REVIEWS OF MODERN PHYSICS

VOLUME 28, NUMBER 2

April, 1956

Monoenergetic Neutron Techniques in the 10- to 30-Mev Range^{*}

J. L. FOWLER, Oak Ridge National Laboratory, Oak, Ridge, Tennessee

AND

JOHN E. BROLLEY, JR., Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

A review is given of the techniques for detection of 10- to 30-Mey monoenergetic neutrons with emphasis being placed on absolute neutron flux measurements. Charged particle reactions, which result in monoenergetic neutrons, are discussed; the published cross-section data for the neutron producing reactions involving the hydrogen isotopes are collected and presented as a function of energy and angle. Sources of background neutrons are considered. Tables of neutron energies including relativistic effects for the hydrogen isotope reactions are presented.

INTRODUCTION

HIS review of cross sections and techniques for neutron measurements in the 10- to 30-Mev region was started in 1953 at the request of the Subcommittee on Neutron Measurements of the National Research Council.[†] It was felt that an article was needed to cover this range of neutron energies in a manner similar to the reviews of the lower energy neutron techniques available in several published articles[‡] (49H1,§ 50A1, 52B1, 52B2). This review is divided into three main sections: I. Neutron Detection, II. Neutron Sources, and III. Neutron Background. There is some inevitable overlapping of the material covered in previous articles. In particular, the information on cross sections of the neutron producing reactions among the hydrogen isotopes is brought up to date.

Relatively recent theoretical calculations of the cross sections for reactions among the hydrogen isotopes (48K, 49N, 52B3, 50B1, 50P1, 54F1, 51B1, 51F1) have met with considerable success in giving qualita-

tive explanations of the variation of the observed cross sections with energy. The detailed agreement between theory and experiment, however, is such that it was felt for the purposes of experimentalists for whom this review is primarily intended, it would be better to present these cross sections as empirical information.

With a few exceptions, this review included literature references through December, 1954. The system of identifying references is that used for the collection of nuclear data of the National Bureau of Standards (50N).

I. NEUTRON DETECTION

The sources of neutrons we shall consider range from several Mev up to approximately 30 Mev. Various accelerators utilizing a number of reactions involving light nuclei can produce these neutrons. Concomitant with the production of neutrons of desired energy, there often exists copious production of neutrons of other energies. These spurious neutrons will, in many cases, prohibit the use of flat response detectors or total source strength methods. Strong gamma-ray backgrounds may impose additional restrictions on the choice of detection systems. Some methods of detection which cope with such backgrounds may be divided into the following four classes: (1) recoil particle method, (2) secondary standard method (threshold reaction), (3) associated particle method, and (4) time-of-flight method.

^{*} Work performed under the auspices of the U. S. Atomic

<sup>Work performer under the auspices of the C. S. Atomic Energy Commission.
† Members of Subcommittee on Neutron Measurements and Standards of the National Research Council include the following:
H. H. Barschall, J. H. Coon, D. J. Hughes, L. Turner, A. Wattenberg, J. H. Williams, H. L. Anderson, M. Goldhaber, A. O. Hansen, C. G. Shull, and R. F. Taschek.
* Son Piblic graphy at and of articla</sup>

See Bibliography at end of article.
 § Professor J. H. Williams has informed us that the ordinate of Fig. 11 is incorrect.

FIG. 1. Total cross section of hydrogen for neutrons of energies between 1 and 400 Mev. The point at 14 Mev is a weighted average of measurements reported in the literature (54C1, 52C1, 52G, 52P, 51L1, 47A, 40S).

Recoil Particle Method

We consider first the recoil particle method and some of the techniques for applying it. In practice the recoiling proton from a neutron collision in a hydrogeneous substance is most commonly used. In general, the detection of the proton is accomplished by a device which is sensitive to protons in a narrow interval of energy whose maximum is the energy of the incident neutron. Such a restriction greatly facilitates discrimination against background processes. However, it does vitiate the application of some techniques which have been used for low-energy n-p scattering studies (50A1).

The condition that the recoil protons have essentially the maximum possible energy is satisfied by the small cone of protons recoiling in the direction of motion of the incident neutron. Thus, if quantitative measurements of neutron flux are desired, a knowledge of the differential n-p scattering cross section is necessary.

104

Since n-p collisions in the present range of interest are assumed to be elastic, it is possible to obtain the absolute differential cross section at a given energy by measuring the total cross section and the relative differential cross section. The latter measurement yields the absolute differential cross section by normalizing its integral over a sphere to equal the measured total cross section.

Many measurements of the total n-p cross section have been made (39A, 39Z, 40S, 45S, 46B1, 47A, 47S1, 49C1, 49H2, 49L, 50B2, 50D, 50H, 51L1, 51T1, 52C1, 52G, 52M1, 52P, 53D1, 53H, 53N1, 53N2, 53T, 54C1, 54F2). These measurements do not require an absolute knowledge of neutron flux. They require only the percentage diminution in the strength of a neutron beam when a hydrogeneous scatterer is inserted therein. Such measurements are capable of rather high precision. Figure 1 presents a graphical summary of the data from 1 to 400 Mev. The vertical lines through the points indicate the standard errors of the measurements whenever these are larger than the symbols designating the points. H. H. Barschall (52B2) describes the techniques of such measurements in a review article.

In the center-of-mass system, the precise behavior of the differential n-p scattering cross section is not known. It is quite clear that somewhere above 10-Mev neutron energy, the scattering becomes appreciably anisotropic and that this tendency becomes more marked as the neutron energy increases. Below 10 Mev the scattering process appears to be isotropic (37B1, 37D, 37K, 44C, 46C1, 47P, 51C1).

At what neutron energy anisotropic scattering becomes significant for experimental studies is not quite clear. An early experiment (42A) has shown a marked anisotropy near 14 Mev. A number of later experiments have indicated isotropy for energies between 10 and 14 Mev (42T, 48L, 53R, 55B, 54S4). Recent results at 14 Mev (49B1, 53A1, 55S) indicate only a 5% decrease in the differential cross section in going from 0 to 90°. Experiments above this energy (49B2, 49H2, 51B3, 51B3, 51W, 53R1, 53S1, 54C2, 54S1, 55G1) have unequivocally demonstrated anisotropic scattering. Figure 2 compares the experimentally observed differential cross sections in the range 14 to 100 Mev. The curves for 14 Mev and 18 Mev are least-squares fits to the recent measurements of the form

$\sigma(\theta) = \sigma_{90} \circ (1 + A \cos^2 \theta).$

The vertical and horizontal lines in Fig. 2 indicate the standard errors and angular spread in cases where these exceed the size of the points. The curves are drawn under the assumption of symmetry about 90° as the situation appears to be at 90 Mev. Relatively recent cloud-chamber measurements including small angle (~ 10 to 30° in the c.m. system) neutron scattering at 14 Mev indicate that with approximately 20% statistics the *n-p* angular distribution is symetrical about 90° in the c.m. system (54S4).

FIG. 2. Differential cross section in c.m. system of neutron proton scattering. Laboratory energy of incident neutrons is given beside each curve. Curves are drawn under the assumption of symmetry about 90°, and are normalized to give total cross sections of Fig. 1. The curves at 14 Mev and at 18 Mev are leastsquares fits to the data points.

In Fig. 3 the n-p differential scattering cross section has been converted to the laboratory coordinate system for five proton scattering angles in this system and plotted against neutron energy. Errors are estimated from the uncertainty in the n-p total cross section of Fig. 1, and in the relative differential cross section of Fig. 2. Errors for the possibility of lack of symmetry about 90° were not included. Relativity effects were included in the conversion to the laboratory system (49H2). Below 10 Mev the curves are calculated from the total cross section under the assumption of isotropy in the c.m. system.

A brief summary of the techniques employed in obtaining *n-p* angular distributions will suggest methods of applying the *n-p* scattering data. A number of experiments (37B1, 37D, 37K, 48L, 49B2, 51C1, 54S4) have been carried out with the cloud chamber. This technique, which has been adequately described elsewhere (46D), is too cumbersome and time consuming to be used for routine flux measurements. Nuclear emulsions have been used in numerous experiments (44C, 48P, 53A). Here the detector is simple enough

FIG. 3. Laboratory (n-p)scattering cross sections as a function of neutron energy. Points above 10 Mey are taken from Fig. 2 and converted to laboratory system with relativity effects included (49H2). Curves are given for five proton scattering angles in the laboratory system. Errors are estimated from the uncertainty in the (n-p) total cross section and in the relative differential cross sections of Fig. 2. Below 10 Mev the curves are calculated from the total cross section under the assumption of isotropy in the c.m. system.

though the time required to analyze the plates is a disadvantage. Review articles (52B1, 53R2) describe the nuclear emulsion technique in some detail. These two techniques are capable of the best angular resolution because the recoil proton is observed from its point of origin in contradistinction to the methods employing proton radiators of significant dimensions. The nuclear plate method has the additional important advantage of introducing a minimum mass of scattering material in the neutron flux.

Electronic methods in general yield results more rapidly. In this technique detection of protons in a known solid angle or those in a narrow energy interval has been used. It can be shown that in both cases equivalent information is obtained. Where only elastic scattering takes place $(n-p \text{ scattering is such an ex$ $ample})$, the number of recoil pulses per unit energy interval plotted against energy gives the differential scattering cross section in the c.m. system as a function of the cosine of the scattering angle (38B, 40B). The recoil pulse height in the counting device must be proportional to the recoil energy or a correction must be applied for the nonlinear pulse height *vs* energy response. In a collision of a neutron with a nucleus of atomic weight A, the nucleus recoils with energy

$$E = \frac{2AE_n}{(1+A)^2} (1 - \cos\phi),$$

and an energy distribution

$$P(E) = \frac{\pi\sigma(\phi)}{\sigma_s} \frac{(1+A)^2}{A} \frac{1}{E_n} dE.$$

Here P(E) is the probability that the nucleus will have a recoil energy between E and E+dE; $\sigma(\phi)$ is the differential elastic cross section in the c.m. system for scattering the neutron into the annular solid angle between ϕ and $\phi+d\phi$; σ_s is the total elastic cross section; and E_n is the initial laboratory energy of the neutron. The technique of recoil pulse-height analysis in a gas counter has been limited principally to low-energy neutron measurements (46C1) because of the rapidly increasing range of the recoil protons with energy. Recently the method has been extended to the range 10 to 30 Mev by analyzing the pulse spectrum in hydrogeneous scintillating crystals (52C2, 53R) which generate considerably faster pulses than ordinary proportional counters. Monochromatic neutrons produce an approximately flat differential pulse-height distribution in counters using these crystals. It is possible to obtain some energy discrimination with moderate efficiency. For energies above γ -ray background levels the crystal technique shows promise as a rapid method of measuring monoenergetic neutrons. The angular distribution of n-p scattering at 28 Mev (53R1) was studied by this method. A variation of this technique employs small spheres of organic scintillators embedded in a transparent nonscintillating material to discriminate against γ -ray pulses (54M1).

A more widely used system for the study of the differential cross section consists of a set of proportional counters in tandem (42A, 49B1, 49H2, 51B2, 51B3). The recoil particles traverse the counters and give rise to signals practically coincident in time, whence the recoil particle is counted by observing a coincidence amongst all counters. This arrangement is often given the dubious label "proportional counter telescope." The tandem alignment of the counters restricts the recoil particle beam to a narrow cone. The precise

FIG. 4. Fourfold coincidence counter telescope (51B2). Recoil protons from a radiator pass through three proportional counters and the Al absorber and thence into the fourth counter. Fourfold coincidences are required to register a recoil proton.

delimiting is usually accomplished by an aperture placed over the source consisting of a thin film of hydrogeneous material, and an aperture at the entrance of the last counter. Figure 4 is one version of a counter telescope which has been extensively used for neutron flux measurements at Los Alamos (49B1, 51B2). Proton recoils originate in a thin polyethylene film at one end and traverse four platinum lined proportional counters. The platinum liners may be quite thoroughly cleaned of surface contaminants which give rise to spurious particles in the counters under neutron bombardment. Also, being of high Z, relatively few n-p and $n-\alpha$ reactions occur in platinum, thus helping to reduce counter background. Aluminum absorbers of various thicknesses can be inserted between the third and fourth counters to discriminate against recoils below the expected energy interval and to afford a higher bias setting on the fourth counter. The effect of multiple scattering in the absorber must be taken into account. The angular distribution of n-p scattering has been measured at 27 Mev with this apparatus (51B2). This equipment has also been used to measure neutron flux

FIG. 5. A threefold coincidence proton recoil telescope (54T). Coincidence pulses from the two proportional counters and the NaI crystal gate a multichannel pulse-height analyzer which measures the pulse height in the NaI crystal. Single-channel pulse-height selectors respond to protons of a given energy loss in the proportional counters, and the NaI crystal measures its residual energy.

in the 10 to 30-Mev region (51B4, 52B4). Argon plus carbon dioxide mixtures, while not as fast as argon plus methane (a source of proton recoils) mixtures, are satisfactory for such counters. This system may be used to delimit the recoil energy more sharply by requiring the particle to stop in the absorber. Electronically this is achieved in the four counters by counting only triple coincidences in the first three counters and imposing an anticoincidence condition between the first three and the fourth (53B1).

An extension of this technique, which permits one to count neutrons having a broad energy spectrum, substitutes a scintillation crystal for the last proportional counter (54R1, 54T). A coincidence amongst all counters generates a gate which activates a pulse analyzer or amplifier in the crystal channel. Figure 5 shows a counter of this type developed at the Oak Ridge National Laboratory by Johnson and Trail which has several advantages for high-energy neutron experiments (54T, 55G1). Such counters have been used to study the anisotropy of n-p scattering at 14 Mev (55S) and at 18 Mev (55G1).

A recent variation of the proportional counter tele-

FIG. 6. The (n,2n) cross sections of Cu⁶³ and I¹²⁷ as a function of neutron energy. References: $\triangle 53M$, $\blacksquare 53P$, $\odot 52B4$, $\triangle 52F$, $\blacktriangle 52M3$, $\ominus 50F$, $\bullet 50P2$, $\Box 50W$,

FIG. 7. The (n,2n) cross sections of Mo⁹² and C¹² as a function of neutron energy. References: ●53B2, ○52B4, □53P.

scope offers improved detection efficiency (52M2). The radiator, as well as the fixed detector, are organic scintillation crystals. A proportional counter lies between the two crystals. The rate of energy loss of the recoil particle traversing the proportional counter serves to identify it. The coincidence pulse from all three counters gates a circuit which measures the sum

of the two crystal pulses. From the sum one may obtain the total energy of the recoil proton. Such an arrangement permits use of a relatively thick radiator with higher sensitivity than the "telescope" previously discussed. However, since the scintillators contain only 1/3 the amount of hydrogen per unit volume as the radiators used in the telescope (Fig. 4), the increase in efficiency is not as high as one might at first suppose.

Although protons are most commonly used as recoil particles in neutron detectors, deuterons also find application (53N1). Their use may be occasionally advantageous because of their shorter range and more anisotropic scattering which favors the forward recoil direction. However, appreciable disintegration (55S) of the deuteron occur at 14-Mev neutron energy. About 25% of the total cross section at this energy is represented by disintegration. At lower energies this factor will become inconsequential; experimental knowledge of the disintegration cross section is quite meager.

Secondary Standard Threshold Reaction Methods

Measured neutron reaction cross sections may be used for the absolute determination of neutron flux. This is, of course, a method of secondary standards

FIG. 8. Rate of energy loss of protons in hydrogen. Open circles (53D3). Open triangle (55B), solid curve theoretical (54W1).

FIG. 9. Rate of energy loss of protons in aluminum and nickel. Aluminum curve (53A2) and (47S2). Nickel curve: \bigcirc 54C4, \triangle 54A1; calculated curve (54W1).

since the initial determination of the cross section of the nuclear reaction required a knowledge of absolute flux. Thus, the secondary standards are based on either the recoil particle method or the associated particle method which will subsequently be discussed. There exists enough independent measurements of some nuclear reaction cross sections to permit application of this method with a fair degree of confidence. As in the case of n-p scattering, the background may be quite important. Thus, it is desirable to utilize reactions with as high a neutron energy threshold as is possible. Since the binding energy of neutrons in most nuclei ranges from 6 to 14 Mev, the (n,2n) reaction often satisfies the requirement of a convenient threshold. However, this reaction is only practicable when it leads to a radioactive product. Since (n,2n) cross sections rise rapidly to values approximating the nuclear geometrical cross sections (52B5), the method will frequently have adequate sensitivity. The half-life and energy of the product β ray may be the governing considerations in a particular experiment.

Figures 6 and 7 are the summation of data for four (n,2n) reactions (50F, 50P2, 50W, 52B4, 52F1, 52M3, 53B2, 53M, 53P). In these cases the absolute reaction cross section has been measured as a function of energy and there is at least one independent check at some energy. Relative cross-section curves in the case of the $Cu^{63}(n,2n)Cu^{62}$ reaction (52M3) and in the case of the $Mo^{92}(n,2n)Mo^{91}$ reaction (53B2) have been normalized to the absolute values of other experiments. A measurement of the $Cl^{12}(n,2n)Cl^{11}$ at 90 Mev (48M) is consistent with the low-energy measurement (52B4) as indicated in Fig. 7. Several investigators have measured a large

number (\sim 35) of (n,2n) cross sections at 14 Mev (52F1, 53P). Also, a great deal of work on (n,2n) reactions produced by polyergic sources has been reported (44J, 49J1, 50L, 50W2, 51C2).

In order to use the information in Figs. 6 and 7 to measure absolute neutron flux, it is necessary to determine absolute β disintegration rates. Techniques for such determinations have been described rather thoroughly elsewhere (49B3, 49Z). The references given for Figs. 6 and 7 also include brief descriptions of absolute β counting used in obtaining the data.

Relatively massive and highly efficient detectors utilizing induced radioactivity produced directly in scintillators have also been employed. Thus, the (n,2n)reaction may be used to produce the 13.1-day activity of I¹²⁶ (53M) in a sodium iodide crystal. A reaction of higher threshold, C¹²(n,2n)C¹¹, has similarly been utilized in organic scintillators (51S1). In some cases

FIG. 10. Rate of energy loss of protons in molybdenum (54B).

FIG. 11. Target for bombardment of gases (54M2). Beam is delimited by tantalum diaphragm. Target is insulated by glass sections and electrons are returned to source potential by a negatively charged iris. Thin window is shellacked to entrance of gas cell.

the radioactivity may be produced first and then loaded into a scintillator (52D).

Although other threshold reactions such as (n,p) or in some cases (n,α) (53P), and some of the fission reactions (47K, 52A1, 53L) presumably could be used for neutron flux measurements, there is only limited information extant on their energy dependence.

Associated Particle Method

A third detection method, which provides knowledge of absolute neutron flux and energy, utilizes, most commonly, the reactions $D(d,n)He^3$ and $T(d,n)He^4$. The neutrons produced in these reactions have a definite energetic and angular relationship to the charged particles. The angles, of course, are referred to the incident particle beam from the accelerator. The energetics of the process likewise depend on the energy of the accelerated particle. (See Appendices I and II.) At a given angle, the cone of neutrons of known energy

will have an associated cone of He³ or He⁴ particle as the case may be. If the neutron background is not too high one measures the neutron flux by counting the associated He³ or He⁴ particles (49G1, 54O). If a high neutron background prevents this and one is interested in some neutron induced prompt process which registers in a counter, coincidences may be taken between this counter and another which detects the associated charged particles (49C2). If the sensitive volume of the associated particle counter encompasses the cone of charged particles corresponding to the cone of neutrons passing through the reactant, its single counting rate will give the flux through the reactant. Hence, the ratio of coincidences to singles gives a direct determination of the reactant cross section when combined with knowledge of the amount of reactant in the neutron flux. Recent advances in high speed counting systems should enhance the usefulness of this technique. Reaction kinematics applicable to this process are presented in Appendix I.

Time of Flight

A fourth method for the detection of neutrons of a given energy imposes the condition that the neutrons lie in a known velocity interval. This method has received considerable application at thermal energies (53E1).

New developments in electronics have permitted the extension of this method to fast neutrons produced by Van de Graaff machines and cyclotrons (54C3, 54O, 54S2). The technique has been employed on a cyclotron (54O) to study the velocity distribution of inelastically

scattered neutrons. The primary neutrons were produced by the T(d,n)He⁴ reaction at 100-kev bombarding energy. The associated α particles were detected to furnish a zero time. In the case of Van de Graaff machines (54C3, 54S2) the beam was swept on and off a target by an rf voltage, and the neutrons were detected by organic scintillators. The time interval between the beam pulse and the detection pulse was measured. While the time-of-flight method for fast neutrons is still in an evolutionary state, it is being actively pursued at several laboratories and shows great promise.

II. NEUTRON SOURCES

In general, sources as monoenergetic as possible are desired to facilitate experimental interpretations. This condition imposes a requirement, among others, that the accelerated particle and target nucleus not gives rise to excited states. Practically this is most easily fulfilled by restricting the target nuclei to the hydrogen isotopes and bombarding with protons or deuterons or tritons of various energies. Various combinations of these reactions (except the T+T reaction) have been employed to produce monoenergetic neutrons up to 27 Mev.

 $Li^7(p,n)Be^7$ is a prolific source often employed on the Van de Graaff accelerators (49H1). The lithium target is usually in the form of an evaporated layer placed in the accelerator vacuum system. Above 2.4-Mev proton energy a second group of neutrons from the first excited state of Be⁷ makes its appearance. For this reason the Li⁷(p,n)Be⁷ source is not useful in the region being

FIG. 13. Comparison of different measurements of laboratory cross sections at selected energies for production of neutrons by the T(p,n)He³ reaction: Solid circles (54J), open circles (53W), open squares (50J).

FIG. 14. Differential cross section for neutron production by the T(p,n)He³ reaction as a function of proton energy (laboratory system).

discussed. In this section we shall consider only the interactions amongst the hydrogen isotopes.

Factors Influencing Monochromaticity

For the reactions we are considering, the spread in energy of the neutrons in a cone at a given angle will be caused principally by geometrical effects and degradation of the energy of the bombarding particles. The geometrical effects arise from the necessity of using finite geometry and are easily calculable from kinematics. Degradation of the bombarding particle will occur during traversal of the thin window, which separates the reaction volume from the accelerator vacuum unless differential pumping is used, and during traversal of the reactant. Concomitant with this process there occurs a second type of geometrical effect which must be taken into consideration in careful work, namely single and multiple scattering in the window and reactant (53D2). Scattering may become quite serious in the case of low-energy bombarding particles and windows of high Z. Degradation of product neutrons may also occur by scattering. This is usually combated by minimizing the amount of material in the environment of the source and detector.

To calculate window and reactant degradation it suffices most commonly to consider the passage of protons through aluminum, nickel, molybdenum, and hydrogen. Aluminum and nickel are by far the most commonly used windows. Since the energy-loss process

FIG. 15. Total cross section of the $T(p,n)He^3$ reaction as a function of neutron energy: Closed circles (54J), open circles (53W), closed triangles (50J).

is a statistical one, a monoenergetic beam will acquire a small spread in energy as it is degraded. This effect is usually not large for the energy losses of interest here and may be estimated roughly from a formula due to N. Bohr.

$$d\{(E^2)_{Av} - (E_{Av})^2\} = 4\pi e^4 z^2 N Z dX,$$

where e is the electron charge, z is the charge of the accelerated particle, N is the number of stopping atoms per cc, Z is the atomic number of the stopping atoms, and dX is the path length. If the result is appreciable, Bethe's (53E1) more accurate calculation may be used.

The energy of the accelerated beam, after traversing the window of the reactant vessel, may be calculated quite accurately, providing the initial energy is well known, since the percentage loss of energy in the window is usually small. Several calculations of the rate of energy loss of protons in aluminum have been made (47S2, 51A1). In Fig. 8 the proton energy loss is given from 0.25 to 10.0 Mev. Since theoretical calculations of energy loss may be expected to lose accuracy with diminishing energy, the 0.25- to 2-Mev interval has been taken from Allison and Warshaw's (53A2) recommended values. The data have been joined with J. H. Smith's (47S2) calculation to carry the curve to 10 Mev. The range calculated from Smith's dE/dx values at 18 Mev is 2% too low according to Hubbard and McKenzie (52H). Bloembergen and Van Heerden (51B5) find 1 to $1\frac{1}{2}$ % higher ranges for protons in the interval 35 to 75 Mev. Figure 9 also presents the calculations of M. C. Walske (54W1) of proton energy loss in nickel. These calculations were normalized to a measurement of H. Argo at 1.089 Mev (54A1). They are in good agreement with the recent measurements of Chilton, Cooper, and Harris (54C4), though systematically slightly higher. Above 1 Mev they cannot be too strongly relied upon because the theory is not strictly valid. More data are needed on nickel.

Molybdenum permits the passage of considerably higher beam currents than aluminum or nickel and moreover is a less copious source of background neutrons. It is, therefore, advantageous in situations where more window scatter and dispersion of beam energy may be tolerated. J. R. Beyster and M. Walt (54B) have measured the rate of energy loss of 3.4-Mev protons in molybdenum by the displaced resonance method. This measurement yielded a value I=11.87Z. Figure 10 presents the results of their calculation of dE/dX using this result and values of C_K and C_L (correction factors for binding in K- and L-shells, respectively), suggested by M. C. Walske (54W1).

Targets

The target assembly used in a neutron source should be constructed of a minimum amount of material to reduce scattering and be designed for accurate charge

FIG. 16. Differential cross section of the $D(d,n)He^3$ reaction in the c.m. system at various deuteron bombarding energies. Long counter detection of neutrons: (49H3). He³ detection: (48B1, 49E). Stilbene crystal detection of neutrons: (54H). Proton recoil telescope neutron detection: (54S3). Solid triangle at 0° taken from Fig. 17. (Note shifting ordinate scale.)

^{||} The error alluded to by S. K. Allison and S. D. Warshaw (53A2) in Aron's work appears to be a misprint and did not progagate through the calculations (private communication to F. L. Ribe).

FIG. 17. Laboratory differential cross section at 0° of the D(d,n)He³ reaction to 5.0-Mev deuteron energy and the D(d,p)T reaction in 10- to 20-Mev deuteron energy region.

measurement. Figure 11 illustrates a design of H. C. Martin's which has been used at Los Alamos. The charged particle beam is delimited by a tantalum aperture which may run at a red heat. The elevated temperature inhibits the buildup of carbon and deuterium and this helps to reduce spurious background. Electrons originating at the tantalum aperture and window are forced back to their sources by holding the center iris, which is slightly larger than the beam, a few hundred volts negative with respect to the adjacent structures. Local heating in the beam column in the gas should be kept at a minimum. If this is not done the gross measurements of temperature and pressure will not yield the true number of reactant atoms in the active volume.

$T(p,n)He^{3}$

Although the endothermic T(p,n)He³ reaction is normally used to produce low-energy neutrons (of a few Mev), it should be applicable for producing monoenergetic neutrons at higher proton energies since He³ does not appear to have low-lying excited states. The laboratory threshold is $E_p=1.019$ Mev (49T1, 51B6) and the Q-value is -0.764 Mev (54V).

Near threshold the neutrons will emerge in the forword direction in a narrow cone. As the proton energy is increased the cone will open. From formulas in Appendix I we find that at

$$E_p = Q \left\{ \frac{(m_1 M_1 + m_1 M_2)}{m_1 M_2 - m_2 M_1} - 1 \right\} = 1.148 \text{ Mev},$$

the cone finally includes all directions. From 1.019 to 1.148 Mev the cone is directed forward and any angle in the cone will have two energy groups of neutrons.

The lower energy group, however, will be much less intense.

The various studies of the differential cross section of the T(p,n)He³ reaction (49J2, 50J, 53W, 54J) utilized a common technique. Tritium was bombarded by protons from Van de Graaff generators and neutron yield at various angles and for various proton energies was obtained with a long counter (47H). Calibration of the long counter was performed by exposing it to a flux of neutrons from standard sources such as calibrated RaBe sources. Hence the precision of these measurements is limited by the accuracy of the source calibrations.

Figure 12 shows the measurements of differential cross sections at 0°. The earlier published results are shown as open circles (53W) and solid squares (50J); the latter unpublished results are closed circles (54J). The closed triangles represent data taken with a stilbene crystal counter (54P). The data include the work from two laboratories, Los Alamos Scientific Laboratory (50J, 54J, 54P) and Oak Ridge National Laboratory (53W). Although the Oak Ridge data (open circles) were normalized to the earlier published Los Alamos results (closed squares) at 1.4 Mev, the normalization seems to be the correct one to fit the later Los Alamos results (unpublished, 54J, 54P). Both the Oak Ridge and the later Los Alamos data differ considerably from the earlier Los Alamos data (50]) at higher energies (>2.5-Mev proton energy). The several slight dips in the data are the result of fluctuations of the long counter sensitivity at carbon resonances. The comparison of the angular distributions of three sets of measurements is shown in Fig. 13 (50J, 53W, 54J). Here again the Oak Ridge distributions agree with the earlier Los Alamos measurements at low energies and with the later Los Alamos measurements at higher energies. Since the

FIG. 18. Laboratory differential cross section of the $D(d_n)He^3$ reaction at various deuteron bombarding energies. Curves obtained by converting data plotted in Fig. 16 to laboratory system.

neutron energy range as a function of angle for the 2.45-Mev proton-energy bombardment overlaps the energy of the neutrons at 0° for the 1.7-Mev proton bombardment, one cannot understand the discrepancy in terms of nonlinearity in energy response of the long

FIG. 19. The total $D(d,n)He^3$ cross section as a function of energy. Curves of Fig. 16 were integrated over all solid angles. The extrapolation of the data in the case of the 5.13-Mev and the 10.3-Mev points introduces an uncertainty in cross section at these energies of 6 and 10%, respectively.

counter. At any rate, the two sets of data agree at higher energies so that for the purpose of this paper, one can estimate the cross section to be expected at higher proton energies from the curves of Figs. 14 and 15. Figure 15 shows the total cross section of the $T(p,n)He^3$ reaction as a function of neutron energy. The points are obtained by integrating the differential cross-section data over all solid angles.

$D(d,n)He^{3}$

The D(d,n)He³ reaction was the first of the hydrogen isotope reactions to be studied (34O). The early work (35A, 36B, 36K, 36L, 37A, 37L, 37R, 41R, 46M, 50M) was, in general, characterized by low bombarding energies and thick targets. Although some relatively thin target work at higher energies has been reported (46B2), most measurements on this process suitable for precise work at moderate bombarding energies are relatively recent.

FIG. 20. Differential cross section of the T(d,n)He⁴ reaction in the c.m. system. The arrows indicate the ordinate to be used for each curve. For all but the 2.21-Mev deuteron bombardment the target was deuterium. The accelerated particles were tritons. For the triton bombardment of 1.5-Mev and the 2.21-Mev deuteron bombardment the associated α particles were counted. The other data were obtained by neutron detection with a long counter.

Hunter and Richards (49H3)¶ have made a detailed study of this reaction for incident deuteron energies from 0.49 to 3.69 Mev produced by a Van de Graaff generator. They measured the neutrons from a gas target with a long counter. The absolute differential cross section for production of He³ by the D(d,n)He³ reaction, as well as for production of protons from the companion D(d,p)T reaction, has been measured from 1 to 3.5 Mev by Blair, Freier, Lampi, Sleator, and Williams (48B1). In Fig. 16 the differential cross section in the c.m. system of the $D(d,n)He^3$ reaction (48B1) is plotted as solid circles. The statistical accuracy of this data ranged from about 1 to 3%; the authors assign an additional error to the absolute value of 1.7%. Data from Hunter and Richards (49H3) are included where they exist at comparable energies. The maximum statistical error of the latter data was about 5%. Since these data were taken with a long counter calibrated with a RaBe source, there must be an additional uncertainty of the order of 5%. It is evident that over the range of angles of the measurements of Blair *et al.* (48B1) the two independent sets of measurements agree within the limits of error. Recent measurements of the differential cross section at 0° with nuclear emulsions (54R2) and a recoil proportional counter telescope (54S3) give a higher cross section than observed by Hunter and Richards (49H3) see Fig. 17. In Fig. 16 the solid triangles give the 0° differential cross section as read from the smooth curve through the data of Fig. 17.

Also included in Fig. 16 are differential cross-section measurements at higher energies made with a Van de Graaff machine (54H, 54S3) and a cyclotron (49E). For the 4.35-Mev data neutrons were detected with a stilbene crystal (54H); for the 5.13-Mev case, neutrons were detected with a proton recoil telescope (54S3). In the case of the 10.3-Mev cyclotron measurements the product He³ nuclei were counted (49E).

For an estimate of the differential cross sections at

 $[\]P$ The abscissa of Fig. 7 is apparently mislabeled as the angles indicated belong to the c.m. system. Professor Richards has informed us that the ordinate of Fig. 3(A) is incorrect.

FIG. 21. Differential cross section in laboratory system for neutron production by the T(d,n)He⁴ reaction. The arrows indicate the ordinate to be used for each curve. Curves are plotted from data in Fig. 20 and are labeled according to the equivalent deuteron bombarding energy. Estimated error of the 800-, 653-, 382-, and 251-kev curves is $\pm 10\%$ (51A2). The 1000-kev data have an error of $\pm 3\%$ (55H1), and the 2210-kev data have an error of $\pm 8\%$ (52S).

higher energies and at angles not given in Fig. 16, one use the measurements of the D(d,p)T differential cross sections which have been made at 10.3 Mev (51A2) and at 19.1 Mev (54F3). At lower energies (48B1) the cross section for production of neutrons by the *d*-*d* reaction is very similar to that for the protons. The insert in Fig. 17 shows the estimated extrapolation of the 0° differential cross section as obtained from the D(d,p)T reaction.

In Fig. 18 the c.m. cross sections and angles of Fig. 16 are given in the laboratory system. Figure 19 shows the total cross section of the $D(d,n)He^3$ reaction as a function of bombarding energy. Below 4 Mev the total cross section should be good to 3%. Mainly because of the uncertainty in extrapolating the data for the 5.13-and 10.3-Mev points, the errors for these points are estimated to be 6 and 10%, respectively.

$D(t,n)He^4$

Neutrons of energies up to 27 Mev have been supplied by the D+T reaction. The very high Q of this

reaction, 17.578 Mev (54V), makes possible the production of such energies with relatively low input energy.

A number of low-energy studies (43B, 49B4, 49T2, 50A2, 52C3, 54A3) exist of this process. Argo *et al.* (52A2) have bombarded deuterium with tritons accelerated by a Van de Graaff machine. They find deuterium targets more advantageous than tritium targets. Angular distributions of the neutrons were obtained with a long counter for triton energies $E_T = 380$, 570, 980, 1206 kev. Estimates of room scatter were obtained by the shadow cone technique. In Fig. 20 their results are presented in the c.m. system. These measurements are estimated to have an accuracy of $\pm 10\%$.

Hemmendinger and Argo (55H1) have recently made a precise measurement of the α particles from this reaction with a proportional counter for $E_T = 1.5$ Mev. This result is also presented in Fig. 20. They assign a probable error of 3% to these data.

Stratton and Freier (52S) have bombarded tritium with deuterons of 2.21 Mev and measured the associated α particles with a proportional counter. Their results are also presented in Fig. 20. They estimate an error of $\pm 8\%$ for their data. In Fig. 21 the data from Fig. 20 are plotted in the laboratory system; the curves are labeled according to the equivalent deuteron bombarding energy.

Total cross sections from these experiments are plotted in Fig. 22. Below 400-kev deuteron energy, the differential cross section in the c.m. system is found to be practically isotropic (49B4, 50A3, 52A2), so that one can calculate the total T(d,n)He⁴ cross section from differential cross sections obtained at any angle. Several thin target measurements of the differential cross section for emission of α particles at 90° have been made (50A2, 52C3, 54A3). The early experiment by Allan and Poole (50A2) was based on finding the ratio of the $T(d,n)He^4$ cross section at 90° to that of the D(d,p)T reaction. Since the early D(d,p)T cross sections, which Allan and Poole used, were obtained from thick target yields (46G, 48B2, 48F), and differ somewhat from later thin target measurements (48B1, 50S, 54A3), the Allan and Poole data (50A2) have been omitted from Fig. 22. Earlier cross sections of the T(d,n)He⁴ reaction in the low-energy region (49B4) were obtained by differentiating thick target yields and differ considerably from the data presented here. The data of Conner et al. (52C3), designated by crosses in Fig. 22, were obtained with thin zirconium tritide targets (51L2). The authors' estimate of the error was about $\pm 1.5\%$ but they assign an error of about $\pm 3.0\%$. The errors of the other data in Fig. 22 are mentioned elsewhere in this section.

The cross sections of Argo *et al.* (52A2) do not extrapolate as close to the value of Hemmendinger and Argo (55H1) as might be expected from the errors quoted. The former data, which are based on long counter measurements, appear to be low compared with Hemmindinger and Argo's work based on α counting.

At $E_D = 10.5$ Mev, Brolley, Fowler, and Stovall (51B4) have studied this reaction by neutron counting using proton recoils and the (n,2n) reaction and by α counting with a proportional counter. Their results are illustrated in the c.m. plot of Fig. 23. The data of Allred (51A3) on the mirror reaction He³(d, p)He⁴ at $E_D = 10.3$ Mev are also presented to illustrate the similarity at this deuteron energy. Stratton and Freier's data (52S) at $E_D = 2.21$ MeV are also compared with the mirror reaction measurement of Yarnell, Lovberg, and Stratton (53Y). At the lower energy disparity is noted. A smoothed curve of the 10.5-Mev data (51B4) in the laboratory system is presented in Fig. 24. The region 139 to 74°, obtained from α counting, has an accuracy of about $\pm 3.5\%$. The region 74 to 0°, obtained by neutron counting, has an error of the order of $\pm 11\%$.

Very many experiments with 14-Mev neutrons have used the $T(d,n)He^4$ reaction at low-deuteron bombarding energy (a few hundred kev) (49B1, 50P2, 52C1, 52F1, 52G, 52P, 53A1, 54C1, 55S). Here the low

FIG. 22. The total cross section for the $T(d,n)He^4$ reaction as a function of deuteron bombarding energy. The crosses (52C3) and open triangles (54A3) are results of counting alphas at 90° to the deuteron beam. Below ~400 kev the c.m. differential cross section is practically isotropic (Fig. 20). The open and solid circles, solid triangles, and solid squares are data from Figs. 20 and 23.

deuteron energy makes the use of the type of window discussed in the previous section impractical. A very important technique has been developed to provide tritium targets for this energy range (49G1). Tritium gas is absorbed in Zr or Ta metal at relatively high temperatures. In the case of Zr metal, which has proved to be most useful, the Zr foil is fixed to a tungsten or platinum backing (49G1). Very thin (~ 10 $\mu g/cm^2$) Zr layers have been prepared by evaporating the Zr metal upon a backing material (51L2). Ratios of hydrogen isotope to Zr or Ta atoms of about 1.0 to 1.5 have been obtained. These targets are relatively stable under long deuteron bombardments. The neutron intensity can be monitored by counting the associated particle, He^4 , produced by the *d*-T reaction (49G1).

Breakup of the Deuteron

Hitherto many experiments employing the hydrogen isotope reactions have relied on the assumption that breakup of the deuteron does not proceed at a significant rate. J. H. Gammel (53G) has observed the breakup of deuterons when bombarded with protons of 9.7 Mev. This corresponds to background measurements in some experiments where the isotope being bombarded by deuterons has been replaced with hydrogen. In general, the breakup neutrons will be of lower energy than those from the primary source and, therefore, in many experiments, but not all, can be discriminated against.

The *d*-T reaction has been observed to furnish breakup neutrons when the incident deuteron energy in the c.m. system exceeds the deuteron binding energy

FIG. 23. Center-of-mass differential cross section of T(d,n)He⁴ and the He³(d,p)He⁴ reaction at higher energies. Neutron detection [telescope and Cu(n,2n)] for triangle points. Rest of data; charged particle detection.

(55H2). The yield, which is probably a low-energy continuum, rises rapidly with increasing deuteron energy. The same study, however, indicates that the d-D reaction does not generate breakup neutrons at a significant rate for deuteron energies up to 7 Mev.**

These results emphasize the desirability of using the associated particle method where applicable or some other form of energy discrimination.

Polarization

In the last decade some attention has been directed to the production of polarized neutrons and charged particles. Wolfenstein (49W), Blin-Stoyle (51B7), Simon and Welton (52S2, 53S3), and Fierz (52F2) have considered the theoretical aspects of nuclear reactions as sources of polarized particles. Polarization will not occur if only S-waves of the incident particle are involved in the reaction. However, for the energy interval of interest in this discussion, higher order angular momenta are involved. Simon and Welton (53S2), in their general formulation of the problem, have shown that the polarization of the emitted particle is always normal to the plane defined by the paths of the incident and emitted particle. Moreover, the polarization is always zero for axially emitted particles.

Thus, in the neutron sources we have been describing, the use of nonaxial neutrons must be accompanied by consideration of the effect of polarization of the neutrons on the secondary reaction or process involving the neutrons. In some cases no effects would be expected as, for example, the production of induced radioactivity with nonaxial neutrons. In other cases, such as scattering, the angular distribution of the products of the secondary reaction may be influenced.

Experimental studies of the polarization of nonaxial neutrons are, as yet, rather few. In the $\text{Li}^7(p,n)\text{Be}^7$ reaction, Adair *et al.* (54A2) have demonstrated a polarization of 0.5 at $E_p=2.262$ Mev and $\theta=50^\circ$ (Lab). Willard *et al.* (54W2) have measured this polarization from $E_p=2.13$ to 2.39 Mev at 42° (Lab) and find that the Li(p,n) neutrons are approximately 50% polarized. The *d*-D reaction has been examined by Bishop *et al.*

^{**} Note added in proof.—Some recent time-of-flight neutron measurements on the breakup of the deuterons in the (d,d) reaction indicate a more prolific yield of breakup neutrons than was earlier anticipated (L. Cranberg and R. L. Henkel, LASL, private communication).

(52B6). For deuterons of 300-kev energy incident on a heavy ice target, they found a proton polarization of 0.3. Polarization of the neutron branch has been observed by using carbon scatterers by Baumgartner and Huber (53B3) and with lead scatterers by Longley, Little, and Slye (52L). Neutron polarization at 45° (c.m.) was observed to be of the order of 20 to 40% for deuterons near 0.5 Mev. For $E_D = 600$ kev, Meier *et al*. (54M3) find a maximum polarization of the d-D neutrons of $10.8 \pm 1.2\%$ at 58° and 122° (c.m. angles). The neutron experiments are rendered difficult by severe background problems. For T(p,n) neutrons only fragmentary information exists with regard to polarization. At a laboratory angle of 50° and a proton energy of 1.46 Mev the polarization was found to be essentially 0; $1\pm 4\%$ (54W2). Due consideration for polarization should be given to these reactions when their angular distributions depart from isotropy in the c.m. system.

III. NEUTRON BACKGROUND

Neutron backgrounds may be divided into two groups. The primary neutron background arises from scattering of the primary source neutrons by air and environmental structures into the detector. The secondary neutron background arises from the direct and scattered neutrons generated in the accelerator, beam plumbing, collimators, target windows, and beam stoppers, passing through the detector. In first approximation the primary background may be measured by interposing a shadow bar between the primary neutron

FIG. 24. T(d,n)He⁴ cross section at 10.5 Mev in laboratory system. Data from Fig. 23 converted to laboratory system.

FIG. 25. Thick target yield. For proton and deuteron bombardments as a function of the atomic number of the target material. Proton bombardments: Open squares 55C; open diamond 50G; open circles 51B8, 51B9, and 51B10. Deuteron bombardments: Closed triangles 51A4, closed diamond 46C2, and closed circles 51S2.

source and detector. The secondary background may be obtained in first approximation by removing the primary source reactant. More refined procedures may be required in some experiments.

It is advantageous in planning monoenergetic neutron experiments to be able to estimate the backgrounds to be expected. In this section is collected some of the information available on thick target neutron yields from high energy (>6 Mev) protons and deuterons. While there are large gaps in our knowledge, there are perhaps sufficient data to enable one to predict the order of magnitude of the backgrounds to be anticipated from materials which limit and stop the bombarding particles.

Figure 25 shows a collection of thick target yields expressed as neutrons per charged particle (protons or deuterons) and plotted as a function of target atomic number at several energies above 6 Mev. The thick target (p,n) yields at 6.7 Mev were calculated from cross sections vs energy curves (51B8, 51B9, 51B10) measured by radioactive product techniques. The data are plotted as if the element consisted of the isotope for which the cross sections are given; in the cases where data are given for more than one isotope per element, the yield is calculated for a mixture of these isotopes in the same relative abundance as they occur in the natural element. The isotopes for which the cross sections are measured are indicated beside the data points. In using these data one is making the assumption that the (p,n) yields for isotopes for which the (p,n) cross sections are not given, are about the same as for cases where they are given. The trend of (p,n) cross sections as a function of atomic number at 6.7 Mev (Fig. 2 of

FIG. 26. Relative angular distribution of neutrons from deuteron bombardments of thick targets of Au, Cu, and Al. The 15-Mev deuteron curves, 51A4, 8-Mev bombardment, 51H.

51B9) suggests this is a reasonable assumption. For 23-Mev protons the relative thick target yields were found with an energy insensitive neutron counter (55C) and normalized to the yield calculated from the cross section of Cu for the principle neutron producing reactions (50G). The authors' estimates of the errors of the (p,n) cross sections range for the most part from 10 to 30%.

By means of threshold detectors, $Al^{27}+n \rightarrow Mg^{27}$ +p-2 Mev and $Ag^{107}+n \rightarrow Ag^{106}+2n-9.6$ Mev, the angular distributions of higher energy neutrons produced by 23-Mev protons on Mg, Al, Cu, Mo, Ag, Ta, Au, Th, and U were found to be anisotropic. For the Al detector the ratio of the intensity at 0° to that at 180° varied from 1.3 to 5; for the Ag detector this ratio varied from 3 to 15 (55C).

In order to minimize neutron background, one can be guided by two principles in choosing the material which the lower energy proton beams strike. Either one uses a material which has a high (p,n) threshold $(C^{12}$, for example, has this threshold at ~ 20 Mev). or one uses a material of high Z so that the reaction rate is cut down by Coulomb effects. Because of the high (p,n) threshold and low cross section, the background from Al is depressed by about two orders of magnitude at 6.7 Mev. At 23 Mev the protons are so much above the Coulomb barrier even for the heaviest

elements that this barrier effect is not operative; the yield increases slightly with Z.

For deuterons in the 10- to 20-Mev region two sets of thick target yield data are presented. At 10 Mev the number of neutrons was determined by the manganese bath technique; a RaBe source furnished the absolute calibration (51S2). The estimated errors range from about 7 to 30% (averaging 15%). At 15 Mev the neutron intensity was measured with activation detectors (51A4). Most of the measurements were made with sulfur detectors, $S^{32}(n,p)P^{32}$, although the results were checked with phosphorous detectors, $P^{31}(n, p)Si^{32}$, and with fission ionization chambers. The 15-Mev curve, plotted in Fig. 24, has been renormalized to recent measurements with an approximate correction applied to account for neutrons below the detector threshold (55A1). While the relative errors of these 15-Mev data are of the order of magnitude of 10%, there is considerable uncertainty in the absolute normalization (perhaps 50%). The point at Z=52 (Te¹³⁰) was calculated from the $Te^{130}(d,2n)$ and $Te^{130}(d,n)$ yields at 14 Mev

which were measured by radio-chemical analysis of the reaction products (46C2).

Because of the interest in the deuteron stripping phenomena, a number of investigators have measured relative angular distributions of neutrons produced by deuteron bombardments. In Fig. 26 representative angular distributions in the laboratory system are collected for deuteron bombarding energies of 8 and 15 Mev. The 15-Mev data (51A4) were obtained from published curves which omitted experimental points. Comparison of points on either side of 0°, however, suggests that the reproducibility of this data is about 3%. Many of the published results on neutron angular distribution are presented in terms of angular width at 1/2 maximum. Table I summarizes this type of information. In using this table to estimate background one should take into account the energy threshold and response of the detector with which the data are obtained.

The neutron energy spectra produced by high-energy charged particle bombardments (~ 10 Mev) for the most part appear to be given approximately by the expression from the statistical theory of nuclear reac-

tions (52B5) for the evaporation of neutrons from a highly excited nucleus; $n(E) \sim E \exp(-E/T)$, where n(E) is the number of neutrons per unit energy interval, E is the neutron energy, and T is a quantity called "nuclear temperature," which, theoretically, is related to the properties of the residual nucleus which has emitted the neutron. T has been found empirically to be of the order of magnitude of 1 Mev. For 16-Mev proton bombardment of 1-Mev thick targets of Al, Fe, Rh, Au, Tl, the spectra at about 0° are found to follow the evaporation expression with the experimental effective nuclear temperatures given in Table II (51C2).

The neutron spectrum at 90° from a thin Cu target bombarded with 10-Mev deuterons shows fluctuations but can be fitted approximately by the evaporation expression with a nuclear temperature of about 1.1 Mev (49G2). At 15-Mev deuteron bombardment energy the neutron spectra are represented approximately by the evaporation expression, but the effective nuclear temperatures depend on the angle to the beam direction (51C3). Because of the phenomena of deuteron stripping, the spectra at small angles are expected to differ from those at larger angles where compound nucleus phenomena are expected to be more important. Table II gives a summary of the neutron spectra observed for high energy charged particle bombardment of elements above Z=12. The experimental nuclear temperatures quoted are estimated from the mean slope of the experimental curves.

CONCLUSION

Experimental neutron physics in the energy region we have been discussing has made considerable progress in the last decade. Advancement of the field however has been principally in the refinement of techniques rather than the introduction of new concepts. The

TABLE I. Angular width at $\frac{1}{2}$ intensity for neutron distributions from (d,n) reactions.

Detector	Biased counter	$\mathbf{S^{32}}(n,p)$	Neutron telescope	$Ag^{107}(n,2n)$	Cu ⁶³ (n,2n)	Cu ⁶³ (n,2n)
Threshold (Mev)	~1.5	0.97	9.30-13.1	5-7	11	11
Reference		51A4	51F2	49F	49F	49A
$E_d(Mev)$	8	15	15	16	16	18
Element						
Al	17°	21°	12°			
Si	15°					
S	20°					
Ti		39°	20°			
Cr		36°				
Mn		37°				
Co		39°	22°		26°	
Cu		46°	$22\frac{1}{2}^{\circ}$	48°	26°	45°
Cb		46°				
Mo		42°	25°			
Ag			21°			
Cď		51°				
Та		57°				
Au		52°	23°	49°		
\mathbf{Pb}		51°				47°
Bi		58°				

TABLE II. Nuclear temperatures for neutron evaporation.

Bombarding pa r ticle	Protons		Deuterons	
Angle to beam	$\sim 0^{\circ}$	90°	0°	90°
Target Reference	thin 51G	thin 49G2	thick 51C2	thick 51C2
E(Mev)	16	10	15	15
Element				
Al	1.30		2.0	2.0
Fe	0.95			
Ĉo	0.20		2.5	1.7
Cu		1.1	2.5	1.7
Rh	0.85			
Au	0.80			
Tl	0.78			

present state of precision in the field leaves much to be desired.

ACKNOWLEDGMENTS

We wish to thank our many colleagues for their contributions.

APPENDIX I

For the light particle reactions which lead to the production of monoenergetic neutrons, the conversion of laboratory cross sections and angles to the c.m. system is generally done in the nonrelativistic approximation. The following relationships (see Figs. 27 and 28) are condensed from a report by Carlson, Goldstein, Rosen, and Sweeney (49C3).

Let

 $m_1 = \text{mass of the incident particle},$

 $E_0 =$ energy of the incident particle,

 $m_2 = mass$ of the bombarded particle,

 $M_1 = \text{mass}$ of the lighter product nucleus,

 $M_2 = \text{mass of the heavier product nucleus,}$

$$Q =$$
 reaction energy,

$$E_T = E_0 + Q.$$

Then if

- $\Omega = c.m.$ angle
- $\theta = \text{laboratory angle of } M_1$,
- $\phi = \text{laboratory angle of } M_2$,

 $E_1 =$ laboratory energy of M_1 ,

$$E_2$$
=laboratory energy of M_2 ,

$$A_{1} = \frac{m_{1}M_{2}}{(M_{1} + M_{2})^{2}} (1 - Q/E_{T}),$$

$$B_{1} = \frac{m_{2}M_{1}}{(M_{1} + M_{2})^{2}} \left(\frac{M_{1} + M_{2} - m_{1}}{m_{2}} + \frac{m_{1}}{m_{2}} \frac{Q}{E_{T}} \right),$$

$$A_{2} = \frac{m_{1}M_{1}}{(M_{1} + M_{2})^{2}} \left(1 - \frac{Q}{E_{T}} \right),$$

$$B_{2} = \frac{m_{2}M_{2}}{(M_{1} + M_{2})^{2}} \left(\frac{M_{1} + M_{2} - m_{1}}{m_{2}} + \frac{m_{1}}{m_{2}} \frac{Q}{E_{T}} \right)$$

The following useful relations may be obtained:

$$\sin\phi = \left(\frac{B_1}{E_2/E_T}\right)^{\frac{1}{2}} \sin\Omega,$$

$$\sin\theta = \left(\frac{B_2}{E_1/E_T}\right)^{\frac{1}{2}} \sin\Omega,$$

$$\sin\phi = \left(\frac{M_1}{M_2}\frac{E_1/E_T}{A_1 + B_1 + A_2 + B_2 - E_1/E_T}\right)^{\frac{1}{2}} \sin\theta,$$

$$\frac{E_2}{E_T} = A_1 \left[\cos\phi \pm \left(\frac{B_1}{A_1} - \sin^2\phi\right)^{\frac{1}{2}}\right]^2, \dagger\dagger$$

$$\frac{E_1}{E_T} = A_2 \left[\cos\theta \pm \left(\frac{B_2}{A_2} - \sin^2\theta\right)^{\frac{1}{2}}\right]^2. \ddagger\ddagger$$

The cross sections will transform as

$$\frac{\sigma(\Omega)}{\sigma(\phi)} = \frac{(A_1B_1)^{\frac{1}{2}} \left(\frac{B_1}{A_1} - \sin^2 \phi\right)^{\frac{1}{2}}}{E_2/E_T}$$
$$\frac{\sigma(\Omega)}{\sigma(\theta)} = \frac{(A_1B_1)^{\frac{1}{2}} \left(\frac{B_2}{A_2} - \sin^2 \theta\right)^{\frac{1}{2}}}{E_1/E_T}.$$

APPENDIX II

The precision of the energy of accelerators has reached the stage that for some purposes one should use the correct relativistic equations to find the energy of neutrons produced by nuclear reactions. Since these relativistic transformations are very tedious there is a growing need for computed tables for this purpose. In this appendix are collected such tables of neutron energies as a function of laboratory angle and bombarding energies for the $T(p,n)He^3$, the $D(d,n)He^3$, and the $T(d,n)He^4$ reactions. These tables are taken from a more complete set which included relativistic transformations of center-of-mass angle to the laboratory angle and the ratio of solid angles in the two systems for both neutron and the helium nuclei produced in the reactions. The tables were calculated by L. Blumberg and S. I. Schlesinger and are to be printed as a Los Alamos document (55B2).

The expressions used in the formulation of Tables III, IV, and V may be derived from the relativistic kinematics of the two-body reaction problem. Consider, as in Fig. 27, that a particle of rest mass m_1 and kinetic energy T_0 is incident along the x-axis on a target particle of rest mass m_2 at rest in the laboratory system. The reaction products with rest masses M_1 and M_2 emerge at angles θ and ϕ respectively with the x-axis. In the c.m. system, the collision appears as in Fig. 28.

The total energy of the reaction products may be obtained from a Lorentz transformation of the components of the momentum four vector $\mathbf{P}(p_x, p_y, p_z, E/c^2)$ as

$$E_{n}(\theta) = M_{n}c^{2} [\gamma_{n}\gamma_{cg} \pm (\gamma_{cg}^{2} - 1)^{\frac{1}{2}} (\gamma_{n}^{2} - 1)^{\frac{1}{2}} \cos\Omega];$$

$$n = 1, 2 \quad (1)$$

where the plus sign is associated with the subscript n=1, the negative sign with subscript n=2, and where the $\cos\Omega$ is obtained from the transformation of p_x and p_y as

$$\frac{-\alpha_{1}\gamma_{cg}^{2}\tan^{2}\theta \pm [1 - (\alpha_{1}^{2} - 1)\gamma_{cg}^{2}\tan^{2}\theta]^{\frac{1}{2}}}{1 + \gamma_{cg}^{2}\tan^{2}\theta} \quad (2)$$
where
$$\alpha_{1} = \frac{\gamma_{1}(\gamma_{cg}^{2} - 1)^{\frac{1}{2}}}{\gamma_{cg}(\gamma_{1}^{2} - 1)^{\frac{1}{2}}}.$$

An expression for γ_{cg} is derived from the transformation of P_{x_1} to the c.m. system as

$$\gamma_{cg} = \frac{\frac{m_2}{m_1} + \gamma_0}{\left[\left(\frac{m_2}{m_1}\right)^2 + 2\left(\frac{m_2}{m_1}\right)\gamma_0 + 1\right]^{\frac{1}{2}}}$$
(3)

where $\gamma_0 = (T_0/m_1c^2) + 1$. After the reaction has occurred, the conservation of energy in the c.m. system yields the relation for γ_n as

$$\gamma_n = \frac{(m_1^2 + 2m_1m_2\gamma_0 + m_2^2) \pm (M_1^2 - M_2^2)}{2M_n(m_1^2 + 2m_1m_2\gamma_0 + m_2^2)^{\frac{1}{2}}}; \quad n = 1,2 \quad (4)$$

where again the positive and negative signs are associated with n=1, 2, respectively.

Inspection of Eq. (2) reveals that there are three possible cases, namely $\alpha_1 \leq 1$.

Case A: $(\alpha_1 > 1)$

To define $\cos\Omega$ in the interval $0 \leq \Omega \leq \pi$, both the positive and negative radical must be used and consequently $\cos\Omega$ is double valued. The maximum value of θ occurs when the radical is zero and is given by

$$\theta_{\max} = \sin^{-1} \{ [1 + \gamma_{cg}^{2}(\alpha_{1}^{2} - 1)]^{-\frac{1}{2}} \}$$
(5)

where $\theta_{\rm max} < \pi/2$.

Case B:
$$(\alpha_1 < 1)$$

 $\cos\Omega$ is defined for all values $0 \leq \theta \leq \pi$ with the stipulation that the positive sign is used for $\theta < \pi/2$ and the negative sign for $\theta > \pi/2$. Hence $\cos\Omega$ is single valued.

122

^{††} Use both signs if $A_1 > B_1$, in which case $\phi_{\max} = \arcsin(B_2/A_2)^{\frac{1}{2}}$. Use only the plus sign if $A_1 \le B_1$. ^{‡‡} Use both signs if $A_2 > B_2$, in which case $\theta_{\max} = \arcsin(B_1/A_1)^{\frac{1}{2}}$.

Use only the plus sign if $A_2 \leq B_2$.

				3.01	70050 + 1.0	081450> 3		1.0089861				
0						Proton En	ergy					
θ	1.1000	1.2000	1.3000	1.4000	1.5000	1.6000	1.7000	1.8000	1.9000	2.0000	2,1000	2,2000
0	0.2238	0.3497	0.4643	0.5741	0.6814	0.7869	0.8914	0,9951	1.0982	1.2008	1.3030	1.4050
5	0.2217	0.3474	0.4617	0.5713	0.6783	0.7836	0.8878	0,9912	1.0941	1.1964	1.2983	1.4001
10	0.2154	0.3406	0.4542	0.5630	0.6692	0.7737	0.8772	0.9798	1.0818	1.1835	1.2846	1.3856
15	0,2051	0.3294	0.4418	0.5493	0.6543	0.7575	0.8597	0.9610	1.0618	1.1622	1.2620	1.3617
20	0.1910	0.3143	0.4250	0.5308	0.6339	0.7354	0.8358	0.9354	1.0344	1.1330	1.2312	1.3291
30	0.1535	0.2739	0.3799	0.4809	0.5792	0.6759	0.7715	0.8663	0.9605	1.0543	1.1477	1.2409
40	0.1067	0.2242	0.3241	0.4188	0.5107	0.6010	0.6903	0.7789	0.8668	0.9545	1.0417	1.1287
50	0.0528	0.1710	0.2634	0.3504	0.4348	0.5177	0.5997	0.6809	0.7616	0.8421	0.9221	1.0020
60		0.1203	0.2039	0.2823	0.3584	0.4331	0.5070	0.5804	0.6533	0.7259	0.7982	0.8704
70		0.0773	0.1508	0.2199	0.2871	0.3534	0.4190	0.4843	0.5492	0.6139	0.6784	0.7427
80		0.0454	0.1074	0.1669	0.2252	0.2831	0.3406	0.3979	0.4550	0.5120	0.5689	0.6257
90		0.0251	0.0749	0.1248	0.1746	0.2245	0.2744	0.3243	0.3740	0.4240	0.4738	0.5236
100		0.0139	0.0522	0.0934	0.1354	0.1781	0.2210	0.2642	0.3075	0.3511	0.3946	0.4382
110		0.0082	0.0372	0.0708	0.1062	0.1427	0.1796	0.2171	0.2548	0.2928	0.3309	0.3691
120		0.0053	0.0275	0.0552	0.0851	0.1164	0.1485	0.1812	0.2142	0.2476	0.2812	0.3150
130		0.0037	0.0213	0.0445	0.0702	0.0974	0.1256	0.1544	0.1837	0.2135	0.2435	0.2737
140		0.0028	0.0173	0.0372	0.0597	0.0839	0.1091	0.1350	0:1614	0.1884	0.2155	0.2429
150		0.0023	0.0148	0.0324	0.0527	0.0746	0.0976	0.1214	0.1457	0.1705	0.1956	0.2210
160		0.0020	0.0132	0.0294	0.0481	0.0686	0.0901	0.1124	0.1353	0.1587	0.1824	0.2063
170		0.0019	0.0124	0.0277	0.0456	0.0652	0.0859	0.1073	0.1294	0.1519	0.1748	0.1979
180		.0,0018	0.0121	0.0272	0.0448	0.0641	0.0845	0.1057	0.1274	0.14 9 7	0.1723	0,1952
	2.3000	2.4000	2.5000	2.6000	2.7000	2.8000	2.9000	3.0000	3.1000	3.2000	3.3000	3.4000
0	1,5067	1.6082	1,7096	1.8109	1,9119	2.0131	2,1139	2.2148	2.3155	2.4164	2.5169	2.6177
	1.5015	1.6028	1.7039	1.8050	1,9058	2.0066	2,1072	2.2079	2.3083	2.4089	2.5092	2.6097
5 10	1.4862	1.5868	1.6871	1.7874	1.8874	1.9875	2.0873	2,1872	2.2869	2.3867	2.4863	2,5860
15	1.4602	1.5604	1.6595	1.7585	1.8573	1.9561	2.0547	2.1533	2.2517	2.3503	2.4486	2.5470
20	1.4268	1.5243	1.6217	1.7190	1.8160	1,9131	2.0100	2.1068	2.2036	2.3004	2.3970	2.4937
	1.3339	1,4266	1.5193	1.6118	1.7041	1.7965	1.8886	1,9808	2.0728	2.1649	2.2568	2.3488
30	1,2155	1,3022	1.3887	1.4751	1,5613	1.6475	1.7336	1.8196	1.9056	1.9916	2.0774	2.1633
40 50	1.0817	1.1612	1.2406	1.3199	1.3991	1.4783	1.5573	1.6363	1.7152	1.7942	1.8730	1,9518
60	0.9425	1.0143	1,0861	1.1578	1,2295	1.3011	1.3725	1.4440	1.5154	1.5868	1.6581	1.7295
70	0.8070	0.8712	0.9353	0.9993	1.0633	1.1273	1,1911	1.2549	1.3188	1.3826	1.4463	1.5101
80	0.6825	0.7392	0.7959	0.8526	0.9092	0.9658	1.0223	1.0789	1.1354	1.1920	1.2484	1.3050
90	0.5735	0.6233	0.6732	0.7230	0.7728	0.8227	0.8725	0.9223	0.9721	1.0219	1.0717	1.1216
100	0.4819	0.5255	0.5693	0.6131	0.6569	0.7007	0.7446	0.7884	0.8323	0.8762	0.9201	0.9640
110	0.4075	0.4459	0.4845	0.5231	0.5617	0.6004	0.6391	0.6778	0.7166	0.7554	0.7942	0.8331
120	0.3490	0.3830	0.4172	0.4515	0.4858	0.5202	0.5546	0.5891	0.6237	0.6582	0.6928	0.7274
130	0.3041	0.3346	0.3653	0.3961	0.4269	0.4579	0.4889	0.5199	0.5510	0.5822	0.6134	0.6446
140	0.2706	0.2984	0.3264	0.3544	0.3826	0.4109	0.4392	0.4676	0.4960	0.5245	0.5531	0.5816
150	0.2466	0.2724	0.2983	0.3244	0.3506	0.3768	0.4032	0.4296	0.4560	0.4826	0.5091	0.5358
160	0.2306	0.2549	0.2795	0.3042	0.3290	0.3539	0.3788	0.4039	0.4290	0.4542	0.4794	0.5047
170	0.2214	0.2449	0.2687	0.2925	0.3165	0.3406	0.3648	0.3891	0.4134	0.4378	0.4622	0.4867
180	0.2214	0.2416	0.2651	0.2887	0.3125	0.3363	0.3602	0.3842	0.4083	0.4324	0.4566	0.4808
100	0.2104	0.2410	0.2001	0.200/	0.0125	0.0000	0.0002	0.0042	0.4000			
	3.5000	3.6000	3.7000	3.8000	3.9000	4.0000	4.1000	4.2000	4.3000	4.4000	4.5000	4.6000
0	2.7181	2.8188	2,9192	3.0198	3.1201	3.2206	3.3209	3.4214	3.5216	3.6220	3.7223	3.8227
5	2,7099	2.8103	2.9105	3.0108	3.1109	3.2111	3.3112	3.4114	3.5114	3.6115	3.7115	3.8117
10	2.6854	2.7850	2.8845	2.9840	3.0833	3.1828	3.2821	3.3816	3.4808	3.5802	3.6794	3.7788
15	2.6452	2.7436	2.8418	2.9400	3.0381	3.1363	3.2344	3.3326	3.4305	3.5287	3.6266	3.7248
20	2.5902	2.6868	2.7833	2.8798	2.9762	3.0727	3.1690	3.2655	3.3617	3.4581	3.5544	3.6508
30	2.4406	2.5325	2.6243	2.7161	2.8078	2.8996	2.9912	3.0830	3.1745	3.2662	3.3578	3.4495
40	2.2491	2.3349	2.4206	2.5063	2.5920	2.6777	2.7632	2.8489	2.9344	3.0201	3.1056	3.1912
50	2.0306	2.1093	2.1881	2.2668	2.3454	2.4241	2.5027	2.5814	2.6599	2.7385	2.8170	2.8957
60	1.8007	1.8720	1.9432	2.0144	2.0856	2.1568	2.2279	2.2991	2.3702	2.4413	2.5124	2.5835
70	1.5738	1.6375	1.7012	1.7649	1.8285	1.8922	1.9558	2.0194	2.0830	2.1466	2.2102	2.2738
80	1.3614	1.4179	1.4743	1.5308	1.5872	1.6436	1.7000	1.7565	1.8128	1.8692	1.9256	1.9820
90	1.1714	1.2212	1.2710	1.3208	1.3706	1.4204	1.4702	1.5200	1.5698	1.6195	1.6693	1.7191
100	1.0079	1.0518	1.0957	1.1397	1.1836	1.2275	1.2714	1.3154	1.3593	1.4032	1.4472	1.4912
110	0.8719	0.9108	0.9497	0.9885	1.0274	1.0663	1.1052	1.1442	1.1831	1.2220	1.2609	1.2999
120	0.7621	0.7967	0.8315	0.8661	0.9008	0.9356	0.9703	1.0051	1.0398	1.0746	1.1094	1.1441
130	0.6759	0.7071	0.7385	0.7698	0.8011	0.8325	0.8638	0.8952	0.9266	0.9580	0.9895	1.0209
140	0.6103	0.6389	0.667 6	0.6963	0.7250	0.7537	0.7825	0.8113	0.8400	0.8688	0.8976	0.9265
150	0.5624	0.5891	0.6158	0.6426	0.6693	0.6961	0.7229	0.7497	0.7766	0.8034	0.8303	0.8572
160	0.5300	0.5553	0.5807	0.6061	0.6315	0.6569	0.6824	0.7079	0.7334	0.7589	0.7844	0.8100
170	0.5112	0.5357	0.5603	0.5849	0.6096	0.6342	0.6589	0.6836	0.7083	0.7330	0.7578	0.7826
180	0.5051	0.5293	0.5537	0.5780	0.6024	0.6268	0.6512	0 .6 757	0.7001	0.7246	0.7491	0.7736

 TABLE III

 T + p → He³ + n Reaction

 3.0170050 + 1.0081450 → 3.0169860 + 1.0089861

θ	4.7000	4.8000	4.9000	5.0000	5.1000	Proton Energ 5,2000	5.3000	5.4000	5.5000	5.6000	5.7000	5.8000
						4.4242	4.5245	4.6246	4.7248	4.8249	4.9252	5.0254
0 5	3,9229 3,9116	4.0233 4.0117	4.1234 4.1116	4.2237 4.2116	4.3240 4.3117	4.4242	4.5245	4.6115	4.7248	4.8114	4.9113	5.0113
10	3.8780	3,9773	4.0765	4.1757	4.2750	4.3741	4.4734	4.5725	4.6718	4.7709	4,8701	4.9693
15	3,8227	3,9208	4,0187	4.1167	4.2147	4.3126	4,4106	4.5085	4.6065	4.7043	4.8023	4.9002
20	3,7470	3.8434	3,9396	4.0358	4.1321	4.2283	4.3246	4,4207	4.5170	4.6131	4.7094	4.8056
30	3.5410	3,6327	3,7242	3.8157	3.9074	3.9988	4.0904	4.1819	4.2734	4.3649	4.4564	4.5479
40	3,2767	3.3623	3.4477	3.5332	3,6188	3,7042	3.7897	3.8751	3.9606	4.0460	4.1315	4.2169
50	2,9742	3.0528	3.1312	3.2097	3,2883	3.3667	3.4453	3.5237	3.6022	3.6806	3.7591	3.8375
60	2.6546	2.7257	2,7967	3.8677	2,9388	3.0098	3.0808	3.1518	3.2229	3.2938	3.3648	3.4358
70	2,3373	2,4009	2.4645	2,5280	2.5915	2.6550	2.7186	2.7821	2.8456	2.9091	2.9726	3.0361
80	2,0384	2.0948	2.1512	2.2075	2.2638	2.3202	2.3766	2.4329	2.4892	2.5456	2.6019	2.6582
90	1.7689	1.8187	1.8685	1.9182	1.9680	2.0178	2.0675	2.1173	2.1670	2.2168	2.2665	2.3163
100	1.5351	1.5790	1.6230	1.6669	1.7108	1.7548	1.7987	1.8427	1.8866	1.9305	1.9745	2.0184
110	1.3389	1.3778	1.4168	1.4556	1.4946	1.5336	1.5725	1.6115	1.6504	1.6894	1.7283	1.7673
120	1.1790	1.2137	1.2486	1.2833	1.3181	1.3529	1.3877	1.4226	1.4574	1.4922	1.5270	1.5618
130	1.0524	1.0838	1.1153	1.1467	1.1781	1.2096	1.2411	1.2726	1.3041	1.3356	1.3670	1.3985
140	0.9553	0,9841	1.0130	1.0418	1.0707	1.0996	1.1284	1.1573	1.1862	1.2151	1.2440	1.2729
150	0,8841	0.9110	0.9379	0.9648	0.9917	1.0187	1.0456	1.0726	1.0995	1.1265	1.1534 1.091 6	1.1804
160	0.8356	0.8611	0.8867	0.9123	0.9378	0.9635	0.9891	1.0147	1.0403			1.0805
170	0.8074	0.8322	0.8570	0.8817	0.9066	0.9314	0.9562 0.9455	0.9811	1.0059 0.9946	1.0308	1.0556 1.0438	1.0684
180	0.7982	0.8227	0.8472	0.8717	0,8963	0,9209	0.9433	0.9701	0.7740			
	5.9000	6.0000	6,1000	6.2000	6.3000	6.4000	6.5000	6.6000	6.8000	7.0000	7.2000	7,4000
0	5.1255	5.2257	5,3258	5.4260	5,5262	5.6263	5.7265	5.8265	6.0269	6.2271	6.4273	6.6275
5	5.1111	5.2111	5,3109	5.4109	5.5108	5.6107	5.7106	5.8104	6.0103	6.2099	6.4096	6.6093
10	5.0684	5,1676	5.2666	5.3658	5.4650	5.5640	5.6633	5.7623	5.9606	6.1587	6.3569	6.5550
15	4,9980	5.0960	5,1938	5.2917	5.3897	5.4875	5.5854	5.6832	5.8790	6.0746	6.2703	6.4659
20	4.9017	4.9979	5.0940	5.1902	5.2864	5.3825	5.4787	5.5748	5.7671	5.9593	6.1515	6.3437
30	4.6394	4.7309	4.8223	4.9138	5.0053	5.0967	5.1882	5.2796	5.4625	5.6453	5.8281	6.0109
40	4.3023	4,3878	4.4731	4.5586	4.6440	4.7294	4.8148	4.9001	5.0709	5.2416	5.4123	5.5830
50	3.9159	3,9944	4.0728	4.1512	4.2297	4.3080	4.3865	4.4648	4.6217	4.7784	4.9351	5.0918
60	3,5068	3.5778	3.6487	3.7197	3.7907	3.8616	3.9326	4.0035	4.1454	4.2873	4.4291	4.5709
70	3.0096	3.1631	3.2265	3.2900	3.3535	3.4170	3.4805	3.5439	3.6708	3.7977	3.9245	4.0514
80	2.7145	2.7708	2.8272	2.8835	2.9398	2.9961	3.0524	3.1087	3.2213	3.3338	3.4464	3.5589
90	2.3660	2.4158	2.4655	2.5152	2.5650	2.6147	2.6645	2.7142	2.8136	2.9131	3.0125	3.1119
100	2.0623	2,1062	2.1502	2.1941	2.2380	2.2820	2.3259	2.3698	2.4577	2.5455 2.2348	2.6333 2.3127	2.7212 2.3906
110	1.8063	1.8452	1.8842	1.9231	1.9621	2.0010	2.0400 1.8057	2.0790 1.8405	2.1569 1.9101	1.9798	2.0495	2.1191
120	1.5967	1.6315	1.6663	1.7011 1.5245	1.7360 1.5560	1.7708 1.5876	1.6191	1.6506	1.7136	1.7766	1.8396	1.9027
130	1.4300 1.3018	1.4615 1.3307	1,4931	1.3885	1.4174	1.4463	1.4753	1.5042	1.5620	1.6199	1.6777	1.7356
140	1.2074	1.2343	1.3596 1.2613	1,2883	1,3153	1.3423	1.3693	1.3963	1.4502	1.5042	1.5583	1.6123
150 160	1,1429	1.1685	1.1942	1,2003	1.2455	1.3423	1.2968	1.3703	1.3738	1,4252	1.4765	1.5279
170	1,1054	1.1302	1.1551	1,1800	1.2048	1.2298	1.2547	1.2796	1.3293	1.3791	1.4:39	1.4788
180	1.0931	1.1177	1,1423	1,1669	1,1915	1.2162	1.2408	1.2655	1.3147	1.3640	1.4133	1.4626
100												
	7.6000	7.8000	8.0000	8,5000	9.0000	9.5000	10,0000	10,5000	11.0000	11.5000	12.0000	12.5000
0	6.8278	7.0279	7.2281	7.7286	8.2288	8.7292	9.2295	9.7297	10.2300	10.7303	11.2305	11.7306
5	6.8091	7.0087	7.2083	7.7076	8.2065	8.7056	9.2046	9.7036	10.2026	10.7015	11.2004	11.6993
10	6,7533	6.9514	7.1495	7.6449	8.1401	8.6353	9.1305	9.6256	10.1208	10.6159	11.1110	11.6060
15	6.6617	6.8572	7.0528	7.5420	8.0308	8,5198	9.0086	9.4975	9.9864	10.4752	10.9640	11.4527
20	6.5360	6.7282	6.9203	7.4009	7.8811	8.3614	8.8417	9.3219	9.8021	10.2823	10.7625	11.2425
30	6.1938	6.3766	6.5593	7.0163	7.4731	7.9299	8.3866	8.8433	9.3000	9.7566	10.2131	10.6696
40	5.7538	5.9244	6.0950	6.5217	6.9481	7.3746	7.8010	8,2273	8.6536	9.0799	9.5060	9.9321
50	5.2486	4.4053	5.5619	5.9537	6.3451	6.7367	7.1281	7.5194	7.9108	8.3020	8,6932	9.0843
60	4.7128	4.8545	4.9963	5.3508	5.7050	6.0592	6.4134	6.7675	7.1215	7.4754	7.8293 6.9655	8.1831 7.2818
70	4.1782	4.3050 3.7839	4.4318	4.7489	5.0657	5.3825	5.6993	6.0159 5.3017	6.3325 5.5825	6.6490 5.8633	6.9655 6.1440	6.4246
80 90	3.6715 3.2113		3.8964 3.4101	4.1777	4.4588 3.9069	4.7398	4.4034	4.6515	5.5825 4.8996	5.8033	5.3956	6.4240 5.6434
100	2,8090	3.3107 2.8967	2.9846	3.6586 3.2040	3.4234	4.1551 3.6427	3.8621	4.0313	4.3004	4.5195	4.7386	4.9575
110	2.4685	2.5463	2.6242	2,8189	3.4234	3.0427	3.4027	3.5972	3.7916	3.9860	4,1803	4.3745
120	2.4005	2.2584	2.3281	2.5022	2.6763	2.8503	3.4027	3.1983	3.3722	3.5461	3.7199	4.3745 3.8936
130	1.9657	2.0287	2.0917	2.2493	2.4067	2.5642	2.7217	2,8791	3.0365	3,1938	3.3511	3,5083
140	1.7934	1.8512	1.9091	2.0537	2,1983	2.3429	2.4875	2.6320	2.7765	2,9210	3.0654	3.2098
150	1.6663	1,7203	1.7743	1,9093	2.0443	2.1793	2.3143	2.4493	2.5842	2.7191	2.8539	2,9887
160	1.5792	1.6306	1.6820	1,8104	1.9388	2.0672	2.1956	2.3239	2.4523	2.5806	2.7088	2.8370
170	1.5286	1.5784	1.6282	1.7528	1.8773	2,0018	2.1264	2.2509	2.3754	2.4998	2.6242	2.7486
180	1.5119	1.5612	1.6106	1.7339	1.8571	1.9804	2.1037	2,2269	2.3501	2.4733	2.5964	2.7195
					-							

TABLE III (continued)

θ						Proton Er	ergy					
	13.0000	13.5000	14.0000	14.5000	15.0000	16.0000	17.0000	18.0000	19.0000	20.0000	21.0000	22.0000
0	12.2307	12.7309	13,2311	13.7312	14.2312	15.2316	16.2316	17.2319	18.2320	19.2322	20.2322	21.2323
5	12,1981	12.6970	13,1959	13.6947	14.1934	15,1912	16.1887	17.1863	18,1839	19,1815	20.1789	21.1764
10	12,1010	12.5960	13,0911	13.5861	14.0810	15.0710	16.0608	17.0507	18.0406	19.0304	20.0202	21.0099
15	11.9414	12,4301	12,9189	13.4075	13.8961	14.8735	15.8506	16.8279	17.8050	18,7822	19.7592	20.7362
20	11.7225	12.2026	12.6827	13.1627	13.6426	14.6027	15.5624	16.5223	17.4821	18,4418	19.4014	20.3610
30	11,1261	11.5825	12,0390	12,4954	12.9517	13.8644	14.7769	15.6894	16.6017	17.5140	18.4260	19.3381
40	10.3582	10.7842	11.2102	11.6362	12.0620	12,9138	13.7653	14.6168	15.4680	16.3191	17.1701	18,0209
50	9.4753	9.8664	10.2573	10.6482	11.0390	11.8206	12,6019	13.3831	14.1641	14,9449	15.7254	16.5059
60	8.5368	8,8906	9.2442	9.5978	9,9512	10.6581	11.3647	12.0711	12.7773	13,4832	14,1888	14.8943
70	7.5981	7.9144	8.2306	8.5467	8.8627	9.4947	10.1263	10.7577	11.3889	12.0198	12.6504	13.2808
80	6.7051	6.9857	7,2661	7.5465	7.8267	8.3871	8.9472	9.5071	10.0667	10.6261	11.1851	11.7439
90	5.8912	6,1391	6.3867	6.6344	6.8819	7.3768	7.8715	8.3659	8,8600	9.3539	9.8475	10.3408
100	5.1764	5.3953	5.6141	5.8329	6.0515	6.4886	6.9255	7.3622	7.7986	8,2347	8,6706	9.1062
110	4.5688	4.7630	4.9570	5.1511	5.3451	5.7328	6.1204	6.5077	6.8948	7.2816	7.6681	8,0545
120	4.0673	4.2410	4,4146	4.5882	4.7617	5.1085	5.4551	5.8015	6.1477	6.4936	6.8392	7.1847
130	3.6655	3.8227	3,9798	4.1369	4.2939	4.6077	4.9213	5.2348	5.5480	5.8610	6.1738	6.4864
140	3.3541	3.4985	3.6426	3.7869	3.9311	4.2192	4.5072	4.7950	5.0826	5.3700	5.6571	5.9441
150	3.1235	3.2583	3.3929	3.5276	3.6622	3.9313	4,2002	4.4689	4.7375	5.0058	5.2739	5.5419
160	2.9652	3.0935	3.2215	3.3496	3.4777	3.7336	3.9894	4.2450	4.5004	4.7557	5.0107	5,2655
170	2.8729	2.9973	3,1215	3.2458	3.3700	3.6182	3.8664	4.1143	4.3621	4.6096	4.8570	5,1042
180	2.8426	2.9657	3.0887	3.2117	3.3346	3.5803	3.8259	4.0714	4.3166	4.5616	4,8065	5.0512
	23.0000	24.0000	25.0000									
0	22,2325	23,2326	24,2326									
5	22.1740	23.1714	24.1689									
10	21,9997	22,9894	23.9791									
15	21.7133	22,6902	23.6671									
20	21,3206	22,2801	23.2395									
30	20,2501	21,1619	22.0737									
40	18.8716	19,7221	20.5725									
50	17.2861	18,0661	18,8459									
60	15.5996	16.3046	17.0094									
70	13.9110	14.5409	15.1705									
80	12.3025	12.8607	13,4188									
90	10.8339	11.3267	11.8193									
100	9.5416	9.9767	10,4115									
110	8.4406	8.8264	9.2120									
120	7.5300	7.8749	8,2197									
130	6.7987	7.1108	7,4228									
140	6.2309	6.5174	6.8038									
150	5.8096	6.0772	6.3445									
160	5.5202	5.7746	6.0289									
170	5.3512	5.5980	5.8447									
180	5.2957	5.5400	5.7841									

TABLE III (continued)

	TABLE IV	
	D + D→ He ³ + n	
2.0147400	+ 2.0147400> 3.0169860	+ 1.0089861

					D	euteron Ene	rgy					
θ	0.1000	0.2000	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	0.9000	1.0000	1.1000	1.2000
0	2.8504	3,0500	3.2177	3,3690	3.5099	3.6438	3.7723	3.8969	4.0182	4.1368	4.2530	4.3675
5	2.8489	3.0477	3.2148	3.3654	3.5057	3.6391	3.7671	3.8912	4.0121	4.1302	4.2459	4.3599
10	2.8443	3.0408	3.2059 3.1912	3.3548	3.4934	3.6252	3.7517	3.8743	3.9937	4.1104	4.2247 4.1897	4.3373 4.3001
15 20	2.8367 2.8261	3.0294 .3.0135	3.1712	3.3372 3.3129	3.4731 3.4451	3.6023 3.5707	3.7263 3.6912	3.8464 3.8080	3.9634 3.9217	4.0777 4.0328	4.1416	4.2488
30	2.7966	2.9695	3,1148	3.2456	3.3675	3.4832	3.5943	3.7018	3.8066	3,9089	4.0090	4.1077
40	2,7571	2.9108	3.0400	3.1564	3.2648	3.3677	3.4665	3.5622	3.6553	3.7462	3,8353	3,9231
50	2.7092	2.8400	2.9501	3.0495	3.1422	3.2303	3.3148	3.3967	3.4764	3.5544	3.6307	3.7058
60	2.6546	2.7600	2.8492	2.9301	3.0057	3.0777	3.1469	3.2141	3.2795	3.3435	3.4063	3,4682
70	2.5955	2.6741	2.7415	2.8032	2.8613	2.9169	2.9707	3.0229	3.0741	3.1242	3.1734 2.9421	3.2221 2.9783
80 90	2.5340 2.4721	2.5854 2.4970	2.6311 2.5218	2.6739 2.5467	2.7149 2.5716	2.7546 2.5965	2.7934 2.6214	2.8314 2.6463	2.8688 2.6712	2.9056	2.7209	2.7763
100	2.4116	2.4116	2.4171	2.4256	2.4360	2.4475	2.4601	2.4734	2.4872	2.5016	2.5164	2.5315
110	2.3545	2.3316	2.3198	2.3137	2.3113	2.3113	2.3133	2.3167	2.3212	2.3266	2.3330	2.3400
120	2.3021	2.2590	2,2321	2.2135	2.2003	2.1906	2.1838	2.1790	2.1758	2.1741	2.1736	2.1741
130	2.2557	2.1954	2.1558	2.1269	2.1048	2.0872	2.0733	2.0619	2.0527	2.0452	2.0394	2.0347
140	2.2165	2.1420	2.0921	2.0549	2.0258	2.0021	1.9826	1.9662	1.9523	1.9405	1.9306	1.9222
150	2.1852 2.1624	2.0997 2.0690	2.0419 2.0057	1.9984 1.9579	1.9641 1.9199	1.9357 1.8883	1.9122 1.8620	1.8921 1.8394	1,8748 1,8198	1.8599 1.8028	1.8471 1.7880	1.8359
160 170	2.1624	2.0505	1.9839	1.9334	1.8933	1.8600	1.8320	1.8079	1.7871	1.7688	1.7529	1,7388
180	2.1440	2.0443	1.9766	1.9253	1.8845	1.8505	1.8220	1.7975	1.7762	1.7575	1.7412	1.7268
	1,3000	1.4000	1.5000	1,6000	1.7000	1,8000	1.9000	2,0000	2.1000	2.2000	2,3000	2.4000
õ	4.4804	4.5916	4.7018	4.8107	4.9188	5.0259	5.1321	5.2378	5.3427	5.4471	5.5509	5.6542
5 10	4.4723 4.4483	4.5831	4.6928 4.6661	4.8013	4.9089 4.8796	5.0156 4.9850	5.1214 5.0894	5.2267 5.1934	5.3311 5.2965	5.4351 5.3992	5.5385 5.5013	5.6413 5.6028
15	4.4483	4.5577 4.5160	4.6222	4.7732 4.7271	4.8312	4.9345	5.0367	5.1386	5.2395	5.3401	5.4401	5,5395
20	4.3545	4.4586	4.5617	4.6636	4.7648	4.8650	4.9644	5.0632	5.1613	5.2589	5.3560	5.4525
30	4.2050	4.3008	4.3957	4.4894	4.5824	4.6746	4.7660	4.8569	4,9470	5.0367	5.1259	5.2147
40	4.0095	4.0946	4.1790	4.2623	4.3449	4.4268	4.5079	4.5886	4.6687	4.7484	4.8276	4.9063
5 0	3.7799	3.8529	3.9251	3.9965	4.0673	4.1375	4.2071	4.2763	4.3448	4.4132	4.4810	4.5485
60	3.5292	3.5893	3.6489	3.7078	3.7662	3.8241	3.8815	3.9387	3.9953	4.0518	4.1079	4.1637
70	3.2701	3.3175	3.3646	3.4112	3.4574	3.5033	3.5488 3.2243	3.5942	3.6392 3.2930	3.6841 3.3272	3.7287 3.3613	3.7731 3.3953
80 90	3.0141 2.7707	3.0496 2.7955	3.0850 2.8204	3.1201 2.8453	3.1550 2.8702	3.1897 2.8951	3.2243 2.9199	3.2587 2.9448	2.9697	2.9946	3.0194	3.3753
100	2.5470	2.5627	2.5786	2.5948	2.6112	2.6277	2.6444	2.6612	2.6781	2.6952	2.7123	2.7297
110	2.3476	2.3558	2.3644	2.3735	2.3829	2.3926	2.4026	2.4129	2.4235	2.4343	2.4452	2,4564
120	2,1754	2.1775	2.1803	2.1837	2.1876	2,1920	2.1968	2.2020	2.2076	2.2135	2.2197	2,2262
130	2.0312	2.0287	2.0270	2.0261	2.0258	2.0261	2.0270	2.0284	2.0302	2.0325	2.0350	2.0381
140	1.9150	1.9090	1.9040	1.8999	1.8966	1.8939	1.8919	1.8905	1.8896	1.8892	1.8891	1.8897
150	1.8261	1.8176	1.8103	1.8039	1.7984	1.7936	1.7896	1.7862	1.7835	1.7812	1.7794	1.7781
160 170	1.7635 1.7263	1.7534 1.7153	1.7445	1.7366 1.6968	1.7297	1.7235 1.6821	1.7182 1.6761	1.7135 1.6707	1.7095 1.6660	1.7061	1.7031 1.6582	1.7007
180	1.7140	1.7027	1.6926	1.6836	1.6756	1.6684	1.6621	1.6565	1.6516	1.6472	1.6434	1.6401
	2.5000	2.6000	2.7000	2.8000	2.9000	3,0000	3.1000	3.2000	3,3000	3.4000	3.5000	3.6000
0	5.7570	5.8594	5.9614	6.0631	6.1645	6.2654	6.3661	6.4664	6.5664	6.6664	6.7660	6.8654
5	5.7437	5.8456	5.9472	6.0485	6.1494	6.2499	6.3502	6.4500	6.5496	6.6492	6.7484	6.8473
10	5.7039	5.8045	5.9049	6.0049	6.1045	6.2038	6.3027	6.4014	6.4997	6.5980	6.6959	6.7936
15	5.6385	5.7370	5.8353	5.9332	6.0307	6.1279	6.2248	6.3213	6.4176	6.5138	6.6097	6.7053
20 30	5.5487 5.3030	5.6443 5.3908	5.7397 5.4785	5.8347 5.5657	5.9294 5.6527	6.0237 5.7393	6.1178 5.8257	6.2115 5.9118	6.3049 5.9976	6.3983 6.0833	6.4914 6.1687	6.5842 6.2539
40	4.9847	5.0627	5.1405	5.2179	5.2951	5.3719	5.4486	5.5249	5.6010	5.6770	5.7528	5.8283
50	4.6157	4.6825	4.7492	4.8155	4.8817	4.9475	5.0132	5.0786	5.1438	5.2089	5.2738	5.3385
60	4.2192	4.2745	4.3296	4.3844	4.4391	4.4936	4.5479	4.6020	4.6560	4.7099	4.7636	4.8172
70	3.8173	3.8614	3.9053	3.9491	3.9927	4.0362	4.0796	4.1228	4.1660	4.2091	4.2520	4.2949
80	3.4291	3.4629	3.4966	3.5303	3,5638	3.5974	3.6308	3.6641	3.6975	3.7308	3.7639	3.7971
90	3.0691	3.0940	3.1188	3.1437	3.1685	3.1934	3.2182	3.2431	3.2680	3.2929	3.3177	3.3425
100 110	2.7470 2.4678	2.7644 2.4793	2.7819 2.4910	2.7995 2.5028	2.8172 2.5147	2.8349 2.5269	2.8527 2.5390	2.8706 2.5514	2.8885	2.9064 2.5764	2.9244 2.5889	2.9425
120	2.40/0	2.2399	2.4910	2.2545	2.2621	2.2699	2.3390	2.0014	2.5638 2.2943	2.3027	2.3111	2.3199
130	2.0413	2.0450	2.0488	2.0529	2.0573	2.0619	2.0667	2.0718	2.0770	2.0824	2.0879	2.0936
140	1.8904	1.8916	1.8931	1.8948	1.8969	1.8993	1,9018	1.9047	1.9077	1.9110	1.9144	1.9180
150	1.7772	1.7767	1.7765	1.7766	1.7771	1.7779	1.7789	1.7803	1.7819	1.7836	1.7856	1.7878
160	1.6986	1.6971	1.6958	1.6949	1.6943	1.6942	1.6942	1.6946	1.6952	1.6960	1.6970	1.6983
170	1.6525	1.6503	1.6485	1,6470	1.6458	1.6451	1.6446	1.6444	1.6445	1.6448	1.6453	1.6461
180	1.6373	1.6349	1.6329	1.6312	1.6299	1.6290	1.6283	1.6279	1.6279	1.6280	1.6283	1.6289
Aug Martine Colorest												

) .					Deu	iteron Energ	/					
	3.7000	3.8000	3.9000	4.0000	4.1000	4.2000	4.3000	4.4000	4.5000	4.6000	4.7000	4.80
0	6.9646	7.0637	7.1624	7.2609	7.3595	7.4579	7.5560	7.6539	7.7519	7.8497	7.9472	8.04
5	6.9462	7.0448	7.1431	7.2412	7.3394	7.4373	7.5350	7.6325	7.7300	7.8274	7.9245	8.02
10	6.8912	6.9886	7.0856	7.1825	7.2794	7.3761	7.4725	7.5687	7.6650	7.7612	7.8570	7.95
15	6.8008	6.8961	6.9911	7.0859	7.1808	7.2754	7.3698	7.4639	7.5582	7.6523	7.7461	7.83
20	6.6769	6.7694	6.8616	6.953 5	7.0456	7.1374	7.2290	7.3204	7.4119	7.5031	7.5942	7.68
30	6.3390	6.4239	6.5085	6.5929	6.6774	6.7616	6.8457	6.9295	7.0134	7.0972	7.1807	7.26
10	5.9038	5.9791	6.0541	6.1289	6.2038	6.2785	6.3530	6.4273	6.5017	6.5759	6.6499	6.72
50	5.4032	5.4677	5.5319	5.5960	5.6602	5.7241	5.7879	5.8516	5.9153	5.9788	6.0422	6.10
50	4.8707	4,9241	4.9772	5.0303	5.0834	5.1364	5.1892	5.2419	5.2946	5.3472	5.3997	5.45
70	4.3376	4.3804	4.4229	4.4655	4.5080	4.5504	4.5927	4.6350	4.6772	4.7194	4.6715	4.80
30	3.8302	3.8633	3.8963	3.9293	3.9623	3.9952	4.0281	4.0609	4.0938	4.1266	4.1594	4.19
0	3.3674	3.3922	3.4170	3.4419	3.4668	3.4916	3.5164	3.5413	3.5661	3.5909	3.6158	3.64
Ő	2.9605	2.9787	2.9968	3.0150	3.0333	3.0515	3.0699	3.0882	3.1065	3.1249	3.1433	3.16
0	2.6144	2.6273	2.6402	2.6532	2.6664	2.6795	2.6927	2.7060	2.7193	2.7327	2.7461	2.75
ŏ	2.3286	2.3375	2.3465	2,3556	2.3649	2.3742	2.3836	2.3931	2.4026	2,4122	2.4220	2.43
iõ	2.0995	2.1055	2.1116	2.1179	2.1243	2,1308	2.1374	2,1441	2.1509	2,1578	2.1649	2.17
ŏ	1.9218	1.9257	1.9298	1.9341	1.9385	1.9430	1.9477	1.9525	1.9573	1.9623	1.9675	1.97
ŏ	1.7901	1.7927	1.7954	1.7983	1.8014	1.8045	1.8079	1.8113	1.8149	1.8185	1.8224	1.82
ŏ	1.6997	1.7014	1.7032	1.7053	1.7075	1.7098	1.7123	1.7149	1.7176	1.7204	1.7235	1.72
õ			1.6495	1.6511	1.6528	1.6546	1.6566	1.6588	1.6610	1.6634	1.6660	1.66
ŏ	1.6470	1.6482					1.6384	1.6404	1.6425	1.6447	1.6471	1.64
0	1.6297	1.6307	1.6319	1.6333	1.6348	1.6365	1.0304	1.0404				
	4.9000	5.0000	5.1000	5.2000	5,3000	5.4000	5.5000	5.6000	5.7000	5.8000	5.9000	6.00
0	8,1420	8.2394	8.3365	8,4336	8,5305	8.6273	8,7242	8,8208	8.9175	9.0140	9.1106	9.20
5	8.1185	8.2155	8.3122	8,4088	8,5053	8.6017	8.6982	8.7944	8.8907	8,9867	9.0829	9.17
5	8.0485	8.1443	8.2397	8.3351	8,4303	8,5255	8.6207	8.7157	8.8107	8,9055	9.0004	9.09
							8.4935	8.5864	8.6794	8,7722	8,8651	8.95
5	7.9335	8.0272	8.1206	8.2140	8.3072	8.4003		8.4095	8.4996	8.5897	8.6797	8.70
)	7.7760	7.8669	7.9575	8.0481	8.1385	8,2289	8.3193				8,1762	8.2
)	7.3475	7.4309	7.5140	7.5970	7.6800	7.7628	7.8457	7.9284	8.0111	8.0936		
)	6.7977	6.8716	6.9452	7.0188	7.0923	7.1657	7.2391	7.3124	7.3856	7.4587	7.5319	7.60
2	6.1688	6.2320	6.2951	6.3581	6.4210	6.4838	6.5467	6.6094	6.6721	6.7347	6.7973	6.85
0	5.5045	5.5569	5.6091	5.6613	5.7134	5.7654	5.8175	5.8694	5.9214	5.9732	6.0251	6.07
0	4.8455	4.8875	4.9295	4.9713	5.0131	5.0549	5.0967	5.1384	5.1800	5.2217	5.2633	5.30
)	4.2248	4.2575	4.2902	4.3228	4.3554	4.3880	4.4206	4.4531	4.4857	4.5182	4.5507	4.5
)	3.6654	3.6903	3.7151	3.7399	3.7647	3.7895	3.8144	3.8392	3.8640	3.8888	3.9137	3.93
)	3.1802	3.1987	3.2172	3.2357	3.2543	3.2729	3.2915	3.3101	3.3287	3.3473	3.3660	3.38
)	2.7731	2.7867	2.8004	2.8140	2.8277	2.8414	2.8552	2.8690	2,8829	2.8968	2.9107	2.92
)	2.4415	2.4515	2.4615	2.4714	2,4816	2.4917	2.5019	2.5122	2.5224	2.5328	2.5432	2.5
)	2.1791	2,1864	2.1937	2,2011	2.2086	2.2162	2.2238	2.2315	2.2392	2.2470	2.2548	2.20
)	1.9779	1,9833	1.9888	1.9944	2,0000	2,0058	2.0116	2.0175	2.0234	2.0294	2.0355	2.04
5	1.8303	1.8345	1.8387	1.8430	1.8474	1.8519	1.8565	1.8612	1.8659	1.8707	1.8756	1.8
)	1.7298	1.7331	1.7365	1.7400	1.7437	1.7474	1.7512	1.7551	1.7590	1.7630	1.7671	1.7
5	1.6714	1.6743	1.6773	1.6803	1.6835	1.6868	1.6901	1.6936	1.6971	1.7007	1.7044	1.7
)	1.6522	1.6550	1.6579	1.6607	1.6638	1.6670	1.6702	1.6735	1.6769	1.6803	1.6839	1.6
	6.1000	6.2000	6.3000	6.4000	6.5000	6.6000	6.8000	7.0000	7.2000	7.4000	7.6000	7.80
)	9.3031	9.3994	9.4956	9.5918	9.6878	9.7837	9 .9 756	10.1672	10.3586	10.5499	10.7409	10.9
5	9.2745	9.3705	9.4662	9,5620	9.6576	9.7531	9,9441	10.1349	10.3255	10.5159	10,7061	10.89
)	9.1896	9.2843	9.3788	9.4733	9.5677	9.6620	9.8505	10.0388	10,2270	10.4149	10.6026	10.7
5	9.0502	9.1428	9.2353	9,3278	9.4201	9.5124	9,6969	9,8811	10,0652	10.2491	10.4327	10.6
Ś	8.8593	8.9492	9.0389	9.1286	9.2182	9.3077	9.4866	9.6653	9,8439	10.0222	10.2003	10.3
Ś	8.3409	8.4233	8.5055	8.5878	8.6698	8.7519	8.9159	9.0797	9,2433	9.4068	9.5700	9.7
, ,	7.6777	7.7507	7.8235	7.8963	7.9690	8.0417	8.1869	8.3319	8.4768	8.6214	8.7659	8.9
	6.9221	6.9846	7.0469	7,1092	7.1715	7.2336	7.3579	7.4820	7.6060	7.7297	7.8534	7.9
)					4 2240		6.4894	6.5921	6.6948	6.7973	6.8997	7.0
)	6.1284	6.1801	6.2318	6.2834	6.3349	6.3864	0.4074					6.0
)	5.3463	5.3878	5.4293	5.4708	5.5122	5.5536	5.6363	5.7188	5.8013	5.8837 5.0362	5.9661	
)	4.6156	4.6480	4.6805	4.7129	4.7453	4.7777	4.8424	4.9070	4.9716		5.1007	5.10
)	3.9632	3.9881	4.0129	4.0377	4.0625	4.0873	4.1370	4.1865	4.2361	4.2857	4.3353	4.3
2	3.4033	3.4220	3.4408	3.4595	3.4782	3.4970	3.5345	3.5720	3.6097	3.6473	3.6851	3.7
)	2.9386	2.9526	2.9666	2.9806	2.9947	3.0089	3.0372	3.0655	3,0939	3.1224	3.1511	3.1
)	2.5641	2.5746	2.5852	2.5957	2.6064	2.6171	2.6385	2.6600	2.6817	2.7035	2.7254	2.7
C	2.2707	2,2787	2.2868	2.2949	2.3030	2.3112	2.3278	2.3444	2.3612	2.3781	2.3953	2.4
2	2.0478	2.0540	2.0604	2.0667	2.0731	2.0796	2.0927	2.1059	2.1193	2.1329	2.1467	2.10
5	1.8855	1,8905	1.8957	1,9008	1.9061	1.9114	1.9222	1.9331	1.9442	1.9555	1.9670	1.9
ō	1.7755	1.7798	1.7842	1,7886	1.7931	1.7977	1.8070	1.8164	1,8260	1.8359	1.8459	1.8
õ	1.7120	1.7158	1.7198	1.7238	1.7279	1.7320	1.7405	1.7491	1.7579	1.7669	1.7762	1.7
~	1.6912	1.6949	1.6988	1.7026	1.7066	1.7106	1,7188	1.7271	1.7357	1.7444	1.7534	1.70

TABLE IV (continued)

0 11.1226 11.5987 12.0742 12.5489 13.0230 13.4967 13.9698 14.4425 14.9147 15.3867 15.8585 16.3291 5 11.0861 11.5602 12.0336 12.5062 12.9783 13.4498 13.9209 14.3915 14.8616 15.3316 15.8012 16.2701 10 10.9777 11.4456 11.9128 12.3792 12.8450 13.3104 13.7753 14.2398 14.7037 15.1674 15.6309 16.0941 10 10.5562 11.0002 11.4434 11.8859 12.2278 12.7693 13.2102 13.6507 14.0907 14.5305 14.9700 15.4091 30 9.8861 10.3029 10.7089 11.1143 11.5190 11.9233 12.3271 12.27305 13.1333 13.5360 13.9383 14.3400 40 9.0546 9.4145 9.7739 10.1325 10.49406 10.8481 11.2053 11.5424 12.3271 12.3035 11.552 11.4612						٦	TABLE IV (con	ntinued)					
B,0000 B,0000 P,0000 D,0000 D,0000 <thd,000< th=""> <thd,000< th=""> D,0000</thd,000<></thd,000<>	-						Deuteron Er	nergy		an an Anna an A			
s 11.0861 11.0861 11.0861 11.0861 11.0861 11.0861 11.0877 11.0871 11.0	θ	8.0000	8,5000	9.0000	9.5000	10.0000	10.5000	11.0000	11.5000	12.0000	12.5000	13.0000	13.5000
10 10,0777 11,445 11,9128 12,3792 12,4450 13,3104 13,7733 14,2787 14,7037 15,1744 15,4374 15,4309 14,074 15,4301 13,976 14,444 14,446 14,8982 15,2351 15,409 13,976 14,444 14,446 14,8982 15,2351 15,409 13,976 14,1444 14,8982 15,2351 15,409 13,976 14,1444 14,8982 15,2351 15,409 13,976 14,1454 11,2452 11	0	11.1226	11.5987	12.0742	12.5489	13.0230	13,4967						16.3298
15 10.7997 11.2724 11.7145 12.1706 12.2726 12.2726 12.2726 12.2726 12.2726 12.2726 12.2726 12.2726 13.133 13.6307 14.5306 14.5366 <													16.2705
20 10.5562 11.0002 11.4434 11.5190 11.5210 12.7693 12.212 12.6307 14.0707 14.5305 14.7700 15.407 30 9.6846 9.4445 9.7759 10.1325 10.7953 12.2305 11.5200 11.9183 12.5305 13.5306 13.5306 13.5306 13.5306 13.5306 13.5306 13.5306 14.7700 15.407 00 5.4085 5.7189 9.7259 9.2351 5.216 5.716 5.217 5.465 3.7793 3.7713 3.8773 3.410 4.015 10 3.2085 3.20873 3.2102 2.2084													
30 9, 96*61 10, 3202* 10, 708* 11, 1143 11, 1190 11, 233 12, 3271 12, 7305 13, 1333 13, 2330 13, 2983 14, 3404 9, 96.46 9, 44.45 9, 7759 10, 122 10, 4204 10, 5422 10, 5430 12, 9543 50 8, 1003 8, 4082 8, 7165 9, 0223 9, 235 9, 4543 9, 9796 10, 2444 10, 5422 10, 5433 11, 157 51 1, 461, 542 50 8, 1003 8, 4082 8, 7165 9, 0223 9, 235 9, 4543 9, 9796 10, 2444 10, 5422 10, 5433 11, 157 51 1, 461, 542 50 8, 1003 8, 4082 8, 7165 9, 0223 9, 235 9, 4543 9, 9796 10, 2444 10, 5422 10, 5427 50 5, 3205 5, 5512 5, 5718 7, 5648 2, 4790 1, 5638 5, 1776 5, 3013 5, 5147 5, 5478 5													
40 9,0546 9,4145 9,7739 10.1325 10.4966 10.8481 11.2633 11.5420 11.9183 12.2743 12.4300 12.985 50 8,1003 8.4028 27.156 9,0223 9,228 9,6439 9,996 10.2446 10.5492 10.8533 11.575 11.4451 60 7,1042 7.3593 7.6138 7.8678 8,1214 8.3746 8,6274 8,8600 9,122 9,7840 7,9841 9,6358 9,867 5,2786 5.3705 5.3513 5.7112 5.7112 5.7124 7.358 7.5571 7.7420 7,948 4,1674 5.3678 5,2786 5.3070 5.5513 5.7112 5.7112 5.7124 7.3598 4.2290 4.2203 4.6157 5.4723 5.7251 10 3,2085 3.2851 3.4978 4.0444 4.1396 4.2364 4.2399 4.4290 4.2203 4.6273 4.6175 5.4721 4.7114 4.866 110 3,2085 3.2857 3.331 3.4257 3.4989 3.0517 3.1067 3.1073 3.7231 3.2453 3.2253 3.2263 3.3420 3.4400 120 2,2479 2.4732 5.1810 2.2632 2.0684 2.6641 2.7003 2.7468 2.7364 2.0406 2.8877 2.9572 130 1.9903 2.0030 2.0510 2.0530 2.0684 2.6641 2.7003 2.7468 2.7364 2.0406 2.8877 2.9572 130 1.9903 2.0030 2.0510 2.0832 2.1142 2.1866 2.1897 1.9265 2.4391 2.2400 2.2852 2.5577 2.552 130 1.9903 2.0003 2.0510 2.0832 2.1142 2.1864 2.1744 2.174 2.2127 2.2464 2.0864 2.0583 2.0944 14,0000 14.5000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 21.0000 21.0000 23.0000 2.0008 2.0000 2.													
50 8,1003 8,4062 8,7156 9,1232 9,2285 9,6343 9,7394 10,8353 11,1575 11,4617 70 6,1305 6,3354 6,5403 6,7447 6,4487 7,1524 7,8591 7,7648 8,114 6,6774 8,8400 6,3304 6,2747 6,4487 7,1524 7,3591 7,7648 8,114 6,6774 6,4487 7,1524 7,3591 7,7648 8,114 6,2114 6,			10.3029					12.3271					
60 7.1042 7.3973 7.6138 7.6578 6.1214 6.3746 6.4800 9.1321 9.3841 9.4385 9.6877 60 5.3276 5.3305 5.5512 5.7116 5.5719 6.0320 6.1199 6.3318 6.5114 6.6709 6.6309 6.7775 5.0313 5.4220 5.4475 5.4775 5.7757 5.0233 5.1775 5.0133 5.2426 5.4276 5.4787 5.7757 5.0133 5.2426 5.4276 5.4478 2.577 5.775 5.0133 5.2426 5.2476 5.4481 4.2394 4.2250 4.4250 4.2564 4.25747 4.2572 4.2574 <								11.2053					
70 6.1305 6.5306 5.5407 5.512 5.711 5.716 5.3013 5.7467 6.5304 5.5487 5.487 5.487 5.473 5.773 5.773 5.735 7.7243 5.775 5.3013 5.4267 5.487 5.473 5.773 5.735 5.735 5.735 5.735 5.735 5.747 5.3013 5.4267 5.487 5.473 5.773 5.7453 5.787 5.797 5.4617 5.779 4.2303 4.8137 4.7111 4.805 10 3.2085 3.2831 3.4259 3.4989 3.571 3.4459 3.7743 3.7433 3.8400 3.8670 3.441 4.0104 4.0154 20 2.4764 2.1745 2.2101 2.2463 2.2363 2.3683 2.3965 2.4351 2.4451 2.1251 2.1559 2.1741 1.7511 1.7520 2.0001 2.0003 2.0000 2.0006 2.0006 2.0006 2.0006 2.0006 2.0006 2.0006 2.0006 2.0006 2.0006 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000													
80 5.2296 5.3906 5.512 5.7116 5.8717 6.0320 6.119 5.3518 6.4719 6.6709 6.6304 6.9814 4.9434 4.2344 4.2376 5.4250 5.447 5.4250 5.447 5.4250 5.447 5.4250 5.447 5.4250 5.447 5.4250 5.447 5.4250 5.441 4.015 5.4250 5.441 5.4250 5.441 4.015 5.4250 5.441 4.015 5.4250 5.441 4.015 5.4250 5.441 4.015 5.4250 5.441 4.015 5.4250 5.441 4.015 5.4250 5.441 4.015 5.4250 5.441 4.015 5.447 5.441 4.015 5.4250 5.444 2.4431 5.4250 5.447 5.4033 5.4250 5.444 5.441 5.417 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917													
90 4,445 4,5584 4,6823 4,6923 5,0538 5,1776 5,3013 5,4253 5,6487 5,6733 5,773 3,7803 3,2205 3,2807 3,3531 3,4299 3,4299 3,2721 3,6456 3,7193 3,7813 3,6670 3,7410 4,003 120 2,769 2,4272 2,2813 2,2738 2,2748 2,2183 2,2748 2,2183 2,2748 2,2183 2,2748 2,2183 2,2748 2,2183 2,2183 2,2748 2,1843 2,2383 2,2044 2,0444 2,0443 2,0444 2,0452 2,0564 2,0007 2,0007 2,0007 2,0007 2,0007 2,0007 2,0007 2,0007 2,0007 2,0007 2,0007 2,0007 2,0000 2,0000 2,0000 2,0000 2,000					0./44/			7.3000 4 1010					
100 3.7605 3.851 3.7498 4.0446 4.1396 4.2246 4.3276 4.4250 4.5230 4.6157 4.7111 4.8050 120 2.7695 2.8222 2.8813 2.9378 2.9948 3.0513 3.1673 3.1233 3.8203 3.4200 3.4401 4.0153 120 2.7765 2.8222 2.8813 2.9363 2.4362 2.7464 2.7937 2.9446 2.7872 2.4643 2.7823 2.8202 2.1442 2.1744 2.1127 2.2463 2.2602 2.1442 2.1446 2.1774 2.1212 2.2463 2.2602 2.1442 2.9481 2.4444 2.9481 2.9632 2.1661 1.9771 1.9761 1.9778 1.9776 2.0076 2.0359 2.1602 1.9161 1.9776 1.9776 2.0076 2.0359 2.0661 2.0000 2.0001<										5 4250			
110 3.2085 3.2807 3.3531 3.4259 3.4999 3.521 3.6456 3.7193 3.7231 3.6470 3.724 4.04 4.015 120 2.7695 2.2452 2.2813 2.2978 2.9948 3.0519 3.1095 3.1673 3.2253 3.2863 3.2400 4.000 130 2.4298 2.4736 2.2161 2.2433 2.2363 2.2404 2.644 2.7003 2.7468 2.7934 2.4405 2.4878 2.935 130 1.9903 2.0233 2.0510 2.0233 2.1442 2.1464 2.1974 2.2127 2.2463 2.2363 2.23142 2.3144 1.9903 4.2023 2.0510 2.0233 2.1442 2.1464 2.1974 2.2127 2.2463 2.2363 2.2044 2.654 1.9903 1.3955 1.3807 1.3947 1.3976 1.8971 1.9914 1.9975 2.0078 2.0078 2.0074 2.0342 2.0532 2.044 1.900 1.4,500 1.5,000 1.6,000 1.0000 1.0000 1.0000 1.0000 2.0,000 2.0				3 9498						4.5203		4.7111	
120 2,7695 2,8222 2,8813 2,9378 2,9948 3,1075 3,1073 3,1253 3,2836 3,3420 3,4200 120 2,4745 2,2101 2,2463 2,2035 2,3832 2,3965 2,4351 2,4744 2,5132 2,5277 2,5927 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,5277 2,527 2,5277 2,527 2,5277 2,527 2,5277 2,527 2,527 2,5277 2,527 2,527 2,527 2,527 2,527 2,527 2,527 2,527 2,527 2,527 2,5378 2,644 2,6452 2,644 2,6452 2,6452 2,6461 2,528 2,4113 2,3379 2,4,020 2,4402 2,1389 2,4402 2,4,020 2,4402 2,528 2,4113 2,3777 2,4400 2,528 2,4132 2,5156 2,559 2,559 2,559 2,559 2,559 2,559 2,5156 2,528 2,4										3,7931		3,9410	
130 2,4298 2,4736 2,5430 2,2643 2,2643 2,2643 2,2643 2,2653 2,2535 2,5735 2,572 2,552 2,552 2,552 2,552 2,552 2,552 2,552 2,552 2,552 2,552 2,552 2,552 2,557 2,552 2,557 2,552 2,557 2,552 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,557 2,559 2,6744 2,0644 2,0644 2,0644 2,0644 2,0644 2,0644 2,0673 2,0644 2,0673 2,0644 2,0673 2,0644 2,0674 2,0074 2,0074 2,0076 2,0070 2,0070 2,0070 2,0000 21,0000 14,0000 14,5000 15,0000 16,0000 17,0000 18,0000 19,0000 20,0000 21,0002 22,0076 2,3479 2,4102 2,24723 2,559 2,5195 5,5195 5,5195 5,5195 5,5195 5,5195 5,5195										3,2253			
140 2,1745 2,2101 2,2243 2,2281 2,3205 2,3863 2,3965 2,4351 2,4740 2,14740 2,14740 2,14740 2,14740 2,14740 2,14740 2,1487 2,1487 2,14740 2,14740 2,1287 2,2403 2,1142 2,1444 1,1516 1,7755 1,0751 1,7515 1,7551 1,1557 1,1575 1,1577 1,1614 1,1648 1,15748 2,14020 2,2344 2,23972 2,1614 2,4400 2,3775 2,1670 1,1614 1,1614 1,162 1,1614 1,1614 1,1614 1,1614 1,1614 1,1614 1,1614 1,1614 1,1614 2,1614 2,1774 2,16173 2,16173 2,16173 2,16173 2,16173 2,16173 2,16173 2,16173 2,1614 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2,7936</td><td></td><td></td><td></td></t<>										2,7936			
150 1,9903 2,0203 2,0203 2,0810 2,0823 2,1142 2,1466 2,1774 2,2024 2,2045 2,2045 2,2045 2,2034 2,0044 2,0044 2,0053 2,1521 2,1557 2,1571 1,8175 1,8175 1,8175 1,8175 1,8175 1,8175 1,8175 1,8175 1,8175 1,8175 1,9216 1,7975 2,0078 2,0064 2,0644 2,0644 2,0644 2,0644 2,0644 2,0644 2,0644 2,0644 2,0644 2,0653 2,0078 2,0000 22,0000 23,0000 24,0000 14,0000 14,5000 15,0000 16,0000 17,2718 17,4721 18,6136 19,5486 20,4852 21,4720 22,0413 23,9797 24,3181 25,2559 26,1953 15 16,2572 16,7997 17,4191 18,4061 19,3263 21,4717 21,3742 21,4742 21,4742 21,4722 23,4187 24,2822 25,783 16 16,5561 17,4191 14,401 16,4271 17,4719 20,7742 21,6762 21,0772 21,0772			2,2101			2,3205				2.4740			2.5924
160 1.8664 1.8928 1.9200 1.9478 1.9762 2.0051 2.0344 2.0444 2.1251 2.1559 2.1877 180 1.7718 1.8020 1.8447 1.8706 1.8971 1.9244 1.9516 1.9795 2.0044 2.0342 2.0359 2.0444 140.000 14.0000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 21.0000 22.0000 24.0000 0 16.8007 17.2718 17.4724 18.6844 19.6337 20.5633 21.4202 22.3442 22.3792 24.3181 25.2559 26.1933 15 16.2579 17.2031 17.6771 18.0651 19.9692 1.4202 22.0774 21.8764 22.9775 23.9410 24.822 25.783 11.6741 19.3208 20.22642 21.1744 22.8478 23.9476 24.3775 25.2001 21.4622 24.4502 25.783 11.6221 15.6416 16.4711 19.320 20.2266 21.1072 11.4621 21.4462 27.422 28.4783 23.4767 24.3775 25.2001 24.4503<											2.2802		2.3488
170 1.7751 1.8195 1.8247 1.8771 1.9241 1.9516 1.9756 2.0034 2.0354 2.0354 14.000 14.500 15.000 15.0000 15.0000 15.0000 20.000 21.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 23.0000 24.000 0 16.8009 17.2718 17.7426 18.6434 19.6372 20.5633 21.5025 22.4413 23.3799 24.3181 25.2559 26.1937 5 16.7395 17.2083 17.4747 18.6434 19.6498 20.4862 21.402 22.3442 22.3472 23.4410 24.8622 25.783 15 16.2572 16.7097 17.1620 18.6693 19.8719 20.7742 21.6760 23.0476 24.8622 25.783 23.7705 23.7407 24.8622 24.4933 16 13.6571 17.3471 17.3502 20.2476 21.1074 22.4775 23.776 24.593 30 14.7420 15.1451 15.7441 16.3757 17.7184 <				1,9200	1.9478								2.1870
180 1.7718 1.7756 1.8202 1.8454 1.8773 1.9246 1.9519 1.9766 2.0076 2.0359 2.0444 14.0000 14.5000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 22.0000 23.0000 24.0000 0 16.8009 17.2718 17.4774 18.6136 19.437 20.533 21.5025 22.4413 23.3799 24.3181 25.2559 26.1037 15 16.5256 17.0194 17.4419 18.4059 19.4982 21.4202 21.4202 24.2232 23.1859 24.4232 25.7830 15 16.2527 16.7097 17.6020 18.0459 18.9691 19.754 21.6760 22.5772 23.4787 21.3702 22.2266 21.1007 21.9744 22.8478 23.7208 24.532 25.280 21.741 21.8480 15.3421 11.4610 17.418 18.4809 17.5872 18.7432 11.434 14.4321 12.4417 13.407 13.4393 14.1374 14.6322 12.1421 12.4417 13.4393 14.5371 11.9464 2													2.0946
0 16.0009 17,2716 17,7426 18,6834 19,6237 20.5633 21.5025 22.4413 23.3799 24.3181 25.2559 26.1937 5 16,7955 17,2083 17,6471 18.6136 19,5498 20.4852 21.4202 22.3484 23.2892 24.2232 25.1569 26.0907 15 16.2572 16.7097 17.1620 18.0699 19.3928 20.22328 21.1744 22.4874 23.4787 24.3795 25.260 15 16.2572 16.7097 17.1620 18.0699 19.3792 02.7742 21.4760 25.5775 23.4787 23.7995 25.260 10 13.3605 13.6754 14.0501 1.4758 15.4648 16.1471 16.8809 17.5872 18.2998 19.7982 18.2998 17.9742 28.4783 20.484 20.4464 10 13.5813 14.1655 14.7891 15.3922 15.9743 16.3997 17.1988 17.0404 17.352 18.39733 16.1374 16.3873								1.9246			2.0076		2.0645
5 16.7395 17.2083 17.4771 18.6136 19.5498 20.4852 21.4202 22.3484 23.2892 24.2232 25.1559 26.090 15 16.2572 16.7097 17.1620 18.0659 18,9298 19.2228 21.754 22.0776 23.0195 23.4787 24.3795 25.280 20 15.8480 16.2864 16.7257 17.6104 18.4677 19.3520 20.2526 21.1747 21.9744 22.4878 23.7029 24.5730 30 14.7420 15.1435 15.5449 16.3467 17.1480 17.9486 18.7486 19.5483 20.3474 21.4622 22.742 40 13.3407 12.4785 15.4683 16.1711 16.8090 17.5722 18.9784 17.9083 17.8000 10.1385 10.3896 10.2097 12.9785 17.812 11.9171 11.9792 11.7112 12.17181 11.9171 12.17181 11.9183 17.800 10 1.3860 1.6850 1.6851 1.6800 1.5871 10.988 11.3992 11.7112 12.1918 18.0333 <td></td> <td>14.0000</td> <td>14.5000</td> <td>15,0000</td> <td>16.0000</td> <td>17.0000</td> <td>18.0000</td> <td>19.0000</td> <td>20,0000</td> <td>21.0000</td> <td>22,0000</td> <td>23.0000</td> <td>24.0000</td>		14.0000	14.5000	15,0000	16.0000	17.0000	18.0000	19.0000	20,0000	21.0000	22,0000	23.0000	24.0000
5 16.7395 17.2083 17.4771 18.6136 19.5498 20.4852 21.4202 22.3484 23.2892 24.2232 25.1559 26.090 15 16.2572 16.7097 17.1620 18.0659 18,9298 19.2228 21.754 22.0776 23.0195 23.4787 24.3795 25.280 20 15.8480 16.2864 16.7257 17.6104 18.4677 19.3520 20.2526 21.1747 21.9744 22.4878 23.7029 24.5730 30 14.7420 15.1435 15.5449 16.3467 17.1480 17.9486 18.7486 19.5483 20.3474 21.4622 22.742 40 13.3407 12.4785 15.4683 16.1711 16.8090 17.5722 18.9784 17.9083 17.8000 10.1385 10.3896 10.2097 12.9785 17.812 11.9171 11.9792 11.7112 12.17181 11.9171 12.17181 11.9183 17.800 10 1.3860 1.6850 1.6851 1.6800 1.5871 10.988 11.3992 11.7112 12.1918 18.0333 <td>0</td> <td>16,8009</td> <td>17.2718</td> <td>17.7426</td> <td>18,6834</td> <td>19.6237</td> <td>20.5633</td> <td>21.5025</td> <td>22.4413</td> <td>23.3799</td> <td>24.3181</td> <td>25.2559</td> <td>26.1937</td>	0	16,8009	17.2718	17.7426	18,6834	19.6237	20.5633	21.5025	22.4413	23.3799	24.3181	25.2559	26.1937
10 16.5568 17,0194 17,41919 18,4061 19,3298 20,2228 21,1754 22,0776 23,0195 23,9410 24,6622 25,783 15 16,2572 16,7097 17,1620 18,0459 18,9693 19,7846 18,7464 19,7442 21,6760 22,5775 23,2477 24,3787 24,3797 24,579 20 15,4480 16,2866 16,7252 17,1480 17,7486 18,7486 19,7487 10,7487 18,7971 18,7987 18,7971 17,1989 17,8072 18,7718 19,748 18,7471 18,3473 14,1574 12,0407 13,4873 14,0271 14,1374 14,352 15,132 10 4,5721 8,7761 9,77848 8,12755 5,6464 8,7357<										23.2892	24.2232		26.0904
20 15,8480 16,2866 16,7252 17,1480 17,7486 17,486 19,7486 21,1007 21,9744 22,8478 23,7208 24,593 30 14,7420 15,1454 15,5449 12,0765 13,8913 14,1855 14,7891 15,9230 18,9985 19,7034 20,4474 22,472 40 13,3405 13,6954 14,0501 14,7588 15,4648 16,1741 16,8809 10,7847 18,59761 17,9886 16,5971 17,1980 17,892 15,9448 11,6551 14,7891 15,9248 16,5971 17,1980 17,9872 15,9744 12,9767 15,9758 10,1805 10,5871 10,9888 11,3702 11,7912 12,1918 12,5921 70 8,5721 8,7742 8,9761 9,3975 9,4652 10,011 10,316 10,9888 11,3902 11,9712 12,1918 12,1918 12,3926 10 4,0925 4,1639 4,2383 4,3874 4,3804 4,6844 4,8301 4,9840 5,1332 5,2835 5,4341 5,862 10 4,6925					18.4061	19,3298	20.2528	21.1754	22.0976	23,0195	23,9410	24.8622	25.7833
20 15.8480 16.2866 16.7252 17.480 17.480 17.480 17.480 17.480 17.980 18.7486 19.5483 20.3474 22.8478 23.7208 24.593 40 13.3405 13.6954 14.0501 14.7588 15.6468 16.1741 16.8809 17.5872 18.2930 18.9985 19.7034 20.446 22.742 60 10.1385 10.3896 10.6404 11.1416 11.6422 12.4761 13.6393 14.1374 14.6352 15.1327 70 8.5721 8.7742 8.7761 9.3775 9.7825 10.1850 10.5871 10.9888 11.3714 14.6352 15.1327 10 4.5976 7.37848 8.1022 8.4194 8.762 9.0528 9.3691 9.6652 10.011 10.316 10 4.0021 4.9796 5.0731 8.1022 8.4194 8.264 4.8304 4.9806 5.1339 5.2843 8.3814 8.388 4.6864 4.9806 5.1339 5.2843 5.4361 5.8622 6.0455 6.4321 6.6233 6.64321				17.1620				20.7742		22.5775	23,4787	24.3795	25.2801
40 13,3405 13,6754 14,0501 14,7588 15,4648 16,1741 16,8807 17,5872 18,2930 18,9785 19,7034 20,408 60 10,1385 10,3895 10,3404 11,1416 11,4422 12,1421 12,6417 13,4393 14,1374 14,6352 15,1803 70 8,5721 8,7742 8,9761 9,3795 9,7825 10,1850 10,9888 11,3702 11,7912 12,1918 12,5922 80 7,1489 7,3080 7,4470 7,7488 8,1022 8,4194 8,7362 9,0528 9,3691 9,6852 10,0161 6,0430 6,1645 6,4134 6,6601 6,9068 7,1333 7,3977 7,6459 7,8921 8,1381 8,303 10 4,0895 4,1639 4,2383 4,3874 4,3536 4,644 4,8361 4,9860 5,1359 5,2859 5,4361 5,5862 10 2,6930 3,0309 3,0788 3,1753 3,2722 3,3495 3,4672 3,6523 3,6634 3,7618 3,6053 3,9287 10 <td>20</td> <td>15.8480</td> <td>16.2866</td> <td>16.7252</td> <td>17.6014</td> <td></td> <td>19.3520</td> <td>20.2266</td> <td></td> <td></td> <td></td> <td></td> <td>24.5936</td>	20	15.8480	16.2866	16.7252	17.6014		19.3520	20.2266					24.5936
50 11,7647 12,0679 12,3710 12,9765 13,5813 14,1855 14,7891 15,9924 16,5971 17,1988 17,008 60 10,185 10,3895 10,4040 11,4161 11,422 12,1421 12,1471 13,1407 13,3793 14,1374 14,6352 10,1850 10,5871 10,9888 11,3702 11,7912 12,1918 12,320 80 7,1489 7,3080 7,4670 7,7848 8,1022 8,4194 8,7362 9,0528 9,3691 9,6852 10,011 10,3163 100 4,9021 4,9776 5,0931 5,2843 5,4755 5,6668 5,8852 6,0475 5,2408 6,4321 6,6233 6,814 104 4,0921 4,9776 5,1931 3,2773 3,6956 3,8144 3,9335 4,0524 4,1724 4,1292 4,4121 4,5324 4,6524 120 2,9803 3,0093 3,0783 3,2772 3,3495 3,4072 3,2633 3,2897 3,0433 3,2633 3,2897 3,0431 3,0633 3,2897 3,0313 3,		14.7420			16.3467					20.3474		21.9446	22.7427
60 10,1385 10,3896 10,4604 11,1416 11,6422 12,1421 12,6417 13,1407 13,6393 14,1374 14,6352 15,1322 70 8,5721 8,7742 8,9761 9,3795 9,7825 10,9888 1,3092 11,7912 12,1918 12,592 80 7,1489 7,3080 7,4670 7,7848 8,1022 8,4194 8,7362 9,0528 9,3691 9,6852 10,0011 10,316 90 5,9195 6,0430 6,1645 6,4134 6,6601 6,9068 7,1333 7,3977 7,6459 7,8921 8,1381 8,383 6,3834 4,9860 6,4323 6,6233 6,6143 6,623 6,844 4,9860 5,1359 5,2859 5,4361 5,8822 4,0695 4,163 3,8733 3,4751 8,3934 4,5352 1,575 2,9577 3,0403 3,1231 3,2063 3,2897 3,3457 10 2,6324 2,6472 2,6172 2,1818 2,4533 2,2545 2,4614 2,4607 2,5543 2,6164 3,0185 3,1055 2,6614										18,2930	18,9985		
70 8,5721 8,7742 8,7742 8,7741 9,3795 9,7825 10,1850 10,5821 10,09888 11,3902 11,7912 12,1918 12,5922 80 7,1489 7,3080 7,4670 7,7848 8,1022 8,4194 8,7322 9,0528 9,3391 9,6522 10,0110 10,316 90 5,9195 6,0430 6,1665 6,4134 6,6601 6,9068 7,1533 7,3997 7,6459 7,9921 8,1381 8,3833 100 4,9021 4,9976 5,0931 5,2843 4,3755 5,6668 5,8532 6,0495 6,4321 6,6233 6,814 110 3,4574 3,5183 3,5773 3,6956 3,8144 3,9335 4,0529 4,1724 4,2222 4,4121 4,5322 4,6523 120 2,9930 3,0309 3,0788 3,1733 3,2477 3,3433 3,457 12 2,6324 2,6725 2,7128 2,7939 2,8755 2,5412 2,6072 2,6735 2,7402 2,8071 2,874 12 2,1832										15.9948			17.8003
80 7,1489 7,3080 7,4670 7,7848 8,1022 8,4194 8,7362 9,0528 9,3691 9,6852 10,0011 10,016 90 5,9195 6,0430 6,1665 6,4134 6,6601 6,9068 7,1533 7,3977 7,6459 7,8921 8,1381 8,3833 100 4,9021 4,9776 5,0731 5,2843 5,4755 5,6668 5,8582 6,0495 5,1339 5,2859 5,4361 5,5862 120 3,4574 3,1333 3,07373 3,6756 3,8144 4,8364 4,8364 4,8364 4,8364 4,8364 4,8364 4,8364 4,8364 4,7224 4,1214 4,5322 4,6527 120 3,4574 3,7373 3,2722 3,3495 3,4627 3,552 3,652 3,6543 3,748 3,8605 3,957 150 2,3836 2,4185 2,4535 2,5242 2,5755 2,6674 2,7396 2,8123 2,8652 2,9584 3,0318 3,1053 160 2,2183 2,4185 2,4294 2,40702 2,5534										13.6393		14.6352	15.1327
90 5.9195 6.0430 6.1645 6.4134 6.6601 6.9068 7.1533 7.3977 7.4645 7.9721 8.1381 8.333 100 4.9021 4.9776 5.0931 5.2843 5.4755 5.6668 5.8582 6.0495 6.4321 6.6233 6.814 110 4.0895 4.1639 4.2383 4.3874 4.5368 4.6644 4.8361 4.9766 5.1359 5.2859 5.4461 5.5862 120 3.4594 3.5183 3.5773 3.6755 3.8144 3.9335 4.0529 4.1724 4.2922 4.4121 4.5322 4.652 120 2.9803 3.0309 3.0788 3.1753 3.2727 3.6403 3.552 3.6634 3.7618 3.6605 3.957 140 2.6324 2.6472 2.7128 2.27955 2.9577 3.0403 3.1231 3.2063 3.2897 3.3733 3.457 160 2.2183 2.4549 2.1216 2.3545 2.4602 2.6772 2.7402 2.6872 2.6472 2.6472 2.6772 2.743										11.3902		12,1918	12.5922
100 4.9021 4.9776 5.0931 5.2843 5.4755 5.6668 5.6822 6.0495 6.2408 6.4321 6.6233 6.8144 110 4.0695 4.1639 4.2383 4.3874 4.5368 4.6864 4.8361 4.9860 5.1359 5.2859 5.4361 5.5863 120 3.4594 3.5183 3.5773 3.6955 3.8144 3.9335 4.0522 4.124 4.5222 4.6521 130 2.9830 3.0309 3.0788 3.1753 3.2722 3.3495 3.4672 3.5652 3.6634 3.7618 3.8605 3.9577 150 2.3836 2.4185 2.4535 2.5242 2.5955 2.6674 2.7396 2.8123 2.8652 2.9574 3.733 3.457 160 2.2183 2.2492 2.2105 2.6674 2.7396 2.8123 2.8652 2.5647 2.7402 2.8071 2.7402 2.8071 2.7402 2.8071 2.7743 120 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145													
110 4.0895 4.1639 4.2383 4.3874 4.5368 4.6864 4.8361 4.9860 5.1359 5.2859 5.4361 5.866 120 3.4594 3.5183 3.5773 3.6956 3.8144 3.935 4.0529 4.1724 4.2922 4.4121 4.5322 4.652 130 2.9830 3.0309 3.0788 3.1753 3.2722 3.3695 3.4672 3.5652 3.6634 3.7618 3.8605 3.9597 140 2.6324 2.6725 2.7128 2.7939 2.8755 2.6574 2.7396 2.8123 2.0852 2.9554 4.0318 3.105 150 2.2836 2.4185 2.4555 2.5242 2.5755 2.6674 2.7396 2.8123 2.8852 2.9584 3.0318 3.105 160 2.2183 2.2499 2.2816 2.3456 2.4103 2.4755 2.5412 2.6072 2.6735 2.7402 2.8071 2.874 170 2.1240 2.1537 2.1836 2.2439 2.3049 2.3664 2.4284 2.4907 2.5534 2.6164 2.6797 2.743 180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.700 25.0000 0 27.1312 5 27.0238 10 26.7041 15 26.1805 20 25.4661 30 23.5405 10 26.7041 15 26.1805 20 25.4661 30 2.35405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 70 12.9923 80 10.6321 70 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068								7.1533		/.6459			8.3839
120 3.4594 3.5183 3.5773 3.6956 3.8144 3.9335 4.0529 4.1724 4.2922 4.4121 4.5322 4.652 130 2.9830 3.0309 3.0788 3.1753 3.2722 3.3695 3.4672 3.5652 3.6634 3.7618 3.8605 3.9577 140 2.6324 2.6725 2.17128 2.7939 2.8755 2.9577 3.0403 3.1231 3.2063 3.2897 3.333 3.457 150 2.3836 2.4185 2.4535 2.5957 2.6674 2.7396 2.8163 2.28852 2.9584 3.0318 3.105 160 2.1240 2.1537 2.1836 2.2439 2.3049 2.3664 2.4284 2.4907 2.5534 2.6164 2.6797 2.743 180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.700 25.0000 25.4661 2.6791 2.4284 2.4907 2.5145 2.5763 2.6384 2.700 26.20805 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.2408</td> <td></td> <td></td> <td></td>										6.2408			
130 2.9830 3.0309 3.0788 3.1753 3.2722 3.3695 3.4672 3.5652 3.6634 3.7618 3.8605 3.9597 140 2.6324 2.6725 2.7128 2.7939 2.8755 2.9577 3.0403 3.1231 3.2063 3.2897 3.3733 3.457 150 2.3836 2.4185 2.4535 2.5242 2.5955 2.6674 2.7396 2.8123 2.8825 2.984 3.0318 3.1031 3.2063 3.2897 3.3733 3.457 160 2.2183 2.2499 2.2816 2.3456 2.4103 2.4755 2.5412 2.6072 2.6735 2.7402 2.8071 2.874 180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.7000 25.0000 27.1312 5 27.0238 10 2.5703 2.6384 2.7007 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.7007 2 25.0000 27.1312 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.2859</td><td>5.4301</td><td></td></t<>											5.2859	5.4301	
140 2,6324 2.6725 2.7128 2.7939 2.8755 2.9575 3.0403 3.1231 3.2063 3.2897 3.3733 3.457 150 2.3836 2.4185 2.4535 2.5242 2.5955 2.6674 2.7396 2.8123 2.8652 2.9584 3.0318 3.1051 160 2.2183 2.2499 2.2816 2.3456 2.4103 2.4755 2.5412 2.6072 2.6735 2.7402 2.8071 2.8741 170 2.1240 2.1537 2.1836 2.2439 2.3049 2.3664 2.4284 2.4907 2.5534 2.6164 2.6797 2.7433 180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.7003 25.0000 27.1312 5 27.0238 2.5763 2.6384 2.7003 20 27.461 2.5763 2.6384 2.7003 2.5763 2.6384 2.7003 20 25.461 30 3.5415 3.5416 3.5416 3.5416 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0322</td><td></td></t<>												4.0322	
150 2.3836 2.4185 2.4535 2.5242 2.5955 2.6674 2.7396 2.8123 2.822 2.9584 3.0318 3.1055 160 2.2183 2.2499 2.2816 2.3456 2.4103 2.4755 2.5412 2.6072 2.6735 2.7402 2.8071 2.8743 170 2.1240 2.1537 2.1836 2.2439 2.3644 2.4284 2.4072 2.5534 2.6164 2.6772 2.7433 180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.7003 25.0000 25.0000 25.0000 2.5145 2.5763 2.6384 2.7003 25.0000 27.1312 5 27.0238 2.4530 2.5145 2.5763 2.6384 2.7003 10 26.7041 15 25.4661 30 23.5405 40 21.1124 50 5.4576 10 5.4298 70 12.9923 30 10.6321 90 8.6296 100 7.057 110 5.7364								3.4072				3.0003	3.7372
160 2.2183 2.2499 2.2816 2.3456 2.4103 2.4755 2.5412 2.6072 2.6735 2.7402 2.8071 2.8741 170 2.1240 2.1537 2.1836 2.2439 2.3049 2.3664 2.4284 2.4907 2.5534 2.6164 2.6797 2.7433 180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.7007 25.0000 27.1312 5 27.0238 2.5145 2.5763 2.6384 2.7007 26.7041 15 26.1805 20 25.4661 30 23.5405 40 4.4530 4.530													2 1055
170 2.1240 2.1537 2.1836 2.2439 2.3049 2.3664 2.4907 2.5534 2.6164 2.6797 2.743 180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.7007 25.0000 27.1312 5 27.0238 2.4510 2.5145 2.5763 2.6384 2.7007 5 27.0238 10 26.7041 15 26.1805 20 25.4661 30 23.5405 40 21.1124 40 21.1124 40 21.1124 40 21.1124 40 40.6321 40.6321 40.6321 40.6321 40.6321 40.6321 40.6321 40.6321 40.6381 40.63												2 9071	
180 2.0934 2.1225 2.1518 2.2109 2.2707 2.3310 2.3918 2.4530 2.5145 2.5763 2.6384 2.700 25.0000 0 27.1312 5 27.0238 1													
25.0000 0 27.1312 5 27.0238 10 26.7041 15 26.1805 20 25.4661 30 23.5405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.8068													
0 27.1312 5 27.0238 10 26.7041 15 26.1805 20 25.4661 30 23.5405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068	100		2.1225	2.1516	2.2107	2.2/0/	2.0010	2.3710	2.4330	2.5145	2.5705	2.0004	2.7007
5 27.0238 10 26.7041 15 26.1805 20 25.4661 30 23.5405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068	•												
10 26.7041 15 26.1805 20 25.4661 30 23.5405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
15 26.1805 20 25.4661 30 23.5405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
20 25.4661 30 23.5405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
30 23.5405 40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
40 21.1124 50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
50 18.4013 60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
60 15.6298 70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
70 12.9923 80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
80 10.6321 90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
90 8.6296 100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
100 7.0057 110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
110 5.7364 120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
120 4.7726 130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
130 4.0581 140 3.5411 150 3.1793 160 2.9415 170 2.8068													
140 3.5411 150 3.1793 160 2.9415 170 2.8068													
150 3.1793 160 2.9415 170 2.8068													
160 2,9415 170 2,8068													
170 2,8068													

TABLE IV (continued)

TABLE V	
$D + H^3 \longrightarrow He^4 + n$	
2.0147400 + 3.0170050 → 4.0038730 +	1.0089861

						Daubana E.						
0						Deuteron Er	nergy					
θ	- 1000	0.0000	0.0000	0 4000	0 5000	0 (000	0 7000	0 0000	0,9000	1.0000	1.1000	1.2000
	0.1000	0.2000	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	0.9000	1.0000	1.1000	1.2000
•	14 75/0	10.0007	10.0471	15 10/1	16 0064	14 0000	14 0010	14 4052	16.5815	16.7523	16.9175	17,0784
0	14.7569	15.0937	15.3671	15.6064	15.8254	16.0289	16.2212	16.4053				
5	14.7542	15,0898	15.3623	15.6007	15.8190	16.0218	16.2134	16.3969	16.5725	16.7428	16.9074	17.0678
											16.8773	17,0361
10	14.7462	15.0782	15.3478	15.5838	15.7998	16.0005	16.1903	16.3718	16.5457	16.7143		
15	14.7329	15.0589	15.3238	15.5557	15.7681	15.9653	16.1519	16.3304	16.5014	16.6672	16.8275	16,9836
									14 4400			16,9110
20	14.7143	15.0322	15.2906	15.5168	15.7240	15.9166	16.0987	16.2730	16.4400	16.6019	16.7585	
30	14.6625	14.9574	15.1975	15.4081	15.6010	15.7805	15.9503	16,1129	16.2687	16.4199	16.5662	16.7087
40	14.5923	14.8565	15.0722	15.2617	15.4356	15.5975	15.7510	15.8980	16.0391	16.1760	16.3086	16.4379
50	14.5064	14.7331	14.9191	15.0831	15.2340	15.3749	15.5087	15.6371	15.7604	15.8802	15.9965	16.1099
60	14,4074	14.5914	14.7436	14.8788	15.0038	15.1209	15.2326	15.3400	15.4435	15.5443	15.6422	15.7380
70	14,2987	14.4362	14.5519	14.6560	14.7530	14.8448	14.9328	15.0178	15.1002	15,1807	15.2593	15.3364
			14.3317									
80	14.1837	14.2725	14.3503	14.4221	14.4904	14.5561	14.6197	14.6819	14.7428	14.8026	14.8615	14.9197
90	14.0661	14.1058	14.1454	14.1849	14.2245	14.2641	14,3038	14.3434	14.3829	14.4225	14.4621	14.5017
									14.0320	14.0523	14.0735	14.0955
100	13.9495	13.9409	13.9434	13.9517	13,9635	13.9781	13.9947	14.0127				
110	13.8374	13.7830	13.7503	13.7292	13.7151	13.7063	13.7015	13.6994	13.7000	13.7024	13.7068	13.7127
										13.3823	13.3716	13,3632
120	13,7330	13.6364	13.5716	13.5237	13.4860	13.4562	13.4320	13.4119	13.3957			
130	13.6394	13,5053	13.4121	13.3407	13.2824	13.2342	13.1932	13.1574	13.1267	13.0995	13.0759	13.0552
										12,8604	12.8261	12.7951
140	13.5591	13.3932	13.2760	13.1847	13.1091	13.0455	12.9905	12.9418	12.8990			
150	13.4942	13.3029	13.1666	13.0596	12,9703	12.8945	12.8284	12.7695	12.7172	12.6697	12.6270	12.5882
								12.6441	12.5850	12.5311	12.4825	12.4379
160	13.4467	13.2368	13.0866	12.9682	12.8690	12.7844	12.7103					
170	13.4177	13.1965	13.0378	12.9125	12.8073	12.7175	12.6386	12.5679	12.5047	12.4470	12.3948	12,3468
									12.4778	12.4189	12.3654	12.3163
180	13.4079	13,1829	13.0214	12.8938	12.7866	12 .69 50	12.6145	12.5423	12.4//0	12.4107	12.0004	12.0100
	1 0000	1 4000	1 5000	1 (000	1 7000	1 0000	1 0000	2,0000	2.1000	2.2000	2,3000	2,4000
	1.3000	1.4000	1.5000	1.6000	1,7000	1.8000	1.9000	2.0000	2.1000	2.2000	2.0000	2.4000
^	17 0000	17 0004	17.5403	17 (007	17 0044	17.9780	18,1194	18,2589	18.3970	18,5332	18.6680	18.8018
0	17.2359	17.3896	17.3403	17.6887	17.8346							
5	17.2248	17.3779	17.5281	17.6761	17.8215	17,9644	18,1053	18.2444	18,3821	18.5179	18.6522	18.7855
							18.0635	18,2012	18.3375	18,4720	18.6051	18.7371
10	17,1915	17.3432	17.4919	17.6384	17.7824	17.9239						
15	17.1365	17,2857	17.4320	17.5761	17.7178	17.8570	17.9943	18,1297	18,2639	18.3962	18.5271	18.6570
				17.4898	17.6283	17.7644	17,8985	18,0309	18,1621	18,2914	18,4193	18,5463
20	17.0603	17.2061	17.3491									
30	16.8482	16.9845	17.1182	17.2499	17.3794	17.5067	17.6323	17.7562	17.8790	18,0001	18.1199	18.2388
	16,5645	16.6882	16.8097	16.9293	17.0471	17.1628	17.2771	17.3899	17.5016	17.6119	17.7210	17.8293
40												
50	16,2211	16.3299	16.4368	16.5421	16.6458	16.7479	16.8487	16.9483	17.0469	17.1444	17.2409	17.3367
60	15.8321	15.9242	16.0149	16.1044	16.1926	16.2795	16.3654	16.4504	16.5347	16.6180	16.7006	16.7826
70	15.4124	15.4870	15.5606	15.6333	15.7052	15.7763	15.8466	15.9163	15.9855	16.0541	16.1221	16.1898
80	14,9772	15.0341	15.0905	15.1464	15.2018	15.2569	15.3116	15.3660	15.4201	15.4739	15.5275	15.5808
												14.9766
90	14.5413	14.5809	14 .620 5	14.6600	14.6996	14.7392	14.7788	14.8184	14.8579	14.8975	14.9371	
100	14,1181	14.1414	14.1653	14.1895	14.2140	14.2392	14.2646	14.2904	14.3164	14.3427	14.3693	14,3961
										13.8248	13.8398	13.8551
110	13.7198	13.7282	13.7376	13.7478	13.7588	13.7708	13.7834	13.7967	13.8104			
120	13.3565	13.3517	13.3483	13.3462	13.3452	13.3456	13.3470	13.3494	13.3524	13.3564	13.3611	13.3664
							12.9649	12,9580	12,9519	12.9471	12.9432	12,9400
130	13.0366	13,0205	13.0063	12.9936	12.9825	12.9730						
140	12,7668	12.7414	12.7183	12.6970	12.6775	12.6601	12.6442	12.6297	12.6162	12.6042	12.5934	12.5834
			12.4896	12.4616	12.4357	12.4120	12.3901	12.3698	12.3506	12.3332	12.3170	12.3017
150	12.5523	12.5197										
160	12.3966	12.3588	12,3238	12.2911	12.2606	12.2325	12.2063	12.1819	12.1587	12.1373	12.1174	12.0984
170	12.3023	12.2614	12.2235	12,1879	12.1546	12.1239	12.0952	12,0683	12.0427	12,0191	11.9968	11.9757
180	12.2707	12.2288	12.1898	12.1533	12,1191	12.0876	12.0580	12.0303	12.0039	11.9795	11.9565	11.9346
											0 5000	a (aaa
	2.5000	2.6000	2.7000	2.8000	2.9000	3.0000	3.1000	3.2000	3.3000	3.4000	3.5000	3.6000
	10 0000	10 0/-0	10 1070	10 000-	10:4010	10 5700	10 7047	10 0001	10 0545	20.0783	20,2013	20.3234
0	18.9339	19.0652	19.1950	19.3237	19.4519	19.5788	19.7047	19.8301	19.9545			
5	18.9172	19.0481	19.1775	19.3058	19.4336	19.5601	19.6856	19.8106	19.9345	20.0580	20.1806	20.3023
										19.9974	20,1187	20.2394
10	18.8675	18,9971	19.1253	19.2524	19.3789	19.5042	19.6285	19.7523	19.8751			
15	18.7854	18,9129	19.0390	19,1641	19.2886	19.4118	19.5342	19.6561	19.7768	19.8972	20.0166	20.1354
					19,1638	19.2843	19.4039	19.5230	19.6411	19.7588	19.8756	19,9917
20	18.6718	18.7964	18,9198	19.0420								
30	18.3563	18,4731	18.5887	18.7032	18.8173	18,9302	19.0424	19.1540	19.2648	19.3751	19.4846	19.5934
40	17.9364				18.3567	18.4597	18.5620	18.6639	18.7649	18.8656	18.9656	19.0650
		18.0428	18.1482	18.2526								
50	17.4315	17.5257	17.6190	17.7115	17.8037	17.8951	17,9858	18.0762	18.1659	18.2553	18.3440	18.4323
60		16.9446	17.0247	17.1042	17.1834	17.2620	17.3400	17.4178	17.4951	17.5721	17.6486	17.7247
	16.8638											
70	16.2569	16.3237	16.3901	16.4559	16.5217	16.5870	16.6520	16.7167	16.7810	16.8453	16.9092	16.9728
80	15.6338	15.6867	15.7394	15.7918	15.8442	15.8963	15,9483	16.0001	16.0517	16.1033	16.1547	16.2060
90	15.0162	15.0557	15.0953	15.1348	15.1745	15.2140	15.2536	15.2931	15.3326	15.3722	15.4118	15.4513
100	14.4231	14.4504	14.4778	14.5054	14.5333	14.5613	14.5894	14.6176	14.6460	14.6745	14.7033	14.7321
110	13.8709	13.8870	13.9036	13.9206	13.9379	13.9556	13.9735	13.9917	14.0102	14.0289	14.0480	14.0673
120	13.3724	13.3789	13.3862	13.3939	13.4021	13.4108	13.4200	13.4294	13,4394	13,4497	13.4605	13,4716
130	12.9378	12.9363	12.9356	12.9356	12,9361	12.9374	12.9392	12.9414	12,9443	12.9475	12.9515	12.9557
140	12.5746	12.5665	12.5594	12.5532	12.5476	12.5428	12.5388	12.5351	12,5323	12.5299	12.5283	12.5271
						10 000		10 01 51				
150	12.2878	12.2746	12.2627	12.2517	12.2414	12.2321	12.2235	12.2154	12,2083	12.2016	12.1958	12.1905
160	12.0809	12.0642	12.0489	12.0345	12.0209	12.0083	11,9966	11.9854	11.9752	11,9656	11.9568	11.9486
												11,8030
170	11.9560	11.9372	11.9199	11.9035	11.8879	11.8735	11.8599	11.8468	11.8348	11.8234	11.8129	
180	11.9142	11.8948	11.8768	11.8597	11.8435	11.8284	11.8142	11.8006	11.7880	11.7759	11.7649	11.7544
						11.02.04						
harmoni yi aliyogi ka sa ka				the second s								

TABLE V (continued)

θ	3.7000	3,8000	3.9000	4,0000	4,1000	4.2000	4.3000	4.4000	4.5000	4.6000	4.7000	4
							<u></u>	01 0004		01 5144	01 (010	
õ	20.4452	20.5662	20.6864	20.8065 20.7839	20.9256 20.9026	21.0443 21.0209	21.1628 21.1390	21.2804 21.2563	21.3976 21.3731	21.5144 21.4896	21.6310 21.6057	21 21
5	20.4237 20.3596	20.5443 20.4790	20.6642 20.5978	20,7839	20,9028	20.9511	21.0681	21,1843	21.3000	21.4070	21.5304	21
10				20.7183	20.8337	20.8358	20.9510	21.0653	21.1792	21,2927	21.4059	21
15	20.2537	20.3712 20.2223	20.4881 20.3366	20,8047	20.7203	20.6356	20.7893	20,9011	21,0124	21,1235	21.2342	21
20	20.1074				20.5639 20.1300	20.2358		20.4463	20,5508	20.6550	20.7589	20
30	19,7019	19.8097	19.9169	20.0239	20.1300	19.6518	20.3414		19,9396	20.0350	20.1387	20
40	19.1640	19.2625	19.3604	19.4581	19.5551		19.7483	19.8441				10
50	18.5203	18.6078	18.6948	18.7817	18,8679	18.9539	19.0397	19.1250	19.2100	19.2948	19.3793	19
60	17,8007	17.8762	17.9514	18.0264	18,1010	18.1753	18.2496	18.3234	18.3970 17.5364	18.4704 17.5981	18.5436	18 17
70	17.0362	17.0995	17.1624	17.2253	17.2878	17.3502	17.4125	17.4745			17.6597	
80	16.2571	16.3082	16.3592	16.4100	16.4607	16.5114	16.5620	16.6124	16.6628	16.7131	16.7633	16 15
90	15.4908	15.5304	15.5700	15.6095	15.6490	15.6886	15.7281	15.7676	15.8072	15.8468	15.8862	15
100	14.7609	14.7900	14.8191	14.8483	14.8776	14.9071	14.9366	14.9662	14.9959 14.2498	15.0257 14.2710	15.0554 14.2922	15
110	14.0867	14.1064	14.1264	14.1464	14.1667	14.1873	14.2079	14.2288				14
120	13,4829	13.4947	13.5067	13.5190	13.5315	13.5445	13.5575	13.5709	13.5846	13.5985	13.6124	13
130	12.9603	12.9655	12.9710	12.9768	12.9830	12.9896	12.9964	13.0037	13.0112	13.0191	13.0271	13.
140	12.5263	12.5262	12.5265	12.5271	12.5283 12.1719	12.5299	12.5318	12.5341	12.5368	12.5399	12.5431	12
150	12,1856	12,1815	12.1779	12.1746	12.1719	12.1697	12.1678	12.1664	12.1655	12.1650	12.1646	12.
160	11.9409	11.9340	11.9276	11.9215	11.9162	11.9114	11.9068	11.9029	11.8994	11.8965	11.8936	11.
170	11.7936	11.7850	11.7770	11.7694	11.7624	11.7561	11.7500	11.7446	11.7396	11.7351	11.7308	11.
180	11.7444	11.7353	11.7268	11.7186	11.7111	11.7042	11.6977	11.6918	11.6863	11.6813	11.6765	11
	4.9000	5.0000	5.1000	5.2000	5.3000	5.4000	5.5000	5.6000	5.7000	5.8000	5.9000	6
0	21,8626	21.9778	22.0925	22.2072	22,3212	22.4349	22.5483	22.6615	22.7742	22.8867	22.9991	23.
5	21,8367	21.9778	22.0658	22,1801	22.2938	22.4071	22.5201	22.6330	22.7454	22.8575	22.9696	23
10	21.7591	21.8728	21.9861	22.0993	22.2119	22.3242	22,4361	22.5480	22.6592	22.7703	22,8813	22
15	21.6311	21.8/28	21.8545	21.9659	22.0768	22.1872	22.2974	22.4075	22.5170	22.6264	22.7357	22
20	21.4544	21.5638	21.6729	21.7819	21.8903	21.9983	22.1061	22.2138	22,3209	22.4279	22.5347	22
30	20.9655	21,0681	21.1705	21.2727	21.3745	21.4759	21.5770	21.6781	21.7786	21.8790	21.9793	22
40		20,4126	20.5062	20.5997	20.6928	20.7855	20.8781	20.9705	21.0625	21.1543	21.2461	21
	20.3187			19.7978	19.8808	19.9634	20.0459	20.1283	20,2103	20.2922	20.3740	20.
50	19.5475	19.6312 18.7618	19.7146 18.8342	18,9064	18,9783	19.0501	19.1217	19.1932	19.2644	19.3356	19.4067	19.
60	18.6893	17.8435	17,9045	17.9654	18.0262	18.0868	18,1473	18.2077	18,2679	18,3281	18.3882	18
70 80	17.7824		16.9634	17.0132	17.0631	17.1128	17.1624	17.2120	17.2615	17.3111	17.3605	17
	16.8635	16.9135		16.0838	16.1234	16.1629	16.2024	16.2419	16.2814	16.3209	16.3605	16
90	15.9652	16.0048	16.0444 15.1755	15.2056	15.2359	15,2662	15.2966	15.3269	15.3573	15.3879	15.4185	15.
100	15.1153	15.1453		14.4008	14.4230	14.4452		14.4900	14.5125	14.5353	14.5580	14
110	14.3352	14.3570	14.3789 13.6708	13.6857	13.7010	13.7164	14.4676	13.7477	13.7636	13.7797	13.7959	13
120	13.6411	13.6559			13.7010	13.0909	13.7321		13.1215	13.1323	13.1430	13
130	13.0440	13.0529	13.0621	13.0714	13.0810	13.0909	13.1010	13.1111	10.1215	13.1323	13.1430	10
140	12.5507	12.5551	12.5597	12.5645	12.5697	12.5751	12.5809	12.5866	12.5928	12.5993 12.1839	12.6058 12.1872	12.
150	12.1652	12,1661	12.1674	12.1687	12.1706	12.1727	12.1752	12.1777			12.18/2	12.
160	11.8893	11,8878	11.8867	11.8857	11.8852	11.8851	11.8853	11.8855	11.8862	11.8873	11.8885	11.
170	11.7237	11.7208	11.7183	11.7159	11.7141	11.7126	11.7114	11.7104	11.7097	11.7095	11.7094	11.
180	11.6684	11.6651	11.6621	11.6593	11.6570	11.6551	11.6535	11.6520	11.6510	11.6503	11.6498	11.
	6.1000	6.2000	6.3000	6.4000	6.5000	6.6000	6.8000	7.0000	7.2000	7.4000	7.6000	7.
0	23.2226	23.3342	23.4452	23.5561	23.6669	23.7772	23.9972	24.2166	24.4351	24.6529	24.8696	25.
5	23.1923	23.3036	23.4142	23.5248	23.6353	23.7452	23.9645	24.1832	24.4010	24.6181	24.8341	25.
10	23.1019	23.2122	23.3218	23.4312	23.5407	23.6496	23.8669	24.0835	24.2993	24.5143	24.7283	24
15	22.9528	23.0613	23.1692	23.2770	23.3847	23,4919	23.7057	23.9190	24.1314	24.3431	24.5537	24.
20	22.7471	22.8532	22,9588	23.0642	23.1696	23.2744	23.4836	23.6922	23.8999	24.1070	24.3130	24
30	22.1787	22,2783	22.3773	22,4763	22.5752	22.6737	22.8700	23.0659	23.2609	23.4553	23.6487	23.
40	21.4285	21.5197		21,7009	21.7914	21.8816	22.0613	22,2406	22.4191	22,5971	22.7743	22.
50	20.5368	20,6181	20.6990	20.7798	20,8606	20,9410	21,1015	21.2615	21.4209	21.5799	21.7381	21.
60	19.5481	19.6188	19.6891	19.7595	19.8297	19.8997	20.0394	20.1787	20.3176	20.4561	20.5940	20,
70	18,5080	18.5679	18,6274	18.6871	18,7466	18,8060	18,9245	19.0428	19,1608	19.2785	19.3958	19
80	17.4592	17.5086	17.5577	17.6070	17.6561	17.7052	17.8032	17.9012	17,9989	18.0965	18,1939	18
90	16.4395	16.4790	16.5184	16.5580	16.5975	16.6370	16.7159	16.7950	16.8739	16.9529	17.0318	17
100	15,4798	15.5105	15.5412	15.5720	15.6028	15.6337	15.6956	15.7577	15.8198	15.8822	15.9446	16
110	14,6039	14.6269	14.6500	14.6734	14.6966	14,7201	14.7671	14.8145	14,8621	14,9101	14.9583	15
120	13.8287	13.8453	13.8620	13.8790	13,8959	13.9131	13.9477	13.9828	14.0182	14.0541	14.0904	14
130	13,1653	13.1766	13,1881	13.1999	13.2117	13.2237	13.2482	13.2733	13.2988	13.3249	13.3516	13
140	12.6197	12,6269	12.6343	12.6420	12.6497	12.6578	12.6744	12.6916	12.7094	12.7279	12.7470	12.
150	12.1949	12.1990	12.2034	12.2081	12.2128	12.0378	12.2285	12.2399	12.2520	12.2648	12.2783	12.
160	11.8918	11.8938	11.8960	11.8986	11.9012	11.9042	11.9109	11.9182	11.9263	11.9352	11.9449	iî.
170	11,7102	11.7109	11.7119	11.7133	11.7147	11.7165	11.7208	11.7258	11.7316	11.7382	11.7456	- ii:
180	11.6498	11.6501	11.6507	11,6516	11.6526	11,6540	11.6575	11.6617	11.6668	11.6726	11.6793	- ii:
100	11.0470	11,0001	11.0007	11,0010	11.0020	11,0040	11.00/0	11.001/	11,0000	11.0/20	11.0/70	

TABL	.E V	(contin	ived)
------	------	---------	-------

160 11.9642 11.9962 12.0296 12.0662 12.1474 12.1916 12.2380 12.3363 12.3880 170 11.7625 11.7872 11.8153 11.8469 11.8813 11.9122 11.9577 11.9994 12.0431 12.0887 12.1359 180 11.6948 11.7177 11.7441 11.7740 11.8068 11.912 11.9577 11.9202 11.9624 12.0065 12.0523 14.0000 14.5000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 21.0000 22.0000 23.0000 0 31.5521 32.0601 32.5672 33.5776 34.5837 35.5858 36.5847 37.5807 38.5739 39.5644 40.5530 5 31.4955 32.0020 32.5074 33.5146 34.5176 35.5165 36.5122 37.5051 38.4951 39.4825 40.4679 10 31.3249 31.8286 32.0357 33.0177 33.9956 34.9695 35.9403 36.9083 37.8734 38.8361 39.7231 30 29.6159 30.06667	
8.0000 8.5000 9.0000 9.5000 10.0000 10.5000 11.5000 12.5000 13.0000 0 25.3013 25.8371 25.3645 25.786 26.8955 27.4244 27.9478 28.4686 28.9871 29.5036 30.0181 30.5312 10 25.1546 25.6837 26.2074 26.7373 27.2510 27.97026 28.2821 28.78741 29.3041 <th< th=""><th></th></th<>	
5 25,2445 25,7986 26,3293 26,8566 27,3009 27,9026 28,217 28,2821 28,7941 29,3041 29,8122 30,3189 10 25,1546 25,6837 26,2094 26,7317 27,2510 27,7679 28,2821 28,7941 29,0579 29,5580 30,0568 20 24,7733 25,2329 25,7391 26,2420 26,7421 27,2398 27,7349 28,2280 28,7190 29,2082 29,6961 0 24,0311 24,5125 24,979 25,4602 25,9298 26,3972 26,8622 27,7865 28,2460 28,7042 40 23,1272 23,5554 24,0008 24,4336 24,8639 25,2922 25,7183 26,1428 26,5555 26,9867 27,4067 50 22,0535 22,4411 21,8838 22,2246 22,5975 22,8930 23,2254 23,2066 24,2159 70 19,6298 19,9209 20,2106 20,4992 20,7866 21,0729 21,3833 21,6429 21,9266 22,2066 22,0766 21,9796 18,1760 18,3731<	13.5000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	31.0424
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30.9875
20 24,7234 25,2329 25,7391 26,2420 25,7292 27,7349 28,2280 28,7190 29,2082	30.8236
30 24,0341 24,5125 24,9879 25,4602 25,9298 26,3972 26,8622 27,3253 27,7865 28,2460 28,7042 40 23,1272 23,5654 24,0008 24,4336 24,8639 25,2922 25,7183 26,1428 26,5555 22,69867 25,5061 25,8987 25,9984 24,370 24,7506 25,1290 25,5061 25,8821 60 20,8689 21,2106 21,5503 21,883 22,2246 22,5595 22,8930 23,2254 23,5565 23,8866 24,2159 70 19,6298 19,9209 20,2106 20,4992 20,7866 21,0729 21,3583 21,0429 20,5485 22,0966 22,4920 80 18,3884 18,6308 18,8724 19,1135 19,5337 19,8331 20,0720 20,3104 20,5485 20,7862 90 17,1898 17,3871 17,7817 17,79799 18,1760 18,3731 18,5737 18,9643 19,1613 100 16,0700 16,2272 16,3850 16,5435 16,7025 14,7526 14,8555 14,	30.5536
40 23,1272 23,554 24,0008 24,433 24,8439 25,222 25,7183 26,1428 26,5655 26,9867 27,4067 50 22,0535 22,4451 22,8343 23,2213 23,6062 23,9894 24,3707 24,7506 25,1290 25,5061 25,8821 60 20,8689 21,2106 21,5503 21,8883 22,2246 22,5595 22,8930 23,2254 23,5565 23,8866 24,2159 70 19,6298 19,9209 20,2106 20,4992 20,7864 21,0729 21,3583 21,6429 21,9266 22,2096 22,4920 80 18,384 18,6308 18,8724 19,1135 19,5339 19,5937 16,8313 16,4729 16,3415 17,5044 17,5044 17,5044 17,5034 17,6464 10 15,0555 15,782 15,3022 15,4274 15,5536 16,6507 15,8075 14,8555 14,9594 15,0643 15,1702 10 14,1641 14,2581 14,3538 14,414 14,5505 14,6507 14,8555 14,9594 15,0643 <td>30,1821 29,1607</td>	30,1821 29,1607
50 22.0535 22.4451 22.8343 23.2213 23.6062 23.9894 24.3707 24.7506 25.1290 25.5061 25.8821 60 20.8689 21.2106 21.5503 21.8883 22.2244 22.5595 23.8264 22.4920 70 19.6278 19.7209 20.3104 20.7766 21.0729 21.3583 21.6429 21.7266 22.0996 22.4920 80 18.3884 18.6308 18.8724 19.1135 19.3539 19.5937 19.8331 20.0720 20.3104 20.5485 20.7862 90 17.1898 17.7817 17.7817 17.9789 18.17001 18.3703 18.7673 18.9643 19.1613 100 16.0700 16.2272 16.3850 16.4545 15.7022 15.8974 16.0671 16.1973 16.3281 120 14.1641 14.2581 14.3538 14.4514 14.5505 14.6509 14.7526 14.8555 14.9594 15.0433 15.1702 130 13.4043 13.4770 13.5501 13.6224 13.7274 13.3613 13.7027 </td <td>27.8252</td>	27.8252
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.2569
80 18.3884 18.6308 18.6724 19.1135 19.5339 19.5937 19.8331 20.0720 20.3104 20.5485 20.7862 90 17.1898 17.3871 17.5844 17.7817 17.7979 18.1760 18.3731 18.5703 18.7673 18.9643 19.1613 100 16.0270 16.3252 15.4274 15.5536 15.6807 15.9376 16.0671 16.1973 16.3281 110 15.0555 15.1782 15.3022 15.4274 15.5536 15.6807 15.9376 16.0671 16.1973 16.3281 120 14.1641 14.2581 14.3538 14.4514 14.5505 14.6509 14.7526 14.8555 14.9594 15.0643 15.1702 130 13.4063 13.4770 13.8075 13.0135 13.0758 13.1402 13.2064 13.2742 13.3434 13.4140 150 12.3072 12.3464 12.3887 12.4820 12.52321 12.8845 12.6631 12.3633 12.3830 12.3830 12.3843 12.3843 12.3843 12.3840 12.9846 <t< td=""><td>24.5441</td></t<>	24.5441
90 17.1898 17.3871 17.5844 17.7817 17.9789 18.1760 18.3731 18.5703 18.7673 18.9643 19.1613 100 16.0700 16.2272 16.3830 16.5435 16.7025 16.8619 17.0217 17.1819 17.3425 17.5034 17.6646 110 15.0555 15.1782 15.3022 15.4274 15.5536 15.6807 15.8087 14.8555 14.0571 16.1272 16.3281 120 14.1641 14.2581 14.3538 14.4514 14.5505 14.6509 14.7526 14.8555 14.0280 14.1128 14.1973 16.3281 120 14.1641 14.2581 14.8505 13.0727 13.7816 13.8623 13.9445 14.0280 14.1128 14.1987 140 12.7869 12.8396 12.8950 12.9531 13.0135 13.7027 13.7028 12.3204 13.2742 13.3434 13.410 150 12.3072 12.3641 12.4820 12.5277 12.9991 12.0531 12.3633 12.3880 170 11.7625 11.7972	22.7737
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.0236
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19.3582 17.8260
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.4594
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.2768
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,2857
160 11.9662 11.9962 12.0296 12.0662 12.1474 12.1916 12.2380 12.3363 12.3880 170 11.7625 11.7872 11.8153 11.8469 11.8813 11.9122 11.9577 11.9994 12.0431 12.0887 12.1359 180 11.6948 11.7177 11.7441 11.7740 11.8068 11.9122 11.9577 11.9202 11.9624 12.0065 12.0523 14.0000 14.5000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 21.0000 22.0000 23.0000 0 31.5521 32.0601 32.5672 33.5776 34.5837 35.5858 36.5847 37.5807 38.5739 39.5644 40.5530 5 31.4955 32.0020 32.5074 33.5146 34.5176 35.5165 36.5122 37.5051 38.4951 39.4825 40.4679 10 31.3286 32.0357 33.0177 33.9956 34.9695 35.9403 36.9083 37.8734 38.8361 39.7967 30 29.6159 30.06964 30.522	13.4859
170 11.7625 11.7872 11.8153 11.8469 11.8813 11.9182 11.9577 11.9994 12.0431 12.0887 12.1359 180 11.6948 11.7177 11.7741 11.7740 11.8068 11.8421 11.8800 11.9202 11.9624 12.0431 12.0887 12.0523 14.0000 14.5000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 21.0000 22.0000 23.0000 0 31.5521 32.0601 32.5672 33.5776 34.5837 35.5858 36.5847 37.5807 38.5739 39.5644 40.5530 5 31.4955 32.0020 32.5074 33.5163 34.5176 35.5165 36.5122 37.5051 38.4951 39.4825 40.4679 10 31.3269 31.3269 34.3204 35.3098 36.9261 37.2795 38.2602 39.2322 40.2142 15 31.0490 31.5428 32.0357 33.0177 33.9956 34.9695 35.9403 36.9083 37.8734 38.835 39.2231 30 6667	12.8731
180 11.6948 11.7177 11.7441 11.7740 11.8068 11.8421 11.8800 11.9202 11.9624 12.0065 12.0523 14.0000 14.5000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 21.0000 22.0000 23.0000 0 31.5521 32.0601 32.5672 33.5776 34.5837 35.5858 36.5847 37.5807 38.5739 39.5644 40.5530 5 31.4975 32.0020 32.5074 33.5146 34.5176 35.5165 36.5122 37.5501 38.4951 39.4825 40.4679 10 31.3269 31.8286 32.3273 33.9756 34.9695 35.9403 36.9083 37.8734 38.8361 39.7874 20 30.6667 31.1497 31.6318 32.5924 33.2177 33.9766 34.9695 35.9403 36.9083 37.8734 38.2835 39.2231 30 29.6157 30.0696 30.5224 31.4245 32.32177 31.1975	12.4413
14.0000 14.5000 15.0000 16.0000 17.0000 18.0000 19.0000 20.0000 21.0000 22.0000 23.0000 0 31.5521 32.0601 32.5672 33.5776 34.5837 35.5858 36.5847 37.5807 38.5739 39.5644 40.5530 5 31.4955 32.0020 32.5074 33.5146 34.5176 35.5165 36.5122 37.5051 38.4951 39.4825 40.4679 10 31.3269 31.8286 32.3292 33.2269 34.3204 35.3098 36.2961 37.2795 38.2602 39.2382 40.2142 15 31.0490 31.5428 32.0357 33.0177 33.9956 34.6969 35.9403 36.9083 37.8734 38.8361 39.7967 20 30.6667 31.1497 31.6318 32.5924 33.5489 34.5016 35.4511 36.3979 37.3420 38.2833 39.2231 30 29.6159 30.0696 30.5224 31.4245 32.3229 33.2177 34.1995 34.9986 35.8852 36.7694 37.6516 40 <td>12.1848</td>	12.1848
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.0998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41.5396
15 31.0490 31.5428 32.0357 33.0177 33.9956 34.9695 35.9403 36.9083 37.8734 38.8361 39.7967 20 30.6667 31.1497 31.6318 32.5924 33.5489 34.5016 35.4511 36.3979 37.3420 38.235 39.2231 30 29.6159 30.0666 30.5224 31.4245 32.3229 33.2177 34.1095 34.9986 35.8852 36.7694 37.6516 40 28.2424 28.6584 29.0735 29.906 30.7243 31.5447 32.3623 33.1776 33.9904 34.8011 35.46516 50 26.6306 27.0031 27.3750 28.1160 28.8540 29.5892 30.3179 31.0526 31.7812 32.5078 33.2329 60 24.8715 25.1980 25.5239 26.1736 26.8208 27.4657 28.1087 28.7499 29.3894 30.0274 30.6640 70 23.0547 23.3352 23.6152 24.1737 24.7304 25.2854 25.8391 26.93915 26.9427 27.4927 28.0417	41.4514
20 30.6667 31.1497 31.6318 32.5924 33.5489 34.5016 35.4511 36.3979 37.3420 38.2835 39.2231 30 29.6159 30.0696 30.5224 31.4245 32.3229 33.2177 34.1095 34.9986 35.8852 36.7694 37.6516 40 28.2424 28.6584 29.0735 29.9006 30.7243 31.5447 32.3209 33.1776 33.9904 34.8011 35.6100 50 26.6306 27.0031 27.3750 28.1160 28.8540 29.5892 30.219 31.0526 31.7812 32.5078 33.2299 60 24.8715 25.1980 25.5239 26.1736 26.8208 27.4657 28.1087 28.7499 29.3894 30.0274 30.6640 70 23.0547 23.3352 23.6152 24.1737 24.7304 25.2854 25.891 26.9427 27.4927 28.0417 80 21.2606 21.4972 21.7337 22.2056 22.6767 23.1467 23.6162 24.95524 25.0195 25.4860 90 19.5551	41.1884
30 29,6159 30.0696 30.5224 31.4245 32.3229 33.2177 34.1095 34.9986 35.8852 36.7694 37.6516 40 28.2424 28.6584 29.0735 29.9006 30.7243 31.5447 32.3233 33.1776 33.9904 34.8011 35.6100 50 26.6306 27.0031 27.3750 28.1160 28.8540 29.5892 30.3219 31.0526 31.7812 32.5078 33.2329 60 24.8715 25.1980 25.5239 26.1736 26.8208 27.4657 28.1087 28.7499 29.3894 30.0274 30.6640 70 23.0547 23.3352 23.6152 24.1737 24.7304 25.2854 25.8391 26.3915 26.9427 27.4927 28.0417 80 21.2606 21.4772 21.7337 22.2056 22.6767 23.1467 23.6160 24.0845 24.5524 25.0195 25.4860 90 19.5551 19.7519 19.9488 20.3422 20.7355	40.7555 40.1608
40 28,2424 28,6584 29,0735 29,9006 30,7243 31,5447 32,3623 33,1776 33,9904 34,8011 35,6100 50 26,6306 27,0031 27,3750 28,1160 28,8540 29,5892 30,3219 31,0526 31,7812 32,5078 33,2329 60 24,8715 25,1980 25,5239 26,1736 26,8208 27,4657 28,1087 28,7499 29,3894 30,0274 30,6640 70 23,0547 23,3352 23,6152 24,1737 24,7304 25,2854 25,8391 26,9427 27,4927 28,0417 80 21,2606 21,4772 21,7337 22,2056 22,6767 23,1467 23,6160 24,0845 24,5524 25,0195 25,4860 90 19,5551 19,7519 19,9488 20,3422 20,7355 21,1286 21,5216 21,9144 22,3070 22,6995 23,0918	38,5321
50 26.6306 27.0031 27.3750 28.1160 28.8540 29.5892 30.3219 31.0526 31.7812 32.5078 33.2329 60 24.8715 25.1980 25.5239 26.1736 20.8208 27.4657 28.1087 28.7499 29.3894 30.0274 30.6640 70 23.0547 23.3352 23.6152 24.1737 24.7304 25.2854 25.8391 26.9427 27.4927 28.0417 80 21.2606 21.4972 21.7337 22.2056 22.6767 23.1467 23.6160 24.9845 24.5524 25.0195 25.4860 90 19.5551 19.7519 19.9488 20.3422 20.7355 21.1286 21.9144 22.3070 22.6995 23.0918	36.4173
60 24.8715 25.1980 25.5239 26.1736 26.8208 27.4657 28.1087 28.7499 29.3894 30.0274 30.6640 70 23.0547 23.3352 23.6152 24.1737 24.7304 25.2854 25.8391 26.3915 26.9427 27.4927 28.0417 80 21.2606 21.4772 21.7337 22.2056 22.6767 23.1467 23.6160 24.9845 24.5524 25.0195 25.4860 90 19.5551 19.7519 19.9488 20.3422 20.7355 21.1286 21.9144 22.3070 22.6995 23.0918	33.9565
80 21.2606 21.4972 21.7337 22.2056 22.6767 23.1467 23.6160 24.0845 24.5524 25.0195 25.4860 90 19.5551 19.7519 19.9488 20.3422 20.7355 21.1286 21.5216 21.9144 22.3070 22.6995 23.0918	31.2995
90 19.5551 19.7519 19.9488 20.3422 20.7355 21.1286 21.5216 21.9144 22.3070 22.6995 23.0918	28.5898
	25.9521
	23.4839 21.2531
	19,2991
	17.6379
130 14.3737 14.4626 14.5525 14.7344 14.9191 15.1064 15.2959 15.4872 15.6804 15.8752 16.0713	16.2687
140 13.5590 13.6332 13.7084 13.8615 14.0180 14.1774 14.3396 14.5039 14.6703 14.8387 15.0087	15.1802
150 12,9352 12,9986 13,0632 13,1952 13,3310 13,4702 13,6123 13,7569 13,9039 14,0530 14,2039	14.3566
	13.7819
	13.4428
180 12.1487 12.1991 12.2508 12.3576 12.4686 12.5834 12.7016 12.8226 12.9463 13.0725 13.2007	13.3308
25.0000	
0 42.5242	
5 42.4329 10 42.1605	
15 41.7122	
20 41.0965	
30 39,4108	
40 37.2228	
50 34,6786	
60 31.9337	
70 29.1370	
80 26,4175	
90 23.8759 100 21 5914	
100 21.5816 110 19.5745	
120 17.8703	
130 16.4673	
140 15.3531	
150 14.5108	
160 13.9235	
170 13.5772	
180 13.4628	

Case C: $(\alpha_1 = 1)$

In the limiting case, $\theta_{\rm max} = \pi/2$ and the positive sign is always used. The negative sign gives the redundant root $\cos\Omega = -1$.

The Jacobian which transforms the solid angle from the laboratory system to the c.m. system is obtained

by taking the ratio of the differentials

$$J(\omega_n) = \frac{d(\cos\omega_n)}{d(\cos\Omega)} \quad \text{where} \quad \omega_1 = \theta \quad \text{and} \quad \omega_2 = \phi$$

from which the following is obtained:

$$J(\omega_{n}) = (\gamma_{n}^{2} - 1)^{\frac{1}{2}} \left\{ \frac{\pm \gamma_{cg} \left[\left(\frac{T_{n}}{M_{n}c^{2}} \right)^{2} + 2 \left(\frac{T_{n}}{M_{n}c^{2}} \right) \right]^{\frac{1}{2}} \mp \cos \omega_{n} \left(\frac{T_{n}}{M_{n}c^{2}} + 1 \right) (\gamma_{cg}^{2} - 1)^{\frac{1}{2}} \right]}{\left(\frac{T_{n}}{M_{n}c^{2}} \right)^{2} + 2 \left(\frac{T_{n}}{M_{n}c^{2}} \right)} \right\}.$$
(6)

The upper sign is used when n=1 and the lower when n=2.

Finally, ϕ may be expressed explicitly as a function of θ by equating the momentum components p_{y_n} in the c.m. system and obtaining

$$\sin\phi = \frac{M_1}{M_2} \frac{\left[\left(\frac{T_1}{M_1c^2}\right)^2 + 2\left(\frac{T_1}{M_1c^2}\right)\right]^{\frac{1}{2}}}{\left[\left(\frac{T_2}{M_2c^2}\right)^2 + 2\left(\frac{T_2}{M_2c^2}\right)\right]^{\frac{1}{2}}} \sin\theta \qquad (7)$$

where the quadrant of ϕ is determined by the signs of $\cos\phi$ obtained from the result

$$\cos\phi = \frac{(\gamma_{cg}^{2} - 1)^{\frac{1}{2}} \left(\frac{T_{2}}{M_{2}c^{2}} + 1\right) - (\gamma_{2}^{2} - 1)^{\frac{1}{2}} \cos\Omega}{\gamma_{cg} \left[\left(\frac{T_{2}}{M_{2}c^{2}}\right)^{2} + 2\left(\frac{T_{2}}{M_{2}c^{2}}\right) \right]^{\frac{1}{2}}}.$$

Tables III, IV, and V were prepared on an IBM Electronic Data Processing Machine, Type 701. At the heading of each set of tables is given the reactions involved and the mass values (55W) used in the computation. The conversion factor for mass to energy is one mass unit = 931.160 Mev. The first column labeled θ gives the laboratory angle of the neutron. The headings of the other columns give the bombarding energy of the proton or deuteron in Mev. The numbers in the columns then give the neutron energy in Mev corresponding to angle, θ , and bombarding energy.

BIBLIOGRAPHY

- 340. Oliphant, Harteck, and Rutherford, Proc. Roy. Soc. (London) A144, 692 (1934).
- K. D. Alexopoulos, Helv. Phys. Acta 8, 601 (1935). 35A.
- T. W. Bonner and W. M. Brubaker, Phys. Rev. 49, 19 36B. (1936).
- 36K. Kempton, Browne, and Maasdorp, Proc. Roy. Soc. (London) A157, 386 (1936).
- R. Ladenburg and R. B. Roberts, Phys. Rev. 50, 1190 36L. (1936)
- Amaldi, Hafstad, and Tuve, Phys. Rev. 51, 896 (1937). 37A.

- 37B. T. W. Bonner, Phys. Rev. 52, 685 (1937).
- P. I. Dee and C. W. Gilbert, Proc. Roy. Soc. (London) 37D. A163, 265 (1937).
- Kruger, Shoupp, and Stallman, Phys. Rev. 52, 678 (1937). 37K. 37L. R. Ladenburg and M. H. Kanner, Phys. Rev. 52, 911 (1937).
- 37R. R. B. Roberts, Phys. Rev. 51, 810 (1937).
- Baldinger, Huber, and Staub, Helv. Phys. Acta 11, 245 38B. (1938)
- 39A. H. Aoki, Proc. Phys.-Math. Soc. Japan 21, 232 (1939).
- 39Z Zinn, Seely, and Cohen, Phys. Rev. 56, 260 (1939)
- 40B. H. H. Barschall and M. H. Kanner, Phys. Rev. 58, 590 (1940)
- 40S. E. O. Salant and N. F. Ramsey, Phys. Rev. 57, 1075 (1940).
- 41R. H. T. Richards, Phys. Rev. 60, 167 (1941).
- Amaldi, Bocciarelli, Ferretti, and Trabacchi, Naturwiss. 42A 30, 582 (1942); Amaldi, Bocciarelli, and Trabacchi, Ricerca sci. 12, 830 (1941); Amaldi, Bocciarelli, Ferretti, and Trabacchi, Ricerca sci. 13, 502 (1942). 42T.
- H. Tatel, Phys. Rev. 61, 450 (1942)
- 43B. Baker, Holloway, Schreiber, and King, LAMS 11 (unpublished).
- 44C. F. C. Champion and C. F. Powell, Proc. Roy. Soc. (London) 183, 64 (1944).
- P. Jensen, Z. Physik 122 (Nos. 5-8) 387-400 (1944). 44 J.
- R. Sherr, Phys. Rev. 68, 240 (1945). 45S.
- 46B1. Bailey, Bennett, Bergstralh, Nuckolls, Richards, and Williams, Phys. Rev. 70, 583 (1946).
- Bennett, Mandeville, and Richards, Phys. Rev. 69, 46B2. 418-22 (1946)
- 46C1. J. H. Coon and H. H. Barschall, Phys. Rev. 70, 592 (1946).
- 46C2. E. T. Clarke and J. W. Irvine, Jr., Phys. Rev. 70, 893 (1946).
- 46D. N. N. Das Gupta and S. K. Ghosh, Revs. Modern Phys. 18, 225 (1946).
- 46G. Graves, Graves, Coon, and Manley, Phys. Rev. 70, 101 (1946).
- Manley, Coon, and Graves, Phys. Rev. 70, 101 (1946). 46M.
- Ageno, Amaldi, Bocciarelli, and Trabacchi, Phys. Rev. 71, 47A. 20 (1947).
- 47H. A. O. Hanson and J. L. McKibben, Phys. Rev. 72, 673 (1947).
- 47K. E. D. Klema, Phys. Rev. 72, 88 (1947).
- C. F. Powell and G. P. S. Occhialini in Report of the Inter-47P. national Conference on Fundamental Particles and Low Temperature (Physical Society London, 1947), Vol. 1, p. 150.
- W. Sleator, Jr., Phys. Rev. 72, 207 (1947). 47S1.
- J. H. Smith, Phys. Rev. 71, 32 (1947). 47S2.
- Blair, Freier, Lampi, Sleator, and Williams, Phys. Rev. 48B1. 74, 1599 (1948).

- 48B2. Bretscher, French, and Seidl, Phys. Rev. 73, 815 (1948).
- 48F. A. P. French, Phys. Rev. 73, 1474 (1948).
- 48K. E. J. Konopinski and E. Teller, Phys. Rev. 73, 822–830 (1948).
- 48L. J. S. Laughlin and P. G. Kruger, Phys. Rev. 73, 197 (1948).
- 48M. E. M. McMillan and H. F. York, Phys. Rev. 73, 262 (1948).
- 49A. P. Ammiraju, Phys. Rev. 76, 1421 (1949).
- 49B1. H. H. Barschall and R. F. Taschek, Phys. Rev. 75, 1819 (1949).
- 49B2. Brueckner, Hartsough, Hayward, and Powell, Phys. Rev. 75, 555 (1949).
- 49B3. B. P. Burtt, Nucleonics 5, 28 (August, 1949).
- 49B4. E. Bretscher and A. P. French, Phys. Rev. 75, 1154 (1949).
- 49C1. Cook, McMillan, Peterson, and Sewell, Phys. Rev. 75, 7 (1949).
- 49C2. Curtis, Fowler, and Rosen, Rev. Sci. Instr. 20, 388 (1949).
- 49C3. Carlson, Goldstein, Rosen, and Sweeney, Los Alamos Report LA 723 (unpublished).
- 49E. Erickson, Fowler, and Stovall, Phys. Rev. 76, 1141 (1949).
- 49F. Falk, Creutz, and Seitz, Phys. Rev. 76, 322 (1949).
- 49G1. Graves, Rodrigues, Goldblatt, and Meyer, Rev. Sci. Instr. 20, 579 (1949).
- 49G2. J. C. Grosskreutz, Phys. Rev. 76, 482 (1949).
- 49H1. Hanson, Taschek, and Williams, Revs. Modern Phys. 21, 635 (1949).
- 49H2. Hadley, Kelly, Leith, Segrè, Wiegand, and York, Phys. Rev. 75, 351 (1949).
- 49H3. G. T. Hunter and H. T. Richards, Phys. Rev. 76, 1445 (1949).
- 49J1. P. Jensen, Arkiv Fysik 1, 515 (1949).
- 49J2. Jarvis, Hemmendinger, Everhart, Gittings, and Taschek, Phys. Rev. 75, 1361 (1949).
- 49N. Yoshihiro Nakano, Phys. Rev. 76, 981 (1949).
- 49L. Lampi, Freier, and Williams, Phys. Rev. 76, 188 (1949).
- 49T1. Taschek, Argo, Hemmendinger, and Jarvis, Phys. Rev. 76, 325 (1949).
- 49T2. Taschek, Hemmindinger, and Jarvis, Phys. Rev. 75, 1464(A) (1949).
- 49W. L. Wolfenstein, Phys. Rev. 75, 342(A) (1949).
- L. R. Zumwalt, Oak Ridge National Laboratory Document, ORNL-397 (1949).
- 50A1. Allen, Livesay, and Wilkinson, Proc. Cambridge Phil. Soc. 46, (PT 11) 339 (1950).
- 50A2. D. L. Allan and M. J. Poole, Proc. Roy. Soc. (London) A204, 488 (1950).
- 50A3. D. L. Allan and M. J. Poole, Proc. Roy. Soc. (London) A204, 500 (1950).
- 50B1. Beiduk, Pruett, and Konopinski, Phys. Rev. 77, 622 (1950).
- 50B2. E. Bretscher and E. B. Martin, Helv. Phys. Acta 23 (Nos. 1-2), 15 (1950).
- 50D. J. Dejuren and N. Knable, Phys. Rev. 77, 606 (1950).
- 50F. J. L. Fowler and J. M. Slye, Jr., Phys. Rev. 77, 787 (1950).
- 50G. S. N. Ghoshal, Phys. Rev. 80, 939 (1950).
- 50H. R. H. Hildebrand and C. E. Leith, Phys. Rev. 80, 842 (1950).
- 50J. Jarvis, Hemmendinger, Argo, and Taschek, Phys. Rev. 79, 929 (1950).
- 50L. K. Lintner, Ost. Akad. Wiss. Abt. 11A 158, 135-68 (1950).
- 50M. McNeill, Thoneman, and Price, Nature 166, 28 (1950).
- 50N. Nuclear Data Circular of National Bureau of Standards 499 (1950).
- 50P1. Pruett, Beiduk, and Konopinski, Phys. Rev. 77, 628 (1950).
- 50P2. D. Phillips, private communication, LASL.

- 50S. Sanders, Moffatt, and Roaf, Phys. Rev. 77, 754 (1950).
- 50W. H. Waffler, Helv. Phys. Acta 23 (Nos. 1-2), 239 (1950).
- 51A1. Aron, Hoffman, and Williams, AECU 663 (unpublished) (1951).
- 51A2. Allred, Phillips, and Rosen, Phys. Rev. 82, 782 (1951).
- 51A3. J. C. Allred, Phys. Rev. 84, 695 (1951).
- 51A4. Allen, Nechaj, Sun, and Jennings, Phys. Rev. 81, 536 (1951).
- 51B1. S. T. Butler and J. L. Symonds, Phys. Rev. 83, 858 (1951).
- 51B2. Brolley, Coon, and Fowler, Phys. Rev. 82, 190 (1951).
- 51B3. E. M. Baldwin, Phys. Rev. 83, 495 (1951).
- 51B4. Brolley, Fowler, and Stovall, Phys. Rev. 82, 502 (1951). 51B5. N. Bloembergen and P. J. Van Heerden, Phys. Rev. 83,
- 561 (1951). 51B6. T. W. Bonner and J. W. Butler, Phys. Rev. 83, 1091
- (1951).
- 51B7. R. J. Blin-Stoyle, Proc. Roy. Soc. (London) A64, 700 (1951).
- 51B8. Blaser, Boehm, Marimer, and Peaslee, Helv. Phys. Acta 24, 3–38 (1951).
- 51B9. Blaser, Boehm, Marimer, and Scherrer, Helv. Phys. Acta 24, 441 (No. 5) (1951).
- 51B10. Blaser, Boehm, Marimer, and Scherrer, Helv. Phys. Acta 24, 465 (No. 5) (1951).
- 51C1. W. F. Caplehorn and G. P. Rundle, Proc. Phys. Soc. (London) A64, 546 (1951).
- 51C2. B. L. Cohen, Phys. Rev. 81, 184 (1951).
- 51C3. B. L. Cohen and C. E. Falk, Phys. Rev. 84, 173 (1951).
- 51F1. B. H. Flowers, Proc. Roy. Soc. (London) A204, 503 (1951).
- 51F2. C. E. Falk, Phys. Rev. 83, 499 (1951).
- 51G. P. C. Gugelot, Phys. Rev. 81, 51 (1951).
- 51H. J. Hughes, Proc. Phys. Soc. (London) A64, 797 (1951).
- 51L1. A. H. Lasday, Phys. Rev. 81, 139 (1951).
- 51L2. A. B. Lillie and J. P. Conner, Rev. Sci. Instr. 22, 210 (1951).
- 51S1. J. Sharpe and G. H. Stafford, Proc. Phys. Soc. (London) A64, 211 (1951).
- 51S2. L. W. Smith and P. G. Kruger, Phys. Rev. 83, 1137 (1951).
- 51T. Taylor, Pickavance, Cassels, and Randle, Phil. Mag. 42, 328 (1951).
- 51W. Roger Wallace, Phys. Rev. 81, 443 (1951).
- 52A1. AECU-2040 (1952) (unpublished).
- 52A2. Argo, Taschek, Agnew, Hemmendinger, and Leland, Phys. Rev. 87, 612 (1952).
- 52B1. Barshall, Rosen, Taschek, and Williams, Revs. Modern Phys. 24, 1 (1952).
- 52B2. H. H. Barschall, Revs. Modern Phys. 24, 120 (1952).
- 52B3. R. J. Blin-Stoyle, Proc. Phys. Soc. (London) A65, 949 (1952).
- 52B4. Brolley, Fowler, and Schlacks, Phys. Rev. 88, 618 (1952).
 52B5. J. M. Blatt and V. F. Weisskopf, *Theoretical Nuclear Physics* (John Wiley and Sons, Inc., New York, 1952).
- 52B6. Bishop, Westhead, and Halban, Nature 170, 113 (1952).
- 52C1. Coon, Graves, and Barschall, Phys. Rev. 88, 562 (1952).
- 52C2. W. G. Cross, Phys. Rev. 87, 223 (1952).
- 52C3. Conner, Bonner, and Smith, Phys. Rev. 88, 468 (1952).
- 52D. E. der Mateosian and A. Smith, Phys. Rev. 87, 193 (1952).
- 52F1. S. G. Forbes, Phys. Rev. 88, 1309 (1952).
- 52F2. M. Fierz, Helv. Phys. Acta 25, 629 (1952).
- 52G. L. S. Goodman, Phys. Rev. 88, 686 (1952).
- 52H. E. L. Hubbard and K. R. MacKenzie, Phys. Rev. 85, 107 (1952).
- 52L. Longley, Little, and Slye, Phys. Rev. 86, 419 (1952).
- 52M1. Mott, Guernsey, and Nelson, Phys. Rev. 88, 9 (1952).
- 52M2. R. F. Mozley and F. C. Shoemaker, Rev. Sci. Instr. 23, 569 (1952).
- 52M3. H. C. Martin and B. C. Diven, Phys. Rev. 86, 565 (1952).

- 52P. Poss, Salant, Snow, and Yuan, Phys. Rev. 87, 11 (1952).
- 52S. T. F. Stratton and G. C. Freier, Phys. Rev. 88, 261 (1952).
- 53A1. Allred, Armstrong, and Rosen, Phys. Rev. 91, 90 (1953).
- 53A2. S. K. Allison and S. D. Warshaw, Revs. Modern Phys. 25, 779 (1953).
- 53B1. J. Benveniste and B. Cork, Phys. Rev. 89, 422 (1953).
- 53B2. J. E. Brolley, Jr., Phys. Rev. 89, 877 (1953).
- 53B3. E. Baumgartner and P. Huber, Helv. Phys. Acta 26, 545 (1953).
- 53D1. R. B. Day and R. L. Henkel, Phys. Rev. 92, 358 (1953).
- 53D2. W. C. Dickinson and D. C. Dodder, Rev. Sci. Instr. 24, 428 (1953).
- 53D3. Dunbar, Reynolds, Wenzel, and Whaling, Phys. Rev. 91, 496(A) (1953). Data in 53A2.
- 53E1. Experimental Nuclear Physics (John Wiley and Sons, Inc., New York, 1953), B. T. Feld, Vol. II, p. 426.
- 53E2. Experimental Nuclear Physics (John Wiley and Sons, Inc., New York, 1953), H. A. Bethe and Julius Ashkin, Vol. I, p. 243.
- 53G. J. H. Gammel, Phys. Rev. 92, 1092 (1953).
- 53H. Hafner, Hornyak, Falk, Snow, and Coor, Phys. Rev. 89, 204 (1953).
- 53L. R. W. Lamphere, Phys. Rev. 91, 655 (1953).
- 53M. H. C. Martin and R. F. Taschek, Phys. Rev. 89, 1302 (1953).
- 53N1. N. Nereson and S. Darden, Phys. Rev. 89, 775 (1953).
- 53N2. V. Nedzel, Phys. Rev. 90, 169 (1953).
- 53P. E. B. Paul and R. L. Clarke, Can. J. Phys. 31, 267 (1953).
- 53R1. Remley, Jentschke, and Kruger, Phys. Rev. 89, 1194 (1953).
- 53R2. L. Rosen, Nucleonics 11, 38 (1953).
- 53S1. Selove, Strauch, and Titus, Phys. Rev. 92, 724 (1953).
- 53S2. A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (1953).
- 53S3. A. Simon, Phys. Rev. 92, 1050 (1953).
- 53T. A. E. Taylor and E. Wood, Phil. Mag. 44, 95 (1953).
- 53W. Willard, Bair, and Kington, Phys. Rev. 90, 865 (1953).
- 53Y. Yarnell, Lovberg, and Stratton, Phys. Rev. 90, 292 (1953).
- 54A1. H. Argo, private communication, LASL, 1954.
- 54A2. Adair, Darden, and Fields, Phys. Rev. 96, 503 (1954).
- 54A3. Arnold, Phillips, Sawyer, Stovall, and Tuck, Phys. Rev. 93, 483 (1954).
- 54B. J. R. Beyster and M. Walt, private communication, LASL, 1954.
- 54C1. C. F. Cook and T. W. Bonner, Phys. Rev. 94, 651 (1954).

- 54C2. O. Chamberlain and J. W. Easley, Phys. Rev. 94, 208 (1954).
- 54C3. L. Cranberg, private communication.
- 54C4. Chilton, Cooper, and Harris, Phys. Rev. 93, 413 (1954).
- 54F1. W. M. Fairbairn, Proc. Phys. Soc. (London) A67, 990 (1954).
- 54F2. Fields, Becker, and Adair, Phys. Rev. 94, 389 (1954).
- 54F3. R. G. Freemantle, private communication to W. M. Fairbairn, and data published in Proc. Phys. Soc. (London) A67, 990 (1954).
- 54H. Henkel, Smith, and Perry, LASL private communication.
- 54J. G. Jarvis, private communication, LASL.
- 54M1. McCrary, Taylor, and Bonner, Phys. Rev. 94, 808 (1954).
- 54M2. H. C. Martin, LASL private communication.
- 54M3. Meier, Scherrer, and Trumpy, Helv. Phys. Acta 27, 577 (1954).
- 54O. G. K. O'Neill, Phys. Rev. 95, 635 (1954).
- 54P. J. Perry, Jr., LASL, private communication.
- 54R1. F. L. Ribe and J. D. Seagrave, Phys. Rev. 94, 934 (1954).
- 54R2. L. Rosen, LASL, private communication.
- 54S1. R. H. Stahl and N. F. Ramsey, Phys. Rev. 96, 1310 (1954).
- 54S2. C. W. Snyder and V. E. Parker, Phys. Rev. 95, 635 (1954).
- 54S3. R. K. Smith and J. E. Perry, LASL, private communication.
- 54S4. J. R. Smith, Phys. Rev. 95, 730 (1954).
- 54T. C. C. Trail and C. H. Johnson, Phys. Rev. 95, 1363 (1954).
- 54V. D. M. Van Patter and W. Whaling, Revs. Modern Phys. 26, 402 (1954).
- 54W1. M. C. Walske, private communication, LASL, 1954.
- 54W2. Willard, Bair, and Kington, Phys. Rev. 95, 1359 (1954).
- 55A1. A. J. Allen, private communication, University of Pittsburgh, 1955.
- 55B1. J. E. Brolley, Jr., and F. L. Ribe, Phys. Rev. 98, 1112 (1955).
- 55B2. L. Blumberg and S. I. Schlesinger, AECU 3118.
- 55C. B. L. Cohen, Phys. Rev. 98, 1206 (1955).
- 55G1. A. Galonsky and John Judish, Phys. Rev. 98, 1168 (1955).
- 55H1. A. Hemmendinger and H. V. Argo, Phys. Rev. 98, 70 (1955).
- 55H2. Henkel, Perry, and Smith, Phys. Rev. 99, 1050 (1955).
- 55S. J. D. Seagrave, Phys. Rev. 97, 757 (1955).
- 55W. A. H. Wapstra, Physica 21, 367, (1955).

134