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The notion of depth parameter introduced by Blatt
and Jackson'r for nuclear potentials can also be applied
to the potential between helium atoms. Let U(r) be
the intermolecular potential, r being the distance be-
tween the centers of atoms. We can always choose a
dimensionless positive number, s, in such a way that the
reduced potential, s 'U(r), give a resonance at the zero
energy and no discrete energy level. The number s is
called the depth parameter. If one or more discrete
levels exist in the two-body system, s is greater than
unity; if no discrete level exists, s is less than unity.

The Schroedinger equation

d' 2m* U(r)—R- R=O (10.1)
& s

with the reduced potential U/s must be satisfied by a
nodeless spherically symmetric wave function r 'R(r).
Here ms~ is the reduced mass of the two-body system;
A is Planck's constant divided by 2x.

For the Lennard-Jones potential

6 t'rs~" n prey
'

(».2)
n 6& ri— n 6E r)—

with the potential minimum —Us at r =re, (10.1) be-
comes

d' - 6 t roy " n p rsy '-
R=O, (10.3)

dr' n —6E r) n —6& r)
where

2m~ Up
6c= —rp'.

s
(10.4)

For a=10, the eigenvalue problem can be solved ex-
actly with c=1 and

IV. THE SECOND VIRIAL COEFFICIENT OF HELIUM

AVIXG treated nonquantum gases, we investigate
in this part the second virial coeScient of helium

for which quantum eGects are important.

*This is a continuation of a previous article with the same title
/Revs. Modern Phys. 25, 831 (1933)), which will be referred to
as A. In part A a discussion of pure gases with no quantum eftects
is given; in Part 3 gas mixtures and quantum e6'ects are con-
sidered.

3 (roy 4

R= exp ——
]
—

f

4& r) (10.5)

'7 J. M. Blatt and J. D. Jackson, Phys. Rev. 26, 21 (1949).
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In general, the eigenvalue c of (10.3) is determined Here g„}is a complete orthonormal set of eigenfunc-
by a variational principle, i.e., by the extremum tions of the relative motion of the two molecules, so that

6c=Kxtr

(dR) ( t')

4 dr ) &rs)
, P„(r)P„.(r)dr=h„„., dr= d—xdyds, (11.3)

f 6 (t's) s f fs$ f r)
t.,)

for all i and i', r= (x,y,s) being the position vector of
one molecule relative to the other; E„are energies corre-
sponding to f„.In the limit of infinite temperature, the

(1() 6) density matrix becomes

For e not far from 10, we can obtain a sufliciently
accurate value of c making use of the approximation

R= expL —a(rp/r)'1,

where a and b are positive constants to be adjusted'
By virtue of this approximation we can integrate ana-
lytically the numerator and denominator of (10.6), and
obtain

limp(r, r') =P„P„(r)f,(r') =5(r—r'), (11.4)

in which b(r —r ) is the Dirac 8 function.
The density matrix satisfies the Bloch differential

equation

(11.5)

c=0.905 for x=9,
c=1.174 for m=12.

For the square-well potential

for r&r
U(r)= —e for o. &r&go.

.0 for gg &r

(10 7) with the Hamiltonian

(10.8)" A' 82 82 82
3,+U(r), 6—= + +, (11.6)

2m* 8$2 8/2 8s~

operating on the first argument r, for which Hf„=E„P„.
In the particular case where U(r)—=0, the solution of
the Bloch equation with the "initial" condition (11.4) is

the nodeless solution of (10.1) is

0 for r&o
R= ~ sinLw(r —o)/2(g —1)o) for o &r &go (10.10)

.2 for g(T &r,

the eigenvalue condition being

p m*q» m'
p(r, r')=(

( exp — (r—r')' .
E 2s-O'P) 2A'P

We can therefore assume the general solution to be of
the form

2m* eo'

A,s s 4(g—1)'
I

m' ~& m*
(10.11) p(r, r') =

~ ~
exp — (r—r')'+W(r, r') (11.7)

(2+%'P) 2h'P

These results will be used in the following sections.

11. Quantum-Mechanical Expression for the
Second Virial CoeKcient

In this section the classical second virial coefFicient'

with
W(r, r')—+0 for PU~O. (11.8)

The diagonal element of the density matrix then be-
comes

p(r, r) = (m*/2shrP)f expW(r, r)

(—U(r) ~8=2' 1—exp] [
r'dr

AT )
We therefore obtain

(2witi'/m*kT) fp(r, r) =expW(r, r). (11.9)

is generalized to a quantum-mechanical expression.
Here, as the 6rst step, the wave nature of molecules is
considered; the symmetry eGect, which is important
only at low temperatures, will be taken into account in
the following 'section.

Let us consider the density matrix which is defined by

p(r, r') =P„exp(—PE„)P„(r)lt„(r'), (11.2)

P= 1/kT.
is This value for n 12 agrees w=ith the result of J.E. and M. F.

Kilpatrick, J. Chem. Phys. 19, 930 (1951).

Both sides of (11.9) are quantum-mechanical gener-
alizations of the Boltzmann factor, exp( —PU), in (11,.1),
since they indicate the probability of finding two mole-
cules a distance r apart from each other. They are
called Slater sums. The expression on the left-hand side
of (11.9) will be used for low-temperature expansion;
that on the right-hand side will be used for high-
temperature expansion.

The argument in this section was chieQy taken from
Husimi's" comprehensive paper on the density matrix.

"K.Husimi, Proc. Phys. -Math. Soc. Japan 22, 264 (1940).
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12. Low-Temperature Expansion of the
Second Virial CoefKicient

Here p& is the phase shift defined by the a symptotic
form,

R(r) sin(»r —2lvr+tIt) for r—e~
Since the intermolecular potential U is a function of

the distance r only, the eigenfunctions f„ in (11.2) can of the regular solution of
be factorized into

(12.6)

It „=r 'R„i(r) Yi„(8,y), t = (n, l,m), (12.1)

with radial functions r 'E„~ normalized as where

d2

+»'—
2m* l(l+1)

U(r) — R(r) =0, (12.7)

»'= 2m*E/Iii'. (12.8)

I
R„i(r) I'dr=1

and spherical harmonics I"~ also normalized to one:

27I

I Yi (8,y) I

' sin8d8dq = 1
&p ~p

(12.2)

by virtue of the addition theorem

P IFr„(8,q)I'=(21+1)/4m

With this expression the second virial coeScient is
given by

(2~a')' I"
B= —2pr

I I

~ Pp (r,r) pP (r,r)]r'd—r, (12.3)
I *kT) ~,

where p' is the matrix written for U(r) —=0, namely

(
pP(r r) = &-i(2f+1) exp

l

—
I IR-t'(r) I',

4xr' kT)

E„ie and r 'R„iP(r) being, respectively, the energies and
the radial functions for U(r) —=0. Thus, performing the
integration with respect to r, we obtain

B=Qi(23+1)Bi,

1 ( 27rh' q
l ( E.&q

B,=—-I
I g. expl—

2 Em*kT) & kT)

( E-'~—exp
I

E kT)

In general some of E„~ may be negative; and the
summation over e can be separated into two parts, one
is for negative energy levels which are discrete, the other
for positive energy levels which are continuous. The
latter can be transformed into the integral

1 I"
~ EqdtI&

exp
l

—
I

dE
kT) dE

(compare (11.3)). Then, according to (11.2) the diag-
onal element of the density matrix assumes the form

( E„i)
p(r, r)= P„&(2E+1)expl I IR &(&) I'

4xr' kT)

(When U(r) =—0, the wave function is RP(r) sin(»r ——,'hr);
hence tIi/pr is the difference between the number of sta-
tionary states below E of the real two-body system and
that of the ideal system for U(r) =0.) Hence it follows
that

1) 2prh' q
l

2 (m*kT) dieerete & kT)

1 ( E)dtIi
+—

~
exp

l

—
I dE (12 9)

ir~p 4 kT) dE

Up to this point we have been considering only the
quantum eGect due to wave nature. For ordinary
helium, He4, we must take account of the fact that
wave functions It„are symmetric with respect to the
interchange of atomic coordinates. In this case, only
the spherical harmonics with even / should be taken and
the left-hand side of (12.2) should be divided by the
symmetry number 2. As a result the right-hand side of
(12.4) should be replaced by 2Q (21+1)B&in which the
summation is to be taken over even /. Furthermore, we
see from (12.3) that the left-hand side of (12.4) should
be replaced by the difference between the real second
virial coeKcient and that of the ideal Bose-Einstein gas
with zero spin. Thus we obtain

1 ( 2vrPP ) '
I+2 2 (2f+1)B& (1210)

16 (m*kT) even t

The expression (12.10) with (12.9) was first obtained
by Uhlenbeck and Beth" and by Gropper. " (The pres-
ent author avoids discussing the virial coefficient of He',
which is more complicated because of the fact that the
spin —,

' requires the inclusion of both odd and even
terms; see, for instance, Hirschfelder, Curtiss, and Bird,
Molecular Theory of Gases and Liquids ).

In case no discrete energy level exists, B~ can be
transformed, by integration by parts, into

1I 2~@') —:1.E="
I

««xpl —
I (1211)

2 tm*kT) pr&~=p E kT)

for /=0, 1, . This expression holds for s~1, not only
for s(1.

20 G. E. Uhlenbeck and E. Beth, Physica 4, 915 (1937}."L.Gropper, Phys. Rev. 50, 963 (1936);51, 1108 (1937).
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In the particular case, where the depth parameter s
of the intermolecular potential is unity, we can make
use of Schwinger's variation principle" to write the
asymptotic form

O. Of

O. 03

(1—R')dr+0 (s)J,
(12.12)

FIG. 12. The depth pa-
rameter s es negative energy
level divided by the poten-
tial depth for the square-
well potential.

at low energies. Here R is the eigenfunction of (12.7)
with /= ~=0 normalized as 8—+1 for r~~. At very low

temperatures g~, and therefore Bg, can be neglected for
l&0; and po can be approximated by the first two terms
of (12.12) so that

0. Ol

0 00
I.O l3

t' 2prA'
~

I 1 (m*kT'i1 t"
2&o

I I +I I
(1 R)dr

I,~*7T) 2 E 2~as) ~o

For the Lennard-Jones potential (10.2) with rs= 10 we

get

(1—R')dr= (-')II'(-,')ro=1 356ro
Jo

by virtue of (10.5); for the square-well potential (10.9)
we have

The requirement that R and dR/dr be continuous leads
to

Aj ~i(gsa) j i(geo)—
(13.2)

s j, ,(s'~)j,(g.'~) f, (s'~—)g, ,(gs'~)
(13.3)

s' j i i(s'0)j i i(gs'o)+j i(lr'0)j i(gs'0)

for l=0, 1, 2, . ~ . Here relations

(1 R')dr = ', (g—+1)~-
J,

by virtue of (10.10).
De Boer and Michels" pointed out the fact that the

depth parameter s for helium is not far from unity.

or, by use of (10.11),

(s'~)'= (s~)'+ pr's/4(g —1)'. (13.1)

"See H. A. Bethe, Phys. Rev. 77, 441 (1950)."J. de Boer and A. Micheis, Physics 5, 945 (1938); 6, 409
(1939). See also Kilpatrick, Keller, Hammel, and Metropolis,
Phys. Rev. 94, 1103 (1954).

$ This section was prepared with the assistance of S. Kaneko.

13. The Second Virial CoefBcient for the
Square-Well Potential)

For the square-well potential (10.9) the phase shifts
can be expressed analytically by means of the spherical
Bessel functions

j,(s)
—= (pr/2x)-'*Ji„;(x).

The function R in (12.7) with the asymptotic (12.6) is

given by

R=«I cosgiji(«)+ (—1)' »ngi j-i-i(«)j
for r&go, while the solution which vanishes at r=o- may
be written as

R=consts'rl j i i(s'o) ji(lr'r) —ji(s'p)j r &(s'r) j
for o.(r(go-, where

s» =so+.2rrie, /gzs

have been used.
For the square-well potential discrete energy levels,

E„~, can be calculated easily. For s slightly greater than
unity we need consider only one discrete level, Eop,
which is for l=0. Since the function R in (12.7) with
I=0 and s'= —2ris*!Esp I/A' is then given by

const exp[ —(2tis*l Epp I )&r/Aj for r) go,

const sinL(2m*(e —IEppl))'*(r —p.)/h] for 0 &r&go.,

the requirement that R and dR/dr be continuous leads to

( e—IEool ) '~ ( IEool ) &

&e—IE,ol)

where (10.11) has been used. This relation can be trans-
formed into

1+—tan 'I (13.4)
e—IEool - pr (e—IEool)

which is shown in Fig. 12. (Figures 1 to 11 are in
Part A.)

The second. virial coefficient (12.10) for the square-
well potential then assume, for each g and s,

( 2prh y
'* x'skT

8—=
I ! f(r) where r= , —(13.5)
&~*AT) 4(g—1)"

the function f being given in Table XIII.
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TABLE XIII. The function f(r) in Eq. (i3.5). 14. High-Temperature Expansion of the
Second Virial CoeRcient

0
0.5
0.75
1
2

6
8

f(r) for
g =1.5
s =1.0

—0.5625—0.380
~ ~ ~

—0.422—0.522—0.551—0.423—0.174

f(T) for
g ~1.5
s =1.1

—0.667—0.648—0.670—0.791—0.872—0.783—0.568

f(T) for
g =2.0
s =1.0

—0.5625—0.384
~ ~ ~

—0.453—0.535—0.456—0.202
0.153

f(T) for
g =2.0
s =4/3

—1.017
~ ~ ~

—1.017
1~ 132—1.149—0.983—0.701 8=2v- j 1—expW(r, r)fr'dr. (14.1)

Above the Hoyle temperature, where high-tempera-
ture expansions will be used, the symmetry eGect is
negligible. We therefore consider only the quantum
eGect due to wave nature in the following. The second
virial coefficient is then given by

10
12
14
16
18
20

0.152
0.559
1.059
1.59
2.16
2.78

—0.253
0.133
0.584
1.110
1.68
2.31

0.600
i.iii
1.65
2.26
2.93
3.69

0
—0.333

Here W(r, r) is the diagonal element of W(r, r') which
0.612
1.161
1.74 TABLE XIV. Second and third virial coe%cients of He4.
2.41

T'K BA3 C )(10-2A6 Reference

In Fig. 13 calculated curves of (nz*hT/2v. h')fB for
ordinary helium, He4, are compared with experimental
results, which are given in Table XIV. The comparison
shows that the depth parameter s is within the range

2.15
2.32
2.86
3.35
3.96

—293—262—205—172—139

1.0&s(1.1 for He4 —He4 (13.6)

(probably s=1.03), which corresponds to the range

0.85&s&0.95 for He4 —He',

0.75 &s&0.83 for He' —He'.

Although the relation (13.6) has been derived by
means of the square-well potential, it is not very sensi-
tive to the used potential. We, therefore, draw the
conclusion: the two body syst-enl, of He' —He' probaNy
has a discrete energy level while both the He4 —He4 @ed
He' —He' systems definitely have no discrete level.

Figure 13 shows, furthermore, that the adequate
value of the model parameter g for helium is 1.5, which
is conspicuously smaller than the value found in Sec. 2,
i.e. g=2.0. A discussion on this discrepancy will be
given in Sec. 18.

14.16
17.30
20.58
23.35
37.4
48.2

—25.7—15.0—6.0—5.1
7.6

12.0

20.35
65.15
90.15

123
173
223
273

273
323
373
423

—4.6
15.6
17.6
18.9
19.8
19.8
19.5

19.7
19.2
18.8
18.4

11.3
7.0
5.0
5.2
53
5.0

2.1
2.0
2.5
3.0

W. E. Keller, Phys. Rev. 97, 1 (1955).
b Data are due to Nijihoff, Keesom, and Iliin; the values are taken from

Keesom, Helium (Elsevier, Amsterdam, London and New York, 1942),
p 34

e The values are taken from J. Otto, Handbuch d. Experimentalphysik,
Bd. 8, Teil 2 (Akademische Veri. Leipzig, 1929), p. 144.

d A. Michels and H. Wouters, Physica 8, 923 (1941).

FIG. 13. Reduced sec-
ond virial coefEcient of
helium vs T/Te, Te be-
ing the Boyle tempera-
ture 26.0'K. The curves
are for the square-well
potential with the depth
parameter s.

2

is to be determined from (11.5), (11.7), and (11.8). Let
us in this section denote W (r,r') simply by W.

'Inserting (11.7) into the Bloch equation (11.5) we
have

8 r—r'
U+—W+ ~W= q(~W)'+qhW, (14.2)

~P

where V means gradient with respect to r, 6—=V.V,
and

q—=h'/2nz*.

Let us expand W into a power series in q:

(14.3)

-/ -r //

W= Wp+qW&+q'Wp+. . .. (14.4)

We then obtain from (14.2), as regards the coeKcients
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~ ~lVp=0

8 r—r'—Wt+ — v Wt ——(v Wp) 2+/4 Wp,
Bp p

p6
vvhU:VUGG U

280

vvv U:vv Uv U
210

(vvU vvU):vvU
2835

8 r—r'—W2+
~p p

r—r'—Ws+
~p P

~ vW, =2vWp vW, +&Wt,

VW, = (VW&)'+2VWo VW2+AW2,

17p5
+ vd, U vhU

5040

+ VEAU vU
280

Taking the condition (11.8) into account we have
from the first equation of (14.5)

p5

+ vv&U:VVU
210

Wp(r, r) = —PU. (14.6) + vvvU vvvU
840

8 1 r—r'
v U+—v Wo+-v Wo+

~p P P
VV~'p=o,

8 2 r—r'
A U+ AWp+ &Wo+- —

~p P P
~ g ATVp=0

Multiplying the first equation of (14.5) by V and A we
have

AALU.
840

These altogether give

W(r, r) =P;q'W, (r,r).

Transforming exp W(r, r) into

(14.8)

from which, taking the limit x'—&r, we have

(V Wp) ~ = —-', pV U, (AWp) .. .= ——3'PDU.

Inserting these into the second equation of (14.5) we
obtain

exp (—P U) (1+qW& (r,r)+ q'$W2 (r,r)+-',W&(r, r)'j
+q'LW3(r, r)+Wt(r, r)W2(r, r)+W)(r r)'j6]+ )

and inserting this expression into (14.1) we finally ob-
tain the second virial coeKcient in the form

p' p'
Wt(r, r) =——ZU+ —(V U)'.

6 12 where

P=P(o)+q+o)+q2+(2)+. . . (14.9)

Similarly, f.

ps p4

W, (r,r)= ——vvU:VUvU+ —vU VAU
60 30

p4 p3
+—VV U:vv U——AAU,

90 60

17p7
W, (r,r) = v U v V U vv U v U

5040

P7
+ vvv U:.v Uv Uv U

840

17p'
v~U vvU vU

2520

$ As regards the: and i notation, see, for instance, Chapman
and Covrling, reference 7.

B(o)= 27r (1 e ~U)rsdr, ——

"p

7l

g(1) ps e
—t)(/U/2r2dr

Jp

ao ( Ull/2 Ul/2 p Ul/3
B(3)=77P5 e e~~ + +"6 & 840 140r' 756

P U/ Ulls P U/3 psU/2 Ul/2 p2 U'/4

+
6480r~180r 945r'

P3U/5 P4U/6 )+ ~r'dr,
2160r 25920)

q being defined by (14.3), P being 1/13T.

t 1 1U'2 P U'3 P2
J3(»= p4 ~ e-&

~

—U—"+- +- ——U' jrdr,
6 Jp I10 5 r' 9 r 72 )
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The quantum correction in the form of expansion
(14.9) was first given by Wigner24 and then by Uhlen-
beck and Gropper. " Kirkwood" supplemented their
method by furnishing a more convenient means of ob-
taining the expansion, which was used by Uhlenbeck
and Beth27 and by Gropper" in their recalculations of
the quantum correction up to the term proportional
to q2. The term proportional to q' was recently calcu-
lated by Midzuno, Shizume, and the present author. "
The most elegant method here used is essentially due to
Husimi. '9

15. The Second Virial CoefBcient for the
Lennard-Jones Potential

Integration of each term in the expansion (14.9) can
be performed for the Lennard-Jones potential

!J(r) )I,r—n,
tttr

—6

6 t'rp) n n (rp'l '
=V,

]

—
f

—
]
—/, n&6, (15.1)

n 6&—r) n —6&r)

the result being a power series in

I.et us express the second virial coefficient in the 6nal
form

P(&)(s) P(2l(s)
B= '2rr-ps P&" (s)+ + +

CS J(CS)2

where (see (10.4))

1 A' 1 6q—=6-
cs 2' Upf'p Upf p

Pit) (&)
—PP (tl& i6+(n—2)t+(n—6) t] tn 2 ()

S=p

Up

kT
(15.2)

(15.3)

(15.4)

The coefficients P are given in Table XV for n= 9 and
12. (The functions P&'& for n=9 are included in Table
XVII.)

Making use of these tables and depending on the
observed values given in Table XIV, we can determine

TABLE XV. Coeflicients in the expansion (15.4) for
L.-J. (6,tt)-potential.

je 29

tt f k2 ) 6/n

kr&),

22r ( X q
6t" ('6t —3q y'

n&kT) tp ( n )t!'
22r 1 ( )I. q"" tr6t —1~ y'

Ql'(
~

—J,&'&(6, ),
n kT«kT) t-o E n ) t!

22r p 1 q
2

f )t. q
-"" )6t+1y y'

n ikT) EkT) t=p E n )t!
10
11
12
13
14

p, (0)

1.7061—2.1263—0.7500—0.4259—0.2654

—0.1685—0.1065—0.0664—0.0406—0.0244

—0.0144—0.00831—0.00471—0.00263—0.00144

For n =9
Pt (1)

0.3880
0.1513
0.2282
0.2475
0.2350

0.2039
0.1652
0.1265
0.0924
0.0648

0.0438
0.0286
0.0182
0.0112
0.0067

p, (2)

—0.0426—0,0990—0.1740—0.2400—0.2822

—0.2949—0.2813—0.2490—0.2071—0,1632

—0.1228—0.0886—0.0616—0.0414—0.0270

p, (3)

0.0287
0.0956
0.2055
0.3376
0.4633

0.5561
0.6008
0.5958
0.5498
0.4771

0.3923
0.3076
0.2312
0.1672
0.1168

where

22r p 1 q') X y-st" (6t+3~ y'
,

I

—J,'"(6,n),
n EkT) &kT) t=p & n ) t!

12Jt&"(6,n) = (n —6)6t—(n —1),
4320Jt t2& (6,n) =21(n—6)'6't'

+ (6n2+30n —42) (n —6)6t

+6n' —27n'+ 30n+ 63,

362880Jt &6& (6,n) =93 (n 6)666ts-
+ (82n'+ 657n —741)(n —6)'6't'

+ (24n'+348n'+93n' —810n+2241) (n —6)6t

+72n' 126n4 —531n—'+ 1755n2 —405n —3645.
'4 E. Wigner, Phys. Rev. 40, 749 (1932).
'~ G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932).
'6 J. G. Kirkwood, Phys. Rev. 44, 31 (1933).
2' G. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936).
"Kihara, Midzuno, and Shizume, J. Phys. Soc. Japan 10, 249

(1955).
29Lennard-Jones, see reference 3; de Boer and Michels, see

reference 23; Kihara, Midzuno, and Shizume, see reference 28.

15
16
17
18
19
20

10
11
12
13

—0.00077—0.00041—0.00021—0.00011—0.00006—0.00003

p, (0)

1.2254—1.8128—0.6127—0.3021—0.1532

—0.0755—0.0357—0.0162—0.00702—0.00292

—0.00117—0.00045—0.00017—0.00006

0.0040
0.0023
0.0013
0.0007
0.0004
0.0002

For n =12
Pt (1)

0.4838
0.3694
0.4471
0.3981
0.2979

0.1965
0.1173
0.0645
0.0330
0.0159

0.0072
0.0031
0.0013
0.0005

—0.0171—0.0106—0,0064—0.0037—0.0022—0.0012

pt (2)

—0.1276—0.3768—0.6189—0.7254—0.6815

—0.5447—0.3838—0.2440—0.1422—0.0769

—0.0390—0.0186—0,0084—0.0036

0.0790
0.0519
0.0331
0.0206
0.0126
0.0075

p, (3)

0.1692
0.6512
1.3133
1.8454
2.0343

1.8740
1.4994
1.0694
0.6923
0.4124

0.2284
0.1186
0.0581
0.0270
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the model parameters for He':

rp= 3.11 A Up/73= 7.82'K, s= 1.15 for rs= 9;
r0=2.88 A, Up/k=10. 80'K, s=1.05 for 33=12

of which the latter agrees with (13.6)." (The choice of
n=12, however, is not compatible with the statement
in Sec. 3: "The bowl of the Lennard-Jones potential
with e=12 is too narrow for molecules of the rare
gases. " This discrepancy will be discussed in Sec. 18.)

V. THE THIRD VIRIAL COEFFICIENT OF HELIUM

In this part the third virial coefficient of helium at
higher temperatures is treated under the assumption of
additivity of the intermolecular potential, This assump-
tion is shortly discussed in the last section of this part.

exp[W(ri r2 11 r2)] exp[W(ri r2 rs ri r2 r8)]
obtain the quantum-mechanical expression. "

Our object in this section is to calculate the first
quantum correction qC&" to the third virial coeKcient

( —Q(0)+g(, (l)+. . . (16.4)

( (1)—8+(0)g(1)+( 1 (16.5)

ps p p ra

Cg=
3V 24» ~

—exp[ —PC(ri, rs)]P C(ri, r2)

—exp[—PC'(rl, rs) ]P C'(11 rs)

which is similar to the expansion (14.9) of B. By use
of (14.9) we have

16. High-Temperature Expansion of the
Third Virial CoefBcient)

The expansion (14.8) of W(r, r) for a two-molecule
system can be generalized to W'(rl, r2, , rN, rl, rs,~, rN) for an X-molecule (single component) system,
where r; is the position of the ith molecule. Namely,

8—exp[—pC (rs,rs)]+ C (rs, rs)

-2

+exp[ —PC (rl, rs,rs)]g C (ri, rs, rs) dridrsdrs

(16.6)
W(rl ''' rN rl ''' rN) Wp(rl ''' rN rl ''' rN)

+&W, (r, . . . r .r, . . . r )y. . . (161) Here we have used integration by Parts such as

where q is 52 divided by the mass of a molecule. (Com-
pare (14.3) where r)3* is the reduced mass. ) The first t/» ~ Br; Br,term on the right-hand side is, like (14.6),

Wp(rl ' ' ' rN rl ' ' ' rN) pC'(rl ' ' ' rN),

P=1/k T, (16—.2)

4 being the potential energy of the system. For the
second term we have, like (14.7),

Wl(11 ' ' ' rN 11 ' ' rN)

P2 N C) C) Ps N ( C) ) 2

~+—Zl ~
I (16»

12 (=1 Br, c)r, 24~=1 ) c)r, )
The classical third virial coefficient can be expressed

in the form

48'+ {—2+exp[ —PC (ri,r2)]
3P'4 J

+exp[—PC (rl, rs)]+exp[ —PC (rs,r3)]

exp[ p4(11121 )]j8d ldrr2drs

V being the volume of the system. Replacing in this
expression the Boltzmann factors, exp[ —pC (rl, rs)],
exp[ —PC (rl, rs, rs)], by the corresponding Slater sums,

3 De Boer and Michels' result, reference 23, is r0=2.87A,
Up/)) = 10.22'K for I= 12 which corresponds to 8=0.99.

$ Sections 15 and 16 were prepared with the assistance of Y.
Midzuno and T. Shizume.

e p( —PC)P~ C ~d d d
vd J Ear, &

We are assuming from the outset that the potential
energy of the system is equal to the sum of the potential
energies of pairs. Hence, in terms of r;;—=

~
r;-r; ~, the

potential energy of a three atom cluster is

C (rl, rs, rs) = U(ris)+ U(ris)+ U(rss). (16.7)

Taking into account such relations as

1 (c)U(ris) q
'

exp[ —pU(rls)]p~ ~
drld~2drs

er; )
1

exp[ —pU(r»)][U'(rl2)) d~adrsdrs
yJ J J

and using the transformation

d&1d7 2d7'3 8& f12fysf23df128f13df 23

of integration variables, we 6nally obtain

2x'
ps (+12++18+428)r12rlsr23dr12drlsdr28

9
(16.8)

"Uhlenbeck and Beth, see reference 27; see also B. Kahn and
G. E. Uhlenbeck, Physica 5, 399 (1938).
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where, TABLE XVII. Functions in the expansions (15.2) and (17.2)
for L.-J. (6,9)-potential.

~12= ([U (r12)] +U (r13) U (r28) (r18 +r23 r12 )/2rlor23}

&&exp[—PU(r») —PU(r») —PU(r28)]
LU (r12)] exp[ PU(r12)]

with similar expressions for 3~3 and 223. The integral
is to be taken over all values of r~2, r~~, ~23, which form
three sides of a triangle.

I'7. The Third Virial CoeFicient for the
Lennard. -Jones Potential

Here again let us adopt the Lennard-Jones potential
(15.1) for which the classical C&'& was treated in Sec. 3."

Using

R—=r12, $= r18/R, —rt= r28/R—

as integration variables, we can transform (16.8) into

22r t' f'1

p J
(g„+g„+A„)R'dR grtdrtdp.

p 1—$- p
J

0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9
1.0

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9
2.0

—1.583—1.071—0.6995—0.4255—0.2218

—0.0700
0.0430
0.1265
0.1874
0.2309

0.2610
0.2806
0.2922
0.2974
0.2979

0.2946
0.2885
0.2805
0.2709
0.2603

1.194
0.741
0.4793
0.3200
0.2195

0.1538
0.1095
0.0791
0.0578
0.0426

0.0316
0.0236
0.0177
0.0134
0.0101

0.0077
0.0058
0.0044
0.0034
0.0026

—1.007—0.444—0.2056—0.0992—0.0495

—0.0255—0.0136—0.0073—0.0040—0.0022

—0.0013—0.0007—0.0004

&"&(~) G"'(~) 6")(~)

1.684
0.564
0.2024
0.0757
0.0295

0.369 1.0
0.409 0.37
0.357 0.187
0.303 0.127
0.264 0.100

0.0119 0.237 0.078
0,0050 0.219 0.062
0.0021 0.206 0.050
0.0009 0.194 0.039
0.0004 0.183 0.030

0.172 0.020
0.160 0.015
0.149 0.012
0.137 0.010
0.125 0.008

0.114 0.006
0.103 0.004
0.093
0.083
0.074

(u) =1+g- + —.

The integration with respect to R can be performed by
the usual series-ex ansion technique The result is as where the bracket notation has been used in the sense

follows:

2~» t ) q4&--
ZX'I (6,~),

3r8 kT (kT) 8=o
(17.1)

in which y is the same as in Sec. 15, and

1 /6t —4q
J,(6,~) =—I

~ I ~i
I',~&d&d~,

t! & r3 )~o~1 t

F,= (6t+ 23—4) (6t—4) [(23 r3)(s) &4-8"'" '(6)' —(6)]

—12t(6t—4)[(r3,6)(28)" '" " '(6)' '—(6)]

+ 36t(t —1)[(6,6)(B)"—'"'"(6)' '—(6)],

(a)=1+~-.+~-.,
(uP) =(a+&+ 2)

+(~ . '+~"-')-(1+8 ~')~4

+(n ' '+n ')(1+v' 8)/4—
+ (ga—2 —8—2+ —a—2+8 2) ((2+—2 1)/4

The values of I4(6,9) obtained by numerical integra-
tions are given in Table XVI.

By use of Ci the third virial coefficient, C, is given
by (16.4) with (16.5) up to the term proportional to the
first power of q. For m=9, Table XVII gives the func-
tions 6'p& and 6"' in the expansion

TABLE XVI. Coeifrcients in the expansion (17.1)
for L.-J. (6,9)-potential.

Ig (6,9)

5
(.=—vrorpp G "&(s)+—G "&(s)+

18 CS
(17.2)

0
1

5
6
7
8
9

10
il
12

—118.7
+56.0

12.61
10.00
7.32
4.60
2.59
1.338
0,651
0.300
0.133
0.057
0.024

"Numerical values of y& (9) and y& (12) in Table III were recal-
culated with great accuracy by Epstein, Hibbert, Powers, and
Roe, J. Chem. Phys. 22, 464 (1954), and by Rowlinson, Sumner,
and Sutton, Trans. Faraday Soc. 50, 1 (1954), respectively.

s= Up/kT, 1/cs=6g/Uprp',

together with P"' in the expansion (15.2) of the second
virial coeKcient.

Figure 14 shows a comparison with experimental re-
sults for He4. Here curves indicate calculated values
based on the model parameters determined from the
second virial coefficient. Although the experimental re-
sults do not seem to be very accurate, the comparison
shows that the bowl of the Lennard-Jones potential
with 23=12 is not sufliciently wide (compare Sec. 3).

It is to be noted that the potential energy of the
three-body system has been assumed to equal the sum
of the potential energies of pairs. This assumption of
potential additivity is now capable of discussion.



VI RIAL COEFF I C I ENTS AN 0 MODELS OF MOLE CULES I N GASES 421

fo-

0 7
0 I 00 150 200 250 300 350 409

FIG. 14. Third virial coeKcient of helium with curves for the
I,ennard-Jones potential determined from the second virial coefh-
cient. Curve a is for (6,12)-potential, classical; curve b is for
(6,9)-potential, classical; curve c is for (6,9)-potential with the
erst quantum correction.

~ In fact, strictly additive is only the van der Waals-London
attraction as derived from the perturbation theory to the second
order. If the perturbation calculation is pursued to the third
order, interactions between triplets of atoms appear; see B. M.
Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

18. Nonadditivity of the Intermolecular Potential

The intermolecular potential of helium determined
from the second virial coeKcient has the bowl-width
corresponding to

g=1.5 for the square-well potential, (18.1a)

n=12 for the Lennard-Jones potential. (18.1b)

These values of parameters indicating relative bowl-
width may belong also to other rare-gas molecules, Ne,
A, Kr, and Xe. (This similarity of the intermolecular
potential does not strictly hold of course: probably, the
larger the molecule, the smaller the relative bowl-width,
But such nonsimilarity does not inQuence the following
conclusion. )

In Secs. 2, 3, and. 1/ the third virial coeKcient was
represented, under the assumption of additivity of the
intermolecular potential, by models having a wider bowl
with

g=2.0 for the square-well potential, (18.2a)

n= 9 for the Lennard-Jones potential. (18.2b)

Furthermore, we saw in Sec. 6 that a potential with
much wider bowl has to be adopted. if we want to ex-

plain the stability of clbic crystal structure for Ne, A,
Kr, and Xe under the assumption of the potential
additivity.

These circumstances show that the intermolecular
potential may not be considered to be strictly additive. "
The potential with parameters (18.2) should be accepted
as "the mean (or effective) additive intermolecular
potential" in a three-body system. Therefore, the bowl

of the mean additive intermotecllar potential in a many

+st 1Q
l2-

FrG. 15. The full line
indicates qualitatively the
intermolecular po tential
in two-body systems; the
dotted line shows the mean
additive intermolecular po-
tential in three-body sys-
tems.

body system is wider than that of the potential in the
two-body systems, as shown in Fig. 15.

VI. VIRIAL COEFFICIENTS BETWEEN UNLIKE
MOLECULES

Up to this point we have been investigating pure
gases; the object of this part is to give a brief treatment
of typical gaseous mixtures. The equation of state for
binary mixtures of species A and B is of the form

p& h2 [1+(+APNEA +2I3AB/A/B++BB(B )&

+ (+AAA(A +3+AABEA EB+3+ABB/A(B

+~BBBIB)& + ' ' ' j
Here $~ and $o——1—$~ are mole fractions of the species
A and B, respectively. B~~ and C~~~ are second and
third virial coeKcients for the molecule A; B~~ and
C~~~ for the molecule B. B~~, Cgg~, and C~~~ are
virial coefEcients between unlike molecules, in which
we are now interested.

II.9. The Second Virial Coe%cient between
Helium Isotopes

For mixtures of He' and He', which will be denoted
by A and B, respectively, the intermolecular potentials
of A to A, B to B, and A to B are all the same. Hence
the second virial coeKcients Bgg, Bgg, and Bgg are
diferent only as regards the reduced masses and the
statistics. I.et us conf' our treatment above the Hoyle
temperature where the statistical eGect is negligible. '4

The high-temperature expansion then becomes (com-
pare (14.9))

+AA. =+ +qAA+ +qAA + + ' ' '

&an =&"'+ qadi&"'+ qaa'&"'+ . .
~AB=~ +qAB~ +qAB ~ +

Here q~~, qg~, and q~~ are -', A' divided by the reduced
mass for pairs A —A, B—B, and A —B, respectively, so
that 2qge= qgg+ qee.

Figure 16 shows these three coefficients calculated by
use of the Lennard-Jones potential with parameters
determined in Sec. 15.

~ As regards the~cond virial coe%cient of helium mixtures at
low temperatures, see Cohen, Offerhaus, and de Boer, Physica 20,
501 (1954); Kilpatrick, Keller, Hammel, and Metropolis, Phys.
Rev. 94, 1~1'03 (1954); Kilpatrick, Keller, and Hammel, Phys.
Rev. 97, 9 (1955).
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~

l hen the Potential UAB(P)In particular, w en
Lennard-Jones functio»

-
(PoABI' (P'"

&IUAB(p) = UOAB I

p

scient &A a is expresthe second viria coe ci
series with respect to

(qAB)&= (UOABI&2) ~

that is

II

soo
0

5Q

t between hellu~ &sotopFzo. y6. Second vjrial coe
t ti l. The circles are observedculated or ef th Lennard- Jones potentia . e

values for the pure He4 gas.

g3AB —
poAB Po(BAB)+

3

(SOA+SOB ~OA OB i

d 1 of Interaction between20. The Core-Mo e o
Unlike Noleeules

The core-model int'ntroduce in'nt d
'

Sec. 9 can also be
J3 . The modele mixed virial coe%cient

p priate convex body
dfi }1

ume an appropria
ide each molecule and e ne

h t tdit btmolecular distance p
two cores. ~ e in

be a function of p only, i.e.,A —8 is assumed to e a unc
'

d 1 of ol I thBy means of the core-mo e o mo
secona viriad

' '
I coefFicient is given by

d4 a(p)+4 a (o),
pP— —U»(p)

kT
i—exp~AB

where
VA+ Va MBSA+3EASa

(p) =

3EA = 2m p+MoA,

SA =~p'+~OAP+SOA,

1
VA —P OA

6 4

2

(SoA+Soa ~OAiif oa)
p

VoA+ Voa ~OBSOA+~OASOB

ions as regards the species B. Hereand similar relations as re
S~ are, respective y,

t integrated overd the mean curva ure
'

surface area, an t
re of the molecule A.

b d h f
ace of the convex core o

The function bAB(p) in yma also e expr
I coinpare (9.2)j

2m MOA+ MOB
4a(p) =—p'+—

3

+Voa ~OBSOA+~OASOBOA OB

where (s= 1,2,3)

30-
A

20-

lQ ~

-l0-

-20-

-30-

$00 800 6OO0 IOO &Oo 300

h drogenvirial coe c~en~ . ' '
fB

' t between argon and hy g
f th - d 1with curves or

. Ph s. Soc. Japan 9, 688 (1954);raa d . o, J..A Beattie and %.H. Stockmayer,see also . . ea
473 (1942).

s ~ 1 6t—s
2t~(6t+s) /12~ (&) = ——Z —1'I

12&-o /l ( 12

the table of which is given in Sec. 9.
Asregar smo e cod I constants, the relations

2poAB poAA+poaaq

UOAB UOAA +OBB
0

verified to hold approximately. An p
"An example

h'.h-----. -l"1"db.is shown in Fig. 17, in whic curves w
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use of these relations and by use of model constants
determined in Sec. 9 from the virial coeKcients of pure
gases.

1(0)

Z (i.r)

1(&.2)

1(i.s)

1(2.&)

1(2.a)

1(2 3)—

I(»

W(o.o.,o;)„o.j&,),
W(p" o"), o"7,) I"'—
W(o;. p &, o"i)—I"&

W(o" o g p g) —I"'
', '») —"'—""—""

W(p ~ ~ o p ~ )—I(0)—I0 i) —I(i 3)

W (o ~ ~ p ~ p ~ )—I(0) —I(i 2) —I(i &)

W( " ) I ' PiI"—Q I—"—
"T.Kihara, see reference 2.

21. The Third Virial Coef6cient for
Binary Mixtures

The third virial coefficient for unlike molecules can
easily be evaluated only in the case of the square-well
potentiap'

for r(0.;,
Uij (r) = ~ —egj for 0'ij &r &p;;.0 for p„-(r,

where, in the case of a binary mixture, i=A or 8,
j=A or 8, and k=2 or B.

The result is a polynomial on the third order in

x,j——exp(e,j/k T)—1

that is

3(,j„—I(o) L,,IO i)+,„I02)+ .„I(i8)$

+[x;x;)I(2')+x,"x
&,
I(2 2)+x;ix )I"')]

—xgx;px;gI(').

Here the coeKcients I are given by

so- ~o'

$0-

30

20.

io-

0
0 50 ioo iso QQO 250 300

FIG. j.8. Third virial coefficient for argon-neon mixtures
calculated for the square-well potential.

by means of the same function W(a, b, o) defined in
Sec. 2.

As regards model parameters, it may be reasonable
to assume p~~ ——20~~, p~~=2o.g~, p~~=2o-~~,

2oAB oAA+irBBy &AB &AAoBB2

(compare Sec. 2 and Sec. 20). Figure 18 shows Cygne,
CAAQ Czar, and Cgggg calculated on these assumptions
in case 3 and 8 are argon and neon, respectively. The
model constants here used are

ops = 3.11 A, egg/k= 54.7'K,

0BB=2.51 'A) oBj)/k= 16.4 Kq

which were determined from the second virial coeffi-
cients.
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