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The 1952 data used by DuMond and Cohen in an evaluation of
the atomic constants are analyzed for the presence of systematic
errors by a variance analysis performed by an electronic digital
computer. For simplicity the velocity of light is treated as a Axed
constant of known value and there remain then eleven linear equa-
tions in four unknowns subject to least-squares adjustment.
Least-squares adjustments of 219 over-determined subsets of
these equations have been made and y' has been evaluated for
each such subset. An analysis of these data indicates that small
systematic errors are most likely to exist in the following input
data: (1) The determination of the Faraday by the silver volt-
ameter. (2) The determination of the cyclotron resonance fre-
quency of the proton by the inverse cyclotron method of Bloch
and Jeffreys. (3) Certain of the higher voltage determinations
of h/e by the continuous x-ray quantum limit. In descending order
of magnitude of disc'repancy from the remaining data on the
constants are the determinations of (a) Felt, Harris, and DuMond
made at 24500 volts, (b) Bearden and Schwarz at 19600 volts,

(c) Bearden and Schwarz and also Bearden, Johnson, and Watts in
the region between about 10kv and about 6 kv. An analysis of the
various observations taken by these observers at diGerent voltages
reveals a possible systematic trend when discrepancy is plotted
against either voltage or window width in volts. Conjectures to
account for the eBect are discussed.

The modifications called for by this analysis yield a new 1955
adjustment in which g' is smaller than it was for the November,
1952 adjustment. The new x2=3.25 is satisfactorily close to its
expected value, 3. Thanks to the fact that the error measures
adopted in the November, 1952 adjustment for the output values
were conservatively based on the criterion of external consistency,
the changes in the values occasioned as a result of the present
analysis are all well within those estimated limits. A welcome
effect of this new adjustment is that the adjusted output value of
X,/X„ the conversion factor from Siegbahn s z-units to milli-
angstroms, now lies much closer to the input value. A new table of
constants and conversion factors is presented.

I. INTRODUCTION

'N an article' published in 1953 (herein designated.. as DC 53) two of us, from carefully selected high
precision measurements of quantities related to the
atomic constants, formed an over-determined set of 13
equations in the following five unknowns; the fine-
structure constant, n, the velocity of light, c, the
electronic charge, e, Avogadro's number F, and the con-
version factor, X,/X„ from x-units (Siegbahn) to milli-

angstroms. By the method of least squares this set was
then solved for the "best" values of these unknowns.
In that paper it was noted that x', the measure of the
incompatibility of such an over-determined set of
equations, turned out to be considerably larger than
its expected value which is just the number of degrees
of freedom of the set, namely eight. This could as
stated at that time, be ascribed either to the estimated
error measures of the input data having been chosen
too small or to the presence of unsuspected systematic
errors in certain of the input data. In DC 53, in addi-
tion to the complete set of 13 equations, three subsets
called Cases II, III, and IV (see Table III, page 702
of that paper) were also subjected to least-squares
analysis. In these subsets diferent groups of the equa-
tions were omitted to see if such omissions might yield
values of x' more nearly in line with statistical expecta-

*This study was supported by the U. S. Atomic Energy Com-
mission.' J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25,
691 (1953).

3

tion. No very conclusive evidence of systematic error
could be drawn from these groups, but it was realized
that this exploration of the consistency measures of
subgroups was very far from being exhaustive. At that
time the labor of performing a completely exhaustive
survey of x' for all possible over-determined subsets of
the 13 equations would have delayed the publication of
the results unduly. For this reason the measure used
to fix the standard deviations of all of the output values
in DC 53 was based on external rather than internal
consistency so as to reflect in the error measures the
incompatibility of the 13 equations on which the ad-
justed values were based.

We have not been sxtis6ed however with this com-
promise and have felt that further eGorts should be
made to uncover, if possible, evidence for systematic
errors in some of the data of the 13 equations which
were used in DC 53. It was decided therefore to attack
the problem by a form of analysis of variance. In
such an analysis a large number of overdetermined
subsets are subjected to least-squares adjustment and
g' is determined for each. Inspection of these data may
then lead to the desired clues regarding the where-

abouts of systematic errors.
Least-squares adjustments are very laborious, par-

ticularly if they are carried through to an evaluation
of x'. The task of making an exhaustive exploration of
all of the signi6cant subsets of the 13 observational
equations of DC 53 and obtaining a value of x' for each
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would be prohibitive by hand. Digital computers are
on the other hand well adapted to just such work.

In order to minimize the expense both for program-
ming and for time on the computer it was decided to
eliminate one unknown, the velocity of light, c, from
the least-squares adjustment treating this quantity
instead as a fixed known auxiliary constant. Reference
to Table IV, page 704 of DC 53, giving the error matrix
and the matrix of correlation coefficients, shows that c
is much more weakly correlated to the other unknowns
than any of the rest and its retention in the variance
analysis would therefore have been expensive and
practically valueless.

II. THE MEASURE OF CONSISTENCY, g'

As explained in DC 53 the experimental data com-

prising the measured values of some 14 physical quanti-
ties, six of which are so accurately known as to be
appropriately treated as auxiliary fixed constants, are
combined to form 13equations [(8.1) to (8.13),page 7017
in the five primary unknowns n, c, e, X, and X. (X=X,/X„
the conversion factor between x-units in Siegbahn's
scale and milliangstrom units. ) Each of these equations
is of the form of a simple product of powers of the
primary unknowns

ct'c&'e" =A (1—r)

equated to A, the numeric which results from the physi-
cal measurement. If we were to put true values of the
variables, o., c, e, etc. , into the left-hand side of this
equation we would, in general, not obtain the number,
3, since it is the result of measurement and therefore
subject to error. We must include the factor (1 r) in-
order that the equation shall be valid. The quantity, r,
is the actual relative error in the measured quantity, 3,
and is, of course, beyond our ken. Let there be m equa-
tions of the type (1) above, each with its exponents

i„, j„, etc., its numeric A„, and its relative error r„. As
explained in DC 53, the theory of least squares leads
to the conclusion that if the error distributions for the
various physical measurements, A„, are Gaussian and
have estimated standard deviations (root-mean-square
deviations), o„, the best choice for the set of r„, i.e.,
that set whose probability of occurrence is maximum,
is the choice which minimizes the sum

(2)

This is the "least-squares" condition: The e equations
(1) can be thought of as solved for the residues, r„,
written as functions of the unknowns n, c, e, etc., and
we seek that set of values for the unknowns which
minimizes the sum of the squares of the quotients of
each residual divided by its standard deviation.

If the distributions of the errors of measurement are
other than Gaussian the condition of Maximum Likeli-
hood as expressed above is too specialized, but it has

been shown' that independent of any assumptions
about the shapes of the distribution curves of errors
save only that the standard deviations, o„, exist (i.e.,
are finite) in each case, the least-squares condition (2)
above is equivalent to the condition that the resultant
solution shall be that set which has minimum root-
mean-square deviations.

For convenience in effecting the least-squares adjust-
ment, the system of equations of type (1) is "linearized. "
We adopt origin values o.o, co, t,'0, etc. , which have been
chosen sufficiently close to our expected solution that
any set of values o., c, e, etc., in which we are likely to
be interested will diGer from these individual origin
values by only small relative amounts; that is no, co, eo

are so chosen that x = (n —np)/np, x,=c—cp/cp are
always small, and we then express the experimental
measurements in terms of these dimensionless variables
x, x„x„etc.To each type of experimental determina-
tion of a function such as Eq. (1) there corresponds a
hyperplane

i,x +j„x,+k„x,+ . =a„r„, —(3)

which is tangent to the curved surface typified by
Eq. (1).The constant, u„, is defined as (A&—A„p)/A&p,
in which A„p is the value of the function (1) when the
origin values no, co, eo, etc. , are inserted in the left
member. The orientation of this plane in the hyperspace
depends on the exponents s„,j„,k„.. of (1) i.e., on the
coeKcients i„, j„,k„of (3), while the origin distance of
the plane depends on a„.The entire status of our knowl-
edge regarding the "best" values of o,, c, e, etc., to fit
the data is contained in the way these various planes
intersect each other to define some compromise point,
taking into consideration the relative reliability of the
positioning of each plane, i.e., the magnitude of the
standardard error o„.The function, Q, of Eq. (2) which
is to be minimized is an expression of the second degree
in the variables x, x„x„etc., and the minimum condi-
tion is obtained by equating to zero each of the partial
derivatives of Q taken with respect to each variable in
turn. It is easy to show that this process is equivalent
to the following simple recipe for forming the so-called
"normal equations": Write down the system of e
observational equations, (1), omitting the residue, r„,
in each case. Assign to each equation a weight

P„=C/o. „',

where the constant C may have any convenient numeri-
cal value. To obtain the normal equation for a given
variable (i.e., the one which expresses the condition
that the partial derivative of Q with respect to that
variable shall vanish), multiply each of the linearized
observational equations (with r„omitted) by the coeK-

2 E. R. Cohen, Revs. Modern Phys. 25, 709 (1953); E. Whit-
taker and G. Robinson, Calculus of Observutions (Blackie and
Sons, Ltd ), fourth editi. on, p. 224; R. L. Plackett [Biometrika
36, 458 (1949)g has traced the origins of the generalized theorem
of least squares for non-normal distributions to Gauss, Laplace,
and MarkoG.
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cient of the variable in question in that equation and
by the weight assigned to that equation and add these
individual expressions together to give a single "normal"
equation. Repeat for each variable, and in this way
construct a set of q simultaneous equations for the q
unknown quantities, x, x„x,etc.

The solution is completed by inserting the values
obtained for the x's into the original set of observational
equations and 6nding the associated residuals; the
values of the residuals computed using the solution of
the normal equations we shall denote as E„(anumber)
to be distinguished from r„which is a function of the
unknowns x, x„x, . The minimum value of the
quadratic expression Q, Eq. (2), is y', the measure of
consistency of the set of e observational equations. x'
now can be computed.

X'=Z(~.'/a. ') (5)

The expectation value of x' is m —q. This difference
e—

q is called the number of "degrees of freedom" of
the over-determined set of observational equations.
Thus, taking as an example the set of 13 linearized
observational equations in Ave unknowns which formed
the basic data of DC 53 t designated as Eqs. (8.14) to
(8.26), page 702 of that paper] the value of ys for the set
was 52.1 while the expected value was 13—5=8. The
ratio r,/r;= Ly'/(rt —t7)]& is the generalization to multi-
dimensional space of R. T. Birge's' ratio of the measures
of external and internal consistency. In the above ex-
ample r,/r; was 2.55. This means that the error measures
to be associated with the least-squares adjusted output
values of x, x„x, etc., must be scaled up, from the
expected a priori values which one would assign to them
calculated on the basis of the estimated 0.„'sof the input
quantities, tt„, by this factor r,/r; in order to reflect the
incompatibility of the observational equations with
each other. If r,/r; is significantly greater than unity
this can mean either that the estimated 0„'s of the in-

put data were chosen too small or that the input data
contain systematic errors.

The method of computing the error measures and
correlation coeKcients of the output x's from the inverse
of the normal equation matrix is explained in detail in
DC 53 (Sec. 4) and will therefore not be repeated here.

R. A. Fisher has tabulated' the values for which the
probability, e, that p' shall be greater than, or equal to,
xo' takes particular values ~=0.99, 0.98 - 0.001 for
different numbers of degrees of freedom, no=1, 2 30.
This table is reproduced here for the first eight degrees
of freedom (see Table I).

Reference to this table shows that the probability of
getting y' as great as or greater than 52.1 for the case
of 8 degrees of freedom is less than 0.001.

The object of our analysis was then to determine x'
for a large number of significant subsets of the equations

e R. T. Birge, Phys. Rev. 4P, 213 (1932).
4 See Table XIV in Fisher's Statestecat Methods for Research

Ifroyhers (Oliver gr Boyd Ltd. , Edinburgh).

TABLE I. Values of g~ as function of e and m. '

Degrees
of

freedom
m 0.99 0.98 0.95 0.90 0.80 0.70 0.50

1 0.000 0.001 0.004
2 0,020 0.040 0.103
3 0.115 0.185 0.352
4 0.297 0.429 0.711
5 0.554 0.752 1.145
6 0.872 1.134 1.635
7 1.239 1.564 2.167
8 1.646 2.032 2.733

0.016
0.211
0.584
1.064
1.610
2.204
2.833
3 490

0.064
0.446
1.005
1,649
2.343
3.070
3.822
4 594

0.148 0.455
0.713 1.386
1.424 2.366
2.195 3.357
3.000 4.351
3.828 5.348
4.671 6,346
5.527 7.344

Degrees
of

freedom
m 0.30 0.20 0.10 0.05 0.02 0.01 0.001

1 1,074 1.642 2.706 3.841
2 2.408 3.219 4.605 5.991
3 3.665 4.642 6.251 7.815
4 4.878 5.989 7.779 9.488
5 6.064 7.289 9.236 11.070
6 7,231 8.558 10.645 12.592
7 8.383 9.803 12.017 14.067
8 9.524 11.030 13,362 15.507

5.412
7.824
9.837

11.668
13.388
15.033
16.622
18.168

6.635 10.827
9.210 13.815

11.341 16.268
13.277 18.465
15.086 20.517
16.812 22.457
18.475 24.322
20.090 26.125

n= np(1+10—'xt);
e= ep(1+10—'xo);

X= ivp(1+10 'xo);

) =)~p(1+10 'xe);

np =0.007297000 (8)
co=4.802200X10 io (9

Xo=0 6025000X10" (10)
Xp= 1.0020200. (11)

a Table I is abridged from Table III of Fisher: "Statistical Methods for
Research Workers, " published by Oliver and Boyd, Ltd. , Edinburgh, by
permission of the author and publishers.

of observation. Since the number of subsets is large, it
seemed desirable to plan the work in such a way that
the digital computer would automatically explore the
subsets according to prearranged rules. We shall now
explain brieAy what equations were used, how they
were coded, and the manner in which the computer
program was carried out.

III. SETUP OF THE SYSTEM OF EQUATIONS
FOR THE ANALYSIS OF VARIANCE

The 13 linearized equations of observation (8.14) to
(8.26) in DC 53 (page 702) are written in five un-
k.nowns x1 to x3 which correspond in the order named
to the primitive variables, n, c, e, tV, and X()i=)io/)I.,).
We drop Eqs. (8.14) and (8.15) and substitute a
fixed value for x2, namely

xs ——9.98+1.0 (ppm). (6)

This is the unknown which corresponds to the velocity
of light and the value here chosen corresponds to fixing
that velocity at

c= 299793.0~0.3 km sec ' (7)

in accord with results obtained by Bergstrand and also
by Froome. This leaves us with a set of 11 equations in
4 unknowns corresponding to the primitive variables
n, e, X, and ). In the present paper we shall designate
the linearized unknowns with symbols x& to x4 defined
as follows:
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TABLE II. Observational equations, sources of data and coding numbers.

Equation
Kind serial

number number

5

g]
3xg x2

x4 ——0
g3+3x4 =3.5—40

= —2.3

g2+X3
g2+X3

3xJ,+2g2+ g3

3xj+2x2+ge

gi+ X2

Xg+ X2

Xg+ X2

= 11.1
=2.2—24 9

= 13.5

g4 ———11.6
x4 ———3.4
x4 ———. 5.6

Equation
(The x's are parts in 106) Weight

0.11
0.07
4.92
0.19

0.58
0.25
0.08

0.83

0.04
0.06
0.015

Description of experimental source

Xg/X. =1.002020
ÃX' (Birge's average)
DayhoG fine structure splitting in deuterium
Thomas, Driscoll, and Hippie, gyromagn. ratio of

proton
Iodine Faraday by electrochemistrySilver
Bloch and Jerries,

inverse cycl.
Sommer, Thomas, and

Hippie, omegatron
Felt, Harris, and DuMond Short wavelength
Bearden, Johnson, and Watts limit of continuous
Bearden and Schwarz x-ray spectrum

Eq. ref.
DC 53

(6.8)
(6.12)
(6.13)

(6.7)
(6.3)
(6.4)
(6.5)

(6.6)

(6 9)
(6.10)
(6.1 1)

These x's must not be confused with those of DC 53
both because the subscripts are diGerently associated
with the primitive unknowns, and because these new
x's represent relative deviations from the origin values
in parts per hundred thousand instead of parts per
million.

In Table II we show the 11 equations in four un-
knowns which form the object of our analysis of vari-
ance. The equations are grouped into "kinds, " each
kind of equation determining a particular linear com-
bination of the unknowns. At the left appear two code
numbers which label these equations as follows: The
first column gives the code number designating the
"kind" of equation. When there is more than one equa-
tion of a given kind these are distinguished from each
other by a second code number appearing in the second
column. It will be noted that there is only one equation
of each of the first four kinds. There are two equations
belonging to each of the next two kinds; and the last
kind has three equations. In Table II on the right of
each observational equation the experiment which
yielded the corresponding information is briefly de-
scribed. (in almost every equation other experimental
measurements of much higher accuracy than the one
named may also have been involved in determining
the numeric, but the one named is in each case the only
one which contributes materially to the estimated
uncertainty of that equation. ) On the extreme right
in Table II appears the equation number as it appeared
in DC 53. The reader is referred to these equation
numbers in that article for a fuller discussion of the
sources of data and references to the original articles.

The primary purpose of the entire investigation is,
of course, to try to select a subset of the equations of
Table II from which the most reliable adjusted values
of the four unknowns can be deduced. Let us call this
our A objective. A common sense approach would then
be to search for a subset, which determines all four
unknowns and whose y~ is the smallest. Care must be
taken in evaluating the significance of these values of
p' since they are computed from sets which have been

specially selected and not randomly chosen. Thus, it is
not strictly correct to use Fisher's table (Table I) to
evaluate the probability of an observed value of y' for
these sets, but one would tend to give more weight to
the sets with the greatest number of degrees of freedom
because such sets repose on a broader experimental base.

A closely related secondary objective is to try to
locate which, if any, of the 11 equations of Table II
are likely to have systematic errors. We shall call this
our 8 objective. One way of doing this is to examine
those subsets whose y"s are much larger than the ex-
pected value to see if the presence of certain equations
in such sets and their absence in other sets with smaller
x"s may be used as evidence that those equations have
systematic errors. A still better way (which we shall
call the "method of increments to y"') is to make an
exhaustive investigation of the effect on y„' of adding a
specified equation to each and every subset not already
containing that equation. The new subset will have one
more degree of freedom than the original one but, if the
new p' exceeds that of. the old subset by much more
than unity, one has an indication that the equation so
added may contain a systematic error, or that its ac-
curacy has in some other way been overestimated.

For the present analysis of variance, 219 subsets of
the equations listed in Table II were selected and the
y' was determined for each. The selection rules for the
first 171 subsets were chosen with the A objective
chief in mind and with the idea of economizing on
computing machine time. The following were the rules
for selection of these subsets:

(a) Not more than one equation. of any one kind
should be included in any one set, and (b) with this
restriction, all sets should be examined which over-
determine all the unknowns. The first 171 subsets
examined, Tables III, IV, and V exhaust all the possi-
bilities under these rules of selection. Admittedly this
is not an exhaustive or complete analysis of variance
however since (a) it omits all over-determined subsets
containing two or more equations of the same kind
which were excluded under the (a) selection rule, and



ANALYSES OF VARIANCE OF DATA ON ATOMIC CONSTANTS 367

(b) the form of the equations in Table II is such that
certain over-determined subsets exist which do not
over-determine all four unknowns. LTable V(a) lists
48 subsets of this latter type. $ Before discussing the
reason for adopting these selection rules we shall first
explain the symbols used to identify particular subsets
because this terminology facilitates the discussion.

The computer symbol used for identifying a particu-
lar subset of the equations of Table II is a number with
one digit for each kind of equation. Each digit is the
serial number of the equation of the corresponding kind
included in the set, the position of the digit indicating
the kind number. A zero in any position means that that
kind has been omitted altogether. The set symbol
1110203 thus indicates inclusion in the set of the first
equations of kinds 0, 1, and 2, omission of kind 3, in-
clusion of the second equation of kind 4, omission of
kind 5, and inclusion of the third equation of kind 6.
It is also convenient to designate groups of sets accord-
ing to the kinds of equations excluded or included with-
out specific reference to which equation of any given
kind is to be selected. Thus the set with symbol 1110203
belongs to the group designated by the group symbol
L11101011.

Consider now the rule that not more than one equa-
tion of any one kind should be included in the subsets
to be examined. %e can examine all the subsets satis-
fying this rule and belonging to a speci6ed group, for
example the group L1110111).There will surely be one
of these subsets whose x' is the smallest, say the set
1110123.As far as our A objective is concerned, once
we have found this subset there seems little information
of value likely to be gained by considering subsets in
which one or more additional equations of any one of the
kinds are added since such subsets will surely have
greater x'. Such subsets must however be considered if
we are to apply the method of increments to x' ex-
haustively.

The restriction (b) to examine (subject to the first
selection rule) only those sets which determine all of
the unknowns eliminates from consideration certain
degenerate subsets. This restriction was also obviously
framed with reference to our A objective.

After the calculations of x"s for the 1/1 selected
subsets were completed, Professor John Tukey of
Princeton University (to whom we are much indebted
for valuable advice and guidance) pointed out that the
8 objective wouM be best served by accumulating as
much statistical evidence as possible for or against the
liklihood of systematic error in any given equation of
Table II. To do this quite exhaustively by examining
the increments in x' resulting from the addition of a
given equation to a/1 subsets, we should have evaluated
p' for many subsets which we had not considered.

Fortunately however the evidence we have obtained,
though admittedly only partial, seems quite suKciently
clear-cut to satisfy both A and 8 objectives.

C 'k=xs, (12)

where k is the "normal vector" consisting of the nurneri-
cal constants forming the right-hand members of the
normal equations. The precision of xo was improved by
iterating:

Lk;=k —C x;

x;+i—x;=C 'kk;.
(13)

(14)

In general two cycles of iteration reduced all elements
of Ak; to less than the tolerance of 0.0001. (For both
the x's and the k's one unit represents a relative devia-
tion from the origin value of 1 part in 10'.)

It was found to be economical to compute g' from
xo', the sum of normalized residues for @=0, by using

x'=xa' —k x. (15)

Provision was made so that all of C, k, C ', and x
could, if desired, be printed as they were obtained so
that the adjusted values, variances and covariances
of the unknowns could be found for any set of equa-
tions. In a survey of a large number of sets, however,
this printing was omitted because it would have re-
quired 30 seconds for each set as against 12 seconds for
the calculations and for printing y' with the group of
digits identifying the set.

A great deal of preliminary labor was eliminated by
preparing, not a detailed list of equations for each set,
but the single list of 11 equations of Table II and
building into the program means by which sets would
be selected automatically according to the prearranged
selection rules (a) and (b) explained in the last section.

A list was prepared by hand, giving all sets of kinds
(i.e., all "groups") of equations satisfying the selection
rule (b), namely the sets must over-determine all the
unknowns. For each set of kinds the machine generated
all the sets of equations required and calculated x' for
each set as it was generated, printing only the set
symbol and the value of y'. The more interesting of
these cases, as judged by examining the x"s were then
reexamined in greater detail. Provision was made for a
slight modification in the program so that the machine
would calculate for a hand-prepared list of particular
sets of equations (the interesting ones to be reexamined)

e P. S. Dwyer, Linear ComPutations (John Wiley and Sons,
Inc. , New York, 1951),p. 191.

IV. METHODS WITH DIGITAL COMPUTER

The major calculations described in this paper were
carried out on the Electrodata Datatron digital com-
puter. The program was designed to carry out least-
squares adjustments on sets of linear equations in
either four or five unknowns, and to derive y' for the
adjusted values. The normal equations were solved by
inverting the (real symmetric) normal matrix, C, using
the Gauss-Doolittle method given by Dwyer (1951).'
The unknowns x& x4 which we shall symbolize with
the vector, x, were then obtained by solving
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O SIGN CHECK
y2 I(6—

063 {A))O

PRINT

A ND hIt

QE

FORM

=+424 - ka

6I P R INT a

I

TAPE
ITERATE

a-a m C '(k- Cab)-
UNTIL IE ~ Cab

RESET READ IN GROUP SET THE SIGNAL

GROUP (SET)~ (OR SET) SYMBOLS SE- ————- 6666996666
TALLY AND OUTPUT SKIPS IN A AND STOP b

8 QSI

COLLECT GROUP (A) )0 EXTRACT Nx Wl

(SET) SYMBOL GROUP SYMBOL

AND TEST SIGN /TAPE/ GIVE Nx
fGROUP(

(A) )0 (SET TAPE)

TALLY a=

TALLY + I

0

A=0

SET
A= hx

$ CHECK

SET

Bb40

B-

SET (Lg=
CON TR IBUTIONS

OF EQN. K, hx

SKIP
SET

PRINT C

FROM (L6)

SIGNAL INDICES

OF WRONG 56
ELEMENT

FAILS

CHECK ALL

ELE MENTS

OFC, C '

SKIP SET

SKIPSET SKIP SET
I(

PRINT C PRINT x

FROM (L6) FROM (L6)

ADD (LS) TO (Le)

[CAND x] AND

ADD K,hx TO

gu) 42

SET
B= K

REARRANGE C

IN (LS) AND(L6) ~
FORM AUXILIARY

MATRIX IN (LS) Q3
AND (Le)

FORM C IN (LS)

FIG. i.Block diagram of the steps in machine computations of z . It will be noted that certain operations of printing can be bypassed,
see blocks 50, 51, 57, 61. This was done to save computer time on the first exploratory run in which only the set symbol and z~ were
printed for each set. Later the more interesting sets, as judged by the x"s, could be printed out in full detail as regards the C and C '
matrices and the k and x vectors.

TABLE III. Equations in 3 degrees of freedom.

Designation of Eq. set

13.71
19.34
26.91
25.21
30.66
38.14
Io3.25
07.71
15.01
11.29
17.33
24.92

1111223
1111222
1111221
1111213
1111212
1111211
1111123I
1111122
1111121
1111113
1111112
iiiiiii

all the pertinent data and print the complete results:
normal matrix, normal vector, inverse matrix, adjusted
values of the unknowns, x', and set symbol.

As already stated, p' was computed and printed for
171 sets, covering all cases under selection rules (a) and
(b). From these, 26 sets were selected for recomputation
with complete printing out of all details. At a later date
the 48 additional sets of Table V(a) were computed.
These are the sets which, though over-determined, fail
to over-determine all four unknowns.

The entire work of checking the code to be fed into
the machine, as well as performing the calculations for
the erst 171 sets, examining the x"s for the interesting

cases, and recalculating and printing the details occupied
somewhat less than a "block" of time (6 hours). The
net time expended in calculation and printing was only
a little over one hour.

A full account of the computer program, including the
complete code and a detailed Qow sheet is given in a
Special Technical (A.E.C) Report LNo. 18, Contract
AT(04—3)—63$ now available for private circulation.
We reproduce here in Fig. 1 a block diagram of the
steps in machine computation. The code is designed for
the use of anyone wishing to perform similar variance
analyses in as many as 50 equations of 10 kinds in 5
unknowns.

V. RESULTS OF THE VARIANCE ANALYSIS

Subject to the selection rules (a) and (b) the equa-
tions of Table II yielded 12 subsets of 3 degrees of
freedom, 64 subsets of 2 degrees of freedom, and 95
subsets of 1 degree of freedom. We list here, in Tables
III, IV, and V, the sets in 3, 2, and 1 degrees of freedom,
respectively.

We shall abbreviate the words "degrees of freedom"
with the symbol d.f. and shall refer to the y"s of a whole
class of those sets containing a given kind of equation
and a given equation of that kind by writing the kind
number in parenthesis after the symbol y' with the
equation number as its subscript. Thus X'(63) refers to
the class of all xE's of sets containing equation number (3)
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TABLz IV. Equations in 2 degrees of freedom.

09,34
16.29
24.05
16.99
27.10
35.04
03.22
07.55
14.81
08.50
16.80
24.57
03.09
07.33
14.55

Designation
of Eq. set

1110223
1110222
1110221
1110213
1110212
1110211
1110123
1110122
1110121
1110113
1110112
1110111
1111023
1111022
1111021

04.44
11,46
19.20
03.96
05.91
12.04
03.08
06.78
13.72
10.93
16.17
23.66
22.43
27.55
34.95
10.33
21.75

Designation
of Eq. set

1111013
1111012
1111011
1111203
1111202
1111201
1111103
1111102
1111101
0111223
0111222
0111221
0111213
0111212
0111211
1111220
1111210

02 ~ 72
06.99
14.24
10.47
16.35
23.90
13.00
19.11
26.34
24.50
30.48
37.63
03.24
06.65
13.11
00.44
07.52

Designation
of Eq. set

0111123
0111122
0111121
0111113
0111112
0111111
1011223
1011222
1011221
1011213
1011212
1011211
1011123
1011122
1011121
1111120
1111110

x'

11.27
16.07
22.92
08.78
09.28
13.45
20.23
20.77
24.96
01.59
02.65
07.48
08.86
10.41
15.6S

Designation
of Eq. set

1011113
1011112
1011111
1101223
1101222
1101221
1101213
1101212
1101211
1101123
1101122
1101121
1101113
1101112
1101111

of the sixth kind (the last equation in Table II). Inspec-
tion of Table III shows that, in every 3 d.f. case,

x'(6 ) &x'(6 ) &x'(6 ),
there being four such triplets for comparison. Exactly
the same statement is true in every 2 d.f. case, there
being among these 20 triplets for comparison. In the 1
d.f. cases the same statement can be made for 27 out
of the 29 triplets. The remaining two exceptional
triplets are listed in Table VI.

The evidence seems strong, therefore, that the third
equation of kind 6 yields better consistency in nearly
every instance than the second equation of this kind,
and that the second equation of this kind yields better
consistency than the first.

A similar inquiry as regards .the two equations of
kind 5 leads to the conclusion that, in all six cases of 3

d.f., all 29 cases of 2 d.f., and in 29 out of a total of 33
cases of 1 d.f., Eq. (52) yields lower x' than Eq. (5&).
Also, as regards the two equations of kind (4), it appears
that (4~) gives lower x' than (42) in all six cases of
3 d.f., in 24 cases out of 26 of 2 d.f., and in 15 cases out
of 33 of 1 d.f. Tables VII and VIII show the few excep-
tions to the very strong trends we have described.

The evidence for the trend, x'(4~)(x'(42), is ad-
mittedly not quite as strong as for the other two trends
because of the rather large number of exceptions (18)
in the 1 d.f. cases. Of these 1 d.f. exceptions 15 are actual
reversals of the trend and three are stalemates in which
x' is unchanged by going from Eq. (4&) to Eq. (42).
The trend is so strongly indicated in the 3 d.f. and
2 d.f. cases, to which we attach much more significance
however, that we believe it is quite clearly indicated.

Having now arrived at the conclusion that, among

TABLE V. Equations in 1 degree of freedom.

02.17
04.73
11.08
04.42
10.09
17.35
00.00
00.05
00.49
00.70
00.70
02.97
04,01
10.81
18.55
07.93
19,96
27.99
02.72
06.93
14.15
06.13
15.12
22.96

Designation
of Eq. set

1110023
1110022
1110021
1110013
1110012
1110011
1110203
1110202
1110201
1110103
1110102
1110101
0110223
0110222
0110221
0110213
0110212
0110211
0110123
0110122
0110121
0110113
0110112
0110111

07.58
16.21
23.80
14.15
26.99
34.80
03.22
06.45
12.79
08.26
15.56
22.70
00.87
01.21
05.12
01.80
03.00
07.92
01.59
02.64
07.48
02.78
05.06
10.76

Designation
of Eq. set

1010223
1010222
1010221
1010213
1010212
1010211
1010123
1010122
1010121
1010113
1010112
1010111
1100223
1100222
1100221
1100213
1100212
1100211
1100123
1100122
1100121
1100113
1100112
1100111

05.25
10.25
00.43
02.82
03.08
05.89
11.94
0.271
06.89
14.10
04.34
11.45
19.19
03.08
05.89
11.94
03.08
05.89
ij 94
01.58
02.60
07.36
04.13
07.46
13.52

Designation
of Eq. set

1110220
1110210
1110120
1110110
1111003
1111002
1111001
0111023
0111022
0111021
0111013
0111012
0111011
1011023
1011022
1011021
1011013
1011012
1011011
1101023
1101022
1101021
1101013
1101012
1101011

x'

00.36
00.17
01.60
03.40
09.42
02.63
06.26
13.19
03.08
05.89
11.94
03.08
05.89
11.94
00.35
00.31
03.08
01.56
02.54
07.27
02.27
00.42

Designation
of Eq. set

1111020
1111010
0111203
0111202
0111201
0111103
0111102
0111101
1011203
1011202
1011201
1011103
1011102
1011101
1101203
1101202
1101201
1101103
1101102
1101101
1111200
1111100
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TABLB V(a). xs for additional sets violating selection rule (b).

07.73
07.73
07.73
19.12
19.12
19.12
00.00
00.00
00.00
06.78
06.78
06.78
07.73
07.73
07.73
19.12
19.12
19.12
00.00
00.00
00.00
06.78
06.78
06.78

0011223
0011222
0011221
0011213
0011212
0011211
0011123
0011122
0011121
0011113
0011112
0011111
0101223
0101222
0101221
0101213
0101212
0101211
0101123
0101122
0101121
0101113
0101112
Oioiiii

07.73
07.73
07.73
19.12
19.12
19.12
00.00
00.00
00.00
06.78
06.78
06.78
07.73
19.12
00.00
06.78
07.73
19.12
00.00
06.78
07.73
19.12
00.00
06.78

1001223
1001222
1001221
1001213
1001212
1001211
1001123
1001122
1001121
1001113
1001112
1001111
0111220
0111210
0111120
Oiiiiio
1011220
1011210
1011120
1011110
1101220
1101210
1101120
1101110

TABLB VI. Exceptions to the rule, xs(64) &x'(64) &x'(6&).

x2(63)

the equations of kinds 4, 5, and 6, those which give almost
invariably the lowest x"s are (4&), (5&), and (64), we
now call attention to perhaps the most significant result
of all which is the fact that, among the 12 sets of 3 d.f.
in Table III (no kinds omitted), by far the best 7f' is
associated with the set 1111123.The expected value of
7t' for all these sets is 3 and li' (1111123)=3.25 is in
strikingly good agreement with this, whereas the x'
of all other 11 sets is much larger ranging from 7.71
to 38.14. Interpolation in Table I shows that the odds
are about 35 to 65 for getting x' in excess of this value,
3.25. It seems to us that this set, 1111123,is therefore a
satisfactory answer to our A objective.

We cannot claim in this discussion to have made the
most exhaustive possible eGorts in the direction of our
8 objective, the accumulation of all possible evidence
for or against the liklihood of systematic error being
present in each of the 11 equations. To make such a
complete search it would be desirable to explore the
effect on x' of adding each of the 11 equations in turn
to all sets not already containing that equation, and
our present computer program has not covered enough
cases to permit this.

Table V(a) gives )t' for 48 interesting subsets of
equations which are exceptions to selection rule (b)
in that, although they are over-determined by 1 degree
of freedom, none of them over-determines all the un-
knowns. This situation arises because the 48 sets of
Table V(a) all contain equations of kinds 3, 4, and 5
which are not algebraically independent. These three

TABLE VII. Exceptions to the rule, Xs(5&) &xs(5,).

x (»)

x'(1011023)= 3.08
x'(1011022)= 5.89
x'(1011021)= 11.94
x'(1111020)=00.36

x'(»)

x'(1011013)= 3.08
x'(1011012)= 5.89
x'(1011011)= 11.94
x'(1111010)=00.17

sets, which are 1 degree of freedom systems, the fourth
and fifth equations (the ones beside 3, 4, and 5 which we
choose) do not contribute to the over-determinateness.
The x' value is determined entirely by the consistency
of the over-determined set of 3, 4, 5. If this triplet
of equations were consistent, as —G4+as should be zero
and hence the inconsistency is measured by the square
of the residue (as —G4+as)'. If the standard deviations
of the a's are 03, o-4, and o.

q then we have

a3—a4 a5 '
x'=

Gs'+~4'+Gs'

The very low value, x' (4t,5&)=0.00122 is a result of
the excellent agreement between the following ex-
perimental values: The proton magnetic moment of
Sommer, Thomas, and Hippie

p'= 2.792685&0.000030
(before diamagnetic correction),

the gyromagnetic ratio of the proton of Thomas,
Driscoll, and Hippie

equations are of the following form'.

3+1 +2

vs+ms ——G4

—3xt+2xs+xs ——as.

If we add the first and third equations and subtract
the second the result is

0= as —G4+as&

and the numerical values of the a's will in general fail
to satisfy this relationship.

We see from Table V(a) that the 48 sets can be
grouped into four classes each characterized by a
different value' of p', which is determined by the choice
of the equations of kinds 4 and 5. Those sets which con-
tain (4&) and (5t) yield )t'=6.78; those which contain (4t)
and (5s) yield x'=00.00 (more accura, tely this value is
0.00122); those which contain (4s) and (5r) yield
7f'= 19.12; and (4s,) (5&) yield I'= 7.73. The explanation
of this lies in the fact that from equations of the kinds 3,
4, and 5 we can only evaluate 3x&—x& and x&+x4 and we
still need two other equations to complete a just-determi-
nate solution for our four unknowns. Thus in all these

x' (1101203)=0.35
x'(1110103)=0.70

x'(1101202)=0.31
x'(1110102)=0.70

x'(1101201)=3.08
x'(1110101)=2.97

y=26752.3~0.6 sec ' gauss '

the atomic mass of the proton (regarded in our analysis
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as a fixed auxiliary constant)

M„=1.007593,

and the Faraday constant measured with the iodine
coulometer of Vinal and Bates

L.S. adjusted
values of
linearized
unknowns
(in ppm)

L.S. adjusted values of
primitive variables

Change in
ppm from

DC 53

TABLE IX. Least-squares solution of the set 1111123.

&=9652.15+0.13 emu (g mole) ' (physical scale).

The iodine value of Ii is to be compared with the value
computed from y, M„and p'

F=yM„/ltd' =9652.16&0.25.

@1= 39 2

x2= 137.2
x3 — 23.7
x4 —— 19.4

o.=7.29728X10 '
n '=137.0373

e=4.80286X10 I esu
lV= 6.02486X1011 (g mole) ' Phys.

Xg/A, = 1.002039

3—3
49

22.3—23.5

Ke thus have strong corroborative evidence that the
iodine Faraday is more likely to be correct than the
silver Faraday, and hence that Eq. (41) is to be
preferred to Eq. (4s).

If we now utilize our selected best set of equations,
1111123,we obtain the least-squares solution given in

TABLE VIII. Excspt1011s 'to the 1'lllc x (41)(x (41).

x (4.)
2 degrees of freedom

& (4)

x'(1111202)= 5.91
x'(1111201)= 12.04

1 degree of freedom

x'(1111102)= 6.78
x'(1111101)= 13.72

x'(1110203)= 0.00
x'(1110202)= 0.05
x'(1110201)= 0.49
g'(1100223)= 0.87
x'(1100222) = 1.21
x'(1100221)= 5.12
x'(1100213)= 1.80
x'(1100212)= 3.00
x'(1100211)= 7.92
x'(0111203)= 1.60
x'(0111202)= 3.40
x'(0111201)= 9.42
x'(1101203)= 0.35
x'(1101202)= 0.31
x'(1101201)= 3.08
x'(1011203}= 3.08
x'(1011202)= 5.89
x'(1011201)= 11.94

x'(1110103)= 0.70
x'(1110102)= 0.70
xs(1110101)= 2.97
x'(1100123)= 1.59
x'(1100122)= 2.64
x'(1100121)= 7.48
x'(1100113)= 2.78
x'(1100112}= 5.06
x'(1100111)= 10.76
xs(0111103)= 2.63
x'(0111102)= 6.26
x'(0111101)= 13.19
x'(1101103)= 1.56
x'(1101102)= 2.54
x'(1101101)= 7.27
x'(1011103)= 3.08
x'(1011102)= 5.89
x'(1011101)= 11.94

Table IX. The result, x'=3.25, yields for the ratio of
the scales of error by external and internal consistency
the very satisfactory value

~./~'= I:x'/(~ —
V) 1'*=1o4.

Table X lists the error elements by external con-
sistency (which now differ insignificantly from those by
internal consistency).

It is to be noted that the adjusted values of the un-
knowns yielded by this new adjustment differ from
those of DC 53 by amounts which are entirely inside
the standard error ranges of the 1953 adjustment.
The new standard errors are however considerably
smaller than those of DC 53.

e
N

ling/l1.

ErrOr matriz, es2 ——O&O7r&2 (in ppm2)
a e N

21.52 62.50 —60.60
62.50 373.2 —480.0—60.60 —480.0 726.0
17.70 139.6 —210.6

Standard errors cr& (in ppm)

17.70
139.6—210.6
204.2

4.65 19.30 26.9 14.5

probability, which our variance analysis has raised,
of their containing systematic errors. These equations
correspond respectively to (4s), the determination of
the Faraday by the silver voltameter, (51), the measure-
ment of the magnetic moment of the proton by the
inverse cyclotron method of Bloch and Jeffreys, (61)
the x-ray continuous spectrum quantum limit determi-
nation of the conversion constant from wavelengths in
x-units (Siegbahn scale) to quantum energy in electron
volts ("h/e" experiment) at 24.5 kv by Felt, Harris,
and DuMond, and (6s) the same experiment at 10 and
6 kev by Bearden, Johnson, and Watts.

The fact that the Faraday determinations by the.
electrolysis of iodine are in better accord with the con-
sensus of the data on the atomic constants than are the
Faraday determinations using silver has been realized
and pointed out now for many years. The reason is
still obscure. Both determinations were made long be-
fore the existence of isotopes was suspected. The fact
that natural iodine is an isotopically pure substance
while silver has two isotopes in nearly equal abundance
has been often suggested as possibly having a bearing
on this but the work at the U. S. National Bureau of
Standards undertaken by Craig and Hogan to clear
up these questions seems so far to be inclusive. The
discrepancy here is nearly four times the value to be
expected from the estimated standard errors of the
measurements.

The results of our analysis of variance indicate that
the discrepancy of 114 ppm between the inverse cyclo-
tron measurements at Stanford University by Bloch
and Jeffreys and the "omegatron" measurements at the

TAaLz X. Error elements by external consistency for 1111123.

VI. DISCUSSION OF THE REJECTED EQUATIONS

Possib1e Sources of Systematic Error

We have rejected from our new adjustment the equa-
tions (4s), (51), (61), and (6s) because of the strong

e
N

x,/x,

1.000
0.697—0.485
0.263

0.697
1.000—0.922
0.500

—0.485—0;922
1.000—0.538

Correlation coefficients rs&

0.263
0.500—0.538
1.000
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TABLE XI. X-ray quantum limit determinations.

Experimenters

BJW~
BSb
BSb

BSb
BSb

BJWa
BSb
BSb
FHDe

Nominal
voltage

6112
8050
8050

8050
9860

10168
19600
19600
24500

a
(volts)

0.27
0.37
0.37

0.37
0.47

0.48
0.96
0.96
6.0

hc2/(ey, /g, )

12370.8
12371.9
12371.0

12370.1
12370.1

12371.2
12371.9
12370.1
12370.0

Discrepancy
(ppm)

—116—28—101

—174—174

—80—28—174—177

Discrepancy
(volts)

—0.7+0.4—0.2+0.5—0.8&0.5

—1.4W0.5—1.7+0.5
—0.8&0.6—0.6&1.1—3.4&1.1—4.3&1.3

Remarks

W target
Cu target

(
3 observations
Mo, Ta, Au targets
W target
2 observations
Cu, Ni targets
W target
W target, W 61.
W target, Ox. Cath.
W target, W fil.

a Bearden, Johnson, and Watts, Phys. Rev. 81, 70 (1951).
b J. A. Bearden and Guenter Schwarz, Phys. Rev. 79, 674 (1950).
e Felt, Harris, and DuMond, Phys. Rev. 92, 1160 (1953).

United States National Bureau of Standards by
Sommer, Thomas, and nipple on the magnetic moment
of the proton, should be resolved in favor of the omega-
tron results. This conclusion has recently been corrobo-
rated at the Clarendon Laboratory, Oxford University,
England, where D. J. Collington, A. N. Dellis, J. H.
Sanders, and K. C. Turberheld have repeated the
inverse cyclotron measurement, using instead of "dees"
a straight-sided central conductor connected to the rf
supply and two grounded outer segmental conductors.
Their result (uncorrected for the diamagnetism of the
proton resonance sample) is

p„'=2.79273+0.00004 nuclear magnetons, '
which diGers from the omegatron value by only 16 ppm,
an amount which is well within the probable error of
the diGerence. Great care was taken to eliminate from
the construction of the apparatus all material which was
suKciently magnetic to disturb the field in the region
of the proton orbit by as much as 5 ppm. These workers
state that most samples of brass tested had an unac-
ceptably high susceptibility. The presence of slightly
magnetic materials might well account for the low re-
sult obtained in the Stanford experiments.

The measurements of the short wavelength limit of
the continuous x-ray spectrum have been made over a
sufBciently wide range of voltages to permit a con-

. jecture as to the cause of discrepancy. The measure-
ments published by Bearden, Johnson, and Watts,
hereafter designated as BJW were performed at two
diGerent voltages and those of Bearden and Schwarz,
hereafter designated as BS were made at four diGerent
voltages. As a result the voltage resolving power of the
two-crystal spectrometer these workers used was diGer-
ent for these different voltages, the half-width at half-
maximum height of the spectral "window" expressed
in volts being greater at the higher voltages. The work
of Felt, Harris, and DuMond (FHD) done at the highest
voltage of all had a still wider spectral window width in
volts.

6 J.H. Sanders (private communication, May 4, 1955); see also
Letter to the Editor by Collington, Dellis, Sanders, and Turber-
field, Phys. Rev. 99, 1622 (1955).

Vs)to= hc'/(ehg/)t, ) (16)

then permits calculation of the universal constant,
h/e, provided the constants c and )t,/)t, are given. (In

Vl
4I-
0
2
to
(7l
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O

0
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FIG. 2. Eleven determinations of the quantum limit of the con-
tinuous x-ray spectrum measured at six diGerent applied voltages.
If we assume as an arbitrary reference a constant value of the
voltage-wavelength conversion factor (the value of DC 53) the
ordinates in this 6gure represent in volts how much the position
of the observed first point of maximum bending in the intensity
curve di8ered from the calculated position, while the abscissae
give the applied voltages at which the determinations were made.
The choice of a straight line for the least-squares 6t to the points
is purely hypothetical.

Table Xl lists these diGerent experimental results in
order of increasing voltage. The first point of maximum
bending of the observed isochromat (or spectral in-
tensity curve) was assumed in all this work as the true
location of the quantum limit. As we shall see, the
results cast some doubt on the exact validity of this
assumption. Each experimental determination is ac-
tually aimed at measuring the quantum energy-wave-
length conversion factor, VOX, O, relating energy, Vo, in
volts to the corresponding x-ray wavelength Ao on the
Siegbahn scale in x-units;



ANALYSIS OF VARIANCE OP DATA ON ATOMIC CONSTANTS

FIG. 3. Eleven determinations of
the quantum limit of the continuous
x-ray spectrum measured at six differ-
ent applied voltages. Here the same
data as those of Fig. 2 are plotted as
ordinates, but the abscissae are the
half-widths at half maximum height
of the spectrometer window curve in
each case. The choice of a straight
line for the least-squares it to the
points is purely hypothetical.
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this equation e is expressed in absolute electrostatic
units, V in absolute electromagnetic units. )

The column labeled "a (volts)" gives the half-width
at half-maximum height of the spectrometer "window"
curve. The column labeled "hc'/(eX, /l1„) gives the
observed value of the voltage-wavelength conversion
factor. The point of maximum bending is used as the
criterion to determine the threshold. The columns
labelled "discrepancy" give the relative and absolute
deviations of each experimentally determined voltage
threshold from the value required to give the DC 53
least-squares adjusted value for hc9/(el1. ,/l1.,) =12372.2
kilovolts x-units.

Because the diGerent experimenters listed in Table
XI used different values for the constants c and l1„/X,
to calculate their results as to h/e we have recomputed
and listed what they actually measured before these
constants were ntr ioduced, namely the conversion
factor Pphp from volts to x-units. If no systematic
or random errors were present the result as to this
conversion factor should be the same at all voltages,
but instead there seems to be a systematic trend toward
higher values of Vip as one goes toward higher voltages.
We take our least-squares adjusted value (DC 53)

hc'/(el1, ,/l1„) = 12372.2 kv x-units (17)

as an arbitrary reference against which to compare
these results. The columns in Table XI marked "dis-
crepancy" give the di6erence, expressed in parts per
million and also in volts, between the observed quantum
threshold position (first point of maximum bending)
and the calculated position based on Eq. (17). The

column marked u gives the calculated half-width at
half-maximum height, expressed in volts, of the spectra-
"window" curve or acceptance band of the spectroml
eter. Figure 2 exhibits the discrepancy from the refer-
ence value as a function of voltage and Fig. 3 shows the
same quantity as a function of spectral window half-
width, a.

Our present conjecture is that the cause of systematic
error may reside in the method used for locating the true
threshold from the experimentally observed x-ray in-
tensity curves. This supposition is based on the fact
that the systematic trend exhibited in Fig. 2 and Fig. 3
seems to indicate an increasing discrepancy or system-
atic error either with increasing voltage at which the ex-
periment is performed or with increasing spectral windom
width. In Fig. 4 we reproduce one of the isochromats
from the FHD determination on which we have marked
at A, the point of maximum bending and at 8, the
point at which the quantum threshold should occur to
accord with the value of Eq. (17).The variation of about
3.7 volts exhibited by the least-squares adjusted line
of Fig. 3 is the same order as this separation between
points A and 8 of Fig. 4. So much care was taken in
the matter of both voltage and wavelength measure-
ments in the FHD determination (about which one of
us had direct knowledge) that it is very hard to
believe so large a discrepancy could be the result of
errors in these measurements.

Figure 5 shows how the point A of maximum bending
in Fig. 4 was determined by plotting the third deriva-
tive of the isochromat and locating its zero point. The
third derivative was obtained by means of a numerical
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FIG. 4. One of the isochromats taken at 24.5 kv by FHD. The
position, A, marks the point of maximum bending, determined by
the method of Fig. 5, and the arrows indicate the estimated un-
certainty in locating this position while the position 8 is the cal-
culated position of the quantum limit based on the least-squares-
adjusted best value of the voltage-wavelength conversion factor
from the DC 53 adjustment.

interpolation Inethod using points at equidistant
abscissa spacings on the smoothed curve of I'ig. 4. The
method is of course no more precise than the smoothing
of the curve is reliable, and the assigned error in Fig. 5
was based on variations in the location when the curve
was smoothed by diferent people. This same error
spread is shown in Fig. 4 by the arrows on either side of
the abscissa location A.

In the case of all the experiments listed in Table XI,
save those of 8JW, the method of isochromats was used.
This consists ideally in monochromatizing an x-ray
beam and measuring the continuous spectrum intensity
associated with the selected wavelength as a function
of the voltage applied to the x-ray tube. The resulting
curve is called an isochromat. (In the case of BJW the
voltage was fixed and the wavelength variable, but this
difference is of no consequence. ) In practice the "mono-
chromatization" will actually consist of selection from
the continuous spectrum by a monochromator whose
band pass curve has a sharp peak at some determined
wavelength with asymptotic decay on either side. The
dynamical theory of x-ray reRection in perfect crystals
leads one to expect an inverse square law of asymptotic
decay at large distances from the peak of this mono-
chromator window curve, even when the two-crystal
spectrometer is used. As a result of this unavoidable
experimental impurity the sharpness of definition of the
continuous spectrum threshold is blurred because the
observed intensity curve is the fold of the true spectrum
into the window curve of the monochromator. It has
been shown in an earlier paper' that if E(s) is the ob-
served intensity curve, where s stands for a variable
proportional to the voltage if the curve is an isochromat,
and f(s) is the curve expressing the ideal shape of the
continuous x-ray spectrum, that

F(s) = g(x)f(s x)dh. —(Is)
~ g=x

7Panofsky, Green, and DuMond, Phys. Rev. 62, 215 (1942).
See See. II.

Herein we choose s=0 to be the quantum limit of the
ideal spectrum so that f(s) =0 for s&~0. Here the mono-
chromator window curve is the function g(x) and the
upper limit of the integral is x=s, since the ideal spec-
trum vanishes there, i.e., f(s—x) =0 for x&~s.

The continuous x-ray spectrum from a thick target
descends to meet the background at the quantum
threshold in a more-or-less linear way with however
certain localized breaks in slope or "knees" so that the
curve becomes increasingly steep as the threshold is
approached. Quite close to the threshold (within 10 or
20 volts) certain irregularities first reported by Ohlin'
appear in the continuous spectrum which are believed
to be related to the banded structure of (I) the incom-
pletely filled energy levels of structure electrons in the
solid target material, and (2) the losses sustained by the
bombarding electrons due to energy communicated by
them to structure electrons. '

An earlier method of locating the true threshold from
the observed intensity curve was to project a tangent
to that curve, from some point on it just above the
threshold region where a stable slope seemed to have
been attained, downward to the background level,
taking the intersection of this tangent therewith as the
true threshold point. If the window curve had wings
whose asymptotic approach to the background was
faster than the inverse square law this method might be
made reliable, but it is not so as the case stands. Even
a strictly linear spectrum without irregularities or
breaks in slope, when folded into such a window curve
with inverse square "tails, "will give a curve whose slope
increases logarithmically without limit as we go up from
the threshold so that there is no definite correct point
from which to draw the tangent. Window curves of the
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FIG. 5. The third derivative of the isochromat of Fig. 4. The
mean crossover or zero point of the two curves was used to locate
position A in Fig. 4. The assigned error in this position, which
corresponds to the uncertainty indicated with the arrows in
Fig. 4, was based on the spread in results obtained when the curve
of Fig. 4 was smoothed through the observed points by diGerent
people.

s P. Ohlin, Arkiv Mat. Astron. Fysiir 29A, No. 3 (1942); 298,
No. 4 (1942); 31A, No. 9 (1944); 33A, No. 23 (1946).

s 3. R. A. Nijboer, Physica 12, 461 (1946).
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FIG. 8. Calculated curves of F"', the third derivative of the
isochromat assuming a witch-like g-curve and a true spectrum
with a precipice as well as a second-order discontinuity at the
quantum limit. The parameter 8 attached to each curve is the
ratio of the overshoot, sy„ to the window half-width, a. The shift
with increasing 8 in the crossover or zero point of these curves
away from the quantum limit at s'=0 is clearly evident. These
curves are to be compared with the curve of Fig. 5. The sym-
metry of the upper and lower portions of the latter curve indicate
that a value of 8 can hardly be ascribed to it much larger than 0.5.

curves, the primitive and its first derivative, may in-
deed result in a peak in the F"(s) which is considerably
shifted from the true quantum limit in just the direction
which the observations show. It remains to investigate
whether this explanation is quantitatively plausible as
regards the magnitude of the shift. To test this we have
assumed the window or g curve to be a "witch" of the
form:

This is the simplest curve which has the appropriate
inverse square behavior in its approaches. It may fail
to represent the true window curve somewhat by hav-
ing its points of inflection occur too near the peak
(at @=a/V3 in fact). Substitution of (22) into (21)
gives us the curves shown in Fig. 7 in which the shifts
of the peak of the P' curve are clearly evident. One
more differentiation gives us the P" curves of Fig. 8,
the shifts of whose zero points can be seen.

Let ds represent the shift in the position of the
maximum of the F"(s) away from the true quantum
limit, shifts to the left in Fig. 4 being counted as positive
for convenience. Let a be the half-width at half-maxi-
mum height of the g-curve [witch, Eq. (22)g, and z& the
overshoot as defined in Fig. 6. We show in Fig. 9 a plot
of As/sq as a function of a/sq for the witch. Points on
this curve corresponding to different values of ds/u
are also shown. The largest value of As/a, the slope of
the curve of Fig. 9 at the origin, is As/a=1/W3, and we
see that in this region As/sj, behaves almost linearly with
a/sq. According to Fig. 9 then, when the window half-
width is much larger than the overshoot, the shift in
the point of maximum bending away from the true
quantum threshold is of the order of the overshoot and
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FIG. 9. The ordinates show the ratio of shift, bs', to overshoot,
sI,. The shift, hs, means the amount by which the point of maxi-
mum bending of the isochromat is shifted away from the true
quantum limit assuming a witch-like window curve and a true
spectral profile incorporating both erst- and second-order dis-
continuities at the quantum limit after the manner of Fig. 6.

hs/sq cannot exceed unity. When the window half-
width is of the order of or smaller than the overshoot,
the shift is proportional to the window half-width and
for a witch-shaped window the ratio As/a cannot
exceed 3 '.

Now if we assume that the overshoot, zy„expressed
in volts is independent of the voltage at which the ex-
periment is performed and that the shift As is pro-
portional to window half-width, a reference to the
experimental data of Fig. 3 shows from the slope of the
line that As/a must be of the order of 0.6. Not only is
this ratio uncomfortably large but, much worse, this
hypothesis requires us to suppose that at the small
window half-widths below 0.5 volt, such as that of
IIJW at 6 kv, the overshoot is so much larger than the
window half-width that the presence of the precipice
should be manifest in the experimental intensity curve.
Nothing of this sort however appears there. We must
therefore abandon this assumption.

Thus, if we are to explain the shift it appears neces-
sary to make the hypothesis that the overshoot, hs,
varies with the voltage on the x-ray tube, becoming
smaller at lower voltage, and that the window half-
width, a, is large compared to the overshoot s~ so that
we are working in the upper right-hand region of the
curve of Fig. 9 where As—sI,.

It may not be implausible that the magnitude of the
overshoot of this conjectured precipice should vary with

applied voltage. Other features of the isochromat curve,
such as the apparent distance of the Ohlin peaks from
the first point of maximum bending seem to vary con-
siderably with voltage. If the overshoot, s~, and there-
fore the shift As were known to be approximately
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proportional to the applied voltage then an extrapola-
tion of the straight line of Fig. 2 to zero voltage might
be expected to give a better value of hcs/(ego/)i, ) than
any of the observations. No comprehensive theory of
the radiative interaction between high-voltage bom-
barding electrons and a real crystal lattice taking into
account modern knowledge of the solid state has yet
been attempted however and help from such a theory
is probably needed before further progress can be made.

From the experimental side there is little hope of
improving the spectral resolving power attainable with
crystal diffraction much beyond what has been so far
attained.

Sote added August 10, 1955.—We are indebted to Professor
John Tukey of Princeton University for certain privately com-
municated comments received after this paper had been accepted
by the editors. Professor Tukey feels that it is wrong in principle
to select the equation set (1111123)merely on the grounds that its
x'(=3.25) falls very much closer than that of any of the other
3-degree-of-freedom sets to the expected value x'=3. He much
prefers the method of increments to x' because it is a more con-
clusive method than the one we have used for the purpose of
pinning suspicion of systematic error on specific equations. He
therefore urges us still to make a complete exhaustive analysis
involving determinations of p' for equation sets containing
more than t)ne equation of each kznd.

This would involve the additional evaluation of y' for 4 times as
many equation sets as we have already done, if only one equation
were added to a single kind in each set, or 19 times as many if all
possible combinations were explored. Our original restriction to
sets with only one equation of each kind (selection rule, a) was
to economize on the heavy expense for programming and for
computer time. Neither funds nor other facilities are at present
available to the authors of this paper to carry out Professor
Tukey's suggestions.

We admit the cogency of Professor Tukey's contention, tf the

Problem had to be solved by the varz'ance analysis alone without sup-
port from physical considerations. However, we do not claim
that the value, x'=3.25, by itself consitutes a compelling reason
for the choice of the set (1111123).Rather we regard it merely as a
clue pointing out which equations to suspect in order that we may
examine these more closely from the point of view of physics.
In experimental physics most error estimates are at best very
rough, and there is therefore wide room for honest differences of
opinion as to how much money and effort it is wise to spend on
the analysis of data whose weights must necessarily reflect this
roughness. We understand Professor Tukey's eagerness as a
mathematical statistician to see this variance analysis pursued
exhaustively and regret that it is beyond our present means to do
so. We believe however that even in its present fragmentary state
it has served very usefully.

In discussing our choice of the set (1111123),Professor Tukey
makes an important and valuable point. He notices that the next
larger x' (=7.71) among the 3 d.f. sets, corresponding to the set
(1111122) is "still quite bearable. " (According to Table I the
chance of x' exceeding 7.71 is about 5%.) If it is a permissible set
at all, since this set uses Eq. (62) of weight 0.06 in place of
equation 63 of weight only 0.015, it should be a stronger set,
Professor Tukey argues. If both equation sets are acceptable, we
presumably should combine them using due weights, he quite
logically concludes.

When Professor Tukey's remarks were made, he had not been
informed as yet about the voltage-dependent systematic trends
(Table XI and Figs. 2 and 3) which appear when the individual
measurements constituting the data of (6s) and (6&) are more closely
examined. In the light of these trends and our surmise as to their
origin we believe that a still better procedure than taking a

TABLE XII. Auxiliary constants.

Rydberg wave number for in6nite mass*

R =109737.309&0.012 cm '
Rydberg wave numbers for the light nuclei

Ryg = 109677.576+0.012 cm '
RD= 109707.419&0.012 cm '

RH, &= 109717.345+0.012 cm '
RH, 4= 109722.267+0.012 cm '

Velocity of light

c=299793.0&0.3 km sec '
Atomic mass of neutron (physical scale)

n = 1.008982&0.000003

Atomic mass of hydrogen (physical scale)

II= 1.008142+0.000003

Atomic mass ratio of hydrogen to proton*

P/3E„=1.00054461 (Computed using atomic mass of electron,
sVm =0.00054875)

Atomic mass of the proton* (physical scale)

3E„=1.007593+0.000003

Atomic mass of deuterium* (physical scale)

D= 2.014735+0.000006

Atomic mass ratio of deuterium to deuteron*

D/Me 1.00027244——(Computed using atomic mass of electron,
iVm= 0.00054875) (physical scale)

Ratio of electron magnetic moment to proton magnetic momenf
of Koenig, Prodell, and Kusch' without diamagnetic correction*

PM„/(ill'mti')g(1+n/2sr 2 97 —3'/n. )x658 2=288&.0 0004.
Correction factor ti,/tio for anomalous magnetic moment ot

electron*

ti,/tip = (1+n/2x —2.973ns/v') = 1.0011453
(Computed using the value 1/n= 137.04)

Gas constant per mole (physical scale)

Rp ——(8.31696+0.00034)X10' erg mole ' deg '
Standard volume of a perfect gas (physical scale)

t/'0= 22420.7&0.6 cm3 atmos mole '

a KoeIIig, Prodell, aIId Kusch, Phys. Rev. 88, 191 (1952).

weighted average of the results, (6s) and (6s), is to select from both
of them those tsidhvsdlat determssiattols Performed at the lowest
voltages. Nine of these, 2 from (6&) and 7 from (6i), form a quite ho-
mogeneous cluster in the voltage range 6112 to 10168.No deter-
minations have been made at voltages below this range. The
weighted mean results of this cluster is

hP/(ego/li, ) = 12370.8&0.2 kilovolt x-units,

wherein the standard deviation, &0.2 is merely an index of &he
disagreement among the results of the 9 diferent measurements
and does not reflect any allowance for the now-very-likely sys-
tematic error of the group mean (because of the use of the criterion
of maximum bending). Froin the slope of the straight line in Fig. 2
this systematic error couM well be of the order of a vojt at the
group-average voltage of 8000 volts. This corresponds to a shift
of 1.5 kilovolt x-units in hP/(el', /7~,). Thus the numerical value
obtained as the mean from the selection of the individual data of
Eqs. (6&) and (6&) does not differ significantly either as to value
or probable weight from the one we have actually adopted using
the results of Kq. (6i) namely

hP/(e&o/h ) = 12370.77&1.03 kilovolt x-units.
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TABLE XIII. Least-squares adjusted output values. The quantity following each + sign is the standard error. In the present
adjustment. , unlike that of DC 53, there is no significant difference between the scales of error by internal and by external consistency.
Attention is called to the fact, that the quantities in this table are observutionally correlated so that in the computation of the error
measures of derived values dependent on two or more of the values in this table the method explained in DC 53, Secs. 4 and 10 must be
used. Table X of this article gives the elements of the error matrix to be used in such computations.

Avogadro's constant (physical scale)

Ar=(6.02486+0.00016)X10» (g mole) '

Loschmidt's constant (physical scale)

Io=E/Vo=(2. 68719~0.00010)X10"cm '
Electronic charge

e= (4.80286&0.00009)X 10 "esu
e'= e/c= (1.60206&0.00003)X10» emu

Electron rest mass

m= (9.1083+0.0003)X10 "g
Proton rest mass

m„= 7rln/fV = (1.67239~0 00004) X10 oo
g

Neutron rest mass

r»„=»/A'= (1.67470a0.00004)X10 o4
g

Planck's constant

h= (6.62517+0.00023)X10 'r erg sec
A=h/2s-= (1.05443&0.00004)X10 "erg sec

Conversion factor from Siegbahn x-units to milliangstroms

Xo/X, = 1.002039&0.000014

Faraday constant (physical scale)

F=Ne= (2.89366+0.00003)X10'4 esu (g mole) '
F' =Ne/c= (9652.19+0.11)emu (g mole) '

Charge-to-mass ratio of the electron

e/m= (5.27305+0 00007)X10"esu grn '
e'/m= e/(mc) = (1.75890&0.00002)X10' emu gm '

Ratio h/e

h/e= (1.37942+0.00002) X10 "erg sec (esu) '

Fine structure constant

n= o'/(Ac) = (7.29729~0 00003)X10 '
1/n = 137.0373&0.0006

n/2~ = (1.161398a0.000005)X 10-o
no= (5.32504&0.00005)X10 '

1—(1—no}&= (0.266252+0.000002)X10 '
Atomic mass of the electron (physical scale)

Arm= (5.48763&0.00006)X10 '
Ratio of mass of hydrogen to mass of proton'

P/M = 1— (1——',no)

= 1.000544613&0.000000006

Atomic mass of proton (physical scale)
M' =H —Xm = 1.007593&0.000003

Ratio proton mass to electron mass

2f'„/(Arm) = 1836.12+0.02

Reduced mass of electron in hydrogen atom

p =raM„/H = (9.1034+0.0003)X10~' g

Schrodinger constant for a fixed nucleus

2»o/ho= (1.63836+0.00007}X10o'erg ' cm o

Schrodinger constant for the hydrogen atom

2p/Ao = (1.63748+0.00007)X10 r erg ' cm~

First Bohr radius

ao=ko/(me') =n/(4s. R )
= (5.29172+0.00002) X 10 ' cm

Radius of electron orbit in normal IP, referred to center of mass

ao' =ao(1—n') l = (5.29158&0.00002)X 10~ cm

Separation of proton and electron in normal H'

ao"=ao'R~/Rrr= (5.29446+0 00002)X10 ' cm

Compton wavelength of the electron

X„=h/(mc) =no/(2R ) = (242626+00002) X10 "cm
K„=7„/(2or) = (3.86151&0.00004)X 10 "cm

Compton wavelength of the proton

Xn, =h/(woe) = (13.2141+0.0002) X10 "cm
lt,„=X,„/(2v) = (2.10308+0.00003)X10 "cm

Compton wavelength of the neutron

X, =h/(m„c)=(13.1959&0.0002)X10 '~ cm
K,„=X,o/(2or) = (2.10019+0.00003)X 10 "cm

Classical electron radius

ro=e'/(mc')=no/(4sR )
= (2.81785+0.00004) X10 "cm

ro'= (7.94030&0 00021)X10~o cm

Thomson cross section

(8/3)s.ro'= (6.65205+0.00018)X 10~' cm'

Fine structure doublet separation in hydrogen

AErr = (1/16)Rrrno L1+n/or+ (5/8 —5.946/s o)n' j
=0.365871+0.000003 cm '
= 10968.56&0.10 Mc sec '

Fine structure separation in deuterium

AEn= AErrRo/Rrr =0.365970+0.000003 cm '
=10971.54+0.10 Mc sec '

7eeman displacement per gauss

(e/ma)/(47rc)= (4.66885+0.00006)X10 o cm ' gauss '

Boltzmann's constant

k=Ro/X= (1.38044&0.00007)X10 "erg deg '
k= (8.6167+0.0004)X10 ' ev deg '

1/k= 11605.4+0.5 deg ev '

First radiation constant

cq=gshc= (4.9918+0.0002)X10 "erg cm

Second radiation constant

c~ ——hc/k = 1,43880&0.00007 cm deg

Atomic specific heat constant

co/c= (4.79931+0.00023)X10 "sec deg

Wien displacement law constant

X,„T= co/(4. 96511423)=0.289782+0.000013 cm deg

Stefan-Boltzmann constant

o = (s-'/60) (k4/hoc') = (0.56687+0.00010)
&(10 4 erg cm~ deg 4 sec '

& The binding energy of the electron in the hydrogen atom has been included in the quantity. The mass of the electron when found in the hydrogen
atom is not m, but more correctly m(1 ——,'a2+ ~ ~ ),

b The numerical constant 4.96511423 is the root of the transcendental equation, x =5(1 —e &).
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TABLE XIII.—Continued.

Sackur-Tetrode constant (physical scale of at. wt. )

(Sp/Rp)r a=5/2+in((27rRp)th PN 4)
= —5.57324&0.00007

(Sp)ra= —(46.3524+0.0020) X10' erg mole ' deg '
Sackur-Tetrode constant (chemical scale of at. wt. )

(Sp/Rp)op = —5.57256&0.00007
(Sp)ca= —(46 3467+0.0020) X 10r erg mole ~ deg '

Bohr magneton

pp= he/(4 prmc) =-,'el'„
= (0.92731+0.00002)X10~ erg gauss '

Anomalous electron moment correction

L1+n/ (2pr) —2.973n'/pr'j =ip, /happ
= 1.001145358+0.000000005

(Computed using adjusted value n= (7.29729+000003)X10 ")
Magnetic moment of the electron

ip.= (0.92837&0.00002)X10~P erg gauss '

Nuclear magneton

y„=he/ (4rrm„c) =irpNm/H+
= (0.505038&0.000018)X10 "erg gauss '

Proton moment

p, =2.79275&0.00003 nuclear magnetons
= (1 41044+0.00004) X10~P erg gauss '

Gyromagnetic ratio of the proton in hydrogen, uncorrected for
diamagnetism

y'= (2.67523&0.00004) X104 radians sec ' gauss '

Gyromagnetic ratio of the proton (corrected)

y= (2.67530+0.00004)X104 radians sec ' gauss '

Multiplier of (Curie constant)& to give magnetic moment per
molecule

(3k/N)&= (2.62178+0.00010)X10 PP (erg mole deg ')&

Mass-Energy conversion factors
1g= (5.61000+0.00011)X 10PP Mev

1 electron mass =0.510976+0.000007 Mev
1 atomic mass unit=931. 141&0.010 Mev

1 proton mass =938.211+0.010 Mev
1 neutron mass =939.505&0.010 Mev

Quantum energy conversion factors

1 ev = (1.60206%0.00003)X 10 "erg
E/8=he= (1.98618+0.00007)X 10 "erg cm

E&&= (12397 67+0.22)X10 ' ev cm
EX,= 12372.44+0.16 kilovolt x-units
E/v= (6.62517+0.00023)X10~' erg sec
E/v= (4.13541+0.00007)X10 "ev sec
v/E= (5.03479+0.00017)X10'P cm ' erg ~

v/E= 8066.03+0.14 cm ' ev '

v/E= (1.50940+0.00005)X10PP sec ' erg '
v/E= (2.41814&0.00004)X 10'4 sec ' ev '

de Broglie wavelengths, ) D, of elementary particles'

Electrons

XD,= (7.27377&0.00006) cms sec /v
= (1.552257+0.000016)X10 u cm (erg)&/(E)&
= (1 226378&0.000010)X10 cm (ev)&/(E)&

Protons

knv= (3.96149+0.00005)X10 ' cm sec '/v
= (3.62253&0.00008)X10 'P cm (erg)&/(E)&
= (2.86202&0.00004)X10 ' cm (ev)&/(E)&

Neutrons

Xa = (3 95603+. 0 00005).X10 P cms sec '/v
= (3.62004+0.00008)X10 "cm (erg)&/(E)&
= (2 86005+0.00004)X10 P cm (ev)&/(E)&

Energy of 2200 m/sec neutron

E2200= 0.0252973+0.0000003 ev

Velocity of 1/40 ev neutron

vp. ppp= 2187.036+0.012 m/sec

The Rydberg and related derived constants

R =109737.309+0.012 cm '
R„c= (3.289848+0.000003)X 10"sec '

R„he= (2.17958&0.00007) X10 "erg

R„hc'e ')& 10 = 13.60488+0.00022 ev

Hydrogen ionization potential

Ip Rrr(hes/e)(1+——rp/4+ . )X10
= 13.59765&0.00022 ev

These formulas apply only to nonrelativistic velocities. If the velocity of the particle is not negligible compared to the velocity of light, c, or the
energy not negligible compared to the rest mass energy, we must use X~=gcte(e+2) j ~, where && is the appropriate Compton wavelength for the
particle in question and e is the kinetic energy measured in units of the particle rest-mass.

Ão significant modification whatever in any of our present output constants most of which are identical with those used
values would therefore have resulted. in DC 53. Two of them however merit brief discussion.

VII. CALCULATION OF THE ATOMIC CONSTANTS
AND CONVERSION FACTORS AS OF 1955

In order to calculate a useful table of atomic con-
stants and conversion factors, from the adjusted values
of the unknowns, a, e, 1V, and )I.,/7„and their error
elements, as given in Tables IX and X, it is necessary
to combine these with certain auxiliary constants whose
numerical values are in most cases known much more
accurately than are the output values of the four un-

knowns. The less accurately known auxiliary constants
are quantities whose methods of measurement render
them in a practical sense statistically independent of
the above four unknowns. Table XII lists these auxiliary

Velocity of Light

We have adopted the value and its standard error
given by K. D. Froome" as the result of a set of ten
measurements with a symmetrical free-space microwave
interferometer with four electromagnetic horns operat-
ing at 24005 Mc/sec. Because of diBraction, the ve-
locity thus obtained was higher than the true free-space
value by an amount dependent on the size of the horns
and the spacing between them. The experiment was a
preliminary one in preparation for a more accurate
definitive experiment to be performed at 72 000 Mc/sec.

'P K. D. Froome, Proc. Roy. Soc. (London) A223, 195—215
(1954).
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Its purpose was primarily concerned with the use of
the instrument under conditions of large diffraction
correction (up to the equivalent of 100 km/sec), so
that the accuracy obtainable in eliminating this effect
could be assessed. Although even better accuracy can
be anticipated for the final definitive experiment, it was
possible in even these preliminary measurements to
correct very satisfactorily for diffraction effects with
highly consistent results for the different types of wave-
front. The standard error of &0.3 km/sec is stated by
Froome to be the estimated error of a single observation,
although the value obtained for the velocity depended on
ten measurements, a number considerably in excess of
that required to make the corrections for the diffraction
effects. Hence this standard error of only one part per
million is probably somewhat overestimated. The
value obtained by Froome is in excellent agreement with
the values obtained over long light paths with visible
light waves by Bergstrand" in Norway and by Macken-
zie" in Scotland. Both of these observers used Berg-
strand's "Geodimeter, " a method employing Kerr cell-
modulated light beams. The relative uncertainty in the
velocity of light, c, is probably now so small compared
to the uncertainties in the output values of the present
least-squares adjustment that it appears very unlikely
that further improvements in our knowledge of it will

make any significant change in those output values.

Rs, the Gas Constant per Mole (Physical Scale)

This is the least accurately known of the auxiliary
constants (&41 ppm). Its numerical value is changed
from the value given in DC 53 by reason of the recent
change" in the definition of the Kelvin scale of tempera-
ture. The Tenth General Conference on Weights and
Measures which met in Paris and Sevres during October,
1954 decided: "to define the thermodynamic scale of
temperature by means of the triple point of water as
fixed fundamental point, by assigning to it the tem-
perature 273.16'K, exactly. "This yields a new slightly
diGerent thermodynamic scale of temperature such

"Eric Bergstrand, Arkiv Fysik 2, 119 (1950); 5, 479 (1951).
~I. C. C. Mackenzie, "The Geodimeter Measurement of the

Ridgeway and Caithness Bases, 1953."Her Majesty's Stationary
OfFice, 1N4."E.C. Crittenden, Science 120, 1007 (1954).

that the best value of the ice point is 273.15'K (instead
of 273.16'&0.01'K as formerly).

All the other auxiliary fixed constants used in the
present adjustment are unmodified, as to values or
sources of the data, from those in DC 53 to which the
reader should refer for such information.

The seven auxiliary constants in Table XII, to each
of which a star is affixed, are the ones used in setting
up the basic observational equations of Table II above.
The remaining eight either enter the computations only
for the purpose of computing the derived values of
certain constants and conversion factors in Table XIII,
after the least-squares adjusted values of the unknowns
have been obtained, or are given simply for their in-
trinsic utility.

Throughout these tables, unless explicitly stated to
the contrary, the physical scale of atomic weights is
used because its definition is less ambiguous than that
of the chemical scale. The chemical scale could be
rendered not ambiguous by specifying a standard
abundance ratio for the oxygen isotopes but no such
action has, to our knowledge, been officially taken.
R.T.Birge" has given the conversion factor r = 1.000272
&0.000005 as the ratio of physical to chemical scales
based on the assumed abundance ratio 0":0":0'
= (506&10):1:(0.204+0.008), and this we have adopted
in the present calculations. Alfred O. Nier" has dis-
cussed the variations in isotopic abundance of oxygen
from various natural sources and the various resulting
values of r which range from r= 1.000268 to r = 1.000278.
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