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INTRODUCTION

'HE problem of deriving the thermodynamic prop-
erties of conduction electrons in metals can be

reduced to that of computing the number of states
X(E) with energy less than E for the case of interest.

The primary purpose of this paper is the present
methods for calculating $(E). Its secondary purpose is
to apply these methods to various problems in the
theory of metals and in particular to the case of elec-
trons in a magnetic field.

Before outlining the contents of the present paper,
we shall sketch the historical background of the methods
discussed in the following pages.

The problem of computing X(E) for systems com-
posed of identical and noninteracting parts can be re-
duced to that of calculating traces of certain exponential
operators. This last problem is formally identical to the
evaluation of the partition function in quantum statis-
tics (see Sec. 1.1).

The first author to recognize and exploit this fact
was Peierls, ' in connection with the magnetic properties
of conduction electrons in metals. The main advantage
of computing X(E) in terms of traces is that one need
not have any knowledge of the eigenfunctions and
eigenvalues of the Hamiltonian of the system of interest.
The recent work of Sondheimer and Wilson' on the
magnetic properties of free electrons is based on ideas
of this type. An important contribution of this paper is
the fact that powerful complex variable techniques are
introduced for evaluating JV (E) in terms of traces of
exponential operators.

Perturbation-theoretic methods for calculating such
traces for systems so complicated that it would be out
of the question to evaluate them exactly have been
developed by many workers in the quantum-statistical
theory of nonideal gases and the theory of metals.

In the first category, the papers of Kirkwood, ' Uhlen-

beck and Beth, ' and Goldberger and Adams' are basic
for our present purposes. Reference 5 is particularly

*One of the authors (A.W.S.) was in the Applied Mathematics
Branch, Mechanics Division, Naval Research Laboratory, during
a major portion of the time required to complete this paper.' R. Peierls, Z. Physik 80, 763 (1933).

e E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A270, 173 (1951).' See the excellent review of J. de Boer, Repts. Progr. in Phys.
12, 305 (1948—1949) for complete references on the work of J.
G. Kirkwood in qiiantum statistics.' G. Uhlenbeck and E. Beth, Physica 3, 729 (1936).' M. L. Goldberger and K. N. Adams, II, J. Chem. Phys. 20,
240 (1952).

relevant, because it introduces a modern way for per-
forming trace computations, inspired by a procedure of
Schwinger in quantum electrodynamics. Method I of
our article is based on certain results of reference 5
(see Sec. 1.2).

In the second category, we mention the beautiful
study of Peierls' alluded to earlier, which contains a
procedure for calculating traces of exponential operators
which is related in a formal manner to the work in
references 3, 4, and. 5, and to our Method II (see
Sec. 1.2).

The most important application of the foregoing
methods, as far as the present paper is concerned, is to
the study of the magnetic properties of metals. A com-
plete historical and critical summary of the older papers
on the subject up to the year 1931 is contained in the
excellent text of Van Vleck. ~ The more modern aspects
of the problem can be found in numerous publications,
such as Sondheimer and Wilson, ' Dingle, ' Osborne and
Steele. ' More specific references, as well as the relation
of the calculational procedures used in previous work
to our own, will be given in the body of this paper
(see Sec. 2.4).

We shall now give an outline of the present article.
In Sec. 1.1 we employ arguments essentially due to

Dingle' to reduce the problem of computing X(E) to
that of evaluating K(E), the number of orbital states
with energy less than E, thus eliminating the difEculties
introduced by the spin from future calculations. The
problem of obtaining X(E) is virtually solved if we

can calculate traces of suitable exponential operators,
involving the spin-independent Hamiltonian @ Lsee

Eq. (1.1.6)j, as would be expected in view of our earlier
remarks.

In Sec. 1.2 we present two methods for evaluating
such traces. Method I rests on the so-called Schwinger
trace formula )see Eq. (1.2.8)$, stated in the paper of
Goldberger and Adams. ' Method II is based on a pro-
cedure for expanding exponential operators similar to
those in references 1, 4, and 5. We show that Method. II
is better than Method I in the sense that the Eth
approximation in Method I is properly contained in the
corresponding Eth approximation in Method II. As
far as practical applications are concerned, there are

' J. Schwinger, Phys. Rev. 82, 664 (1951),Sec. VI.
r Van Vleck, Etectric artd MagItetic SuscePtibilities (Oxford Uni-

versity Press, London, 1932), first edition.
s R. B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952).
e M. F. M. Osborne, Phys. Rev. 88, 438 (1952); M. C. Steele,

Phys. Rev. 88, 451 (1952).
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important differences between I and II. The main
difference is that I appears to be particularly suitable
for the discussion of properties of weakly bound elec-
trons, while II would seem to be applicable not only
to this situation, but also to the case when the per-
turbing potentials are slowly varying over certain micro-
scopic intervals, but are not necessarily "small" com-
pared to the kinetic energy of the particles of the system
of interest.

In Sec. 1.3, using I and II, we present asymp-
totic formulas for calculating the number of states
for systems confined to the interior of "large" con-
tainers. In this discussion, the notion of wall potential
plays a central role. The advantage of dealing with
such large systems is that K(E), and thus 1V(E), can
be replaced by smooth functions of E.

In Sec. 1.4 we formulate the problem of calculating
the magnetic moment of an electron gas in a periodic
potential supposing that the system is in a large con-
tainer, in the sense of inequality (2.2.1). We find that
the free energy, thermodynamic potential, and, u for-
Hori, the magnetic moment, have the correct depend-
ence on the volume of the container.

In Part 2, we apply the foregoing methods to two
examples.

In Sec. 2.1 we use Method I to calculate E(E) for
weakly bound electrons in a periodic potential to within
terms with e&~2 in the sense of Eq. (1.3.15).

In Sec. 2.2 we compute E(E) for a gas of free elec-
trons in a magnetic field and discuss the corresponding
magnetic moment. This case is one of the few problems
in quantum statistics where an exact solution can be
found, and a great deal of attention has been given to
it, as can be seen from the number of references in
Van Vleck' and in Sec. 2.2. The basic tool which we

employ in obtaining X(E) is a celebrated formula due
to Mehler and applied very early to quantum-statistical
problems by Uhlenbeck" and Husimi. " We believe
that our approach, although yielding no new results,
represents a fresh and simple way of discussing this
question.

It would be most interesting to treat the effect of the
walls on the magnetic properties of free electrons by
means of Method II. We hope that the procedures
presented here will be of aid in solving the difficult
problem of the magnetic properties of electrons in
periodic potentials.

In the Appendix we present a proof of Eq. (1.2.9),
which is virtually the Schwinger trace formula, for
terms with e~& 2. In this proof we employ only elemen-

tary results from degenerate perturbation theory.
In this paper we are chief concerned with obtaining

formal results. We do not investigate questions of con-
vergence or the legitimacy of interchanging limiting

's G. E. Uhlenbeck, J. Math and Ph. ys. 14, 10 (1935).A proof
of the Mehler formula may be found in A, Erdelyi, Math. Z.
44, 201 (1938)."K.Hnsinn, Proc. Phys. Math. Soc. Japan 22, 264 (1940).

processes. However, we have been very careful to point
out such interchanges when they occur. The mathe-
matical problems left open are fascinating ones in their
own right and we hope that they will stimulate the
attention which they deserve.

S=Z.F(En), (1.1.1)

involving the values of functions F(E) at the eigen-
values E„of one of the aforementioned one-particle
Hamiltonians, say @z."is In (1.1.1), P specifies a one-
particle state of the system and the sum runs over all
these states.

The evaluation of such sums is greatly facilitated by
the introduction of function 1V (E) defined as

where

cV (E)=Q„U(E E~)—, —(1.1.2)

0
U(x) —=

.1
x&0,
@=0,
$)0'.

(1.1.3)

From (1.1.2) we can interpret X(E) as the number
of states with energy smaller than E, provided that E
does not coincide with any of the E„.

Let F(E) be differentiable in E, and let it vanish for
E~~. Then

dF (E)S=— dE 1V(E),
dE,

(1.1.1)'

as the following argument shows:

dF(E) l
" dF(E)

dE N(E) = —
I dE P U(E—E„)

dE dE n

dF (E)
dE =PF (E~).

u ~E„dE u

'~ It will not be necessary to use an index to denote tire par-
ticular one-particle Hamiltonian we are considering since only
their structure plays a role in this paper and since this structure
is common to all of them.

"In this article, we shall always denote abstract operators by
lightface or boldface German letters, depending on whether we
are dealing with scalars or vectors. We shall designate the eigen-

PART 1: GENERAL METHODS

1.1. General Relations between N(E) and Traces
of Exponential Operators

In the present paper, we shall deal with systems
composed of a large number of identical parts, whose
mutual interactions we shall suppose to be negligible.
Because of this circumstance, their total Hamiltonians
are equal to a sum of identical one-particle Hamil-
tonians. We shall suppose that the latter possess pure
point spectra, that the degeneracy of the energy eigen-
values is finite, and that there is a minimum eigenvalue.
In discussing the statistical-mechanical theory of such
assemblies, we shall encounter sums of the types
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We shall now exploit the fact that U(x) has the
following integral representation":

From (1.1.4), (1.1.6), and (1.1.7), we see that
trace exp( —ser) is factorable:

where

1 f'~ ' ds
U(x) = (P —e**,

2%2 y jao

(1.1.3)'
trace exp( —sfr)

= trace exp( —s@) P exp( —sghcons), (1.1.8)
Imlg~

p
p+'boo p+s T

(P, ds—=lirn ' ds.
T~m J$00 7—iT

We suppose that the series

Re{s))0.

Combining (1.1.5) and (1.1.8), we arrive at the im-
portant formula"

P exp( —sEo) = trace exp( —s@r), (1.1.4)

where

X(E)= Q X(E+ghcorn),
[ml (2'

(1.1.9)

where we employ the familiar trace notation, converges
for Re{s))0, and furthermore, that we can interchange
P, and

p
y+icro

(P ' ds
P—%00

in what follows. From (1.1.2), (1.1.3)', and (1.1.4), we
are then led to the identity"

~
y+icro ~zE

E(E) tP
J

ds trace exp( —s@r) ~ (1.1.5)
2+2 p goo S

Now, trace exp( —span) is nothing more than the
analytic continuation of the ordinary partition function

Z(P) —= trace exp( —PQ r) =P exp( PE~), —
y (1.1.4)'

P—= 1/uZ',

in the sense that we have replaced P by the complex
variable s, whose real part. is positive.

In the present paper, we shall deal with Hamiltonians
which can be separated into two commuting parts @
and O„where @ stands for an orbital and g), for a
spin Hamiltonian, so that

8 =8+8.; C8.=Z Z (116)

1 I.&+'" exp(zE)
X(E)=— tp ds trace exp( —s@).

P—too
' J S

dx(e'lx)(xl~)=s. .., (1.1.10)

where we have assumed, for convenience in future dis-
cussions, that the A's form a purely continuous spectrum.

It is now advantageous to introduce the density
matrix

This formula eliminates the difhculties introduced
by the spin and reduces our problem to the computation
of K(E), which represents the number of orbital states
with energy less than E, provided that E does not
coincide with any of the E„'s. We shall show in the
following pages that this problem is virtually solved if
we can construct trace exp( —sK), since there exist
powerful complex-variable methods for evaluating the
contour integral in (1.1.9).

Consider now an arbitrary representation, say the
X-diagonal representation, whose states are supposed to
be complete and orthonormal, so that we have, in
particular,

P(~'I ~)(el ~)=~(x' —x),

Re{a))0, (1.1.11)

(1.1.12)exp(G)—=P —C G.

The eigenvalues Eo are therefore separable into a (l~'IV(s) I")—=Z(l~'Iran) exp( sE~)(rtl~)l
part E„belonging to @ and ghcorn belonging to g)„
where ns takes aH integral or half-integral values from
—j to +j, depending on whether j is integral or half- n factors

integral, co is the Larmor frequency eH/2nssc, and g is
the Lande factor, which is 2 for electrons. Therefore, m=0 ~l

E,=E„+y ~; I~l ~&j; q=o, „1, ". (1.1.7)-
Since the eigenvalues Eo of g)p are purely discrete,

so are the eigenvalues E„of @.

From now on we shall suppose Re{a})0 and. y) 0,
without always stating this hypothesis explicitly.

Using (1.1.10) and. (1.1.11), we find

values of these operators by the corresponding Latin lightface or
boldface letters. We shall not employ any 6xed symbolism for
eigenoperators.

"See, for example„G. Doetsch, Theoric end Anzendlng der
Laplace Transformalson (-Dover Publications, New York, 1943),
p. 105."The earliest application of formulas of this type to the theory
of metals occurs in reference 2.

trace exp( —sQ) =g exp( —sE„)

'6 Compare with reference 8, especially p. 501.

(1.1.13)
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It is well to emphasize the fact that in terms of the
q-diagonal representation

trace exp( —s@)= dq'(q'~ exp( —s@)~
q'), (1.1.13)'

where the integration extends over the entire configu-
ration space.

The fact that the trace of an operator is invariant
with respect to a change of basis is very welcome, since
it means that we may employ any basis which is con-
venient for the problem at hand.

In the present study we shall identify the X represen-
tation with the coordinate-diagonal representation and
shall expand our results in terms of plane waves.

From (1.1.13), (1.1.13)', and the fact that

(q'[exp( —s@) )
q")

nite discontinuities. The case of the rigid-sphere poten-
tial, for example, introduces complications of this type. "

In the following discussion, we shall deal only with
Hamiltonians which are analytic functions of the co-
ordinate and momentum operators, in an attempt to
avoid the aforementioned pitfalls.

1.2. Two Methods for Calculating Traces of
Exponential Operators

We are ready to consider two perturbation-theoretic
methods for constructing trace(exp( —s@)) for systems
for which it would be out of the question to evaluate
this trace exactly.

A. Method I
Let us begin with the simpler method, Method I.

Consider the exponential operator

and

t'ai

=exp —s@1 —&»" q"
I

~(q' —q") (1114)
Ei

b(q' —q")= (2»r) ', dk exp) —ik. (q' —q")]

G. (s) —=expL —s(n+ fl) j, (1.2.1)

where a is "large" compared to fl in the conventional
sense of perturbation calculus and s is a real parameter.

Following Goldberger and Adams, we define Q(s) as
follows:

&(s)=—exp( —sa)8(s). (1.2.2)
we conclude that

(q'I exp( —sZ) I
«")

Letting
fl (s)—=exp (sa) fl exp (—sa), (1.2.3)

= (2»r) ' dk exp( —ik q )
I

we can conclude from (1.2.1) to (1.2.3) that 8(s)
satisfies the initial value problem below:

Xexp —s@~ -v»",q"
~

exp(ik q"), (1.1.15a)
Ei

8—8(s) = —6(s)8(s),
8$

8(0)=1,
(1.2.4)

trace exp( —s@)

= (2»r) ' dq' dk exp( —ik q')
J „

where 1 is the unit operator.
Equations (1.2.4) are equivalent to the integral

equation

Xexp —s@~ .&»' q'
I exp(ik q'). (1.1.15b)

(s) = 1— dsi6(si)Q(si),
Jp

(1.2.5)

We shall call Eq. (1.1.15b) the Kirkwood-Uhlenbeck
formula, since these authors were the first to recognize
and exploit the advantages of plane wave bases in con-
structing partition functions in the theory of nonideal
gases. ' '

Our further work rests on Eqs. (1.1.13), (1.1.13)',
and (1.1.15).

It is necessary to state at this point that the formal
manipulations used in deriving these results cannot be
justified for unrestricted operators @. Although the
exact nature of the restrictions is unknown at present,
it has been noted that one must be extremely careful
with Hamiltonians whose coordinate dependence in the

q -diagonal representation exhibits either finite or infi-

8 (s) = P 8„(s),
n=p

&o(s)—=1,

)8 F81

8„(s)—= (—)" dsi dss

(1.2.6)

pan —1

ds„6(s&)6(ss) . b(s„).
Jp

"See, for example, G. V. Chester, Phys. Rev. 93, 606 (1962).

whose formal solution, obtained by the usual iterative
procedure, is
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D($) =exp( —$a) QS„($).
n=o

(1.2.7)

Combining (1.2.2) and (1.2.6), we obtain the formally
exact identity

From (1.2.10), we conclude that

8—K($)=~($)K($),
Bs

(1.2.11)

It can be shown, from (1.2.6) and (1.2.7), that

trace&($) = trace exp( —$a)—trace{6 exp( —$tr) )

( )n
+2

S pS],

trace 6 exp( —$a) d$1 d$2
Jo 4 o

X) d$„fl($1)6($2) . . 6($„) . (1.2.8)

Goldberger and Adams" attribute this result to
Schwinger. We shall call it the Schwinger trace formula.

A simple method of proving (1.2.8) for the case when

a has discrete eigenvalues is to calculate traces in the
representation in which (t is diagonal.

Placing $=1; It=a@0, S=soi, where @ is an un-

perturbed Hamiltonian and g)1 the corresponding per-
turbation operator, we get from (1.2.8)

trace expL —s(@0+@1)$= trace exp( —sOO)

where
K(0) =1,

&($)=—exp($tt) exp($6))exp( —$b),Q)

Xexp( —$a), (1.2.12)

where the square bracket represents a commutator.
In the cases considered. in this paper, (t is quadratic

and 6 is at most linear in the one-particle momentum
operator P, so that it is possible to work out the com-
mutator in (1.1.30) in closed form. The final result
does not involve exponential operators exp(&$6). This
result depends critically on the particular ordering of

exp( —$6) and exp( —$tr) in (1.2.10). For example, if
this ordering were reversed, we would end up with
commutators which could not be easily evaluated for
the cases of interest.

Equations (1.2.11) are equivalent to the integral
equation

K($)=1+ d$1Z($1)K($1), (1.2.13)

+Q s"F (s), (1.2.9)
n 1

whose formal solution, obtained by iteration, is thus

Pi (s)
—=—trace{pi exp( —s@0)),

e&~2:

(—)
P„(s)—= trace @1exp( —sglo)

p 80-& p 8]

ds2 ~ ~ ~dsy
~Jo4o

4o
d$ —lol($1S)@1($2&)' ' ' @1($s)

ei($s) —=exp( —$s@0)@1exp($s@0).

In the Appendix, we shall prove (1.2.9) for n&~2 by
means of conventional degenerate perturbation theory.

The circumstance that the neth term of the sum in

(1.2.9) contains @1 exactly m times suggests that
Method I is ideally suited to cases in which Oi is
"small" compared with @, in the usual sense of per-
turbation theory. We shall discuss a situation of this

type in Sec. 2.1.

B. 3lethod II
In this method, we begin by writing"

K($)= QK„($),
n=o

Ko($)—=1,

(1.2.14)

s TIS p~n —1

K ($)= d$1 d$2' ' ~ d$„Z($1)Z($2) Z($ ).
Jo

From (1.2.10) and (1.2.14),-we obtain

&($)=exp( —$6) exp( —$n) QK.($). (1.2.1&)
n=o

We now show that the series (1.1.15) is better than
(1.2.7) in the sense of the "dominance" theorem:

The Mth approximation,

G, iir
&r& ($)—=exP (—$a) Q 8„($), (1.2.16a)

n=o

to +($) in Method I i$ properly contained in the Mth
approximation

G($) =exp( —$6) exp( —$u)K($). (1.2.10) +~&"&($)=—exp( —$6) exp( —$a)QK„($) (1.2.16b)

"For another approach, see reference 17.
' This way of expanding exponential operators was employed

by many of the early workers in quantum statistics, as can be
see, for example, from reference 3. See also references 1 and 5
for expansion procedures of similar type.

to C($) in Method II, for M=0, I, Z, , in the $en$e

that all the terms of (1.2.16a) are contained in (I Z I6b). .
but cot vice versa.
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where

+P s"F„'(s), (1.2.19)
n=l

F„'( )—=strace exp( —s@t) exp( —s@s)

Proof:

We shall prove this theorem for the nontrivial case"
where [a,fi]WO.

First, we observe that for e=0, 1, 2, we have

(i) exp( —sa)Q„(s) contains only terms with'
exactly z6 's.

(ii) exp( —s6) exp( —s{t)K„(s)contains an in- (1.2.17)
finite number of terms with r6's, r &~ti, ,

provided [a,f)f/0.

Second, we notice that the expansions (1.2.7) and
(1.2.15) represent the same operator Q (s). Equating
these expansions and using (1.2.16a) and (1.2.16b),
we get:

ass""(~)=GM"'(~)+%sf(~), (1 2 18)

where +sr(s) contains solely terms with &~(M+ 1)6's
(35=0, 1, 2, . ).

Third, we employ (1.2.17), (1.2.18), and this property
of +sr(s) to deduce that all the terms of Qsr{"(s) are
contained in G~{"& (s), for %sr(s) consists solely of
terms having more than 3A's, while +sr"' (s) has only
terms with ~& M6's. On the other hand the terms of
D~{"'(s)cannot all be contained in +sr{"(s) because,
according to (1.2.16b) and (1.2.17), the former consists
of a sum of terms with r6's, where r takes on an injinife
number of integral values &&J{I,while Q,sr"'(s) consists
of a knife number of terms each one of which contains
r6's, where r &~ M QED. .

Placing s= 1;{1=s@s, 6 = s@t, we obtain from (1.2.1),
(1.2.14), and (1.2.15),

trace exp[ —s(ps+ @])$
= trace(exp( —s@t) exp( —s@p)j

It is clear that Method II is closely akin to the usual
W. K. B. method of quantum mechanics. We thus ex-
pect that it will prove useful in cases where @,, although
not necessarily "small" compared to @s, is nonetheless
a slowly varying function of position in the q -diagonal
representation over distances of the order of the mean
De Broglie wavelength of the assembly of particles of
interest.

1.3. K (E) for Large Systems

The functions K(E) in Sec. 1.1 are sums of step
functions. The aim of the present section is to replace
them by smooth functions of 8 for systems confined in
containers which are "large" in a sense to be speci6ed
presently. The introduction of these smooth functions
will enormously simplify the calculations in the suc-
ceeding sections. The results obtained below may be
viewed as asymptotic expressions for containers whose
volume 0—& ~ ~

In carrying out this program, we shall make use of
the concept of wall potential, whose main role is to
simulate the walls of the aforementioned containers.

We now regard @s in Sec. 1.2 as composed of two
parts:

so that
Oo= R'+K,

@=%+K+se„
(1.3.1a)

(1.3.1b)

where g can represent, for example, the kinetic energy
operator of a particle in {),while stands for the wall
potential operator. depends only on q and its eigen-
values W(q'), defined by

&(q) I
q') =~(q')

I
q') (1 3 2)

are different from zero only when q' is close to the walls
of 0, in a sense which we proceed to make clear.

Figure 1 shows a sketch of the qualitative shape of
which we shall adopt in this paper. The wall potential
W(q ) must effectively vanish in region I, which repre-

and

I pS] I' &a—1

dsg ds2 . . ds„
~0 ~0 4 p

&&2' (sts) Z' (s,s) 2'(s„s)

W{pg{)

Z'(ss) =—exp(ss@s) exp(ss@t)

&& [exp(—ss@t),@of exp( —ss@).

In view of the preceding "dominance" theorem, we
expect that the series (1.2.19) is more accurate than
(1.2.9), if an equal number of terms is kept in both
cases.

» If Pa, her=0, Eqs. (1.2.12) and (1.1.14) imply that ){i)„(s)=0
for I= 1, 2, , so that exp/ —s(o+h}j=exp( —sn) exp( —sh) as
is we11 known. FIG. 1. Qualitative shape of W(q'}.



MP GNETI C P ROPE RTI ES OF AN ELECTRON GAS 387

sents the interior of Q. In II, which simulates the walls
of 0, W(q') must undergo an abrupt but continuous
change to a large positive value Wo. In III, W(q') must
go to infinity in any manner such that the wave func-
tions (I

I
q'), corresponding to the eigenvalues E„of@

approach zero rapidly in this same region III. This
particular choice of W(q') also eliminates the possibility
of continuous spectra of Q.

We shall now give a plausibility argument, based on
the above model of K, for the validity of the formula
below:

r"
dqi dqo dq„r(qi, qo, , q,)

X(qil exp( —«0) I qo) '(qo I exp( —«0 I qo)

x(q, lexp( —«Z Iqi)

(q'lexp(s«K)[exp( —s«K), @—K]lq")
A2

ss ~o'W(q') —ss(p', W(q'))'
2m

2M
+—~, W(q') A(q')

Ac

+2&. W(q') & ~(q"—q'). (1 3.5)

If the volume of region I, say 0, is made arbitrarily
large with respect to that of region II, keeping
W(q') —0 for q' in I and letting Wo take on arbitrarily
large values, we obtain, for axed s and Re{«})0:

dq'r(q') exp[ —sW(q')]

f
dqo' ' '

&(m ~~a
dq, &(qi, q2, ",q ) x (q'I exp[—s(8—K)]I

q')

(q lexp[ —s(C—K)]lq )

x(qolexp[ —s(8—K)]lqo)' '

.(q„ I exp[ —s(8—K)]I qi),

dq's(q')(q'I expL —s(C—K)] I
q'& (1 3.6)

"[n]

If it is possible, by an appropriate choice W(q') to
(1.3.3) dominate

where [Q] indicates an integration over Q and where

P(qi, q,) is a smooth function of its arguments
which is slowly varying over distances comparable to
the thickness of the walls.

We shall base our arguments on Method II. It will

be sufficient to consider the case r=1: the others can
be dealt with similarly.

From (1.2.7), (1.2.12), (1.2.14), and (1.2.15), placing
a=s(@—K); 6=«K we find:

(q'I exp( —s@) I
q")=exp[ —«W(q')]

x (q'I exp[ —s(Z —K)] I
q")

OQ ~1 ~8I
pan
1—

P s" q' exp[ —s(O —K)] dsi sd2. . ds„
n=1 dp J,

X'(s,s)Z'(s, s) Z'(s.g) q")

—=E(q', q"
I s), (1.3.7)

whose absolute value divers from zero only in regions
II and III, by means of exp[—sW(q')], in the sense of
making the product of these quantities as small as de-
sired, then we also have, for Re{«})0 and fixed s:

+exp[—«W(q')]ps"
I

q'
I exp[—s(@—K)]

E.

fl fs1
dsi dso' ' '

~o o

ds~G(sis)U(s2«) ' ' '

and where exp(s«K)[exp( —ssK), Q —K] can be ex-

plicitly worked out in the coordinate diagonal repre-
sentation for the Hamiltonian in (1.4.7), with the
result

where

t1(ss) =exp[ss(@—K)]exp(ssK)

X[exp(—s«K), @—K] exp[ —ss(@—K)],

dq'5:(q') exp[ «W(q')]P(q' q"
I s)=0 (1 3 8)

In view of the fact that each term of the sum
(1.3.7) is a polynomial in W(q) and its derivatives,
according to (1.3.5), its dominance by the exponential
exp[ —sW(q')] in regions II and III is quite plausible.

If we accept (1.3.6) and (1.3.8), we arrive at the
result (1.3.3) for r= i.

No attempt will be made to estimate the accuracy of
(1.3.4) since the failure of this approximation would.
correspond to "surface phenomena. "These phenomena
are of importance only in small enough crystals. Cri-
teria for determining whether a system is large in this
sense are trustworthy if and only if they are based on
actual calculations. A frequently used criterion for elec-
trons in a magnetic field is given in Sec. 2.2.



A. W. SAENZ AND R. C. O' ROURKE

r
form when @, is diagonal in the q -representation (see
Sec. 2.1).In the case considered here, the F„*(s)possess
inverse Laplace transforms, and this will vastly simplify
our further discussions.

The factors s" in (1.1.42) require special care; other-
wise they are bound to cause convergence difhculties.
To overcome this obstacle, we begin by considering
integrals of the type

X&q'lm I:—s(8—&)]Iq'&. (1.3 9)

The approximation (1.3.9) is valuable for the follow-
ing reasons: the right-hand side can be calculated
mithout knowing ~ and is a smooth function of E for
the case considered. in d.etail in this paper (see Sec. 2.2);
and it leads to interesting conclusions regarding the
thermodynamic properties of the systems of interest
(see Sec. 1.4).

Second, we can use (1.3.3) to construct a smooth
function K*(E) to replace X(E) by a perturbation
method based on Methods I and II.

To carry out this construction, we use (1.1.13)',
(1.2.9), (1.3.1), and (1.3.3), where we replace @ by
@p to reduce the integrations over configuration space
to integra, tions over Q. The replacement of @ by @o in
(1.3.3) is legitimate, since it merely involves setting
@i——0 in this equation.

As an example, let us consider the erst term on the
right-hand side, employing the foregoing equations. We
have

t'

J „
(1.3.11)

where g(E) has derivatives of all orders for IEI (m
and is negligible, together with its derivatives outside
the interval

(1.3.12)Ep —o~& E&&Eo+o,

where e«EO. In the present paper, devoted to de-
generate Fermi gases, we shall identify g(E) with
(&l&E)fo(EIP,i) Lsee Eq. (1.4.8)'], which is very sharp
in the vicinity of the Fermi energy E=f and has a
half-width of order kT, so that. we may choose Eo=—i,
o—=kT. We clearly have o«Ep, since kT« i for a degen-
erate Fermi gas.

We then write

trace exp( —s@p)= trace expl —s(%+K)7,

= " dq'(q'I expl —s(R'+K)]l q'&,
1

dEg(E)X(E) =lim ' dEg(E)
2~i=—)" dq'(q'I exp( —sly)

I
q'&

Ql t
~+'r exp(sE)

ds trace exp( —sQ), (1.3.13)

From (1.3.3) follow two useful results.
First, we can combine this equation, for x=1 and (qil 8 ($s) lqo&—=

J
dq' dq"(qil exp( —$s@) lq'&

P(qi) =1, with (1.1.9) and (1.1.13)', thus obtaining [Q] [0]

(q'I Cil q"&&q"
I exp( —$s&) I qo&.1 ~

t
&+'" dz exp(sE)

X(E)— dq'0' )' The expressions for F *(s) reduce to a much simple2~z~ [0] y—ioo s I

+Q Fs„*(s),
n=l

Fi*(s)—=—

m&2:

dq' dq (q'I Z il qi&(qil exp( —s&) I
q')

& [n] " [n]

7L 80~1

P~ (s) =
~

d$i d$o' ' '

j, J, J,
r ~e-2

dSn —1

Xj dq j dqi' ''j dqn
[0] [0] [~]

(q'lail qi&(qil exp( —s&) I q &

x&q, l8,*($,.) lq &".

x&q~il @i*($„s)I q') (1.3.10)

Treating the remaining terms. in a similar way, we
obtain:

trace exp( —s@)= " dq'(q'I exp( —sR) lq'&

interchanging the orders of

I

lim and dE.

1 r~+'T exp sE r
~

~
ds

2~z 7-'T

( )
dq'(q'I exp( —s@p) I

q')
s ~ [g]

~xp+e gag(E)+P lim( —)" dE
~ ~p—. BE" 2mz

t-&+*'r exp(sE)
X ' ds P"*(s),

Combining (1.3.10) with (1.3.13), we obtain by par-
tial integration, using the previously stated assump-
tions about g(E),

00 Ep+ e

I dEg(E)K(E)—lim
~ dEg(E)j T~oo J
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where we have interchanged

p Eo+6

and lim dE
n~l T~oo

and K„*(E)is given by' (1.3.14) in integrals of the type

J
dEg(E)N(E),

Taking limT „ inside the integral and integrating
partially once more, we get J „dEN(E) t'dE, g(E,)

(1.3.16)

cEg(»&(E)=Z
n=O 4

1 r &+"'" exp(sE)
x,*(E)= ~l' ck

2' z p $QQ z

X
J

Cq'(q'~ exp( —«@o) j q')
tQ]

1 8" t &+'" exp(sE)
x„*(E)=— o ck P„*(k),

2~z BE" ~~;„s (1.3.14a)

provided that

1
t

7 '" exp(sE) ~
5' ds dq'(q'~ exp( —k@o) ~

q')2' y—j~ k [Qj

1 t &+'" exp(sE)
ds F.*(k)

2% t

oo ~E
dEX(E) dE'g(E')

dEg(E) ' dE'X„*(E'). (1.3.14b).=oJ „
From (1.1.9), (1.3.14a), and (1.3.14b), we obtain the

following:

Rule for large systems. N(E) may be repl—aced by

where

N*(E)—= EN-*(E)
n=O

N„*(E)—= P X.*(E+gh~m)
)m[ (q

(1.3.15)

have continuous derivatives of all orders in the interval
(13.12).

Arguments and assumptions of similar type lead to
the following conclusion:

where g(E) has the properties assumed in this section.
Since the study of the magnetic properties of metals

depends on the computation of integrals of type (1.3.11),
as shown in Sec. 1.4, we hope that this rule will be
useful in studying such properties.

The fact that K *(E) contains @q exactly I times
and the fact that the E-integrations contribute only
in the narrow band. (1.3.12) lead us to believe that
(1.3.14a) and (1.3.14b) will fail, for example, in the
case when @q depends solely on coordinates and its
eigenvalues F1(q') in the q'-representation are much
larger than Eo, i.e., l in our case. We must clearly de-
mand that Eo») H~(q') t.

For the sake of completeness, we remark that it is
also possible to approximate X(E) by a series based
entirely on Method ll, involving the operator ~'(ss) of
(1.2.19). This series should be useful under the same
circumstances which we mentioned in connection with
this method. However, since we shall not require it in
this study, we shall not write it down explicitly.

1.4. General Formulation of the Magnetic
Properties of an Electron Gas

The one-electron orbital Hamiltonian for our model
of an electron gas in a metal is the customary one used
in the theory of metals:

1 t' e

I
y+-I:

~ +&(q)+K(q), (1.4.1)
2moi c )

where p and q are momentum and position operators
of a particle, e and mo are its charge and mass; Q is
the triply periodic crystal potential in which the con-
duction electrons move; gi3 is the wall potential, dis-
cussed in detail in Sec. 1.3; 5 is the vector potential
corresponding to a uniform external magnetic field.
acting on the particle; and c is the speed of light. We
shall only assume that we are dealing with a Bravais
lattice. The explicit form of 8(q) need not be stated
here, since we shall not require it in the present general
formulation.

From (1.3.9), we proceed to prove the following
fundamental result about X(E) for orbital Hamiltonians
of type (1.4.1):

1
t

&+~ exp(sE) t

x(E)=I a' dk dq'
2zi ~~;„s

~ q' exp —s —
q q', g.4.2

1 f
c)
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where t &o) is the volume of a unit cell, e is the number
of unit cells in 0, so that

From (1.4.4) and (1.4.5), we get

e= 0/co, u.4.2)' (0"+1exp —s
~

p+-a (+5 q"+1)

and the q'-integration extends over an arbitrary unit
cell in Q.

For proof of (1.4.2), we begin by showing that the
periodicity of $(q) implies

(
1 ( e

q' exp —s
( p+ —8 [ +8(q)

2mal c )

e= (2') ' dk exp —i k+—(1XH) q"
Ac

1 (h e
Xexp —s

I & "+ A(q")
I +V(q")

2m&i
'

c

e
Xexp i k+—(1XH) q" . (1.4.7)1 t' e

(
y+-8

/

2mo& c )
q' exp —s

where 1 is an arbitrary lattice vector.
To prove (1.4.3), we write, as in (1.1.15a),

1 t' e
q' exp —s

(
0+-@ l +&(q)

'. 2mo& c )

= (2~)
—' dk exp( —ik q')

Changing the variable of integration in (1.4.7), and
using (1.4.4) we obtain the desired result (1.4.3).

+Q (q) q'+1, (1.4.3) Combining (1.4.3) with (1.3.3), where we place
f(q') = 1 and @=1, and. employing (1.1.9) and (1.1.13)',
we arrive at (1.4.2). Q.E.D.

Let us now formulate the equations for calculating
the magnetic moment of the conduction electrons in Q.

The basic definition of the magnetic moment, M, of
a system of E electrons, whose total Hamiltonian is a

q"&I sum of E one-particle Hamiltonians whose orbital and
spin parts are given by (1.1.6), (1.1.7), and (1.4.7), for
a given direction of H, was proposed long ago by Pauli
in his famous paper on paramagnetism in monatomic
gases."The definition is a direct generalization of the
classical one and reads as follows:

1 (A e
Xexp —s

(
—&,"+—A(q")

~

2gzo (i c (1.4.8)

+'|7(q") exp(ik q") (1.4.4) where H= ~H~ and where the direction of H is held
constant; E„ is given by (1.1.7), with j=1/2, g=2;
P has the usual meaning of 1/kT;

and we choose the symmetrical gauge

A(q") =-', Lq"XH] (1.4.8)'

to describe our uniform magnetic field H. and the sum in (1.4.8) involves a/i orbital and spin
states. The thermodynamic potential f' is determinedThe assumption that V q' = q' coupled with

1.4.5 leads to the operational identity
y t e ami iar equation

-1
exp —s i

—& "+&+A(q"+1) i +V(q"+1)
2mp ~$

&=Efo(&,Il3 t) (1.4.9)

=exp ——q" (1XH)
Ac

where X is the number of particles in the box Q.
An equivalent definition of M can be obtained from

that given in the foregoing. It is the well-known thermo-
dynamic relation

1 (fz e
Xexp —s

I

—&,-+-A(q")
I +V(q")

2m, &i c

(BP

EgH N T, Q

(1.4.10)

2' W. Pauli, Z. Physik 47, 81 (1927).

where the Helmholtz free energy for an electron gas is
exp —q" 1XH . 1.4.6)

Ac
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given by

F=Nf —P—log{1+exp[jan(f —E„)j}. (1.4.11)

When we combine (1.4.8) and (1.4.10), we get the
useful result

M= — (F Nt)—
5H

g log{1+exp+(f—E„)j}, (1.4.12)
8H u

where 5/hH represents a partial derivative which oper-
ates solely on those terms (coming from the E„)which
contain the magnetic field strength H explicitly; the
implicit H-dependent terms in f are to be ignored

Since the sums in (1.4.9) and (1.4.11) are of the form
(1.1.1), we can write them as follows: using (1.1.5) and
(1.1.9), with j=1/2, g = 2,

1 p B
F Nt = —Q~ -dE

p m~&J

Xlog{1+exp+(| —E)]}Bt (E+2hrom)

dEf.(El,PZ) ~(E+»
m~$

&fp(E I P, f )
dE

m-~-, J „ BE

trons in metals. These equations reveal that the heart
of the.problem is the calculation of X(E).In real metals,
it is out of the question to compute this function in
closed form, so that one must resort to perturbation
methods.

We conclude this section by remarking that the form
of Eqs. (1.4.13), (1.4.14), and (1.4.15), coupled with
Eq. (1.4.2) allows us to conclude:

Nt, —N, and M are proportional to 0 for those sys-
tems having wall potentials W(q') with the properties
assumed in Sec. 1.3.

We are thus led to results in agreement with thermo-
dynamic requirements for systems in equilibrium.

PART 2: APPLICATIONS

2.1. Simple Band Theory
In this section we shall consider the problem of

finding the function X*(E) of Sec. 1.3 for conduction
electrons moving in a periodic potential with no mag-
netic 6eld present. We shall suppose that this potential
is so weak that it constitutes a perturbation on the
free-electron states, so that we may reasonably apply
Eq. (1.3.15) to the problem with neglect of terms
having m) 2 in this equation.

To this approximation, our final answer for K*(E)
agrees with that which one would obtain by the per-
turbation-theoretic procedures used in the familiar
treatments of band theory for the case of weak binding. "
This result was to be expected in view of the work in
the Appendix.

If H=O, Eq. (1.4.7) reduces to

XZ, (E+2hrom). (1.4.13)

By making a partial integration, we can transform where
the last equation for F Nt to read—

We place

e(~,q) = } +e(q)+m(q),
2PLQ

(2.1.1)

t,Z+2ficom

dE'x(E'). (1.4.14)

Since Eqs. (1.4.13) and (1.4.14) involve the function
(cl/rlE)f p(E~ p,f), which has a delta-like behavior for a
degenerate Fermi gas, they are quite convenient to use
in this case.

Combining (1.4.12) and (1.4.14), we get

21+0

Z —=&(q)
(2.1.2)

We now proceed to calculate Kp*(E), Kt*(E),Ks*(E).
From (1.3.13) and (2.1.2) we have

~ y+ioo ~zE

Xp*(E)= tp ds
2x1 . p QQQ s

X ~ &q' q' p( — p'
[ '). (2.13)

~ [nl E 2mp

Using (1.1.15a), where we place

pZ+2Aeom

X dE ~(E'). (1.4.») t
h q A.'

0 I
—.&&,q'

I
=—

hi ) 2mp
&e' )

2

Equations (1.4.13) and (1.4.15) constitute the basic
foundation for studying the magnetic properties of elec-

22 See any book on the theory of metals, for example, A. H.
Wilson, The Theory of 3Ietats (Cambridge University Press, Cam-
bridge, 1953), second edition, Chap. 2, Sec. 2.5.
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we find that If we adjust the zero of potential energy so that the
average of V(q') over the crystal vanishes, i.e., if

q' exp — ' q'

we have"

dq'V(q') =0,
"[o1

(2.1.8)

= (2w)
—' dk exp( —ik. q') x,*(E)=0. (2.1.6b)

To prove (2.1.6b), we employ Eqs. (1.3.10), (1.3.13),
(2.1.2), (2.1.4), and (2.1.8), thus obtaining

Xexp~
I 2mp X,*(E)=—

2' 1 8EPj
~ y+ioo ~zE

ds

( is sk ) (2m'mp) *

=(2~) ' dkexp( — (=] )
s j (2.1.4)

& 2, j ~a) X dq'V(q')(q'~ exp( —sly'/2mp)
~
q'),

~y+ joo

doe'~s —("+-:)=
2' Z 7 QQQ

2 nEn —,' U'(E)

1 3 5. (2e—1)vr'

where k=—)ki.
From (2.1.4), we see that we can forget about P in

(2.1.3) since the s-integral converges for y)0, an in-

equality which we suppose to be satisfied without ex-

ception in this paper. Combining this remark with the
formula

since (q'~exp( —sq'/2mp)
~

q') is independent of q' by
(2.1.4).

We now turn to Ks*(E).Equations (1.3.10), (1.1.13),
and (2.1.2) imply

p P+2I gzE +1

Xs*(E)=-— (P ' d» ' ds
~

dq' dq"
2ciE 2m'i "q— & o "[ni

Xggv(x)t (r.') exp(itt q')

e= 1, 2, , (2.1.5)

where U(x) has been defined in (1.1.3), and using

(2.1.3) and (2.1.4), we obtain

Xexp(ix'. q")(2m) ' dk expc ik—(q' —q")]

Xexpf —(1—s)s(A'k'/2mp)](2') ' ~ dk'

4 (2m'mp) 1

Xp*(E)= i i
nE-:U(E).3-:&a )

XexpL'k' (q' —q")] expL ss(A'k"/2mo)](2.1.6a)

Since the q', q" integrations are over a finite volume

e usual smoothed-out orbital density of states for 0, it is convenient to use the following famil'ar asy P
totic result:

free electrons is merely

d 2 t'2s.mp) *

Oto*(E) =—
i

—

i
QE**U(E). (2.1.6)'

dE m'& h' )

(q'
~
exp[ —(1—s) (sly'/2mp)] ( q")

= (2~) ' dkexpL ik (q' ——q")]

Since H—=0, the total density of states including spin

is obtained by multiplying this answer by a factor two.
We notice that the factor Q in (2.1.6) and (2.1.6)' is a
consequence of the sharp rise of W(q') at the boundaries
of the box, as expressed by (1.3.3).

In order to proceed, we expand V(q') in a Fourier
series for q' in 0, thus

V(q') =Ptt(x) exp(ia q'),

Xexp| —(1—s)s(A'k'/2mo)]

1
—P expL —ik (q' —q")]
0

Xexp/ —(1—s) (sA'k'/2mp)], (2.1.11)

where the vectors k of this sum range over the usual
Born-von Karman spectrum appropriate to a cubical

f
v(x) =—

~ dq' exp( —i~ q') V(q').
~~ to)

(2.1.7)

23 The fact that the first-order correction to the Schwinger trace
formula (1.2.9) vanishes under the above conditions has been
noticed by several authors. See, for example, references 5 and 17.
In reference 17 it is pointed out that this is not true when we
deal, for example„with Hamiltonians with binary interactions,
if we use Fermi or Bose statistics.
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box of volume Q. Then,

B 1 p~ ' 8'
X,*(E)=-— 6 ds

2 BE 2'"b ~ ~&~ Z

1

~

t'
dsgg(x') u(x) v(x')

—P e pf —(1—s)s(A l /2m, )]
0

1
—P expf—ss(A'k"/2mo) j0

~ dq' exp fi(2c—k+4') q')
~ go)

We carry out the integrations in (2.1.13) in the
following order: (i) over s; (ii) over k; (iii) over s.
Carrying out (i) and (ii), we have

p+Iao gzE I'00

(P~ ds
J

dk
2' Z p $QQ Z QQ

Xexp{—(A's/2mo) f(1—s)k'+slk —2cl'j}

t'oo ( A2 A2

dk'Ul E s(1——s)K' — A"
I

2mo 2m 0

42r 2mpE -** ( A'
—s(1—s)K' Ul E s(—1—s)K2 I,

E 2m, )'
(2.1.14)

where we have placed k'=—k—2c and K—=
I

2c I.
Combining (2.1.13) and (2.1.14), we find

dq" expfi(2c'+k —k') q"). 2mo
z2*(E)= Irn(22r)-2 p I.(2C) I2

x@p
Using the basic orthogonality relation

f
dq' exp(ix q') =8(x,o),

n~
(2.1.12)

~l
~ ' dsfKo2 —s(1—s)K2]'U(Ko2 —s(1—s)K'), (2.1.1$)aEJ',

where Ko2—=2mo
I
E

I
/A'.

In carrying out (iii) we must consider carefully the
cases x &2&0, ~&)2~0. We then arrive at the elementary
formula

we are led to

~ y+i~ ~zE

dZ
B

+2*(E)=-—

K ICp /1 Kp ) 2ICO+K=——
I

———
I log

2 K (4 K') I2Kp Kl—Xexp f—ssA'(I k —ic I'/2mo) j

2 BE' 2+1 ~~;„z p1

J
dsfKo —$(1—s)K'O'U(Ko s(1—s)K'—)

ds+2 (K)2 (—K)g exp f—(1—s)s(A2k2/2mp) )
~0 X k

If we replace the sum over k by an integral

(22r)-20 dk,

which, in conjunction with (2.1.15), yields

mo'n
I 2I(2C)

I

' 2Ko+»
&2*(E)= Z log

42r2A'2C~ o K I2K0
—

Kl

(2.1.16)

and use the reality condition

and the fact that

'V —K =8 g

2(o) =0,

as follows from (2.1.7) and (2.1.8), we 6nd

B2

& *(E)=l~(2 )-' 2 liI( )I'—
~~p

I

X t'd.
2~i

~y+&0 ~zE
'

~oo

ds dk,
—200 Z cKI

XexpL —(A's/2mII) jf(1—s)&2+s
I
k —2c I'j (2.1.13)

The inclusion of spin leads to no complications. In
fact, from (1.3.34), putting g=2, j=i„co=0, we see
that the total number of states with energy less than
E is

Ã*(E)=2X*(E)—2%0*(E)+2X2*(E), (2.1.17)

to the degree of approximation contemplated here.

2.2. Magnetic Properties of an Ideal Electron Gas

The properties of free electrons in magnetic fields
have been of interest in physics since the period where
Bohr" discovered a special case of a celebrated the-
orem" due to van Leeuwen. As is well known, this

"N. Bohr, Dissertation, Copenhagen, i911."J.H. van Leeuwen, Dissertation, Leiden, 1919.
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theorem states that a system of charges subject to the
laws of classical dynamics and statistical mechanics,
and in a state of thermodynamic equilibrium, has zero
magnetic moment. In proving this theorem, the fact
that al/ momenta are allowed in classical statistics plays
a decisive role.

This paradoxical picture prevailed until 1930, when
Landau" proved that an electron gas in equilibrium
in a container exhibits a diamagnetic behavior, if one
employs a correct quantum-mechanical and quantum-
statistical approach. This is a purely quantum-theoreti-
cal result which is connected with the quantization of
the "orbits. " In Landau's work, explicit account was
taken of the walls by a certain spatial cut-off procedure.

Peierls' arrived at the same conclusions as Landau
in an entirely different way using the operator method
mentioned in the Introduction. He also treated the
case of strongly bound electrons. "

In 1930 de Haas and van Alphen" discovered that
the magnetic susceptibility of Bi at low temperatures
had an oscillating component with period proportional
to 1/B. The de Haas-van Alphen effect has since been
observed in other metals. " The work of Landau and
Peierls only gave the so-called "normal" susceptibility,
due to the approximations which they used. Peierls"
was the first to show that the de Haas-van Alphen effect
could be understood by a Inore refined approach. The
whole theory has been further perfected by Slackman, "
Landau "Akhieser, "Rumer, 34 Sondheimer and Wilson '
and Dingle. ' "

With the exceptions of Peierls and Sondheimer and
Wilson, these investigators employed the Landau cut-off
procedure mentioned previously. The studies of Os-
borne and Steele, ' Dingle, "and Harn" have dealt with
the validity of such procedures for treating the walls.
It appears that they are allowable for system such that

BIJOU

)&nzp&z
C

(2.2.1)

where er„;is the velocity of the electrons at the Fermi
energy, E is the radius of the container, and the re-
maining symbols have been defined in Sec. (1.4).

"L.Laudau, Z. Physik 64, 629 (1930).
"See also R. H. Wilson /Proc. Cambridge Phil. Soc. 49, 292

(1953)j for a treatment of steady susceptibility of metals by
means of a density-matrix approach.

"W. J. de Haas and P. M. van Alphen, Proc. Acad. Sci. Am-
sterdam 33, 1106 (1930).

ss See, for example, D. Shoenberg, Phil. Trans. A245, 1 (1952).I R. Peierls, Z. Physik 81, 186 (1933).
~' M. Blackman, Proc. Roy. Soc. (London) A166, 1 (1938).
~L. Landau, Appendix to D. Shoenberg, Proc. Roy. Soc.

(London} A770, 347 (1939).
ta A. Akhieser, C. R. Acad. Sci. U.S.S.R. 23, 874 (1939}.
34Y. S. Rumer, J. Exptl. Theoret. Phys. U.S.S.R. IS, 1081

(1948)."R.B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952).
's R. B. Dingle, Proc. Roy. Soc. (London) A212, 47 (1952);

A216, 118 (1953);A219, 463 (1953).
» F. S. Harn, Phys. Rev. 92, 1113 (1953).

We believe that the wall-potential method in Sec.
(1.3) and (1.4) is equivalent to the foregoing cut-off
procedure, because our final answers agree with those
in the references cited previously for the case of per-
fectly free electrons.

In this section, we shall adopt the one-electron orbital
Hamiltonian in (1.4.1) with 6(q) —=0, we shall take the
direction of H along with qs'-axis, and we shall use the
symmetrical gauge (1.4.5). We then have

where

V '+ —',msa'Lqi's+ qs's]
25$p

+a&Ls+ W(q'), (2.2.2)

8I 3=——g]

We shall take (2.2.1) as our criterion for "large"
systems, so that we shall suppose, in particular, that
(1.3.9) holds when (2.2.1) does. Since we shall only deal
with systems for which this is the case, we need not
mention it explicitly in what follows.

Employing (1.1.15b), (2.2.2), and (1.3.9), one can
write for the orbital number of states with energy less
than E

~ y+&0 ~zE

lsK(E)— dq' P~
[0] 27I s p—rg)

~ (2s)—' dk exp( —ik q')

&exp —s—A2

V,'+~La+ sen'(gi" +ps")
Zssp

Xexp(ik q'). (2.2.3)

exp —z—
$2

V,'+-,'metes(qt's+ ps's) +teL,
2'P+p

=exp (—s~eLs)

A2

Xexp —s — p', '+

smyth'(qt's+

qs's)
Zmp

(2.2.4)

It is convenient to introduce the so-called natural
units as follows

(9'r ls fs)=— (kt, b,6), (2.2.5)

It is clear that the Hamiltonian in (2.2.2) is invariant
under rotations about the g&'-axis, so that 1.3 commutes
with II. This leads to a happy simplification of the
exponential operators, i.e.,
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so that
8

xI,=——i, k=1, 2, 3,
8(a

where
= cos8$1 sln8b,

pp* ——sin8$1+ cos8b,

and
I7rk

& 5 tj— 18k l &

p1Lp ——hpp($11rp —$11r1)—=A(oZp.

Combining Eqs. (2.2.4) to (2.2.6b) we get

(2.2.6a)
and where 8 is a complex number. Equation (2.2.9)
expresses the fact that exp(i82p) is a frnite rotation
operator corresponding to the (complex) angle 8.

The second identity is

( Acus

S=expl — ~p'
I exp( —&~sr,)i

AMS

Xexp (1rl +$1 )
2

AQ)s

XexP — (PrpP+ fpP), (2.2.7)
2

(5'IVs II ol 5)= (2—) ' d«xp( i—k')

j1p&s (1 8 ) p

Xexp —
I

——
I +P exp(iag)

Ei ag)

= (21r Sinh(kp1S))-l

1 f I'1 pcs)
Xexp —— ($'+P)' tanhl &2)

where we have also employed the fact that the four pkp&sf
oPerators Zp, harp', 1r1'+$1', harp'+b' commute in virtue + (&'—&)' cothl I, (2.2.10)
of (2.2.6a). L, 2 i

Using (2.2.5), (2.2.7), and the change of variables
/ / X 1'1 which follows by transformation theory from a cele-e= sky'm0coj K, we obtain

brated summation formula discovered by Mehler. "
52 Equation (2.2.8) becomes

(21r) ' dk exp( —ik q") exp —z—
J „ 2tÃ0

2

(mph) '

I (21'(us)—
& exp( —hp1szp)&xi

+p1Lp+-', nzpp1P (q1'P+ qp'P) exp (ik q') x(h'I Ps a ol81)(6'I Ps.ss ol b)

(11pM) ' t'

I
(21r)-', ' d~p exp( —iappp")

&a&

hp)s(1 8 i'
Xexp —

I . I
exp(ip'ptp')

2 Ei 8(p'i

(nzgg) *

(2mfipps) '*

(b I Pa.sc.ol cosh(Apts)$1 —i s1nh(Apts)$)p

(4 IV@ ss oli sinh(k~s)gj+cosh(AMS)gp).

Substituting (2.2.10) into this equation and taking
the limits $1'-+$1, b' —+pp in the 6nal results leads after
some manipulations to the following:

Xexp—
Ap1s (1 8 p'

I

——
I
+$1" exp(io.1&1')

2 &i 8p, 'i
f

(2m)
—') dk exp( —ik q') exp —s 2

q

2820

X (21r) ')t dop exp( iop&p")— +(oLp+-', nzpp1'(q1"+qp") exp(ik. q')

Xexp
AMs (1 8 )'

I

——
I
+tp" exp(i~ps')

2 E~ 8(,'i
(2.2.8)

(27rBIp) * @MS

h' i sinh(fiprs)

We shall require two identities. The first is This result for the coordinate diagonal matrix elements
of the density operator is independent of coordinates as

exp(i8Zp)F((1, pp, gp) =F(t1*,$p*,gp*), (2.2.9) it must be for a "nonlocalized" particle in a box.
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Equations (2.2.3) and (2.2.11) imply

I22rnpp) l 0 /
&+'" dse'e I5(us

x(E)= l l
' —,(2.2.12)

h' ) 22ri, ;„s5/2 sinh(I5p/s)

where we no longer require the principal value sign.
As mentioned in Sec. 1.1, once X(E) is known for

separable systems of the type considered in this paper,
the question of determining their equilibrium properties
is virtually solved.

We now proceed to compute the magnetic moment of
our electron ga s. We shall omit the straightforward but
lengthy contour integrations since they are available in
reference 2. We wish to emphasize the circumstance
that our method of computing the expression for the
number of orbital states having energy less than E in

(2.2.12) is completely different from the one in this
reference.

From (2.1.12) performing the indicated contour inte-
grals, we find

i22r//25)
'* /." pr

'* (E /5H—)
l Q(/5H) /

(/J, H) l

2r=' (E+//, H) ' 4 (E /5H)—'
+—2r

*'

6 3(/ H)' (/ H)'"

4 fE+/5H) *' 2 cosh1
+—n='

3 pr(pH) ~p(~H) 5/2

/
1 1 1 ) Bfp(El P,()

(y 6 sinhy) BE

t'
expl —

y l

/H i
y5i2

Combining Eqs. (1.4.13), (1.4.14), (2.2.13), and
(2.2.14), we conclude the following:

(22r2/55) l 0 /
&+'" e'e I5pps

dE'~(E') —
l h' ) 22ri~, ;„S'/2 Sinh(/r/p/S)

(22rmp) l

I fl(/H) /—
h' ) 3 EpH)

47/' oo 1

P/5H ~=& 25*

|'25( 1i '

sin%'
(/2H 4)

(2.2.15)
ir2S

sinh
P//tH-

g (Eip/2 1 pao+~'I
I

+-
15 (/5H) (/ H)'*

(22'/2pq ' I" pr
* (E ///H)'—

F cV(=
l

—
l

Q(—pH)5/' dE—
( h')

t' E ) 1 y 1
&«xpl—

//H ) y 6 sinhy

(—)" nE 1t-—2Q cos2r ——
i U(E), (2.2.13)

~=i (252r)'" /5H 4 l

where p —=eh/22/5pc.

We shall now require the asymptotic formula

pr
'*(E+/5H)'* 8 pr 'fE /J,H)5/2—+—

6 (/5H) ' 30 (/5H) 5/2

8 (E+/5H) '" 2
+—1r ' +—cosh1~ dy

30 (/5H)'" m.

» f'1 1» Bf.(El~,()
&«xpl—

/2H i Ey 6 sinhy) BE
2m/ 8

dE exp (E () f—o(EIP,t).pII BE

sinh

(2.2.14)
7r l

4x & ~

P/5H ~=i 25*

( 25/ 1i
Coal

(/5H 4)
(2.2.16)

sinh
P//H &

valid when
l
a

l
((( and P())1.We shall identify /5 with

&pH in the following, so that both inequalities will
hold for degenerate electron gases subjected to the mag-
netic fields currently available. M=Mg+M2, (2.2.17)

where (x)—=0 for x(0 and (x) =—x for x)0, so that the
fractional powers of E&//H in (2.2.15) cause no difFi-
culties.

The results for the magnetic moment are given below:
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1 1
pH&(—, (&—t, (2.2.18a)

it dominates Ms. If inequalities (2.2.18a) hold, then

Mr=Mp. un+ Mzsadau,

where the meaning of M~ and 3f2 is explained in the
following.

M& represents the nonoscillatory, or "normal" portion
of M. If

a
trace exp( —s@)=P exp( —sE„) (A.2)

for Re{s))0 in terms of

Let pE~ denote the energy eigenvalues corresponding
to the eigenket

I pn) of @p, where n=1, 2 g(p). As
the perturbation changes from 0 to some "small" oper-
ator, the pE„go to eigenvalues E~ of g).

Ke shall now calculate

8 amp&

ML. p.„—=—— (2i p)lp',
3 h'

(2.2.19)

a
trace exp( —sOp) =P exp( —spE~), (A.3)

which corresponds to the unperturbed problem, and
~pauli = 3~Landau' AE„=—E„—pE„. (A.4)

where t p is the Fermi energy for T=O and H=O,
3fL d,„is the orbital diamagnetic moment discovered
by Landau" and Mp, „&; is the spin paramagnetic mo-
ment pointed out by Pauli ""

If

1
m'/PfJH (1, (2.2.18b)

then M&, which is given by

3'
M=

PpH (pH)

(~ l~{q
sinI-

E4 pH)

l' sinh

(2.2.20)

APPENDIX

Let @, @p, and @r have the same meanings as in
Sec. 1.1, so that

@=@p+@r,

where Qt is "small" compared with @.We suppose
that both @and. @thave pure-point spectra.

is appreciable, and may even dominate M~. From
(2.2.20), we see that Ms exhibits characteristic oscilla-
tions whose frequency is proportional to 1/H. These
oscillations are qualitatively of the same type as those
observed by de Haas and van Alphen. "

Ke shall say nothing concerning the ingenious, but
rather artiicial elaborations of the foregoing work using
effective mass concepts, " although we could easily
include such schemes in our calculation of $(E). We
hope that the perturbation-theoretic procedures in Secs.
1.2 and 1.3 will aid in approaching the problem of cal-
culating M on the basis of the Hamiltonian in (1.4.1),
without the introduction of these concepts.

Let »~, „(r=1, 2, ) be the contribution to»~N
in (A.4) according to rth-order perturbation theory, so
that

AE„=PAE„,„~.
v=1

(A.6)

From (A.2), (A.3), (A.S), and (A.6) we obtain

trace exp( —sQ) = trace exp( —s@p)

CL a
—sg exp( spE )», r +—P exp( spE )—

X s»„,s + (»— t )' +O—s (A7)
2

where 03 corresponds to terms containing products of
5E„,„such that the sum of their r's is greater than 2.
It is easy to see that these terms involve products of
three or more matrix elements of @t.

It is well known that if we choose a set of eigenkets

I pn) such that

(P IO IPP&=~-e(p IC IP & (A.8)

for every Pxess p, which we can always do by appro-
priate linear combinations of the g(p) linearly inde.
pendent eigenkets of @p belonging to pE~, then

». -=(p-IC
I p-),

From (A.4), we have

exp( —sE„)= exp( —spE ) exp( —shE~ )

- (—)"
=exp( —spE„)P s"(hE )" (A.5)

n=p

88 One can derive the normal magnetic moment by expanding
K(E) in (2.2.12) in powers of H up to quadratic terms using
(1.4.Q).

I(P~I CrIP'i)) I'
n

p'+P pEq' —pZ„
(A.9)
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In order to complete our derivation, we shall also
require the following formulas:

P exp( —zpE~)AE„, p= trace{@q exp( —z@p)), (A.10a)

&p'Pl @~Ip ) exp( —szoE.)

a
=zE

I &p~ I@~Ip~& I' exp( —zoE.)

cr exp( —zpE„)—exp( —zpE„)+ 2 I &p~ I Cil p'~) I'
O~y' 0~y

exp( —zpE„)+», I&p~lZ Ip'~)f'
OEy OEy

1

=stcece o, exp( —s@ ) I ds exp(ss@,)

@&exp( —sz@o) . (A.10b)
t

~ ~

To prove (A.10a), we merely evaluate trace(@&
exp( —z@o)) in terms ot the basis Ipa&, using (A.8)
and (A.9).

To prove (A.10b), we employ the two last equations
as follows:

a, P
=z p &pnt @qtp'p& exp( —zpE„) ds exp(szpE„)

which can be readily seen to be equivalent to (A.10b).
Q.E.D.

Combining Eqs. (A.7), (A.9), and (A.10), we arrive
at the following result:

trace exp( —zg)) = trace exp( —zQo)

—z trace{@~exp (—z@p))

+-',z' trace @g exp( —z@p) ds
0

&(exp(sz@)@~exp( —szQp) +Op. (A.11)

Comparing (A.ll) with (l.Z.P), we see that the series
for trace exp( zQ) —computed by means of degenerate
perturbation theory, neglecting 0, terms, agrees with the

Schwinger trace formula, throwing away terms with n~&3
ie the latter.

It is of interest to compare the methods of this
appendix with those of Peierls. '


