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A number of methods, suitable for computation of Coulomb wave functions with high accuracy, are col-
lected, most of them previously well known. It is shown that the regions where these methods can be used,
together cover all positive values of p and 7 in the case L=0. All formulas are presented in a form well

adapted for direct numerical computation.

1. INTRODUCTION

S is well known, Coulomb wave functions appear
in many problems of great physical interest, espe-
cially in scattering problems involving charged particles.
It is quite natural that many articles have been pub-
lished on this subject. In the beginning the interest
centered around obtaining different representations of
the functions, and in this connection we only mention
works by Sexl' and by Yost, Wheeler, and Breit.2 (An
extensive bibliography can be found in the NBS table.?)
During the last years one has become more and more
interested in questions concerning numerical problems
related to these functions. This is not surprising since
a physicist working in this field is likely to desire an
answer to the question: With a given set of values of
p, 1, and L, how can the numerical values of the func-
tions and their derivatives be obtained? Do tables exist
for this region, and, if not, which method should be
used in order to obtain reasonably accurate values with
a reasonable amount of work? It is the aim of the
present paper to give an answer to these questions, and
the given formulas will in general admit at least 5-6
digits accuracy.

2. NOTATIONS

The differential equation, written in standard form, is
@y/dp>+ (1—21/p— L(L+1)/p%)y=0.  (2.1)

We suppose throughout the paper that p and 5 are
positive and L a positive integer. The solutions are
chosen in the following way: F1(n,0)=0 for p=0; the
amplitude of F;—1 when p— . It can be shown that

L
FLNSin[p—n log2p——?1r—l—0'1,] =sinfy,

where o, =argl’ (in+ L-+1), when p— 0. Then the other
solution G (n,p) is defined by its asymptotic behavior:
Gr(n,p)~cosfr, when p—o. A useful integral repre-

1T, Sexl, Z. Physik 56, 72 (1929).

2 Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).

3 Tables of Coulomb Wave Functions, Vol. I. NBS, Appl. Math.
Series 17 (Washington, D. C., 1952).

sentation is the following:

F1+iGr=ie~#[ (2L+1)1C1p% T

. f Hin(1 - 2ip) T etdl (2.2)
0
with

Cr=(% QL+ -{A+n) - - - L+
A2mn/ (™=} (2.3)

Further Dy, is defined through Cr.D=1/(2L+1).

In what follows, F’ and G’ stand for dF/dp and dG/dp,
respectively. Further ¢z and ©@f are defined through
Fr=Crpt-¢1; Gr=Drp20.

3. RECURRENCE RELATIONS

The Coulomb wave functions depend on three vari-
ables p, 7, and L. However, by making use of the
assumption that L is an integer, it turns out that, e.g.,
Fr.1 can be computed if Fr, and F;' are known, and
consequently, it suffices in principle to compute Fo, Fy/,
Go, and Gy'. Recurrence formulas, obtained from the
integral representation, were given by Powell.* It was
pointed out by Infeld,® however, that the recurrence
relations only depend upon the differential equation
and can be obtained as special cases of a factorization
method.$

The following elementary proof may also be of some
interest. We try the representation

ur1= (a+b/p)urtcur’

where 7, and %, are any solutions of the correspond-
ing differential equations. Then making use of the
differential equations for #; and #.; the following
condition is easily obtained:

{aL—cn+ (b—cL) (LA-1)/pYur— (b—cL)uz'=0
from which we conclude
wr1=const{ (n/L+L/p)ur+u'}.

4 John L. Powell, Phys. Rev. 72, 626 (1947).
5 1. Infeld, Phys. Rev. 72, 1125 (1947).
8 L. Infeld and T. E. Hull, Revs. Modern Phys. 23, 21 (1951).
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The constant is the only thing which depends ex-
plicitly on the definition of the solution. The following

relations are the most important ones (#z now stands
for Fror Gr):

(P+L?*uy /L= (n/L+L/p)ur+us

O+ LA+1)) uria/ (L+1)
= (n/(L+1)+(L+1)/p)ur—ur’

P+ (LA s/ (LA1) 4+ (P L2 w1 /L
= (2L+1) (/L(LA1)+1/p)ur. (3.3)

To these formulas we may add the Wronskian relation

FL/GL—FLGLIEL

@3.1)

(3.2)

(3.4)

Substituting F1/, G/ expressed in Fr_s, Fr, and Gr_y,
G 1, respectively, from (3.1) we obtain

FL__lGL—GL_lFLEL/ (772+L2)%. (35)

Both relations are useful for checking purposes.
From (3.1) and (3.2) we can form a pair of equations
inv=wurtur1;ve=ur—ur,;

{L/p— ((*+L%*—1n)/L}v1+vs'=0
{L/p+ (L2 H1)/L}vyt0/ =0

which integrated numerically will give uz, #r_1, %1/,
- and %z at the same time.

As is shown in reference 3 the recurrence relations can
be used over a large range of values of L without too
serious accumulation of error. A practical scheme is
presented in a recent paper by T. Stegun and M.
Abramowitz.”

In what follows we restrict ourselves to the case L=0
unless otherwise is mentioned.

4. TABLES

The most extensive table so far is the NBS table?
prepared under the direction of M. Abramowitz. This
table deals with the function Fy for L=0(1)5, 10, 11,
20, and 21; »=—5(1)5 and p=0(0.2)5 with complete
interpolation facilities in 7. Most of the entries are
given with an accuracy of seven digits or more. Further
the volume contains three extremely useful auxiliary
tables: R.P. (IV(141n)/T (1+149)) ; co=argl' (141n); Co
[defined in (2.3)].

Recently a small table containing Fo, Fy’, Go, and Gy’
for p=24 has also been published.?

These tables have partly superseded a previous one?:
which deals with the regular as well as the irregular
function for L=0(1)4, 0<n <4, and 0<p <6. The accu-

7T. Stegun and M. Abramowitz, Phys. Rev. 98, 1851 (1955).

8 M. Abramowitz and P. Rabinowitz, Phys. Rev. 96, 77 (1954).

9 Bloch, Hull, Broyles, Bouricius, Freeman, -and Breit, Phys.
Rev. 80, 553 (1950).

10 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Mod. Phys. 23, 147 (1951).
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racy lies between 0.1 and 2.2%,. A small table of G and
Gy for 0<p,n<1 is given in a previous work.!

Recently a “skeleton table” of f1, gz, f1’, and gi/
[defined in (5.2) and (5.5)7] has been published for
L=0 and L=35 and for p,»=0(1)10. The table also
contains the five first reduced #-derivatives. Unfortu-
nately this table has some drawbacks, mostly due to
the method of computation [numerical quadrature, for-
mulas (5.2) and (5.5)7]. First: for high values of # and
small values of p the accuracy of the regular function
and its derivative is unacceptable. Second: in many
cases interpolation in 5 with An close to % is not suffi-
ciently accurate. (Numerical example: L=5, p=9,
1=35.5: g5=232.23474 as obtained from 9=35 and gy=
32.16459 as obtained from n=06, the correct value prob-
ably being about 32.249.) Third: the functional values
as a rule are given with lower accuracy for L=0 than
for L=3.

The irregular function does not present any special
difficulties in this respect. Throughout the region it is
given with an accuracy of 5-6 digits for L=0 and of
7-8 digits for L=>35. If necessary at least one extra digit
can be obtained for L=0 by taking the corresponding
values for L=35 and using the recurrence relations. The
regular function on the other hand presents a more
complicated picture, and the scheme of Fig. 1 is rec-
ommended.

5. INTEGRAL REPRESENTATION

From (2.2) and (2.3) we easily find the following
formulas:

Fr=A1p"fr; Gr=ArpttgL (5.1)
with
fL=f (1—th2g) I+ cos(oths—2nE)dE (5.2a)
Y
T gL= f (1+ £2)L6—’FE+2’I arctgzdg
0
- f (1—28) 1 -sin (pth— 208)dE (5.2b)
L 0
and
Ap=2"5(1—g )}
A2mn - (P24-2) (2247 - - - (P4} E (5.3)
In particular we have for L=0:
Ao={(1—e2")/2mn}*. (5.4)

Formula (5.2a) can also only be used in the transition re-
gion, while (5.2b) can be used in the whole region between
the transition line and the line p=0. The derivatives

u C, E. Froberg, Arkiv Fysik 3, 13 (1951).
2 C, E. Froberg and P. Rabinowitz, Tables of Coulomb Wave
Funcitions; NBS, Report 3033 (1954).
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F; 16. 1. Regions where different methods for obtaining the regular
function are recommended. a: Use the table in reference 3. b:
Use the table for L=0 in reference 12 or if higher accuracy is
needed the same method as in ¢. ¢: Use the table for L=35 in

;efirezncg 12 and the recurrence relations. 4 : Use 7, 10, 12. C: Use
. 1,2, 3.

can be computed directly:

fi/'= —f the- (1—th?g) X sin (otht—29E)ds  (5.5a)
0

< ng=_f $(1+E2)Le—p5+2'qarctg£d£
1]

L

- f thg(1— tI2E) 141 cos (pthe— 2ng)dE.  (5.5b)
0

Note that, e.g., Fr/=A4 1p"{ f1/+ (L+1)f1/p}.

1
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I
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The great advantage of these expressions is that the
successive reduced derivatives with respect to 5 can be
obtained without difficulty. More extensive computa-
tions, however, are prohibitive unless a fast electronic
computing machine is used. It turns out that (5.2) and
(5.5) in general only need to be used in region D (Fig. 2),
and even here one has a choice between these quadra-
ture formulas and numerical integration of Eq. (2.1).

6. NUMERICAL INTEGRATION

If a large number of functional values with the same 7
but different values of p are needed, it might be con-
venient first to compute a key value and then integrate
numerically (using the higher derivatives which are
easily obtained). Otherwise this method should be used
only for the region D in competition with the quadra-
ture, mentioned in Sec. 5, and possibly very close to
the transition line p= 2.

In this connection it should be observed that both F
and G vary extremely rapidly to the left of the transition
line, and this fact strongly affects the errors due to
truncation and round-off. For example, when integrating
F in the direction of decreasing values of p, a small error
means an admixture of G, and since G is rapidly increas-
ing, the effect will be that F will soon disappear com-
pared with the error.

If it is necessary to integrate numerically over wide
ranges in this region, the following transformations are

' L " 1

10 20 30

F16. 2. Regions where different methods of computation should be used. For closer explanation

40 50 60

70 §

g

consult Table I at the end of the paper.
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suggested :
(Y1=logF — (L+1) logp—1logC 1,
] Yo=pF//F 1, — (L+1) 6.1)
Ys=logG .+ L logp—logD 1,
Wa=pG1L'/G 1+ L.
Then we obtain the equations:
(¥1'=y2/p
| Yo' =2m—p—y2?/p— (2L+1)¢2/p (6.2)
vi'=yu/p
Vi =2—p—yi/p+ (2L+1)Ye/p

with the initial values ¥1(0)=5(0)=y3(0)=y,(0)=0
and the Wronskian relation

(o= st 2L41) - e¥rths=2041. (6.3)

The functions ¥ vary much more slowly and smoothly
than do the functions F and G. As an example we give
the following values for =100 and L=0:

$1(0)=0; ¢:(1)=23.0092; :1(4)=>50.0988.
7. THE POWER SERIES EXPANSIONS

The essential formulas for the power series expansions
were given by Yost, Wheeler, and Breit? and are col-
lected in a compact form in reference 3. Here we will
present them arranged in a way which is convenient for
numerical work.

First we introduce some notations.

(1 n?) () - - (LA - 200
’ QL+1)-[QL)IT
wr=log2o+q1/p1 (7.2)

where the general expression of ¢z/p; can be found in
reference 3, p. XVI. The first six values are given below.

(qo/po=f(n)+2C—1

g/ p1= f(n)+2C—11/6-+1/4(1+9?)

g2/ pe=f(n)+2C—137/60

+ (4n*+13)/8(1+2%) (4-+7?)
363 6n'+697°+150

140 ' 8(1+n?) (4+n2) (9417

Po=2n; (7.1)

s/ ps=f(n)+2C—

7129
13/ pa=f(n)+2C—— (7.3)

2520
16754-4287*4-31249>4-5637

16 (14?) (4+1) O+ (16++1?)

PR 83711
0s/ps=] 27720

_1_20118+ 102015+ 1668079*+ 981059+ 158295
L 1601+ (4472 O+ (1677 (25+72)
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Here f(n)=R.P. (I'"(1419)/T (1+149)) (tabulated in ref-
erence 3) and C=Euler’s constant=0.5772156649- - -,
The expansions then run as follows:

(n+1)(n+2L+2)Byy1=29pB,—p*Br1 (7.4)
(n+1)(n—2L)Ppi1=29pP— p?P,_1
— (2n—2L4+1)p10*"'B, o1, (7.5)
Bg= 1 Po= 1
-wit
Bi=np/(L+1) Pyri1=0.

We now define six quantities, B, S, P, R, Q, and T':
B=3Bx (=¢1) S=2kB;
P=%P; R=3%"kP,
Q=prwrpB+P (=01)
T=p ol [14+ 2L+1)wr]B+ws-S}+R

(7.6)

and from these values we can obtain the functional
values directly:

Fp=Crp™*-B
F'=C o[ (L+1)B+S]
Gr=Drp™t-Q
Gi'=Drp " [—LQ+T].

(7.7

It is also interesting to note that the functions ¥4, ¥,
¥s, ¥4 introduced in Sec. 6 can be written in a very
simple form:

Y1=logB
Y2=S/B
¥s=logQ
¥a=T/Q.
The Wronskian relation has the form
BQ+(SQ—BT)/(2L+1)=1.
In particular we have for L=0,
(n+1) (n+2) Buyr=2npBr—p*Bu1
{ n(n+1)Ppy1=29pP,— p*Pn1— (2n+1)29pB,
with By=1, Bi=np; Po=1; P1=0. Further:
Q=2mp(log2p+2C—1+f(n)) B+P
T=2p{ B+ (log2p+2C —1+f(n)) (B+S)}+R
Fy=Cop-B; F=Cy(B+S)
{GO=Q/CO; Go'=T/Cop.

- (7.8)

(1.9)

(7.10)
(7.11)

(7.12)
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It is easy to see that the power series expansions should
not be used if no or p? are very large. A reasonable
choice seems to be

7p<50; (7.13)

which corresponds to region 4 in Fig. 2. If p=35, n=10
about 20 terms are necessary to obtain 7 digits accuracy.
However, because of the very simple formation law of
the successive terms, in some cases it may be reasonable
to go beyond these limits.

p<10

8. THE BESSEL-CLIFFORD EXPANSION

Expansions of both regular and irregular Coulomb
wave functions in terms of Bessel-Clifford functions
(i.e., essentially modified Bessel functions) are impor-
tant for large values of n and small values of p. Such
expansions have been obtained by Breit and Hull®®:*
and by Abramowitz.!5~17 We shall here give these ex-
pansions in a form more convenient for numerical
calculations.

In reference 16 Abramowitz derived an expansion for
¢é1.(n,p). We shall first give the corresponding expression
for the irregular function. In Eq. (2.1) we make the
transformations: a*=8np; y=Gr=x-I'z, from which
we get :

dar'; 1dr'g (2L+1)2 a2
+ (1 } ————)I‘L=O. 8.1)
dx? x? 1672

x dx

If the term %?/169? is discarded, we obtain an equation
with the general solution: ¢ Jar+1(%)4c2Kar41(x). Now
it has been proved by Yost, Wheeler, and Breit that
for small values of «

(2m)®
G~ D% Koria(%) (8.2)
(2m)!
and this leads us to try the following expansion:
Tr=Kspp1+2 a1 Koy . (8.3)
8=l
Then we find:
ai=L/16%%; a;=1/96n*; as=L(L—1)/5129%;
322 (s+4)a,3=2Q2L—s—2)a. 11+ as;
s=1,2,3,---. (8.4)

A remaining multiplicative constant is easily found to
be unity. Thus we have

_ (2n) ™
oo

18 G, Breit and M. H. Hull, Jr., Phys. Rev. 80, 392 (1950).
1 G. Breit and M. H. Hull, Jr., Phys. Rev. 80, 561 (1950).
15 M. Abramowitz, Quart. Appl. Math. 7, 75 (1949).

16 M. Abramowitz, J. Math. Phys. 29, 303 (1950).

17 M, Abramowitz, J. Math. Phys. 33, 111 (1954).

‘Dy-x-Tr. (85)
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In reference 17 Abramowitz has obtained expansions
for ¢, in terms of I,(x) and for O in terms of K, (x)
(n=2L+1,2L+2, - -.) with the same coefficients ex-
cept for a factor (—1)”. It is interesting to note that
in these formulas © ;, must be provided with a numerical
factor (1), while in the other set of formulas (refer-
ence 16, Eq. (3.15)) and formula (8.5) which has just
been proved, such a factor must be appended to ¢ .

From now on we restrict ourselves to the case L=0.
First we introduce some new notations:

Fo=Co(4n) - Ao
Fof=CoM,
Go=Dy-aT
Go'=Dy-49-No.

(8.6)

As is easily found we have
a 1 a 1
Mo= "_+“)Ao and N()= —+—)Fo.
dx x dx «

Putting e= (164%)~! we can write the expansions in the
following form:

x3 x5 «8
Ao=T1+ G[‘-—Iz] + 62[—I4+—“Ia]
6 10 72

%7 %8 x°
+e8[——16——17— Is]
14 60 1296

7110 g1 %12

9
+e4[—18+ Iyt—Tt In]+ e
18 4200 720 31104

5 %5 o5
T'=K+ e[—K2]+e2[——K4+—K5]
6 10 72

(8.7)

x7 %8 x°
+ 63[——Ks——K + Ka]
14 60 1296

%
+64["—K8+
18 4200

71510 Zl1 £12
Ky——K+
720

K11]+' =
31104
(8.8)

a8 4 x5
Mo=Io'— e{x212+——I3]+ 62[x4l4+—x515+—ls:|
6 15 72

71 1 20
-a[wzf+———xuy+«~—xvg+- .u]
210 360 - 1296

2197 10

124 299
+e4[x818+-—x919+
315 6300

%12

31104

7
+
3240

L Bt

zm]—-.- (8.9)
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x3
A70= —KQ‘I" EI:xQKg—gK;{I

i 4 «8
+€2 —x4K4+—x5K5——~K6]
L 15 72
i 71 11 0
+€3 xﬁKG———x7K7—{—hx8K8—— Kg]
L 210 360 1296
[ 124 299
+ e — xSKg‘I——ngg - xIOKlo
L 315 6300
7 X2
+ quu— Kn]—l— e (810)
3240 31104

Here I,, and K, stand for I,(x) and K, (x), respectively.
As is easily found, the Wronskian relation takes the
form:

Mor'o—AoZVoEl/x. (8.11)

These formulas look very attractive, but there are some
disadvantages which make them less useful. First: only
Iy, I, Ko, and K, are tabulated so far, and all the other

@10=0.00525%4 €'+ - - -
a11=—0.00055218¢'+- - - -
@12=0.0000321502¢*+- - - -

a_7=—1.99353173—27.4191e—

a_11= —603.844— . .-
a_1o=—23302.27— - - -.

Then we have:
Ao=e*(2rx)"%-a
Mo=e¢*(2rx)~- { (14+3/2x)a+c/x)
To=¢2(r/2x)* b
No=¢2(w/2x)}- { (—14-3/2x)b+4-d/«}

(8.14)
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functions must be computed by the usual recurrence
relations. Second : the present table'® runs from =0 to
x=10, and thereby we have the restriction 87p<100.
But the region defined by this inequality is completely
included in region A, where the power series expansion
can be used conveniently. Thus we conclude that for-
mulas (8.7)-(8.10) should be used in this form only
occasionally.

If x> 10 one must turn to the asymptotic expansions
for I, and K, (see, e.g., reference 18, p. 271). Then it is
possible to derive series expressions containing positive
and negative powers of x where the coefficients are
power series in e. The calculations are straightforward
and we only give the result.

Put

a=y ax"

b=y (—1)ax"
c=Y (r—Dax"
d=Y (=1 (r—1)ax"

where the summation is extended over a suitable num-
ber of terms: =0, =1, &2, - - .. The coefficients a, are
given below.

(8.12)

@y=1—0.051269531¢—0.135408014*— 1.2345124265— 23.0925¢*— - - -
a1=—0.13671875¢—0.250589848¢*—1.977075¢*— 33.8186¢*— - - -
a>=0.3125¢+0.469676971¢24-3.5501813€6*+59.45395¢+- - - -
az=—0.166666667¢—0.34777832¢>—2.66566868¢* —44.86142¢'— - - -
@4=0.1900390625¢*-1-1.43372623€¢*4-24.03583¢*+- - - -
a5=—0.0718756—0.58281662¢— 9.88621 ¢*— - - -
as=0.0138888889¢21-0.1831962€63+-3.25853 €t - - -
ar=—0.044862454568—0.88331286¢*— - - -
a3=0.007928240746>+0.197876088¢*- - - -
ay=—0.000771604938¢—0.03625545¢*— - - -

(8.13)

a_1=—0.375—0.052871704¢—0.2059647 2 — 2.293356*— 49.24¢' — - - -
a_s=—0.1171875—0.08591652¢—0.4835767e— 6.680154&5— - - -
a_3=—0.1025390625—0.187942386¢— 1.482806¢?— 25.36398€*— - - -
a_y=—0.1441955567—0.513485447¢— 5.512588¢>— - - -
a_5=—0.27757645—1.6768509¢—23.85393e*— - - -
a_g=—0.67659259—6.35806¢—99.1941¢>— - - -
a-s=—06.8839143—132.422¢— - - -

a_9=—27.248827—707.630e— - - -

a_1o=—121.59789—4143.717¢— - - -

and from these expressions we easily obtain Fo, Fy/, Go,
and Go’ according to (8.6). The Wronskian relation can
now be written

ab+ (bc—ad)/2x=1. (8.15)

18 BAAS, Math. Tables VI, Bessel Functions, Part I (Cam-
bridge University Press, London, 1950).
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The method just described can be used for values of
n greater than ¢-p® where ¢ is a constant. A reasonable
choice seems to be ¢=2. In this way we obtain region B
(Fig. 2) determined by

n>2p%; np>50. (8.16)

Numerical Example
n=200, p=1

Thus we have e= (1692)~1=1/640000 and x= (8p)?
=40. We obtain:
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9. THE RICCATI METHOD

In the p-y-plane there are two large regions between
the trausition region and the regions for small p and
small 7, respectively. For these regions the Riccati
method is well suited.

First we consider the case p<2y (region C), which
has been treated in considerable detail by Abramowitz,
p. 80. Here we only give the result* with some new
terms added, and further we give the expressions for
Fo’, Gg, and Gol.

Fo=(1/2)es®n; Fy'=(2)"-Fo-de/dt

a=0.97477751125 Go=eV Gy = (2n)1-Go-dy/dL. O
b=1.02691879721 Here (= p/2y and
¢=—1.01295445465 o(tm) =" got g1t (21) g,
d=—0.98364396653 Lo ORI
and ab-+ (bc— ad) /2x=0.999999999966. Further we get, V() =—21gotgi— (20) g2 ’
e.g., ¢o=7.2366047314-10" to be compared with ¢o=
7.2366047313738 -10" as obtained from the power series. + (20)2gs— (20)gat-+ - ‘
rgo=[t(1—1)]'?4arc sim/t—x/2
g1=(1/4)-log{t/(1—1)}
o= — (82— 121-4-9) /4811/2(1— [)?/2
gs=(8:—3)/64t(1—1)?
204816— 92164°-+1612844— 13440 — 1224024-7560¢— 1890
187 921608/2(1— )72 ©3)
g5=3(10242— 44862+ 208(— 39)/8192¢2(1 — )8 |
go= — (262144£°— 1966080£+6389760s8— 117145604"-1317888018— 92252165+ 13520640
—358848013-+24872402— 873180t+130977)/1032192015/2 (1 —£)15/2
110592045— 5529644+ 314624 — 159552124-45576t— 5697
& 303216£5(1—£)?
(g =12 (1— 1)1
g'=1/4t(1—1%)
g/ =—(8t—3)/32812(1— )52
g/ =3(82—4t+1)/642(1— £y
g4 = — (15368 — 70472+ 3361 — 63)/20485/2(1 — £)11/2 04)

) gs' =3(256014— 83213+ 72812— 26044 39) /40964 (1 —1)7
—368640£5— 30720¢4+114944£— 577928416632t — 2079

g'=

655361712 (1—£)17/2
| 3(860160£5-+1966085-+308480#— 1772800734328 — 177241+1899)

g =

{ 13107264(1— )10

* We take the opportunity to correct an error in reference 15, Egs. (4.5) and (4.6), where the denominator of gs should read

12p(29—p) instead of 129(2n—p).
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In (9.3) go differs from the corresponding value of refer-
ence 15, Eq. (4.5) by the term —=/2. This is due to the
constant Co= 27/ (€27 1— 1))/2~¢~77.(27n)"/2 which has
been included. (The approximation above is valid to
13 digits, if n>5.)

It is clear that this method should be useful if % is
sufficiently large and p not too close to 0 or 25. A closer
investigation gives the region C (Fig. 2), where the
limits must not be looked upon as well-defined. How-
ever it turns out that the accuracy is very sensitive to
small changes in £ close to the line ITT with the equation:
n=23p/5+3. For higher values of  the line IV 3p=2p+1
can be used instead.

Numerical Examples

I. 7=35, p=10. This point lies on the line I, and there-
fore we try the power series expansion and the Riccati
method.

F¢=1.7207453-10"% (Riccati)

F¢=1.7207454-10"¢ (Power series)

Fy=1.7208-10"% (Table (reference 12), computed

from Fj).

II. »=100, p=4. This point is situated in C but
rather close to region B.

¢$0=15.7229844-10* (Riccati)

$0=>5.722993-10% (Bessel-Clifford)

$0=5.722985155-10"  (Power series).

III. n=p=10.

Fo=1.626275-10"3 (Riccati)

Fy=1.626-10"3 (Table (reference 12), Fy)
Fy=1.6262711-10"2  (Table (reference 12), from Fj)

F,=1.62627115-10"% (Power series).

Now we turn to the region G which has also been
treated by Abramowitz!® in some detail. However, we
will use a slightly modified method. Starting from Eq.
(2.1) we first perform the transformation:

x=2/p; y=e@
from which we obtain:

I 2f fa AP (1—x) /24=0,
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Then we expand f(x) as before:
J@®)=2n-gotgi+ (20)7'gat (21)2gs+ - - -

and obtain the following system of equations:

(g (1—x)/x*=0

8" +2¢g:"+(2/%) - g’ =0

181" 81+ 2808+ (2/%) - /=0

8" +2¢80'85'+2g1/'gs'+ (2/) - g/ =0

9.5)

L-

Now we know that when p—, i.e., ¥—0, the ampli-
tude of Fy and Go—1 and the phase tends to the value
90= pP—N 10g2p+(70.

If we use the asymptotic expression for oy (reference 3,
p. XXVI) we get

T
fo~p—n 10g2p+;+n logn—n

—1/127—1/360P—1/126055— - - .. (9.6)

The integration constants must be determined so as to
meet these conditions. We easily find that g4, g3, gs, - - -
are real, and thus we have: g,(0)=g;(0)=g;(0)=---=0.
go, &2, 84, + -+ turn out to be purely imaginary, and
(1/7) - (2g0+ (20) g2+ (29)3gs+ - - -) should go over into
6o when x—0. This condition accounts for the negative
sign of go’ and for the constant term /89 in go. Further
we must have (1/7)(2n)'gx(0) =—1/127, (1/7)(2n)7*g(0)
=—1/3607* and so on. These conditions happen to be
fulfilled without special precautions.
In this way we obtain

[ go=1{(1—x)""/x+(1/2) log{[1— (1—2)"2]/
(14 (1 =)' 1} +/8n}

g = —i(1—a)1 /a2
gr=—(1/4) log(1—x)

g'=1/4(1—x2)
] go=—1(922—12248) /48 (1 —x)3/2
go'=—1(8x—3x?)/32(1—x)5"2
gs= — (843 —3x%) /64 (1—x)3
g5’ = — 3 (82— 4t +a1) /64 (1 — )4

L

We write the result in the following form
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. M={1/(1—x)}1/4'6‘“”'z)
¥ (n,2) = — (8x3—3x%) /64 (29)?(1—x)34-3x°(1024 — 448x+ 208x2— 39x3) /8192 (29)* (1 —x)®

27(1105920— 552962+ 31462442 — 15955243 4455762 — 5697x5)

Lo
+

393216 (2n)5(1—x)°
Q=22 1 1—(1—a)i2\ =
< ¢(n,x)=2n( xx } . og1+(1_31/2)+2— (92— 12x+8)/48(29) (1—x)3/2 (9.6)

2048 — 921641612832 — 1344025 — 1224024+ 756025 — 189025
92160 (2n)*(1— )02

— (130977x10—873180x°+ 248724048 — 358848047+ 135206404 — 922521645

L +15178880x¢— 11714560x°+ 638976022 — 1966080x+-262144) /10321920 (27)5 (1 — x)18/2—
Of course, the coefficients in this expansion are the same as in (9.3). Further we put:
A (n0) = (1— 2)1/2/22+ (85— 342) /32(2n)2(1 — )52 — 3(1536 — 704w+ 33622 — 634%) /2048 (2n)4(1 — w)11/2

%5(368640— 30720x-+ 11494442 — 57792x3+16632x*— 2079x%)
65536 (2n)°- (1—x)17/2

A

B(n,x)=1/4(29) (1—x)— 3x2(x>— 4x4-8) /64 (21)*(1 — x)* (9.7
1-34(2560 — 8320+ 72842 — 26003+ 3944) /4096 (27) (1 — )7

3x5(1899x8— 177245+ 7343254 — 1772804° 430848022+ 196608+ 860160)

+-..
L 131072 (29)"(1—x)10
Then we have the final result 10. ASYMPTOTIC EXPANSIONS ON THE
TRANSITION LINE
Fo=M-sing In reference 8 Abramowitz and Rabinowitz, starting

from an integral representation by Newton, have ob-

Go=M-cosp 0.8 tained some very useful expressions for the functions
Fy'= —a*(BFo— AG)) (©.8) Fy, Go, Fy/, Gy when p=2n, and they also give a small
table of the functional values for p=0(0.5)20(2)50. In
Go'=—x2(AF+BGy) a more recent work by Biedenharn, Gluckstern, Hull,
and Breit!® these formulas have been generalized to the
with the Wronskian relation case L>0. The convergence in this case, however, is
rather slow, unless L is small and 5 large. Here we
AM?*?=1. (9.9) restrict ourselves to L=0 and write down the same
formulas as in reference 8 with some more terms added,
Numerical examples will be given later. using the compact notation of reference 19.

{Fo(zn) }NP(1/3)§1/2[1 2 T@2/3) 1 32 .17 92672 T(2/3) 1 6363008 1

Go(21)/V3 L 35 T(1/3) B¢ 8100 8 7371-10¢ T'(1/3) B 3536379-10¢ B©
_ 391911498752 T'(2/3) 1
T 679377699107 T(/3) g

.. } (10.1)

19 Biedenharn, Gluckstern, Hull, and Breit, Phys. Rev. 97, 542 (1955).
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1TA/3) 1 8 1
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11488 - I'(1/3) 1 25739264 1

loromra Sl

15 T(2/3) 8 56700 8 18711-10° T'(2/3) B° 4179357-105 g©

1246983424 T'(1/3) 1

8 . e b (10.2)
180355329-105 T'(2/3) B4
Here 8= (29/3)"/%; T'(1/3)=2.6789385347 and I'(2/3)=1.3541179394.
Following reference 8 we also give the formulas in a form suitable for numerical computation.
IF 0(271)} {0.7063326373} w4 0.04959570165 0.008888888889
Go(2q) ) 11.223404016 [ s n
0.002455199181  0.0009108958061 0.0002534684115
-+ 7710/3 ‘,74 T 1,,16/3 . } (103)
{F o’(21;)] { 0.4086957323} s { 0.1728260369 | 0.0003174603174
Gy (2n) 1 L —0.7078817734 T ” ‘
0.003581214850 0.0003117824680 0.0009073966427
+ f + . } (10.4)
8/ 7t g/

Numerical Example

Already for p=1 we obtain an accuracy of 0.1%.
For p=10, n=35 we get:

Fe=0.9179450 (Formula (10.3))
Fo=0.9179449 (reference 8, Table I).
11. EXPANSIONS IN TERMS OF AIRY INTEGRALS

As is well known it is rather difficult to compute
Coulomb wave functions in the transition region with
a fair accuracy. One possibility is to use numerical
quadrature as indicated in Sec. 5, and another to com-
pute a key value on the transition line as described in
Sec. 10 and then integrate Eq. (2.1) numerically. Both
these methods are in general rather time consuming,
especially for large values of 7.

It has been pointed out by Abramowitz and Anto-
siewics? that it is possible to obtain Fo and Gy in terms
of Airy integrals. They also discuss briefly how to pro-
ceed when L>0. However, this special method has some
disadvantages. First, the convergence, even for mod-
erate values of the argument, is very slow. Second, the
formula involves a set of constants which must be
determined by reference to the functional values on the
transition line.{

The paper by Biedenharn, Gluckstern, Hull, and
Breit!® which gives much useful information on Coulomb
wave functions, especially for higher values of L, also
contains expansions in terms of usual and modified
Bessel functions of orders 4=#/3, and these functions
appear in such a way as to be expressible in terms of

20 M. Abramowitz and H. A. Antosiewics, Phys. Rev. 96, 75
(1954).

T We take the opportunity to correct a printing error in refer-

ence 20, p. 76, Eq. (15), where a minus sign should be placed
before the term 3’ (0,u)42(0) in the expressions for ¢; and ¢s.

Airy integrals. However, the expansions, obtained by
using a Green’s function for solving a system of non-
homogeneous differential equations, are rather difficult
to construct, and it seems practically prohibitive to
proceed beyond the first two terms.

As has been shown by Tyson? and by Feshbach,
Shapiro, and Weisskopf,”? a straightforward expan-
sion in terms of Airy integrals can be obtained directly
from the differential equation in the case L=0, and it
is easy to see that this method has none of ‘the dis-
advantages just mentioned. Starting with the Eq. (2.1)
for L=0, and following reference 20 we put = (29—p)/
(29)13; u= (29)*” to obtain

3" —py/ (u—2x)=0.
Now we try the following expansion:
y=const{Ai(x) - (1+gi(x)/p+ga(%)/u?+- - )
+47' (%) - (L(®)/nt fo@)p+- - )}

Then we easily find the conditions:

£ ()28, (x)=;§x"“’°+1fk(x)

(11.1)

(11.2)

(11.3)
g (%) +2xf, (%) + fu(x)= Eﬁx”“’“"gk (%)

where fo(x)=0, go(¥)=1. These equations can be written
in the following more practical way:

fnl,““‘ Zgn, =X (fn—l”+2gn——1,+xfn—-l)

M’”l +f n= x(g et + zxf et +f nat xgn"l) ’

2t J, K. Tyson, Dissertation, Massachusetts Institute of Tech-
nology, 1948.
152123 F:;eshbach, Shapiro, and Weisskopf, NYO 3077, NDA Report

(11.4)
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The first functions are:
[ f1(x)=2%/5 gu(®)=—=/5
()= (2%346)/35 g2 (x) =x2(7%3—30)/350
F3(x) = x(84a5+148025+2320)/63000  g5(x) = (105625— 1160a%— 2240),/63000
f4(%) = 22(125445+995243+11488) /693000 :
g4(x) =2 (3234%°+ 62128025 — 478800x*— 804160) /48510000
168168x12+118209520x°+610662080x8-+ 713574400x3+-2140723200
63063108
%2(2666664x°-+ 21025472028 — 138044480x°— 356787200)
21021-10° (11.5)
x(2858856x12-- 788972288x9+ 3064641024x%+3407716480x°+8635845120)
441441-108
go(%) = (3531528x154-6633266640x12-3174515632004°— 1835265465608
—3886130304004%— 579033728000) /3972969 - 107
Jr(x) =22(17153136415--69192483360x2+1113570124864049+4-35219971257600x8
+402637673088004°4-113475491584000) /67540473 - 108
g7(x) =x(1783926144x15+1283288054880x12+-43988924714240x°— 232311543744004°
—55484432640000x°— 113475491584000) /67540473 - 108,

The constant can easily be determined by putting x=0; then the expansion goes over into formula (10.1), and
we have a possibility to check (10.1) and (11.5) against each other.}
The final result is

[ Fo=m'2(2n)!/0 {Ai(x) (1+g1/utgo/w - - )+ A7 () (fi/wtfo - - )}
Go=m'"(2)"/%- { Bi(x) (1+g1/utgo/ W+ - )+ B () (fi/utfo/w+ - - -)}

B = — a2 (2n) 10 (AL (&4 +f) /@27 ]

) 11.
_ AT @[+ (g1 1)/t (ot 12) /w24 - - T} —

Go' = — a1 (B (g1 /) e+ (g4 /-]

fs(x)=

) g(%)=

fo(x)=

. ' +Bi' ()[4 (g1t 1) /u+ (got 1) /w24 - - - T

The functions Ai(x), 44/ (x), Bi(x), and Bi'(x) are f/+g1=0.

tabulated.? It should be observed that the formulas , ,

above can be used for both positive and negative Jo+2g+ fi' g1t g2 — fig —af2=0.

Va}lL‘l}(:z (\)?fhfznskian relation can be written: fi+2g5t [ 1t 28180+ 1/ 8o frgd' — 2uf 1 fo fogd'=00.

(A+gi/ut g/ - 4 (g+f1)/u The formulas (11.6) can be used in region E with
(gt f) i+ ] about 5 digits accuracy or better.
— (fi/utfo/w+- - )L(g+af1)/u Numerical Examples

+ (g +afo) /w4 - ]=1 (11.7) 1. p=120, 5=>50.

and from this identity a number of checking relations
can be obtained. The first ones of them are [F 0=0.200255

1 If we put L=0 in Egs. (24) and (25), reference 19, we should Go=1.55061
obtain the first terms in (11.6). A discrepancy in sign seems to in-
dicate a minor error in reference 19. Fu—=0.20025
28 BAAS, Math. Tables, Part-Volume B, The Airy Inte%'al, 0=U. 4
repared by J. C. P. Miller (Cambridge University Press, London,
Roag 7 Go=1.55060

(Airy)

(Riccati, (9.8))
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II. p=80, 7=50.
Fo=0.001203665 (Airy)
{_F0=0.001203655 (Riccati, (9.1))
IIL. p=10, n=4.

{F 0=1.3992085 (Airy)
Fy=1.39921 (Table 12)

The points (120, 50) and (80, 50) are very hard to
reach, indeed ; nevertheless our semiconvergent expan-
sions give quite accurate results.

Note—The terms in (11.6) vary in a very regular
way, and by using a logarithmic extrapolation, one can
obtain at least two more terms approximately and gain
considerably in accuracy.

12. ASYMPTOTIC EXPANSION FOR LARGE
VALUES OF o

In this section we again admit L>0. When p is large
compared with 7 and L, it is possible to derive asymp-
totic expressions for the Coulomb wave functions. In
reference 3 Abramowitz has obtained such formulas
using the integral representation. Here we will instead
start from Eq. (2.1). First we perform the transforma-
tion y=1u-¢%Z where

Or=p—n log2p——2—ﬂr+aL

and
L
or=argl'(in+L+1)=argl (in+1)+ X arctg(n/k).
k=1

Then we get the equation
W'+ 2i(1—n/p)’
+{in(14-in)— L(L+1)} -u/p*=0.

Now we put u=uo+u;+us+---
obtain:

@ny1/an= (in— L+n) (in+ L+n+1)/2i(n+1).

We split #, into its real and imaginary part

(12.1)

with #,=a,/p" and

(12.2)

Un=Sn+1ln
and further'we introduce:
A= (2n+1) -1/2(n+1p;
Bp={L(LA+1)—n(n+1)+1*}/2(n+1)p.
Then we find the recursion formulas:
Snp1=A nSn—Bln

(12.3)
tn—}—lz A ntn+anﬂ
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For computation of the derivatives we put
Sa=sn'—1tn(1—n/p)

{ Tw=ta"+s.(1—1/p)
Snt1=A1Sn— BT r—Snt1/p

{ Trp1=AnTatBaSn—tny1/p.

to obtain:

(12.4)

As is easily found from the known behavior at infinity
we have the following initial conditions:

So=1, f0=0, So=0, T0=1—‘l1/p. (125)
Now we put

where the summation of the divergent series is cut off
after a suitable number of terms (i.e., when the wanted
accuracy has been obtained or when the terms of the
series start to increase again). Putting 8.,=6 we get the
final result:

Fr=t-cosf+s-sind

Gr=s-cosf—i-sinf

(12.7)
Fi'=T-cosf+.S-sinf
G1'=S"-cos#—T-sinf
with the Wronskian relation
sT—St=1. (12.8)

This method can be used when 7’&p and when L*<Xp.
In the case L=0 a closer investigation gives the region
H (Fig. 2) as result.

Numerical Examples
I. p=50, n=09.
Fy=0.93570855
{Go= —0.61180203
{F0=0.935709

(Riccati; (9.8))

(Asymptotic formula, (12.7);

Go=—0.611802 only 6 decimals carried)
IL. p=20, n=S5.
Fy=—0.229352
] (Riccati, (9.8))
Go=1.165712
Fo=—0.229347
(As. formula, (12.7))
Go=1.165716
II. p=10, »=3.
Fy=0.660103
(As. formula, (12.7))
Go=—1.060141
Fy=0.660099
(Table 12)
Go=—1.06011
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13. CONCLUSION

It is obvious that many more methods for computa-
tion of Coulomb wave functions exist, and even some
quite satisfactory methods have not been mentioned
here. However, we have tried to avoid such methods
as are dependent on other functions than the elementary
ones, for quite obvious reasons. For example, the ex-
pansions in terms of spherical Bessel functions (due to
P. M. Morse) and usual Bessel functions (Abramowitz)
(see reference 3, p. XVIII) have not been discussed.
There are a few exceptions from this rule: we have
referred to the tables in references 3 and 12 which seems
legitimate, and to the table of Airy integrals, since these
functions can hardly be avoided. '

When numerical values of Coulomb wave functions
are needed, then Figs. 1 and 2 which are self-explana-
tory, first should be consulted. For convenience we give
Table I. (When p,n <10, consult Fig. 1 in Sec. 4.) We
also give the equations of the curves in Fig. 2.

I. 7p=50
II. n=2p°
III. 7=3p/5+3
IV. 3p=2p+1
V. 29=p
VI. n=2p/5
VIL. n=13p/30—5/2

VIII. p+49+3=12p/5.
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TasrE L.

Region Method Reference
A Power series (7.7,12)
B Bessel-Clifford (8.6, 14)
C Riccati I 9.1)

D Quadrature or num. integration (5.2,5)
E Airy integrals 11.6)

F Special case of E (x=0) (10.3,4)
G Riccati IT (9.8)

H Asymptotic formula (12.7)

It is obvious that these curves must not be looked upon
as limits which cannot be exceeded. In many cases two
and even three methods overlap, and this gives a good
possibility to check the computations.

14. REMARKS ON FUTURE TABLES

From the discussion above it can be concluded that
when future tables are being prepared one should con-
centrate on a region formed by a parallelogram with
its corners in (p,n) = (10,0), (20,5), (20,15), and (10,10).
The table should be constructed as a “skeleton table”
with e.g., L=0,5,10 and Ap=1, Ap=1/2. At the same
time the table (reference 12) should be enlarged so that
An=1/2 instead of 1. The region mentioned here seems
to be the most difficult (and most important!) one at
the time present. As far as can be judged, numerical
quadrature will be adequate in the whole region, and
no special complications should be expected.



