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A number of methods, suitable for computation of Coulomb wave functions with high accuracy, are col-
lected, most of them previously well known. It is shown that the regions where these methods can be used,
together cover all positive values of p and g in the case I.=O. All formulas are presented in a form well
adapted for direct numerical computation.

1. INTRODUCTION

A S is well known, Coulomb wave functions appear
in many problems of great physical interest, espe-

cially in scattering problems involving charged particles.
It is quite natural that many articles have been pub-
lished on this subject. In the beginning the interest
centered around obtaining difFerent representations of
the functions, and in this connection we only mention
works by Sexi' and by Yost, Wheeler, and Breit.s (An
extensive bibliography can be found in the NBS table s)
During the last years one has become more and more
interested in questions concerning numerical problems
related to these functions. This is not surprising since
a physicist working in this field is likely to desire an
answer to the question: With a given set of values of
p, g, and L,, how can the numerical values of the func-
tions and their derivatives be obtained? Do tables exist
for this region, and, if not, which method should be
used in order to obtain reasonably accurate values with
a reasonable amount of work? It is the aim of the
present paper to give an answer to these questions, and
the given formulas will in general admit at least 5—6
digits accuracy.

2. NOTATIONS

The difFerential equation, written in standard form, is

d'y/dps+ (1 2rt/p L(L+1)—/p')y =—0. (2.1)

We suppose throughout the paper that p and g are
positive and L a positive integer. The solutions are
chosen in the following way: Fz(tl, p) =0 for p=0; the
amplitude of EI.—+j when ~~. It can be shown that

Fz, sin p —tl log2p —~+oz, =sin8z,
2 J

sentation is the following:

Fz+iGz=ie 'I'D2L+1)!Czpzg '

with

Cz=(2z/(2J+ 1)[).((1+tis). . . (Ls+t)s)}i
(2s-ti/(e" &—1)}i. (2.3)

Further Dz is defined through CzDz 1/(2L+1). ——
In what follows, F' and G' stand for dF/dp and dG/dp,

respectively. Further pz and O~z are de6ned through
Fz=Czp +' rbz) Gz, =Dzp O~z, .

3. RECURRENCE RELATIONS

The Coulomb wave functions depend on three vari-
ables p, g, and L. However, by making use of the
assumption that L is an integer, it turns out that, e.g.,
F~i can be computed if FJ. and F~' are known, and
consequently, it sufFices in principle to compute Fp Ii p',

Gp, and Gp . Recurrence formulas, obtained from the
integral representation, were given by Powell. 4 It was
pointed out by Infeld, ' however, that the recurrence
relations only depend upon the differential equation
and can be obtained as special cases of a factorization
method. '

The following elementary proof may also be of some
interest. We try the representation

uz i——(a+b/p)uz+cuz, '

where ul, and NL & are any solutions of the correspond-
ing difFerential equations. Then making use of the
difFerential equations for ul. and N~ ~ the following
condition is easily obtained:

faL —ct)+ (b cL) (L+1)/p}uz (b—cL)uz' =0—— —
where o z ——argi'(irt+L+1), when pleo . Then the other
solution Gz(tl, p) is defined by its asymptotic behavior: from which we conclude
Gz(tt, p)~cos8z, when p—+eo. A useful integral repre-

uz i= const((rt/L+L/p)uz+uz, ').
' T. Sexi, Z. Physik 56, 72 (1929).
s Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).
3 Tables of Coulomb 8'ave Functions, Vol. I. NBS, Appl. Math.

Series 17 (Washington, D. C., 1952).
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' John L. Powell, Phys. Rev. 72, 626 (1947).
s L. Infeld, Phys. Rev. 72, 1125 (1947).
s L Infeld and T..E. Hull, Revs. Modern Phys. 25, 21 (1951).
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Fr rGz Gr Zz=—L/(n'+L—')*' (3.5)

Both relations are useful for checking purposes.
From (3.1) and (3.2) we can form a pair of equations

ln 8z =Iz+ ztz r,' 'os =&zRz, —

(L/p ((rP+ L')—' it)/L} ~z+—ss' 0——

fL/p+ (( t'+rL')*'+rt)/L}es+ez' ——0

which integrated numerically will give ug, ul y, Nl. ,
and Nl ~' at the same time.

As is shown in reference 3 the recurrence relations can
be used over a large range of values of L without too
serious accumulation of error. A practical scheme is
presented in a recent paper by T. Stegun and M.
Abramowitz. 7

In what follows we restrict ourselves to the case L=O
unless otherwise is mentioned.

4. TABLES

The most extensive table so far. is the NBS table, '
prepared under the direction of M. Abramowitz. This
table deals with the function Fz for L=O(1)5, 10, 11,
20, and 21; g= —5(1)5 and P=O(0.2)5 with complete
interpolation facilities in g. Most of the entries are
given with an accuracy of seven digits or more. Further
the volume contains three extremely useful auxiliary
tables: R.P. (I"(1+irt)/I'(1+irt)); o.s——argI'(1+irt); Cs
Ldefined in (2.3)j.

Recently a small table containing Il 0, Ii O', Go, and Go'

for p=2g has also been published. '
These tables have partly superseded a previous one' "

which deals with the regular as well as the irregular
function for L=0 (1)4, 0 &rt &4, and 0 &P &6. The accu-

~ T. Stegun and M. Abramowitz, Phys. Rev. 98, 1851 (1955).
s M. Abramowitz and P. Rabinowitz, Phys. Rev. 96, '17 (1934).
9 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Phys.

Rev. 80, 553 (1950).
MBloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.

Mod. Phys. 23, 147 (1951).

The constant is the only thing which depends ex-
plicitly on the definition of the solution. The following
relations are the most important ones (ez now stands
fol Fz, or Gz,):

(rP+L')llz r/L= (rt/L+L/p)uz+Nz, ' (3.1)

("+(L+1))-: ./(L+1)
= (r)/(L+1)+ (L+1)/p)Nz Nz—' (3.2)

(&'+ (I.+1)')-:I,/(I.+1)+ (& +I. )-:N. ,/I,
= (2L+1)(n/L(L+1)+1/P)Nz (3 3)

To these formulas we may add the Wronskian relation

PJ.'G J.—I' I.GJ.'—=1. (3.4)

Substituting F~', Gl.' expressed in Ii I, ~, Fl, and G~ ~,

Gz, respectively, from (3.1) we obtain

racy lies between 0.1 and 2.2%. A small table of Gs and
Go' for 0&p,g&1 is given in a previous work. "

Recently a "skeleton table"" of fz„gz, , fz, ', and gz,
'

)defined in (5.2) and (5.5)j has been published for
L=O and I.=5 and for p,r)=0(1)10. The table also
contains the five first reduced g-derivatives. Unfortu-
nately this table has some drawbacks, mostly due to
the method of computation Lnumerical quadrature, for-
mulas (5.2) and (5.5)j. First: for high values of rt and
small values of p the accuracy of the regular function
and its derivative is unacceptable. Second: in many
cases interpolation in q with Aq close to ~ is not suK-
ciently accurate. (Numerical example: L=5, p=9,
g=5.5: gs ——32.23474 as obtained from g=5 and g5

——

32.16459 as obtained from q= 6, the correct value prob-
ably being about 32.249.) Third: the functional values
as a rule are given with lower accuracy for L=O than
for L=S.

The irregular function does not present any special
difhculties in this respect. Throughout the region it is
given with an accuracy of 5—6 digits for L=O and of
7-8 digits for L= 5. If necessary at least one extra digit
can be obtained for L=O by taking the corresponding
values for L=5 and using the recurrence relations. The
regular function on the other hand presents a more
complicated picture, and the scheme of Fig. 1 is rec-
ommended.

40
(1—th'$)z+' cos(pth) 2rtg)d f— (5.2a)

w gz — (1+/)Le pt+&s are&ah'd(—

(1—th'P)z+'sin(pth& —2rt()dg (5.2b)
Jo

and

—2 I (] e
—s~ q)

-;-
f 2~v (1'+n') (2'+n. ') (L'+n') } '* (5 3)=

In particular we have for L=O:

As= ((1—e '~&)/2z-rt}'. (5.4)

Formula (5.2a) can also only be used in the transition re-
gion, while (5.2b) can be used in the whole region between
the transition line and the line p=0. The derivatives

n C. E. Froberg, Arkiv Fysik 3, 13 (1951).
~ C. E. Froberg and P. Rabinowitz, Tables of Coulomb W'at'e

Fgncttoas; NBS, Report 3033 (1934).

S. INTEGRAL REPRESENTATION

From (2.2) and (2.3) we easily find the following
formulas:

FI ~LP fLi GL ~LP gL

with
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suggested:

Pi=logF L (I—,+1) logp —logCL

A= PPL'/PL (L—+1)

Po log——GL+L logp —logDL

.f4 pG L'——/G L+L.

(m+1) (r4+2L+2)B„+i——2gpB„poB—~i
~ (r4+1) (r4 —2L)P„+&——2qpP„—p'P

(7.4)

Here f(q) =R.P. (I"(1+i')/I'(1+i')) (tabulated in ref-
erence 3) and C=Euler's constant=0. 5772156649

The expansions then run as follows:

Then we obtain the equations:

'6'=6/p
6 =29 p 6 /p (2L+1)A/p

(6.2)4 =0'4/p

.0'4 =2 ) p 0'4/p+(2L+154/p
with the initial values fi(0)=P, (0)=f,(0)=$4(0)=0
and the Wronskian relation

(Pp f4+2L—+1) ~~i+~4= 2L+1.— (6.3)
The functions iP vary much more slowly and smoothly
than do the functions F and G. As an example we give
the following values for g=100 and L=O:

fg(0) =0; if' (1)=23.0092; fg(4) = 50.0988.

7. THE POWER SERIES EXPANSIONS

—(2'—2Lj1)p Lp'L+'B„p L (7.5)

with
Bo—1

Bg——gp/(L+ 1)
and

J'0 ——1

~2 L+1—0

We now de6ne six quantities, B, 5, P, E, Q, and T:

B=ZA (=PL)

Q= pL~LP"+'B+P (= OL)

.T= p p'L+'{j 1+(2L+1)(uL]B+(gL 8}+R

(7.6)

and from these values we can obtain the functional
values directly:

The essential formulas for the power series expansions
were given by Yost, Wheeler, and Breit' and are col-
lected in a compact form in reference 3. Here we will
present them arranged in a way which is convenient for
numerical work.

First we introduce some notations.

~L C Lp
L+1 .g

8'L'= CLp'DL+1)B+~]

GL=DLp L
Q

GL'=DLP ' 'I LQ+T]. —

(7 7)

. q /P4=f(~)+2C
2520

16go+428q4+3124rP+ 5637

6(1+v') ( +n') (9+v') (16+v')
83711

q /P =f(~)+2C
27720

20''+ 1020rP+ 16680''+98105rP+ 158295

16(1+rP)(4+q ) ( +rP) (16+rP) ( 5+rP)

(7.3)

2)(1+rP) (4+rP) . (L'+rP) 2'
pp —2g! pL=

(2I.+1) [(2L)!]'
&L=log2P+qL/pL (7.2)

where the general expression of qL/pL can be found in
reference 3, p. XVI. The erst six values are given below.

qo/Po=f(n)+2C 1—
qg/P g f(q)+ 2C ——11/6+ 1/4 (—1+rP)

qo/p p f(q)+ 2C 137——/60—
+ (4rP+13)/8 (1+rP) (4+rP)
363 6q4+69rP+ 150

qo o
—— (q +2C— +

140 8(1+rP) (4+rP) (9+rP)
7129

S/B——

Po= logQ (7.8)

The Wronskian relation has the form

BQ+ (~Q —BT)/(2L+1)—=1. (7.9)

In particular we have for L=O,

(m+1) (m+2)B„+i=2qpB„p'B„ i—(7.10)

N(ro+1)P„+i= 2qpP„p'P„ i (2r4+1)2—rtpB„(—7.11)

with So=i, Bj=gp, 80=1; Pi=0. Further:

Q = 2qp(log2p+2C —1+f(q))B+P
T= 2gp(B+ (log2p+2C —

1+ f(g)) (B+8)}+2

i

Po=Cop B; Po'=Co(B+&)

i Go= Q/Cp, Gp'= T/C pp.
(7.12)

It is also interesting to note that the functions fi, Pp,

fo, P4 introduced in Sec. 6 can be written in a very
simple form:

'Pg ——logB
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It is easy to see that the power series expansions should
not be used if gp or p' are very large. A reasonable
choice seems to be

~p&50; p& 10 (7.13)

which corresponds to region 3 in Fig. 2. If p=5, g=10
about 20 terms are necessary to obtain 7 digits accuracy.
However, because of the very simple formation law of
the successive terms, in some cases it may be reasonable
to go beyond these limits.

8. THE BESSEL-CLIFFORD EXPANSION

Expansions of both regular and irregular Coulomb
wave functions in terms of Bessel-CliGord functions
(i.e., essentially modified Bessel functions) are impor-
tant for large values of g and small values of p. Such
expansions have been obtained by Breit and Hull" '4

and by Abramowitz. "—"We shall here give these ex-
pansions in a form more convenient for numerical
calculations.

In reference 16 Abramowitz derived an expansion for
pr, (71,p). We shall first give the corresponding expression
for the irregular function. In Eq. (2.1) we make the
transformations: x2=8gp, y=GL, ——x Fl., from which
we get

d'Fr, 1 der, ( (2L+1)' x' q+- -l 1+ — IP.=o (81)
dx' x dx E x' 167)s)

If the term xs/167)s is discarded, we obtain an equation
with the general solution: ciIs~i(x)+csEs~i(x). Now
it has been proved by Yost, Wheeler, and Breit that
for small values of x

Fp Cp(4——71) 'x Ap

Ii p'=CpMp

Go=Do xFp

.~o'=Do 4q &o

(8.6)

As is easily found we have

!d 1 (d 1)
~p=l —+- iAo and &p=l —+- irp.

&dx x) xj

Putting p= (16il') ' we can write the expansions in the
following form:

x' x6
A.p=Ei+e Is +e' ——I4+ Is— —

6 . 10 72

x' x' x'
+e' Is I7———Is— —

14 60 1296

x' 71x" x"
+e Is+ Ig+—Iio+ Ii] + (8.7)

18 4200 720 31104

In reference 17 Abramowitz has obtained expansions
for @r, in terms of I„(x) and for O~r. in terms of E'„(x)
(n=ZL+1, 2L+2, ) with the same coefficients ex-
cept for a factor (—1)".It is interesting to note that
in these formulas Or, must be provided with a numerical
factor (Wi), while in the other set of formulas (refer-
ence 16, Eq. (3.15)) and formula (8.5) which has Just
been proved, such a factor must be appended to gr, .

From now on we restrict ourselves to the case 1.=0.
First we introduce some new notations:

(Zn)'
Gz, Dr, x Esr,+i(x)

(2L)!

and this leads us to try the following expansion:

P z, =Esr,+i+pa, x'+'Esr, .
s=1

Then we find:

(8.2)

(8.3)

x' x' x'
ro ——Ei+e —E, +e' E4+ Es——'—

6 10 72

x' x' x'
+e Es E7+ Es

14 60 1296

x' 71x" x" x12

+e Es+ Eo—— Elp+ Ell + ' ' '

18 4200 720 31104
ai =L/167)' as= 1/9671' a =L(L—1)/5127)'

327)s(s+4)a,+s= 2(2L s 2)a,~i+a»——
$=1) 2) 3

(8.8)

x' ' ~ 4 x6

(8.4) 3fo=Io—e' x'Is+ Is +e x I4+ x I—s+ Is— —
6 . 15 72

(27))z
61,— 'DL, 'x'FL, ~

(2I.)!
(8 5)

"G. Breit and M. H. Hull, Jr., Phys. Rev. 80, 392 (1950)."G. Breit and M. H. Hull, Jr., Phys. Rev. 80, 561 (1950).
'~ M. Abramowitz, Quart. Appl. Math. 7, 75 (1949)."M. Abramowitz, J. Math. Phys. 29, 303 (1950)."M, Abramowitz, J. Math. Phys. 33, 111 (1954).

A remaining multiplicative constant is easily found to
be unity. Thus we have 71 11 x'

cs xsIp+ x7I7+ xsIs+ Ip
210 360 ' 1296

124
+e4 xsIs+ xPIs+ xioIio

315 6300

x"
+ x"Iii+ Iip —. (8.9)

3240 Bii04
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xs
1Vp= —Ep+c x'Eg ——Es

6

4 x'
+e' x'E—4+ x'E—s E—p—

15 72

71 11 x'
+e' x'Ep — x'Er+ x'Es —Eg

210 360 1296

124
+e' —x'Es+ x'Eg

315

299
x"Eip

6300

7
+ x"Etr —Erg + . (8.10)

3240 31104

x"

Here I„and E„stand for 'I„(x) and E (x), respectively.
As is easily found, the Wronskian relation takes the
form:

(8.11)

These formulas look very attractive, but there are some
disadvantages which make them less useful. First: only
lp, Iy, Ep, and Ej are tabulated so far, and all the other

a= Pa,x'

b=P( —1)"a x"

c=P (r—1)a„x"

.d=Q( —1)'(r—1)a„x'

(8.12)

where the summation is extended over a suitable num-

ber of terms: r=0, &1, &2, . The coefficients a„are
given below.

functions must be computed by the usual recurrence
relations. Second: the present table" runs from x= 0 to
x=10, and thereby we have the restriction 8gp&100.
But the region defined by this inequality is completely
included in region A, where the power series expansion
can be used conveniently. Thus we conclude that for-
mulas (8.7)—(8.10) should be used in this form only
occasionally.

If x) 10 one must turn to the asymptotic expansions
for I„and E„(see, e.g., reference 18, p. 271). Then it is
possible to derive series expressions containing positive
and negative powers of x where the coefficients are
power series in e. The calculations are straightforward
and we only give the result.

Put

ap= 1—0.05126953ie —0,135408014e'—1.23451242'' —23.0925e-
ag ———0.13671875& —0.250589848'' —1.977075c'—33.8186&4 —~ ~

a, =0.3125e+0.469676971e'+ 3.5501813e'+ 59.45395s4+
a3= —0.166666667'—0.34777832'' —2.66566868&'—44.86142 e4 —~

a4 ——0.1900390625e'+1.43372623e'+ 24.03583e4+
a5 ———0.071875''—0.58281662'' —9.88621e4-
as ——0.0138888889e'+0.1831962e'+3.25853e4+
ay = —0.0448624545&' —0.88331286&4— ~

as ——0.00792824074e'+ 0.197876088e4+
ag ———0.000771604938''—0.03625545e4-

aip ——0.0052594e4+
atg ———0.00055218e4+
atg ——0.0000321502e4+
a g

———0.375—0.052871704'—0.2059647&'—2.29335m' —49.24e'—
a 2 ———0.1171875—0.08591652& —0.4835767'' —6.680154&'—
a g

———0.1025390625—0.187942386'—1.482806&'—25.36398e'—
a 4———0.1441955567—0.513485447& —5.512588&'—
a 5= —0.2775'7645 —1.6768509' —23.85393~'—
a 6= —0.67659259—6.35806& —99.1941~'—
a 7 ———1.99353173—27.4191e—.
a 8———6.8839143—132.

422&a-

a 9
———27.248827 —707.630&-

a-ip= —121 59789—4143 717&—.. .
a gi ———603.844—. .
a ~~

———3302.2'7 —.

(8.13)

Then we have:

A.p ——e (2grx)
—l a

Mp= e*(2grx): ( (1+3/2x) a+ c/x}
I'

p
= e

—
(gr/2x)

-*.
b

.Sp ——e
—

(gr/2x)
-'*((—1+3/2x) b+ 4/x}

(8.14)

and from these expressions we easily obtain Iip, Fp, Gp,

and Gp' according to (8.6). The Wronskian relation can
now be written

ab+ (bc—ad)/2x—=1. (8.15)
~g BAAS, Math. Tables VI, Bessel Factions, Part I (Cam-

bridge University Press, London, 1950).
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The method just described can be used for values of
g greater than c p' where c is a constant. A reasonable
choice seems to be c=2. In this way we obtain region 8
(Fig. 2) determined by

g) 2p3,' gp& 50.

Numerical Example

q=ZOO, p=1

(8.16)

Thus we have e= (16r)s) '=1/640000 and a= (Sgp)'
=40. %e obtain:

a =0.97477751125

6= 1.02691879721

c= —1.01295445465

.d = —0.98364396653

and ah+ (bc—ad)/2@= 0.999999999966.Further we get,
e.g. pp= 7.2366047314 10" to be compared with Qp=
7.2366047313738 .10'4 as obtained from the power series.

-gp = jt (1—t)]'~'+are singt —pr/2

g =(1/4) &og(t/(1 —t))

g&
———(SP—12t+9)/488 i'(1—t)P~'

g = (8t—3)/64t(1 —t)8

9. THE RICCATI METHOD

Pp (1/2)——e &' ' F '=(2rt) 'P dp/dt
(9 1)

Gp' ——(2rt) 'Gp df/dt.Q =gf(&.n) ~

p

Here t= p/2rt and

p(t)rl) =2rl gp+gy+(2r)) 'gs

+(2n) 'g p+(2~) 'g4+"

4(t,n)= 2n gp—+gr (2n) —'gp

+(2n) 'gs (2~) '—g4+ "
(9 2)

In the p-g-plane there are two large regions between
the transition region and the regions for small p and
small p, respectively. For these regions the Riccati
method is well suited.

First we consider the case p(2ri (region C), which
has been treated in considerable detail by Abramowitz, "
p. 80. Here we only give the result* with some new
terms added, and further we give the expressions for
Ilp', Gp, and Gp'.

2048t' —9216P+16128t4—13440t' 12240ts+ —7560t 1890—
92160P"(1—t)'"

g p
=3 (1024t' —448t'+208t —39)/8192P (1—t) '

gp
———(262144t"—1966080t'+ 6389760t'—11714560P+13178880P—9225216t'+13520640t4

—3588480P+ 2487240P 873180t+13—0977)/10321920t'~'(1 —t)"~'

1105920t'—55296t4+314624t' —159552P+45576t —5697

(9.3)

gv=
393216P(1—t)'

g
i —t—1/s(1 t)r/2

gr' ——1/4t (1—t)

gs = —(St—3)/32tsls(1 —t)P/s

gp'= 3 (SP—4t+1)/64t'(1 —t) 4

g4' ———(1536t'—704P+336t —63)/2048t'" (1—t)"Is

gp' ——3 (2560t' —832P+ 728t' —260t+39)/4096P (1—t) '
—368640P—30720t4+114944t' —57792t'+16632t —2079

1
g6 =

65536t'" (1—t)""

(9.4)

3(860160t'+196608t'+ 308480t' —177280P+73432t' —17724t+ 1899)
gv =

131072t'(1—t)"
*We take the opportunity to correct an error in reference 15, Eqs. (4.5) and (4.6), where the denominator of gp should read

12p(2g —p) instead of 12'(2s—p).
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f(x)=2g go+gi+ (2g) go+ (2g) Pgo+ ~ ~ .

and obtain the following system of equations:

gp +2go gl +(2/x) gp =0
' gi +gi +2go go+(2/x) 'gi =0

gp +2go go +2gy go + (2/x) '
gp =0

In (9.3) gp divers from the corresponding value of refer- Then we expand f(x) as before:
ence 15, Eq. (4.5) by the term —m./2. This is due to the
constant Cp= (2ng/(e'~& —1))'~' e ~o (2~g)'~' which has
been included. (The approximation above is valid to
13 digits, if g) 5.)

It is clear that this method should be useful if q is
suKciently large and p not too close to 0 or 2g. A closer gp"+ (1—x)/x'= 0

investigation gives the region C (Fig. 2), where the
limits must not be looked upon as well-de6ned. How-
ever it turns out that the accuracy is very sensitive to
small changes in t close to the line III with the equation:
q=3p/5+3. For higher values of g the line IV3g=2p+1
can be used instead. ~ ~ ~ ~ ~ ~ ~

(9.5)

Numerical Examples

I. g = 5, p = 10.This point lies on the line I, and there-
fore we try the power series expansion and the Riccati
method,

Fp 1.720/45——3 10 ' (Riccati)

Fp 1.220745—4—10 ' (Power series)

Now we know that when p—+~, i.e., x—+0, the ampli-
tude of Fo and Go—+1 and the phase tends to the value

Op= p —
Yj log2p+o. p.

If we use the asymptotic expression for o.
p (reference 3,

p. XXVI) we get

Op p —g log2p+ —+g logy

Fp=1.2208 10 ' (Table (reference 12), computed
from Fo). —1/12' —1/360'' —1/1260'' —. . (9.6)

(Riccati)

~ yo
——5.722993 10"

III. g=p=10.

II. g=100, p=4. This point is situated in C but The integration constants must be determined so as to
rather close to region B. meet these conditions. We easily And that g&, g&, g5,

are real, and thus we have: g&(0) =go(0) =go(0) = . =0.
'Pp ——5.7229844 10"

go, g2, g4, ~ turn out to be purely imaginary, and
(1/i) (2gp+ (2g) 'g&+ (2g) 'g4+ . ) should go over into

(Bessel-Clifford) 00 when x—+0. This condition accounts for the negative
sign of go' and for the constant term i~/Sg in gp. Further

go=5.722985155 10" (Power series). wemusthave(1/i)(2g) 'go(0)= —1/12', (I/i)(2g) 'g4(0)
=—1/360'' and so on. These conditions happen to be
fulfilled without special precautions.

In this way we obtain
Idio= 1.626275 10 '

F0=1.626 10 '

(Riccati)

(Table (reference 12), Fp)

go=i&(' —')'"/"+('/') "«L'-(1—x)'"«
L1+(1—x)'")}+m./Sg}

Fp 1.6262711.10 ' —— (Table (reference 12), from Fo)

.Fp 1.62627115 10 '——(Power series).

Now we turn to the region G which has also been
treated by Abramowitz'5 in some detail. However, we
will use a slightly modiIied method. Starting from Eq.
(2.1) we 6rst perform the transformation:

x=2'/p; y=er&*&

from which we obtain:

go' —— i(1 x)—'~'/ '—x

gg
———(1/4) log (1—x)

g,
' = 1/4 (1—x)

gp
———i (9x'—12x+8)/48 (1—x) 'I'

g,
' = i (Sx 3x—')/32 (—1 x) '~'—

go
———(8x'—3x')/64(1 —x)'

go' ———3 (8x'—4x'+ x4)/64 (1—x)4

f"+f"+2f'/x+4''(I x)/x4 =0. — We write the result in the following form;
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M=(1/(1 —x) }"4 e«&'&

P(ri,x) = —(8x'—3x')/64(2ii)'(1 —x)'+3xs(1024—448x+208x' —39x')/8192 (2ii)'(1—x)s

x'(1105920—55296x+314624x' —159552x'+45576x' —5697x')

393216(2ri) '(1—x)'

((1—x)'" 1 1—(1—x)'~') s.
~ 9~(ii,x) = 2ii~ +—log ~+—(9x'—12x+8)/48(2ii) (1—x)s~s

1+(1-*)iisi

2048—9216x+16128x'—13440x'—12240x4+ 7560x' —1890x'

92160(2q) s (1—x)'~s

(130977xio 873180xs+2487240xs 3588480x"+13520640x'—9225216x'

+15178880x4—11714560x'+6389760x'—1966080x+262144)/10321920 (2ii) '(1—x)"~'—

(9 6)

Of course, the coefficients in this expansion are the same as in (9.3). Further we put:

'g (ii x) = (1—x)'"/x'+(8x —3x')/32(2q)'(1 —x)'"—x'(1536—704x+336x' —63xs)/2048(2ii)'(1 —x)"i'

x'(368640—30720x+ 114944x'—57792x'+16632x4—2079x')

65536 (2ii)' (1—x)""

B(q,x) =1 /4( 2q) (1 x) 3—x'(x—' 4x+8—)/64(2q)s(1 x)'—

+3x4(2560—832x+ 728x' —260x'+39x4)/4096 (2q) '(1—x) r

3x'(1899x'—17724x'+ 73432x4—177280x'+308480x'+196608x+ 860160)

131072 (2ii) ~ (1—x) is

Then we have the final result

Fo——M sing

60=3f 'cosp

Fs' x'(BFs ——AGs)— —

.Gs' —— x'(AF s+BGs)—

with the Wronskian relation

Numerical examples will be given later.

10. ASYMPTOTIC EXPANSIONS ON THE
TRANSITION LINE

In reference 8 Abramowitz and Rabinowitz, starting
from an integral representation by Newton, have ob-
tained some very useful expressions for the functions
Fo, Go, Fo', Gs' when p=2ii, and they also give a small
table of the functional values for p=0(0.5)20(2)50. In
a more recent work by Biedenharn, Gluckstern, Hull,
and Breit" these formulas have been generalized to the
case L)0. The convergence in this case, however, is
rather slow, unless J is small and g large. Here we

(9.9) restrict ourselves to 1,=0 and write down the same
formulas as in reference 8 with some more terms added,
using the compact notation of reference 19.

Fo(2q)
1

I"(1/3)P'"

Gs(2')/v31 2+s

2 I'(2/3) 1 32 1 92672 I'(2/3) 1 6363008 1

35 I'(1/3) P' 8100 P 7371 10' I'(1/3) P" 3536379 10' P"

391911498752 I'(2/3) 1
(10 1)

679377699 10' I'(1/3) P"
"Biedenharn, Glucirstern, Hull, and Breit, Phys. Rev. 97, 542 (1955).
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Fp'(2ri)

I Gp'(2rf)/v3

r(2/3)

2g~ P'~'

1 r(1/3) 1 8 1 11488 r(1/3) 1 25739264 1
+1+ —+

15 I'(2/3) P' 56700 P' 18711.10' I'(2/3) P' 4179357.10' P"
r('/3) '

1~—+ (10 2)
180355329 10' r(2/3) p'4

Here P= (2rf/3)'ls; I'(1/3) =2.6789385347 and I'(2/3) = 1.3541179394.
Following reference 8 we also give the formulas in a form suitable for numerical computation.

Fp(2rf) 0.70633263"/31 0.04959570165 0.008888888889
, .~1/6,

Gp (2rf) 1.223404016 I

0.002455199181 0.0009108958061 0.0002534684115

~10/3

F (2rf)
1

Q 4Q86957323
1, .~—1/6.

Go'(2rf) I
—0.7078817734 I

0.1'/28260369 0.0003174603174

~2/3

0.003581214850 0.0003117824680 0.0009073966427
+ . (10.4)

4

Numerical Example

Already for r)=1 we obtain an accuracy of 0.1%.
For p=10, q=5 we get:

I
Fp= 0.9179450 (Formula (10.3))

lFp ——0.9179449 (reference 8, Table I).
11. EXPANSIONS IN TERMS OF AIRY INTEGRALS

As is well known it is rather dificult to compute
Coulomb wave functions in the transition region with

a fair accuracy. One possibility is to use numerical

quadrature as indicated in Sec. 5, and another to com-

pute a key value on the transition line as described in

Sec. 10 and then integrate Eq. (2.1) numerically. Both
these methods are in general rather time consuming,
especially for large values of p.

It has been pointed out by Abramowitz and Anto-
siewics" that it is possible to obtain Il0 and G0 in terms
of Airy integrals. They also discuss brieRy how to pro-
ceed when L&0.However, this special method has some
disadvantages. First, the convergence, even for mod-

erate values of the argument, is very slow. Second, the
formula involves a set of constants which must be
determined by reference to the functional values on the
transition line. t

The paper by Biedenharn, Gluckstern, Hull, and
Breit' which gives much useful information on Coulomb
wave functions, especially for higher values of L, also
contains expansions in terms of usual and modified
Bessel functions of orders &e/3, and these functions
appear in such a way as to be expressible in terms of

20 M. Abrarnowitz and H. A. Antosiewics, Phys. Rev. 96, 75
(1954).

t We take the opportunity to correct a printing. error in refer-
ence 20, p. '/6, Eq. (15), where a minus sign should be placed
before the term y'(0, y)ds(0) in the expressions for pr and cs.

Airy integrals. However, the expansions, obtained by
using a Green's function for solving a system of non-
homogeneous differential equations, are rather dificult
to construct, and it seems practically prohibitive to
proceed beyond the first two terms.

As has been shown by Tyson21 and by Feshbach,
Shapiro, and %eisskopf, " a straightforward expan-
sion in terms of Airy integrals can be obtained directly
from the differential equation in the case L=O, and it
is easy to see that this method has none of the dis-
advantages just mentioned. Starting with the Eq. (2.1)
for I.= 0, and following reference 20 we put x= (2rf —p)/
(2tf)'@ p= (2')"' to obtain

y"—
f xy/( —x) =0.

Now we try the following expansion:

y= const(Ai(x) . (I+gr(x)/p+gs(x)/p'+ )

+Xi'(x) (ft(x)/fr+fs(x)ps+ )). (11.2)

Then we easily find the conditions:

f."(x)+2g„'(x)= gx" "+'fs(x)-
(11.3)

n—1

g "(x)+2xf '(x)+f (x) = Px"—'+'g (xp)
4=0

where fp (x)=0, gp (x) =—1. Th—ese equations can be written
in the following more practical way:

f„"+2g„'=x (f t"+2g„r'+xf r)
(11.4)

g„"+2xf„'+f„=x(g„r"+2xf„&'+f„&+xg r).
"J.IZ. Tyson, Dissertation, Massachusetts Institute of Tech-

nology, 1948.
"Feshbach, Shapiro, and Weisskopf, NYO 3077, NDA Report

153-5.
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The first functions are:

f, (x) =x'/5

fs(x) = (2x'+6)/35

f s (x) =x (84x'+ 1480x'+ 2320)/63000

f4 (x)=x'(1254x'+9952x'+ 11488)/693000

g4(x) =x (3234x'+ 621280x'—478800x' —804160)/48510000

168168x"+118209520x'+610662080x +713574400x'+2140723200

gt(x) =—x/5

gs(x) =x'(7x' —30)/350

gs(x) = (1056x'—1160x'—2240)/63000

(x) =
63063 106

x'(2666664x'+210254720x' —138044480x'—356787200)
gs(x) =

21021 10'

x (2858856x"+788972288x'+3064641024x'+3407 716480x'+ 8635845120)
,(x) =

441441 ' 106

gs (x)= (3531528x's+6633266640x"+317451563200x'—183526546560x'

—388613030400x'—579033728000)/3972969. 1(P

f& (x) =x'(17153136x"+69192483360x"+11135701248640x'+35219971257600xs

+40263767308800xs+113475491584000)/67540473 10s

gr (x) —x (1'783926144x&s+ 1283288054880x"+439889247 14240x' —2323 1154374400x'

—55484432640000x' —113475491584000)/67540473 10 .

(11.5)

The constant. can easily be determined by putting x=0; then the expansion goes over into formula (10.1), and
we have a possibility to check (10.1) and (11.5) against each other. f

The final result is

Fo ——w'I'(2r))'~' (As(x) (1+gt/p+ gs/p'+ )+Ai'(x) (f,/p+fs/ps+. . . .))
Go= '"(2~)"'(&'( )(1+g /P+g. /I"+" )+73'(*)(f/~+ f /I"+ "))
Fo'= ~'"(2n) '" f»(x)L(gt'+xfr)/p+(gs'+xfs)lu'+ "]

+»'(x)t.1+(gt+ft')/I +(go+ fs')/ps+ ]j (11.6)

Go'= w'"(2n) '"—(»(x)Dgt'+xft)/I +(gs'+xfs)lp'+ "]
+»'(x)L1+ (gt+ ft')/p+ (gs+ f ')/ps+ ]).

The functions As(x), Ai'(x), Bi(x), and»'(x) are
tabulated. '3 It should be observed that the formulas

above can be used for both positive and negative
values of x.

The Wronskian relation can be written:

( 1+gtli+gs/~'+ )L1+(gt+ft')/~
+ (gs+fs')/u'+ ]

(ftlp+fslp'+ —)Dgt'+xft)/I

+(g'+ f.)/"+ ]=1(».7)—
and from this identity a number of checking relations
can be obtained. The first ones of them are

f If we put L= 0 in Eqs. (24) and (25), reference 19, we should
obtain the Grat terms in (11.6). A discrepancy in sign seems to in-
dicate a minor error in reference 19.

233AAS, Math. Tables, Part-Volume 3, The Airy Iefegrgt,
prepared by J. C. P. Miller (Cambridge University Press, London,
1946).

[
Fo =0.200255

Airy
Go = 1.55061

t

Fo=0.200254

~ Go=1.55060
(Riccati, (9.8))

ft'+ gt= 0. —
fs'+2gs+ f,'gt+gl f,g,

' xfrs=—0

fs +2gs+fs gt+2glgs+fr'gs f&gs' 2xf&fs —f,g,'=—0. — —

The formulas (11.6) can be used in region F with
about 5 digits accuracy or better.

Numerical Examples

I. p=i20, g=50.
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II. p=80, g=50.

Fo=0.001203665 (Airy)

Fo——0.001203655 (Riccati, (9.1))

III. p=10, g=4.

For computation of the derivatives we put

S„=s„' t„—(1 g/—p)
to obtain:

IT =t„'+s (1 rt/—p)

S.pi =A.S~ B—„T„s„—+x/p

T„+.g A„T——„+B„S„t+—g/p.
(12.4)

Po =1.3992085 (Airy)

Fp
——1.39921 (Table 12)

The points (120, 50) and (80, 50) are very hard to
reach, indeed; nevertheless our semiconvergent expan-
sions give quite accurate results.

Pote. The te—rms in (11.6) vary in a very regular

way, and by using a logarithmic extrapolation, one can
obtain at least two more terms approximately and gain
considerably in accuracy.

0 1. argP (irt+L+——1)=argI'(iq+1)+ P arctg(g/k).

Then we get the equation

u"+2i (1 g/p) u'—

+firt(1+i') L(L+1)) u/p—~=0. (12.1)

Now we put u=uo+u~+u~+ with u„=a„/p" and
obtain:

a~~/a„= (ig —L+N)(irt+L+u+1)/2i(v+1). (12.2)

We split e„ into its real and imaginary part

u~ —s~+it~

and further we introduce:

A„= (2n+1) g/2(m+1)p;

B„=fL(L+1)—u(v+1)+g')/2(m+1)p.

Then we find the recursion formulas:

12. ASYMPTOTIC EXPANSION FOR LARGE
VALUES OF 9

In this section we again admit L)0. When p is large
compared with g and L, it is possible to derive asymp-
totic expressions for the Coulomb wave functions. In
reference 3 Abramowitz has obtained such formulas
using the integral representation. Here we will instead
start from Eq. (2.1).First we perform the transforma-
tion y=g e"L where

L
8z,——p —rt log2p — 7r+a r,

2
and

Fr,'=T cos8+S sin8

,Gl, '=S coso —T-sine

(12 7)

with the Wronskian relation

sT—St—=1. (12.8)

This method can be used when g'«p and when L «p.
In the case I=0 a closer investigation gives the region
H (Fig. 2) as result.

Numerical Examples

I. p=50, g=9.

Fp—-0.93570855
(Riccati, (9.8))

Gp = —0.61180203

Fp =0.935709

Gp =—0.611802

(Asymptotic formula, (12.7);

only 6 decimals carried)

II. p=20, g=5.
Fp

———0.229352
(Riccati, (9.8))

Go = 1.165712

Fp= —0 229347
(As. formula, (12.7))

Gp= 1.165716

II. p=10, g=3.
Fp= 0.660103

(As. formula, (12.7))
Gp = —1.060141

As is easily found from the known behavior at infinity
we have the following initial conditions:

sp= 1, to=0, $0=0, Tp= 1—g/p. (12 5)

Now we put

s= Ps„; t= Pt„; S=QS; T=PT„(12.6).

where the summation of the divergent series is cut oG
after a suitable number of terms (i.e., when the wanted
accuracy has been obtained or when the terms of the
series start to increase again). Putting 8r, ——8 we get the
final result:

Fr, t cos8——+s sin8

Gg=s cos8—f sine

(12.3)
ls"+i A sn Bntn—
l t~g ——A„t„+B„s„

Fp
——0.660099

(Table 12)
Gp= —1.06011
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IV.
V.

VI.

gp= 50

0= 2P

g=3p/5+3
3g= 2p+1
2g= p

a= 2p/5

g = 13p/30 —5/2

q'+4g+3= 12p/5.

13. CONCLUSION

It is obvious that many more methods for computa-
tion of Coulomb wave functions exist, and even some
quite satisfactory methods have not been mentioned
here. However, we have tried to avoid such methods
as are dependent on other functions than the elementary
ones, for quite obvious reasons. For example, the ex-
pansions in terms of spherical Bessel functions (due to
P. M. Morse) and usual Bessel functions (Abramowitz)
(see reference 3, p. XVIII) have not been discussed.
There are a few exceptions from this rule: we have
referred to the tables in references 3 and 12 which seems
legitimate, and to the table of Airy integrals, since these
functions can hardly be avoided.

When numerical values of Coulomb wave functions
are needed, then Figs. 1 and 2 which are self-explana-
tory, first should be consulted. For convenience we give
Table I. (When p,g&10, consult Fig. 1 in Sec. 4.) We
also give the equations of the curves in Fig. 2.

TABLE I.

Region

A
B
C
D
E
F
G
H

Method

Power series
Bessel-Clifford
Riccati I
Quadrature or num. integration
Airy integrals
Special case of E (x=0)
Riccati II
Asymptotic formula

Reference

(7.7, 12)
(8.6, 14)
(9.1)
(5.2, 5)
(11.6)
(10,3, 4)
(9.8)
(12.7)

It is obvious that these curves must not be looked upon
as limits which cannot be exceeded. In many cases two
and even three methods overlap, and this gives a good
possibility to check the computations.

14. REMARKS ON FUTURE TABLES

From the discussion above it can be concluded that
when future tables are being prepared one should con-
centrate on a region formed by a parallelogram with
its corners in (p,g) = (10,0), (20,5), (20,15), and (10,10).
The table should be constructed as a "skeleton table"
with e.g., 1.=0,5,10 and Ap=1, Dg= 1/2. At the same
time the table (reference 12) should be enlarged so that
Ay= 1/2 instead of 1. The region mentioned here seems
to be the most dificult (and most important!) one at
the time present. As far as can be judged, numerical
quadrature will be adequate in the whole region, and
no special complications should be expected.


