first Born approximation in order to reveal
the physical principles; the need for higher approxima-
tions arises mostly in cases in which coherence is
practically destroyed, and which are, therefore, of
little interest for the present purpose.

It will be necessary, however, to extend the Born
theory in two directions; to time-dependent scattering
potentials, and to nonuniform primary beams. Time-
independent fields produce only completely elastic

which, as shown in Fig. 4, is a not unreasonably close
approximation to (6). The length of the equivalent
chopped wave train is

rv (prh/kT) p = (7rhc/k)P/T= 0.72P/T cm. (11)

Thus the duration of the equivalent pulse is for a
tungsten cathode, T= 2500'K, about 10—"sec, and for
60-kev electrons, p=0.45, the train length is about
1.3&(10 4 cm or 13 000 A. As the wavelength at 60 kev
is 0.048 A, almost 300000 fringes could be observed.
Marton and his collaborators have in fact achieved
observations at the order 5800. The delicacy of the
instruments is such that substantial progress beyond
this appears rather unlikely.

One question which is often asked must be answered
at this point. We have assumed the theoretical energy
spread, calculated from the temperature of the hot
cathode, but it is well known that the actual spread
is often much more, sometimes of the order of a score
of ev, owing to high-frequency oscillations in the beam,
originating in the cathode region (Boersch"). But
though these oscillations may well aGect the achromatic
properties of interferometers, they will not affect the
coherence. The frequency of these oscillations can be
estimated as at most 10" cycles/sec; hence, they are
very slow compared with the frequency associated with
the thermal energy spread, which is of the order of 10'4,
and can be left out of account in the theoretical
treatment.

scattering, as if the electron had collided with an
object of infinite mass. Strictly elastic collisions do not
exist; there is always a transfer, however slight, of
energy as well as of momentum. Small energy losses
can be treated in a one-electron theory by introducing
the change of the scattering field caused by the re-
action of the electron on the scatterer, as will now be
shown.

Consider the time-dependent, nonrelativistic wave
equation, neglecting magnetic eQ'ects

2m M 2m
V(x,i)e.

iA Bt
(12)

Here 4 (x,i) is the wave function of the electron in space-
time language, V(x, i) the scattering potential. We
shall use throughout capital letters for space-time
functions, lower case letters for space-energy functions,
i.e., for their Fourier transforms. With this convention
we define

1
V(x,t) = v(x, p) exp(ipse/A)de.

2~5~ „ (13)

e has the physical meaning of an energy loss component.
Similarly we represent the primary wave, with energy
components E by

%p(x, t) = Pp(x, E) exp( —iEi/A)dE (14)
2mA~ „

and the scattered wave conveniently by

E—c

exp( —i t)dEd p. (15)
A

2m 2m
q'P, + (E—p)P, = i, (x,p)gp(x, E).

A'
(16)

We have now at both sides of the equation, which has
become time-independent, components with the energy
E—e. Write

4 is the wave number of the scattered beam com-

P, is the component which has suffered an energy loss
e, and is scattered with the energy E—e.

We now pass from the exact equation (12) to the
first Born approximation, in which 4 in the perturbation
term at the right-hand side is replaced by the primary
wave %p. Substituting the definitions (13)—(15) we
obtain the Fourier transform of the wave equation
in the Born approximation
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ponents; ko corresponds to the meae energy Eo of the
primary electrons.

We now apply to Eq. (16) Born's elementary solution
for the wave scattered by the volume element x', dx'

m e""
dg, (x,p,E)= —— v(x', p)Pp(x', E) dx' (l8)

4m A' r

where r= ~x—x'~, the radius vector from the scatterer
to the observer. Substituting into Eq. (15) we obtain
the scattered wave in space-time language

is not the wave number of the scattered electron, but
the mean of this and of the wave number of the (mean)
primary.

Substituting Eq. (21) into Eq. (19), we now obtain
the more convenient formula

tm
p I t ( r)

+,(x,t)= —
(

' ep( x', t
2prh' J & & ( v')

( r ) etp'f

X Vi x', t
i

dx'dpdE (23. )i'i r
2xm p p p e'~"

i Pp(x', E)~(x',p)
(2~5)4& ~ ~ r

~'—oo

This formula suggests at first sight a simple physical
interpretation. The first two factors under the integral
are, as if the primary wave at the retarded time t'= 3

r/p—' had interacted with the potential V at the point
x', at the same time, and if this scattered wave, in the
form of a spherical wave had spread from the scattering
center with a phase velocity equal to the velocity
of the scattered electron. But we are reminded by the
factor exp(-,'k'r) that this interpretation is too realistic.
It appears as if this wavelet had approximately half
the wave number which it ought to have, i.e. twice the
wavelength. The reason is that the time-dependent
wave equation (12) is not a true wave equation; it con-
tains the first time derivative instead of the second.
This results in the well-known dispersion properties of
electron waves, in particular, in the fact that (in the
nonrelativistic Schrodinger equation) the wave velocity
co/k is one-half of the group velocity d&u/dk. $ In Eq. (23)
it appears as if the phase velocity of the scattered
signal had been twice what it is; this error is com-
pensated by the last term. In fact no explanation of
electron scattering by retarded signals can have a
real physical meaning, as the instant of interaction of
monochromatic wave components cannot be exactly
defined. Thus Eq. (23) remains a useful formula, only
one must not put a too realistic interpretation on it.

@,(x,t) =—

E—p)
Xexp~ i —t ~dx'dpdE (19).i

This can be put into a more convenient form, taking
account of the fact that the primary wave has a narrow
energy spread, centering on Eo. We rewrite the expo-
nential factors under the integral in (19) as follows

kr (E—p)t/5= ——(Et/It kpr)+ (pt/5+—(k —kp)r).

In the last term we use the expansion

dk
&—&o=-

ko
k =ko

E—e—Ep

(E—p —Ep)'
(2O)

A2

1 d2k

2 de
k =ko

We have used here the radian frequency + as expansion
variable, as this leads to familiar expressions. Using
the nonrelativistic formulas

k = (2m(up/k) & and pnzpp' ——(opk

we obtain

(dk/d(o) = 1/pp, (d'k/des') = —(1/op) (5/2Ep)

COHERENCE IN ELECTRON INTERFERENCES

Equation (23) is sufficient for the discussion of all

types of interferences which have been so far observed
in electron microscopes and in interferometers. It is not
required, of course, for the discussion of the Mollenstedt
and Duker interferometer without an object, as in this
instrument the beams are brought to crossing by steady
macroscopic fields, without any observable energy loss.
The only limitation here is the primary energy spread,
which we have already discussed. Equation (23) is re-
quired, however, for all interferometers which contain
an object, and for the Marton interferometer even with-
out an object, as the beams are crossed here by atomic
scatterers, which may well restrict the coherence.

In order to understand the essentials of the process,
it will be sufhcient to consider the interference of a

k =kok =ko

where vo is the mean velocity of the primaries. Sub-
stituting this into the exponent we obtain

(21)

where

2E02EQ

It can be seen that up to terms of the order (p/Ep)' the
velocity v' is equal to the velocity of an electron with
energy E—e, that is to say ~' can be identified with the
velocity of the scattered electron. k' on the other hand

$ This, of course, has no physical significance whatever; the
zero level of co is completely arbitrary.

( Ep —(E p) q Ep+E—p-"=pp k'= kp . (22)
)
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scattered beam with the primary beam Vo(x, t). The
modifications which have to be made in other cases
will be easy to see. It will be also convenient for the
start to neglect the small diGerences between ep and
v', kp and k', i.e., to consider first the case of elastic
scattering.

At the receiver, such as a photographic plate, we
observe the electron Qux density

j= (4'* grad% —4 grad%'*).
2im

At a plate approximately at right angles to the electron
beams, this is only insigni6cantly diGerent from

Akp

(49+A*)=~o~*.
28$

Hence, the "mutual electron flux" of the primary and
of the scattered wave is, using Eq. (23), integrated
over all times

mVp P e"~o"
Sp~= —

~

dx +p*(x&t)+p(x &t )
2xh' ~, r

&& V(x', t') dt+ conj. , (24)

where, for brevity, we have written t'=t —r/vp for the
retarded time.

To make the meaning of this equation clearer,
consider the example of illumination by a plane-wave
group, proceeding in the s direction

4'p(x, t) =A (t s/pp) exp[ —i ( E/pt—It kps)]. (25)

Hence

( r $ |' s+«)e, (x', t') =e,
i

x', t (=A—
i

t
'Vp) 4 'Vp )

(Eo Eor
&(exp —

i~ t —kps'
i

—. —(26)( k kpo

It can be seen that the delay has introduced a new
phase factor,

exp (iEpr/Avp) = exp (-', ikpr),

which, in conjunction with the factor exp(oikpr) under
the first integral, will restore the wavelength which is
effective in the interference to 2m/kp, instead of twice
this value, as might appear from Eqs. (23) or (24).
Substitution in Eq. (24) gives

Sp, ———mvp t' expikpr (1—cos8)
dx

2.a ~,.

( r(1 —cos0) q
A*(r)A~ r ——

)
tt' r (1—cos8) )

X&) x', r— (28)
8p

In this expression the first integral is a geometrical
phase factor, which expresses the fact that the phase
shift between the direct and the scattered wave is the
diGerence between the lengths of the direct and of the
deflected ray between the object plane and the observa-
tion plane, divided by the wavelength. The second
integral, which is real, is the correlation function
between the envelope function A and the product A V,
shifted relatively to one another by the same phase
diGerence.

This expression gives us nothing new beyond the
elementary optical analog, and we cannot expect it
otherwise, having neglected the energy losses. In order
to establish the general formula we must go back to
Eq. (24) and substitute in it the "spectral, " i.e., space-
energy representations of the direct wave, of the
scattered wave, and of the scattering potential. We
use Eq. (13) for representing the scattering potential,
Eq. (23) for the scattered wave, and we write for the
primary wave

00

fp*(x,t) =
~ P (p, x'E) exp(iE't/A)dE'. (29)

2~5 ~

This gives the mutual electron Qux in the form of the
fivefold integral

Sp, ———rsvp 1
i

-fo*(X,E')
2st't'(2sA)'& J & ~ & r

( E or)—
X

tlap

(x',E)o (x', o) exp i
(

—',k'r +
p')

)&exptti (E' E+o)t/A jdx'dEd —pdE'dt+conj. (30)

Let us now write
r = (s—s')/cos8,

where 0 is the angle of the deflected ray with the s axis,
and shift the time scale, writing r for t—s/vp. We
obtain the mutual Qux in the form

Sp, ———
This can be reduced to a threefold integral, by carrying

1ssp z expLikp jr—js—s'j
out the integrations with respect to 3 and E', in the

2xk' &, r same way as Eq. (2) was obtained from Eq. (1). It is
found that only that component of the primary wave

~
t' s & ( s «) (, r & contributes to the integral for which

v, ) E'
oo& E =E c~
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i.e., only components of the same energy interfere with
one another. Writing for brevity

E—&=8
we obtain

erik'r ~oo

dx v(x, e)de
(2~A)' &. r

It is found that the first Born approximation tends
to infringe the conservation law of particles, in the
sense that electrons appear to be lost in the collision
process. The rate of loss is, during the interaction time,
approximately

(32)

er ')
X Po*(x,e)Po(x', e+o) exp( i )de —(.31)

& Av'

In this useful form the first factor a~d the last are
phase factors; it is seen that they combine approxi-
mately to a phase factor exp(ikor), as expected. These
two are the "geometrical" factors, and we need not
discuss them further, as we have already discussed
the geometrical conditions of coherence (with more
general assumptions regarding the phase shift between
the interfering beams) in the second section of this
review. The energetic conditions of coherence are very
clearly exhibited in Eq. (31).It is seen that the mutual
electron Aux is, other things being equal, proportional
to the integral over the energy loss of the spectral
representation of the scattering potential, multiplied

by the autocorrelation function of the spectral repre-
sentation of the primary beam, for a shift equal to the
loss e. Thus, if we knew the loss spectrum w(e), we

could calculate the coherence. In fact, the loss spectrum
of solid objects in the range of perhaps 0.1 ev is not
known; these are usually considered as "elastic"
collisions, and the only method for exploring them
experimentally is just by electron-interferometry. Later
on we will make conjectures regarding these losses,
but first it will be useful to consider the limit of validity
of the Born approximation on which this and the
previous section were based.

VALIDITY OF THE BORN APPROXIMATION

The limits of validity of the Born approximation in
atomic collision processes have been very clearly dis-
cussed by E.J. Williams (Compare Mott and Massey, "
p. 124, also p. 119and 195).We are less interested here
in collisions in the strong field of single atom cores,
than in the processes which occur in the weaker inter-
atomic fields, which can be approximately represented
by an inner potential, or refractive index. These are
likely to be more important for the very small scattering
angles which are of interest in electron microscopy and
interferometry.

The first Born approximation consists in replacing
@ by the primary wave 4'o in the wave equation (12),
at the right-hand side, while at the left-hand side one
puts %=%'o+4,. An obvious first check on this approxi-
mation is to investigate whether it violates the con-
servation laws of particle number, energy, and mo-
mentum. This has been carried out in Appendix I, only
the results will be given here.

where (V') is the mean square potential energy in the
volume occupied by one electron.

In order to estimate this error, consider the following
example. Electrons of an energy 50 kev, P =0.41
bombard a foil 200 A thick, in which the mean square
potential amplitude is (10 ev)'. The train length of these
electrons is about 12000 A by Eq. (11), about 240
times the foil thickness, and the interaction time is
about 10 ' sec. The rate of loss is found to be about
10"/sec; hence, about 10+~ of the electrons get lost.
For thicker foils or stronger perturbing fields, the Born
approximation rapidly loses its validity.

On the other hand, it is found that the conservation
laws of energy and momentum are satisfied exactly in
the Born approximation, not only for time-independent
but also for time-dependent perturbing potentials, if
these laws are reinterpreted in the following form:

The work done (or the momentum transferred to)
the time-dependent potential field V by the primary
wave, (not by the resulting wave!) is equal to the
energy (or momentum) deficit in the scattered wave.

In other words, Born's first approximation violates
the conservation laws of energy and momentum only
insofar that, for obtaining a balance, one must omit
the reaction of the scattered wave on the scattering
field V.

Another question which had better be cleared up
from the start is this. The first Born approximation
represents single collisions. How far can we expect a
single-collision theory to explain the coherence-de-
stroying properties of random objects of the "frosted
glass" type? The pioneer investigation by Booker,
Ratcliffe, and Shinn" on diGraction at irregular
screens, though it contains all the relevant mathe-
matical methods, does not give a direct answer to
this question, which can be formulated more exactly
as follows:

Consider a rectangular foil with an irregularly dis-
tributed refractive index (or perturbing potential).
A coherent plane wave is incident on the foil. At a
distance at which the foil subtends the (small) angles

8&, 8&, this wave has practically uniform intensity, and a
random phase P(x,y) if x, y are the coordinates in the
observation plane. If one knows P at x, y, one can
calculate its probable distribution at x+Ax, y+Ay, and
if the mean spread of P is of the order 2x, interference
fringes of the half-period Ax, Ay will have become
invisible.

Tb,e investigation gives the simple result that a
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single-collision mechanism, such as embodied in the
Born formula, can at most destroy the visibility of
fringes down to a minimum fringe period of X/8), X/8s.
This is indeed as must be expected. By superposing
plane waves in an angular range 8», 82, with phases
however arbitrary, one cannot produce a phase-pattern
with finer spatial detail than X/8), X/8s. Hence, a foil
thin enough to ensure the applicability of single-
collision theory, however arbitrarily constructed, cannot
destroy al/ interference fringes, though it may very
well destroy the broad fringes which are most easily
observed.

It is a well-founded fact of electron microscopy that,
with electron energies of 30—100kev, single-collision
theory applies reliably to foils of 100—200 A thickness,
of organic materials or metals of not more than about
Z=16. Hence, we can predict with some confidence
that electron-interferometry of thin foils, though prob-
ably experimentally difficult, will not run up against
a fundamental barrier right from the start. ~j

vanishes. This gives

~ABV'Vdx'= ~V'P(AB)dx'

= —
2~ V(ko'AB —gradA gradB)(h'.

Puttirig A = —(m/2orh')4'o, B=e xp(i kor) /r gives

m (eaLor )+,(x, t) = — V grad4o grad] )dx'
2or(kh)' r

m r
eikpr

4o
4~()t k)' ~ r

V'Vdh'. (34)

and

eikor ( 1 q
e(kor

=( iko ——
/

Br r 4 rj r

~ikpr

=i&p

The gradients under the integral sign are taken with
respect to x'. We have

USEFUL FORMS OF BORN'S FORMULA
~ikpr ~ikpr

grad(, ) = —grad(, )

gikpr

= —ikpr
~2

(35)

It is often useful to operate with equivalents of the
formulas (19) and (23), in which the charges and their
motions figure in the integrals, instead of their po-
tentials. In particular, it is of interest to describe these
charges in a solid either by their densities p and velo-
cities u, or, as in macroscopic theory, by a polarization
vector P.

It is convenient to start not from Eq. (23), but from

m
f

~ikpr

e, (x,t) = —. e, (x', t) V (h', t') dh'. (33)
2orA' & r

Here the receiver or observation time t figures in 0'p,

while the retarded time t'=t —r/t) figures only in the
perturbation potential V. This has the advantage that
it avoids the somewhat confusing factor exp-,'ikpr. For
simplicity, 4'p may be monoenergetic, and we neglect
the small diGerence between v' and the primary ve-
locity v.

We apply Green's theorem

BV BU)
' (UV'V VV'U)dx'= —

)
U

art 8)s)

to the case in which U=AB, where A and I3 are both
solutions of the homogenenous wave equation

qs@+kos@=0

and we let the integration volume comprise the whole
region in which V/0, so that the surface integral

If %o is a (not too strongly distorted) wave with wave
normal n, we can put

grad% p
——ikpn%'p. (36)

Substituting these into Eq. (34), it is seen that the first
integral differs from 4 „as given by Eq. (33), only by
a factor cos(m, r) under the integral sign. If now we
assume, as is always the case, that the observation
point is so far away that we can consider this practically
as a constant, cosg, over the whole object, we obtain

1 1 f
@,(x,t) = '

VpV2V(])
1—coso 4~m~2 ~

~ikpr

dx'. (37)

This is essentially Rutherford's formula, because for
stationary charges

V'V= —47rep. (38)
There is, however, a difference in the case of moving
charges, because the operations which led from Kq.
(33) to (37) were carried out at constant observation
time t, whereas Poisson's formula must be applied at
constant local time t'. The relation between the two
is given by

()2V
~(o'V= ~(i )'V——,+—

V Br8t' V2 Bt'2
(39)

Substitution in Eq. (37) gives, after some trans-
formations of the middle term in Eq. (39), by partial
integration,

~ikpr

4xmv2 1—cose ~ r

~~
Note odded in proof. This has been verified i—n the meantime

by experiments carried out in Professor Mollenstedt's laboratory
(private communication).

X V2(~)V—
2ikp 8V O'V/8t" i

(1—cos8)—+ dx'. (40)
Bt'
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This equation can be transformed by gradually convert-
ing the terms in BV/Bt', O'V/Bt"/v' into terms in the
time derivatives of V'V, in the same way as this has
been achieved for the erst term. Using the operator

Z l9 1 82

kp»t' 2kp'v'(1 —cos8) Bt"
(41)

and making use of Poisson's equation (38), we obtain
the result

eikpr
' @p(x',t)

mv' 1—cos0 " r
4', (x, t) =—

X (1+L+Lo+ )p(x', t')dx'. (42)

p= —div(pu). (43)

(The dot stands for differentiation with respect to
local time, t .) Applying this to the term in p in Eq. (42)
and making use of the vector identity

Here we have the scattered wave expressed by the
charge density and its time derivatives. We now express
it in terms of the charges and their motions, using the
conservation equation

at 8=0, which represents the drop-out in the primary
wave. It is interesting that in the case of the motion u
caused by the wave being parallel to the wave normal,
the second and also the third term will be isotropic
spherical waves.

Equation (44) is somewhat similar to the Lorentz
retarded potentials of electromagnetic theory, insofar
as it expresses the scattered wave in terms of the
charges and their motions at the retarded time. It can
be converted without difhculty into the Lienard-
Wiechert form, expressing the scattering in terms of the
motion of point charges. The formal change is only that
a Doppler-factor 1/(1 —I„/v) must be introduced for
each point charge. But this procedure is of little use
when dealing with the scattering by solids, and it is of
doubtful validity in atomic collisions.

In the problems arising in electron microscopy and
in electron interferometry it is more appropriate to
express the charge configuration by a polarizatiort
~ec/or P, such that

p= —divP.

(It is unlikely that the quadrupole tensor Q, need be
called in. ) This substitution in Eq. (42) gives, extended
to the first three terms the simple result

div&A=P divA+A grad&

we obtain, by partial integration

ik p
—e I. e'""

e, (~,t) =-
1—cos8 me' ~ r

(P„P„)—

div(pn) dx'

But

(
=~ pu g«d&. &~ +o

r )

( g11cgt)'
grad&, & ]

%o—
)
= iko(n —r/r)Npe'"'"/r

r )

so that this 6rst term now turns into

eikpr

iko I p(N„—u„)@p dx

where I is the velocity component in the direction
of the wave normal, and I, the component in the
direction of r, i.e., towards the observer. Applying the
same transformations to the second term, one obtains
the expansion up to terms of the order (u/v)'

eikor

+ (,t)=-
~p2 ] cosg

(ot„—u„)'—(i/k, )(u„u„)—
X 1— + pdx'. (44)

2vpo (1—cose)

It is seen that the terms converge rapidly, but there
is an indication that there is a sharp peak, developing

z . . 1 I'-—I'
+ (P„P,) — —— dx'. (46)

kov 2 (kov)' 1—coso

Here P and Pr are again the components of the
polarization vector in the direction of the wave normal

and of r. Formally the result is very similar to Eq. (44),
but it is really simpler and also more rapidly convergent.
As will be shown later, the discussion is particularly
convenient in terms of harmonic polarizatiort waves,

such that BP/N" = —sPP. It is then seen that successive

terms in the expansion (46) are in the ratio

co ~h vibrational quantum

kov mv' twice primary energy

which in most cases of interest is well below 10—'.
Hence the first term in the expansion (46), ought to be
sufhcient for most discussions.

LOSS OF COHERENCE BY INTERACTION
WITH SOLIDS

Equations such as (44) and (46) provide only one-

half of the theory. The other half must be provided by
the knowledge of the solid itself, and must enable us to
specify the motion of the charges in the solid, or of the
transient changes in polarization arising as a conse-

quence of the passage of fast electrons. We can do this
at present only in a very cursory way, but the simple
discussion will be least give the order of magnitudes of
the losses to be expected, ,
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Electron interferometers are devices for collecting
information, and it will be useful to keep in mind two
special embodiments of the general principle. The
first is a phase ma-rhieg electron digractioe camera, in
which the phases are ascertained by interference with a
coherent wide-angle beam, issuing for instance from a
very reduced image of the source, produced by a strong
lens. The second instrument is an electro' Azterference

microscope, in which a strong, more or less plane wave
is superimposed on the image carrying beam. This is
rather similar in principle to the electron diffraction
microscope, but with the important difference that the
coherent background need not traverse the object;
hence, there is far less restriction regarding the nature
of the object. One can say, very broadly, that the
diffraction camera collects Fourier information, the
microscope point information.

Louis de Broglie" was the first to point out the un-
avoidable close connection between energy losses and
information. An electron, or any other exploring agency
will give information to the detail d of the position of
a scattering center, such as an atom of mass 3f only
if by a collision it is deflected from its original direction
by 8, which is connected with d by

Using the conservation theorems of ener'gy and mo-
mentum, one finds that the energy transferred to the
atom is

h' 1 ~Mrlq 1—=0.0207 ( (
—ev/angstroms'. (47)

SM d' E M ) d'

(48)
d(A)

This is not very large if one is satis6ed with, e.g. , 1 A
resolution, only 0.021 ev even for a hydrogen atom.
The crux is that there is no way avoiding a few electron
going very near the atom, if one wants to make sure
of its position to say 1 A, which means bombarding it
with something like 1000 electrons. (It may be noted
that it makes no difference whatever whether the bom-
barding agency is electrons, protons, or x-rays. ) Thus
during an observation to 1 A, hydrogen atoms will
be almost certainly thrown out of the compound or
crystal lattice.

The author" has investigated the question whether
collecting Fourier-information instead of point-informa-
tion gives more favorable conditions. This means non-
localized collisions, of which Bragg reflections in
crystals are well-known examples. The basic process of
this type is the excitation of one phonon, which deflects
the electron by carrying away some momentum and
one quantum of vibrational energy. The result is that
here again information to the detail d can be obtained
only at the cost of an energy loss, which is

V(km/sec)
c =0.02 ev.

V is the velocity of sound, of the order of a few km/sec
in most solids. Again we see that one can explore a
structure to a detail of about 1 A without total loss
of coherence in electron beams issuing from tungsten
cathodes. The conclusion is, therefore, that interfero-
metric methods ought to be applicable right to the
fundamental limit at which the object is destroyed.

In the interferometer of Marton, Simpson, and
Suddeth the two interfering beams both suffer deflec-
tions of the order 0=0.023 and energy losses of the
order 0.1 ev. As the crystal foils are all made of the
same material, their coherence thereby is not at all
impaired. Moreover, it may be noted that metal foils
do not appear to suffer cumulative action of long
electron bombardment, if it is not over intense. All
diAiculties experienced in this instrument must be
ascribed to mechanical instability and creep, and in
view of the extraordinarily exacting geometrical re-
quirements it is an admirable achievement that inter-
ference fringes have been observed at all.

The outlook appears to be satisfactory for inter-
ferometers and electron interference microscopes; de-
vices which deal with i~dividlul details, and therefore
cannot be expected to yield data beyond the destruc-
tion limit. It is less satisfactory for the phase-marking
diffraction camera, which deals with averaged details,
and might employ deflection angles too large for co-
herence with the primary beam. Whether this difhculty
can be overcome by a coherent multiple-beam back-
ground, such as is provided in the Marton interferom-
eter by the crystal foils, remains to be seen.

CONCLUSIONS

1. There is no difference in kind but only in degree
between light and electron interferences.

2. The train length is not, as used to be believed, a
fundamental limitation of coherence. It is meaningless
in the optical interferometer of Barus and in the electron
interferometer of Marton.

3. Electrons (and x-ray quanta) suffer non-negliglible

energy losses in solids by deflections which can supply
information of detail of the order of 1A but these are
still too small to destroy coherence with a primary
beam which has issued from a hot tungsten cathode.

4. Born's first approximation is a valid tool for non-

monoenergetic electron beams and for (slightly) lossy
interactions, up to the limit to which it is legitimate to
use single-collision theory. Foils thin enough to satisfy
this condition cannot entirely destroy interference
fringes, whatever the distribution of matter in them.

5. The possibility of two new research instruments
emerges. The first is a phase-marking diffraction camera,
the second an electron interference microscope with

strong, uniform coherent background.
6. All coherence limitations so far observed must be

ascribed to the extraordinarily delicate mechanical
stability conditions in electron interferometers.
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'I. The fundamental limitation of electron inter-
ferometers, as of all information-collecting devices is
the destruction of the object by the exploring agent,
and in this respect interferometers appear to be neither
better nor worse than other instruments.
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2m 8%' 2m
V'0 — = V(a, t)+p,

i%i Bt
(12B)

which differs from the Schrodinger equation (12) by the
fact that at the right-hand side the wave function% is
replaced by the incident wave Co.

Multiplying Eq. (123) by 4*, and subtracting the
conjugate equation gives

8—@a%+div (4'* grad%' —4' grad%'*)
83 2im

z=—V(~p*—4*0'p). (I.I)

The left-hand side is the rate of increase of particle
number during the collision process. The first term,
the increase in density, and the second term, div j,
where j is the current density

j= (4* grad% —4 grad%*)
2im

(I.2)

ought to balance everywhere. It is seen however that

APPENDIX I. THE CONSERVATION CONDITIONS
IN THE FIRST BORN APPROXIMATION

I. Conservation of Particle Number

The 6rst Born approximation is a solution of the
equation
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they do not necessarily balance in the 6rst Horn
approximation.

In order to estimate the error, we put 4'=4'p+4'„
and integrate the r.h.s. of Eq. (I.2) over the whole
interaction space where V~O.

z
I V(@,%'p*—4,'%p) dx.

conjugate. The result can be put in the form

BV
(U—+T) 4*4— +divE=O.

at Bf
(I 6)

V= V+*~, T= (—+*V"++ed'e*). (I.7)
4m

Here U and T are the potential and the kinetic energy
densities in the beam

Here we substitute the scattered wave 4, from Eq. (23)
(in which for simplicity we put p =p), and obtain for the
total rate of increase of particle number

The third term at the left is evidently the loss of
energy by the charge density 4*%' in the time-variable
potential field V(x, t). The last term is the energy
stream carried out of the volume element, with a
density

52 84 8'0
E= (4'* grad — grad+*+conj. ). (1.8)

4m Bt" Bt"

8$ P f
I V(g ()V (~' (')

5 2''
sin-', kor

&& (4'p(x, t)%'p*(x', t')+conj. ) dxdx'. (I.3)
Evidently we cannot expect this conservation condition
to be strictly satisfied if we use Born's approximation,
i.e. , if we substitute a solution of Eq. (128) instead of
(12). But it can be shown that another condition will

be exactly satisfied; the total work done by the per-
turbation potential oe the primary beam will exactly
balance the energy carried away by the scattered beam.
In other words, the only error is that the work done

by the scatterer on the scattered beam does not figure
in the balance equation as it ought to.

A somewhat lengthy calculation leads to the modified
balance equation

8 BV—(~+2') — ep*+p+DivE
Bf 83

(I 4)
1 m 4pr(x. )' t

pkp—(

—
[ (~ V'0'p%p*dx.

k2prh' 3 Ekp) J 1 8=-—V(%,*Op+@,+p*). (I.9)
2 Bt

Each volume element figures twice in this expression,
once as a scatterer (at the retarded time), once as a
receiver. It is easy to see that this integral will tend to
have a negative value for extended scatterers, i.e.,
the Born approximation will correspond to an apparent
loss in particle number.

The factor sin —,'kpr/r retains a value near to its
maximum 2/kp in a radius of about —,'kpr=-,'m. or r =w/kp

(half a wavelength). In this region we can also neglect
the retardation and consider 4p(x, t) =%p(pp', 3') Hence.
the integral is, as regards order of magnitude,

That is to say, the electrons appear to get lost at a
rate of, roughly,

(V')
3

fs. m~'

where (V') is the mean square perturbation potential
over the volume occupied by one electron.

An example in which this apparent loss is of the
order of 10% is given in the text. Note that the loss

would be always zero in the usual applications of the
first Born approximations in which the primary beam
is monochromatic, hence of infinite extent. This is
therefore a new limitation, of importance in nonmono-
chromatic beams only, and hence additional to the
limitations found by E. J. Williams and others.

3. Conservation of Energy

One obtains the energy conservation equation for
the exact wave equation (12) by differentiating with
respect to time, multiplying by 0'*, and adding the

This differs from the exact balance equation (I.6) only
in the second term at the left, which represents the work
done by the perturbing potential on the primary beam
alone, and in the term at the right-hand side, which
is a time differential, and therefore does not affect the
balance as a whole.

The conclusion is that there is no need to impose
special limits of validity on the first Born approxima-
tion in lossy collision processes beyond those already
mentioned.

3. Conservation of Momentum

Di6erentiating the Schrodinger equation (12) with
respect to x, multiplying by 0'*, and adding the con-
jugate gives

a a ) k ( a'p a'@*)——(t +*—&'+++—&'+* )+—
(
+*

4e ( ax a p". ) 2i & appat appat)

( M' a*%) aV
+,V~ ~* +~ ~=- ~*~. (1.10)

ax ax ) ax
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The term at the right-hand side is easily identified as
the momentum transferred by the perturbing potential
on the electron. Using the definition of momentum
density

~swI f,'w2

Ae'P =
J—~2Wi ~ —~W2

t(x,y) expL2iri(gx+ity))dxdy. (II.1)

8"~,lV2 of the foil the wave amplitude will be

p= —(4* grad% —4 grad%*)
2i

we can identify the second term in Eq. (I.10) as

ap, h (. av . a+

2i E Bx ax J

$, q are Fourier coordinates, equal to the direction
cosines of the rays in the x, y direction, divided by X.
We are interested only in the phase P, for which it is
convenient to use the formula, derived from (II.1).

f f
~ t exp(27ri (gx+rty))dxdy

J

We next transform the last term at the l.h.s. in

(I.10,) using again the wave equation to eliminate V

e2iP

t* expf2ni(px+. qy) Jdxdy
J J

(II.2)

( a+ a+ ) 5' (av a4'
1 V] +8 ++ ) ~

g2Q8+ P2Q
ax ax ) 4m&ax ax )

(II.3)t=t„+t,

The knowledge of this phase function gives sufhcient
information on the diGusing properties of a partially
turbid foil. For convenience we can write its

~

@e @
~

transmission
2i( ax ax )

This turns Eq. (I.10) into

ap, av 5' ( a
+

at ax 4m & ax

a 8$
+@—V%*——V'%*-

t9x Bx

where "r"means "regular" and "s"means "stochastic. "
We can assume tt*=1, i.e., neglect the absorption and
reAection by the foil.

In order to obtain an idea of how such a foil will
interfere with the visibility of interference fringes, it
will be sufficient to calculate the niece square charge

of the phase 8 with the aegtes $, q, for )=it=0. i.e., on
the axis. One obtains immediately

It can be shown that the last term is the x component
of the divergence of a tensor Z, defined by

h' (av a@* a'4
&,i = —

(
—+* +conj.

~
(I.12)

4m &ax; axe, ax, axe, )

so that 6nally the momentum conservation theorem

appears in the vector form and

BP

0
g=0

xtdxdy

+conj. ~

t*dxdy

Bp—+%*%'gradV+DivZ=O.
Bt

(I.13)

APPENDIX II. DIFFUSION BY A FOIL OF RANDOM
REFRACTIVE PROPERTIES

Quite in parallel to what we have seen in the case of
the energy conservation condition, this equation can

be immediately adapted to solutions of the Born
equation (12B) merely by writing 0'0*%0 in the second

terms instead of 0'~C. The other correction terms are

again pure time derivatives, and do not aGect the
balance as a whole.

(a~I'
E ap) &=0

r 2

J
" "xtdxdy

+conj.
J', "t*d.dy

xtdxdy. xt*dxdy
4 J

r

tdxdy t dxdy

(II.4)

Consider a foil with complex transmission coe%cient We calculate first the mean value of the last term.

t(x,y) illuminated by a plane wave. At a distance large (The first two give zero means, but this is easier to see

enough compared with the transverse dimensions afterwards. ) Consider first the denominator of the
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last term, which can be written

$W'I
~

$W2

xx't (x,y) t*(x',y') dhdydh'dy'
~ —gW1 J—)W2

J—)W1 ~—)W2

t (x,y) t*(x',y') dxdh'dydy'

pW1 ~W2 p-', W1—( ))WA
—0

=4 dgd2t
J, J0 J ;W, J AW2

X t(x,y) t*(x+(, y+2t) dxdy. (II.S)

It is seen that this transformation has introduced the
autocorretatioN fN22ctio22 of the transmission function
under the integral sign. We define this by

~+W'I ~~WP

lim
(WI=W'2=oo) g )g J )p

t, (x,y)t.*

X (x+&, y+2t)dhdy = W1W24($ 2t)

We transform this, using the identity (derived by
considering two ways of integrating over a rectangle)

~ $Wy ~ )S'2

the value

4 dPdq x(x+ g)
0 0 —AW1 J—)W2

Xt(x,y)t*(x+$, y+2t)dhdy

~&I ~F2=4 dpd2t(x(x+ ()t (x,y)
~0 ~0

Xt*(x+g, y+2t)) (W1—
p) (W2 —2t).

We can consider the product

as a constant, independent of x, y, and taking this
before the integral sign, a straightforward calculation
gives for the whole numerator the value

—',W2W10(t, t,*),„8 .2

It is now easy to see that the same calculation applied
to the first two terms of (II.4) would have given the
value zero. We obtain, therefore, for the mean square
gradient of the phase, in terms of the angular coordinates

W81(2t,t.*)A,

( 8$ J A„WAW2t, t„*+2(t,t,*)A,

for the stochastic part t, of the transmission function.
The regular component of the transmission will now

be assumed as constant, for convenience. This gives for
the denominator

(W,W,)'t.„t„*

This shows the interesting result that so long as a
part of the transmission is regular, the phase change in
the wave front remains slow, but once the regular

~TVy ~W2 transmission becomes negligible, it jumps to the limiting
+4 '

' (W —5) (W —2t)4 (Sn)dÃ2t (II 6)
J0 &0

and we can write this

W1W2[W1W2trtt +~ (tata )Avf.

82 is the area of the correlated patch, that is to say the
integral of the correlation function which figures in

(II.6), divided by the maximum, which is t,t, . We
have assumed that 8 is small compared with 8'~8'2.

We now consider the numerator of the last term in

(II.4). The same transformation as used before gives

/BP) '
g=-'2r2W '

&a() A,

It is easy to see that this is just sufficient to wipe out
interference fringes produced by wave fronts crossing
an the angle at which 8"~ appears in the observation
plane, in other words to wipe out all interferences
between beams which have gone through the foil,
and not around it.


