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* This is a continuation of a previous article with the same title
[Revs. Modern Phys. 25, 831 (1953)7], which will be referred to
asA.Inpart Aa discussion of pure gases with no quantum effects
is given; in Part B gas mixtures and quantum effects are con-
sidered.

IV. THE SECOND VIRIAL COEFFICIENT OF HELIUM

I I AVING treated nonquantum gases, we investigate
in this part the second virial coefficient of helium
for which quantum effects are important.

10. The Depth Parameter, s, of an
Intermolecular Potential

The notion of depth parameter introduced by Blatt
and Jackson!” for nuclear potentials can also be applied
to the potential between helium atoms. Let U(r) be
the intermolecular potential, » being the distance be-
tween the centers of atoms. We can always choose a
dimensionless positive number, s, in such a way that the
reduced potential, s7*U(#), give a resonance at the zero
energy and no discrete energy level. The number s is
called the depth parameter. If one or more discrete
levels exist in the two-body system, s is greater than
unity; if no discrete level exists, s is less than unity.

The Schroedinger equation

@ 2m*U(®)

dr? n s

R=0 (10.1)

with the reduced potential U/s must be satisfied by a
nodeless spherically symmetric wave function »1R(r).
Here m* is the reduced mass of the two-body system;
# is Planck’s constant divided by 2.

For the Lennard-Jones potential

-0 )2 )} e s

with the potential minimum — U, at r=7,, (10.1) be-

comes
( )]R 0, (10.3)

o)
(10.4)

where
2m* Uo
6c=—- —7y2.
2

For #=10, the eigenvalue problem can be solved ex-
actly with ¢=1 and

rel-40)]

17 J. M. Blatt and J. D. Jackson, Phys. Rev. 26, 21 (1949).

(10.5)
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In general, the eigenvalue ¢ of (10.3) is determined
by a variational principle, i.e., by the extremum

O
TSRO

(10.6)
For # not far from 10, we can obtain a sufficiently
accurate value of ¢ making use of the approximation

R=exp[—a(ro/r)"],

where ¢ and b are positive constants to be adjusted-
By virtue of this approximation we can integrate ana-
lytically the numerator and denominator of (10.6), and
obtain

6c=Extr

¢=0.905 for n=9, (10.7)
¢=1.174 for n=12. (10.8)
For the square-well potential
o for r<o
U(r)=4 —efor e<r<go (10.9)
0 for go<r
the nodeless solution of (10.1) is
0 for <o
=3sin[7(r—0)/2(g—1)o] for s <r<go -(10.10)
1 for go<r,
the eigenvalue condition being '
2m* eo? w?
—_ = ' (10.11)
s 4(g—1)?

These results will be used in the following sections.

11. Quantum-Mechanical Expression for the
Second Virial Coefficient

In this section the classical second virial coefficient’

B=21rfw|:1——exp(_:;r))]r2dr (L1

is generalized to a quantum-mechanical expression.
Here, as the first step, the wave nature of molecules is
considered; the symmetry effect, which is important
only at low temperatures, will be taken into account in
the following 'section.

Let us consider the density matrix which is defined by

P(r)rl) = Zv exp(—‘ﬂEv)\bv(r)‘;v (l"), (11'2)
B=1/kT.

18 This value for #=12 agrees with the result of J. E. and M. F.
Kilpatrick, J. Chem. Phys. 19, 930 (1951).
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Here {,} is a complete orthonormal set of eigenfunc-
tions of the relative motion of the two molecules, so that

f G(OF, O dr=0,s, dr=dedyds, (11.3)

for all » and ¥/, r= (x,y,3) being the position vector of
one molecule relative to the other; E, are energies corre-
sponding to ¥,. In the limit of infinite temperature, the
density matrix becomes

limo () = T (% () =0e—1),  (11.4)
in which 8(r—1’) is the Dirac 6 function.

The density matrix satisfies the Bloch differential
equation

d
—p(r,r')=—Hp(r,r') (11.5)
a8
with the Hamiltonian
72 2 9 9
H=——A+U(r), A=—+——+——, (11.6)
2m* 972

operating on the first argument r, for which Hy,= E,¢,.
In the particular case where U(r)=0, the solution of
the Bloch equation with the “initial” condition (11.4) is

o(r)= ( — [

We can therefore assume the general solution to be of
the form

plr,x)= ( P

with

[___(r r')2+W(rr')] (11.7)

W (xr,x')—0 for BU—O. (11.8)

The diagonal element of the density matrix then be-
comes

p(t,1)= (m*/2xh?B)} expW (r,0).
We therefore obtain
Qu#2/m*kT )3 (r,r) =expW (1,1). (11.9)

Both sides of (11.9) are quantum-mechanical gener-
alizations of the Boltzmann factor, exp(—gU), in (11.1),
since they indicate the probability of finding two mole-
cules a distance r apart from each other. They are
called Slater sums. The expression on the left-hand side
of (11.9) will be used for low-temperature expansion;
that on the right-hand side will be used for high-
temperature expansion.

The argument in this section was chiefly taken from
Husimi’s? comprehensive paper on the density matrix.

18 K, Husimi, Proc. Phys.-Math. Soc. Japan 22, 264 (1940).
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12. Low-Temperature Expansion of the
Second Virial Coefficient

Since the intermolecular potential U is a function of
the distance 7 only, the eigenfunctions ¢, in (11.2) can
be factorized into

¥,= r_anz<7’> Yin (0; ﬁo);

with radial functions R,; normalized as

v=(ndm), (12.1)

fanl(”>l2d”=1

and spherical harmonics ¥, also normalized to one:

2T T
f f | Y im (8, 0) | % sinfdfd o= 1 (12.2)
0 0

(compare (11.3)). Then, according to (11.2) the diag-
onal element of the density matrix assumes the form

1 Enl
p(r,r)= 4—M22nz(21+ 1) eXP(“‘E) | Ru(r)|?

by virtue of the addition theorem

2on| Vin(8,0)|*= (2041) /4.
With this expression the second virial coefficient is

given by :

B=— 21r( ;::;) % j; w[p (1) —p°(r,r) Jr2dr, (12.3)

where p° is the matrix written for U (r)=0, namely

1 Enlo
52 exp( ———) IRL(,
72 kT

0° (l‘,l‘) =
!

E, and 71R,°(r) being, respectively, the energies and
the radial functions for U(r)=0. Thus, performing the
integration with respect to 7, we obtain

B=3"1(2l14+1)B,,

17 2nh2\} Ey
2\m*kT ET

—exp(—}ié;—fo)]. (12.5)

In general some of E,; may be negative; and the
summation over # can be separated into two parts, one
is for negative energy levels which are discrete, the other
for positive energy levels which are continuous. The
latter can be transformed into the integral

1 ® E d?}l
—f exp(—— —dE
w/ kT/dE

(12.4)
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Here n; is the phase shift defined by the a symptotic
form,

R(r)~sin (kr— Ha—+n;) for r—oo (12.6)
of the regular solution of
[dz“ 2 0 ke=0, 12
—+k——U(@)———|R(r)=0, (12.
dr? #? 72 ]
where
k2= 2m*E/h2. (12.8)

(When U(r)=0, the wave function is R%(r)~sin(kr— 1ir);
hence 7;/7 is the difference between the number of sta-
tionary states below E of the real two-body system and
that of the ideal system for U (r)=0.) Hence it follows
that )

17 2n72 \?} Eqy
e 25
2 m*kT discrete kT

+1fw ( b )dde (12.9)
-] exp{ — )—dE]|. .
<y P\ ur/as ]

Up to this point we have been considering only the
quantum effect due to wave nature. For ordinary
helium, He?!, we must take account of the fact that
wave functions ¢, are symmetric with respect to the
interchange of atomic coordinates. In this case, only
the spherical harmonics with even / should be taken and
the left-hand side of (12.2) should be divided by the
symmetry number 2. As a result the right-hand side of
(12.4) should be replaced by 23" (2/4+1)B; in which the
summation is to be taken over even /. Furthermore, we
see from (12.3) that the left-hand side of (12.4) should
be replaced by the difference between the real second
virial coefficient and that of the ideal Bose-Einstein gas
with zero spin. Thus we obtain

1/ 2x%2\ ¢
B=—— +2 2 (2I4-1)B..
16 \m*kT even

(12.10)

The expression (12.10) with (12.9) was first obtained
by Uhlenbeck and Beth® and by Gropper.2 (The pres-
ent author avoids discussing the virial coefficient of He?,
which is more complicated because of the fact that the
spin % requires the inclusion of both odd and even
terms; see, for instance, Hirschfelder, Curtiss, and Bird,
Molecular Theory of Gases and Liquids.)

In case no discrete energy level exists, B; can be
transformed, by integration by parts, into

17 2nh2\ ¥ pB= E
Bl=—( )~f nd exp(———) (12.11)
2 m*kT TY E—0 kT

for I=0, 1, - - -. This expression holds for s<1, not only
for s<1.

2 G, E. Uhlenbeck and E. Beth, Physica 4, 915 (1937).

2 L, Gropper, Phys. Rev. 50, 963 (1936); 51, 1108 (1937).
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In the particular case, where the depth parameter s
of the intermolecular potential is unity, we can make
use of Schwinger’s variation principle?? to write the
asymptotic form

"lo=5—lcj; (1—R®)dr+0(x) (12.12)

at low energies. Here R is the eigenfunction of (12.7)
with /=k=0 normalized as R—1 for r— . At very low
temperatures 7;, and therefore By, can be neglected for
1>0; and 7, can be approximated by the first two terms
of (12.12) so that

kNI 1 /m*ET\? p®
zBON( ) [——+( ) ) (1—R2)dr].
m*kT 2 2rh? 0
For the Lennard-Jones potential (10.2) with #=10 we
get

f (1— R)dr=(3)T (2)re=1.356 7
0

by virtue of (10.5); for the square-well potential (10.9)
we have

f (1= R)dr=1(g+1)o

by virtue of (10.10).
De Boer and Michels? pointed out the fact that the
depth parameter s for helium is not far from unity.

13. The Second Virial Coefficient for the
Square-Well Potentialf

For the square-well potential (10.9) the phase shifts
can be expressed analytically by means of the spherical
Bessel functions

Jil)= (w/22) 114 (x).
The function R in (12.7) with the asymptotic (12.6) is
given by
R=xr[cosni i (kr)+ (— 1) singj_s1(xr) ]

for > go, while the solution which vanishesatr=¢ may
be written as

R=conste'r[ j_11(K'0) ji(c'r)— ji('0) j—sa ()]

for ¢ <r<go, where
k2= 12+ 2m*e/T?

or, by use of (10.11),
(x'0)?= (ko )*+m2s/4(g— 1)

22 See H. A. Bethe, Phys. Rev. 77, 441 (1950).

2 7. de Boer and A. Michels, Physica 5, 945 (1938); 6, 409
(1939). See also Kilpatrick, Keller, Hammel, and Metropolis,
Phys. Rev. 94, 1103 (1954).

 This section was prepared with the assistance of S. Kaneko.

(13.1)
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Fic. 12. The depth pa-
rameter s vs negative energy
level divided by the poten- 0 0Zf
tial depth for the square-
well potential.
0-01f
s
°°9% ] %) )

The requirement that R and dR/dr be continuous leads
to

A jr1(gra) — j1(gro)
Aja(geo) +j1-1(geo)
K Jor1(k'0) ju(ge'e) — 71(k') j_1-1(gk0)

(—1)! tanm,=

(13.2)

; 5 5 ; (13.3)
" Jora (o) jia(gd'e) +ji(k'e) j1(gk'o)

for =0, 1, 2, - - -. Here relations

ad
d—[xl“j (@) J=aty 4 (x),
X

d
%Exlﬂj—l—l (%) 1= —atj_y(x)

have been used.

For the square-well potential discrete energy levels,
E,;, can be calculated easily. For s slightly greater than
unity we need consider only one discrete level, Eoo,
which is for /=0. Since the function R in (12.7) with
1=0 and x2= —2m*| Eqo| /%2 is then given by

const exp[ — (2m*| Eoo| )¥r/%] for r>ga,
const sin[ {2m* (e— | Eqo| )} (r—0)/B] for e <r<go,

the requirement that R and dR/dr be continuous leads to

[( e— | Eoo %71’] ( | Eoo| \?
cot] s-——) —l=—(—
€ 2 G_']E[)()I

where (10.11) has been used. This relation can be trans-
formed into

| Eoo

€ 2 2
s=—[1+~ tan‘l(—) ] , (13.4)
€e— ]E()o] T €— [Eool

which is shown in Fig. 12. (Figures 1 to 11 are in
Part A.)

The second virial coefficient (12.10) for the square-
well potential then assume, for each g and s,

2wt \} wiskT
BE( ) f(r) where 7=—-—,
wm*kT 4(g—1)%
the function f being given in Table XIII.

(13.5)
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TaBLE XIII. The function f(7) in Eq. (13.5).

F(7) for f(z) for f(=) for f(7) for
g=1.5 g=1.5 £=2.0 £=2.0
T s=1.0 s=1.1 s=1.0 s=4/3
0 —0.5625 — 0 —0.5625 —
0.5 —0 380 —0.667 —0.384 —1.017
0.75 —0.648 oo [y
1 ——0 422 —0.670 —0.453 —1.017
2 —0.522 —0.791 —0.535 —1.132
4 —0.551 —0.872 —0.456 —1.149
6 —0.423 —0.783 —0.202 —0.983
8 —0.174 —0.568 0.153 —0.701
10 0.152 —0.253 0.600 —0.333
12 0.559 0.133 1.111 0.106
14 1.059 0.584 1.65 0.612
16 1.59 1.110 2.26 1.161
18 2.16 1.68 2.93 1.74
20 2.78 231 3.69 241

In Fig. 13 calculated curves of (m*kT/2r#h?)}B for
ordinary helium, He?, are compared with experimental
results, which are given in Table XIV. The comparison
shows that the depth parameter s is within the range

1.0<s<1.1 for He*—He* (13.6)
(probably s~1.03), which corresponds to the range

0.85<5<0.95 for He*—He?,
0.75<5<0.83 for He3—He?.

Although the relation (13.6) has been derived by
means of the square-well potential, it is not very sensi-
tive to the used potential. We, therefore, draw the
conclusion: the two-body system of He*—He* probably
has a discrete energy level while both the He'*—He* and
He?*—He? systems definitely have no discrete level.

Figure 13 shows, furthermore, that the adequate
value of the model parameter g for helium is 1.5, which
is conspicuously smaller than the value found in Sec. 2,
ie. g=2.0. A discussion on this discrepancy will be
given in Sec. 18.

F16. 13. Reduced sec-
ond virial coefficient of
helium vs T'/T's, Ts be-

_ing the Boyle tempera-
ture 26.0°K. The curves
are for the square-well
potential with the depth
parameter s.
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14. High-Temperature Expansion of the
Second Virial Coefficient

Above the Boyle temperature, where high-tempera-
ture expansions will be used, the symmetry effect is
negligible. We therefore consider only the quantum
effect due to wave nature in the following. The second
virial coefficient is then given by

B=2r f [l—expW (e0)Pdr.  (14.1)
0
Here W (r,r) is the diagonal element of W (r,r') which

TaBLE XIV. Second and third virial coefficients of He?.

T°K BAs3 C X102 A6 Reference
2.15 —293 a
2.32 —262
2.86 —205
3.35 —172
3.96 —139

14.16 —25.7 b

17.30 —15.0

20.58 —6.0

23.35 —5.1

374 7.6

48.2 120

20.35 —4.6 11.3 c

65.15 15.6 7.0

90.15 17.6 5.0

123 18.9 5.2
173 19.8 5.3
223 19.8 5.0
273 19.5 se
273 19.7 2.1 d
323 19.2 2.0
373 18.8 2.5
423 184 3.0

a W. E. Keller, Phys. Rev. 97, 1 (1955).

b Data are due to Nijihoff, Keesom, and Iliin; the values are taken from
Keeiom, Helium (Elsevier, Amsterdam, London and New York, 1942),
p. 3

¢ The values are taken from J. Otto, Handbuch d Experlmentalphysxk
Bd 8, Teil 2 (Akademische Verl. Lelpzxg. 1929), p.

d A. Michels and H. Wouters, Physica 8, 923 (1941)

is to be determined from (11.5), (11.7), and (11.8). Let
us in this section denote W (r,t’) simply by W.

Inserting (11.7) into the Bloch equation (11.5) we
have

a r—
U+3‘§W+ VW =q(VW)2+4gAW, (14.2)
where V means gradient with respect to r, A=V -V,
and

q=12/2m*. (14.3)
Let us expand W into a power series in ¢:
W=WotqWit+g¢Wat- - (14.4)

We then obtain from (14.2), as regards the coefficients
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of q07 917 Q27 g37 ]

a r—r
U+—Wo+ -VW,=0,
9B
2 r—r’
—Wi+ VW= (VW) AW,,
9B
<} r—r
—Wat VW=2VW,o VW 1+AW;,
B B
<] r—r
6—[;W3+ VW= (VW1)* 2V IWo VW ot-AW,,

(14.5)

Taking the condition (11.8) into account we have
from the first equation of (14.5)

Wo(t,x)=— (14.6)

Multiplying the first equation of (14.5) by V and A we

have
/

l¢]
vU+ VVW,=0,
B

d 2 r—r
AU+— AW o+-AW o+
B B

VAW =0,

from which, taking the limit r'—r, we have
(VWO)w’—)'lr: - ‘%’BV U, (AWO)r’—n= - %BAU'
Inserting these into the second equation of (14.5) we

obtain
2 3

Wi(r,r)= —[—Z—A U—I—E(V U)2. (14.7)

Similarly,}

5 4

B B
Wo(tt)=——vvU:vUVU+—VU -vVAU
60 30

4 3

B8
+—vvU:vvU—-—AAU,
90 60

1787
Wiyx)=—vwU-vwU-vvU-vU
5040

7
+—vvvlU:vUvUVU
840

1788

2520

1 As regards the : and : notation, see, for instance, Chapman
and Cowling, reference 7.

VAU-vvU-vU
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6
——VVAU:vUVU
280

6
——vvvU:vvUvU
210

438
35(va-va) :vvU

1788
+
5040

VAU -vAU

5

+—vAAU-vU
280

65
+—vvAU:vyvU
210

5
+—vvvlU:vvvU
840 ~

4

——AAAU.
840

These altogether give
W(r,r)=2q'W,(r,r).
Transforming expW (r,r) into
exp(—BUN1+gW1(r,n)+ @[ W (r,0)+3 W1 (r,r)2]
+ @[ W3 (r,0)+Wilr,r) W (r,0)+Wi(t,r)3/6 ]+ - - - }

and inserting this expression into (14.1) we finally ob-
tain the second virial coefficient in the form

B=B(0)+QB(I)+Q2B(2)+ RN

(14.8)

(14.9)
where

0
B (°)=21rf (1—eV)r2dr,
0

BW®= Iﬂaf eBUU " dr,
6

BU® B

1U”
(—U"2 —————U'4)r2dr
57 97 72

U///g U U1/3
B(3)=7r’35f —ﬁU(
840

I
1401’2 756
BU/ U/Ig 6 U3
g 1

gRU2y"
180r 945/ 720

B<2>=——B4

62 U/4
64807*

B 3 U/ 3 64 U's
-+ ) r4dr,
2160r 25920

g being defined by (14.3), 8 being 1/kT.
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The quantum correction in the form of expansion
(14.9) was first given by Wigner? and then by Uhlen-
beck and Gropper.?s Kirkwood?® supplemented their
method by furnishing a more convenient means of ob-
taining the expansion, which was used by Uhlenbeck
and Beth?” and by Gropper? in their recalculations of
the quantum correction up to the term proportional
to ¢% The term proportional to ¢* was recently calcu-
lated by Midzuno, Shizume, and the present author.?
The most elegant method here used is essentially due to
Husimi.?

15. The Second Virial Coefficient for the
Lennard-Jones Potential

Integration of each term in the expansion (14.9) can
be performed for the Lennard-Jones potential

U@r)=Ar"—ur s

6 fro\" n [f70\°
o () ()] e s
n—06\ 7 n—O6\ 7 ,

the result being a power series in

u kT)G/n
Y=E—\ )
ET\ A\

ie.,?

2r f A\ 3"w f6i—3\ 9!
B(O)=___(___) >r (____)__’
n \ kT t=0 n /il

2r 1 £ A \Y"e s6i—1\y
BO=— —) ZI‘( )—ft(l)(ﬁ,”):
n ET\ET t=0 #n ¢!

2rf LN\2f N\ Ve s6I41Y\ 9t
B®=—— ——) (—) ZP('—_‘)_]t(2) (6,%),
n \ET ET t=0 n /it

2rf 1N\3/ A\ "¥"w 76643\t
B(3)=——(-—) (—) ZI‘( )-—]t(”(éyﬂ),
# \ BT ET =0 n /!

where

127D (6,n) = (n—6)6t— (n—1),
43207, (6,1) = 21 (n— 62622
4 (612+30n—42) (n— 6)6¢
+ 613 — 2712+ 301+ 63,

3628807, ® (6,2) =93 (1 — 6)3633

+ (82124 657n— 741) (n— 6)26%2

1 (24n4 4348031 93n2— 810n-+2241) (11— 6)61

+ 7215— 12602 — 53134175512 — 40512 — 36435.

24 E. Wigner, Phys. Rev. 40, 749 (1932).

25 G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932).

26 J, G. Kirkwood, Phys. Rev. 44, 31 (1933).

27 3. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936).

28 Kihara, Midzuno, and Shizume, J. Phys. Soc. Japan 10, 249
(1955).

2 Lennard-Jones, see reference 3; de Boer and Michels, see
reference 23; Kihara, Midzuno, and Shizume, see reference 28.
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Let us express the second virial coefficient in the final

form

FW(3) FO(3)

B=§1rrg3[F<°)(z)% + ; ],
cs (cs5)?

Uy (15.2)
Z=— .
kT
where (see (10.4))
1 # 1 6
= (15.3)

)
cS 2m* U01’02 Uo1’02

F(i)(z):Z'Bt(i)z[3+(n—2)i+(n—~6)t]/n, 1=0,1,2, ---. (15_4)
t=0
The coefficients 8 are given in Table XV for #=9 and
12. (The functions F® for =9 are included in Table
XVIL.) :
Making use of these tables and depending on the
observed values given in Table XIV, we can determine

TaBLE XV. Coefficients in the expansion (15.4) for
L.-J. (6,n)-potential.

For n=9
¢ B:® B:® Be@ Be®
0 1.7061 0.3880 —0.0426 0.0287
1 —2.1263 0.1513 —0.0990 0.0956
2 —0.7500 0.2282 —0.1740 0.2055
3 —0.4259 0.2475 —0.2400 0.3376
4 —0.2654 0.2350 —0.2822 0.4633
5 —0.1685 0.2039 —0.2949 0.5561
6 —0.1065 0.1652 —0.2813 0.6008
7 —0.0664 0.1265 —0.2490 0.5958
8 —0.0406 0.0924 —0.2071 0.5498
9 —0.0244 0.0648 —0.1632 04771
10 —0.0144 0.0438 —0.1228 0.3923
11 —0.00831 0.0286 —0.0886 0.3076
12 —0.00471 0.0182 —0.0616 0.2312
13 —0.00263 0.0112 —0.0414 0.1672
14 —0.00144 0.0067 —0.0270 0.1168
15 —0.00077 0.0040 —0.0171 0.0790
16 —0.00041 0.0023 —0.0106 0.0519
17 —0.00021 0.0013 —0.0064 0.0331
18 —0.00011 0.0007 —0.0037 0.0206
19 —0.00006 0.0004 —0.0022 0.0126
20 —0.00003 0.0002 —0.0012 0.0075
For n=12
t Bt ® Bt B B8:®
0 1.2254 0.4838 —0.1276 0.1692
1 —1.8128 0.3694 —0.3768 0.6512
2 —0.6127 0.4471 —0.6189 1.3133
3 —0.3021 0.3981 —0.7254 1.8454
4 —0.1532 0.2979 —0.6815 2.0343
5 —0.0755 0.1965 —0.5447 1.8740
6 —0.0357 0.1173 —0.3838 1.4994
7 —0.0162 0.0645 —0.2440 1.0694
8 —0.00702 0.0330 —0.1422 0.6923
9 —0.00292 0.0159 —0.0769 0.4124
10 —0.00117 0.0072 —0.0390 0.2284
11 —0.00045 0.0031 —0.0186 0.1186
12 —0.00017 0.0013 —0.0084 0.0581
13 —0.00006 0.0005 —0.0036 0.0270
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the model parameters for He?:

7’0=3.11 A, Uo/k= 7.82°K,
r0=2.88 A, Uy/k=10.80°K,

s=1.15 for n=9;
s=1.05 for n=12

of which the latter agrees with (13.6).%° (The choice of
n=12, however, is not compatible with the statement
in Sec. 3: ‘“The bowl of the Lennard-Jones potential
with =12 is too narrow for molecules of the rare
gases.” This discrepancy will be discussed in Sec. 18.)

V. THE THIRD VIRIAL COEFFICIENT OF HELIUM

In this part the third virial coefficient of helium at
higher temperatures is treated under the assumption of
additivity of the intermolecular potential. This assump-
tion is shortly discussed in the last section of this part.

16. High-Temperature Expansion of the
Third Virial Coefficient§

The expansion (14.8) of W (r,r) for a two-molecule
system can be generalized to W (ry, 1o, - -+, tx; 11, Iy,

-, 1y) for an N-molecule (single component) system,
where r; is the position of the /th molecule. Namely,

W(rly cryINg I, '7rN)=W0(r1) cryING I, '7rN)
+qW1(1'1; Y ’ rN)+ T (161)
where ¢ is 7? divided by the mass of a molecule. (Com-

pare (14.3) where m* is the reduced mass.) The first
term on the right-hand side is, like (14.6),

Wn(rl, v 'arN)= —Bcb(rl) ot '7rN)7
B=1/kT,

rN;rl; PP

yIN; T, ot

(16.2)

® being the potential energy of the system. For the
second term we have, like (14.7),

Wl(rl, e

,IN; Ty, v

3 N 3 2
=—~z—~¢+ﬁz( . (16.3)

12 i=1 9r; Or; 24 i=1

The classical third virial coefficient can be expressed
in the form

432_{_?}1} f f f {—2+exp[—BB(ry,rs)]

+eXP|:"‘ B(I) (rlyr3)]+eXP[" B(I) (1'2,1'3)]
—exp[—p® (r1,re,rs) J}dr1dTodrs,

V being the volume of the system. Replacing in this
expression the Boltzmann factors, exp[ —p8® (r,r2) ], - -,
exp[ —pB®(r1,r2,r3) ], by the corresponding Slater sums,

# De Boer and Michels’ result, reference 23, is 7o=2.87A,
Uo/k=10.22°K for =12 which corresponds to s=0.99.

§ Sections 15 and 16 were prepared with the assistance of Y.
Midzuno and T. Shizume.
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eXpl:W(l'l,l'g; rl:rz)]’ T eXp[W(l'l,l'z,l'g; 1'1,1'2,1'3)], we
obtain the quantum-mechanical expression.®

Our object in this section is to calculate the first
quantum correction gC® to the third virial coefficient

C=CO+4gCO+ .. (16.4)

which is similar to the expansion (14.9) of B. By use
of (14.9) we have

CW=8BOBWAC,, (16.5)

c1=31V i —[ [ [{-ewt- B‘P(n,rz)]Z[—@(rl,rz)]

a 2

—exp[ —BP(ry,r3) ]Z[”“I) (rlyr3)]
i Lor;

, 9 2

—exp[—BP(ry,rs) 2 [——49 (l‘z,rs)]
i Lor;

a 2
+exp[ —B®(ry,r2,r5) 12 [——"I’a (rl,rg,l';;)] Idndrzd'rs-
7 T

(16.6)

Here we have used integration by parts such as

S}
~fff exp(— ﬁ@)z— —®dridTod T3
or; or;
1 9 2
=—~fff exp(—p®)>" —‘ID) dridTodTs.
14 or;

We are assuming from the outset that the potential
energy of the system is equal to the sum of the potential
energies of pairs. Hence, in terms of 7= |r;—r;|, the
potential energy of a three atom cluster is

P (r1,re,r3)= U (r12)+ U (r15)+ U (r23).

Taking into account such relations as

f [ [ emr- ﬂU(rm)]Z( v

= l exp[ —BU (r12) JLU' (r12) Pdridrodrs
v

(16.7)

) dridrydrs

and using the transformation
Vldridredry= 8w 1071372307 1007 1307 23

of integration variables, we finally obtain

2
——53fff(A12+A13+A23)1’127’13723d7’12d7’13d1’23,
(16.8)

3t Uhlenbeck and Beth, see reference 27; see also B. Kahn and
G. E. Uhlenbeck, Physica 5, 399 (1938).
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where,

Ap={[U (r12) PHU' (r15) U’ (r2s) (ris*+ras>— 1152/ 2115723}
Xexp[—BU (r12) —BU (r15) —BU (r25) ]

—[U (r19) P exp[—BU (r12)]

with similar expressions for A3 and As;. The integral

is to be taken over all values of 715,713,793, which form
three sides of a triangle.

17. The Third Virial Coefficient for the
Lennard-Jones Potential

Here again let us adopt the Lennard-Jones potential
(15.1) for which the classical C® was treated in Sec. 3.32

Using
R=ry5, &=r1i3/R, n=ry3/R

as integration variables, we can transform (16.8) into

C1———B3ff [f (A12+A13—|-A23)R5dR:|£ndnd£
1-¢

The integration with respect to R can be performed by
the usual series-expansion technique. The result is as
follows:

272 1 7 A \¥"=
o=——(—) Lynem, v
3n ET\kT/ t=0
in which v is the same as in Sec. 15, and
1 s6t—4 !
It(é,n)=—I‘( )ff Fndndé,
¢! 7 0 Vit
Fy= (6t+n—4) (6i—4)[(n,m)(n) 4= 1"=%(6)!—(6) ]
—124(6t—4)[{n,6)(m) 460 In—1{G)i—1— (6) ]
+361(1—1)[(6,6)(m) 4= ™(6)*—(6) ],

TaBLE XVI. Coefficients in the expansion (17.1)
for L.-J. (6,9)-potential.

-~

1:(6,9)

—118.7
+56.0
12.61
10.00
7.32
4.60
2.59
1.338
0.651
0.300
0.133
0.057
0.024

Pt e
NROOVRNOUNPBWNRO

32 Numerical values of v; (9) and v, (12) in Table III were recal-
culated with great accuracy by Epstein, Hibbert, Powers, and
Roe, J. Chem. Phys. 22, 464 (1954), and by Rowhnson, Sumner,
and Sutton, Trans. Faraday Soc. 50 1 (1954), respectively.
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TasLe XVII. Functions in the expansions (15.2) and (17.2)
for L.-J. (6,9)-potential.

—logws FO)(2) Fa)(z) F@) () F®)(3) GO(z) GW(z)
0.1 —1.583 1.194 —1.007 1.684 0369 1.0
02 —1.071 0.741 —0.444 0564  0.409 0.37
03 —0.6995 04793 —0.2056 0.2024 0.357 0.187
04 —04255 03200 —0.0992 0.0757 0.303 0.127
0.5 —0.2218 02195 —0.0495 0.0295 0.264 0.100
0.6 —0.0700 0.1538 —0.0255 0.0119 0.237 0.078
0.7 0.0430  0.1095 - —0.0136 0.0050 0.219  0.062
0.8 0.1265 0.0791  —0.0073 0.0021 0.206 0.050
0.9 0.1874  0.0578 —0.0040 0.0009 0.194 0.039
1.0 0.2309 0.0426 —(.0022 0.0004 0.183 0.030
1.1 0.2610 0.0316 —0.0013 0.172 0.020
1.2 0.2806 0.0236  —0.0007 0.160  0.015
1.3 0.2922  0.0177  —0.0004 0.149  0.012
14 02974 0.0134 0.137  0.010
1.5 0.2979  0.0101 0.125  0.008
1.6 0.2946  0.0077 0.114  0.006
1.7 0.2885  0.0058 0.103  0.004
1.8 0.2805 0.0044 0.093
1.9 0.2709  0.0034 0.083
2.0 0.2603  0.0026 0.074

where the bracket notation has been used in the sense
(@=1+¢ 47,

(@=14Eo+7e,
(a,b)=(a+0+2)
+E ) (142 —)/4
+ ) (- 8)/4
+ (e ) (P4 — 1) /4

The values of 1,(6,9) obtained by numerical integra-
tions are given in Table XVI.

By use of C, the third virial coefficient, C, is given
by (16.4) with (16.5) up to the term proportional to the
first power of ¢g. For =9, Table XVII gives the func-
tions G® and G® in the expansion

5 1
C=—7r2706[G(°) (B+—GP(z)+-- ']7 (17.2)
18 cs

z=Uo/kT, 1/cs=6q/Uwe,
together with F in the expansion (15.2) of the second
virial coefficient.

Tigure 14 shows a comparison with experimental re-
sults for He®. Here curves indicate calculated values
based on the model parameters determined from the
second virial coefficient. Although the experimental re-
sults do not seem to be very accurate, the comparison
shows that the bowl of the Lennard-Jones potential
with #=12 is not sufficiently wide (compare Sec. 3).

It is to be noted that the potential energy of the
three-body system has been assumed to equal the sum
of the potential energies of pairs. This assumption of
potential additivity is now capable of discussion.
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18. Nonadditivity of the Intermolecular Potential

The intermolecular potential of helium determined
from the second virial coefficient has the bowl-width
corresponding to

g=1.5 for the square-well potential, (18.1a)

(18.1b)

These values of parameters indicating relative bowl-
width may belong also to other rare-gas'molecules, Ne,
A, Xr, and Xe. (This similarity of the intermolecular
potential does not strictly hold of course: probably, the
larger the molecule, the smaller the relative bowl-width.
But such nonsimilarity does not influence the following
conclusion.)

In Secs. 2, 3, and 17 the third virial coefficient was
represented, under the assumption of additivity of the
intermolecular potential, by models having a wider bowl
with

g=~2.0 for the square-well potential,

n=12 for the Lennard-Jones potential.

(18.2a)
(18.2b)

Furthermore, we saw in Sec. 6 that a potential with
much wider bowl has to be adopted if we want to ex-
plain the stability of cubic crystal structure for Ne, A,
Kr, and Xe under the assumption of the potential
additivity.

These circumstances show that the intermolecular
potential may not be considered to be strictly additive.®
The potential with parameters (18.2) should be accepted
as “the mean (or effective) additive intermolecular
potential” in a three-body system. Therefore, fhe bowl
of the mean additive intermolecular potential in a many-

n=~9 for the Lennard-Jones potential.

Cx lO—Z A€

o Otto
®  Michels - Wouters

4+

2+ ° ° ®

0 1 1 i 1 1 L 1 T OIK
0 50 100 150 200 250 300 350 400

17

F1c. 14. Third virial coefficient of helium with curves for the
Lennard-Jones potential determined from the second virial coeffi-
cient. Curve a is for (6,12)-potential, classical; curve b is for
(6,9)-potential, classical; curve ¢ is for (6,9)-potential with the

first quantum correction.

3 In fact, strictly additive is only the van der Waals-London
attraction as derived from the perturbation theory to the second
order. If the perturbation calculation is pursued to the third
order, interactions between triplets of atoms appear; see B. M.
Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

421

U(r)
Fic. 15. The full line
0 indicates qualitatively the

intermolecular potential
in two-body systems; the
dotted line shows the mean
additive intermolecular po-
tential in three-body sys-
tems.

body system is wider than that of the potential in the
two-body system, as shown in Fig. 15.

VI. VIRIAL COEFFICIENTS BETWEEN UNLIKE
MOLECULES

Up to this point we have been investigating pure
gases; the object of this part is to give a brief treatment
of typical gaseous mixtures. The equation of state for
binary mixtures of species 4 and B is of the form

pv=kT[1+ (Baats®>+2Baptaép+Bppts)v!
F(Ca1484°+3CaapEa2%5+3Canniatn®
+Crrptst)v2+- -]

Here £4 and £p=1—£4 are mole fractions of the species
A and B, respectively. B44 and Ca44 are second and
third virial coefficients for the molecule 4 ; Bgp and
Cgpp for the molecule B. BAB, CAAB, and C4pp are
virial coefficients between unlike molecules, in which
we are now interested.

19. The Second Virial Coefficient between
Helium Isotopes '

For mixtures of He* and He?, which will be denoted
by A and B, respectively, the intermolecular potentials
of 4 to A, B to B, and 4 to B are all the same. Hence
the second virial coefficients B4, Bgg, and Byp are
different only as regards the reduced masses and the
statistics. Let us confine our treatment above the Boyle
temperature where the statistical effect is negligible.3*
The high-temperature expansion then becomes (com-
pare (14.9))

BAA=B(°)+QAAB(1)+9AA2B(2)+ ceey
BBB=B(o)+qBBB(1)+qBBzB(2)+. N
BABzB(o)+qABB<l)+qAB2B(2)+ cee,

Here ga4, B3, and ¢4 are 572 divided by the reduced
mass for pairs A —A4, B— B, and 4 — B, respectively, so
that 2g4p=gaa+¢ss.

Figure 16 shows these three coefficients calculated by
use of the Lennard-Jones potential with parameters
determined in Sec. 15.

3 As regards the.second virial coefficient of helium mixtures at
low temperatures, see Cohen, Offerhaus, and de Boer, Physica 20,
501 (1954); Kilpatrick, Keller, Hammel, and Metropolis, Phys.
Rev. 94, 1103 (1954); Kilpatrick, Keller, and Hammel, Phys.
Rev. 97,9 (1955).
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F16. 16. Second virial coefficient between helium isotopes cal-
culated for the Lennard-Jones potential. The circles are observed
values for the pure He! gas.

20. The Core-Model of Interaction between
Unlike Molecules

The core-model introduced in Sec. 9 can also be
applied to the mixed virial coefficient B4p. The model
is as follows: We assume an appropriate convex body
called core inside each molecule and define the inter-
molecular distance p as the shortest distance between
two cores. The intermolecular potential U4p for the
pair A— B is assumed to be a function of p only, i.e.,
UAB= UAB(p) for which UAB(O)"——-‘ 0.

By means of the core-model of molecules, the mixed
second virial coefficient is given by

BAB:f

p=00

—Uag
[1 —exp———éj@]dbfw () +545(0),

—0
where g
Vat+Ve MpSa+MsSs
bAB(P)= + )
2 8w
M a=2mp+Moa,

Sa=mp*+Moap+Soa,
T 1 1
Va=—p*+-Moap+-Soap+Vou,
6 4 2

and similar relations as regards the species B. Here
Voa, Soa, and M4 are, respectively, the volume, the
surface area, and the mean curvature integrated over
the whole surface of the convex core of the molecule 4.
The function b45(p) may also be expressed in the form
[compare (9.2)]

2r Moa+Mop
ban(p)=—p*+—"—p"
3 2
Soa+Sop MoaMop
+ )p
2 47
. Voa+Vos . MopSoa+MoaSon
' 2 I 8r

TARO KIHARA

In particular, when the potential U,p(p) is the

Lennard-Jones function,
poaB\ 2 poaB\ ®
—2 ,
p P

the second virial coefficient B s is expressed by a power
series with respect to

(ZAB)g'E (UOAB/kT)é’

Uas(p)=U OAB[

that is

M0A+MOB

27
BAB=_3‘POA83F3 (zam)+ poas*F2(345)

Soa+Soz MoaMos
+ + )POABFl(ZAB)
2 4

Voat+Vor MopSosa+MosSon
€ o

1 )

2 8r

where (s=1,2,3)
s o 1 6t—s
F,(3)=——3 —T (__)ztz(sﬁ-s)/u’
12 =0 ¢! 12

the table of which is given in Sec. 9.
As regards model constants, the relations

2poaB=posa~+poss,
Uoss?=UosaUops

have been verified to hold approximately.®® An example
is shown in Fig. 17, in which curves were calculated by

30r

20t

A argon

B - hydrogen

1 1 T .K J
400 500 600

-40
[¢]

106 200 300

Fi6. 17. Second virial coefficient between argon and hydrogen
with curves for the core-model.

3 T, Kihara and S. Koba, J. Phys. Soc. Japan 9, 688 (1954);
see also J. A. Beattie and W. H. Stockmayer, J. Chem. Phys. 10,
473 (1942).
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use of these relations and by use of model constants
determined in Sec. 9 from the virial coefficients of pure
gases.

21. The Third Virial Coefficient for
Binary Mixtures

The third virial coefficient for unlike molecules can
easily be evaluated only in the case of the square-well
potential3®

w  forr<oy
Uij(r)=1 —e;j for o;;<r<pi;
0  for p,; <7,
where, in the case of a binary mixture, i=4 or B,

j=A or B, and k=4 or B.
The result is a polynomial on the third order in

wij=exp(e;/kT)—1
that is
3C =IO —[wyl WD+ 5] A5, T A3 ]
+ Exﬁxik[(mn+xijx].kl(z.z)_'_xikxjkj(?.a)]
— ®iZ kil ©.
Here the coefficients I are given by
IO=W (0ij,0,05t),
IO =W (pijyoin,oin) =1,
IO =W (gi,pi,056) — I,
10D =W (0i0i,05) =1,
ICD =W (pijpin,ojn) — [ @ — QD -2,
I1CD=W (pijou,p) —I©—TAD T
ICD =W (¢ij,pir,pjr) — @ — @D —T03)
IO =W (pijspir,psi) =IO =2 0 40 —=3 I -9,

36 T, Kihara, see reference 2.
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F16. 18. Third virial coefficient for argon-neon mixtures
calculated for the square-well potential.

by means of the same function W(a,b,c) defined in
Sec. 2.

As regards model parameters, it may be reasonable
to assume paa=2044, paAB=204B8, PBB=20'BB,

2—

2048=04410BB, €AB°=€q4€BB

(compare Sec. 2 and Sec. 20). Figure 18 shows Caa4,
Caas, Capp, and Cppp calculated on these assumptions
in case 4 and B are argon and neon, respectively. The
model constants here used are

caa=311 A, eas/k=54.7°K,
O'BB=2-51 A, GBB/k=16.4°K,

which were determined from the second virial coeffi-
cients.
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