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i. INTRODUCTION

' 'T is important at the outset to distinguish between
- ~ fast and slow collisions of electrons with atoms. If v

is the velocity of the incident electron and I a velocity
of the order of that of the atomic electrons, we call the
collision fast if e)&N. Otherwise it will be regarded as
slow. There is no difhculty in principle in developing a
general theory of the scattering of fast electrons, valid
for both elastic and inelastic collisions. This is the well-
known first Born approximation. For slow collisions
no such generally e6ective method is available, and it
is the object of the present review to discuss what has
so far been achieved under these circumstances. In
order to avoid introducing irrelevant complication
when discussing methods, detailed consideration will

usually be confined to the collisions of electrons with
hydrogen atoms. Most of the techniques which may be
used are exemplified by this case, in which, because of
its relative simplicity, most progress has been made.
Generalization to more complex atoms usually presents
no difhculty, apart from increased labor in numerical
evaluation. Some attention will, however, be devoted
to consideration of the collisions with atoms and ions
which result in excitation of levels belonging to the
ground configuration. A knowledge of the cross sections
for these collisions is important for applications in
astrophysics and in atmospheric physics.

The emphasis throughout this review will be on the
problem of accurately calculating collision cross sec-
tions. It will not be possible to discuss general questions
of collision theory; the existence of solutions which
satisfy the boundary conditions demanded by the
physical requirements will always be assumed, though
it is realized that, from the mathematical point of view,
it may often be very difficult to prove the appropriate
existence theorems.

2. THE COLLISIONS OF ELECTRONS
WITH HYDROGEN ATOMS

The wave equation for the two electron problem in
this case takes the form

To obtain an approximation to 0' suitable for the de-
termination of cross sections for elastic and inelastic
collisions of the electron with the atom, it is usual to
expand 4 in the form

e(r„r,)=I z+ ~ Ip„(r,)P„(r,),
~ i (3)
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j 2m
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Multiplying by P *(r&) and integrating over dr, , we
obtain the infinite set of simultaneous differential
equations for the F,

where
2me' p (1 1~

a' ~ (r„rp)
Solutions of these equations are now required which

are well-behaved functions with asymptotic form

P ~r l&ilrnrrf (g y )p&i—kp rg

where, for the moment, we ignore the indistinguishabil-
ity of the two electrons and designate electron 2 as the
incident one. The functions P„are those of the various
states of the atom, and the integral sign allows for
integration over the continuous spectrum. On substitu-
tion of (3) in (1), and using the fact that

( pp

V~'+~-+—Iu-(r, ) =O,
&2m rg)

we obtain

(V12+Vpp) +g2'
e e e

+ + 4=0, (1)
r$2 r] f2

The differential cross section for the excitation of the
eth state is now given by

E=Zp+ kp'.
2m

(2)

where f.'~ and r2 are the coordinates of the two electrons.
H the electron is incident with wave number ko on the
atom in its ground state of energy Eo, the total energy
E is given by

1.(OA)&~= I f.(~,4) I'&~ (10)

where dip is the solid angle element about (8,@).
To make this procedure practicable it is necessary

to develop methods of approximating to the solution
of Eqs. (7). We now discuss the possibilities in this
direction.
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3. BOR¹SAPPROXIMATION

If we assume that the interaction of the electron with
the atom is small, which will be true if the incident
energy kok2/2222»E0, Eqs. (7) may be solved by sub-
stituting on the right-hand sides

F„=O, n&0; Fp= g'~O',

so that

5. THE TWO-STATE APPROXIMATION —CLOSE
COUPLING

In the distorted wave method it is assumed that no
intermediate state is at all important in the excitation
process. Thus to obtain Eqs. (14) and (15), we might
have proceeded straight away by approximating to 4
in (3) by writing

+=A(&i)F0(r2)+4' (»)F (r2) (19)

(V22+k„2)F„=U„oe'"0' (12) We then obtain

and

with

f

f„(8y) = — U„o&'(&o—& ) ndr2
4m~

~
ko —k

(
= (ko +k„—2kok cos8)~.

(13)

This equation for the elastically scattered wave Ii p is
the same as that for a particle of wave number kp moving
under the inhuence of a static potential O2U00/2222.

By the use of a generalized Green's function proce-
dure, the equation for J „may be solved to give, '

f (8,4)= —— & (ro, or —e)U o(r2)P0(r2, 82)dr2 (16)
4m.

where
cosa= cos8 cos82+sin8 sin82 cos(Q —$2).

Fo is the solution of (13) with the asymptotic form (8)
and F„ is the corresponding solution of the homoge-
neous form of (14), i.e.,

4. TWO-STATE APPROXIMATIONS —THE DISTORTED
WAVE (D.W.) METHOD

For slow collisions Born's approximation is no longer
useful. The first approach to a suitable approximation
in such cases is to make the much less drastic approxi-
mation of supposing that, in Eqs. (6), the diagonal
matrix elements U„„are much bigger than the non-
diagonal, so that all of the latter may be neglected,
except those associated with the initial state. This gives
the set of equations

(V2+ko' —Uoo) Fo
=o,

(&2+k.2—U )F = U oFo, 22WO (15)

(V'+ko' —Uoo)F0= Uo„F„, (2o)

('2+k„2—U„„)F„=U„0F0 . (21)

If we suppose these equations to be solved by iteration,
starting from Ii p, the erst stage in the iteration gives the
distorted wave approximation. It will not be necessary
to proceed further in this series of approximations if the
coupling

~
Uo„~ is small. The distorted wave approxi-

mation will only be valid under these circumstances.
It is probable, however, that there will be occasions
in which intermediate states can be ignored, but

~
Uo„~ is not small. The close coupling equations (20),

(21) will then provide a satisfactory approximation.

6. ALLOWANCE FOR EXCHANGE

So far we have ignored the indistinguishability of the
two electrons. There is no reason why in the approxima-
tion (19) we should ignore such terms as $0(r2)F0(ri) or
f„(r2)F„(ri) as they correspond to atomic states of the
same energies as those already included. These terms
arise, in the expansion (3), from atomic states in the
continuous spectrum of such high energy that k„',
given by (6), is (0. In that sense allowance for ex-
change involves going beyond a two-state approxima-
tion, but we may nevertheless obtain a generalization
of Eqs. (20) and (21) which in another sense may be
regarded as a two-state approximation allowing for
exchange. To obtain this we write

++=A(ri) Po'(r2) +A(r2) Fo'(ri)

+0-(r )F-'(r )+4-(r )P-'(r ) (22)

i.e., we work with functions which are either sym-
metrical or antisymmetrical in the space coordinates of
the electrons, but consider only two atomic states. On
substitution in (1) we now find by following the same
procedure as before, the equations

(V2+k„2—U „)5:„=0,

~&ik„r2+f (8 y )&
—1&~k~r2

(17)

(18)

(V +ko Uoo)PO (r2)~ +00(r2 r2 )Po (r2 )~r2

Comparison with the corresponding first Born approxi-
mation (13) shows that allowance has now been made
for the distortion of the incident and final electron waves
by the mean static 6elds of the atom in its initial and
6nal states, respectively.

'
¹ F. Mott and H. S. W. Massey, Theory of Atomic Collisions

(Clarendon Press, Oxford, 1949), second edition, p. j, 13.

= U 0P W Eo (ro, r2')F„+(r2')dr2', (23)
J

(V +k U )F (r2)~)~It (r2 r2 )P (r2 )dr2

OPO ~ E 0(r2 r2 )Fo+(r2')dr2', (24)
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where
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2m (e'
zo.=p„(r,)po(r, ) ~:— I
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jP &rip

I-(~A)d~= fl I
f-+(~) I'+ 'I f=(0)-I'}d~ (28)

Thus the pair of coupled differential equations
L(20), (21)) are now replaced by two coupled integro-
differential equations. The kernels Eoo, E„„,represent
additional, velocity dependent, interactions producing
distortion of the incident and final electron waves,
respectively, while Eo„contributes to the coupling
which produces transitions between the two states.
If the equations can be solved to give solutions of the
correct asymptotic form, the differential cross section
for excitation of the nth state is

and Fp+ are the solutions of (29) which have the asymp-
totic form (9) and 5 + those of (30) with the right-hand
size zero which have the asymptotic form (18).

Allowance for exchange thus has the twofold effect
of modifying the distortion of the incident and final
electron waves as well as the coupling which leads to
the transition.

Two further approximations suggest themselves at
this stage. The first is to ignore the inhuence of ex-
change on the distortion, i.e., Eoo and E„„areneglected
in (29) and (30). This will not usually be very effective
unless Eo„ is also negligible.

A further, more drastic, approximation is to ignore
distortion altogether so that Fo and 7„ in (32) are re-
placed by plane waves and we obtain the modification
of Born's first approximation first suggested by Qppen-
heimer' namely

1
f +(0 y) — U oei%o—&n) &dr

4x ~

f p
~i(kP rI—kryo rg)

The fractional weight attached to the space symmetrical
and antisymmetrical cases is determined from the
chance that the electron spins should be parallel or
antiparallel, the over-all wave function, including
spin, necessarily being antisymmetric in the two
electrons.

The generalized form of the distorted wave approxi-
mation, which we shall refer to as the exchange and
potential-distorted or E.P.D.W. approximation, is ob-
tained by supposing that in (23), (24), Up aild Ep„
are small, so that iterative solution from J 0+ converges
very rapidly and we take, in place of (14) and (15),

(V'+kp' —Upp) Fp+a Epo(ro', ro)Fp+(rp')drp'=0, (29)

(V'+k„' —U„„)F„& E „(rp', rp)F„+(rp')drp'

where
I„+(8,y)d( =

I f.+(e,y) I'dpo (31)

1
f,+(g,y) = ——"S„+(r,or —0') UpoFo+(riP)

4x

U OPO ~
J

K o(ro, rp)Pi(ro')drp'. (30)

The first equation gives the elastic scattering. It differs
from (14) in that allowance is made for an exchange
interaction.

The symmetrical and antisymmetrical differential
cross sections for excitation of the eth state now take
the form

2' (ex &.'—
I

—+&o I

jl' &rip )

X4o(rp)4.*(ri)«i«o . (33)

This approximation appears to be of little value in
practice unless U„o vanishes. Thus it is only valid for
high electron energies for which the second, exchange,
integral is negligibly small compared with the first,
unless U„o is itself negligible.

To summarize the various two-state approximations
and introduce a short title for each it is best to proceed
from Eqs. (23) and (24). We then have Table I.

7. ALLOWANCE FOR INTERMEDIATE STATES

There are certain circumstances in which it is neces-
sary to take into account the interactions of more than
two states, but still only a small number. An example of
this is the excitation of transitions between states of the
same configuration. Thus there are three terms arising
from the ground 2p' configuration of OI, namely in
order of increasing energy 'P, 'D, and 'S. It has been
shown' 4 that it is necessary to allow for close coupling
between these three terms in order to obtain reasonably
accurate values for the differential cross sections for
collisions of slow electrons with atomic oxygen. This is
particularly true for collisions in which transitions
between the terms are excited, but it applies also to the

' J. R. Oppenheimer, Phys. Rev. 32, 361 (1928).
'Bates, Fundaminsky, Leech, and Massey, Phil. Trans. Roy.

( ,o')rFr(ro', t')dtr' dr. (32) Spc. A243, 93 (195p).
4 M. J. Seaton, Phil. Trans. Roy. Soc. A245, 469 (1953).
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TABLE I.

Approximation in Eqs, (23) (24)

Xpp=E =Xp = Upp= U =0& Up„small
Xpo=X = Uoo= U =o, Uo, Xo small

Epp=E „=Ep =0, Up„small
Xoo=X„„=O,Eo, Uo small

Ep„, Up„small
Epp=E„„=X0„=0
None

Title

First Born approximation
Born-Oppenheimer approximation
Distorted wave approximation
Potential distorted exchange approximation
Exchange and potential distorted exchange approx.
Close coupling without exchange
Close coupling with exchange

Short title

B.
B.O.
D.W.
P.D.E.
E.P.D.E.
C.C.
E.C.C.

excitation of other transitions. It may well be a general
feature that, in calculating cross sections for excitation
of a transition between two states, it is necessary to
allow for close coupling of either or both with states
with the same configurations. In such cases the difB-
culties of numerical determination of the cross sections
are enhanced but still remain possible when allowance is
made for the availability of electronic computing
techniques.

As pointed out and utilized by Seaton, 4 it may often
be a good erst approximation in these cases to neglect
consistently the energy differences between the states
arising from the same conhguration. If this is done, it
often happens that the resulting equations may be
handled with comparative ease. This will be illustrated
in more detail later (Sec. 10.2).

It is more dificult to allow for the influence of all
possible intermediate states each of which may con-
tribute only a small amount. An important example of
this is the effect of polarization on the elastic scattering.
If it is quite small and we are concerned with encounters
at not too low velocities, Born's second approximation
is likely to give a satisfactory correction. Once this ap-
proximation has been calculated, it is possible to obtain
a still further improvement by using the Schwinger'
variational method. The evaluation of the second ap-
proximation is a di6icult and lengthy task, however.
In low-energy impacts, and especially for elastic scatter-
ing, a simpler variational procedure, based on the
Hulthen' variational method, can be used. Examples of
these methods will be discussed in Sec. 11.

Fp(r) =r 'Ztfq(r)F~(cose)

the functions f& must satisiy the equation

(34)

d' l(1+1)—+&o'—~oo — fi+
dr r'

,

t g((r,r') f(+(r')dr'=0 (35)

where

2m
g~ ——err' Po Bo~

— (EpBp~+p p~(r, r')) (21+1), (36)

y~(r, r') =r"/r"+' r) r', =r"/r"+' r (r'.

A well-behaved solution of this equation can be found,
in principle, which has the asymptotic form

9. APPLICATION OF THE DISTORTED
WAVE METHOD

9.1 Collisions with Atomic Hydrogen—Elastic Scattering

With the distorted wave method, it is possible to
consider the elastic scattering as quite distinct from the
inelastic. We shall therefore discuss it 6rst.

The integro-differential equation for the elastically
scattered wave Fp is given in (29). If we expand Fp
in the form

8. RANGE OF VALIDITY OF APPROXIMATE METHODS f,+-sin(k r o', l~yq(+—)- (3&)

The range of validity of Born's first approximation is
fairly well known and understood. This is particularly
true for elastic scattering. ' Much less information is
available at the present time about the approximate
methods discussed above for slow collisions. Consider-
able new experience has been gained in this direction
during the last few years and the indications provided
from this will be discussed in Sec. 12.

We shall now discuss the detailed application of the
different methods.

~ J. Schwinger, unpublished lectures (2947).' L. Hulthen, Kgl. Fysiograf. Sallskap. Lund. Forh. 14, 2
(2944).

~ W. Kohn, Revs. Modern Phys. 26, 292 (2954).

The differential elastic scattering cross section then
takes the form

Io+(0) = ~Z(21+1)Lexp(2iqg+) —1jF~(cos8) ~' (38)
4k'

so that the problem reduces to that of determining
the q)+.

For low velocities of impact the only important
phase shift is go+ and in fact, for collisions with atomic
hydrogen, this is the only phase shift which ever
approaches or exceeds or/2. All the higher order phases
are small enough to be calculated by the perturbation
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formula
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where j&(x)= (s/2x)Vi+;(r) and Ip(8) can be written
quite closely in the form

Io(8)=Ion(8)+ IIp (8) }'k '1 sin2go —2goaJ

1
+ r

(sin2gp —2gpii)'+ (cos2gp —1)'j, (40)
4k2
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where Ioii(8) is as given by Born's first approximation.
The integro-differential equations (35) may be

solved directly by a numerical iterative procedure as
was first done by Morse and Allis, ' The zero-order
phase shifts which they obtained are illustrated in

Fig. 1, together with these obtained when exchange is
neglected. A recent recalculation of limsp ogo+/ko by
Seaton' shows that this limit for pp+ as given by Morse
and Allis is incorrect, and this correction has been
indicated in Fig. 1.

An alternative procedure which can be carried out
with somewhat less labor and which may be generalized
to more complicated conditions, such as the inclusion
of polarization, is to use a variational method.

A number of variational methods have been proposed,
but the ones most extensively employed up to the
present are those due to Hulthen' and to Kohn. "

These depend on the evaluation of an integral I'
which has the form

FIG. i. Phase shifts p0+ for scattering of electrons by atomic
hydrogen. Curves 0—calculated neglecting exchange (a) by
accurate numerical integration (b) by Hulthen variational method.
Curves I—exchange included (symmetrical case) (a) by accurate
numerical integration —(Morse and Allis)- ——(Seaton) (b) by
Hulthen variational method. Curves II—exchange included (anti-
symmetrical case) (a) by accurate numerical integration (b) by
Hulthen variational method.

To make use of this result, a trial function ft' is
introduced, which includes a number of arbitrary
parameters c~, , c„as well as a. I' is calculated with
this function giving I'(ci, c„,a). The parameters
c&, c2, ., c„,a, are then determined from the equation

8I'/8c„=0, r=1, , I; 8I'/Ba= 1/k. (45)

The correct value of a is tang~ so that from the condi-
tion (43) we have

(46)tang (
——I'+ u/k.

fI'= f '(r)Lf '(r)dr
Jp (47)I'=0

This is the technique of Kohn's method. Hulthen's
method differs in that, in place of the last of Eqs. (44)

(41) the condition

where Eq. (35) may be written Lf&(r) =0 so that I. is
the operator

is imposed, so
tangi= a. (48)

d2—+ko' —&oo—
l (3+1)

xi(r, r') dr' . (42)
2

If fi' is an exact solution of (35) P must vanish. Even
if it is not exact but is a well-behaved function with

asymptotic form

fi' sin(kpr —shr)+a cos(kpr —shr) (43)

The practical disadvantage of this method is that Kq.
(47) is quadratic, so that two solutions are found for a.
To remove the ambiguity, recourse is had, for discrimi-

nation, to some further condition, as for example the
integral equation

singi= —k rj i(kr) rU(r) fi(kr)
~0

it may be shown that I' satisfies a variational condition.
Thus if the function fi' is varied, while still remaining
a well-behaved function of asymptotic form (43) but
with a different value of a, it may be shown that

p
cc

xi(r,r') f~(kr')r'dr' dr . (49)
0

o(I'+a/k) =0
P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
M. J. Seaton, Proc. Phys. Soc. (London) (to be published).

' W. Kohn, Phys. Rev. 74, 1763 (1948).
"H. S. W. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc.

(London) A205, 483 (1951).

These methods have been applied to the calculation

(44) of gp+ from (46) and (48) by Massey and Moiseiwitsch"
using trial functions of the form first suggested by
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involving one parameter in addition to u. Figure 1
illustrates the comparison between the phase shifts
they obtained, using Hulthen's method, with those
calculated by numerical solution of Eqs. (35) by Mo'rse

and Allis. ' The agreement is seen to be reasonably
close, particularly for po . For this phase, both varia-
tional methods gave very nearly the same results, but
for go+ Kohn's method gave appreciably different
results. It is signi6cant that in this case the agreement
with the exact calculations is less satisfactory. A useful
guide to the accuracy of the variational results seems
to be the comparison between the results given by the
two methods. When they agree, both are probably
nearly correct. When they disagree appreciably, avail-
able evidence indicates that the Hulthen method is to
be preferred, but much more evidence is required to
con6rm this.

Although the phase shifts given by the variational
methods are correct to the second order, this is not
necessarily true of the trial wave functions themselves.
Nevertheless, for applications such as those described
in the next section, they probably represent a good
approximation. Table I gives a comparison of some
trial functions for the case when exchange is neglected
with exact numerical solutions. The agreement is
encouraging.

Hardly any experimental data is available as yet
about elastic scattering by atomic hydrogen (see,
however, Sec. 11). Corresponding calculations for
helium which may be subjected to test by comparison
with experiment are described in Sec. 9.6. Inclusion of
polarization effects in calculating elastic scattering
cross sections is discussed in Sec. 11.

9.2 Collisions with Atomic Hydrogen —Excitation
of the 2s Level

The application of the E.P.D.E. approximation to
the excitation of the 2s level of atomic hydrogen in-
volves the determination not only of the functions Fp

for motion of the incident electron in the exchange and
potential 6eld of the normal atom, but also those F„
for motion of the scattered electron in the corresponding
field of an atom in a 2s state. In view of the evidence
that the Hulthen and Kohn variational methods give
good approximations to the functions Fo, Erskine and
Massey" followed a similar procedure for the functions
F„.As for Fo we may consider F„expanded in the form

S„=r-'Zf„, (r)r((coss). (51)

The only functions F„,& which are appreciably distorted
by the field of the excited atom are those with 3=0 and 1,

' S. S. Huang, Phys. Rev. 76, 1878 (1949)."G. A, Erskine and H. S. W. Massey, Proc. Roy. Soc. (London)
212, 521 (1952).

Huang, "namely,

fe' ——sinkor+(a+be 't")(1—e "~")cosker, (50)

r/a0

kao =0.2
Numerical Variational
integration method

kao =1.0
Numerical Variational
integration method

0.2
0.4
0.6
0.8
1.0
2
3
4
5
6
7
8
9

10

+0.309
+0.517
+0.658
+0.755
+0.823
+0.968
+0.998
+0.979
+0.920
+0.824
+0.695
+0.538
+0.360
+0.168

0.309
0.519
0.664
0.764
0.834
0.977
1.000
0.981
0.921
0.825
0.696
0.539
0.361
0.169

+0.425
+0.695
+0.849
+0.913
+0.908
+0.238—0.691—0.981—0.369
+0.583
+0.999
+0.496—0.463—0.996

+0.421
+0.701
+0.864
+0.933
+0.926
+0.227—0.703—0.985—0.370—0.582—0.999
+0.498—0.461—0.996

and of these the effect is much more pronounced for
3=0. Erskine and Massey" therefore considered only
the contribution to the inelastic cross section which
arises from incident electrons of zero angular momen-
tum. By checking against the exact numerical solutions
for the functions F„,o when exchange distortion is
neglected [E„just equal to 0 in (30)j, they found
that a trial function of the form (50) was not satis-
factory for this case and was replaced by

fe'= ,(1+ce "'")sink„r+a(1 —e "' 0) cosk„r. (52)

The reason for the change from (50) to (52) is that
the field of the excited atom has a much greater range
than that of the normal atom and the phase shift fp
which it produces in f„,e exceeds ~ within an energy
range of importance in the calculation. The phase shift
po in the incident wave is always less than +.

The zero-order partial cross sections for excitation of
the 2s level obtained in this way are given in Table II.
As before, it is necessary, when exchange is allowed for,
to calculate both symmetric and antisymmetric cross
sections and take the weighted mean for excitation by
an unpolarized electron beam.

Table III, Sec. 10.3 includes values calculated by
various approximations (referred to in Table I as B,
B.O. , D.W. , and E.P.D.E.). Comparison of the B.and
D.W. results in which exchange is neglected, would sug-
gest at first sight that potential distortion is not very
important, but the similarity of the values given in
columns 2 and 3 of the table is illusory. The correspond-
ing amplitudes are actually of opposite sign. This is
rejected in the fact that whereas the S.o. approxima-
tion gives much larger symmetrical than antisymmet-
rical cross sections, the E.P.D.E. gives exactly the
opposite result.

Comparison with the maximum possible cross section
a./ke' allowed by the conservation limit shows that the
B.O. antisymmetrical cross section actually exceeds
this limit for koao ——1, but the E.P.D.E. values always

TABLE II. Comparison of wave functions f0(kr) for scattering
of electrons by hydrogen atoms, as calculated by accurate numeri-
cal integration and by Hulthen variational method (exchange has
been neglected throughout).
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remain below the limit. However, even the E.P.D.E.
symmetrical value is as large as 0.7 of the maximum
for koQp= 1, suggesting that the coupling is not really
weak under these conditions.

Bransden and McKie" have calculated the C.C.
approximation for this case by numerical solution of
the coupled differential equations. These results are
also included in Table II. It will be seen that they agree
quite well with the D.K. results which shows that at
any rate the potential coupling Uo„can be treated as
weak. The E.C.C. approximation has not yet been
worked out, but would be of much interest (see, how-

ever, Sec. 9.6). Again there is no experimental evidence
against which to check the calculations.

9.3 Collisions with Atomic Hydrogen —Excitation
of the 2P States

The calculation of the distorted wave approximations
for excitation of the 2p state is rendered difficult by the
angular dependence of the p wave functions. The prob-
lem has been formulated by Khashaba and Massey. "
The wave function representing the motion of the
scattered electron in the field of an atom in a 2p state
may be expanded in harmonics (which are no longer
exclusively zonal), but the radial functions in this ex-

pansion are now solutions of coupled integro-differential
equations. By making certain approximations about the
coupling terms, preliminary numerical results have been
obtained which reveal the great importance of distor-
tion in reducing very much the contribution to the cross
section from incident electrons of zero angular momen-
tum. This is important in determining the polarization
of the radiation emitted by 2p hydrogen atoms excited
by electron impact at energies near the threshold.

9.4 Possible Close Coupling between
Orbitally Degenerate States

The available evidence seems to indicate that the
excitation of the 2s and 2p states of hydrogen can be
treated with reasonable adequacy by the distorted
wave method, but there is one further aspect which
must be considered. The 2s and 2p states have been
treated independently, but they have the same energy
and therefore may be closely coupled in the following
sense. Referring to the distorted wave formula (32) it
has been assumed in the calculations reported above
that the function F„refers to the motion of the scattered
electron in the field of a 2s or 2p atom, respectively. The
orbital degeneracy suggests that it must be replaced
essentially by more complicated functions which are
the solutions of coupled equations involving the 2s and
2p but not the 1s states. Calculations are at present in
progress to check this point. A rather similar situation
arises in the excitation of atomic oxygen, but here the

"B.H. Bransden and A. McKie, Proc. Phys. Soc. (London)
(to be published).

'~ S. Khashaba and H. S. W. Massey, Proc. Roy. Soc. (London)
(to be published).

coupling is essentially between the three terms of the
ground conhguration, so that the complication refers to
the function equivalent to Fs in (32) (see Sec. 10.3).

9.5 Excitation of the 2s State of He+

Bransden and Dalgarno" have calculated cross sec-
tions for excitation of the 2s level of He+ by a method
essentially similar to that used by Erskine and Massey
for H. The additional complication is the Coulomb field
of the ion which complicates the choice of trial functions
corresponding to (50), (52).

They find that the coupling is considerably weaker
in this case than for hydrogen so that the distorted
wave method. is almost certainly reliable, apart from
any complication due to orbital degeneracy.

9.6 Collisions with Helium

The distorted wave method has been applied by
Moiseiwitsch' to the elastic scattering and by Massey
and Moiseiwitsch" to inelastic collisions involving the
excitation of the 2'S and 2'S levels. Further work is in
progress on the excitation of the corresponding P levels.
In addition, Marriott' has carried out an extensive in-
vestigation of the superelastic collisions with 2'S helium
atoms leading to deactivation to the 2'S level. The
evidence obtained from the results is that for collisions
in which the helium atom is initially in its ground state,
the distorted wave method appears adequate, but there
is a possibility that close coupling, through exchange,
between the 2'S and 2'S levels may have to be taken
into account in obtaining the distorted wave functions
for substitution in the appropriate extension of (32).

For this three electron problem the appropriate form
of the collision wave function + is a little different from
(22). Distinguishing the three electrons by the suffices

1, 2, 3, and considering the case of the elastic scattering
and excitation of the 2S levels, we begin from the
function

0'(1,2; 3) = P, .t; (4'o(ri, rs)Fo(rs)x (12;3)

+At(rid )Ft(rs)x (1,2'3)
+Ps(ri, rs)Fs(rs)x+(12; 3)], (53)

where fs, P&, and fs are, respectively, the wave func-
tions for the 1'S, 2'S, and 2'S states of helium. x and
p+ are doublet spin wave functions given by

1
x

—(1,2; 3)=—(rr,p,—rr,pi)crs,

1
x+(1,2) 3)= {(rr,P,+rr,P,)rrt —2rrirr, P3), (54)

6
"B.H. Bransden and A. Dalgarno, Proc. Phys. Soc. (London)

(to be published).
rr B. L. Moiseiwitsch, Proc. Roy. Soc. (London) A219, 102

(1953).' H. S. W. Massey and 3. L. Moiseiwitsch, Proc. Roy. Soc.
(London) A227, 38 (1954)."R.Marriott, Proc. Phys. Soc. (London) (to be published).
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ng F,(r1)E,;(r1,r3, r3)dr1dr3
3,3 J '

where

+U;;F;(r3), i, j, k=O, 1, 3 (55)

2me3
I ~ ( 2 1 1q

U'j
~ 0 (rl r2)

~
+ + ~f, (r1,r3)dr, 1dr3

r, r13 r33)

E;;= p, (r3,r3)37,'p;*(r1,r3)

+p (r1 r2)+3 $ '(r1 r3)+p,*(r1r3)+3 lp '(r3 r3)

2333e3 (2 2 2 1 1 1
+ ( + + ———+E[

(r1 r3 r3 r13 r13 r23

X4,*(r1,r3)f, (r3,r3) . (56)

kp, k~, and k2 are the wave numbers of the incident
electron and of the electron scattered after exciting the
2'S and 2'S states, respectively. Q.pg=1, npg=o. »= —V3.
From symmetry considerations it is clear that Up~
= U»=0.

The distorted wave approximation now proceeds
as before. If Up~, Kp~, Ep~, and E~~ are all treated as
small, but not Upp, Uy], Ugg, Epp, E~~, and E~~, the
scattered amplitudes f1(8) and f3(8) for excitation to
the 2'S and 235 states, corresponding to (32) are
given by

1
f;(S)= e;(r, ~——0) U;;F;(r 0)

4x

+n;, E;;(r1,r3, r)F, (r1,01)dr1dr3 dr,. f I

i=0
(57)

/=1 ol 3

where n and P are the usual one-electron spin functions.
The function (53) represents a doublet state and satis-
fies the Pauli principle. It is similar to the resonating
group structure wave functions used in nuclear physics.

On substitution in the wave function and use of the
properties of the functions p3, f1, and p3, we obtain
coupled integro-differential equations for Fp, Fj, and F~.
Some extra care is needed in obtaining meaningful
results, because f3, f1, and p3 are only known approxi-
mately. Massey and Moiseiwitsch obtained the
equations

[7'33+0,3—U;,]F(r )3

t'
F;(r1)E;,(r1,r3, r3)dr, dr,

where P, is the solution, normalized as (18), of (55) in
which' = 1 or 3 is appropriate and the right-hand side is
taken as zero. Fp is the similar solution with i=0.
Before describing the results of the calculation it is
important to note that the most serious neglect is
probably that of E», because this is a coupling between
states of nearly equal energy. This is a similar situation
to that arising from orbital degeneracy in hydrogen
(see Sec. 9.4). Evidence that the coupling between the
2'S and 2'S is quite strong is provided by the calcula-
tions referred to below of the cross sections for excita-
tion of the 2'S—2'S transition. To take it into account,
the functions F~ and P~ should be obtained from the
appropriate form of (55) with all terms neglected on the
right-hand side except that involving E~~. The in-
creased complication is obvious, but it may eventually
have to be included.

The only large contribution to the elastic scattering
of electrons with energy less than 20 ev comes from
incident electrons of zero angular momentum. The
elastic scattering of these electrons was calculated by
Moiseiwitsch using the same variational methods and
a trial wave function of the same form as (50). His
results agree quite well with those obtained by Allis
and Morse' who solved the integro-differential equation
for Fp by numerical methods. Comparison with experi-
ment reveals quite good agreement, as far as the total
elastic cross section is concerned, down to quite low
electron energies. Even for thermal electrons, it is
not too unsatisfactory. The calculated low-energy
limit of the cross section is 8.6 m ap~, while that observed"
for thermal electrons is 6.1 map. To indicate the im-

portance of exchange distortion at low energies it is
to be noted that if Epp is neglected, the calculated values
rise to 79 map', far above the observed value.

The detailed calculations for excitation of the 2'S
and 2'S states employed these variationally determined
functions Fp. f~ and F~ were determined in a similar
manner to the corresponding functions 5&+ for hydrogen.
In particular, distortion of the partial waves in the
expansion (51) was neglected except for the s wave
(l=O). This neglect is a little more serious than for
hydrogen as there is appreciable distortion also of the
final waves with t=1. It is still true, however, that the
effect of distortion is very much more important for
the s scattering.

Figure 2 illustrates the results obtained for excitation
of the 2'S level. The great reduction in the cross section
due to incident waves with I=O below that given by
the Born-Oppenheimer approximation is obvious.
Available experimental evidence" indicates that the
absolute magnitude of the calculated E.P.D.E. ap-
proximation is not far from correct. Except near the
threshold, this approximation gives results which
differ very little from the P.D.E. A remarkable effect

Phelps, Fundingsland, and Brown, Phys. Rev. 84, 559 (1951).
"R. Dorrestein, Physica 9, 447 (1942); H. Maier-Leibniz, Z.

Physik 95, 499 (1935).
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is noted, however, near the threshold in that the
E.P.D.E. curve exhibits a very sharp peak there,
absent from the P.D.E. results. This peak arises be-
cause of a near resonance effect in the distortion of the
5'3 wave. When exchange as well as potential distortion
is allowed for, the phase shift I pt produced in the l=0
component of F3, although tending to m in the limit
ks—&0, remains close to 3Tr/2 until ks becomes very small
indeed, i.e.

lim I'pt/ks
k3~0

Fn. 3. Zero-order
phase shifts for motion ~
of electrons in the field ~
of an excited helium u
atom as calculated by
variational methods. I.
Atom in either a 2'S &
or 2'S state (exchange ~
neglected). II. Atom ~+

in a 2'S state (exchange x
included). III. Atom
in a 2'S state (exchange
included). - - - - behavior
near zero energy limit.
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is much smaller and there is no appearance of near-
resonance effects.
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Fzo. 2. Cross sections for excitation of the 2'S and 2'S states of
helium by electron impact. I. E.P.D.E. approximation. II. P.D.E.
approximation. III. B.O. approximation X 1/20. Inset (I)
E.P.D.E.approximation (2 5) (b) Observed —Maier-Leibniz (2'S).

It is hardly to be expected that the theory is of such
accuracy as to be able to predict correctly the distor-
tion for very small k3. In this case, however, there is
some evidence from the experiments of Maier-I. eibniz"
that a sharp peak near the threshold does occur (see
insert of Fig. 2). Whether or not this is confirmed by
further experiment, there seems little doubt that, for
the excitation of some states of some atoms, near-
resonance effects will arise near the threshold.

The results obtained for excitation of the 2'S level
are illustrated in Fig. 2. In this case even the E.P.D.E.
approximation gives no approach to resonance near the
threshold, "the behavior of the phase shift for the l=o
component of F~ being as illustrated in Fig. 3.

Mariott" has calculated the cross section for the
superelastic collision 2'S—2'S by using Eq. (55) with
all terms involving Fo absent. ' He finds that the coupling

"The close coupling between the 2'S and 2'S states, which is
not allowed for in the E.P.D.E. approximation may, however, lead
t,o q, pt;ar rqsqng, nce si&uation for 2'S alamo,

is large (see Fig. 3). The resonance case arises when the
limit tends actually to ~, I ps—&3Tr/2, and in this case
the cross section would tend to a finite limit at the
threshold, instead of vanishing as k3. The sharp peak is
an indication of an approach to these conditions. In the
P.D.E. case

lim I p'/k
II:3-+0

in this case is strong —for incident energies &2 ev the
distorted wave method gives results for deactivation
by s electrons which are substantially greater than the
allowed minimum Tr/krs. Because of this Marriott
undertook the lengthy task of solving numerically the
coupled integro-differential equations for Ii& and Ii3.
The results he obtained will be discussed in Sec. 10.3.

9.7 Collisions with Other Atoms

For complex atoms the distortion effects will be very
complicated, and it is to be expected that the cross
sections for excitation of different levels will exhibit
very irregular variation with electron energy near the
threshold. This has been found by Jongerius and
Smit" in their recent experiments on the excitation of
mercury. Thus Fig. 4 illustrates some of their results.
In terms of phase shifts, whereas for excitation of the
lower states of hydrogen and helium the phase shifts
which measure the degree of distortion do not exceed x
appreciably and then only for the s waves, for complex
atoms the phase shifts even for p and d waves may be
much greater, so that the matrix elements appearing in
the distorted wave formula corresponding to (32)
will vary rapidly with the final electron wave number.
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FIG. 4. Cross sections for electron impact excitation of certain
mercury lines as observed by Jongerius and Smit.

tp H. Jongerins and A, Smit, Physica (to be pirblished),
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where

U'pp = —Cp, «rp, Ugg = —Cg, r &rg,

=0 r) rp)

The effect of distortion in inelastic collisions with com-
plex atoms is also manifest from the complicated oscilla-
tions observed in the angular distribution'4 at large
angles of electrons scattered after exciting the reso-
nance levels of atoms such as argon and mercury. It
was confirmed some years ago by detailed calculations
for neon and argon" that this was indeed a consequence
of the distorted wave formula.

Detailed calculations by the distorted wave method
have been carried out mainly for excitation of the
transitions between the terms of the lowest configura-
tions, including particularly 0++, 0+, and 0. As in
these cases close coupling occurs for excitation by p
electrons, we shall consider them in the next section.

10. CALCULATIONS INVOLVING CLOSE COUPLING

1O.1 Schematic Model

It is possible to obtain information about the way
the distorted wave method breaks down when close
coupling, through exchange, prevails, by considering
a schematic model similar to one introduced by Morse
and Allis" for studying the effect of exchange on elastic
scattering. Thus Massey and Mohr" studied the
schematic equations

fo"+ (ko' Uoo) fo= K—(r,r') fr(r')dr',

(58)

fr"+ (kt —Urt) fr ——~i K(r,r') fo(r')dr',

is no difhculty in solving these equations so that the
probability of an elastic collision involving a change of
electron wave number from kp to k& may be calculated
as a function of the coupling constant 3 for any given kp.

The probability may be defined as the ratio of the
cross section to the maximum possible, m/ko'. The dis-
torted wave approximation naturally gives a prob-
ability proportional to A'. Figure 5 shows how the
exact probability, in this schematic model behaves
when the distorted wave approximation gives results
which are too great. It seems that when this is so, the
trial cross section remains quite close to the maximum
even for very strong coupling. This is a useful guide,
but not to be relied upon to represent all possible
situations which may arise.

10.2 Methods for Dealing with Close Coupling
Situations

The methods at present available may be sum-
marized as follows: (a) direct numerical solution of
coupled integral-differential equations; (b) variational
methods; (c) approximations based on the assumption
of exact resonance.

Little need be said about the f rst method. The solu-
tion by hand computation of such complicated equa-
tions is only just within the bounds of practical possi-
bility, but the availability of electronic computers
offers opportunities of carrying out many calculations of
this kind.

Variational methods for dealing with two coupled
equations may be obtained by fairly obvious extensions
of the methods used for dealing with elastic scattering.
The coupled equations involved may be written in the
form

6nze' A rr'
r&ro, r'&rr, =0 otherwise. (60)

'h' (r rr'o) l where

I'oofo=lor fr,

L 11f1 I lofo

(61)

(62)

The kernel E can be regarded as arising from a three-
dimensional kernel proportional to Ae'/r r—r'r . There

s4 C. B. O. Mohr and F. H. Nicoli, Proc. Roy. Soc. (London)
A138, 229, 469 (1932); A142, 360, 647 (1933).

25 H. S.W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A146, 880 (1933).

2 P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
2~ H. S. W. Massey and C. B. O. Mohr, Proc. Phys. Soc.

(London) A65, 845 (1952).

Ioofo= fo"+(kos—Uoo) fo+ I'Koo(r', r) fo(r')dr',

I rr fr f,"+(kr' —Urr) f——r+ I'Krr(r', r) fr(r')dr', (63)

f
Lorfr= Uorfr+~ Kot(r', r) fr(r')«'
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In general, Voy=Uyp, Epy=Eyo*, but for simplicity
we shall take all the interaction operators as real. We
require solutions which have the asymptotic forms
for large r

fp sinkpr+ne'so",
(64)

so that the partial cross section for excitation is
4m'(ki/ko) ( p ~'/~ 1—sn~'. Moiseiwitschss bases his varia-
tional method on the integral

L.fi*(Loofo —Ioifi)+ fo*(1itfi —I iofo) )«. (65)
'

Trial functions fp', fi' are now introduced which vanish
at r=0, have the asymptotic forms (64) but with
n& and P& not necessarily equal to the correct n and P.
These functions will also normally include e adjustable
parameters ci, .

, cs. Optimized values for n&, P&,

c~, , c are then obtained from the equations

The values of n&, P& obtained in this way may be im-
proved as approximations to the true n and P by im-

posing a further condition which would be exactly
satisfied by the time solutions. Moiseiwitsch does this
by introducing the further integral

Lfi(I oofo —I.oifi)+ fo(1 iifi—I iofo) g«. (67)

from which the improved value Pi' for P becomes

P '=P —I'/ko (68)

This method has the advantage that it automatically
ensures that the results obtained for n and P satisfy
the conservation requirements, namely,

P=O, +2i Pi*—=0, =0, r=1, is (66).
BPt ko c)ni B~r

and the partial cross section for excitation is given by

k, (
4n.—

~ ~

sin'(i) —f).
kp (ki+kpX'j

(71)

(Lop+I oi)g+= 0. (72)

If solutions of these uncoupled equations are obtained
which have asymptotic form

g+-sin(kor+q+) (73)

then the partial cross sections pop, gpy, for elastic scatter-
ing and for excitation, respectively, are given by

qpp
———(2 sin'ii++2 sin'ii —sin'(ii+ —ii )}, (74)

ko2

(75)

A variational principle for determining i), f, and X in
any given case has been given by Rubinow" and by
Blatt and Biedenharp. "Although these avoid opera-
tions with complex numbers, they are complicated to
use in practice. Kohn has given a relatively simple prin-
ciple for determining the proper phases i) and (', but
this method does not provide a corresponding principle
from which to obtain ).

The Schwinger variational principle may also be em-

ployed, but it is rather inAexible as to choice of trial
function and even with the simplest functions is com-
plicated to work out. It will be considered in more de-
tail in its more general form in Sec. 11 in connection
with allowance for intermediate states for which it is
much more suitable.

The third method has been employed very success-
fully by Seaton4 for the calculation of cross sections
for excitation of transitions within the ground p', p',
or p' configurations of ions and atoms. It is based on the
faCt that if ko'=ki', Uoo= UIi, and Eoo E11 Eqs.
(61) and (62) may be uncoupled by the substitution
g+= fp+fi, g = fp fi, so th—at

Im n= iPi'ki/ko. (69)

fo A sin(kor+ii)+8 sin(kpr+(),
(70)

kp[ kg

fi &X sin(kir+—r)) BX ' sin(kir+|')— —
k, l kp

"B.L. Moiseiwitsch, Phys. Rev, 82, 753 (1951).

In practice it is rather tedious to apply, as it involves
operations with complex numbers. Alternative methods
may be developed which work in terms of real numbers
only. These depend essentially on the fact that the
asymptotic behavior of the solutions of (61, 62) which
vanish at the origin may be expressed in terms of two
phase shifts r) and ( and a mixing parameter X so that

This may be generalized to cases in which three or
more coupled equations are involved. Seaton found that,
in formulating the problem of the collisions of electrons
with the ions or atoms concerned, the three coupled
equations for the functions Fp, F&, F2 of the colliding
electron associated with the ion or atom in each of the
respective terms arising from the ground con6guration,
could be uncoupled if certain relatively small exchange
terms were consistently neglected, so that the energy
diGerences between the terms vanished. The solutions
of these uncoupled equations could then be used to
oftain very good 6rst approximations on which to base

"S. E. Rubinow, Phys. Rev. 98, 183 (1955)."J.Blatt and S. Biedenharn, Revs. Modern Phys. 24, 258
(1952).
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TABLE III. Comparison of cross sections for excitation of the 2s state of hydrogen by electrons of zero angular momentum,
calculated by different approximations. '

Wave number
of incident

electrons (Ao)
(atomic units)

0.866
1.0
1.2
1.5
2.0

Energy of
incident

electrons
(ev)

10.2
13.5
19.4
30.4
54

Theoretical
maximum

(~/e02)

~ ~ ~

1.00
0.694
0 ra~
0.250

Exchange neglected

Born D.W. C.C.

0
0.198
0.127
0.0585
0.0194

0
0.239
0.118
0.045
0.014

0
0.204
0.102
0.045
0.0155

0 0
0.287 0.711
0.011 0.344
0.014 0.127
0.018 0.0255

0
2.02
0.668
0.134
0.0205

0
0.0316
0.010
0.010
0.006

Cross sections in units 7ra02

Exchange included
Antisym.

B.O. E.P.D.E.
Mean

B.O. E.P.D.E.

0 0
1.59 0.178
0.503 0.094
0.104 0.035
0.020 0.011

& Column E refers to results obtained by an accurate numerical integration for the case when exchange is neglected.

a rapidly convergent series of approximations to the
exact solution of the coupled equations.

10.3 Close Coupling Problems Which have been
Investigated

The only case at present involving exchange coupling
which has been dealt with by direct numerical solution
is that of the transition 2'S—2'S in helium already
referred to in Sec. 9.6 above. The final results for the
cross section, obtained by Marriott, "do not diGer by
much more than the experimental error from the mean
values for electrons of nearly thermal energies obtained
by Phelps and Molnar" from an experimental study of
the decay of 2'S metastable helium concentration in a
discharge afterglow. Bransden and McKie'4 have solved
the equations for the is—2s excitation in hydrogen,
neglecting exchange coupling. Their results are given
in Table III and have been discussed in Sec. 9.2. The
extension of this work to include exchange coupling is
in progress.

Very few calculations involving variational methods
have yet been carried out. Massey and Moiseiwitsch"
have applied the method proposed by Moiseiwitsch" to
the excitation of the is—2s transition in hydrogen.
Because of the complexity of the calculation they used
very simple trial functions

f ssti k rn+s( +tbre "t")(1—e "t") coster,
(76)

frt —(1 e r/tto)Pet t,tr—
These functions are not very satisfactory as they do not
allow for any mixing of the incident and final waves,
a neglect which is likely to be serious in close coupling
situations. Their 6nal results differ appreciably from
those given by the K.P.D.K. method, but are probably
unreliable for the reasons stated. This is supported by
the fact that when exchange is neglected the exact
numerical solutions by Bransden and McKie" agree
with the distorted wave and not with the variational
method. It is clearly necessary to carry out exploratory
calculations for simplified equations which may be

"A. V. Phelps, Phys. Rev. 99, 1307 (1955).
'2 H. S. IA". Massey and B. L. Moiseiwitsch, Proc. Phys. Soc.

(London) A66, 406 (1953)."B.L Moiseiwitsch, Ph. ys. Rev. 82, 753 (1951).

solved exactly in order to determine which variational
methods give the best results and what forms are most
suitable to assume for the trial functions. Calculations
on these lines are being carried out by Huck.

The third method based on the exact resonance
equations has been applied by Seaton4 in an extensive
investigation directed towards obtaining cross-section
data for astrophysical and geophysical applications.
The coupling is very strong for transitions between
levels within the ground configuration when the con-
tinuum transition is one of the p-p type. Thus calcula-
tions'4 carried out for the excitation of the 'P —'S and
'P—'D transitions in atomic oxygen, using the P.D.E.
method give results exceeding the maximum possible
by factors of 66 and 89, respectivelyt This factor de-
creases rapidly in proceeding"" to 0+ and 0++, but
even for the latter the factor is about 2. Seaton calcu-
lated the cross sections for excitation by p electrons
using Hartree-Pock self-consistent held wave functions
for the atoms and ions and a resonating group formula-
tion for the collision wave functions which amounts
essentially to extension of the Hartree-Pock method to
include continuum states. Some check on the accuracy
of the continuum wave functions which he uses is
aGorded by a relation between the low velocity limit
of the phase shift to the high series limit of the quantum
defect for the corresponding series of bound states.
This check, which is far from complete, and has only
been carried out for 0+, nevertheless suggests that
the continuum wave functions are not seriously in error.

Contributions" from incident electrons with angular
momentum quantum numbers different from 1 could
be calculated by the E.P.D.E., or often simply by the
P.D.E. method, the coupling being no longer strong
and exchange effects relatively weak.

Seaton" has applied the results of his calculations,
particularly for 0+, 0~, N+, and N~, to the determi-
nation of the temperatures and electron concentrations
in gaseous nebulae. He has also used the results for 0

'4 Yamanouchi, Inui, and Amemiya, Proc. Phys. Math. Soc.
Japan 22, 847 (1940).

'5 L. H. Aller (private communication).
M. H. Held and D. H. Menzel, Astrophys. J. 92, 408 (1940).

37M. J. Seaton, Proc. Roy. Soc. (London) A218, 400 (1953);
231, 37 (1955)."M. J. Seston, Monthly Notices Roy. Astron. Soc. 114, 154
(1954).
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in a discussion of airglow and auroral excitation. Perci-
va1 and Seaton" have also considered certain aspects
of the latter which depend on the cross sections for
excitation of the (2p)'3p'P and (2p)'3p'P states of 0
from the ground state. The E.P.D.E. method is suitable
for calculating these provided the distortion of the
incident p wave allows for the close coupling between
the terms of the ground configuration. Percival" in-
cluded this by using the appropriate exact resonance
solution of the coupled equations. To the accuracy of
the remainder of the calculation this was adequate.
The main uncertainty arises from the difficulty of
obtaining accurate p orbitals for the excited 'P terms
which are orthogonal to those of the ground 'I' term.

10.4 Close Coupling in Optically Allowed
Transitions

6 lO 20 30
ELECTRON ENERGY (s V )

l

40

FxG. 6. Comparison of observed and calculated cross sections
for excitation of the D lines of sodium by electron impact.

Observed LW. Christoph, Ann. Physik 23, 51 (1935);
G. Haft, Z. Physik 82, 73 (1933)7.———Calculated by Born's
approximation. ———Calculated by Seaton by making ap-
proximate allowance for close coupling for small incident angular
mom enta.

The close coupling situations already discussed arise
from transitions within a configuration, which are
therefore optically forbidden. Although the correspond-
ing cross sections are often large near the threshold,
optically allowed transitions are usually the strongest
at higher energies. There is evidence from comparison
of observed data for these transitions with results ob-
tained by Born's approximation that, while the latter
begins to overestimate the cross section at electron
energies several times the threshold, it is not grossly
in error even quite close to the threshold. In most cases
it seems likely that the error arises from the neglect of
small contributions from many intermediate states
rather than from close coupling in the sense in which we
are using the term. However, Seaton" has found that
there are some cases in which close coupling is im-
portant.

In optically allowed transitions, major contributions
to interaction between the atom and incident electron
come from such large distances that distortion is unim-
portant, and the closeness of the coupling may be tested
by calculating the partial cross sections for incident elec-
trons of given angular momentum using Born's approxi-
mation. If the resulting values exceed the maximum
allowed for that angular momentum, close coupling
certainly prevails. For the excitation of the upper
states of the sodium D lines (requiring 2.10 ev), close
coupling occurs for electrons with quite high angular
momentum. Thus for 30-volt electrons it occurs for
l &6 and for 3 volt electrons for 3&3. Seaton has made
a rough correction to the excitation cross sections
calculated for Born's approximation by replacing all
the partial cross sections in this approximation, which
are greater than the allowed maximum, by a mean
value equal to half the appropriate maximum, leaving
the others unaltered. As seen in Fig. 6, this already

"I. C. Percival and M. J. Seaton, J. Atmos. and Terrest.
Phys. (to be published}.

~ I. C. Percival, Proc. Phys. Soc. (London) (to be published).
4'M. J. Seaton, Proc. Phys. Soc. (London) A68, 457 (1955).

eGects quite a marked improvement in comparison
with observation.

Another case in which strong coupling occurs, though
to a less marked extent, is in the excitation of the 2s-2p
transition in atomic hydrogen. For the 1s—2p excitation
it does not seem to be important and the main errors
arise from neglect of intermediate state effects.

11. CALCULATIONS ALLOWING FOR
INTERMEDIATE STATES

The first calculations" which take into account
contributions from intermediate states were carried out
for the elastic scattering of electrons by hydrogen and
helium atoms. In this work, Born's second approxima-
tion was evaluated by a method which neglected the
excitation energy of the most significant excited states
contributing to the polarization, in comparison with
the incident energy. The results obtained were en-
couraging in that the calculated angular distribution of
scattered electrons became steeper at small angles, in
agreement with observation. Quite good agreement
was in fact obtained for electron energies ranging from
200 ev down to 50 ev, for which the approximations
involved were becoming serious.

A similar calculation has recently been carried out
by Rothenstein4' for the excitation of the 2p level of
hydrogen and the 2'P level of helium. Again he finds
improved agreement with observation, the calculated
cross section being reduced to an extent which increases
as the electron energy decreases and which is of about
the right magnitude for electron energies down to the
limit for which the method is likely to give good results.

The Schwinger variation method may be used to
extend the effectiveness of calculations based on Born's
second approximation. If f~r, f~s are the scattered
amplitudes according to the respective first and second
Born approximations, Schwinger's method shows that

~ H. S.W. Massey and C. B.0.Mohr, Proc. Roy. Soc. (London)
A146, 880 (1930).

4' M. Rothenstein, Proc. Phys. Soc. (London) A68, 173 (1955).
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the total cross section is not very diferent from that
calculated neglecting polarization.

An alternative approach to the problem is to use a
slight extension of the Hulthen and Kohn methods.
Thus, as suggested by Huang, " it is possible to allow
explicitly for dependence of the wave function describ-
ing the collision on the interelectronic separation in the
trial function assumed. Thus, for discussing the colli-
sions of slow electrons with hydrogen atoms, the trial
function (50) is modified to

08 I 2

KLECTRON WAVE NUMBER. IN UNITS
I

FIG. 7. Illustrating the effect of inclusion of a term depending
on interelectronic separation on the zero-order phase shifts q0 for
elastic scattering of electrons by atomic hydrogen, as calculated
by the Hulthen variational method. Ia Exchange and polarization
neglected. Ib Polarization included, exchange neglected. IIa Ex-
change included, polarization neglected (symmetrical case).
IIb Exchange and polarization included (symmetrical case) IIIa
Exchange included, polarization neglected (antisymmetrical
case). IIIb Exchange and polarization included (antisymmetrical
case).

the best approximation for the true scattered ampli-
tude which may be obtained from f» and fest is

p1 iq
xp„(r,)p„*(r,')

l

——
l

exp(ikpnp. ri')
~t 121 rii)

Xlpp(rs )dridrsdri drs .

leap, lP are wave functions for the ground and iith ex-
cited states, respectively. Exchange may be allowed for
by calculating an exchange amplitude in a similar way.

Newstein44 has applied this method to the elastic
scattering of electrons with energy less than 10 ev by
atomic hydrogen. The angular distributions which he
obtains are far from isotropic even for 3 ev electrons, but

~ M. C. Newstein, M.I.T. Technical Report 67, 763 (1954).

B1 Bl B2 )

exchange effects being neglected. Thus, for collisions of
electrons of wave number k with hydrogen atoms, in
which the direction of the electron motion is changed
from that of the unit vector no to n,

2me'
t t. (1 1q

f
a ~ & t.r„r)

Xexp[ik(np —n) r]dridrs,

16m'e4 p
t t I exp(ikn, ri)Pp(rs)

k4 S~Ja
( 1 1 ) ( p) expLik. lri —ri'lj

xl ——
ll 2-+ '

&r„r,) &
Electron

wave
number

(in units a0 I)

Cross
Exchange

and
polarization

neglected

sections in units a02

Exchange Exchange
neglected, included,

polarization polarization
included neglected

Exchange
and

polarization
included

0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.5
2.0

548
334
214
106
59.6
37.6
25.4
13.2
7.76
4.93
2.78
1.29

592
396
268
137
78.5
49.0
32.5
16.3
9.20
5.67
3.10
1.39

193
160
121
75.9
53.0
38.9
29.1
17.0
10.3
6.42
3.44
1.48

168
138
112
77.6
55.0
41.3
30.2
17.5
10.5
6.55
3.54
1.55

4'H. S. W. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc.
(London) A205, 483 (1951).

4' Maerler, Peters, and Schenk& Z. Physik 140, 115 (1955).

fp'=sinkpri+{a+(b+eris)e "'I"I(1 e—"'")coskpri

so that it depends on the interelectronic separation r12.
Detailed calculations using this trial function have

been carried out by Massey and Moiseiwitsch4' and
their results are given in Fig. 7 and Table IV. It will
be seen from Fig. 7 that the presence of the r12 term
has little effect on the antisymmetric phase po . This
would be expected, for the antisymmetry of the wave
function in this case reduces the importance of inter-
electronic repulsion. The eGect on the symmetric phase
po+ is considerably greater.

Reference to Table IV shows that the eGect of the
polarization on the cross section is quite small except
at electron energies below about 2 ev. This agrees with
Newstein's results, except that the angular distribution
is assumed to remain isotropic. There is unfortunately
very little evidence about the actual magnitude of the
elastic cross section for low-energy electrons. All that
is available has been derived" by somewhat indirect
methods from a study of arc discharges in hydrogen.
This suggests that the true cross section is 2—3 times
larger than calculated with allowance for exchange and
polarization, but the position is still far from clear.

No calculations of polarization eGects by variational
methods have yet been carried out for elastic scattering
by atoms other than hydrogen or for any inelastic

TABLE IV. Comparison of elastic cross sections for collisions
of electrons with atomic hydrogen as calculated by different
approximations.
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collisions. Much remains to be done before the im-

portance of polarization can be estimated with
conMence.

12. SUMMARIZING REMARKS

Although there is insufficient evidence on which to
base any very definite rules, it seems that for atomic
collisions the two state approximation in which weak
coupling is assumed is often quite satisfactory. In
using it, however, full allowance must be made for dis-

tortion of the incident and final electron waves, not
only by the mean potential field of the atom, but also

by the exchange interaction. Otherwise, quite incorrect
results may be obtained.

In some cases the coupling cannot be treated as weak.
This often occurs for transitions between states of nearly

the same energy such as terms arising from the same
configuration. If there are more than two states of
nearly equal energy, it will usually be necessary to
regard them as all coupled together.

The importance of intermediate states is still not
clear. Their effects seem to be mainly apparent in
elastic scattering at small angles and in inelastic colli-
sions involving optically allowed transitions. In the
latter cases it seems that the eBects, though apparent,
are not very large and actually not as important as
those due to distortion and exchange in low-energy
encounters.

There is scope for much more examination of the
range of usefulness of di6erent approximations. With
the steady development of techniques of calculation
much progress should be achieved in this direction
before too long.


