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SATOSI WATANABE

U. S. 1Vana/ Postgraduate School, 3IIortterey, Califorrtia

Symmetry properties of physical laws with respect to space-inversion, time-reversal and charge-con-
jugation are investigated in detail in the framework of the quantized 6eld theory. In most cases, the require-
ments of invariance for these transformations are automatically satisfied; in a few other cases they can
impose certain conditions on the ways in which different types of interaction are to be mixed. The ideas of
space-parity, charge-parity and superselection rules are coherently derived from the general formulation of
field theory.

1. INTRODUCTION

HE aim of this paper is to give a systematic
exposition of the q-number theory of space-

inversion (mirage), time-reversal (reversion), and
charge conjugation. As such, the present article is a
review report on this field of problems which, in recent
years, has attracted increased attention from theo-
reticians. This paper is also the first attempt of exposi-
tion which, from the outset, is based on full recognition
of the fact that Hermitian or unitary operators exist
which, without being c-numbers, can commute with
all the known physical quantities. The existence of such
operators was previously pointed out by the author, and
the operator of double reversion was shown to be an
example of such operators. ' This fact was used by Wick,
Sightman, and Wigner to introduce what they called
the superselection rule. 'In this paper, the superselection
rule is not only given thorough investigation and
natural generalization, but its basic idea is invoked at
various stages of the paper. Although the idea of super-
selection is indispensable for a clear understanding of
symmetry problems, and its discovery originated from
a consideration of symmetry problems, the super-
selection rule itself can be proven without the help of
space-time or charge symmetry.

In Part I, reversibility (invariance for reversion),
re8ectibility (invariance for mirage), and inversibility
(invariance for space-and-time inversion) have been
formally defined and assumed to hold whenever neces-

sary. This Part II provides the proofs of these invariance

principles, together with the proof of charge-conjuga-
tion-invariance. In some particular cases, these inva-
riance principles are conversely used to determine the
correct prescription for mixing interaction types. Com-
binations of two kinds of symmetry, such as reversion
and charge-conjugation, are also given due consideration.
The so-called "charge-symmetry, " which consists of

~ S. Watanabe, Phys. Rev. 81, 1008 (1951). This paper will
hereafter be referred to as (R). See, in particular, the discussion
in connection with Eqs. (4.25) and (8.15) of (R). See also, Wick,
Wightman, and Wigner, Phys. Rev. 88, 101 (1952).
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interchange of neutrons with protons is not considered
in this paper.

In Sec. 2 of this part, the spinor is introduced ac-
cording to Cartan's method, since it is certainly the best
suited for the mathematical analysis of the congruent
group of the Minkowski space. This short introduction
regarding the spinor is intended to fill theoretical
lacunae left in the current expositions on spinors. The
ten different "kinds" of spinors previously introduced
by the author are also explained systematically. It will
presently become clear that this classification of spinors
is no longer of great importance in the field theoretical
application of spinors. This is essentially due to the
fact that the physical content of the theory is left
unchanged by a gauge transformation of all the spinors
involved. Specification of the "kind" of. a spinor has
sometimes been associated with the law of conservation
of heavy particles. ' In this paper, however, we take
the viewpoint that the "kind" of a spinor does not
have much physical importance and that the physical
laws such as conservation of heavy particles should
rather be associated with the superselection rules.

As a result of our conformity with Cartan's method,
our formulas will be written with the help of -the
E-matrices instead of the customary y-matrices, which
may be a little obnoxious to some readers. However,
is it aesthetically more acceptable, to have E4$ and
ErEsEsf for time-reversal and 3-dimensional space-
inversion, respectively, or to have y&y&y&lt and pe for
these transformations? In any event, a dictionary of
translation from one language to another is attached
in Sec. 2.

In Sec. 3, the unitary operators R, 3f, I, and C,
corresponding to reversion, mirage, space-and-time
inversion, and charge-conjugation, are introduced and
their properties are investigated in great detail. Section
4 shows how the c-number field theory has the correct

~ As many pertinent references as are known to the author are
cited in each individual section in the following dealing with a
specihc problem. However no bibliographical completeness has
been contrived.
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behavior for space-mirage but the wrong behavior for
time-reversion, and how the q-number theory can
correct the reversion property retaining the mirage
property, and at the same time correctly formulate
charge-conjugation.

Sections 5, 6, 7, and 8 demonstrate the existence of
the unitary operators for the various transformations,
thus proving the invariance of the theory for these
transformations. These operators will be given explicit
operatorial expressions. Section 9 discusses the trans-
formation properties of various tensorial quantities
formed with spinors, thus substantiating some of the
results anticipated, without proof, in Part I. Sections
10 and 11 deal with the various types of nucleon-pion
interaction and nucleon-lepton interaction. It will

become clear through these discussions that, except in

the case of a photon or a neutral pion, it is meaningless
to speak of space-parity or of charge parity of a single
elementary particle.

For the nucleon-pion interaction, the mixture of the
scalar and vector types and the mixture of the pseudo-
vector and pseudotensor types are forbidden by both
reversibility and charge-conjugation-invariance. The
mixture of regular tensorial quantities and pseudo-
tensorial quantities is also refuted from a general
ground. For the nucleon-lepton interaction, there are
two general families of types. The first family is charac-
terized by coupling of the same tensorial or pseudo-
tensorial quantities originating from nucleons and from
leptons. The other family is characterized by the
coupling of tensorial quantities of nucleons with pseudo-
tensorial quantities of leptons, and vice versa. ' Both
families are equally justifiable, but it is forbidden to mix
them. Moreover, charge-conjugation and reversibility
require certain phase-factor relations among the inter-
action constants in each of the families.

Sections 5—9 will show how the concepts of reversion,

mirage, and charge-conjugation are useful in deter-
rnining the eigenfunctions of each field and also in

establishing relationship among eigenfunctions. The
angular momentum representations for photons (Sec. 6)
and for electrons (Sec. 8) may prove to be instrumental
for problems other than the formal ones of symmetry.

As an illustration of the selection rules originating
from space-symmetry and charge-conjugation, Sec. 13
will discuss the two-photon decay of a positronium and
of a neutral meson.

It was pointed out in a previous paper by the author

(paper R in reference 1) that reversibility as such does
not determine the commutation rules of charged fields,

but, rather, it is charge-conjugation that does this deter-
mination. It is not intended to emphasize this point any
more in this paper, but Secs. 4 and 5 will give a sketch
of the underlying facts. If one had the impression that
reversibility had the power of determining the statistics-

type, it is only because the combination of what we call
reversion in this paper and charge conjugation was

used for time reversal. This fact should not be inter-

preted as meaning that one view point is "correct" and
the other is "incorrect. " What we should call time-
reversal is more or less a matter of taste. *The important
fact is that we have as many laws of invariance as we
have modes of transformation allowed by the theory,
although some of the invariance laws can be derived
from other invariance laws. It is also important to
recognize this fact in regard to space parity. The author
showed in a separate paper that we can define many
diferent mirage operators leading to many diGerent
parity values of a given state. There is no room for
argument as regards which one of the diGerent defini-
tions is the "correct" one. Even after we have imposed
upon the mirage operator 3f the conditions that M'= 1
and M% „=0' „, there still remains ambiguity of
parity value of a state in which the number of charged
particles is odd. LSee Eq. (8.28).$ Any conclusion that
can be drawn from either value of parity is "correct."

x"=xe 2a~(a x")/(a a—,") (2.1)

The metric tensor' g„„of the Minkowsky space is given
in (l.2.2).' We assume hereafter that the normal
vector u& is always normalized to 1 or —1, and we speak
of a space-like reRection or time-like reRection according
as

aea" =+1 or aea" = —1. (2.2)

The sign of a& itself is arbitrary, but the sign of a„a&
has a vital meaning.

I.et the number of space-like reQections, the number
of time-like reflections, and the total number of reQec-
tions of both kinds in a decomposition of a given con-
gruent transformation be denoted, respectively, by v„
v&, and v. The parities of these numbers are determined

*The definition used in this paper is more convenient only in
the sense that it has a direct correspondence with the time-
reversal in classical physics.

e E. Cartan, Bull. Soc. Math. de France, 41, 53 (1913).See also
E. Cartan, Ls ikeoree des sPiaesses (Hermann et Cie, Paris, 1938).' (I.2.2) mean formula (2.2) of Part I of this paper.

2. MATHEMATICAL PRELIMINARIES

A. Rotations and ReQections

The mathematical entity now called spinor was first
introduced by Elie Cartan' in 1913, i.e., some fifteen
years before the discovery of the relativistic wave
equation of the electron. Cartan's method is based on
the fact that any congruent transformation can be con-
sidered as a product of simple rejections, although the
way of this decomposition involves certain arbitrariness.
For this reason, Cartan's method is best suited for dis-
cussions pertaining to inversions, while it brings about
the same results pertaining to rotations as in the ordinary
method.

By the simple reaction with respect to a plane
passing through the origin and having the normal vector
a& (is= 1, 2, 3, 0), an arbitrary, regular vector x& is
transformed into
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when the congruent transformation is given, and we
have

(2.3)

where o„o„and o are given in (I.2.8), (I.2.9), and
(I.2.10). It can be shown that, by a suitable choice of
simple refiections, v can be Inade equal to or less than 4.

The general congruent transformations can be clas-
sified into four categories': (5) o.,= +1, o.,=+1;
(P) o, = —1, o.

g
———1; (5) o,= —1, o.)=+1; (2)

o.,=+1, o.,= —1. The invariance of the theory for (5),
Lorentz transformations and space-rotations, is well
established. All the transformations belonging to class
(5) can be obtained by multiplying all the transforma-
tions of class (5) to any single transformation of class

(5), say,
(x, y, s, t)~(—x, —y, —s, t). (2.4)

All the transformations of class ('7)) can be obtained
by multiplying all the transformations of class (g) to
any single transformation of class (2), say,

(x, y, s, t)—+(x, y, s, —t). (2.5)

All the transformations of class (8) can be obtained by
multiplying all the transformations of class (5) to any
single transformation of class (8), say, the product of
(2.4) and (2.5). Thus the study of invariance for the
general congruent transformations reduces to that of
the transformations given in (2.4) and (2.5).

Here we shall insert illustrations to show how a
spatial rotation and a Lorentz transformation can be
decomposed into simple rejections. Take two purely
spatial unit vectors, a and b, where a'=b'=0. We
perform reflections 6rst with regard to g and then with
regard to b:

tion with regard to any direction in space and a rotation
by 180' about this direction.

In a similar way, let us take two space-like unit
vectors,

a"= (coshn, 0, 0, sinhn),

fi"= (coshP, 0, 0, sinhP),
(2.10)

and perform simply a reQection first with regard to a&

and then with regard to bI". Then, the product of these
two simple rejections becomes

with

x"=cosh' x'+sinhq x',

x"= sinh yx'+ cosh iex'

ft =2(P—~)

(2.11)

(2.12)

B. Syinors

The basic matrices E„(ti,= 1, 2, 3, 0) are defined by

E„E,+E„E„=2g„.. (2.14)

They must have at least four columns and four rows to
satisfy Eq. (2.14). The "contravariant" E's are defined
by

jVtjtg = jV (2.15)

The matrix E4, defined by

Equation (2.11) is merely an ordinary Lorentz trans-
formation with a relative velocity in x-direction of
magnitude v:

sinh io =v/(1 —s') '* (2.13)

The interchange of u& with bI" changes the sign of the
relative velocity.

Putting

x'=x —2a(a x)

x"=x' —2b(b x').

P
[aXb]=sin—c, (a b) =cos—,

2 2

(2.6)

(2.7)

E4—zE — LEpy (2.16)

will occasionally be used, but usually the index p, will
be supposed to run over (1,2,3,0) instead of (1,2,3,4).
It should also be noted that E5 defined by

EgE2E3Ep
——iE5 (2.17)

where c is a unit vector, we can easily deduce from Eq.
(2.6)

x"=x+(1—costp)[cX[cXx]]+sing[cXx]. (2.8)

As a simple geometrical consideration will show, this
transformation Eq. (2.8) is nothing but a rotation by
angle q about the axis c. Suppose we perform further-
more a simple reAection with regard to c. Then we

obtain

x'"=x"—2c(c x")

anticommutes with the four E's and E5'——1. The change
of factor i into —i in Eq. (2.17) will change what
Eddington would call chirality, but it does not affect
the ordinary four-dimensional theory.

There exist two important matrices, J and E which
transform the basic E's respectively into their Her-
mitian conjugates and their transposes. ' The matrix J
is a necessary instrument to construct the "adjoint"
spinors, while I is closely connected with the charge-
conjugation. Their properties are, more precisely,

= —x—(1+cos ie) [cX[cXx]]+sin io[cXx]. (2.9) J 'E„J=—E„, J 'E5J= —E5, J=J; (2.18)

This reduces to (2.4) for y=vr, agreeing with the fact
that the total mirage is the product of a simple reQec-

5 See the Appendix in (R)& reference 1 of this paper.

E 'E E= Er E 'EsE=+Esr E—r= E(219)—
s The J used here is i-times or minus i-times the J used in (R).

For the derivation of the theorems concerning E and J, see
W. Pauli, Ann. Inst. Henri Poincare, 6, 137 (1936).
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AA =a"a"2 (E„E„+E„E„)=a„aI'.
Therefore,

S '=o-gAiA2 A, .(2.20)X=—J~E 'J.

where the bar means the Hermitian conjugate, and T It should be noted that
means the transpose. Between J and E there exists a
relation: (2.30)

(2.31)

There are sets of E's such that Ei, E2, E3, E4(= iEO)—
and E5 are all Hermitian (Eo. anti-Hermitian):

E5——E5. (Hermitian system) (2.21)

In a Hermitian system, we can take

J=J '= J=E4 —iE—O—, (Hermitian system) (2.22)

and we have
X=K '. (Hermitian system) (2.23)

In such a system we can take

Furthermore, among the Hermitian systems, there exist
such sets of E's, that Eo is antisymmetric, three out
of E&, E&, E3, E5 are symmetric, and the remaining one
is antisymmetric. If, for instance, we take E2 as this
antisymmetric one, then we have the following rule:

E], E3, Ep, E5 h.ave real elements,
(special) (2.24)

E2 has imaginary elements.

It is easy' to show that the S's defined by Eq. (2.28)
are faithful representations of the congruent group, but
they are by definition two-valued since the sign of each
a& is arbitrary. From the defining properties of J and
E follow

J—'SJ=O- 8 '

E—'SE=0;S~-&.

(2.32)

(2.33)

The spinor $ is defined as the representation vector
of the S's, i.e.,

(2.34)

The adjoint spinor has to be defined by a transforma-
tion rule which contains 5 ', so that it may cancel with
the transformation of $. This could be done, in view of
Eqs. (2.32) and (2.33), either by the use of J or K.
However, in order to provide the possibility of positive
definite normalization of spinors, we have to choose the
former alternative. Thus, the adjoint spinor P is
defined by

iEO, K—=EiE3. (special) (2.25)
)X—]J—i (2.35)

E~, E2, E3, Eo have real elements,
(special) (2.26)

has imaginary elements.E5

In such a system, we can take

J E ZEO (2.27)

As will be seen presently, we must adopt a Hermitian
system in order to make the normalization of spinors
in the ordinary 3-dimensional space feasible. We shall
not use particular representations of J and E, except
in the last stage of calculations, in order to keep the
physical implications of J and E clear. As to the special
systems in (2.24) and (2.26), they are mentioned only
to compare the E-system to the usually adopted repre-
sentations of the e's and the y's, and will not be used
in this paper.

We now introduce a 4—4-matrix representation of the
entire congruent group. Any congruent transformation
can be expressed as the result of a series of simple reQec-
tions characterized by normal vectors; a(~)&, a(2)i',
a(„)&, whereby the order in which the reQections appear
must be respected. Corresponding to this transforma-
tion, we introduce a matrix:

If we take E5 as the antisymmetric one, we have the
following rule:

where the bar means the complex conjugate in the
c-number theory and the Hermitian conjugate in the
q-number theory. The star will be reserved to designate
exclusively the complex conjugate. In virtue of Eqs.
(2.32) and (2.34), the transformation rule of $&& becomes

fix —0 px5' —i (2.36)

Now, the relation in Eq. (2.33) can be exploited to
derive a physically important theorem —namely, if $i
and $P transform according to Eqs. (2.34) and (2.36),
then P2 and $P defined by

—PxK tx —PiK
—1 (2.37)

I P'iE'$dxdydz = +1, (2.38)

which is possible in a Hermitian E-system, because, on
account of Eq. (2.22), Eq. (2.38) becomes

transform, because of Eq. (2.33), again according to
the same rules as seen in Eqs. (2.34) and (2.36). That
$; and $P, defined by Eq. (2.37), are connected by Eq.
(2.35) can be shown by Eq. (2.20). We shall see that
transformation in Eq. (2.37) provides the possibility
of charge-conjugation.

The "normalization" of spinors is usually done by
requiring

with
S=A„..A2Ag,

A g —a (g) Eye

(2.28)

(2.29)
$$dxdydz =+1.

aJ
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~e shall have to use quantities of the type PO) undergoes a series of simple reflections, X will obviously
where 0 is some operator with Dirac indices. It should transform according to
always be kept in mind that if X'= —1)"olA, .A1XA1 . A„

this means that
Q=P0$=$0'$, (2.39) =o-SXS—'. (2.44)

0'= —iZOO or 0= —iEOO'. (2.40) Now take the product of h.„with x& and call it C:

(2.45)If 0' is Hermitian, then Q will be real in the c-number C=A„x")

f
' l'f ' then this will transform, as a result of Eqs. (2.34),

notations:

E"=(1/2)Z P(,P)E-E =(EA. E.E—)/2, '

E.-=(1/6)Z P(,P,~)E.EpE„

E»„„),, (1/24)——Q P(Q,P,y,b)E EPE~E8,

(2.41)

where the I'"s are sign-functions such that, for instance,
P(Q,p,y) is +1 when (Q,p,y) is an even permutation of

(p, v, K), and —1 when (Q,p,7) is an odd permutation of

(p, v,5), and otherwise zero.
%e shall now give the transformation properties of

various tensorial quantities that can be built with the
two spinors, f and 32, obeying the same transformation
rules of Eqs. (2.34) and (2.36):

h.= if+E522,

~» =2PE» tv

I =yx&

I'„=g ~E5E»lp, (2.42)

h»„=$&&E5E»„lp, I'„„=iAXE»„y.

The factor i is inserted in four of those quantities so
that the complex conjugate of each quantity becomes,
in c-number theory, identical with the original quantity
with f and p2 interchanged. It is easy to show, with the

help of Eqs. (2.34) and (2.36), that the "kinds" of
tensors, dered in Part I, of these quantities are as
follows:

A.) A.p, ) App)

I', 1 p) I'pv.

second kind

third kind
(2.43)

Because of Eq. (2.17), A»„and I'»„are complementary
to each other. See (I.2.13). The assignment of kinds

given in (2.43) will no longer be valid in the q-number

theory. See Table III, Sec. 9.
To avoid repetition, let us prove only that A„ is a

second kind pseudovector. Taking an arbitrary regular
vector, x&, we built a matrix

C'=zg'~E q'x'»=Q o.p&&E px» (2.46)

u~. x"E =~Sx~E„S-~.

Since x" is arbitrary, we obtain

E„a&.„=re„S '.

(2.47)

(2.48)

The relation in Eq. (2.48) enables us to compare the
E-system with the customary o. system and p system.
More precisely, the transformation rules for class g
alone are not sufhcient to determine the unique corre-
spondence between the E-system and the p system. If
we assume, for the p system, the transformation rule
(including inversions),

y„a~.„=Sy„S-',

then we obtain the following correspondence:

El—Z Y5'Yl ZQ2Q8p Klpo

E2 8'Y5 Y2 ZQ3Qlp =0 2p8

E3 2+5 Y8 8Q1Q2p Popo

vEp=ZE4= Y5+4= 8Q1Q2Q8p= Zpo

E5=yq= Znqn2n3= —pq= Zp2p3

(2.49)

v (2.50)

71 ZE1Eov Y2 ZE2E5v 'Y3= ZE3Eov

Ql=EoE1, Q2=EoE2, Q8=EoE8, p=EoE5

P= —i)Ep=

igloo,

P =—$y4 iPE5——(2.52)

showing that C is a second kind scalar. Then, in virtue
of the quotient rule of tensor calculus and of the
product rule of Part I, we conclude that A„ is a second
kind pseudovector.

Equation (2.44) can also be written, with the help
of a».„(1.2.1), as

If x» undergoes the transformation of Eq. (2.1), X
will undergo the transformation,

X'= X'»E„=X»E„2o8QVE»(a„X")—
~»=24' 'Y»O'v

+»v 8$ 'Y»vp v

I = igty582—

I'„=g ty„y, p2 (44, v= 1, 2, 3, 4). (2.53)

I »v
=8ft"Y»v'Y5 vp

=X—o A(AX+XA) =—a-lAXA,
From this correspondence, it can be seen that the

where A is given by Eq. (2.29). More generally, if x" Hermitian E's result inHermitianQ'sandHermitiany's.
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Comparing this with Schwinger s definition~ of charge-
conjugation matrix C:

b= 4'C— (2.54)

we get C=iy~ and, in particular, in the system of
(2.26) and Eq. (2.27),

("=—v4, h= h. (2.55)

We shall now discuss briefly the spinor transforma-
tions corresponding to the illustrations given in Eqs.
(2.8) and (2.11). The transformation matrices S cor-
responding to Eq. (2.6) are, according to Eq. (2.29),

A =a E, Ap=b E (C3=1, 2, 3). (2.56)

Then the S for Eq. (2.8) will be

Furthermore, the customary representation of o.'s in
which only n2 has imaginary elements corresponds to
the special system as seen in (2.24) and Eq. (2.25).
The p system, in which only p4 and p5 have imaginary
elements, corresponds to the special system of (2.26)
and Eq. (2.27). If we translate the charge-conjugation
of Eq (2. .37) into the language of the p system with the
help of Eqs. (2.50) and (2.52), we get

$3
—— igitE—3E:.

The transformations considered in Eqs. (2.56)-(2.62)
pertain to the spinors which do not depend on the
position in the space-time. Usually the spinor represents
a certain field, and therefore should undergo the trans-
formation of the argument (x, y, st) of ( in addition to
the spinor transformation considered above. As is
always the case in the problems of this kind, two
"pictures" are possible: either the vectors are fixed
while the coordinates are shifted or the vectors are
shifted while the coordinates are fixed. Taking the first
picture, let us denote the transformation in question by
an abstract symbol P. The same space-time point will
be given coordinates x& and x'& in the old and the new
frames of reference, in such a way that x'= Sx. At the
same time the field quantity F will become SF=P.
Therefore the field quantity P in the new description is

(2.63)

As an illustration, let us apply this formula to the
transformation of Eqs. (2.8) and (2.57):

$'(x') =
~

—Q sin c'rE p+co—s
2 2)

X&(x'+ (1—costo)LcXt cXx'j$
—sing(cXx'j). (2.64)

S=A3A = —p sin —c'rE s+cos—
7 2 2 ~ (2.57)

(n, P, p: cyclic in 1, 2, 3).

The sign of pp is opposite to that used in Eq. (2.8) since
we have to take P—' instead of 8 in the argument of P.
In particular, if c is oriented in the s-direction,

In particular, when p=vr, Eq. (2.57) becomes

Sl (E12C3+E23C1+E31C2)~

The simple reAection with regard to c is

S3=E1C1+E3C3+E3C3.

(2.58)

(
P'( xy', )s=

~

—sin —E»+cos—
~

2 2i

Xg(cospx'+sinpy', —sinyx'+costoy', s').

For the infinitesimal rotation die, we then obtain
2.59

(2.60)S3=S3S1= E1E3E3—
The product of these two, which is the mirage, is given
by =y'(dP/dx') x'(d (/dy') ',—E»g—-

= —i(L +3-', .
o)pg, (2.65)

These S&, S2, S3 will play a certain role in the angular
momentum representation of a spinor field. It should
be noted with regard to Eq. (2.57) that if we con-
tinuously increase y up to p=2~, S becomes —j.
instead of +1, which is another manifestation of the
two-valuedness of S.

Next for the transformations given in Eq. (2.10), we
have

where I.3 and ~3 are the s-components of the familiar
operators of orbital angular momentum and spin
angular momentum, i.e.,

1.3= i (xB/By—yB/Bx),—o 3—— iE1E3 (2.66)— .

C. Various Kinds of Spinors

A 1=Ei coshrr+Ep slnhn,

A 3=El Cosllp+Ep Slilllp.

Just as the four kinds of tensors (Part I, Sec. 2) are
(2.61) equally justified representations, the four kinds of

spinors, s

The result of these, which is a Lorentz transformation,
1s

S=A3Al=cosh(P —o)—E1Ep sinh(P —n). (2.62)
' J. Schwinger, Phys. Rev. 74, 1439 (1948).

g'= crSg,

f =o 1Si ~ ro =o~Sro,
' See the Appendix of reference (R).

(2.67)
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where the square root of —1 can be either +i or i. —
Thus, Eq. (2.68) actually contains six different kinds
of spinors. The possibilities of Eq. (2.68) were first
indicated by the author in connection with a 5-dimen-
sional theory, but it obviously applies to the 4-dimen-
sional theory. It can easily be seen that Yang-Tiomno's
A- and 8-types'P belong to our Eq. (2.68) and C- and
D-types belong to our Eq. (2.67). Our classification is
more detailed than Yang-Tiomno's because classes 8
and Q are taken into consideration.

We should not spend more space here for these dif-
ferent kinds of spinors, because, in field theory, we
shall be able to deal with the possible phase changes
in reversion and mirage without specifying, in advance,
the kinds of involved spinors.

D. Transpose Operators

In the main body of this paper, we shall have to deal
constantly with transpose operators. The transpose O~

of an operator 0 can of course be defined in the matrix
form,

O,t——0;;=(0 s)*. (2.69)

The operation of transposition itself is not an invariant
operation for an arbitrary unitary transformation. We
shaH see in the next section that, in spite of this, a
certain operation involving transposition acquires an
invariant meaning.

For instance, the operator 0= 8/ctx has the matrix
elements,

(x'!O!x")=S'(x'—x"). (2.70)

p S. ~atanabe, Sci. pap. Inst. phys. Chem. Research (Tokyo)
39, 157 (1941).

"C.N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950).

are equally justified spinors. The tensorial quantities,
Eq. (2.42), made out of two spinors belonging to the
same kind have the same transformation properties as
have been given with regard to the $ spinor. If P and po

of Eq. (2.42) belong to different kinds, then the trans-
formation properties of the tensorial quantities are
modified by the o s involved in f and io, just like the
product rule of Part I, Sec. 2.

However, Eq. (2.67) is not the only possible analog
of pseudotensors for spinors. Actually, the three groups,
each with two elements, (o = 1, o = —1), (o.t ——1,
a,= —1), and (o.,=1, o,= —1), are respectively iso-
morphic to the three factor groups, (8+8, K+X)),
(g+(7, g+g), and (5+K, ++K) of the congruent
group since 0-'=o&'=a.,'=1. The spinor representation
is basically two-valued, therefore, —1 as well as +1
can serve as the identity transformation. Thus, we can
equally well take ((o)'*=&1, (o)'=&i), ((o.,)'=&1,
(o,)'=&i), and ((o,)l=&1, (a.,)l=&i), as the repre-
sentations of the above factor groups. This considera-
tion leads to the following new kinds of spinors:

tt'= (a)iStt, v'= (o t)tv, tt'= (o,)'Sx, (2.68)

Therefore, 0=8,/'Bx is an antisymmetric operator in
the x-representation. Equation (2.71) shows that here
O~ means the differentiation of a function standing to
the left of this operator. This agrees with the more
elementary definition of the transpose operator,

Of= fOT (2.72)

In the same way, p,= i c)/—Bx is also an antisymmetric
operator in the x-representation, because it is Hermitian
and has imaginary matrix elements. We shall often use
an operator 0 which is defined by

n.f(x) =f(—x). (2.73)

For this operator, we have

(x!n.!") = (x!n:!'') =~("+x"), (2.74)

i.e., in the x-representation,

(2.75)

For an operator which involves both space-time coor-
dinates and the Dirac indices, we have to take the
transpose with respect to both of these variables. For
instance, if 0 is given by"

with
I=L E +EpEs (n=1, 2, 3), (2.76)

I..= L.r= —
ifxp (c)/c—)x,)—x, (8/c)xp))

(n, P, p: cyclic in 1, 2, 3), (2.77)

then we can write, with the help of Eq. (2.19),

I~=K 'IK. (2.'I8)

E. Redundancy of State Functions

It is well known that the state function 0' has an
inherent arbitrariness of phase factor, i.e., 0' and

(2.79)

represent physically the same state, where n is an
arbitrary real constant. However, it seems to be
generally overlooked" that n can be a particular func-
tion of the occupation number of spinor particles
involved in +. For instance, we can take as exp(in)
the following function:

t1 0~'
!'-= ~-'=~= ~'=~ —=II(—1)"'=II!

' &0 —1) &(2.80)
with

lV= 1.
"P. A. M. Dirac, The PrtacsPtes of Quantum M'echartscs (Ox-

ford University Press, London, 1947}, third edition, p. 267, Eq.
(40).

"This fact was noticed by the author in relation to Eqs. (4.25)
and ( .15) in reference (R).

Its transpose is given by

(x'!0 ! x")=8'(x"—x') = —8'(x' —x"). (2.71)
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(1 0 i (0 1

&0 —I) Eo op

t'1 0 q to Oq

&0 —1) &1 0).

(2.81)

or their transforms by an unitary transformation. The
factor represented by II is the well-known Wigner-
Jordan factor. We now have

The index i should run all over the spinor eigenstates.
H 4 is known to represent a state with an even (odd)
number of spinor particles, then A% will be +4 (—4).
But, in general, we have to leave 6 as an operator. If
6 commutes with any arbitrary physical quantity, 4
and d%' will represent the same state because these two
state functions will have the same expectation values
for all the physical quantities.

The commutability of 6 with any physical quantity
is a consequence of the fact that any physical quantity
must involve an even number of spinors. In Sec. 3 of
Part I of this paper, we adopted the viewpoint that
all physically observable quantities are tensorial quan-
tities of some "kind. " If this postulate is maintained,
the spinor analysis will tell us that any physically ob-
servable quantity must be an expression quadratic or
bilinear in spinors or a product of such expressions. It
usually has the form /~op, but in some cases (e.g. , pair
creation interaction energy) /~0'~ may also happen,
where Px is linear in creation operators g and p is linear
in annihilation operators g. The forms of g and g are:

expressed by

with

and

@(t&)= U(t&, ti)+(t,),

d U(t„t,)/dt, =—iH(t, )U(t„t,),

dU(t2 tl)/dtl = +iU(t2 tl)H (tl)

(3.1)

(3.2)

U(ti)ti) =1, U '(t2, ti) = U(t2, ti) = U(ti, t2). (3.3)

The time-development of the physical quantity, Q(t),
is governed by the free Hamiltonian Ho and expressed

by

Q(t ) = Uo '(t, t )Q(t ) Uo(t, t ), (3.4)

d Uo(t, t )/dt = —iHDU(t2, ti), U(ti, t]) = 1. (3.5)

According to the definitions of reversed phenomenon,
miraged phenomenon and inverted phenomenon given
in Part I, Sec. 3, they are characterized by

Q'( —t)=p Q(t), Q'( —x)=p Q(x),

Q'( —x, —t) =pzQ(x, t). (3.6)

See (I.2.18), (I.2.19), and (I.2.21). In quantum physics,
we have to reinterpret Eq. (3.6) in terms of expecta-
tion values. Thus, the reversed phenomenon %~(t),
miraged phenomenon +~(t), and inverted phenomenon
4'z(t) of an original phenomenon %(t) should be defined

by

(0&(—t), Q(x, —t)+&(—t))

=p~(+(t) Q(»t)+(t)), (3 7)
dgA= —g, Agh= —g. (2.82)

(%~(t), Q(—x, t)@w(t))
As a result any expression which contains an even
number of spinors commutes with A.

Later we shall see that 6 is not the only unitary
operator that commutes with all the known physical
quantities. In general we shall write 8' for any operator
that has this property. A more gerieral consideration
on this line will be given in the section on the super-
selection rule.

3. OPERATORS FOR REVERSION, MIRAGE, INVERSION
AND CHARGE CONJUGATION

We use the interaction "picture" throughout this

paper, in order to have at hand a formula applicable
for both the Heisenberg and Schrodinger pictures
rather than for the purpose of actual calculations of
specific problems in this picture. We can obtain the
formulas for the Heisenberg and Schrodinger pictures
from those of the interaction picture only by including
the entire Hamiltonian either in the "free" Hamil-
tonian or in the interaction Hamiltonian of the inter-
action picture.

The time development of the state function, 0'(t), is
governed by the interaction Hamiltonian H(t) and.

=p (+(t), Q(x, t)+(t)), (3 8)

(+z(—t), Q(—x, —t)+z(—t))

=pz 8'(t) Q(»t)+(t)), (3.9)

where p~, p~, and pz are given in Part I, Tables II,
III, IV, and V.

We add to these sign functions another sign function

p|.- for the charge conjugation. For all the "mechanical"
quantities pc is +1 and is —1 for all the "electro-
magnetic" quantities. Among the various quantities
mentioned in Part I, Table V, the following are elec-
tromagnetic": electric charge, magnetic charge, current,
electromagnetic potentials, electromagnetic held
strengths, electromagnetic moment. All the rest are
"mechanical. " Using p~, thus defined, the charge-con-
jugate phenomenon 4(t)&should be d'efined by

(+ (t), Q(x, t)+ (t)) =p (+(t), Q(x,t)+(t)) (3 1o)

We can now de6ne reversibility, reflectibility, etc.
as follows: If O' R(t), %~(t), +z(t), or 4'g(t), defined in

Eq. (3.7) through Eq. (3.10), is a solution of Eqs. (3.1)
and (3,2) on condition that 4'(t) is a solution, then we
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speak of reversibility, reRectibility, inversibility, or
charge-invariance. Actually, we gave, in Part I, a slightly
diGerent definition of reversibility, etc. According to
this definition, reversibility holds if the transition prob-
ability from an arbitrary 0 to an arbitrary 0, say, is
equal to the transition probability from the reversed
state of Q to the reversed state of O. We shall presently
see that the definition given above automatically entails
this last dehnition.

We now introduce four time-independent, unitary
operators which are useful tools to prove the four
invariances in question. Reversion operator E, mirage
operator M, inversion operator I, and charge-conju-
gation operator C are defined by

Q(x, —t)=p (R
—'Q(x, t)R)',

Q(—x, t) =p~(MQ(x, t)M '),

Q(—x, t) =pr (I——'Q(x, t)I)

Q(x, t) =pc(&Q(x, t)& ')

(3.11)

(3.12)

(3.13)

(3.14)

In the quantized field theory, the 6eld strengths ap-
pearing in Q are q-numbers, and the transposition T
refers to the Q as a q-number. For instance,

(R '/~OS)r=RrprOrp~rR 'r, (3.15)

Q'= V-'QV, +'= V %'. (3.16)

Then we shall have again

where T on 0 has the meaning of transposition dis-
cussed in Sec. 2, D. The left-hand side of Eq. (3.15)
should not be equated to the negative of the right-hand
side on the ground that P and f~ anticommute. The
anticommutability of f and f+ is implicitly taken care
of by the matrix representations of P and f~.

It is true that the operation of transposition is not
invariant for a unitary transformation. For this reason,
one may think that the definition in Eq. (3.11) has no
physical meaning. However, this is not the case, for we
have not yet determined the transformation rule of E
for a unitary transformation. Take a time-independent"
unitary transformation V, by which Q and + are
transformed into

Eqs. (3.7)—(3.10), from a given 4':

+&(—t) =0*(t)R, e~(t) =Me(t),
(3.19)e, (—t) =+*(t)I, e, (t) =Ca(t)

We can, of course, insert arbitrary phase factors in
these equations, but, for the moment, we assume them
to be included in E, etc. To avoid repetitions, let us
prove only that %z defined by Eq. (3.19) satisfies Eq.
(3.7). By the use of Eq. (3.19), the left-hand side of
Eq. (3.7) becomes

(Rr@*(t),Q(—t)Rr@*)= (@*(t),PrQ( t)R—r+*(t))

Because of Eq. (3.11), this is equal to

~.(+*(t), Q*(t)+*(t))=~.(+(t), Q(t)+(t))*.

This is equal to the right-hand side of Eq. (3.7). The
proof runs in a similar way for M, I, and C.

It should be noted that if 0 and +g undergo the
transformation of Eq. (3.16) and R undergoes the trans-
formation of Eq. (3.18), then Eq. (3.19) again holds in
the primed system.

It is now clear that reversibility, reflectibility, inver-
sibility, and charge invariance will be established if we
call prove that 4'ii, 4'~, 4r, and 4'c'defined in Eq. (3.19)
are solutions of Eqs. (3.1) and (3.2) on condition that
0' is a solution. We shall now show that this is in fact
the case. Take two transformation functions U(t, 0) and
U(0, t) which ar—e, according to Eq. (3.2), given by

d U(t, 0)/dt =—iH(t) U(t, 0),

d U(0, —t)/d( —t) =+iU(0, —t)H( —t),
(3.20)

with

U(0,0) = 1.

Their transposes are then determined by

d U'(t 0)/dt= —iU'(t, 0)H'(t),

d Ur(0, —t)/d( —t) =+iHr( —t) Ur(0, t), —
~(3.21)

with

Ur (0,0)= 1.
Q'(x, t) =pg(R' 'Q'(x, t)R')r—,

in the primed system if we take

z'= v-&zv*

(3.17)

(3.18)

Applying R to Eq. (3.20), we get (on account of the
time-independence of R)

dR 'U(t, 0)R/dt= —iHr( —t)R 'U(t, 0)R,
where V*=Vr. Thus, we assume Eq. (3.18) to be the
transformation rule of E. for the time-independent
unitary transformation V. We have the same rule for I.

We shall now show that E, 3f, I, and C, if they exist,
enable us to build %g, +~, +I, and %g, de6.ned in

dR 'U(0, —t)R/d( —t) =+iR 'U(0 t)RHr(t—), , —
(3.22)

with
R 'U(0,0)R=1,

because (pa=+1 for energy)
"A time-dependent unitary transformation will be described

later in this section. H( —t) = (R—'H(t)R)r. (3.23)
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Comparing Eq. (3.22) with Eq. (3.21), we obtain

R 'U(t, 0)R= Ur(0 t) —R 'U(0, —t)R= Ur(t 0)
(3.24)

The 6rst transition probability is determined by the
transition matrix

(0, U(ti, —ti) 0')

(O~a, U(ti, —ti)na) = (0~*, Rr-'U(tr, —t,)RrQ*).

Combining the two equations of (3.24), we get" for and the second by

U(t, t) =—U(t,0) U(0, t), —

U'(t, —t) =R—'U(t, —t)R.

In a similar way

(3.25)
On account of Eq. (3.25), we can rewrite this last ex-
pression as

U(t, t)=—MU(t, —t)M-', -

U'(t, —t) = I-'U(t, —t)I,

U(t, t)=C—U(t, —t)C '.
(3.26)

Thus,
(0, U(t„—t,)())*=(O, U(t„—t,)0).
(Q, U(t, —t)0)= (O~, U(t, —t)Qn). (3.35)

From this it follows, to use the notation of Part I, that

It should be noted that the two equations of (3.24) are
equivalent to each other if R~R ' commutes with U.
Ke shall discuss this condition in more detail later.
Once Eq. (3.25) is established, it is an easy matter to
show that if

I'(O~f), 2t) =I'((4~0„2t).
In a similar way, we obtain

(0, U(t, —t) 0)= (Qsr, U(t, —t) Osr)

(3.36)

then
e(t) = U(t, —t)e(—t),

e, (t) = U(t, —t)e, (—t).

(3.27)

(3.28)

= (Or, U(t, —t)nr) (3.37)

=(a,, U(t, t)0,)—
In fact, because of Eqs. (3.19) and (3.27), we have

e, (t) =+*(—t)R=e*(t) U(t, —t)R,

It should now be noted that the four operators defined
by Eqs. (3.11)—(3.14) have two types of basic arbi-
trariness:

which, in virtue of Eq. (3.25), equals

+*(t)RUr(t, t)= U(t,——t)@ (—t). (3.30)

S~e'~S

S—+8"S,

(3.38)

(3.39)

R 'Uo(t, 0)R= Uor(0 t), etc. , —

which is a consequence of

H = (R—'HsR)r

we can rewrite Eq. (3.11) in a simpler way:

Q(x,0)=pg(R
—'Q(x,0)R)r.

(3.31)

(3.32)

(3.33)

The derivation is similar to our argument regarding
Eqs. (3.20)—(3.24).

Another important consequence of Eq. (3.25) is the
alternative definition of reversibility used in Part I.
Suppose there are given two arbitrary states, 0™and Q.
In one process, we consider the transition probability
from 0 at t= ti, to 0 at t=+ti.—In the other process
we consider the transition probability from the reversed
state QR of 0 at t= ti to the revers—ed state O~ of 0
at t= +tl .'

Oz = O*R Qa ——QeR. (3.34)
"There is a misprint in the corresponding Eq. (4,27) m (R).

Q.E.D. The proof runs the same way for the other
operators.

It has been shown that if R exists to satisfy Eq.
(3.11), reversibility is guaranteed. We shall show in the
following sections that such an R in fact exists.

Incidentally, by the use of

where 5 stands for any one of the four operators, and
8' is supposed to satisfy

(3.40)

e~(—t) =e'W*(t)R (3.41)

with an arbitrary real n for the reversed state, satis-
fying Eqs. (3.7) and (3.28). If we take two different
values of cr in Eq. (3.34), we get an arbitrary phase
factor appearing in Eq. (3.35), but Eq. (3.36) is still
true. The situation is the same for M, I, and C, in Eq.
(3.37).

for any known physical quantity Q, as has been ex-
plained towards the end of the last section. For our
study of symmetry properties of physical laws, how-
ever, we need to pick any one S that satisfies the de-
fining equation; the arbitrariness expressed by (3.39)
can be relegated to a separate study of operators
satisfying Eq. (3.40). We shall see in Sec. 12 that we
can assume, without loss of generality, that 0' under
consideration belongs to one or another of the Hilbert
subspaces, within each of which the eGect of 8' on 4'
is equivalent to multiplication by a phase factor.

Suppose then that one such R satisfying Eq. (3.11) is
obtained and that its phase factor in the sense of
(3.38) is fixed arbitrarily. Then Eq. (3.19) will be written
more generally as
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Now, if %&ii(—t) is the reversed state of 4'(t), then

4(—t) must be the reversed state of 4ii(t). Therefore,
we shall have

4( t)—=e" t4' 'i*i(t)R

Combining Eqs. (3.41) and (3.42), we obtain

@(t) = e'(t' —a&RrR—'4 (t)

(3.42)

(3.43)

for any O'. Equation (3.43) represents the e6ect of a
"double reversion. "

Equation (3.43) shows that RrR ' is either a c-num-

ber, e'& &), or a q-number for which 4 is an eigenfunc-
tion corresponding to eigenvalue, e'& ~). Such a
q-number must obviously be of the type as seen in Eq.
(3.40), exemplified by 6 in Eq. (2.80), since otherwise
4 and E E. % would be physically distinguishable
from each other.

Whatever E. E ' may be, we cannot exclude the
possible existence of self-reversed processes in Nature.
The simplest example is the vacuum state. For such a
state n and P must be the same, and we obtain

+self R (t) R R +sslf R (t).

If RrR ' is a c-number, then (3.44) gives

g&g-&= 1 or g&=g

(3.44)

(3.45)

If E E ' is, for instance, a multiple of 6, i.es) if
R R '=ah, then Eq. (3.44) shows the existence of an
eigenstate of RrR ' for which the eigenvalue is +1.
Since 6 has eigenvalues &1, a must be ~1. In par-
ticular, since 6 operated on the vacuum-state + „
must give +1, due to the definition in Eq. (2.80):

~+vac =novae (3.46)

It should be noted that the transformation in Eq.
(3.18) leaves the condition in Eq. (3.45) unchanged. It
also leaves the condition in Eq. (3.47) unchanged pro-
vided V commutes with A. This commutability may be
assumed as quite a general rule since 6 must be unob-
servable before as well as after the transformation.
The transformation in (3.38) can be considered as an
especially simple case of Eq. (3.18). The transforma-
tion of (3.39) transforms RrR ' as follows:

RrR ' +RE '(RWrR 'W '—) (3.48)

i.es) if E.=P'ES'*, then E~E ' remains unchanged.
We shall see later that for the spinor fields we actually

get Eq. (3.47) and not Eq. (3.45), at least insofar as we

remain in the framework of the accepted theory of
quantized spinor 6elds. No transformation S" is dis-

covered that makes Eg E—'9' '=5, so that the trans-
formation in (3.48) would result in Eq. (3.45). For

and since 4 „is a self-reversed state, we have to choose
6=1, or

(3.47)

the boson fields, we obtain Eq. (3.45) in a quite natural
fashion.

A by-product of this consideration is that Eq. (3.44)
is satisfied only if d, =+1, i.e., the self-reversed states
must involve even numbers of spinor particles. It
should, however, be kept in mind that this conclusion
is derived in a purely field theoretical point of view, i.es)

the entire physical system is inclusively represented by

As for the operators M and C, if we perform a double-
mirage and a double-charge-conjugation, in a similar
way to Eqs. (3.41) and (3.42), we obtain

i.es)
%=M ' =M, C=C '=C.

(3.50)

(3.51)

In contrast to the case of E E ', the conditions of
Eq. (3.50) on 3P and C' determine the numerical
factors of 3f and C. We shall see that we can find in a
quite natural way M and C which satisfy Eq. (3.50) in
both spinor and boson cases. However, it should be
noted that the transformation in (3.39) leads to

7(f'~(Wmwm i)iVs, -
C'—+(WCWC ')C',

(3.52)

(3.53)

the right sides of which are not necessarily c-numbers
even if the original M and C obey Eq. (3.50). As a
matter of fact, we can easily find a 8" which commutes
with M and C and whose square is not a c-number.
Under these conditions, the right-hand sides of (3.52)
and (3.53) become W' which is again an operator of
the type of Eq. (3.40). Actually, if we use the general
expression of M satisfying Eq. (3.12), we are led to the
expression of M' which is not a c-number, and this fact
was used to discover a new S'."However such M can
be brought back to an operator satisfying Eq. (3.50)
by a transformation of the type of (3.39). Therefore,
we can always assume Eq. (3.50) and study the W's

of Eq. (3.40) as a separate problem.
Coming back to Eq. (3.49), if we t'ake as 4 a self-

miraged state or a self-charge-conjugate state, we

obtain, under the assumption of Eq. (3.50),

esslCC
) (3.54)

"S. Watanabe, Proc. Internatl. Nuc. Phys. Conf. Glasgow
(1954) (to be published).

+(t) gs(a+P)~2@(t) +(t) —ei(a+P)C2+ (3 49)

This shows that 3P and C' must be a c-number or a g,
in the sense of Eq. (3.40). If the former is the case, we
have to put M'= a, and C'=b, where a and b are some
constants of absolute value unity. But this a and b can
be transformed easily into unity by the transformation
in (3.38), which does not change anything essential
except that the eigenvalues are renamed. Therefore we

can, in this case, write
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instead of Eq. (3.7). Such a state can be considered
either as the reversed state in our sense of the charge-
conjugate state or the charge-conjugate state of the
reversed state in our sense. Accordingly, the operator
R playing the role of R in this point of view, i.e., the
operator such that 4'tt'( —t) =4*(t)R', will be given by
either

R'=C 'R or R'=RCT. (3.56)

Since these two operators must physically have the
same eGect, we have to write

C 'R=O'RCT, (3.57)

where 8' may be a c-number or an operator of the type
in Eq. (3.40). If we adopt E'=C 'R and C'=1, the
double time-reversal in this modified point of view will

be represented by

(3.ss)

where IV is the one used in Eq. (3.57).
As a matter of fact, exploiting the arbitrariness still

disposable within the conditions of Eqs. (3.47) and

(3 50), we can adjust C and R in such a way that W in

Eq. (3.57) becomes an operator with a wide range of
arbitrariness, including 8"=c-number as well as lV= A.

As a result, R', in contrast to R, can satisfy R'TR' '= 6
as well as R' R' '= 1, among other possibilities. '

Another important combination is one of reversion

"Called standpoint (I) in paper (R). See, for instance, J.
Schwinger, Phys. Rev. 82, 914 (1951). Our standpoint in this
present paper, which was labeled (II) in paper (R), is in ac-
cordance with the standpoint adopted originally by Wigner and
the author's older papers. See. E. P. Wigner, Gottinger Nachr.
546 (1932); S. Watanabe, Le deuxieme Theoreme de la Thermo
dyrtamique et la 3Ieoanique Ortdulatoire (Hermann et Cie, Paris,
1935); S. Watanabe, Sci. Pap. Inst. Phys. Chem. Research
(Tokyo) 31, 109 (1937). Dr. R. H. Good showed, in a private
communication, that this standpoint applied to the Dirac theory
of electrons can be smoothly connected through Pauli's 2-com-
ponent theory to the time-reversal of the Schrodinger theory of
electrons.

'r See discussions connected with Eqs. (6.5) and (6.19) in

paper (R).

In other words, an operator satisfying Eq. (3.50) will

have eigenvalues +1 and —1, corresponding to which
there will be two groups of eigenfunctions, dividing self-

miraged or self-charge-conjugate states into two groups.
This is the origin of the even and odd parity with regard
to space-symmetry and charge-interchange.

We will now brieQy discuss the combinations of two
operators introduced in Eqs. (3.11)—(3.14). As a repre-
sentative of the various combinations, let us first study
the time-reversal considered by some authors, ' which
is actually the combination of the reversion in our sense
and the charge-conjugation. According to this point of
view, the reversed state 0 g' is de6ned by

(crt'( t), Q—(x, —t)air'( —t))

operator and mirage operator, which should result in the
total inversion operator I:

I=M 'R or I=RMT (3.59)

R'= V-'(t)RV'-'( —t) (3.61)

We can pass from the interaction picture to the
Schrodinger picture by putting

V '(l) = Uo ($,0). (3.62)

The reversion operator in the Schrodinger picture then
becomes

R'= Uo(t, 0)RUor —'(0, t) =R, —(3.63)

on account of Eq. (3.31). This shows that we can use
the same R in the Schrodinger picture.

In a similar way, we can show by the use of Eq.
(3.24) that the reversion operator in the Heisenberg
picture is the same as in the interaction picture. By the
same token, 3I, C, and I remain unchanged in all the
three pictures.

4. PASSAGE FROM C-NUMBER THEORY TO
Q-NUMBER THEORY

Before discussing the symmetry properties of physical
quantities in the q-number theory, it may be well to
survey the situation in the c-number theory and to see
in what respects the c-number theory encounters dif-
ficulties. As is well known, the c-number theory is
analogous to the Heisenberg picture in the sense that
the time-development is attributed solely to the time-
dependence of the physical quantities.

The problem in the c-number theory lies in the fol-
lowing situation. The field variables se (which may be
tensorial or spinorial) are supposed to have certain
transformation properties. The physical quantities Q,
such as spin-density, electric current, etc., are expressed
in terms of field variables m. By the transformation
properties attributed to the I's, we can therefore deter-
mine the sign function p (for reversion, mirage, etc.) of
each Q. On the other hand, due to the physical con-
sideration given in Part I, each Q has a definite p. The
problem is then to see whether the p' determined by the
transformation properties of the Geld variables I

Since R' and I can thus be obtained from the basic
three operators, R, C, and M, we shall not discuss R' and
I any further in this paper. If reversibility and charge-
invariance hold, then the invariance for the modified
time-reversal will hold. If reversibility and space-
invariance hold, then inversibility will hold.

Before closing this section, let us briefly consider the
eBect of a time-dependent unitary transformation R:

Q'(t) = V '(t)Q(t) V(l) +'(1)= V '(t)+(t) (3.6o)

We can re-establish Eqs. (3.11) and (3.19) in the primed
system by taking
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actually coincide with the p determined by physical
requirements. We shall presently see that this is not
always the case.

In reference to Eq. (2.63) of Sec. 2.B, let us consider
P as representing reversion %, mirage K or inversion
Q. In these cases, we have: 8 '= 6, or P'=1. Of
course, for spinors the effect of S has an ambiguity of
sign; as a result, 8'= &1.But, the physical quantities
being of even order in spinors, this ambiguity does not
affect our argument and we can take P'=1 without
loss of generality. For the field variable u, Eq. (2.63)
becomes

u'(x') = Su(S 'x'). (4.1)

This can be interpreted as follows: Let u(x) and u'(x)
represent the original process and its transformed (i.e.,
reversed, etc.) process. Then u(x) and u'(x) are con-
nected by Eq. (4.1).

Now each physical quantity Q(x) has an expression
in terms of the u(x) and some operator which may also
depend on x. Therefore we can write

Q(x) =QLu(x); x7. (4 2)

For the transformed process, we have to take u' at Px
and transform the explicit x in Eq. (4.2) into Sx. Thus
we have to compare with Eq. (4.2) the following quan-
tity:

QLu'(Sx); Sx7,

which, in virtue of Eq. (4.1), becomes

Q[Su(x); Sx7.

The operation g has been shifted from the argument
x to the tensorial or spinorial function N. The p which
was in question in the foregoing must then be given by

vector. We have explained in Part I, Sec. 3, that the
angular momentum (including spin), if represented as
a vector, should behave like a 6rst kind pseudovector.
This shows that if the Lagrangean density is a regular
scalar, all the rest of the mechanical quantities will
become what they should be. In a similar way, if the
current-density appearing in the interaction Lagrangean
density is a second kind pseudovector, all the rest of
electromagnetic quantities will behave as they should.
For this reason, we shall limit our discussion to the free
Lagrangean and the current-density. This will be the
case also in our q-number discussion. If it is desired,
one can check. the results for individual physical quan-
tities, but we shall ignore such a discussion in this
paper. See, however, (R) and Sec. 9 of this paper.

Let us 6rst consider the free Lagrangean of tensorial
6elds v, i.e., pion-field and electromagnetic 6eld. This
term depends on v through a combination of the type
Hv, or 8„v, and it contains an operator which is a
regular scalar, such as (8/Bx, )(8/Bx"). Now, whatever
the kind of the field e may be, the combination of the
type Gv or H„v& is a regular scalar on account of the
product rule, Part I, Sec. 2. Therefore, the free La-
grangean of tensorial fields is a regular scalar. The
current-density of a tensorial 6eld is typi6ed by

sl" (x) =i ef (88 (x)/Bx„)v (x) v(x) (Bv (x—)/ax„)7, (4.4)

which refers to a scalar or pseudoscalar pion field.
Since Hv is a regular scalar, quantity (4.4) is a regular
vector. This is, however, not the desired transformation
of the current-density, which should be a second kind
pseudovector. In other words p~' is all right, but p~'
is wrong. This is also true for the current due to a vector
or pseudovector pion field.

For a spinor 6eld, the free Lagrangean has the form:

or
QLSu(x);Sx7 =p'QLu(x);x7,

(4.3)
Qr Su(S-'x),x7= p'Q)u(S —'x);8-'x7. (x) = —-'Px(x) (E (8/Bx )—E„(8/Bx„)+2miEg7$(x).

(4.5)
The second equation is obtained from the 6rst just
renaming Sx as x. The first one shows that p' can be
determined simply considering the tensorial or spinorial
transformation of I and the transformation of the coor-
dinates explicitly involved in Q.

Ke shall soon see that the p' thus determined is not
necessarily the same as the p given in the tables of
Part I. The physical quantities can be classified into
"mechanical" and "electromagnetic. " In the held
theory, mechanical quantities are primarily derived
from the "free" Lagrangean density, by the well-known
procedure. For instance, if the Lagrangean density is a
regular scalar, the energy-momentum tensor TI"" and
the angular momentum tensor 3fI""" are regular tensors
according to this procedure. We have shown in Part I
that the energy momentum tensor should belong to
the regular kind. As to the angular momentum tensor,
we notice that the complementary vector, in the sense
of (I.2.12):3E„=vie„„„iM"'i becomes a first kind pseudo-

Now, since p+E f and f E5$ belong to the second kind,
Eq. (2.43), and 8/Bx„ to the regular kind, Z(x) (4.5)
is a second kind scalar. In other words, p~'=p~ but
pz'= —pz, in the c-number theory. On the other hand,
the current density due to a charged spinor field:

s&(x) =eiP~(x) E&$(x) (4 6)

is already a second kind pseudovector, (2.43).
As a conclusion, we can say the following in the

c-number theory. As far as mirage is concerned, p~' is
exactly what it should be, p„~' ——p~, for all the quan-
tities. For reversion, the mechanical quantities of
tensorial fields and the electromagnetic quantities of
spinorial fields have the right signs, p~'=pg, but the
electrical quantities of tensorial 6elds and the mechan-
ical quantities of spinorial fields have the wrong signs,
pa = —pz.

Regarding the charge-conjugation, we can see from
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Eq. (4.4) that the interchange of v and v will result in a
rev'ersal, of sign of the current. Thus, we can define the
c-number transformation for charge conjugation by

Thus, for instance, since we know that the dFect of
K on a spinor is essentially multiplication by E»s, we
get, from Eq. (4.12),

~~iaa g~~—iap (4.7) (4.13)

It should be noted already at this state that by (4.7)
a representative term in the free Lagrangean will be
transformed like

(Bv/Bx„) (Bv/Bx&) —+ (Bv/Bx„) (Bv/Bx&),

showing that, if we adopt the Fermi statistics in
q-number theory, the transformation of Eq. (4.7) will
result in an undesired sign-change of energy.

For the charged spinor field it is suggested by Eq.
(4.7) that P may probably be transformed to a multiple
of Px. Since we have seen that f and /+K have the
same transformation rule for the congruent group, it
would be a natural choice to take

P~e'+~K P~e 'QK ', (4.8)

as the c-number transformation rule for charge con-
jugation. However (4.8) would transform Eq. (4.6) into

eiPK 'E"—Kf~= eiPE&viP" (4.9)

3fu(x)M —'=Ku(Kx). (4.12)

on account of Eq. (2.19). Equation (4.9) is, in the
c-number theory, equal to Eq. (4.6). Thus Eq. (4.9)
does not change the sign of the current-vector. How-
ever, if we adopt the Fermi statistics in the q-number
theory, Eq. (4.9) will become the negative of Eq. (4.6),
"except for a c-number additional term. " We shall
later see that we can drop this last restrictive clause by
adopting the so-called Heisenberg prescription.

Now, in anticipation, we shall sketch what will be
done in the q-number theory to remedy what was wrong
in the c-number theory and to retain what was right
in the c-number theory. Take, for instance, Eq. (3.12),
where the matrix 3E is supposed to operate on the field
variables. The left-hand side of Eq. (3.12) means, to
use the notation of Eq. (4.2),

Q(K*)=Q[u(Kx);K*j,

and the right-hand side means

Q[3fu(x)M ';xj,

i.e., Eq. (3.12) is equivalent to

Q[3IIu(x)31 i;xf=psrQ[u(Kx);Kxj. (4.10)

Since psr' ——psr, the second equation of Eq. (4.3) be-
comes

Q[K (K*);*)=p,uQ[u(K. ),K*), (4.»)
having the same right side as Eq. (4.10). Therefore all
we need do in the q-number theory is to put

W'PW' '=Wf, W'QW' '=Q, (4.14)

where W' is again an operator of the type in Eq. (3.40),
which can be studied separately from space-symmetry.

As for reversion, we have to note that the right side
of Eq. (3.11) involves the transposition. As a result, the
effect of R on u must contain the transposition (u—&uv)

besides the transformation that could be inferred from
a comparison with the c-number theory. First, regarding
the tensorial field, p&' is wrong only for the electromag-
netic quantities. We can remedy this by assuming that
the e6'ect of R is the combination of the c-number
transformation for g and the c-number transformation
for g as in Eq. (4.7):

R—'u (x)R =%@uv (gx). (4.15)

As 5 does not change the sign of mechanical quantities,
the correct sign pg' of the free Lagrangean will be
retained by Eq. (4.15). Moreover, since @ in (4.7)
interchanges once v and 8 and, since Eq. (3.11) also
interchanges v and v, as can be seen from Eq. (3.15),
the transformation in Eq. (4.15) will serve the purpose
without any specific assumption as to the statistics.

Suppose we apply the same procedure as that of Kq.
(4.15) to the spinor field, vis. , let us assume that the
effect of E. is essentially the combination of the c-number
transformation of f for reversion and the charge-con-
jugation of (4.8). Then, on account of the c-number
reversion, Z(x) changes the sign, but the effect of
(4.8) will be such that (B/Bx„) is interchanged to
(B/Bx„) Thus, i.t will change the sign of the first two
terms of Eq. (4.5). Since K 'EsK=Esv while K 'E K

E„v, the effect of (4—.8) will be such that /~Elk
changes the sign, in contrast to Eq. (4.9). Thus, such
a combination will correct the sign pii' of Eq. (4.5).
On the other hand, (4.8) does not change the sign of
Eq. (4.6); therefore, the right sign of the current will
be retained. In this argument, it is understood that,
since Eq. (3.11) involves the interchange of the factors
f and f& and (4.8) also interchanges these factors, we
need not invoke a specific assumption regarding the
statistics. " This shows that the desired eGect of R

' For this reason, we could adopt the transformations given in
Eqs. (4.15) and (4.16) also in the c-number theory, though not
in (4.8). The terminology "c-number transformation" in this
paper means the one which directly follows from the mathemati-

If we want to be more general, we could also put

3ff(x,t)3f '=e' EissWQ( —x,t).

However, this is nothing but the combination of Eq.
(4.13) with a transformation of the type
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would be

R 'p(t)R=e' EOKQX" ( t)—, (4.16)

where Eo stands for the c-number transformation for g.
As regards charge-conjugation, we have already seen

that (4.7) and (4.8) give the correct signs provided we
adopt Bose statistics for tensorial fields and Fermi
statistics for spinorial fields. Thus, we should take

CuC '=Su (4»)

cally assigned transformations of the field variables, and the
"q-number transformation" means the one consistently corrected
according to the consideration of this section. Thanks are due
Dr. R. H. Good who has pointed out this rather misleading use of
terminology.

where K is (4.7) or (4.8).
The pion nucleon interaction plays a unique role in

determining the kind of pion field. Tensorial fields in
general appear in a quadratic or bilinear form in the
free Lagrangean. Their sign in no way a8ects the
mechanical behavior of their fields. However, as has
been seen in Part I, there seems to be a sound physical
reason to believe that the electromagnetic field is
"observable, " in the sense that its sign-change actually
changes the physical situation. Thus we could meaning-
fully assign the second kind to the electromagnetic
quantities. This determination, in essence, has been
done through their interaction with the charged field,
by assuming that, in'a reversed state, a particle of the
same charge is performing a kinematically reversed
motion.

In contrast to this, there is room for doubt as to
whether there is any physical meaning in assigning a
kind to the pion field. If this assignment is to be done,
it must be possible only through the pion-nucleon inter-
action, which is the only term where the mesic field
strength is standing in the first power. Indeed, we could
determine the interaction type by experiments, and
require the regular invariance of the interaction La-
grangean. The sign-change of the source involved in
this interaction is not necessarily uniquely determined.
For the neutral pion, the source is represented by a
quantum jump from a proton state to another proton
state, or from a neutron state to another neutron state.
Therefore, the source has a definite sign-change for gg
and g for the neutral meson. For a charged pion field,
the source represents a transition from a proton state
to a neutron state, or vice versa. Therefore the sign-
change of the source depends on the relative phase-
change of proton spinor and neutron spinor for PQ

and g. So far there is no reason to believe that there
should be any physical meaning in such a relative phase-
change of proton and neutron. Therefore, in conclusion,
we could say something regarding the neutral pion field,
but we cannot say anything definite regarding the
changed pion field. See Sec. 10 for more details.

In passing, it shouM be noted that we have to include
in Eqs. (4.15) and (4.17) the arbitrary phase factor
exp(in) of (4.7) and (4.8). Even if we obtain Eqs.
(4.15) and (4.17) with a fixed phase factor in a certain
gauge reference, an arbitrary phase factor exp(in) will
reappear by an arbitrary gauge transformation, for
these transformations connect a field variable to its
Hermitian conjugate. The situation is difFerent for 3/I,
since a gauge transformation will leave Eq. (4.12) or
(4.13) invariant. This situation is connected with the
fact that the condition, M'=c-number, actually deter-
mines the phase factor involved in Eq. (4.12), e.g. ,
exp(in) in Eq. (4.13), while the conditions on C and
RvR ' have no bearings on the phase factors in (4.7)
and (4.8). This situation will become more clear when
we discuss the concrete cases.

u&'& = (v+ v)/v2, u&'& = (v —v)/v2z. (5 1)

However, the gauge transformation (with constant
phase),

is equivalent to

v—+e'~v 0—+e '~v, (5.2)

I&"—&cosy I(')—sing n(')

u"'—&sin pu "&+cos yu &'&
(5 3)

resulting in mixing of I"' and I&'). There is no obser-
vational ground for separating the charged pion-fields
into I")-field and I(')-field. The effect of a transforma-
tion 8, expressed in terms of independents u"' and
m(') will then involve the danger of losing from sight
the physically pertinent general features.

We shall first discuss a scalar u (of unspecified kind)
and later briefiy survey the case of a vector u (of un-
specified kind). The free Lagrangean density and the
Lagrangean density of electromagnetic interaction are,
in the case of a scalar I,
Z„=—(88/Bx„) (Bv/Bx&) a' vv—

——', (au" /c&xp) (au&'&/axe') —i2K'u&'&ui3&, (5.4)

Z~„=A„s"—A„A"s)

where s" is given by Lq. (4.4) and s by

S= te! VV.

(5.5)

(5.6)

The pion-nucleon interaction will be discussed sepa-
rately in Sec. 10.

The defining equations of R, M, and C are Eqs.
(3.11), (3.12), and (3.14) applied to 2„, s& and s. Since
Z„and s must belong to the regular kind and st" to the

S. PION FIELDS

We can describe the pion field alternatively by three
Hermitian field components u" (p=1, 2, 3) or by one
complex component v and a Hermitian component m('),

with
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second kind, we should have

p. ,
+- pm=pc= ~ for 2„,

pR= p&&r= pc=1 for e
~ (~r 1~ 2~ 3) " (5.7)

pa= pm= —pc= ~

pa= pm= pc= ~

for s',

fol s.

From (4.7) and Eq. (4.17), we get

CvC '= e'~v, CvC —'= e '~v Cu&'&C—'= +u&s&. (5.8)

ss=ieDr)v/r)x„)v (r)v/—r)x )v] (5.9)

If we use this expression for st', the transformation in
Eq. (5.8) satisfies the requirement in Eq. (5.7) for ss
without an assumption regarding statistics. It is to be
noted that Eq. (5.8) is compatible with the supposed
properties of C: C'=1, CC=1 Isee Eq. (3.51)]. The
transformation in Eq. (5.8) also leaves the usual com-
mutation rules unchanged.

Since the interchange of a factor in e and a factor in 8

results, because of the D-function in the commutation
relation, in an additional c-number term, it is desirable
to replace an expression of Q by

It is obvious that Eq. (5.8) satisfies the requirements
in Eq. (5.7) for Z„only if v obeys the Bose statistics.
As for s", if it is written in the form given in Eq. (4.4),
the assumption regarding statistics is necessary in
order to satisfy Eq. (5.7). However, the c-number
theory can just as well lead to the expression of s~:

relations that 8 should satisfy:

(R—'v (t)R) '= e'ev (—t),

(R '8—(t)R) v = e 'ev—( t)—

(R—'u&'& (t)R) v= wu&s&( —t).

(5.11)

C(R—'v(t)R) vC—'= e
—'i —»v( —t),

(R 'Cv(t)C 'R)r=e'& e&v( t)—(5.12)

The difference between these two, expressed by the
unitary transformation 8' in Eq. (3.57), is essentially
a gauge transformation of v, which will be discussed
separately.

Analogously to (5.10), in order to have the "exact"
reversibility, it is desirable to require

This automatically satisfies Eq. (5.7) for 2 . If ss is
expressed as Eq. (4.4), then Eq. (5.11) automatically
satisfies Eq. (5.7) for ss. If it is written as Eq. (5.9), we
need an assumption regarding statistics to satisfy Eq.
(5.7) for ss. Since the c-number theory provides no
reason for preference between Eqs. (4.4) and (5.9), we
cannot claim that reversibility has the power to deter-
mine the statistics.

It should be noted that Eq. (5.11) is compatible with
the anticipated properties of R: Rv=R LEq. (3.45)],
R=R '. The transformation in Eq. (5.11) also leaves
the commutation rule of v and I(') unchanged.

The combination of C and R, considered in connection
with Eq. (3.56), has two expressions:

e--:Le+"cec-], (5.10) Q(t) lLQ(t)+P (R 'Q( —t)R)'] (5 13)

or at least to require that the expression of Q must be
such that it remains invariant by the transformation
in (5.10). Then we no longer need be concerned about
the additional c-number term. If the quantities are
written according to (5.10), charge-invariance is auto-
matically satisfied. If we apply (5.10), to 2„, then the
expression will become such that it will vanish for the
Fermi statistics.

A similar prescription to (5.10) was first introduced
by Heisenberg in relation to positron theory to avoid
the zero-point charge, and (5.10) has the same effect
for the v-field. "For instance, the expression of Eq. (4.4)
for the current does not obey the Heisenberg prescrip-
tion, but Eq. (5.9) does. It is well known that Eq.
(5.9) leads to the vanishing zero-point charge. It is
easily understandable that if the theory is exactly
charge-invariant, then no zero-point charge should
appear. For, if there would be any zero-point charge, it
should as well be positive as negative.

Next, following Eq. (4.15), we can write down the

' W. Heisenberg, Z. Physik 90, 209 and 92, 692 (1934). See
also W. Pauli, Revs. Modern Phys. 13, 203 (1941), in particular,
pp. 208, 224.

For instance, the expression formally desirable for the
current would then be

ss= ', set (aa/—ax„)v v(av/—ax„)

+v (c& V/c&x„) —(c&v/c&x„) v]. (5.14)

Obviously this does not bring about anything new.
The above argument shows that the requirement of

charge invariance determines the statistics-type of the
6eld" but the requirement of reversibility does not. It
is of some interest to note that we can restate this situ-
ation saying that the compatibility of (5.10) (charge-
invariance) and (5.13) (reversibility) determines the
statistics. For instance, the compatibility of Eqs. (4.4)
and (5.9) requires the Bose statistics. We can generalize
this statement for other quantities and fields. However,
the underlying fact is that if we suitably express the
physical quantities in the forms allowed by the c-num-
ber theory, reversibility alone can always be satisfied
without a specific assumption regarding statistics.

If we translate the transformations in Eqs. (5.8) and

so W. Pauli and F. J. Belinfante, Physica 7, 177 (1940).
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(5.11) into the language of the Hermitianu&»„we obtain It is easy to show that C, R, and M' can be expressed

Cu&'&C '= cosnu&" +sinnu&" in the operator forms as follows":

(R—'u&» (t)R) r= cospu&'& (—t)+sinpu&" (—t),

(R
—'u&'& (t)R)r = sinpu&'& (—t) —cospu&'& (—t)

C= (—1)e(a1)~,
(5.15) c =-', P[~,(k)+x (k) —.+'-g, (k)g (I)

-e ' g-(k)g+(k)3, '(5 24)

showing that it is meaningless to speak of a trans-
formation rule for u(') alone or I&" alone. We can write
2„ in two terms referring separately to I&') and m(",
but the equivalence of such an expression to Eq. (5.4)
requires the Bose assumption.

Finally the mirage operator is given, in accordance
with Eq. (4.12), by

Mr&(x)M '= e'&&&(—x),

O=g )Vs(k),

with
R= ee(—1)~(—1)8

c =P P(~ipse, (k)),

e=-', P P'[X,(k)yx, (—I )

MV(x)M '=e 'r8( —x),

Mu&s& (x)3II '= au&'& (—x).

(5.16) —p+(k)g+( —k) —g+(—k)g+(k)1, '(5 25)

0=-', g'[1V,(k)+Ps( —k)

These relations are compatible with the relation M '
=M and the commutation rules. However, in order to
satisfy M'= c-number, we have to adopt p such that

e'~= %1=e '~ (5.17) with

—(~)gs(k) gs( —k) —(+)gs( —k) gs(k) j;-

M = (—1)e(—1)",

u&'&(x, t) =P(2U&d) '[gs(k) exp(+ —)

+gs(k) exp( —+)j,
exp(+ —) =exp(+ik x—ie&t),

exp( —+)=exp( —ik x+ie&t),

CO= K

we get from Eqs. (5.8), (5.11), and (5.16)

Cg~(k)C
—'=e' g (k)

Cg (k)C
—'=e—'"g~(k),

Cgs(k)C
—'= +gs(k);

(R 'g+(k)R) r= e@'—g+( k), —

(R 'g (k)R)r=e'eg (—k)

(R-ig, (k)R)~=~g, (—k);

Mg+(k)M-'= (a)g~(—k),

(5.19)

(5.20)

(5.21)

(5.22)

Mg (k)M—'=(a)g (—k), (5.23)

Mgs(k)M
—'= (a)'gs( —k).

This situation makes a contrast to the case of charge-
conjugation in which C'= c-number does not determine
the phase factor in Eq. (5.8). The double-sign in Eq.
(5.17) and the one in the third relation of Eq. (5.16) are
independent of each other.

Expressing the n-Geld by its Fourier expression,

i&(x,t) =P (2Un&) '*[g+(k) exp(+ —)
k

'+g (k) exp( —+)j, (5.18)

C = s 2'r&+(k)+»+( —k) —(+)g+(k)g+( —k) '

and

Cs„C ~=e' 8„, CN (3)C ~=~+ (3)

(R
—'n„(t)R) r = e'ev&( —t),

(R 'u &s&(t)R)r=+—u&'»( —t),

Mr&„(x)M—' = (a) r&& (—x),

Mu &'& (x)M—'= (a)'u "»(—x).

(5.27)

(5.28)

(5.29)

"The method used here is taken from L. Wolfenstein and D. G.
Ravenhall, Phys. Rev. 88, 279 (1952); see, in particular, reference
7) p. 280.

—(~)g, (—k)g, (k)yx (k)yx (—k)

—(+)tt-(k)g-( —k) —(+)g-(—k)g—(k)j (5 26)

o= l 2'[& (k)+& (—k) —(~)'0 (k)g (—k)

—(+)'is(-k) gs(k) 3.
The arbitrary signs of the entire C and 3I are so chosen
that CC „=M% „.=4,.

The summation symbol with a prime, P', over k
means a summation such that k and —k would cover
the entire momentum space. For Eq. (5.25), it is
assumed that g and 0 are expressed in the usual repre-
sentation in which they have real matrix elements. In
Eq. (5.26) (&) and (&)' refer to the same double-signs
in Eq. (5.23).

The vector pion field (of unspecified kind) can be
described by a complex vector v'(x, t) and a Hermitian
vector u&" &(x,t) with p = 1, 2, 3, 0. The transformation
rules corresponding to Eqs. (5.8), (5.11), and (5.16)
will become
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It should be noticed that in Eqs. (5.28) and (5.29) we
have covariant components on the left sides and contra-
variant components on the right sides. This will take
care of the vectorial transformations of the field vari-
ables for g and K.

The plane wave expansion of the vectorial field needs
a little caution. The waves will be decomposed into
transversal waves (r= 1, 2) and longitudinal waves
(r=3). The transformation rules for 5 and K of the
annihilation operators are different for the two groups
of waves. On one hand this will take care of the fact
that the longitudinal polarization is defined by the
propagation vector k which changes its sign for R and
K, while, on the other hand, it will take care of the fact
that the component @=0 has diGerent transformation
rules in Eqs. (5.28) and (5.29). The relations corre-
sponding to Eqs. (5.21), (5.22), and (5.23) will be as
follows:

Cg~, (k)C '=e+'~g „(k), r=1, 2, 3,

Cg3„(k)C '= ags, (k),

(& 'g+ (k)&)'=""v+.(—k),

1
7 2) 3)

17 2)

(5.30)

= —e+'eg~, (—k),

(E.—'gg„(k)R) ~=w g3„(—k),

= ~ga. (—k),

Mg~„(k)M—'= e+'&g~, (—k),

r=3.

r —1 2

r=3.

2

p=0 or x,

(5.31)

= —e+*&g~„(—k), r =3,

Mgs, (k)M '=(&)'g3„(—k), r=1, 2,

= —(~)'g~. (—k), r=3

(5.32)

It is assuined in these expressions that the positive
directions of the transversal polarization, r=1, 2, are
defined to be the same for both k and —k.

CA„C '= —A„,

(R. 'A„(t)E)r= —A" (—3)

MA„(x)M '= —A&(—x).

(6.1)

6. ELECTROMAGNETIC FIELD

A. Linear Momentum Representation

In the case of electromagnetic field, the sign-functions

pg, pg, and p~ of the field variables are well-defined.
Therefore, all we need is to show that the C, R, and M
defined by these sign-functions do not change the sign
of the free Lagrangean and that they leave the Lorentz
condition unchanged. The invariance of the interaction
Lagrangean will be guaranteed, if the other fields are
so adjusted that the electric current generated by these
fields becomes a second kind pseudovector.

By the direct application of Eqs. (3.11), (3.12), and
(3.14) to the electromagnetic potential, we obtain

The transformation of a covariant component into the
contravariant component takes care of the required
transformation of a second kind pseudovector. We see
that Eq. (6.1) is compatible with Eqs. (3.45), (3.50),
and (3.57) with W=1. The transformations in Eq. (6.1)
leave the commutation relations of A unchanged.

The transformations in Eq. (6.1) certainly make the
free Lagrangean a regular scalar, and transform the
Lorentz condition,

(BA&/ax&)e (t) =0, (6.2)

the defining equations in Eq. (6.1) become

Cg~(k) C-'= —g~(k)

(R—'g (k)R) r= —g„(—k),

Mg&(k)M-'= —g„(—k).

(6 4)

Equation (6.4) shows that in a representation in which

g and g have real matrix elements, E and M become
identical. The explicit expressions of C, R, and JI are
then (the sign being so determined that CN„.=M%',.
=+Vao)

c=II II(—1)""'"; (6.5)

R=M= (—1)~,

C = -,'P' P LcV (k)+"V (—k)+g"(k)g (—k)
k 0.=1

+p (—k)g (k) j+-'2'L&'(k)+&'( —k)

-q'(k) g'(-k) -Ã(-k) g'(k) 3'
B. Angular Momentum Representation

Ke only consider a pure radiation field

A'= 0, divA =0.

«(6.6)

(6.7)

A physical quantity Q derivable from A can be written
in terms of a Hermitian operator 0 operating on A:

Q= i[(aA/at) OAj, — (6 8)

where the brackets mean the scalar product of two

into the corresponding equation for the charge-con-
jugate, reversed, and miraged states.

In this subsection, we shall use the linear momentum
representation for simplicity's sake. In the next sub-
section, we shall use the angular momentum represen-
tation, because this representation is "compatible"
with the parity operator. In the last subsection, we shall
use a mixed representation mainly for the purpose of
applications.

If we expand A&(x) by the plane waves:

A&(x, t) =P(2Vcu) '*Lg&(k) exp(+ —)
+~"(k) -p( —+)3, (63)

~k~ =co, exp(+ —)=exp(+ik x—i~t),
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spatial vectors (DA/Bt) and OA, and 0 is in general a
tensor in the 3-dimensional space. Ke have to consider
energy 'K, orbital angular momentum L, spin angular
momentum S, and total angular momentum J, which
are respectively given by

integer order, Bc+,(cor):

b[l,coj(r, t) = (1/ri)Bc+., (cor)e *"'

which can be normalized by

(6 16)

8
V7 =i I—; I.,=—i[y(B/cls) —s(c)/By))1, etc. ;

8$

0 0 0 0 0'

0 —i, etc. ; I= 0 1 0;J=L+S.
.0 i 0. .0 0 1.

Except for

[S„S„j=iS„[L„L„]=iL„[J„J„j=iJ„etc.,

R

lim(1/R) ~I (1/r') Bc~., (cor) (1/r') Bc+., (co'r)r'dr

=5 (co,co'). (6.17)

The left-hand side of Eq. (6.17) can be expressed again
in terms of Bessel functions, "and assuming asymptotic
expressions of the Bessel functions for large R, we can
satisfy Eq. (6.17). In particular, since we are interested
in the solutions in the empty space, we have to take a
superposition of incoming and outgoing waves, which is
free from singularity at the origin:

these quantities commute among themselves, with Eq.
(6.7) and with

Bc+., (cor) = (orco) 'Jc~,*(cor).

Using Eq. (6.15), we can expand A as

(6.18)

/
ci——[A=o.( cls

at')
(6 10) A(x, t) = (2R)

—'Q Q Q Q co
—e

co j l 3f

X [g(co,j,l,M)u[co, j,/, M](x,t)+Hermitian conj.$ (6.19)

co, j(j+1),l(l+1), and M, we denote the corresponding prom the completeness of the u's, we have the inverse
eigenfunctions by orthogonality:

u[co, j,l,M )(x,y, s,t),

where the brackets indicate their eigenvalues and the
parentheses their dependence on space-time. To give an
explicit form to u, we introduce the three eigenvectors
e[tc), (tc= —1, 0, +1) of S, :

lim Q Q Q Q(1/R)scan*[co, j,l,M/(x, t)

Xus[co, j,E,MQ(x', t) =B(x—x')B(n,P). (6.20)

With the help of Eq. (6.20), we can easily show that
the commutation rules:

e[1j=—(1/&2) (e,+ie„), e[0$=e„
e[—1]= (1/v2) (e,—ie„),

which satisfy

(6.12) Cg (coj,l,M), tt(co',i ',l', M')3

=b(co,co')5(j,j')b(l', l')8(M, M'), etc (6.21.)

(e*[p].e[tc'])=b(tc, tc'). (6.13)

Next, we introduce the normalized eigenfunctions
I'c (8, 9)) of L, and L' which satisfy

I I"c"'F'c™sin8d8cl co= 5(sst, sst')b(l, l'). (6.14)

u[co)j)i)MP(x, y, s, t) =b[l)coj(r, t) 2 Cc&(j,M; sst, tc)

Now we can write u with the help of the Clebsch-Gordon
coeQicients":

lead to the ordinary commutation rules of A.
Next, in order to determine the effect of E and M

on the g's, we 6rst have to determine the sign-change
of the u's for % and K applied to their argument

(x,t). Using the symbol introduced in Eq. (2.73), we

get from Eq. (6.15)

Q,„,u[co,j,l,MJ= (—1)'u[co,j,l,M),
(6.22)

u[co j l M j ( 1))+c+M+iu*[co,j,l, —M$.

The 6rst relation represents the well-known trans-
formation rule of F~ while the second relation can be
derived by noticing:

X I'c (t)) 9))e[tc3) (6.15) ( (
. M ) ( 1)

.+,~,( (
.
M )

where b should be determined by Eq. (6.10) and can
be expressed in terms of Bessel functions of half-odd-

~ See, for instance, J. M. Blatt and V. F. Weisskopf, Theoretical
ttTucleccr Physics (John Wiley and Sans, Inc. ) New York, 1952),
pp. 789J.

~c = (—1)"~c*", eC —t 1= (—1)"e*[p'), (6 23)

b[l,co)(r, —t) = b*[l,co/(r, t)

» G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, Cambridge, 1922), Eels. (8) and (11),pp. 134—135.
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Then, substituting Eq. (6.19) in Eq. (6.1), we obtain and not through

M —~g( 1)N(, ', l, Mr

l
(6.25)

Cg(Mj, /, M)C '= g(o—rj, /, M),

(R—
'g(or, j,/, M)R)r= (—1)~~™g(or,j, /, —M), ~(6.24)

Mg(orj, /, M)M '= (—1)'+'g(orj, /, M).

The effect of C in this representation is essentially
the same as in Eq. (6.4). The important feature of this
representation is that, except for the factor (—1)'+', the
effect of 3f is to transform a g into itself with the same
(or,j,/, M). This is of course a consequence of the fact
that K commutes with the quantities defining the
eigenstates in this representation.

We can satisfy the third relation of Eq. (6.24) by

"electric": j=/+1,
"magnetic": j= l,

(6.31)

we have the rule that the parity of an electric radiation
is determined by (—1)r, and that of a magnetic radia-
tion by (—1)r'+'

The charge-parity can be defined by

(+,h(x)O) =a (@,h( —x)+).

For, 0' being a self-miraged state, we have always the
positive sign in this equation (see Part I, Tables III and
V). If@' is an eigenfunction of photon numbers, then the
phase of the 6eld is completely undetermined, and its
expectation values vanishes any way.

If we introduce a distinction between the "electric"
radiation and "magnetic" radiation by

M+vaa =++vaar (6.26)

where the double-sign is not determined even by the
condition M'=1. However, if we want to have

C% =x,%, 7r.=a1.
C=II(—1)~, CO...=@.„

(6.32)

The reversion operator can be written
we have to take the upper sign. Any state in this
representation may be expressed by

&'gig~ +vac,

with the g's used in Eq. (6.19). If the number of g s
with /= even in each term of Eq. (6.27) is even (odd),
the state of Eq. (6.27) is an eigenstate of M corre-
sponding to the eigenvalue +1(—1):

—(—1)'+'+~g(or, j/, —, M)g(or, j,/, M)).

C. Mixed Representation

(6.27) 0=-', P P P P'[X(or, j,/, M)+/r/(or, j, /, —M)
&o r' i M L(6 33)

7 —(—1)r+'+~g (or j / M) g (or j / —M)

M% =x,+, w, =~1. (6.28)

The value of m, is the "space-parity" of the state 0'.
The eigenstates in Eq. (6.28) of M are "self-miraged"
states in the sense of Eq. (3.54).

In particular, if a single quantum is excited,

g+vacp (6.29)

h(x) =ah( —x). (6.30)

The only caution we have to take is that the c-number
theoretical definition of parity in Eq. (6.30) should be
reinterpreted in the q-number theory through Eq. (6.22)

'4 J. M. Blatt and V. F. Weisskopf, reference 23, p. 585.

(—1)'+' gives the parity of the state, where / is the
orbital angular momentum of g. Comparing this result
with Eq. (6.22), we see that the parity of the state in
Eq. (6.29) is the opposite to the parity of the corre-
sponding u in the c-number theory. This is, however,
in agreement with the usual definition of parity of elec-
tromagnetic field, since the parity of u is the same as
the parity of the electric field and opposite to the
parity of the magnetic field, and the parity is defined
usually by the magnetic field h'4:

u[k„ti) (x, t) = exp(ik, Z—iort) e[t4],

fk, (
=or. (6.35)

where e[0], [see Eq. (6.12)), should be absent on
account of transversality as seen in Eq. (6.7). From
this follows

Cg(k, t )C '= —g(k.,t ),

(& 'g(k. t)I/)'=g( k., -t), -
Mg(k„ti)M '= —g( —k„ ti).

(6.36)

For the purpose of a later application, let us also
consider the simple r

exsection

K, of the x-axis:
(x,y,s,t)~( x, y, z, t). The opera—tor M, corresponding

In this representation, linear momentum p and cir-
cular polarization, i.e., spin angular momentum S, in
the direction of propagation p are used. For instance,
for the waves propagating in the s-direction, the circular
polarization can be expressed by 5,. Obviously, 5,
does not commute with p, and p„, but if p, =0 and
p„=0, we can still use S, to characterize eigenfunctions.
Thus, we can write for such waves

A(x, t) = (2V) & Q or l[g(k„ti)u[k. ,t4](x,t)

+Hermitian conj.) (6.34)
with
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M,g(k„p)M, '=g(k„—ti). (6.38)

to 9P, should then be defined by

M,A, (x,y, s,t)M, '= —A, (—x, y, s, t),
(6.37)

M,A„, , (x,y, s,t)M. i=—+A„,,( x,—y, s, t).

Since e[1$ and e[—1$ differ only in the sign of e„[see
Eq. (6.12)], we obtain

It can easily be seen, with the help of Eqs. (2.18) and
(2.20), that these transformations are compatible with
the unitarity of C, R, and M. The usual commutation
rules of f are left unchanged by these transformations.
The combination of the two relations of Eq. (7.2)
gives (C)'f(C ')'=P, agreeing with C2= 1 irrespec-
tively of n. The reiteration of the transformations in
Eq. (7.3) gives

One of the advantages of this mixed representation
is that we can easily discuss the connection between the
spin and the linear polarization of a photon. The
operators, in the sense of 0 in Eq. (6.8), representing
the linear polarization are

0 0 0 0 0 0 0 0
0 0 0, x„0 1 0, ~,= 0 0 0',

,0 0 0 0 0 0 0 0 1

implying

RrR 'P(t)RRr '= —P(t),

R~R '=A.

which means, among other possibilities, " that

The double mirage, according to Eq. (7.4), yields

M'P(M ')'= —e"&P

(7.5)

(7.6)

and the corresponding physical quantities Q are

(6.39) M2= 1 fol e'~= &$,

3P=6 for e'7= &1.
(7.7)

II = i "—[((3A/Bt) s. AJdV, (n=x, y,s). (6.40)

7'. CHARGED SPINOR FIELD—LINEAR MOMENTUM
REPRESENTATION

In the case of a charged spinor 6eld, we have to con-
sider the free Lagrangean given in Eq. (4.5) and the
current-density given in Eq. (4.6). When these quan-
tities are substituted in Eqs. (3.11), (3.12), and (3.14),
we should have

pc=pa=p~=+1 for 2,
—pe= —pii ———pjr ——+1 for s, (n=1, 2, 3),

pc=pR pM +1 for &'.

These requirements can be satisfied by

«(7.1)

We can give more explicit expressions to H by the use
of Eqs. (6.34) and (6.12). In particular, for a given
value of k„we get

II,(k,) =-', [1V(k„+1)+E(k„—1)—g(k„—1)

&&a(&*, +1)—g(&, +1)g(&., —1)j
(6.41)

II„(k,) =-', [1V(k„+1)+lV(k„—1)+g(k„—1)

&&a(&, +1)+p(&, +1)r(&., —1)1.

These quantities will be profitably used in our discussion
of the positronium decay in Sec. 13.

According to Eq. (3.50), we shall adopt the former
alternative.

We can easily see that the double-time-reversal in
the sense of Eq. (3.56) can be a c-number or 6, or a
more general W. If we apply Eq. (7.2) first and then
Eq. (7.3) we get

(R 'Cf(t)C 'R) = —e'& @ED'(—t). (7.8)

If we invert the order of these two, we get

(C ' R '$(t)RCr) =—e '&~ e'Eop( —t). (7.9)

By using Eq. (3.57), we obtain from Eqs. (7.8) and (7.9)

W 'QW = e2& &~ e'P (7.10)

which means that if n =P or n =P+s then W =c-number,
and if n=P&s/2 then W=A. In the latter case, the
double-time-reversal in the sense of Eq. (3.56) will
become a c-number because of Eq. (3.58). The more
general case of W where n and P are arbitrary will be
included in our discussion of the superselection rules.

The relation in Eq. (7.2) satisfies the requirements of
Eqs. (7.1) for Eqs. (4.5) and (4.6) only on the assump-
tion that f and fx anticommute. As a result of the appli-
cation of the commutation relations, there appears a
c-number additional term. In order to avoid such an
additional term, it is desirable to write 2 and s& in the
form

CfC = —e'~Kgx CfxC i=e «QK i (7.2) 2—+—(2+pcCZC )

(R. 'g (t)R)"=e'eEOKpx( —t),

(R 'px(t)R)r=e 'ep( t)K 'Eo, —

MP(x)M '=e'&Ei2yf (—x),

Myx(x)M —'= —e '~Px( x)E

(7 3)

(7.4) ~"~k(~"+p.«~C ') = (ox' 4E"'4-x)-—
2

',Px[E„(8/Bx„)—E-„(8/Bx„)+2im—Egjg

'P[E„r(8/Bx ) E—-r (B/Bx„) 2imE—ir jgx, & (—7.11)
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Naturally, Eq. (7.11) is written so that the requirements
in Eq. (7.1) are automatically satisfied. If we assume
the Bose statistics, Eq. (7.11) becomes essentially a
c-number.

We shall now proceed to determine the effect of C,
E, and M in the linear momentum representation. This
actually corresponds to what we have called mixed
representation in the case of photons. In this represen-
tation, we use the following mutually commuting
Hermitian operators:

Pa
b

&0

Pz PZ Pz' Pp Ppe PJPZPZ

tioned transformations, that

TABLE I. The sign functions p's defined in Eq. (7.20) and used in
Eq. (7.21) for various operators introduced in Eq. (7.12).

(K(J 'OJ)rK ')Kf~(x, t) =O'KP~(x, t),

)
(7.19)

=O'E Keg" (x, t), —
with

P = i(B—/r)x ), (n=1, 2, 3), b=i(f)/Bt),

p +E E E E E p /2p (TK(J 'OJ) K 'T)EpA. g (x t—(7.12)

P= l(E P-')'I, (7 13) (IOP )Eissf( x& f) =0 Eissf( —x& 1).

p[k, oi,ii)(x, t), os=a(ks+r~ss)'*, (7.14)

where 0 means the spin in the direction of propagation

p . Denoting the eigenvalues of p, Hs b, o. respe——c-
tively by k, oi, p, we use the expression:

The functions mentioned in Eq. (7.16) have the eigen-
values 0' for the operators appearing on the left sides of
Eq. (7.19), instead of the operator 0 for which it (x,f)
has the eigenvalue O'. To characterize these operators,
we introduce the following sign-functions:

if'(x, t) = (V) l Q agf[X] (x,t) (7.15)

for the corresponding eigenfunctions. The absolute
value of ai is determined by k, but its sign is an inde-
pendent quantum number. Thus we can expand any
solution of the wave equation as

J 'OJ=pJO=pgO,

E 'OX= p~O~,

T—'OT= pgO,

P—'OP= ppO,

(7.20)

where X stands collectively for (k,oi,p).
Next we investigate the effect of the transformations

appearing on the right sides of the relations in Eqs.
(7.2), (7.3), and (7.4) on the eigenfunctions in Eq.
(7.14). In other words, we shall study the behaviors of
the functions:

Kf"[)t](xf) EsK& [Xj(x, t), —

Eissiit [X](—x,f),
(7.16)

towards the operators in Eq. (7.12), as compared with
the behavior of the original function of Eq. (7.14).

The transformations from Eq. (7.14) to Eq. (7.16)
can be decomposed into: multiplication by K, Hermitian
conjugation, multiplication by J (to obtain f~), and
multiplication by

T =iEoQi and P—=EosQ»*, (Eos = —sEiss), (7 17)

Oint =0'if, (7.18)

where 0 stands for any one of the operators in Eq.
(7.12) and 0' stands for the eigenvalue. From Eq.
(7.18) it follows, by the application of the above-men-

where the meaning of (2 symbol is given by Eq. (2.73).
The factor i is inserted to make T and P Hermitian, but
does not have much importance.

The defining equations for Eq. (7.14) have the form

where O~ should be understood as the transpose of 0,
as explained at the end of Sec. 2D. With the help of
these p's, we can write Eq. (7.19) more compactly as

OiP(x, t) =0'if (x,f),

OKiP (x,t)=pzpxO'KP (x f)

OEpKtg (x —1)=pgprrprO EpKQ (x —f)

OEisgk( —x, t) =pi O'Etssf( —x, t).

(7.21)

P(x, t) = V & P[aifP $(x,f)+biiP&[)if(x, t)K). (7.22',

An important dif'ference between Eqs. (7.15) and (7.22,'

is that X in Eq. (7.22) stands only for (k,p) while X ir
Eq. (7.21) stood for (korp). Hereafter oi=+

~

(k'+eP) &~

The spinor adjoint of Eq. (7.22) is, due to QxK)J

The p's for the operators mentioned in Eq. (7.12) are
listed in Table I.

Reading the column for pgp~ in Table I, we see on
account of Eq. (7.21), that Kiifx(x, f) has the opposite
signs for momentum, and energy and the same sign
for spin o as compared with it (x,f). Since o is the spin
in the direction of k, the same sign of o. here actually
means the opposite spin. In any event, if PP,j repre-
sents a positive energy, Kfx[)ij will represent a nega-
tive energy. Therefore, we can write, instead of Eq,
(7.15),
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if~(x, t) = V & Q[aggx[X](x,t)+biff~](x, t)K—']. (7.23)

The fact that KP (= —P&&K) has the opposite
values of p and spin is just compensated in the q-number
theory by the fact that, in an expression like QxJOQ
=$0/, the amplitudes ai and ci stand in the order
a),u~ while the amplitudes b~ and b~ stand in the order
b~b~ ——1—b~b~. Therefore, b~b~ will represent the number
of particles having the same values of ) as azar', only
with opposite charge.

Reading the column for p JpIgp~, we see that
EpKP (x, t) has—the opposite k and the same value
of b, H, and p as f(x,t). Since k is opposite, the same
value of cr actually means the flipping of spin. Therefore
we can write

r =+1 if the actual spin direction is in Si,
r= —1 if the actual spin direction is in Cp.

Then we can write consistently

(7.26)

EpKIP+[k&r](x, t) = rig[ k& —r]( &

—xt)—(7.27)

suitably choosing e' . Writing this way, we can now
freely change the sign of k and t. Equation (7.26) is just
a matter of convention, and we still consistently use the
relativistic eigenfunctions.

Next, according to the column for p~ in Table I, we
see that E»pf( —x, t) belongs to the same energy and
the opposite y and p, (i.e., the same spin). Therefore we
can write

iE»p1t [k,r](x,t) =lp[—k, r](—x, t). (7.28)

The factor i is added to secure the symmetry with
regard to the signs of k and x. It can be easily shown
that there is no conQict between Eqs. (7.27) and (7.28),
in the sense that the application of the transformation
in Eq. (7.27) first and Eq. (7.28) next gives the same
result as the application of Eq. (7.28) first and Eq.
(7.27) next.

EpK1t~[k,p](x,t) =e' g[—k, ti](x, t), (7—.24)

where p on the left side refers to k and p on the right
refers to —k. If we solve for |t[—k, p], keeping the
same values of p, , k, x, and t, we obtain, by the use of
Eq. (2.20),

EpK&x[—k, ti](x, t) = —e'g—[k, t]i( xt). (7.25)

If we rename —k and t as k and—t, Eqs. (7.24) and
(7.25) become contradictory. This contradiction is of
course only apparent because the same value of JM

referring to —k and to k means opposite spins. The
simplest way to avoid the confusion would be to divide
the space into two hemispaces Si and Sp such that
x and —x cannot belong to the same hemispace, and to
introduce a new spin-index v- such that

Using Eq. (7.27), we can also write for |t~

1t~(x,t) = V l Q p( —r)[g~(k, r)
k

Xn(—k, —r)K 'Ep exp( —+)
+g (k, r)n (—k, —7)Ep exp(+ —)]. (7.31)

and using Eq. (7.28), we can write for P

P(x, t) = V—l P P[g~(k, r)(iEi, p)n( —k, r) exp(+ —)r

+g (k, r)nx( —k, r) (iEppi)K exp( —+)]. (7.32)

Substituting first Eq. (7.30) into Eq. (7.2), we get

Cg„(k,r)C '=e' g (k,
—r),

Cg (k, r)C '=e '
g (k, r).

(7.33)

Substituting Eqs. (7.30) and (7.31) into Eq. (7.3), we
obtain

(R 'g+(k, r)R—)r = e'erg~( k, ——r), —

(R—'g (k,r)R)"= e 'erg ( k,——r). — —(7.34)

Substituting Eqs. (7.30) and (7.32) into Eq. (7.4), we
obtain

Mg~(k, r)M '= ie'&g+(—k, r), —

Mg (k, r)M '= ie '&g —( k, r), — (7.35)

which should lead to M'= 1 for y = &sr/2. The charge-
conjugation operator C as defined by Eq. (7.33) can
easily be obtained. Thus,

c=c—'=c=g g c(k, ),
k r

C(k, r) =1 N~(k, r) N— (k, r)+e—' g„(k,r)

Xg (k,r)+e 'g (k, r)g—+(k, r) (7.36).
Next for the reversion operator E, we have to satisfy

R-'g~(k, +)R=—e+' g~e( —k, —),

R—'g~(k, —)R=+e+ eg~( k, +), —(7.37)

where the usual representation of g and g is assumed in
which g and g have real matrix elements. We can first

Finally using the explicit expressions of f as plane
waves:

P[k, r]=n[k, r] exp(+ik x,—i&et), (7.29)

we can rewrite Eqs. (7.22) and (7.23) as

4(,t)=V '*ZZ[g (k, ) Lk, ] p(+ —)
k r

+g (k, r)n&&[k, r]K exp( —+)],.(7.30)
4 (x t) = V ' 2 Z[g+(, r)~'[k, r] exp( —+)

k r

+g (k, r)n[k, r]K-' exp(+ —)].-
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get rid of numerical factors by putting

R=RoR',

Ro —II II( equi))))vs(k, +) (+chip)N+(k, —)

k

Then Eq. (7.37) becomes

R'—'gg(k, r)R'=g~( —k, r)— (7.39)

Evidently this is a matter of convention for we could
as well take the negative of Eq. (7.42) as M.

8. CHARGED SPINOR FIELD—ANGULAR MOMENTUM
REPRESENTATION

In this representation, the operators used to charac-
terize eigenstates are, besides H and b as in Eq. (7.12),
the following three operators which commute among
themselves and with P and b:

F«m Eq. (7.39), we see that the effect of the trans-
formation by R' is such that lV~(k, +) and is)T+(—k, —)
are interchanged. This amounts to an interchange of
the factor of the type (—e+'~)~ and the factor of the
type (+e+'~)~ in the expression of Ro or of Ro ', which
results in a multiplication by (—1)~ for all oscillators.
Thus we have

R'-iR;~E'= Zg;&

R-~8~= Z. (7 41)

Finally the mirage operator M satisfying Fq. (7.35)
can be written as

with
M =M'Mp, (7.42)

and

M =II II(+ie ")"'"'(+ie+'")" '" ' (7 43)
k r

M'=II' II IIL1—E~(k, r) —X~(—k, r)
k

+g~(k, r)g~( k, r)+g~( ——k, r)g~(k, r)]. (7.44)

If we make the square of M, we get

M2 Mo2 II II( e sip)N+(k, r) ( e+—sip)N (k, r) (7 45)-
k

which is unity for y= &sr/2, and 6 for y=0 or ~sr, in
agreement with Eq. (7.7). To satisfy M'= 1, we should
take

which is obviously satisfied by

R'=II' II R'+(k),
k

R~'(k) =1—x~(k,+)—iv~( —k, —)

+0+(»+)g+(—k —)+g+(—» —)g+(»+) (7 40)

where the multiplication symbol II' with a prime means
that k should be taken from one hemispace. Now we

can confirm that the R, thus determined, satisfies
E 'R~= A. Noticing that Rp =Rp and E.' =R' we get

I=LnEa+EoLs) ((2=1, 2, 3),

J2
=L2+ 2P-oP-sP-s,

P—EpESQx)
where

L,=—iLxs(B/Bxs) —xs(()/Bxs)g, etc. ,

(8.1)

(8.2)

(8.3)

(8.4)
and

Qxf(x) =f(—x),

(x'i Qxi x")=S(x'+x").

(8.5)

(8.6)

It is convenient, in this representation, to introduce

the following operators, X, I"
X= (i%)E.x.Qx, (~=1, 2, 3),

Y= (i/r) (&tsxs+Rssxt+&stxs).

(8.7)

(8.8)

X'= I '=P'=1,

XI'= —YX=iP, YP= —PI =ix,
PX= —XP=i Y..

(8.9)

These operators, I, I', and P, are analogs of S~, S2

and Ss, as seen in Eqs. (2.58), (2.59), and (2.60).
Now noticing that

p, = —i(a/ax, )= (x,/r) (p„+i%)
—(X,/r') L2+ (X /r'2)1 2, etC. , (8.10)

p,=- L(&/& )+(1/r)3
= (1/r) (xtpt+xsps+xsps —i) (8.11)

we can rewrite the Hamiltonian by a straightforward
substitution in the form'~

IIo —i EoXQxp, iso ——Y(1/r) L+rNP—Qx. (8.12)

The eigenfunctions in this representation will be
characterizeA by co, ~, ns, and p, which are, respectively,
eigenvalues of H= b, I, Js, and P. Thus,

It js easy to see that X, 7', and P satisfy the same

commutation rules as the spin matrices:

Mo=IIII( —1)"""'»Mo=IIII(—1P '"'. (746) Pt o),x,r)s,)o'](x,t). (8.13)

The mirage operator thus defined satisfies

~novae =+vlcc. (7.47)

It is obvious that if ~ is an eigenvalue then —co is also

an eigenvalue. However, in contrast to the case of the

~5 P. A. M. Dirac, The I'rimci p/es of Quantum Mechanics
(Oxford University Press, London, 1947), third edition, p. 268.
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EpKlp[or, K m p)(x, —t)

= (m/~m~)/[or, &(,
—m, p](x,t). (8.19)PK pgpz pzpzpr

TABLE lI. The sign functions P's define(i in Eqs. (7.20) and Eq (8 18) are incorporated in
(8.32) for various operators used in the angular momentum repre-
sentation.

Hp

P
I
J8

linear momentum representation, ~or~ is not determined
by the other quantum numbers. Similarly to the case
of the linear momentum representation, here too, we
have four quantum numbers.

To determine the relationship among eigenfunctions,
we calculate the sign functions pg, p~, pz, and p~,
defined by Eq. (7.20), for the various operators used
in this representation. The results are listed in Table II.

We first notice that pgp~ ———1 for all the operators,
which means, in virtue of Eq. (7.21), that Kit +(x,t), as
compared with f(x,t), has the opposite sign for all the
quantities involved, including energy. Therefore we can
expand it (x,t) with the help of Eq. (8.13) and

Klg [or&K&m&p] (X&t) &

One of the advantageous features of the angular
momentum representation is that I' commutes with
the other operators defining eigenfunctions. This fact
is reQected in Table II by p& being positive for all the
operators. Thus we should have, according to Eq.
(7.21),

Erst/[or&&(&m&p]( x,—t) =e' /[or&&(&m&p](x&t)&

or more directly, because of the fact that it[A) is an
eigenfunction of I',

Esse [or,&(,m, p) (—x, t) =pP[or, &(,m, p] (x,t) (8.2.0)

Now we can determine the effect of C, R, and M
on the q-number amplitudes g's. Applying Eq. (7.2)
to Eq. (8.15), we obtain

Cgp(or, &(,m, p)C '=e+' gp( , o,l&(mp), (8.21)

which is satisfied by

while limiting the values of or to positive values. Thus „[ + ~+

~t (»t) =E 'Z[g+(7)4[7()(»t)

where X stands for [o&,&(,m, p). As before, the fact that
Eq. (8.14) has the opposite values of X is compensated
by the fact that the emission operator. g, instead of the
absorption operator g, is standing as its coefficient,
where g and g anticommute. The commutation rules
here should read

+e-"ft-(7)g+0)) (8 22)

The application of Eq. (7.3) to Eq. (8.15) yields, in
virtue of Eq. (8.19),

(R 'g~(or, A,m, p)R)r= — e+'eg~((d, &(,
—m, p), (8.23)

/mf

which is satisfied by

R=ROR',

[gg(o&,r(,m, p), g~(ol', &(',m', p') )~
=()(or,o)') fr (r(,&(') i) (m, m')i) (p,p') t) (W,W), etc. (8.16)

( m & Ny(X', »&)

E.=II II II~—
hami )

(8.24)
%=II II II [1—E„(X',m) —1V (X', —m)

) net

+g~(X',m)g~(X', —m)+(7~(X', —m)g(X', m)],

Next, we see from Table II that pgp~pp is negative
only for Js. This means, in the light of Eq. (7.21), that

Ep Klp&&p,)(—t), as compared with it'[X](t), has the
opposite value of Js and the same values of &=b& I& where 7(& stands for (or, r(,p). This R obviously satisfies
and E'. Therefore we can write

EpK&x[or, r(,m, p)(x, t) =e'&[or, &(,
——m, p)(x, t). (8.17)

R~R '=A. (8.25)

Solving for P[—m), and taking the spinor adjoint by
the help of Eq. (2.20), we obtain

Finally, the effect of M on the g's is obtained by
applying Eq. (7.4) to Eq. (8.15) with the help of Eq.
(8.20). Thus,

Eel"[or, &(,
—m, p](x,t)

= —e'g[(a, r(, m, p](x, t). (8.18)—Mg+ (X',p)M—' = se'&pg+ (X'p), —

Mg (X',p)M '= se '&pg (X',p)—
(8.26)

(+ p y)N (x ) (+ipe+ )N ()) ) (8 27)
p

The apparent dissymmetry between Eqs. (8.17) and and are satisfied by
(8.18) can be overcome-by noticing that (r( can depend
on m. Thus we can adjust e( so that both Eq. (8.17) and
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where X' stands for ((e,z,m). We can satisfy the condition
3P=1, by either one of the following two alternatives:

where (&)' is an arbitrary double sign independent of
the double sign of the charge. This M, satisfies M,+ „
=+v~

M —g g pN+(x', p)( p)N (v-, p)

p

—g g( p)X+(X',P)pN (X',—P)
or

We have established that charge-conjugation, rever-
sion, and mirage with regard to spinor fields are en-
gendered by C, E, and 3f de6ned by

V p

This ambiguity is not surprising since the deter-
mination of p itself is a matter of convention; we could
as well use P fo—r P. In spite of this, Kq. (8.28) can
give a definite value of parity when the total number
of spinor particles is even. Moreover, we can speak of
a definite "relative" parity of two states, each having
an odd number of spinor particles, since the "relative"
parity (i.e., equality or inequality of parity) has a
definite meaning no matter whether we use 31» or M2.
Both M» and M2 satisfy M%'

For the purpose of a later application, let us briefly
consider the reQection with respect to the x-axis:
(x,y, z,t)~( x, y, z, t—) The .unitary operator M, is
obviously defined by

CP (x,t)C—'= e'Q)&(x, t)E,
«(9.1)(R-'P(x, t)R) ~ =e@P)((x, —t)ROE,

Mp(x, t)M '=e"Z)23$(—x, t), y=&z/2, .
and their adjoint equations. We have also shown that
such operators C, R, and HEI actually exist. These rela-
tions have been derived from the requirement that the
free I agrangean and the current have the correct
transformation for charge-conjugation lg, reversion R,
and mirage K. Now, we can conversely use these rela-
tions in Eq. (9.1) to find the transformation rules of
various tensorial quantities Q(x, f) built with spinors
for K, g, and K. Their transformation properties are
determined by

M P(~,y, z,&)M '=e' E&P( x, y, z, t)—, (8.29)

whose adjoint is, on account of Eq. (2.18),

(8.28) g. TENSORIAL QUANTITIES BUILT WITH SPINORS

M P"(x y, z, t)M = —e'Qx( —x, y, z, t)E&, (8.30)

where 0. has to be =0 or %m in order that 3f,'= 1. The
right-hand side of Eq. (8.29) is obtained from P(x,y, z, t)
by applying the operator

pc= (CQ(x,&)C ')/Q(x, &)

pii ——(E—'Q (x,t)R) /Q(x, t), —

p = (MQ(x, t)M ')/Q( —x,t).

(9.2)

The quantities to be considered have the general form

I', =E»O, . (8.31)
Q (x,t) =i/~(x, )l)O (x,f)lP (x,t). (9 3)

The comparison of an eigenfunction ))t[Xj and P,/[X'
can easily be done by examining

I' 'OI', =p,O, (8.32)

for various operators. The results are listed in Table II,
which shows that the only quantity that changes its
sign is J3. Therefore we can write

M,g~[X',mjM, '=e' g+[X', —m],

where X' stands for (cv, )(,p) and e' must be &1, in order
that M '= I. M can be given an explicit expression:

M, =Q g g [1—E~(l)',m) —)V~('A', —m)
I ml

+ (a)'gp(X', m)g~(l(', —m)

E&/[co, z,m, pj(—x, y, z, t)

=e'+[co, )(, —m, p](x,y,z, t), (8.33)

where e'" can be put =1 without loss of generality.
Applying Eq. (8.29) to Eq. (8.15), we obtain, with the
help of Eq. (8.33).

In the next section we shall investigate the case where

the two spinors involved in Q are not the same. In Kq.
(9.3), however, f+ is just fJ ', where p is the Hermitian
conjugate of lt,

Q=QJ 'Of. (9.4)

X- OX=p~o, r- Or =»O,

E»OI'=pIO, J—'OJ =pgO.
(9.6)

See Eqs. (7.17) and (7.20). It is easy to see, by applying
Eq. (9.1) on Eq. (9.2), that

The requirement that Q be Hermitian is equivalent to
the requirement that J '0 be Hermitian:

(J—'0)—=J—'0, or p~ (J 'OJ)/0=+——1. (9.5)

In the following we shall assume that the operators O

are written so that Eq. (9.5) is the case. The operators
considered in the preceding sections are J—»0 rather
than O. See Eq. (2.40) in this connection.

To determine pg, pg, and p~, we use the auxiliary

sign functions p~, pz, and p~ de6ned by

+ (a)'g~(X', —m)gg(X', m) j, (8.35) pg= p~, pg =—pxpr, pm= —ps' (9.7)



66 SATOS j: %ATANA 8 E

TABLE III. The various p's for the tensorial quantities built with
the same spinors.

pJ'
pK
pF
pp
pc
pB
p3E
Kind

iBs iZrx iE0 i&5' ipse i&otP iBexe

+ + +
+

+
+

+
+ — +
+ — +

reg. 2 2

Note that pq ——p~ is based on
iP and gx.

As an illustration, let us
tonian Ho.

the anticommutability of

consider the free Hamil-

(S) 0=zEp, (PS) 0=1,

(V) O=iE, (PV) O=iE'&,

(T) O=E"" (PT) 0=i&"
«(9.8)

The imaginary unit i is added wherever it is necessary
to have p~ ——+1.As we can write E"'=iEpp, etc. , due
to Eq. (2.17), the relation between (T) and (PT) is
just that of complementary tensors as defined in Part I.
Therefore, we need not investigate them separately.
The various p's for the 0's are listed in Table III, in
which the indexes n and P refer to space-coordinates,
n, P = 1,2,3.

From the line for pq, we observe that iE„, iE„„and
Ep„„are "electromagnetic" quantities (pe ———1) while
all the others are "mechanical" (pe ——1). From the lines
for pg and p~, we can determine the "kinds" of the
quantities which are listed in the last line of the table.
Comparing this result with (2.43), we observe that
1, iE5, and iE5„change their "k.inds" by the passage
from the c-number theory to the q-number theory. This
change is such that p~ remains the same while pg

IIp=EpE P +EpEpm, (u=1, 2, 3).

The corresponding operator 0=JBO is then

O=iE„P +iEpm.

Since J 'E,J = E;, as in—Eq. (2.18), and p =p„, we
have pJ=+1 due to the imaginary unit i Com.pare
herewith that we had pg

———1 for IIo. See Table I.
Since 0 anticommutes with Eo and since 0 does not
contain the time variable, we have pp= —1. Next,
E 'E„E=—E„~, E 'E5E=ES~, as seen in Eq.
(2.19). And, furthermore, since p ~= —p, from Eq.
(2.71), we have px=1 for 0. Since Q,p,= —p,Q„ in
Eqs. (2.70) and (2.74), and since E»p commutes with
8 and anticommutes with E5, we have p~ ———1.
Therefore, by Eq. (9.7), pe =pz =p~ = 1.

We are mainly interested in the 0's which are the
basic E's or their products. There are, as is well known,
six types of quantities up to the second rank:

(R 'P(t)R) r =—
e@Epg( t)—

MP(x)M-'= e'&E~p,gx( —x)lt

'«(9.9)

But, such an assumption will immediately encounter a
serious difhculty. Consider the pion-nucleon interaction:

1V+x+ +P, — (9.10)

to which corresponds an interaction Hamiltonian of
the type

(9.11)

where the Dirac matrices are omitted for simplicity.
Assuming Eq. (9.1) for protons and Eq. (9.9) for
neutrons, we get as the result of mirage, for instance,

X/~ Xp (9.12)

which certainly should not exist in the original inter-
action Hamiltonian, since it implies a violation of "con-
servation of heavy particles":

(9.13)

The relations in Eq. (9.9) for C and I|'. encounter the
same difhculties. We therefore have to assume Eq. (9.1)
and not Eq. (9.9) for neutrons.

We can further argue that the neutrino also has to
obey Eq. (9.1) and not Eq. (9.9). If the neutrino would
obey Eq. (9.9), the interaction Hamiltonian of the type

&+e +~. (4~ 4'~)(4 4') (9.14)

wouM go over, by mirage, to

&+e +~' (4~ 4p)(4 4 ") (915)

where the neutron, proton, and electron are assumed to

changes its sign. It should also be noted that these
quantities are "mechanical" quantities. In other words,
the q-number theory changes the behavior of the
mechanical quantities for reversion, as was required in
Sec. 4. These results were mentioned in Part I, Table VI.

It should also be recalled that the various alternative
expressions for C, R, and M pertain to the arbitrariness
that is allowed without altering the transformation of
the bilinear expression of the type in Eq. (9.3). There-
fore, the above-mentioned results are not affected by
the choices of the operators C, E, and M.

The transformation rules in Eq. (9.1) are determined
by the consideration regarding Zy and s&. But, for the
neutral spinor particles, s& does not have the meaning
of electric current, and one may argue that particles
and antiparticles are physically undistinguishable. If we
take this point of view, we could de6ne C, E., and M
by a combination of those C, E., and 3II given in Eq.
(9.1) with charge-conjugation 5:$-«fxE, Px—«pK ',
i.e., by

CPC '=e'Q
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obey Eq. (9.1). The combination of (9.14) and (9.15) we can write
would mean

Z, =v2f(K G +K G )+fH F("" (10.5)
V +V —Ol V+V~0& ~ (9.16) with

which is hard to accept.
For these reasons, we shall assume in the following

sections that the neutron as well as neutrino obeys Eq.
(9.1). H =4)l o f~ 4P —O l)tP

(10.6)

Z, =fiP~0„7$Fa (10.1)

where the index n designates the tensorial components
and the arrow means a vector in the 3-dimensional
Euclidean isotopic spin space. Here, |t is actually
an 8-component spinor composed of neutron spinor f~
and proton spinor gP, which we define by

2 3l)t'X=+1)t'A
~ T3PP= lPP. — (1o.2)

The factor I' is a Hermitian quantity derived from the
pion 6eld and the r's are the well-known isotopic spin
matrices which are also Hermitian. Then, if we take 0,
such that

J 'OJ=O, i.e. pg= 1, (10.3)

2 will become Hermitian with real f.
Although we take the "symmetric" formulation, in

Eq. (10.1), as the standard expression, it will be easy
to infer the situation with the "charged" or "neutral"
formulation from our results. As 0 in Eq. (10.1), we
can take any one of the operators introduced in Eq.
(9.8). The F for (5) and (PS) is the scalar pion field

strength itself 23. The Fa for (V) and (PV) can be the
vectorial field strength u& or the 4-dimensional gradient
of the scalar Geld N. The F for (T) and (PT) must be
the 4-dimensional curl of a vectorial field u~.

In this section, we take the viewpoint that p)ll and
lt P obey the transformation rules in Eq. (9.1) and that
the transformation rules of the u-field are to be deter-
mined by the requirement that 2, as in Eq. (10.1), be a
regular scalar. There is no reason why the phase angles
n, p, and y should be the same for protons and neutrons.
Therefore, we shall write np, Pp, and yp for protons and

n~, p)l, and 7' for neutrons.
By decomposing Eq. (10.1) in three components in

the isotopic spin space, we get

&=f(A "Oa4P+pP O p)l()p"'

+f( @~ 0 PP+@P)(O—P~)F(2) ) (10.4)

+f(f)l 0 f~ PP~O PP)F(')—

10. NUCLEON-PION INTERACTION

Let us consider the nucleon-pion interaction of the
type

In the "charged" formulation, the third term with
F(3) is absent. In the "neutral" formulation, the first
two terms are absent and we have a plus sign instead of
minus sign in the expression of H .

Our next step is to determine the transformation
rules of K and H by the use of Eq. (9.1). The results
are as follows:

CK.C '=L~ je" a ~)peK,

CJI C '=pgH„.

(R 'K„(t)R)r=e'(ev e~)p)2K (—t),

(Z-'H. (t)S)'=p&H. (—t),

MK, (x)M '=e'(»» p3rK ( x), —

MH (x)M '=p3rH (—x).

(10.8)

(10.9)

where pg, pg, and p~ are those of the operator 0 used
in. (10.9). Since the F("is the I") itself, or a quantity
derived from N(3& by an operation of differentiation
which is a regular tensor, the "kind" of J (') is the same
as the kind of n(3). Also, the charge-sign-function pg
must be the same for J (3) and I('). These properties of
u(3) are tabulated in Table IV.

From these properties, we can conclude an important
rule concerning the mixing of diferent types of inter-
action. Mixing of (5) and (V) for scalar field and mixing
of (PV) and (PT) for vector field are not allowed. This
conclusion can be drawn from consideration of the
"kind" as well as from the consideration of pq. This con-
clusion is also valid in the "neutral formulation. "

TAsLz IV. The transformation properties of u(') for various
interaction types.

The sign L&1 is positive if l)t)ll and QP anticommute and
negative if they commute. pq, p~, and p~ are the ones
determined in the last section for various 0's. See
Table III.

By the requirement that 2 be a regular scalar, we can
infer the transformation rules for F(3) from the results
of Eqs. (10.7), (10.8), and (10.9):
Cp(3) aC—1 pep(3) a —(g—ip(3) a(t)g) & =pap(3) a( t)

MF(3)a(x)M i=p31F 3 "(—x), (10.10)

Or, by introducing, in analogy to Eq. (5.1,),
Ga —(p(1)a+3F(2)a)j~ ga (p(1)a 2F(2)a)/~

Kind
pc

(S)

reg.

(PS)

1
+

(PV)

1
+

(P&)
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Contrary to the case of I&3), we cannot infer any
definite conclusion regarding the "kind" of I"' and u&"

because of the unknown factor such as exp(iyiv —iyv)
in Eq. (10.9). By the same argument as the one which
led to Eq. (10.10) we can write

v (10.11)

highly questionable. For, r)'2s', for instance, is +1 in one
coordinate system, but —1 in another coordinate
system which is connected to the 6rst by mirage. This
means that the physical law is different for the right-
handed coordinate system and the left-handed system.
How can one decide whether he should take rt'"'=+1
or = —1 in his coordinate system? In other words, we
can write the second term of Eq. (10.12) in the form

3A (x)M
—' = e"&»—»i porn (—x), fag Es+I, (10.13)

where pg, pg, and p~ are those of I&') for the correspond-
ing interaction type. These relations agree with Eqs.
(5.8), (5.11),and (5.16). Since yv and pic are limited to
+s/2, exp(imp —iy~) as well as psl exp(iyi iyiv—) is
limited to &1, which is in agreement with Eq. (5.17).

The prohibition rules of mixture, explained with
regard to I('), is still valid for the charged v. For, what-
ever the factors exp(in' —su&) and exp(iPz —iPz) may
be, the phase factors in transformation rules for v must
take the same values throughout the entire I.agrangean.
It is true that due to the so-called equivalence theorem, "
the (S)-interaction and (V)-interaction, for, instance,
are equivalent. Thus one may say that the mixture of
(S) and (U) is unnecessary. However, these equivalence
theorems are proved only in lower approximations and
we cannot in general replace (S) by (V) or (V) by (S).

Before closing this section, a few lines may be spent
in connection with the contention often raised' to the
effect that the (S,V,T)-types can be mixed with
(PS,PV,PT) types. For si-mplicity, let us consider the
mixture of (S) and (PS), in accordance with the
usually proposed procedure:

&=fgpxrpu+ (1/24) fspxE „~rtpveisi (10.12)

where E„„,i=&iEs according as (y, , , vs) is an even or
odd permutation of (1,2,3,0). See Eq. (2.41). According
to the c-number theory, lt xE„„„qkis a third kind pseudo-
tensor of the fourth rank. , corresponding to the fact
that fxEgk, which is the complementary tensor of
PxE„„„ig, is a second kind pseud oscalar. In the
q-number theory, fxE„„„&p is first kind and pxEgk is
regular.

Now referring to Eq. (10.12), the first term will be
a regular scalar if I( ) is a third kind in the c-number
theory and a erst kind in the q-number theory and n

obeys the corresponding relation in Eq. (10.11).Then,
the second term in Eq. (10.12) can be made regular, if
we assume g"""~ to be regular in both c-number and
q-number theories. For, (third kind) X (regular) X (third
kind) = regular, and (first kind) X (regular) X (first kind)
= regular.

This regular tensor q&""~ is nothing but what we
denoted by the same symbol in Part I, Sec. 2, as distinct
from e&""". The appearance of g&""~ in a physical law is

"E.C. Nelson, Phys. Rev. 60, 830 (1941);E. J. Dyson, Phys.
Rev. ?3v 929 (1948); K. M. Case, Phys. Rev. 76, 14 (1949)."M. Schoenberg, Phys. Rev. 60, 468 (1941).

assuming that. fs is a first kind pseudoscalar. Is it per-
missible that a natural constant change its sign by
mirage or reversion? Can it diger for a process and its
miraged or reversed process?

Furthermore, the mixture of (S), (PS), or (PV) with
one of (U) (T) or (PT) cannot be made allowable by a
similar artifice, because pg is different for these two
groups.

11. NUCLEON-LEPTON INTERACTION

The usual nucleon-lepton interaction Lagrangean can
be written

where the "particle, " as distinguished from the "anti-
particle, " of the lt, field is positron, and the "particle"
of the P„ field is the neutrino defined as the neutral
partner of the negative beta-decay. The index o.

designates five independent types of operators men-
tioned in Eq. (9.8). Because of the existing condition
in Eq. (9.5), 2 is hermitian if f is the complex con-
jugate of f

By applying the first transformation of Eq. (9.1)
on the first term of Eq. (11.1) we obtain

f CQ~ O,fp)(P, 0;P,)C '

=f.g~O 'Pi )Q,O P, )

Xe i p nNe+nnv ne) —
(pcv)s

—(] 1 2)

or
f nz (ctp n~+cxv ne)c J tx~ (11.3)

(11.4)

(n„=0, 1, 2 ). (11.5)

where po(= +1) refers to 0, and naturally, pz'= 1. It
may be quite natural to assume that the commutation
relations between Piv and fr and the commutation
relation between P. and P, are of the same type. There-
fore the q-number part of Eq. (11.2) is identical with
the q-number part of the second term of Eq. (11.1).
Therefore we get the relation
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g s) (v) P'&) (7 )0

po(Oa)po(Osa)
pz(Oa)pls (Osa)
pM (Oa)pM (Os a)
Class

(PT)

f a=f es(Pp Pa-+Ps Ps)—

et (vg —vN+v. —ve)
A JCL

(11.6)
and

Qy the same to&en, from reversion and mirage we TAELE VI. The values of po(Oa)po(Osa), etc., as dependent on

obtain (without any assumption regarding the types of
commutation rules)

The compatibility of Eq. (11.3) with Eq. (11.6) requires

&P &N+&s &s PP PN+Ps Ps+2'+&s

(~=O, 1, 2, "), (11.8)

and the self-consistency of Kq. (11./) requires

7P—"/N+ /s
—"/, =2m'' (Ns=o, 1, 2, ), (11.9)

01
e.—e. = (~z.—e..)s

e'(' —' ') =+1.

This means that for a mixture of the type in Eq. (11.1),
the f's can be complex but the ratio f /f ~ for all com-
binations of n and e' must be real. ' Obviously the same
conclusion can be drawn from the . consideration of
reversion, i.e., from Eq. (11.6).

Since the transformation of a quantity of the type
(fPO|t's) contains an undetermined factor, such as
exp[iPs —iP~g, we can no longer maintain the old
prescription that a tensor (pseudotensor) of nucleon
6eld should not be coupled with a pseudotensor
(tensor) of lepton ield. Therefore we can assume, "
instead of Eq. (11.1),

while individual y's are +s/2.
Whether or not exp(ie ) separately for various n's

have a physical meaning, the relative phases

exp[i(e.—8. )j
have certainly a physically detectable eGect.28 From
Kq. (11.5) follows

results:

h.*=e'l s'—aa+ "— &pe(O.)po(Os„)h. ,

h *=e'«~ Pa+P P &pE(O )p E(O,.)h. ,

h. =e'&' 'sr+'" "-pM(O.) pM(O s)h. ,

(11.13)

where pg, pg, and p~ are the ones given in Table III.
The products such as pe(O )pe(Os ) are listed in
Table VI, in which the first line indicates the operator
0 ~

We notice that pM(O )pM(Os ) is always —1. There-
fore from the third relation of Eq. (11.13), we have

yp —yN+y„y, = (2m+1)s. — (11.14)

Regarding pe(O )po(Os ) and pE(O )pE(Os ), weobserve
that the types of combinations can be divided into two
classes:

(I) (s)—p s), (rs) —(s), (T) pT), —

(11) (V) —(I' V), (PV) (V) . —
(11.15)

we have for class (I),

of course, (T)—(I'T) and (PT) (T) are actuall—y the
same interaction. For class (I), po(O )po(Os ) is +1,
and pE(O.)pE(Os.) is —1. For class (II), po(O. )pe(Os )
is —1 and ps(O )pE(Os ) is +1.

%riting

A =np nN+n. n. , B=—PP PN+—P„P. (11.—16)—

z=p h (yN O yp)(pro' p,)

+Z .*(~."o.~-) (lt'."O V.), (».»)
with

(11.1 /)

8 = ,'A+I —7r-= —-', 8+(m + ', )s'. (11.18)-

where 0' means E5 times or iE5 times O. Table V gives
the exact correspondence.

By the same argument as before, we obtain from
charge-conjugation, reversion, and mirage, the following

TABLE V. Correspondence of 0 to E

And for class II
e.= ',A+ (n.+,')a'=——,'8+m. ~.-(1—1.1-9)

From Eq. (11.18) it follows that if n and n' both
belong to I or II

e" /e" '=~1 (n, n'eI or D Q eII) (11.2P)

Oa
05a

sIEq

zP II

and if one of n and e' belongs to I and the other belongs
pv to II,

e'sa/e'sa'= ~i (aeI, n'eII or neII, n' I)e(11.21).
» L. C. Biedeharn and M. E. Rose, Phys. Rev. 83, 459 {195j ).
ss C. N. &ang and J. Tiomno, Phys Rev. 79, 495. (195Q). In other words, within the same class, I or II, the
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relative phase factors of h's are real, and the relative
phase factors of the h's belonging to the diferent
classes, I and II, are imaginary.

It should also be noted that a mixture of a type
belonging to Eq. (11.1) and a type belonging to Eq.
(11.12) is not allowed. For Eqs. (11.9) and (11.14) are
in direct contradiction. The same conclusion can also
be drawn from the comparison of Eq. (11.8) with Eq.
(11.18) or (11.19).

(12.1)

we have exp(2in) =1. The self-miraged states are clas-
si6ed into states of even parity and odd parity such that

~+even +evenp ~+odd +odd (12.2)

This definition is not yet unique, for we can still mul-

tiply M by (—1) without changing Eq. (12.1) but inter-
changing 4', , and 0',dd. Therefore, we usually impose
an auxiliary de6nition,

M@ =+@ (12.3)

which is just a matter of convention.
In order that this classification in Eq. (12.2) is com-

patible with the other speci6cation of 4, we have to
use those physical quantities which commute with M
or whose expectation values in 4 are zero. For those
quantities Q which do not depend on x, the relation in
Kq. (3.12) simply means that piLr=1 or —1 according
as Q commutes or anticommutes with M. Therefore,
4 must have vanishing expectation values for these

Q s with p;g= —1. This is a condition that a self-
miraged state satis6es.

This restriction to "self-miraged" states would seem
to delimit the Hilbert space to its part or subspace.
It is not so because any arbitrary state can be decom-
posed into two kinds of self-miraged states defined in
Kq. (12.2). For any%', we have

@=@even+@odd', 'I'even= (@+Me)/2;

@.dd ——(4 —MO)/2, (12.4)

where the resultant N is not self-miraged.
In linear momentum representation, the self-miraged

states must have the total linear momentum equal to
zero. We have already noticed that the angular mo-

12. SELECTION RULES AND SUPERSELECTION RULES

A self-miraged state% is a state such that the expec-
tation values of each physical quantity Q(x) is p~
times that of Q(—x). In. particular, a quantity Q, which
does not depend on x and whose p~ is negative, must
have a vanishing expectation value. The total linear
momentum is an example of such a quantity.

By definition of the mirage operator 3f, we shou1d
have for a self-miraged state

M%'=e ' 0'

C'=1; C+

C+even +even l C+odd +odd i «(12 6)

(0',dd'", U%'. , 'h) =0, since UC —CU=O.

Since we have the same (x,t) on the left and right sides
of Eq. (3.14), the self-change-conjugate states must have
vanishing expectation values of all "electromagnetic"
quantities (po ———1). By a superposition of a state
with even charge-parity and a state with odd charge-
parity, we can build a state in which "electromagnetic"
quantities have non vanishing expectation values.

To have a concise view of the entire problem and
also to prepare a step toward the consideration of super-
selection rules, let us consider a unitary or Hermitian
operator 8' which has eigenvalues 8'; and corresponding
eigenfunctions 4;. Here

F% =F%. (12.7)

where we use the same value of i insofar as 8'; is the
same. In other words, 4; determines in general a sub-
space in the Hilbert space. Now, take any operator X
that commutes with 8":

(12.8)
then we have

(0;,XW%;)= (+;,WX%;)= (W%';,X@;),

from which follows

W;(@;,X+~)= (1/W;*) (+;, X+;) (W: unitary)
(12.9)

or W, (%;, X%'~) =W;*(+,, X%,). (W:Hermitian)

Putting 6rst X=1, we get the well-known theorems
that the eigenvalues of a unitary operator are of ab-
solute value unity and those of a Hermitian operator

mentum representation is particularly suitable for the
parity consideration. It should also be recalled that
except for the case of photons and neutral mesons, there
is actually no physical means of determining the parity
of a single particle. This ambiguity is one which exists
even after the restrictions are made in Eqs. (12.1) and
(12.3). The situation has been explained in some detail
with regard to the charged spinor fields in the angular
momentum representation. A similar consideration
applies also to the charged pion 6elds.

The selection rule regarding space-parity means that
the transition between an even-parity state and an
odd-parity state is prohibited if the transition operator
U(t, t) co—mmutes with the mirage operator M. This is
quite obvious, because

(4.dd, U4....)= (+.dd, UM%....)
= (Me, dd, Ue.„„)= —(~i.dd, Ue.„„). (12.5)

We can do exactly the same thing with the charge
conjugation operator C:
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are real, and that in either case +;and +;are orthogonal
if LV;QlV;:

(4;P;)=0, iW j
Further putting X= U, we get

(0;,M~)=0, iW j
on condition that

(12.10)

(12.11)

(12.12)

This leads to the "conservation law" of the eigenvalue.
The selection rules with regard to space-parity and
charge-parity can be obtained by putting respectively
8"=M and 8'=C.

The concept of a superselection rule is more re-
stringent than that of a selection rule. If there is a
unitary or Hermitian operator 5' that commutes not
only with U but also all physical quantities Q, then we
speak of a superselection rule. Under this condition, we
shall have

and 8v, (12.20)

insofar as their dependence on p and tl is concerned.
The electromagnetic interaction has a term like f,&&P,A
or Pi ~/pe, where 2 stands for electromagnetic poten-
tial and the suffices e and P refer to (positive) electron
and proton. But, as 3 is not changed by a gauge trans-
formation with a constant phase, these quantities can
be included in Eq. (11.20). The interaction Hamil-
tonians between nucleon 6elds, lepton Gelds, and boson
fields are of the type

The simplest way to discover superselection rules is
to search for gauge transformations under which all
the known physical quantities remain invariant. We
have seen in the body of this paper that the sign of the
electromagnetic field and the N(3)-Geld seem to have
physical meaning. All the rest of the field strengths are
open to unobservable phase-change. The physical
quantities which refer separately to a spinor field P and
a charged boson field v have the form

QW= W'Q. (12.13) (12.21)
Putting X=Q we get from Eq. (12.9),

(4;,(%J)=0, i4 j. (12.14)

If W commutes with all Q, then it will commute with
the Hamiltonian and also with the transition matrix.
Therefore, if Eq. (12.13) is the case, it is not necessary
to require Eq. (12.12) separately. Equation (12.14)
means that the expectation value of Q in a state

is given by

@=+a;@; (12.15)

(12.16)

O'LN;7%;=4;, O'L% ~]c =0, (12.18)

where C is any state-function orthogonal to O';2 Thus
we need not consider any "superposition" of two state-
functions arising from two separate subspaces. See Eq.
(12.7).

Furthermore, it should be noted that a state 0' and
8'4' are physically indistinguishable if 8' is unitary, i.e.,

(W%',QWV) = (V,WQW%) = (+,Q@). (12.19)

This shows that the phase of a; is deprived of any
physical meaning, i.e., not only the phase of the total
4 given in Eq. (12.15) but the relative phases of indi-
vidual terms belonging to diferent subspaces lose their
meaning. In other words, the knowledge of a state ex-
pressed by Eq. (12.15) is nothing better than a mixed
density b such that

(12.17)

where (PI 4;) is the projection operator onto the direc-
tion of O', . We have

See Secs. 10 and 11.
One of the simplest gauge transformations that

leave Eqs. (11.20) and (11.21) invariant is

e'V (12.22)

~—+e'&, 0—+e
—

'&8,

their iel2p y~eir+ ie/2p-

p ~ei2—ip/2' p ~ei2+lei2p

«(12.23)

where P, y, and 8 are entirely arbitrary except that they
are real. If we put P=O, and y=8, we come back to Eq.
(11.22). If we put y=B=P/2, then we obtain the
familiar gauge transformation in which all the positive
fields are multiplied by e&, the negative fields by e '&,

and the neutral fields unchanged. If we put y=8=0,
we get a transformation which can be interpreted as a
rotation by angle P about the third axis of the isotopic
spin. This last transformation is obtained by consider-
ing P in P+rfu as a spinor in the three-dimensional
space in wh, ich 7. plays the role of spin matrices and by
applying Eq. (2.8) to N and Eq. (2.57) to P.

In (12.23) the wave fields are not yet separated
into "positive" waves and "negative" waves, or into
"particle" waves and "antiparticle" waves. To avoid

for all the spinors. It is very tempting to try the same
thing with respect to v, i.e., to assume v~e'l'v. However,
in this case, we have to take into consideration a term
like /~~pi 8. If 8~e @8, then /~+Pi must go over to
e'Q~xfr Furtherm. ore, if p~xpr +e'~$2l~fr, th—en from
a quantity like P&+PzP, P„, we conclude that P,&&/„

should pass to e 'QPg„. All this chain of transforma-
tions can be written as follows
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confusion in doing this separation, let us make some
agreement about symbols: We use (+) and (—), to
designate positive and negative charge or to designate
"particle" and "antiparticle. " Thus, (+) will include
proton, positive electron, neutron, neutrino, and posi-
tive pion, while (—) will include negative proton,
negative electron, antineutron, antineutrino, and
negative pion. We shall use (o) to indicate neutral
fermions. Furthermore, (h) and (l) will differentiate
the heavy particle (nucleon) family from the light par-
ticle (lepton) family. With this convention about the
symbols, we can rewrite (12.23) as follows:

v~—+e+'t'e~,

L~~+((y+///2)P h P A~~+((y—/)/2)P A q (1 2 24)

)~g+((5+///2))I/ ( p (~~+((8—/)/2)p )

Now we reinterpret these relations in the quantized
field theory by expanding the ()'s and the f's in the
absorption operators and regarding the transformations
in (12.24) as a unitary transformation, e.g.,

8 e+S' '=e'&v+, etc. (12.25)

Such a 8' is very easily found" to be

W=g exp[ —iP(M~ —M )—i(y+~~P) (N+" N")—
—i(v —kP) (N~"—N~") —i(~+kP) (N+' —N-')

—i(I)—~p) (Noy —No ()), (12.26)

where the E's and the 3f's stand for occupation
number operators respectively for fermion eigenstates
and boson eigenstates. The multiplication II should
extend over all the possible eigenstates.

To make the implication of Eq. (12.26) more trans-
parent, let us break it down to three independent cases:
(1) y=8=0, (2) P=h=p, and (3) P=y=p. In the f)rst
case we have

TT f —sP/23 2M+—2M-+N+—N—N 0++Np—
7 (12.27)

where the N's stand for both (h) and (1). The eigen-
values of W in Eq. (12.27) are (e '/'/')', r=p, &1,
&2, . , and the selection rule engendered by this 8'
means the conservation of r, i.e., conservation of

Q(2M~ —2M +N+ —N —No++No ) =constant.
(12.28)

In the second case we have

W=g exp[ iy(N+." —N "+No—p" No ")$ —(12.29)

from which follows the conservation law of

P (1V+" N "+N0+" No ")=consta—nt. (12.3'0)—

It is to be noted that Eqs. (12.30) and (12.32) can
exclude the undesired transitions in nucleon-pion inter-
action and nucleon-lepton interaction, " such as

N+P~+, N jP))+e+, N+P &)+—e+

By adding the three conservation laws in Eqs. (12.28),
(12.30), and (12.32), we get

M+—M +N~ —N =constant, (12.33)

which is nothing but the law of conservation of electric
charge. This law is obtained by putting P=2y=28 in
Eq. (12.26).

By adding Eqs. (12.30) and (12.32) we get

P (N~ —N +N ()). No ) = co'nst—ant. (12.34)
(l,h)

In particular, according as the quantity (12.34) is even
or odd, we shall have also

N = P P (N++N +No++No )=even or odd. (12.35)
(l, h)

This means that the parity of the total number of
spinor particles conserves. This is the original super-
selection rule first introduced by W.W.W."The gener-
ating unitary operator 8" can be obtained by putting
P =0 7= /1 = ir in Eq. (12.26). Then Eq. (12.26)
becomes 0, as introduced in Eq. (2.80).

The W considered in Eq. (7.10) is obtained from Eq.
(12.26) by putting p=p and equating p(=h) to 2(n —p)
of Eq. (7.10). The transformation considered in con-
nection with Eq. (5.12) is essentially equivalent to the
first line of (12.23). If we allow the value of y in Eq.
(5.16) or in Eq. (7.4) to be arbitrary, then the square
of mirage operator becomes in general a 8'."

Since W as seen in Eq. (12.26) commutes with all
the known physical quantities and the transition
matrix U, we may consider the selection rules en-
gendered by it are actually also superselection rules.

Furthermore 8' also commutes with the mirage
operator M and satisfies O'=8' =E. '8'E. This means
that a state function 4 and its miraged state O'M and
its reversed state 4g all belong to the same subspace
defined by O'. The only exception is the charge-con-
jugation operator C, which has obviously the e8ect on
8' of interchanging the positive particle numbers with
the negative particle numbers (and "pa,rticle" numbers
with "antiparticle" numbers). Therefore, whether we

3P C. N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950).
3' Wick, Wightman, and Wigner, Phys. Rev. 88, 101 (1952).

In the third case, we have

W=g exp[—i5(N ' —N '+No+' —N ')], (12.31)

and
P(N+' —N '+No+' —No ')=constant. (12.32)
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can call the law engendered by W a superselection rule
or just a selection rule depends on whether or not we
should exclude C from the definition of "physically
observable quantities. " We can of course make 8'
commutable with the C by putting either P=O, y=0,~
and 8=0m, or P=m, y=&m/2, and 8=&m/2, which
include eight possible combinations including 8"= 1.

In this connection, it should be noticed that a self-
charge-conjugate state and an eigenstate with M+—31
+E~ E=—0, Eq. (12.33), are two entirely different
concepts, although both seem to mean "electrically
neutral. " For example, a "superposition" of a state
with one positive particle and a state with one negative
particle can be a self-charge-conjugate state but can-
not be an eigenstate of the generating operator of
Eq. (12.33).

The arbitrariness of the phase factor, which we have
exploited in the foregoing, is not the only arbitrariness
in the matrix representations of the emission and ab-
sorption operators. The absorption operator of the jth
spinor eigenstate, for instance, has the expression:

(12.36)

with

a unitary transformation 8" such that

WPW '=hf, WP"W '=P"6 (12.41)

W'g+,.W '= Ag+, , 8'g+,TV '=g+,.6,
(12.42)9g;8' '=g;6, , 8'g;S' '=~g;.

This 8" can be given the explicit form

W=W '=D(1 E+;+—6+,X+;)

)& (1—X,—5;1V g). (12.43)

Again this TV is the generator of a superselection rule,
but the physical conclusion that can be drawn from
Eq. (12.43) brings nothing new. If we have a state with
S+ "particles" and X "antiparticles, " the eigenvalue
of W, in Eq. (12.43), for such a state is

(12.44)

this 8' will certainly commute with all the physical
quantities. This is the type of transformation considered
in Eq. (4.14). Equation (12.41) will mean, in terms of
"particles" and "antiparticles, " that

(1 Oq

EO 1)„
(12.37)

For brevity we shall write,

g, =A~f;, 5;=g(1—2E;). (12.38)

Fg;I' '=kg;= —g,A, I'g;F' '=g;6= —dg;. (12.39)

If we extend i in Eq. (12.38) to all the eigenstates, 6;
becomes 3, in Eq. (2.80)

Now, it is obvious that this representation has a
basic arbitrariness with regard to the ordering or
labeling of the eigenfunctions. In particular, it is of
some interest to investigate the total inversion of the
ordering. This amounts to putting (1—2X~) where we

had unity matrices I& in Eq. (12.36) and putting unity
matrices I; where we had (1—21';) in Eq. (12.36).
This can be done by simply multiplying Eq. (12.36) by
the 6 in Eq. (2.80) from the left:

The upper sign applies when N+ —Ã is 0 or i, modulo 4,
while the lower sign applies when E+—X is 2 or 3,
modulo 4. In any case, if (X+—cV ) is a constant of
motion, as we have stated in relation to Eq. (12.34),
then Eq. (12.44) is automatically conserved.

To avoid a possible misunderstanding, it should be
emphasized that the superselection rule engendered by
Eq. (12.26) is just an explicit formulation of the more
or less known invariance laws underlying the present
6eld theory and that it cannot claim any unconditional
validity beyond the current field theory. However,
when one tries to formulate a new theory, it will be a
wise policy to be clearly aware of the existing invariance
laws in the present theory, and to determine which
laws would be discarded and which ones should be
withheld or generalized. For instance, the conservation
law of (X+—1V ) with regard to spinor particles is
deeply rooted in the spinor field theory and wi11 not
be so easily abandoned. Indeed, if the physical quan-
tities can be written -bilinear in a spinor and an ad-
joint spinor and if the decomposition

By a simple calculation, we can discover the explicit
expression of 7:

(12.40)

However, this unitary transformation, as such, does
not commute with all the physical quantities. If we get

can be made, this type of conservation law is inevitable.
Furthermore, the parity law of spinor particles
(W.W.W. 's law) is more fundamental. This law is
equivalent to the postulate that physical quantities are
expressed in even powers in spinors. The charge con-
servation law, on the other hand, cannot be discarded.
Therefore, we can believe that a superselection rule of



SATOSI WATANABE

the type in Eq. (12.26) or one similar to it will survive
until the basic postulates of the field theory are altered.

Ter,E VII. The charge parity xz and the space parity ~z and
the x-parity x, of the lowest positronium states.

13. ILLUSTRATIONS —DISINTEGRATION OF
POSITRONIUM AND NEUTRAL PION

+sing +trip &1) +tr ip (-1)

The purpose of this section is to show by examples
how the general principles developed in the foregoing
sections can be applied to concrete problems. Therefore,
it is not intended to give any exhaustive study of the
decay modes of the positronium and the neutral pion,
but only to derive some of the simplest facts about
these decay processes. Except for a few among them,
the results mentioned in this section have previously
been discovered by other authors by more or less
similar methods. "

I.et us first determine the charge parity mc, space
parity m.z and x-parity m of positronium state 0 „,&„.

C+yS tr &C+ys tr j ~+yS tr &S+yS t7 j

M,@„„,=s.,+„„„, (13.1)

where C, N, and cV, are given by Eqs. (8.21), (8.26),
and (8.34) using the angular momentum representation.
The lowest positronium state +„,,&„may be a singlet
state or a triplet state, i.e., we shall have an expansion
of the type

4'„,i„——P ag+(oi, li, m, p)g ( 'ao', mp')4' (13.2)

corresponding to the resultant total angular momentum
zero or one.

However, for our purpose of determining the m's, we
do not need to handle the general expression in Eq.
(13.2). From Eqs. (8.21), (8.26), and (8.34), we see
that C, M, and M only change the charge and the
magnetic quantum number and leave unchanged the
other quantum numbers. Therefore, in an expression
like Eq. (13.2), we have only to pick up, as repre-
sentative terms, a small group of terms such that the
eGect of C, 3f, and 3f is limited within this group.
Since C and 3E must commute with the resultant
angular momentum and its s-component of the com-
pound system, the value of ac and mq determined with
respect to a small group of representative terms must
be the same as for the entire expression. The operation
3f, is commutable with the total angular momentum
but not with its s-component, therefore m will have a
meaning only for a state for which the z-component of
the total angular momentum is zero.

The simplest representative terms in Eq. (13.2)
would be those which correspond to a positron and a
negatron, both in the same 5-state: co=co K=K = —1,
p= p'=1. Thus, the singlet state must include at least

~ Among others, see C. N. Yang, Phys. Rev. 77, 242 (1950);
L. Wolfenstein and D. G. Ravenhall, Phys. Rev. 88, 279 (1952);
A. Pais and R. Yost, Phys. Rev. 87, 871 (1952).

the following representative terms:

+-:=(1/~&)LP+(~, —1 s 1)g-(4 —1, —s, 1)

—gp(oi, —1, ——',, 1)g (oi, —1, —',, 1)j+ . (13.3)

The triplet state will have the representative terms:

+~ ."'=g+(~ —» s 1)g-(~ —1 s 1)+- (13.4)

+i.."'= (1/~2)Lg+(~, —1, s, 1)g-(~, —1, —s 1)

+g+(o~, —1, ——',, 1)g (oi, —1, -'„1)j@.„(13.5)

ef,, & "=g+.(M, —1, —s, 1)g (co, —1, ——',, 1)e . (13.6)

@i——(1/v2) Lg (k„1)g (—k„—1)

+g (k„—1)g (—k„+1))@
e,= (1/~iLg(k„1)g( —k„—1)

g(k„—1)g( —k„—+1)j+
@s——g(k„1)g(—k„1)+„;
44 ——g (k„—1)g (—k„—1)4

(13.7)

The states 4'3 and 44 do not interest us very much,
because the s-component of the angular momentum is
&2, which is certainly too large for comparison with
the lowest positronium states or with the neutral pion
at rest.

The superscript on N~„, indicates the s-component of
the resultant angular momentum.

By applying Eqs. (8.21), (8.26), and (8.34) to Eqs.
(13.3), (13.4), (13.5), and (13.6), we can determine the
~'s in the sense of Eq. (13.1). The results are listed in
Table VII. However, 0"&„,(') and C&„,~—') are not
eigenstates of M; they are interchanged by application
of3f .

Remembering that the charge parity of a photon
state is just the parity of the number of photons present,
as in Eq. (6.32), we conclude that 4'„„., cannot decay
into an even number of photons and +„„,cannot decay
into an odd number of photons.

Next we shall study two-photon states more closely
using the representation used in Sec. 6C. If we fix the
coordinate system to the center of mass of the decaying
positronium, the two photons will have equal and op-
posite momenta, say k, and —k, . We can make four
independent states:
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TAar.z VIII. The charge parity m t., space parity m8 and x-parity
m-, of two-photon states. Here "pol" stands for planes of polariza-
tion of two photons.

7I Q

~S
'lra

pol

+
+
X
X

+
+
X
X

The charge parity mz, space parity x&, and x-parity
s-, are determined with the help of Eqs. (6.36) and
(6.38). The results are listed in Table VIII.

Since mz of positronium is —1, the only possible two-
photon state into which it can decay is 0'2. Since mz of
any two-photon state is +1, it can only originate from
+„„,. Thus, the two-photon decay of positronium must
be

+sing~+2 ~ (13.8)

Before the fruitful application of charge-parity was
introduced, they excluded%'&„. ~(')~%'2 by comparing ~,.

It is interesting to characterize 0'» and 4'2, in Eq.
(13.7), by the correlation of planes of linear polarization
of the two involved photons. In Eq. (6.41), an operator
II,(k,) was introduced, which measures the probability
of a photon having momentum k, and linear polarization
in the x-direction. Then the operator,

II„—=II,(k,)II,(—k,)+II„(k,)II„(—k,), (13.9)

will measure the probability of two photons having
momenta k, and —k, and having parallel linear
polarization. In the same way, for the probability of
two photons being observed as having perpendicular
planes of linear polarization, we get an operator

TABLE IX. Connection between the "kind"
and the intrinsic parity.

Kind

Intrinsic parity

Scalar
reg. 2nd 1st, 3rd

Vector
reg. , 2nd 1st, 3rd

TAsLK X. The charge parity vr(; and the intrinsic space-parity
mg of a neutral pion classifIed according to its source.

pion into photons. We have seen in Sec. 10 that the
charge parity and the "kind" of the neutral pion are
the same as their source, and they are given in Table IV.
The "intrinsic" parity of the neutral pion is the space-
parity of the state in which a single particle of this
neutral field is present and at rest (k=0). This sign
corresponds to the symbol (&)' in Eq. (5.23) or (5.32),
and the double sign (&) in Eq. (5.16), and is deter-
mined by ps' in Eq. (10.10). The connection between
the "kind" and the intrinsic parity is given in Table IX.
This is nothing but a rearrangement of a portion of
Table III, in Part I. In the case of a vector, the space-
component determines the parity.

According to Sec. 10, there are actually six cases of
~(3)-veld:

(1) scalar having ($)-interaction,
(2) scalar having (V)-interaction,
(3) vector having (V)-and (T)-interaction,
(4) pseudoscalar having (P5)-and (PV)-interaction,

(5) pseudovector having (PV)-interaction,
(6) pseudovector having (PT)-interaction.

The mixing of (1) and (2), and the mixing of (5) and

(6) are forbidden, because of charge-symmetry and
reversibility. Table X gives the intrinsic parity and

rr, —=11,(k,)11„(—k,)+rr„(k,)11,(—k,). (13.10)

By applying Eqs. (13.9) and (13.10) to Eq. (13.7), we
obtain, with the help of Eq. (641),

II„%&
——4&, II~%'~——0,

II ( )0'2 =0, IIg%'2 =0'2.

Kind
'mrs

(~)
S(S)

+
reg.
+

(2) (3) (4) (5) (6)
S(V) V (V,T) PS

(PS,PV) PV (PV) PV (PT)

Although, 0'3 and 4'4 are not eigenfunctions of II» and
II~, we can make eigenfunctions by taking Vs+4'4 and
0 3

—4'4, This analysis shows that if we observe the cor-
relation of linear polarization of two decay-photons of
the positronium, they will turn out to be perpendicular
to each other. "

It may be worth noting also that, in the angular
momentum representation, a two-photon state can
have odd parity only if the values of l of the two

photons are of different parity. See Eq. (6.24).
Next let us briefly review the decay of the neutral

's J. A. Wheeler, Ann. N. Y. Acad. Sci. 48, 219 (1946).

charge parity of these six kinds of neutral pions, as can
be derived from Tables IV and IX.

If experiment shows that the neutral pion decays
into two photons, it means that s.c=+1, and the pos-
sible type of pion is limited to (1), (4), (5).'4 If further

'4 More generally, we can see from Table X that a neutral pion
of type (1), (4) or (5) cannot decay into an odd number of photons,
and a neutrai pion of type (2), (3) or (6) cannot decay into an even
number of photons. This law is known as Fukuda-Miyamoto's
rule. H. Fukuda and Y. Miyamoto, Prog. Theor. Phys. 4, 347
(1949).K. Nishijima, Prog. Theoret. Phys. 6, 614 (1951).Since the
charge parity of a photon is odd, the parity of the number of
photons cannot change if photons are the only kind of particles
present in the initial and final states, no matter what the inter-
mediate process may be. This is Furry's rule. W. H. Furry, Phys.
Rev. 51, 135 (1937).
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experiment shows that the planes of polarization
of two photons are always perpendicular, it means
z.s= —1, and the only possibility left is (4).

The author would like to thank all those who dis-
cussed with him one or the other of the subject matters
dealt with in this work, thus indirectly helping him to
prepare this survey article. In particular, he is grateful
to Professor K. P. Wigner for many enlightening dis-
cussions. Apologies are extended to the authors whose
contributions to the 6eld of problems treated in

this paper have not been quoted at the appropriate
places. "

' Among many others: E. P. Wigner and L. Eisenbud, Phys.
Rev. 72, 29 (1947); W. Pauli, lecture notes, Summer School of
Theoretical Physics, Les Houches, 1952; F. Coester, Phys. Rev.
84, 1259 (1951);F. Coester, Phys. Rev. 89, 619 (1953);L. Michel,
Nuovo Cimento, 10, 320 (1953); G. Liiders, Kongel. Danske
Vidensk. Selsk. Mat. fys. Medd, 28, 1 (1954); Umezawa, Kame-
fuchi, and Tanaka, Soryushi-Ron-Kenkyu (in Japanese) 6, 543,
1954; the same authors, Prog. Theoret. Phys. (to be printed);
Y. Katayama, Soryushi-Ron-Kenkyu (in Japanese) 6, 543 (1954);
E. R. Caianiello, Physica 18, 1020 (1952); and other papers of
the same author; S. Oneda, Prog. Theoret. Phys. 9, 327 (1953).

REVIEWS OF MODERN PHYSICS VOI, UME 27, NUMBER 1 JANUARY, 1955

Erratum. ' The Energy Levels and. the Structure of Light Nuclei
D. R. INGLIS

Argonne National Laboratory, Le7rfont, illinois
)Revs. Modern Phys. 25, 390 (1953)g

Figure 9 is in error in having the low ~I' plotted four units too
low and is to be replaced by the accompanying figure. This removes
what might have been considered a reason for doubting recent ex-
perimental suggestions that there may be excited states of Be9
near 1.8 and 3.1 Mev, indicated by dotted lines in the inserts of the
Ggure, in addition to the well-established 2.43-Mev state recently
observed~ to have J&~ -', as now appears consistent with this rough

exploratory treatment of the theory. The error was discovered
and very kindly pointed out by Edith Halbert and Sudhir Pandya
of the University of Rochester, who are calculating the interme-
diate-coupling transition of the lowest states of several (J,T).

1 Kun2', Moak, and Good, Phys. Rev. QS, 640 (1954);F.Ajzenberg and T.
Lauritsen, Revs. Modern Phys. 27, 91 (1955) which quotes K.jW. Allen
on B10(t,o.) Bes.

2 F. L. Ribe and J. D. Seagrave, Phys. Rev. 94, 934 (1954).
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