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INTRODUCTION approximations were omitted in favor of a fuller
presentation of the main subject.

To put it briefly, then, the form of the theory de-
veloped here is the so-called symmetric pseudoscalar
theory with the Yukawa (i.e. linear) coupling of the
meson field to in6nitely heavy nucleons. This implies a
form of the Hamiltonian [see Eqs. (1.10) and (1.14)),
that was already extensively studied, 4 among several
alternative forms, in the early 1940's. The detailed
experimental information available today allows us to
discard many of the alternative forms on mere inspec-
tion. They assume either the wrong spin, or the wrong
parity or the wrong number of charge states for the
meson. Some of these theories, of course, still have an
interest for the specialist; they provide him with guinea
pigs, 5 on which he can try out mathematical tricks,
etc. From general pedagogical considerations I felt,
however, that it was better in this report to stick to
the one theory which has at least a fighting chance at
the beginning.

I am happy to acknowledge here my indebtedness to
the work of G. F. Chew. ' Thanks to Chew's .efforts,
the Yukawa theory has at last achieved some contact
with the quantitative aspects of meson physics. I am
well aware that a wide range of opinions is possible, as
to how deep that contact goes. For the purposes of this
article, however, Chew's work also contained another
useful lesson. It showed, namely, that it was possible
to apply to this theory ideas and methods derived
from modern Geld theoretic work, without getting in-
volved into too abstruse formalisms. In order to achieve

HE aim of this article is to present a uniled and
relatively simple discussion of meson theory,

which takes into account some of the most recent and
promising developments, without requiring from the
reader any previous knowledge of special field theoretic
methods. Familiarity with ordinary nonrelativistic
quantum mechanics (and its application to scattering),
and with the main experimental facts of meson physics, '
should sufhce to read this article. Some Geld theoretic
ideas and methods, such as the Feynman-Dyson graphs
and renormalization, will be explained as we go along,
in the very limited and simple form, in which they
occur here. On the other hand, I have relegated to
Appendix A such more familiar topics as charge inde-
pendence and isotopic spin. An easy access to these
things is already provided by current textbooks. '

My aim could only be achieved at the cost of a
drastic restriction in the subject matter. This is no
review of the present status of the theory, and the
picture I shall present is deliberately one-sided: I have
selected ideas and results according as they fitted into
the chosen pattern. For example a discussion of com-

pletely relativistic schemes was out of the question
from the start; but even such more closely related topics
as the important "strong" and "intermediate" couplinga

1 For a recent review see M. Gell-Mann and K. M. Watson,
Ann. Rev. Nuclear Sci. 4 (1954); also Henley, Ruderman, and
Steinberger, Ann. Rev. Nuclear Sci. 3 (1953).

~ See for example J. M. Blatt and V. F. Weisskopf, Theore&'cal
Nuclear Physics (John Wiley and Sons, Inc. , 1952), Chap. 3; G.
Wentzel, Quantum Theory of TVaee Fields (Interscience Publishers
Inc., 1949), Chap. 3; H. A. Bethe and F. de HoGman, Meson
(Row Peterson, 1955).' See G. Wentzel, Revs. Modern Phys. 19, 1 (1947); for mor
recent literature see T. D. Lee and R. Christian, Phys. Rev. 94
1760 (1954); the "weak-coupling" viewpoint is discussed amongs
other things in R. E. Marshak's MesonPhysics (McGraw-Hil
Book Company, Inc., 1952).

4 See W. Pauli, 3Iesoa Theory of Nuclear Forces (Interscience
s Publishers, Inc. , 1946).

5An especially simple and instructive example has been ex-
e pressly constructed for this purpose by T. D. Lee LPhys. Rev. 95,

1329 (1954)];see also, G. Kallen and W. Pauli, Dan. Math. Fys.
t Medd. (to be published).
1 e G. F. Chew, Phys. Rev. 94, 1748, 1755 (1954);Phys. Rev. 95,

1669 (1954).
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my purpose, therefore, I only had to carry the process
a little further, and give an elementary proof of some
statements which in Chew's paper are simply taken
over from Dyson's well-known, but rather difficult,
discussion of the renormalization of the S-matrix.

The key to this proof is Eq. (5.39) which I derived
for this purpose. The same equation, it turned out,
had been obtained a little earlier by Low from a less-
elementary argument. 'Low, however, built on this
equation a new and promising approach~ to the scatter-
ing problem which has been further developed by Chew
and Low. ' I have been able to give an account of this
more recent work, insofar as it was available to me from
communications at the 1955 Rochester Conference.

It is mostly because of all this recent work being in
the process of publication, that I have given up any
attempt to include a detailed comparison between
experiment and the results of the theory. I am afraid
many readers will find that the theory as presented
here sort of stops in mid-air. I felt, however, that to
present in detail the calculations based on the older
approach of Chew, now being rapidly superseded, would
not have made much sense. As to the newer results, it
was better to leave the word to the original authors.

I feel, however, that I shall have attained my purpose
if this article were accepted as a useful introduction to
the study of some of these new and interesting develop-
ments.

1. BASIC ASSUMPTIONS: HAMILTONIAN

The mesons we are interested in here are the x mesons
or pions. We shall refer the reader to some excellent
summaries already quoted, ' for the experimental evi-
dence indicating that the spin of a pion is zero, and that
an "intrinsic" parity change is associated with the
creation (destruction) of a meson. By that one means
that the parity of a state containing one meson with the
orbital angular momentum 1, when compared with the
parity of the state with no meson (all other things being
the same), is not, as one might expect, (—1)' but rather

(—1)'+', the additional factor —1 being the "intrinsic"
parity of the meson.

Free mesons are then described by the Klein-Gordon
equation; the possible states of a meson are given by
the eigensolutions of the wave equation

AN+ k'st =0

that the solutions of (1.1) are of the form

Q~ik x (1.3)

where X= (quantization volume) ' is a normalization
factor. The number of eigenstates in the volume element
dk of momentum space is then

N '(2sr) 'dk.

The orthogonality condition has the form

(1.4)

Ng (S)'Ltg~ (X)dX =8ggr (1.5)

In order to specify completely the state of a meson it
is necessary to give, besides k, also an index X, which
has three possible values, corresponding to the three
possibilities m+ and m'. We shall use a lightface index k

to summarize k and X. Thus gs means gq combined
with the integration (1.4).

In addition to mesons, we may have one or more
nucleons, photons, etc. For the moment let us consider
only nucleons. We shall treat the nucleons as infinitely
heavy and at rest; thus we shall not need any variables

(say, momenta) to describe their transitional motion.
We shall, however, need variables to describe their spin
and charge states (see later).

The theory we are'considering takes over from the
original Yukawa theory the assumption that mesons
are emitted or absorbed by nucleons singly, like photons
by electrons. ' This refers of course to the elementary
acts implied by the Hamiltonian: that is the Hamil-
tonian has matrix elements only between states diGering

by the emission or absorption of one meson.
More precisely the Hamiltonian consists of two parts

H=Hp+K,

where3ka is the Kronecker symbol, =1 if k=k'and =0
otherwise. The essential properties of this symbol can
also be expressed by the rule

(1 6)

When f(k) is a continuous function, the sum in (1.6)
may be replaced by an integral, according to (1.4)
provided 8k~ is replaced by a Dirac delta function
according to the prescription

the energy co of the meson being given by

(1.2)

where Ho, the unperturbed Hamiltonian, is simply the
sum of the kinetic and rest energy of the mesons present

where tt is the meson mass. (We use units i't = 1, c= 1.)
We shall assume for simplicity a 6nite quantization
volume. For most purposes it is convenient to assume
a cubic volume with periodic boundary condition so

s F. Low, Phys. Rev. 97, 1392 (1955). I wish to thank Dr. Low
for advance communication of his results and for an illuminating
conversation.' G. F. Chew and F. Low (to be published).

Pp =Qsnsces (1.9)

A simple and lucid introduction to these concepts is provided
by E. Fermi's beautiful booklet Etemeatary particles (Yale Uni-
versity Press, New Haven, 195k).

where ns is the number of mesons in the state k= (k,X)
and cp& is given by (1.2). We do not have to include
in Ho a term for the nucleon or nucleons; since we
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neglect recoil as well as the neutron-proton mass differ-
ence, this term would be a constant of the motion and
can be ignored. We neglect the mass difference between
charged and neutral mesons, so that &ai ——ar(k) inde-
pendent of 'A. Since pions have spin zero, we assume
that they obey Bose statistics, so that n can take any
value 0, 1, 2, . . . . As to 3C, the "interaction" Hamil-
tonian, it consists of a sum of terms, one for each
nucleon present. The number of nucleons is a constant
of the motion; if there are no nucleons X,=o and the
mesons are completely free. In this respect the theory
is fundamentally different from the relativistic theories,
in which the possibility of the creation of nucleon-
antinucleon pairs leads to some interaction in all cases.

We then need to write K only for the case of a single
nucleon; if there are more nucleons, each will be repre-
sented by a similar term. We may also assume for
simplicity that the nucleon is placed at the origin. Let
us introduce absorption operators aI, and creation
operators aI,* defined in the usual way for bosons. '
That is, the matrix element of a~ is equal to one when
it is taken between'a state with no meson in the state
k and a state with one meson in the state k (all other
occupation numbers being the same for the two states).
More generally if the state at the right contains ml,

mesons in the state k, and the state at the left con-
tains ni'=ni ———1 mesons in k (all other occupation
numbers being unchanged) the matrix element of a~
is equal to ek:. This has the effect that the prob-
ability of absorption from a state containing n mesons
is proportional to e, as one might expect. If e~—eI,'4 I
or if n„nv'WO for any o—f the other states p, then the
matrix element of a~ is zero. The creation operator
aI,* is simply the Hermitean conjugate of a~.

The assumption that mesons are absorbed or emitted
singly is then simply expressed by saying that K is
linear in the al, 's and aI,*'s. That is

BC=+i(aiUI, +ai*VI,*). (1.10)

In determining further the form of VI, and V~* one
makes use of the additional requirements of charge
conservation, charge independence (see Appendix A)
and conservation of angular momentum. It will be
most simple to write down at once the form of V~, and
justify it piece by piece afterwards. One has

Vk N(4v)l(f/p)7——haik ov(k)(2a)i) '. (1.11)

Beginning from the left we have: (4v.)'*f is a proportion-
ality constant which characterizes the strength of the
interaction; the (4v)& is sometimes omitted, the value
of f must then be correspondingly larger and is then
called a "rationalized" coupling constant. The p, ' is
introduced to make f dimensionless. To make the
absorption probability proportional to the meson den-
sity (i.e., inversely proportional to the quantization
volume) E is necessary. Next come the most significant
parts of the expression. We have so far only spoken of
the changes that occur in the meson occupation num-

v(k)=) e' *p(x)dx. (1.13)

bers. Changes must occur, however, also in the nucleon.
Owing to charge conservation, for example, a x+ can
only be absorbed by a neutron becoming a proton, and
a x by a proton becoming a neutron; a ~' can be
absorbed by either one, without change. This may be
described by treating neutron and proton as two difer-
ent states of the same particle, the nucleon, character-
ized by an "isotopic spin" variable, =+-', for the proton
and ——,

' for the neutron. Then all we have to do is to
insert in V~ a factor w~ representing an operator on the

isotopic spin variable which has nonzero matrix ele-
ments only for the appropriate transitions. The precise
form of these operators is discussed in Appendix A,
under the more stringent assumption of charge in-
dependence.

Just as 7i represents the possibility of changes in the
charge of the nucleon, accompanying the emission or
absorption of a meson, in a similar way the next term
ik 0 takes into account the possibility of ordinary spin
changes. We may notice here that the most general
form of an operator acting on the spin variable is
a,o,+a„o„+a,o.„where on grounds of invariance a,usa,
must transform under rotations like the components of
a vector. The only vector available, however, is k the
momentum of the meson, hence the form k 0 in (1.11).
One must further point out that since k is a polar but
e an axial vector, their product is a pseudoscalar. Thus
under an inversion at the origin VI, is not invariant,
but instead changes sign. This, however, is just as it
should be on the assumption that the meson has nega-
tive intrinsic parity. This remark also explains why
k e cannot be accompanied by a spin-independent
term, in the form 2+k s where A is a scalar quantity.
The matrix element cannot be part scalar, part pseudo-
scalar; it has to be one or the other, depending on what
"intrinsic" parity is assumed for the meson.

Finally (1.11) contains a factor v(k)(2~I, ) & which
depends only on the magnitude of k, not on the direc-
tion. About the precise form of this factor it is not
necessary to make any assumption, except that v(k) —0
when k becomes very large. If this assumption is not
made, virtual emission and reabsorption of mesons of
large momentum gives rise to divergent expressions,
much in the same way as virtual emission and reabsorp-
tion of quanta gives rise to divergencies in quantum
electrodynamics.

The reason why the last factor in (1.11) is written
in the composite form v(k)(2~) l rather than simply
v(k) is that (1.11) is often obtained from field theory as
follows. Writing explicitly Xh for 0, az& for al, we con-
sider the expression (see below)

Pi(x) =1VQ~(2cop) '{aiQe'"' +a),g*e '"*} (1.12)

and write v(k) as the Fourier transform of a function
p(x)
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This does not involve any really restrictive assumption
about e(k). Besides, since v depencls only on k= ~k~,
p will similarly depend only on r= ~x~. With (1.12)
and (1.13) it is now possible to write (1.11) as follows:

3t!=(4ir)' —P&,ry ~t p(x)o" Vgi, (x)dx
p,

(1.14)

"This is, of course, an immediate consequence of angular
momentum and parity conservation in the elementary act. A
nucleon has angular momentum —,'; after a meson of orbital
momentum l is emitted the total angular momentum of the
system can only take the two values l&-'„and this can only be
equal to ~~ for either l=o or l= 1. That is, this excludes emission
into other than s of p states. The 6nal decision rests with parity.
If the meson were a particle of + intrinsic parity it would be
emitted in an s state, the opposite assumption leads to p-wave
emission.

which is the interaction suggested by field theoretic
considerations. In this case p(x) plays the role of
"extended source distribution" for the nucleon.

In Geld theory, (1.12) is just the meson field operator;
the most obvious assumption would be that the inter-
action involves only the value of p, or respectively VP
exactly a] the position of the nucleon. That is like say-
ing that the nucleon is point-like, p(x) is the delta
function 3(x) if the nucleon is at the origin; this, how-

ever, leads to v(k) =1 for all values of k, which leads
to divergencies. It is necessary to attribute a finite
extension to the nucleon in order to get a convergent
theory.

Two more remarks: if the nucleon is not located at
the origin, but say at x„, then Eq. (14) suggests imme-

diately that all we have to do is to replace p(x) by
p(x —x„). The effect of this is that the value of Vi,
Eq. (1.11) is multiplied by exp(ik x„), the amplitude of
the meson wave function at the nucleon (as one might
expect). Such factors become important when one has
more than one nucleon, as in the nuclear force problem.

Secondly, we must notice that (1.11) implies that
mesons are absorbed or emitted in p-states only. "The
transformation which exhibits this fact explicitly is
often useful, and we shall therefore mention it here.
Instead of using for the free mesons the plane-wave
states Eq. (1.3), one can introduce states of definite

angular momentum

tt&i (x)=N'ji(kr)Fi (x) (1.15)

where j& is the "spherical Bessel function" of order l
which behaves asymptotically as (kr) 'sin(kr ——', tw)

and I'~ is a normalized spherical harmonic depending
only on the directioN of x(J'

~

F ~'dQ= 1). Finally N' is
a normalization factor which like g occurs also in the
expression for the number of states in the interval dk

(N') '(2/n-) k'dk.

It is clear that the transformation from plane to
spherical waves only makes sense in the limit of infinite
volume (spherical waves require a spherical box), so

and sum over k. The integral (1.17) can be easily
carried out in polar coordinates by means of the well-

known expansion of a plane wave in spherical har-
monics; for the reason just mentioned, the integration
over r=

~
x~ must extend from 0 to infinity. One easily

finds

(sip, v, i„)=2NN'( —i)' F, (k) (~/k)'3(p —k). (1.18)

After multiplying (1.11) by (1.18) we carry out the
sum over k in the limit of infinite volume, that is by
means of (1.4), whereupon N cancels out of the results,
as of course it should. The absorption operator V„~
(which replaces Vi) is then seen to depend on the integral
of (e k) Fi (k) over the direction of k, which is zero
if l/1.

Having to do with /=1 only we may simplify the
notation by dropping l from the indices of ~„~ alto-
gether. Furthermore, we may choose as basic spherical
harmonics Fi (k) simply the components of k

Fi~(k)—+(3/4ir)'*k 'k, (i=1, 2, 3). (1.19)

The function vI, ~ may be designated by v~; and the
absorption operator by Vi;i (where k now is the magni-
tude of the momentum and the indices i and X both run
from 1 to 3. Finally one finds

Ui, g,,=N'3 *'(f/p)king(k) (2ni) *'o.;r), (1.20)

In this way one has the advantage that only p-states
for the mesons appear in the calculation; owing to the
similarity of cr and 7 matrices one sees furthermore that
the isotopic index X and the angular momentum index
i play completely similar and interchangeable roles in
the calculation. "

2. THE "REAL NUCLEO¹' STATES

All physical problems we want to discuss next can
be reduced to a study of the eigenstates of the Hamil-
tonian (1..8). For example, all the information on meson
scattering is contained in certain eigenstates described
in Sec. 5.

We shall be concerned, in this section, with the lowest
eigenstate of the Hamiltonian (1.8), which, if the theory
has anything to do with reality, must represent a free
nucleon. To be sure, this nucleon will be surrounded by

' As remarked by F. H. Harlow and B. A. Jacobsohn, Phys.
Rev. 93, 333 (1934).This immediately leads to identities such as
631=813. See Sec. 5.

we shall carry out the calculation in this limit. Now
Vi„Eq. (1.11), represents the matrix element for the
absorption of a meson from a state (1.3) and according
to the general rules of transformation theory, in order
to calculate the corresponding matrix element for a
state v~t„, Eq. (1.15), we must multiply (1.11) by the
scalar product

(t~g, t„i~)= Ni, *(x)t„i„(x)dx



MESON THEORY

a virtual meson cloud, but in the state in question
there should be no real (incident or outgoing) mesons.

One possible aim of studying this eigenstate might
be, of course, the calculation of the level shift due to
the perturbation (1.10), i.e., the so-called "nucleon
self-energy, " which in a cut-off theory is a 6nite and
well-defined quantity. So far nobody has dared suggest,
however, that the self-energy effect due to (1.10) is
connected to any observable mass or mass difference.
In the work of Chew, as well as in the more sophisti-
cated relativistic 6eld theories, one manipulates the
formulas in such a way that the self-energy (and other
quantities, which are similarly regarded as unobserv-
able) do not appear in the physically significant results.
This gives rise to the following paradoxical situation:
While the self-energy is an unobservable quantity which
one does not have to evaluate, it is nevertheless neces-
sary to go into a detailed formal discussion of it, as a
preliminary to its elimination from the results.

This detailed discussion will be carried out presently,
and will also give us an opportunity to prove certain
relations, which are useful in the elimination of other
unobservable quantities from the theory.

As explained in the Appendix, the Hamiltonian (1.8)
allows four "good" quantum numbers J, J„T,and T3.
A state with J=-', and T=—,'is fourfold degenerate,
corresponding to J,= &-,' and T3= &~. The nucleon is,
of course, assumed to be in such a state; this leads to
the assignment of total angular momentum J=—'„and
total isotopic spin T=-', to the lowest level of the
Hamiltonian. '

One assumes that as f is decreased continuously from
its actual value to f=0, the aforementioned fourfold
degenerate level remains the lowest level of the system.
That is why the lowest level of IIO, i.e., the "bare
nucleon" is also assumed to have the same fourfold
degeneracy. We shall use a four-valued index n as an
abbreviation for a pair of values (J„Ts) to designate
the four possible nucleon states, and we can obviously
use the same index for the corresponding bare nucleon
states.

As we already see on this example we shall have to
do with two types of states: the eigenstates Pr, Ps,

of the unperturbed Hamiltonian He, and the
eigenstates of the exact Hamiltonian H, for which
we shall employ Dirac bras and kets. In particular
we shall use the notation P with a Greek index (n= 1,

~r, 4) for the four bare-nucleon states, and ~n& for
the corresponding real nucleon states.

Our somewhat hybrid notation has the advantage
of making the two kinds of states more clearly dis-
tinguishable. "Matrix elements of the type (P (

.
~
rr&

will be called "nucleon expectation values"; they play
a similar role as "vacuum-expectation values" do in
other work. The corresponding bare-nucleon expecta-

"This notation becomes rather clumsy if one has to consider
mixed scalar products between the two types of states, as in Eq.
(2.17). However, we shall usually avoid this,

tion values will be written: ps* p [see for example
Eq. (2.3)].

Starting from p one can construct all other unper-
turbed states p„containing one and only one nucleon,
by applying to p one, two, meson creation oper-
ators, thus obtaining the complete orthogonal set

Aqn= mrs +s 4a

(no mesons),

(one meson)

(two mesons). (2.1)

These states satisfy the unperturbed Schrodinger equa-
tions

Hp@ =0,

HoA~=&sA~,
~ etc

(2.2a)

(2.2b)

and are normalized to unity. "
We shall designate with 3C„ the matrix element of

the perturbation operator between any two states P„
and p of the sequence (2.2)

BC =P„*X&„. (2.3)

We notice in particular that (2.3) is zero if both P„
and p are bare-nucleon states

X p=o. (2 3')

I
u& = cog +g' c Q (2.5)

where P' (here and henceforward as well) is used to
denote a summation excluCheg the bare-rINcleoe states.
One can, as usual, rewrite (2.4) for the state (2.5) as an
in6nite system of linear equations in the amplitudes
co, ,c„.The erst of these equations is for example

ECO =+ a%an, Cny (2.4a)

where E is now, of course, just E,. The remaining set
of equations, which the reader can easily write down
for himself, can be divided by co and solved for the

'3 This requires the addition of numerical factors on the right-
hand side of (2.1) when some of the indices k, g ~ ~ ~ are equal.
E.g.

ass„= (1/m)as*as*p„, ",etc.

We are now in a position to discuss the application of
perturbation methods to the complete Schrodinger
equation

(2.4)

where in particular we designate with E, the eigenvalue
for a state ~n&. Comparing with (2.2a) we see that E,
is at the same time the level shift, i.e., the nucleon
self-energy. The state ~n& can be expanded in the
orthogonal system (2.1), the coefficients being the so-
called zero-meson, one-meson, amplitudes. The
zero-meson (or bare-nucleon) part of the expansion
must have the same J, and T3, i.e., the same Greek
index, as ~n&, hence we can write
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ratios c„/cs by an obvious perturbation expansion, '4

yielding

c„/cp X„.——/(E —E„)+P' X„X./(E E„)—(E E)—
+P lmxnmxmtxla/

(E E„)—(E E—) (E E()—+ . (2.6)

Inserting this back into (2.4a), we find for the eigen-
value E the transcendent equation

E=Z (E)—=2'-
E—E„

annmma+2'.- + (2.7)""(E E„)(E E )

)we may notice, incidentally, that in our case the terms
of odd order in (2.7) drop out]. It is to be understood
that E, is, in particular, that root of (2.7) which is of
order of f' when f—&0. We shall see in Sec. 3 that P (E)
has the same meaning here as in the literature. '

For the sake of later applications, it is desirable to
rewrite (2.5), (2.6), and (2.7) in a more compact nota-
tion. Let us introduce a projection operator A de6ned by

which at 6rst sight may not seem a real quantity
because h.3C is non-Hermitean. Notice, however, that

IIpA. =AHp and: A.'= h. . (2 1o)

It is then easy to see that the value of (2.7') does not
change if Ax is replaced by the Hermitean AXA. LTo
prove this, make the replacement in the expanded form,
and use (2.9).]

Let us now assume that
~
n& is normalized, so that

1= «~~& =
~
o,

~
s(1+y.*X(E—H, —AX)-'Xy. )

where use has been made of (2.5'), (2.6'), and (2.9),
and where, of course, E must be set equal to E,.

Comparing with (2.7') we see that "
( os )' is equal

to Zs, the "renormalization constant" which (in analogy
with the procedure described by Dyson, Ward et al. for
the relativistic case) is defined in Chew's paper by

Zs—' ——1—(dP/dE) z=z, . (2.11)

Notice that
~

cs~' represents the probability of 6nding
no mesons around the nucleus; in the following, we
shall dispose of the arbitrary phase factor in the state
(2.5') by choosing cp real and positive so that

(2.8)
1cp= Z2'. (2.12)

where A projects an arbitrary state vector g onto the
subspace orthogonal to the bare-nucleon states P . We
may also say that the matrix representing A. in the
system (2.1) is diagonal, with diagonal elements A =0,
A„„=1(nAn). The restriction expressed by the apex in

Eqs. (2.6) and (2.7) can then be replaced by the inser-
tion of factors A„„between matrix elements of BC.

Furthermore, one can write

I,n& =o,y.+t1 I~& (2 5')

and replace (2.6) by

A
I
n& =cpg(E —Hp)

—'+ (E—Hp)
—'AX(E—Hp)

—'

+(E—Hp) 'AX(E—Hs) 'Ax(E —Hp) '+ . ]Ax&

With Eqs. (2.11) and (2.12), we have proved a rela-
tionship which plays an important role in the elimina-
tion of unobservable quantities from the theory.

We wish to conclude this section with another rela-
tionship, which plays a similar role. Consider the
matrix element

Mp. = (Pi orx

fact&

(2.13)

which, as we shall see, plays an important role in the
theory of meson scattering (and also in photomeson
production). Apart from trivial factors it is the matrix
element of the meson absorption, or emission, operators
(1.11) and (1.20); it is, however, the matrix element
between real eucleoe scales, and not the ordinary matrix
element

which is an expansion of Mpa 4'p o'&x4'a) (2.14)

Ax/ =X/ .

Similarly, one can abbreviate (2.7) as follows:

p(E) =y *x(E H —Ax)-'xy—

(2 9)

(2.7')

4 This method is known as the Brillouin-Wigner form of per-
turbation theory, and is characterized by the fact that the eigen-
value itself is not expanded in powers of f. The result (2.7) may
look superficially like the customary Schrodinger expansion, but
of course it is not since it gives 8 only implicitly. The explicit
expansion of 8 in powers of f can be obtained from the implicit
formula (2.7) by known methods; a little thought will show that
the structure of the higher-order terms in the explicit expansion
is far less simple than that in Fq. (2.7). This is why the latter is
~uch more suitable for the djscussion of the following section.

A
~
n& =o, (E—H, —AX)-tAXy (2.6')

where one can further save the last factor A since owing
to (2.3'),

which plays the central role in a more primitive ap-
proach. Since, however, 0-; and ~z obey simple commuta-
tion rules with the components of J and T, and since
~n& and P have the same quantum numbers J, J„T,
T3 it is possible to prove by the customary methods"
that the ratio of (2.13) to (2.14) is a proportionality
constant independent of a, P, and )i. The fact that this
ratio is A1 is, of course, an effect of the meson cloud
surrounding the nucleon and is described graphically
as a change&t the strength of coupling Thus one wri. tes

fMp, =f„Mp.' (2.15)

"T.D. Lee, Phys. Rev. 95, 1329 (1954). This proves inciden-
tally that 0(Z2(1. For the case of relativistic theories see H,
Lehmann, Nuovo cimento 11, 342 (1954); M. Gell-Mann and
F. E. Low, Phys. Rev. 95, 1300 (1954).

'6E.g. , Condon and Shortley, The Theory of Atomic Spectra,
(Cambridge University Press, New York, 1935)~ Chap. III,
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where f„ is a "renormalized coupling constant, " which
for our purposes may be defined by Eq. (2.15). Since
the definition usually given is another one,

f„=fZ2Zi ' (2.16)

where Z~ is another renormalization constant, let us
brieRy mention the relationship between the two defi-
tions. 'r Evaluating (2.14) by means of (2.5') and (2.12),
we see that

Mp ZsM——p, '+cp&PI baric )
«(yp*«„~l ~&+ &PI«,„~I

~& (2..17)

Of the four terms on the right, the second and third
are zero (A commutes with o.7, and Ag =0), the fourth
may be transformed by means of (2.6') and (2.9). If
now we define the renormalization constant Z& by
means of

Zi iM o M o

+PpX(E, He AX) '—rrri, (E—, Ps AX) '—XP~,—(2.18)

we see that (2.17) is equivalent to (2.15) and (2.16).
Now it is easy to see, by a discussion of the kind de-
veloped in the next section, that (2.18) is only a short-
hand for the definition of Z~ ordinarily given. We shall
not go into this, however, in any more detail here.

3. GRAPHS

Perturbation expansions like Eq. (2.7) can be dis-
cussed most easily in terms of "graphs. " The graphs
which occur in the theory we are discussing are simpler
and less general than those occurring in the full-Qedged
relativistic theories. Just for this reason, the present
theory is a very good example with which to begin the
study of graphs, for the reader who is unfamiliar with
them (other readers may skip this section altogether).

The idea is to represent each nucleon by a straight
horisoeta/ line, and each meson by a dashed line. A
dashed line terminating on a nucleon line quite naturally
represents the absorption or emission of a meson. If one
wishes, one can append to a meson line an index k,
(or p, , etc.) specifying the momentum k and charge
state X of the meson.

Let us now see how this works in practice. Consider
the first term on the right-hand side of (2.7). Omitting
the summation sign, the quantity to be evaluated is
of the type

X,„X„./(8- E„), (3 1)

where n (which in our case equals y) is a bare-nucleon
state, and the intermediate state e is clearly of the type
gsp in the sequence (2.1).One associates conventionally
K„ to the transition from a to e, K to the inverse
transition; the process to be described is clearly the

"T. D. Lee (reference 15). Equivalent relationships in the
relativistic theories have been known for some time (I. Schwinger,
unpublished); see also H. Umezawa and S. Kamefuchi, Progr.
Theoret. Phys. Japan 6, 543 (1951);G. Kallen, Helv. Phys. Acta.
25, 417 (1952) and the papers previously quoted.

FIG. 1. Simplest self-energy graph representing the emission and
reabsorption of a meson in a state k.

emission and reabsorption of a virtual meson, the corre-
sponding graph is Fig. 1. For completeness we have
also added indices o. and y to the bare-nucleon "stumps"
at the ends; the reader is asked to notice that n is
written to the right and y to the left, just as they
appear in (3.1). In our case, of course, this does not
matter, since n=y, but in the iraesitiom processes to be
considered later the end states are different. It is then
somewhat more convenient to have the indices appear
in the same order on the graph as in the formula.
Since o. will then be the initial, y the final state, one
also says that, according to our convention, "time runs
from right to left" on the graph; events appearing at
the right are "earlier, " those at the left are "later. "

Now in the actual calculation of (3.1) one will

notice that for a given state I (i.e., given kP) the only
terms of X, Eq. (1.10), contributing to X„and X~„
are, respectively, aI,*VI,* and a&VI, . Since moreover the
matrix elements of ai* and as are equal to g1, we have

X„,=gp*vs*g = (Vy,*)p,

X,„=y,*Vsyp = (Vs)». (3.2)

Here an important simplification occurs, owing to the
fact that the energy of the intermediate state E =coI,

is independent of P; the same simplification will be
seen to occur in the general case. Namely, in the summa-
tion P„=Pinup, the first step can be carried out
symbolically

p, (v,)„(v,*),.= (v,v,*),. (3.3)

so that finally we have

In(u)I eau
= (3/2+) (f/~)' (3 5)

2cos (Z—cos)

We have presented all the steps in this pedantic detail,

In so doing, V~ and VI,* are regarded, of course, as
4&&4 matrices (operating on the nucleon spin and iso-

topic spin variables). One then has

VsVs* 4lrN'(f/p)'I t——(k) I'(2Ms)
—'r),'(k Ir)' (3 4)

where one further has rq'=1, (k o)'=k'. Remember-

ing (1.4),
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a

Fzo. 2. An "improper" self-energy graph which does not occur in
the evaluation of Eq. (2.7).

[»g 3(a)]

[Fig. 3(b)]

E~=~I+~» R=~»

En=~I, E~=~I+~» R=&I

(3.6a)

(3.6b)

so that we can proceed more speedily in the subsequent
cases.

Let us now go over to the fourth-order term in the
expansion of P(E) (the third-order term is zero).
Various possibilities now arise, and the advantage of
graphs in quickly visualizing all possibilities will appear.
We have a product K PC~ BC „K„with three inter-
mediate states /, m, and e. Beginning from the right,
we see that 3C„can lead only from the bare-nucleon
state n to a one-meson state, say, &I,e. The subsequent
transition, however, can be either the reabsorption of
the meson already emitted or the emission of a new
meson; ie the erst alterrtatite the state m 7ooeld be a
bare rtlcleort -state, artd this is forbiddert by the apex If it.

were not so, the process could go on with the emission
of a new meson (3C~ ) and reabsorption of the same

(X,~); the graph, which as we said. is forbidden by the
apex symbol would be that of Fig. 2. The other alter-
native means that the state "in the middle, " i.e., ns, is
a two-meson state, Pq», say. From that one can proceed
in two ways. Clearly the two subsequent transitions
must both be absorptions (since we must return to a
bare nucleon at the end), but we can absorb meson h

with K~„, and p with BC ~ or vice versa. This gives the
two graphs, Fig. 3(a) and Fig. 3(b). We cottld write
near the nucleon lines the symbols for the states (P, y, 8)
of the nucleon in the states e, m, l but this is hardly
necessary Lit is done in Fig. 3(b) as an example], since
the summation over P, y, an.d 8 is carried out implicitly
as before, that is, the symbols P, q, and b do not even

appear in the calculation. I et us also write down the
unperturbed energies of the intermediate states for the
two sequences above:

Py

(a)

Fro. 3. The two possible fourth-order graphs for Eq. (2.7).

These values can, of course, be read o8 the graphs very
quickly. An intermediate state is the state of affairs
between two successive transitions; if we draw a ver-
tical line intersecting the nucleon line between two
meson endpoints, the meson lines it intersects corre-
spond to the mesons present in the field at that par-
ticular virtual stage of the transition; in Fig. 3(b), for
exarriple, a vertical line between the last two meson
endpoints gives E~ ——co~.

We are now in a position to write down immediately
the fourth-order term of (23) as the sum of two terms
corresponding, respectively, to Figs. 3(a) and 3(b):

V„VI,V„*VI,*

(E a„)(E —tug te„)—(E —(uI,)—
V U„V *V'*

(3.7)
(E (up) (E o—rg ~„)(E— ~I,)—

1
0 ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~

Fro. 4. General self-energy graphs.

We shall not carry on this calculation any further now.
We shall instead make some remarks on the structure
of the general term in the expansion (2.7).

In the term of order 2m there are 2e factors X~,
half of which must be used to create virtual mesons,
and the other half to destroy them. The number of
choices, however, becomes very large if e is large. The
reader may try as an example to draw all the graphs
for 2m=6. The general character of these graphs may
be symbolized as in Fig, 4; the graph begins with an
emission act at the right and closes with an absorption
act at the left; in the region between the wavy lines,
anything may happen, with one exception: there must
not be any intermediate state with no virtual mesons.
In other words, it must not be possible to separate the
graph in the way indicated in Fig. 5. To be more
specific, graphs such as this do not occur in formula
(2.7), although they may be considered in other con-
texts. They were called by Dyson "improper" self-
energy graphs. A graph like Fig. 4, which cannot be
split as in Fig. 5, is called a proper self-energy graph.
The expression (2.7) is a sum over proper self-energy
graphs only.
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Once a graph is plotted, the corresponding term in
the sum can be written down immediately. To this end
it is desirable to develop good bookkeeping habits. As
Chew suggests, it is best in this to adhere strictly to
Feynman. This has the advantage that the habits
acquired here can be transferred to relativistic theories
without eGort. In the bookkeeping of "classical" per-
turbation theory it was customary to say that in the
virtual intermediate states "energy is not conserved. "
By that one meant that the energies E„(that is, the
unperturbed energy values) of the intermediate states
can diGer by arbitrarily large amounts from the true
energy E of the stationary state under consideration.
The energy denominators E—E„measure just this

difference.

In the Feynman bookkeeping, instead, one says that
energy is conserved at every emission or absorption
act, and the energy of the nucleon changes accordingly.
Thus in a graph like Figs. 3 and 4 the nucleon enters at
the right with energy E, and emits a meson of energy
co~, it then has an energy E—orI, . If now it emits a new
meson I„,it will have an energy E—co~—co„and so on.
Clearly E„(the energy of the virtual mesons present
in the virtual state e) represents the sum total of the
energy of the mesons previously emitted minus those

~ ~ ~ ~ ~ ~ ~

FIG. 5. Improper S.-E. graph: a bare-nucleon state occurs
in the middle.

reabsorbed by the nucleon. Hence, the energy denomi-
nators are now simply the "energy of the nucleon, " as
delned previously, in the subsequent segments of the
nucleon line, between two successive elementary acts.
The most natural thing is then to write operators UI,
and VI,* and the energy denominators in the same order
as they appear on the graph, thus, for Fig. 6,

V, VI, V,* V„
E—0)q E—MIr —(oq E—

Goy

X U~ V~
E—

GOg
—M~ E—

Ggp

These conventions apply equally well to the more gen-
eral graphs to be encountered later, in the discussion
of scattering processes. In that case, of course, the
nucleon will not be assumed to enter the graph with
an energy E. Since E is used to denote the total energy,
the initial energy of the nucleon will be reckoned as E
minus the energy of the incident meson or mesons.
H then one proceeds as we have said, assuming energy
conservation at each step, it is easy to see again that
energy denominators and "nucleon energy" are one
and the same thing.

p

/

FIG. 6. A possible sixth-order graph.

To conclude this discussion, we go back to Fig. 3(a),
Fig. 3(b), and Eq. (3.7) and notice that a, refinement is
necessary. Consider that in summing over k and p,
the case will also occur that 0=p. But in this case it
has no meaning to draw two graphs; what happens is
that after the second emission act we have two mesons
in state k, and since they are indistinguishable we
cannot ask the question whether it is the first-emitted
or the second-emitted meson which is absorbed first.
Thus, we should not have two terms in Eq. (3.7) but
only one. We have, however, also made a compensating
mistake! When k=p, the emission amplitude for the
second meson is not Vi* but v2V~*, similarly the sub-
sequent reabsorption act contains another v2. The
omission of two factors v2 just compensates for the
mistake of writing two terms instead of one. This is
not accidental. The reader is invited to think through
for himself the more complicated case where the occupa-
tion number of a given meson state goes up to a maxi-
murn value n. There occur then in the correct expression
factors v2, v3, gn each an even number of times,
and these just make up for the reduction in the number
of truly distinct processes, as compared to the fictitious
multiple choices indicated by the graph method.

One might point out, that this remark is really un-
necessary, for the following reason. What we want to
evaluate is, for example, the sum of (3.7) over k and p.
Now owing to expression (1.4), the part of the sum
with k= p is negligibly small (when the quantization
volume is large) compared to the rest of the sum.

We have preferred not to rely on this argument, not
merely because it is somewhat neater to show that the
graph method of calculation is valid irrespective of the
size of the quantization volume, but also because there
are cases, not encountered in this section, where the
"volume" argument fails.

4. MESON SCATTERING I. BORN APPROXIMATION

With the Hamiltonian (1.10), mesons interact with
a nucleon only when in a p-state. Thus only p-wave
scattering occurs. Obviously this cannot be the whole
story in reality, but it is a fact that p-wave scattering
is the dominant feature at low energies (say below
250 Mev); s-wave scattering is surprisingly weak, while,
not so surprisingly, scattering of waves with /&2 be-
comes important only at higher energies. '

It is Chew's great merit, that he showed that not
merely the qualitative fact of the predominance of
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(a)

t'p

a

p

PC,

Pro. 7. (a) Second-order graph for meson scattering with uncrossed
lines. (b) The same with crossed lines.

p-wave scattering, but also the main detailed features
of it are satisfactorily explained by this theory. ' This
fact had been previously obscured by an excessive
reliance on the predictions of lowest-order perturbation
calculations.

In fact, although, as we shall see, the value of the
coupling constant f is fairly small, higher-order effects

play an important role in meson scattering. Neverthe-
less, we shall discuss in this section the lowest-order
calculation, purely as an occasion for certain remarks
to be used later.

We wish, then, to calculate by means of perturbation
theory the transition amplitude from an initial state
a with a nucleon in a state p and a meson in a state
p(=pX), to a final state b with nucleon in a state gs
and a meson in a state q(=qp). To achieve this we

must absorb meson p and emit meson q; in addition
any number of virtual mesons may be emitted and
reabsorbed. To lowest order, however, there are no
virtual mesons in the process, and the matrix element
for the transition has the familiar second-order form

ceed as we did in the previous section, we see that

M=M, +Mb,
M =Vs*(u„'V„=Xr„ri,(q o)(p o),
Mb ——V,(—oi,)

—'V,*= Xr—br„(p o)(q o), (4.2)
X=2w(f/~)'~ t (p) ~'~-'.

The differential cross section, of course, is given by
~M~s multiplied by the number of final states per unit
energy interval and divided by the velocity p/oi of
the incident meson. If dQ is the solid angle, dg= q'dydee,
and dividing by the energy interval d~ and using
die/dg=q/M, the number of states becomes dq/(2~)sdoi
= (2w) spy dQ. Hence, the differential cross section is

dr/dn= (2s) sM'~M~'. (4.3)
We have omitted the "volume" factor Ã throughout,
but, if we had not, it would have cancelled out of the
final result.

Let us now go into the calculation of M in some more
detail. We may consider separately the dependence of~ on the variables specifying the direction of motion
of the meson and the ordinary spin of the nucleon, and
the dependence on the "charge states" of meson and
nucleon. As regards the latter we have six possible
states ()i=1, 2, 3 together with neutron or proton) so
that M is a 6 by 6 matrix. In Eq. (4.2) this part of the
dependence is contained in the operators ~,7~ and v~7-„.
Instead of X=1, 2, 3 we may use the physically signifi-
cant states m.+, x', as explained in the Appendix this
may be achieved without altering the formalism by
using v+, r, and 7.3 instead of v.~, 7.~, ~3. This only
requires the minor modification that since r+ and 7

are not Hermitean, it is necessary to pay more attention
to the "star" in an emission operators U,*. In. (4.2)
this means replacing v„by 7-„* when using 7.+.

One gets easily for the relevant transitions the matrix
elements specified in Table I. As regards the remaining
variables, we can use the well-known formula

(A. o)(B.o)=A 8+io AXE. (4.4)
Let us write

bnna
M=+„

E—E
(4 &)

then
q p=qpcos0; (gp) 'pXq=sin0 n

M =XP'r„rb(cos0 i sin0n o), —
Mb ——XP'rbr„(cos0+i sin0n o).

(4.5)

(4 6)

where E is the energy, which may be identified with
either the energy of the initial state E or with Eb
(since E =Eb, necessarily). Finally we equate E, with
the energy co„of the incident meson, since the nucleon
energy has been set equal to zero (see, however, Sec. 5).

Now the transition may proceed in two ways; namely,
K„,may be used to absorb meson P, and Kb to emit
meson q, see Fig. 7(a), or vice versa Fig. 7(b). In the
first case E„=O and E—E„=~~ in the second case
E„=co„+ops. Since oil=a&s and p= q, in magnitude, we
write simply ot and p in the following. Then if we pro-

Operator
~ ~Transition+

~+p~ +p
vr+e—&7r+e
m.+n~~7rop
mop —+no p
Hn ~on
woe~+—7r P

x' p~7r p
7r 1Z~7r

TABLE I.

0
2

v2
1

—v2
2
0

2
0—V2
1
1

v2
0
2
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Reaction

7I p~ p

w p~w's
w+p~+p

Value of M/Xp'

2 (cos8—s sin8n e)
—2@2 cose

—2 (cos9+i sinon o)

(4 7)

Thus for the exchange reaction ~M~' 8 cos'0 with an
average of 8/3 (over the direction of q). The elastic
cross sections contain a so-called "spin-Rip" term n e.
This expression refers to the fact that if one uses the
incident direction as axis of quantization, then n e has
matrix elements only between states of opposite spin.

On the other hand, one often uses n (the normal to
the scattering plane) as axis of quantization. Then the
nucleon spin does rot change, but the scattering ampli-
tude depends on the spin direction; for example, in the
first reaction (4.7) the amplitude is 2e "for spin down.
As it happens, in this approximation the diGerence
between the two is only a phase factor, and ~M ~' does
not depend on the spin direction, in fact

(w-p~~-p) or (w+p~+p).

In this approximation, therefore, we find that the
elastic 0.+ and cr cross section on hydrogen are isotropic
and equal to one another. Furthermore, the ratio of
elastic to exchange cross section for m in hydrogen is
3/2. These results are in complete disagreement with

experiment; as we shall see, this is only because of the
inadequacy of the Born approximation.

Nevertheless, let us pursue the analysis further. The
raw experimental data appear, of course, as data for
the reactions of Table I, but they are usually analyzed
in terms of other reactions, in which the initial and
final states have a well defined total isotopic spin
quantum number T (see Appendix 8). Only the first
and last reactions in Table I are of this type; states
such as ~+a, w'p, etc., are not eigenstates of T'. The
reason for using eigenstates of T' is that the results

appear in a more condensed form. Let us say that
initial and final states are characterized by quantum
numbers T, Ts and 2', Ts', respectively (T= —,

' or $;
Ts T, ,

—T). Th——en in a charge-independent theory
the results for the matrix M must be of the formI

Thus as an example we find, from Table I, the follow-

ing values for M:
matrices with the matrix elements specified in Table I.
We may also regard them as 3&&3 matrices Q and Q'
with matrix elements

Q„),= 7„*ri, pX &X&p, ) (4.9)

which are not numbers but 2&2 submatrices. This
simply takes account of the fact that in our notation
the meson index X(tr) for the initial (final) state is
explicit, while the nucleon indices are implicit. Thus
reverting for simplicity to X= 1, 2, 3 instead of +, 0, —,
and remembering that 71'=1, rir2=i7. 3, etc., we see
that the matrix Q, for example, has the form

2
3

$73
'47 2

173

1
ZTI

172
Z7'I

1

where the 1's on the diagonal are, of course, 2&2 unit
matrices. Remembering the form of the 3„), matrices
[Eq. (A22)) for the meson spin we see that

Ts=—(t+'~)s=ts+ i,syt. ~

=2+4+t ~ (4.11)

we see that t ~ is diagonal together with T' and has
the eigenvalues

3/2

lf T= 'I

1/2

(4.12)

Thus we may replace Table I by the simpler Table II."
Now to the 0 dependence of the matrix element.

Just as a great simplification was achieved by remem-
bering that the total isotopic spin vector T is conserved

TABLE II.

erator

(4.10)

where (t ~) =tiri+tsrs+tsrs. We now see that Q and
Q' are of the form (4.8). Namely, since

(r'T, '~M~ TT,) =M(T)3».3»».. (4.8) 3
0T—2That is, as a result of reshufQing the basic states, the

6&&6 matrix is now diagonal, four of the elements on the
diagonal being equal to M(-,') and two equal to M(-,').

I.et us now have another look at our notation. We
have previously regarded r„~v.q and vga„* as 6)&6

"A fast way of deriving these eigenvalnes (see Dyson et al.")
is to notice that the matrix Q' has the elements

3

(Q')g& = & Qs.Q,i.= rpr. r.n, =3rpri. =3Qgi.
&=1

Hence Q2=3Q, showing that the eigenvalues of Q are 3 and 0.
It is easy to recognize that the eigenvalue 0 belongs to 1"=$,
because the operator Q appears in connection with the graph in
Fig. 7(a) and it is clear that for the state m+p, which is a 7= —,

state, the graph must contribute 0, since a proton cannot absorb
~+I

's W. Heitler, Proc. Roy. irish Acad. 51, 33 (1946). Inter stin.
Heitler's analysis was revived by the work of K. M. Watson LPhys.
Rev. 85, 852 (1952)g and its importance became apparent when
the first detailed experimental data became available; see Proc.
Rochester Conference, 1952, contributions by E. Fermi and K. A.
Brueckner.
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in the collision, similarly we can benefit from the fact
that the total angular momentum J is conserved.

The latter vector is the resultant of the meson orbital
momentum and of the nucleon spin. As pointed out in
an earlier section, mesons are only scattered, in the
present theory, when their orbital quantum number /

is unity. This is, of course, immediately apparent in
the fact that the matrix element (4.2) is a bilinear
function of the momenta P and q. In order to diagonalize
J it is desirable to use meson states of definite orbital
momentum rather than plane waves. This can be
achieved very easily either by transforming (4.2) by
means of (1.18), or, what is the same thing, replacing
V„and V, with the modified V's of Eq. (1.20). All
that amounts to (apart from a factor) is writing (4.2)
as a bilinear function of P and q and picking the coefli-
cient 8;, of q,p, .

One finds then that 8;; is a combination of two
operators

0 g(Ti and (Ticj') (4 13)

which obviously have the same properties as 7.„~), and
7),~„. Owing to the symmetry between isotopic spin
and angular momentum indices (see Sec. 1 at the end),
one can replace in Eqs. (4.8) to (4.12) and in Table II
T, Ts, t, ~, r„, ri by 2, J„I, e, o;., and o.;, respectively.

The matrix element Eq. (4.2), is in this notation,
and apart from a factor, of the form

p7 yogOi 7g7 pfJ'i&2' ~ (4.14)

The eigenvalues of this operator may be easily calcu-
lated, according to what we have just said, from Table
II. Following accepted habit, we designate the possible
states of the system with the symbol (2T)(2J), i.e.
for example 31 means T= ~, J= -,'. Then the eigenvalues
of (4.14) are

in. The matrix element may be designated symbolically
with B~(q) (which is a matrix in the four-dimensional
vector space of the spin and charge states of the
nucleon) or more explicitly with B„,(qP). Remember
also that P summarizes the magnitude I p I

of the initial
momentum, the index i(=1, 2, 3) for the initial Vi;
spherical harmonic and the initial charge state A. ; and
similarly q summarizes I ill, j, p. Using (1.20) with Ã
omitted, since it cancels out of the cross section when
one uses (1.16) for the density of final states, one finds

&.(q) = l(flp)'I s(P) I'(P/~)'L~ ~'"ri—~*~ r "] (416)

S. MESON SCATTERING II

One believes (see later) that the value of the coupling
constant f' is probably 0.08, which at first sight may
seem small enough to justify use of the Born approxi-
mation. As in all such questions, however, one must
be a little careful in estimating the order of magnitude
of the successive terms of the Born expansion. In par-
ticular, Chew has pointed out that "higher-order"
terms corresponding to graphs such as those in Figs.
8(a), 8(b), and 8(c) are enhanced owing to resonance
effects (vanishing energy denominators) occurring when
the energy of one of the virtual mesons is equal to that
of the incident meson. In fact the graph of Fig. 8(a),
as compared to the graphs of Fig. 7, gives an extra
power of f' but also one vanishing denominator, the
graph in Fig. 8(b) gives two extra powers of f', but

state: 33
eigenvalue: —4

31 ol 13
2

11
8. (4.15)

That is, in a scheme in which T and J are diagonal, the
matrix 8 is also diagonal and its diagonal elements are
given by (4.15) times a common positive factor.

The result (4.15) is, of course, only a different pres-
entation of Table I and Eqs. (4.6), and is, therefore,
in equally bad disagreement with the facts. It points
out, however, one qualitative feature which is in agree-
ment. Namely (4.15) corresponds to "attraction" in the
33 state and repulsion in the other two states. "Experi-
ments indicate indeed a strong attractive eGect in the
33 state. They do not, however, indicate an even
stronger repulsive effect in the 11 state; in fact (4.15)
would be in much better agreement with the facts if
the 2 and 8 were replaced by zero.

Before we turn to a consideration of higher-order
effects, let us finally rewrite (4.14) with all the factors

0 This language originates in a comparison with scattering due
to a potential. In the erst Born approximation an attractive
(i.e. negative} potentiai gives a negative matrix element (or a
positive phase shift).

(a)

(b)

/
'l

/ I

~/ Kg /r4

FIGs. 8. Graphs for scattering representing higher-order terms
with vanishing energy denominators.
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4.+-4.+
outgoing

ingoing
waves only. (5 1)

A solution P, satisfies the inhomogeneous equation

also two vanishing denominators, " the graph of Fig.
8(c) gives three extra powers and three vanishing
denominators, etc. Pursuing this idea further, Chew
showed that scattering is strongly enhanced in the
state T= 2, J= —,', but not in the other states.

A satisfactory study of higher-order eGects requires,
however, as pointed out later by Chew, a systematic
study of self-energy and "renormalization" eBects. We
begin, therefore, with a general formulation of the
scattering problem. "

For the sake of comparison we must have at hand
the main results of the ordinary formulation of scatter-
ing theory. It will suffice to consider the scattering of
a particle by a static potential V. The Hamiltonian
operator is then H=Hs+V, where Hs is the kinetic-
energy operator. Let P„ps, be a complete ortho-
normal set of eigenstates of Hs (plane waves) with
energy E„Es, . Let f„Ps, be eigenstates of H
with the same energy values; specifically in the study
of the scattering problems one considers solutions P+
and P, defined by the boundary condition at infinity

4 (&) =Z.c.s "V.+. (5.6)

We assume that c, is a continuous function of the energy
E„and is different from zero in a finite (and, if one
wishes, very narrow) interval hE. If P represents the
incident part of f,+, then the wave packet

p(/)=p. c e ' "y. (5.7)

should represent the incident part of the full wave
packet (5.6). The latter is a solution of the complete
time-dependent Schrodinger equation r)$/Bt =HP, while
P(1) is a solution of the corresponding free wave equa-
tion. The requirement then, is, that at suKciently
remote times in the past the wave packet f(t) must
reduce to p(/),

6guration space. It is important for us to recognize,
however, that the ig device is of completely general
validity. For example, it is correct in Eq. (5.4), although
it is not possible to evaluate the corresponding Green
function explicitly. That this is so, follows most simply
from time-dependent arguments, such as those em-
ployed by I ippman and Schwinger and Gell-Mann and
Goldberger. "To put it very briefly, these arguments
boil down to this. The requirements to be satisfied by
a scattering solution P,+ can be stated also in the form
of a condition on the time dependence of a wave packet

(5.2) P(~) —y(&)~0 if (5.8)
or alternatively

(E —Hs) Q —q4) = Vf, . (5 3)

From these equations one obtains in a well-known
manner"

This replaces (5.1) for P,+ (the two requirements are
obviously equivalent on physical grounds). Now it is
equally easy to verify that (5.8) is satisfied by either
(5,4) or (5.5). For example, expanding (5.4) in a com-
plete set" of eigenstates f„of the operator H we get

and
(5.4)

where
P,+—P,= (E,Air) —Hp) 'VP + (s.s) E =(4,V4.) (5.10)

y.+ y.=P„(E.—E„+i&) y„Z—„., (-S.9)

wherein is an infinitesimal positive imaginary quantity
which is inserted to define the operators (E,—H) ' and
(E,—Hp) ' unambiguously and in agreement with the
boundary condition (5.1).'4 The most familiar proof of
the outgoing wave nature of P,+—g, is that which
consists in calculating explicitly the Green function
which represents the operator (E,+ir)—Hs) ' in con-

Inserting into (5.6)

0(&) 0(&)=Z-4-f-. (&), (5.11)

f (&)=g,R c,(E, E„+it)) 'e *~"—. (5.12)

Now we may designate by A a set of variables which
together with E, defines the state a and write

~' The statements as to the number of vanishing denominators
refer to the assumption that the energy available is insufficient
to give two outgoing mesons.

~ Our only excuse for indulging in this familiar divertisement is,
that otherwise we would have to refer the reader to more spe-
cialized papers.

"The "explicit" form (5.4) has been used by Chew and Gold-
berger LPhys. Rev. 87, 778 (1952)g and Gell-Mann and Goldberger
fPhys. Rev. 91, 70 (1953)g. The "implicit" form (5.5) has been
used, with a different notation, since Born's classical paper LZ.
Physik 37, 863; 38, 803 (1926)]. The concise notation (5.5) is
that of B. Lippmann and J. Schwinger )Phys. Rev. 79, 481
(1951)g.

'4 A method to construct Green's functions satisfying the out-
going wave condition by integration along a deformed path
(which is essentially the iv trick) was described by A. Sommerfeld
in 1912 ("Die Greensche Funktion der Schwingungsgleichung, "
Jahresber. der Deutschen Math. Verein. 21, 309 (1912)g.

dE.. (5.13)

It is then easy to evaluate the integral over E in the
limit t= &~. The integral is of the form

I= ~ (E)(E E„+ ) ' ''dE, — — —(5.14)

"It is well known that the functions + + (or alterna, tively the
functions +, ) constitute such a set, if the potential V has no
bound states. Otherwise, one must add to the set %,+(e, ) s,
complete set of bound states. For our present proof it is sufBcient
to assume that the set +~ exists.
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where g(E) is a smoothly variable function of E which
vanishes outside of a finite interval. It is well known
(it can be shown by deformation of the path of integra-
tion into a semicircle) that

I~0 as (5.15)

f„(t)= —27riggR„,c.e 's ' (5.17)

where the states u are now "on the energy shell, " i.e.,
subject to E„=E,. We may notice that if E„does not
belong to the internal AE in which c,40, f (f) will

vanish. In particular E„must belong to the cont-
tinuum.

We now specialize the set zP by the assumption"
that it consists of the bound states (if any) and of the
states zP, and calculate the right-hand side of (5.11)
in the limit f ++ oo. The cont—ribution of the bound
state vanishes as explained before. Hence

with
g4~fo(f)-PgCb'e 'b'ZPb- (5.18)

cb'= 2zriggRb. c =——2zri+. f'z(Eb E)Rb.c., (5—.19)

Rb.= (A, l'4.).
And now the decisive point: (5.18) is a wave packet
of the type discussed before, hence for f~+ oo it can
be evaluated by replacing lib by its plane wave part
pb Hence .(5.18) tends to

4-(f) =Zbcb'c '"'4b (5.20)

The result of o: calculation is that a wave process
zP(f) which begins (at f= —oo) with the free wave
packet (5.7) will become after the scattering process is
completed (f~+ ~)

4 (f) =4 (f)+4-(f) (5.21)

where y„ is the free wave packet described by Eqs.
(5.19) and (5.20). Clearly p and p„contain all the

lVe shall prove in Appendix C, that the states I Pzz+&~
which are the Geld theoretic analog of our present P + form an
orthonormal system. The proof for the present case is even
simpler and well known, see for example Gell-Mann and Gold-
berger. ~ Furthermore, it is obvious that the states p, satisfy a
similar orthogonality relation as the states @,+.

This then proves that (5.6) satisfies condition (5.8);
the nature of the argument should make it clear that
the ig device is absolutely general.

We may, however, push the calculation a little further
and obtain from it another well-known result. First of
all, let u,s remark that if we build a wave packet such
as (5.6) but using solution lf, , it will enjoy in a similar
manner the property (5.8) but for t ++ ~.—We also
note that the same procedure which leads to (5.15)
shows that

I —2zrig(E )c '~ ' as &~+ ~ (5.16)

in which we have omitted terms in ig, since the limit

q
—+0 was always understood. Then

information about incident and scattered states that
we may wish, and once the coeKcients Rb, (for Eb= E,)
are known, the calculation of the cross section is merely
a matter of wave kinematics. We may save ourselves
all further calculations, however, by pointing out that
in the first Born approximation the kinematical part
of the calculation must obviously be the same, the
only difference being that in the expression for Eq, the
exact solution zPb is replaced by the zero-order solu-
tiOn ztzb

(5.22)

Any cross section can therefore be obtained from the
corresponding expression in the Born approximation by
replacing the matrix element on the right of (5.22) by
the exact expression (5.19).

And now, back to meson-6eld theoryt
Ke must point out, first of all, that the staridard

discussion just presented cannot be applied, strictly
speaking, to our problem. The whole discussion is based
in fact on the assumption that the perturbation part
V of the Hamiltonian becomes negligible ghee ]he collid-
ing particles are far atoay from each other Only .then
can we assume that the incident state is an eigenstate
of Hp, and that the exact energy of the state is equal
to the eigenstate of Ho for the incident state.

As is well known, these assumptions fail when field
theoretic interactions are involved. In particular, our
perturbation operator X, cannot be treated like V; even
when the incident meson is far from the nucleon, X
cannot obviously be neglected. This would be tanta-
mount to neglecting the difference between a "real"
and a "bare" nucleon.

One known way to deal with this difhculty is to use
nonstationary perturbation theory, assuming in addi-
tion an "adiabatic switching-on" of the interaction
constant f. For our present purpose, however, it is
more instructive to rely on the stationary treatment,
and we shall see that, for a theory having a relatively
simple structure such as ours, this can be done quite
simply.

Various authors'~ have shown how to take properly
into account, in the stationary treatment, the correc-
tion of the energy of the incident state due to self-
energy effects. This is not, however, the only correction
that is required in the standard discussion; we must
also correct the rourke fzerzcfiorz describing the incident
state."

' J. Pirenne, Helv. Phys. Acta 21, 226 (1948); Phys. R.ev. 86,
395 (1932); M. Gell-Mann and M. L. Goldberger, Phys. R.ev. 91,
70 (1933).The existence of such questions was, of course, recog-
nized much earlier, see for example the literature quoted in W.
Heitler, Tlzeory of RaChazzozz (Clarendon Press, Oxford, England),
third edition.

"Again, this question is already discussed in the classical
papers on the infrared catastrophe of bremsstrahlung t F. Illoch
and A,. Nordsieck, Phys. Rev. 52, 54 (2937); %. Pauli and M.
Fierz, Nuovo cimento 18, 167 (1938)g. In that case, however, the
Hamiltonian contains two terms II„q and V(x) of which the latter
can be neglected when the electron is far from the scattering
center; the above mentioned authors therefore proceed first to
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This we do simply by writing the incident state C,
as follows:

(5.23)C =a~*in),
that is, by applying a meson creation operator to the
state vector describing a real nucleon. Simultaneously,
we assume for the incident energy the value

(5.24)

We now show that (5.23) satisfies the necessary con-
dition of being a good solution of the Schrodinger
equation (2.4) whee the meson is far away from the
nucleon. In order to justify this statement, and in fact
even to give it a definite meaning, it is necessary to use
a formalism which somehow emphasizes the meson's
position, rather than its momentum. This may be done,
for instance, by using a wave packet as in (5.7). Con-
sider a wave packet for the meson

analogy to iP,+ we write iPn+) for this state. Just as
in ordinary scattering theory we may also consider the
kind of state in which, in addition to C„ there are
instead no out'going mesons at large distances; such
states will be indicated by i pn )—. We now write

I pn~& =a~*in&+X+ (5.30)

and try to set up, as usual, an equation for p, that will
bring out the difference in boundary condition for the
+ and —states.

Using (5.23) and (5.27) we see that

0= (H E) i pn)—= (H—E)y,+V, i
n) . (5.31)

This replaces (5.2); the operators of the present problem
are not simple partial diBerential operators as in (5.2)
but owing to the general validity of the iq device we
can still write

g(x, f) =P„c,e,(x)e (5.25) I Pn~& = a.*ln&+ (~.~in —H) 'V. ln& (5 32)

where N„(x) is a plane wave i Eq. (1.3)], and suppose
the c s are chosen so that for f(0 the wave packet is
completely negligible at the nucleon's position, g(0, t)
=0. To describe now the same meson state in the
presence of the nucleon we build.

C (t) =P„c,e "&~ +"~&a„*—in) (5.26)

and verify that this satis6es the time dependent
Schrodinger equation iBC/Bf =HC as long as the meson
wave packet does not overlap the nucleon. In fact,
remembering that

[He,a„] = —oi,a„, Pe,a„] = —V„*,
(5.27)

i Ho, a„~]= oi~a„*, LK,a„*]= V„,

we find

Ha„*
i
n) = „ioai )n+ V„i )n+

a~*H [n) = (E,+ )oia[ )n+ V„in)
(5.28)

and multiplying this by c~(f) =c~e 'iE'+"~' we see that

iaC/af HC =P—„c,(f)V„in& (5. .29)

Apart from trivial factors, Pc„(f)V„ is precisely g(0, f),
which proves the assertion.

Having thus shown that (5.23) is a correct incident
state, we may ask what incident meson density it repre-
sents. Since in) is normalized to unity, however, it is
clear that the incident density at large distances from
the nucleon is the same as for the meson wave packet
(5.25).

We now proceed to discuss the complete state vector
i pn) which, like P, i Eq. (5.1)], consists of the inci-
dent state C plus a "scattered wave" containing no
&&going mesons at large distances from the nucleon. In

give a solution of the problem with II„d, but neglecting V(x); this
gives the wave function for the incident state. From then on they
can follow the standard procedure. The present problem is a
lit tie different.

We expect the solution (5.32) to share many of the
properties of the functions P,+. For example, selecting
a given sign, say +, the functions should form an
orthonormal system, that is, the scalar product of
ipn+) and iqP+) should satisfy"

&V&+ I pn+ & =~re~-s. (5.33)

~ For a proof of (5.33) see Appendix C.

This does not mean, of course, that the
i pn+ )'s form

a complete system. In ordinary scattering theory the
iP,+'s do not form a complete system, if there are bound
states. In our case there are obviously in6nitely many
states besides (5.32); namely, 6rst of all, the four real
nucleon states, then all the states with several ingoing
and outgoing mesons, possibly also isobaric states of
the nucleon, etc. Nevertheless, (5.33) plays the role of
a completeness relation in the subspace of "one real-
meson states. "

Our next task is to find a prescription on how to
extract from (5.32) the information about the scattering
amplitude from the incident state a„*in) to a state
say a,* i P) .We may do this by expanding the scattered
part (i.e., the second term) of (5.32) in suitable eigen-
states of the exact Hamiltonian. The procedure follows
closely that of Eqs. (5.9) to (5.19); the state Pi, is
replaced by i'—).Just as in that case we have to
consider other eigenstates, in order to have a complete
expansion, the real nucleon states, for example, but
these will certainly not appear in the scattered wave
(at f~+ ~) for the same reason why bound states did
not contribute before (physically: because otherwise
energy conservation would be violated). On the other
hand, if the incident energy is, for example, above the
threshold for meson production, states with two real
mesons (in our symbolism states i ghP —)) would not
only appear in the expansion but would contribute
asymptotically at f ++ ~. We do n—ot plan to calculate
such processes, however, and will not consider them
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any further. The presence of such terms in the expan-
sion is indicated by the dots in Eq. (5.34) below.

The analog of (5.9) is then

I p~+& ~.*l~&=~. '&ul» &&I V.l~&

+P,p(pr„—or,+ir)) i qP &R—„(qP)+, (5.34)

where
R„.(qP) = &qP —

i V„in&. (535)

The rest of the argument proceeds exactly as in the
potential case, so that (5.35) replaces Rp, of Eq. (5.19)
in the cross-section formula without any further change.

As is well known, formulas such as (5.19) can be
used as the starting point of a perturbation expansion.
The same applies to (5.35). For this as well as for other
purposes it is, however, desirable to subject the formula
to a small transformation. Using (5.32) to express

iqP
—& we find

R, (qP) = &Pi a,V„in&+
+ &Pi V,*(E,+s~—H)- V„i &. (5.36)

The erst term on the right can be transformed further
using aqV„= V~cq and the identity

a, in& = (E, pr —H—) 'Vs*in&r (5.3/)

which can be proved as follows. The operator H+or, —E,
is definite positive, and has a well-defined inverse.
Hence (5.37) is proved if we show that

(E,—~,—H)a, iu& = V,*in&. (5.3S)

The latter, however, can be easily veri6ed by inter'-

changing H and ap by means of (5.27).
Inserting now (5.37) into (5.36) we have finally"

R„.(qP)= &Pi V,*(E,+s&—H)- V, i &+
(5.39+ &Pi V„(E,—~,—H)-iv, *i.&

where we may notice that the second term on the right
can be obtained from the first by changing +q to Q)q

(notice that E,=E,+or,) and interchanging V~ with

Equations (5.39) and (5.35) form the basis for the
following discussion of meson scattering.

6. MESON SCATTERING III

We shall now discuss the methods that can be used
to evaluate (5.39). An obvious idea is to expand in
powers of f. We shall examine this first.

To lowest order, i.e., replacing in. & by P, H by Hp,

ar One can also arrive at the expression (5.39) for the scattering
amplitude from the S-matrix formula: S,p, „~=&qP —~Pa+).
This requires manipulations similar to those of Appendix C, and
is in fact the way in which I found the expression. The proof
adopted above includes various simpMcations suggested to me
by Dr. F. Low, see also reference 8. A remark is needed also about
Ecl. (5.37); if one expands the inverse operator and ~a) in
powers of the interaction. one gets an expression which has an
obvious physical meaning in terms of graphs (we leave this to
the reader); this is, in fact, how I first found the equation. This
is an elementary illustration of the usefulness of graphs.

and neglecting E„ the expression (5.39) reduces, of
course, to the Born approximation of Sec. 4, Eqs. (4.1)
and (4.2). The first and second terms give, respectively,
the contributions of the graphs in Figs. 7(a) and 7(b).
Higher-order contributions arise when we expand
(E—iri —H) ' and (E,—or,—H) ' as well as the eigen-
states in& and jP& in powers of f. In doing these
expansions it is not necessary to remember that E, and
E(=E,+or,) are themselves functions of f; we may
instead regard E, as an arbitrary parameter inde-
pendent of f. This allows us to use the same kind of
expansion as in Sec. 2, namely

i~x& =Al(P +' ' '+(E —Hp) 'AX(E —Hp) ' '

AX(E,—Hp) 'XP + ). (6.1)

Also Z~, of course, can be expanded, but it is preferable
to leave it as an explicit factor. Expanding similarly
the inverse operators

(E+irr II) '= (E—+irq
—Hp)—

+(E+iri Hp) 'X—(E+irr Hp) '+— , (6.2)

we see that the general term of the expansion contains
both factors X and AX. Representing for brevity
energy denominators by dashes, the structure of the
general term is more precisely

~~ *X—AX—AX— ~ —A.X—V—X—X—
—X—V—AX— — AX—XP .

When this is expressed more explicitly as a sum over
intermediate states similar to (26a) we notice a funda-
mental diRerence. Bare-rmcleon states are mom allowed,
although only for the intermediate states between the
two V operators. A description in terms of graphs
similar to Sec. 3 is clearly possible; we must only add
a convention to represent the V operators. Since
V„(V,*) clearly symbolizes the absorption (emission)
of the incoming (outgoing) meson, we can represent V„
by allowing a dashed line representing the incoming
meson to terminate at the appropriate point on the
nucleon line and similarly for V, . This convention is
clearly related to that used in Sec. 4.

To give two examples we plot in Figs. 9(a) and 9(b)
two graphs contained in respectively the erst and
second term of (5.39). All graphs from the second term
have of course "crossed real meson lines. " lt is easy to
see that the graphs that occur are all those that might
be suggested by naive perturbation theory, except those
with self-energy parts on the end lines. We have already
explained what we mean by a self-energy part, so the
examples of excluded graphs in Fig, 10 will suflice to
explain the statement. A self-energy part between the
end points of the free mesons, such as it occurs in
Figs. 9(a) and 9(b) is of course allowed.

The correct recipe, which was 6rst formulated by
Dyson for quantum electrodynamics is then the follow-
ing:
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Omit all graphs with self-energy parts at the ends of
nucleon lines, but multiply the sum over the remaining
graphs by a factor Z2: for each end of a nucleon line
(this is the rule in a form valid for any number of
nucleons present).

On the basis of this formulation of perturbation
theory and of a further discussion of renormalization
(which will not be necessary here), Chew has developed
an approximate treatment of the meson scattering
problem. The method is based on a classification of
graphs in order of importance, suggested by the Tamm-
Dancoff approximation, "and leads to a linear integral
equation for the numerical discussion of which we
must refer the reader to the original papers. "One can
show that this linear integral equation also appears
as an approximation to the nonlinear equation of Low, ~

to which we now turn our attention. *
Let us expand the inverse operators on the right-hand

side of (5.39) by means of the theorem

(E—II)-'=p in)(E E) '&Ni— (6.3)

where the sum is over a complete set of eigenvalues E„
and eigenstates its& of the full Hamiltonian H. The
eigenvalues (omitting the possibility of isobaric states)
are E„E,+ops, E,+ois+ois, . The contribution from

L
/ X g //

(a)

"G. F. Chew. ' For a discussion of the true Tamm-Danco6
method, as applied to meson scattering, see Dyson, Ross, Sal-
peter, Schweber, Sunderasan, Visscher, and Bethe, Phys. Rev. 95,
1644 (1954).

~ G. F. Chew, Phys. Rev. 95, 285, 1669 (1954); F. F. Salzman
and J. N. Snyder, Phys. Rev. 95, 286 (1954); see also J. L. Gam-
mel, Phys. Rev. 95, 209 (1954).

* Castillejo, Dalitz, and Dyson (to be published) have shown
that the Low Equation for a simplified model possesses an infinity
of solutions. The question as to how the physically right solution
is to be identified undoubtedly deserves further study. I am

'

indebted to the aforementioned authors for advance communica-
tion of their results.

(b)

Fios. 9. Two graphs representing higher-order terms contained
in (5.39).

(a)

I I 4

(b)

FiG. 10. Excluded graphs with self-energy parts on the end lines.

the fourfold level E, is remarkably simple, namely

(1/-,)r„«~l V,*I7&&vl V.I-&
—&piv, [~&&~iv,"i &), (6.4)

which, owing to the proportionality relation (2.15), is
nothing but the Born approximation (4.1) and (4.2),
with f replaced by f„.

In the remaining terms of the sum (6.3), Low chooses
as states

i e&, with energy E,+ebs, the scattering states
Eq. (5.32) with the ingoing convention, i.e. iky —&.
For the higher states he would use similarly states
ikhy —&, ~ etc. but no detailed calculations have
really been made including these states. "Clearly it is
possible to consider a first, second, ~, eth approxima-
tion in which one keeps only the amplitudes involving
no more than one, two, , e mesons. The mesons
counted, however, are real (incident or outgoing) meson
not virtual mesons, as in the Tamm-DancoG scheme.
This seems a much better way to achieve a classification
of terms in order of importance, better, that is, than
the less well-delned scheme earlier suggested. by Chew.
It seems quite reasonable to assume, that for low-energy
scattering the first approximation should be adequate
(estimates of the next term made by Chew and Low
confirm this).

Let us write, therefore, the Low integral equation in
this approximation; to this end we notice that in ex-
panding, for example the first term on the right of
(5.39) there occurs the product of &Pi V,*iky —&
and of &ky —

i V„in&. The latter, and the complex
conjugate of the former, are just the kind of expression
considered in (5.35), except that the state k is not, in
general, on the energy shell with the state p: Ms/co~.
Nothing prevents us, however, from assuming (5.35)
as a definition of the symbol on the left, without restric-

33 This would involve setting up separate equations similar to
(5.35) and (5.39) for higher-order processes. Although this seems
to be feasible in principle, it gets quite involved.
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tions. One then has, finally, using 8 for the Born
approximation

R.-(q&) =&.-(qP)
Z—.~(R.s*(kv)R.-(kv)/(~. ~—. in—)

+R *(kv)R (k'Y)/( + )} (65)

We are, of course, interested in the case co„=co, but
again, if we follow the steps of the proof carefully, we
can see that (6.5) holds for the quantity defined by
(5.35) without the foregoing restriction; one has only
to be careful in writing E=E,+~, (and not E,+sr„) in
expressions such as (5.39). As Low points out this is

only possible because the dependence of (5.35) on the
energy of the state p is trivial, namely just a factor
p~„ lv(p) present in the operator V„; exactly the same
dependence appears'4 on the right-hand. side of (6.5).
On the other hand the dependence on or, is nontrivial,
as one sees from the right-hand side of both (5.35)
and (6.5). (This is why in the energy denominators of

(6.5) one must write &e, and not ei„.)
Thus (6.5) constitutes an inhomogeneous, nonlinear,

integral equation for the scattering amplitude. In order
to discuss its properties it is convenient to assume that
the states p and q are not plane waves, but spherical
waves like those considered at the end of Sec. 4.
Nothing of what we have said is altered, except the
meaning of the symbols p and q. . Now Bv (qp) is pre-
cisely the matrix element, between Po and P, of (4.16),
except that f is replaced by f„. Low also saves some

writing, by omitting the nucleon indices o., P, y system-
atically; i.e., he treats R„(ky) as the yo. element of a
matrix Rv(k); R,o*(ky) is then the Py element of the
Hermitean conjugate of the matrix Rs(k). This Her-
mitean conjugate is designated by R,*(k). As a result
one can simply rewrite (6.5) omitting the Greek indices
throughout; the products R,*(k)R„(k) and R„*(k)R,(k)
are now, of course, matrix products.

One is naturally tempted to go further, and treat
also p and q in Rv(q) as matrix indices; more specifically

p stands for (p), i, X and q for ~q[, j, ti where, for the
sake of brevity, we shall replace the two indicesi and )
by a single index' (=1, , 9). This index specifies the
angular momentum and charge state of the meson, just
like n does for the nucleon. Similarly q will now be
replaced by (il~ti, and k by (k~, v. This forces some
changes in notation, like replacing o.;ri, by (or)q, o;.r„
by (o r)„but causes otherwise no trouble. We now write

Rv(q) as the pX element of a matrix r, namely

R.( ) = —l [p (p) ( )/ '( . .)']: (6 6)

Some of the factors introduced on the right will be
convenient later; the p dependence, however, has been
speci6cally brought out, in such a way that r depends
on co, only. The matrix rt with the matrix elements

(6./)

"Provided 8 is written in the form Pqv(P) v(g)a&„&&us &.

is now the Hermitean conjugate of r, when regarded
as a matrix in a space of 4&&9=36 dimensions (this
being the number of possible angular momentum and
charge states of the nucleon+one-meson system). In
(6.5) we can now perform symbolically the summation
over the intermediate index, u, the 6rst term between
braces gives (rtr)„q and the second (rtr)q„. We can
relate B„(q), Eq. (4.16), to a matrix b(&o,) just like
R„(q) is related to r(co,):

where a previous remark'4 has been duly considered.
Equation (6.5) finally becomes [in summing over ~k~
use rule (1.16)]

r,~(~.)=4(~.)
q'

t
v'(k)dteI. (rtr)„i (rtr) ~„-

+—' + . (6.9)
7i' ~ k -top M& srt Mi+M&.

The rtr under the integral sign is, of course, a function
of ~I„owing to the fact that in the last term the indices
p'A are crossed, we cannot write (6.9) as a matrix
equation simply by dropping the indexes altogether.
(One should also notice that while the meson indices
are crossed, the nucleon indices are not. ) We may just
mention in passing that this pecular structure is related
to the Gell-Mann —Goldberger crossing theorem" accord-
ing to which

r.~(~)= r~. (—~). (6.10)

Without discussing this relationship in general, we

may see what it means in terms of Eq. (6.9). One sees
at once that (6.8) satisfies the condition (6.10). In
order for the whole expression (6.9) to satisfy (6.10),
we must simply rewrite the second denominator as
tes+oi, irt Th—is, o.f course, makes no difference as long
as ~, is positive (J'Rod, runs from the meson mass ti
to +~). It does, however, make a difference when we
try to extend the value of r(~,) to negative values of
te, by using the right-hand side of (6.9) as a definition.
We now clearly see that (6.10) is a theorem about
analytic continuation of the function r(&o). Integrals
of the type appearing on the right-hand side of (6.9)
are called Stieltjes transforms; they are known to
define analytic functions of the variable co„ in the
whole complex plane of this variable except for certain
cuts. In the case of (6.9) the cuts run from
to —p and from p to +~. There is, therefore, a gap
from —p to +ti, through which one can pass from the
positive to the negative imaginary half-plane. If one
thinks the foregoing relationships through, one sees
that (6.10) is valid if the analytic continuation from
the positive to the negative real axis is made along a
path which starts just above the positive real axis and

"M. Gell-Mann and M. 1. Goldberger, Phys. Rev. 96, 1433
(1954).



MESON THEORY

goes, through the gap, to a point just below the
negative real axis.

Special attention must be paid in this consideration
to the q' factor in (6.8) and (6.9). In fact g= (co,'—p')**

is also an analytic function of ~, in the plane with the
cuts defined previously; when continued along the path
described earlier, q is real and positive on both the
positive and the negative real axis, when la&, l) p and
is positive imaginary in the interval —p(ar, (+p. The
sign of q is, of course, essential in Eq. (6.10).

Equation (6.9) has many other remarkable proper-
ties, for which we must refer the reader to the work of
Chew and Low. ' "We only wish to perform the trans-
formation of (6.9) to Low's set of three equations" for
the phase shifts.

As we know, one can pass by means of a unitary
transformation, from the states defined by meson and
nucleon indices X and o., to states with quantum num-
bers J, J„T, T3. In this representation, the matrix r
must be diagonal, with eigenvalues depending only on
J and T. Furthermore, owing to the symmetry already
mentioned, " the eigenvalues for the states 13 and 31
must be equal. Let us designate with g (I=1, 2, 3) the
eigenvalues of r for the states 11, 13 (or 31), and 33,
respectively. Remembering Table II we see that the

' matrices - and f defined by

(6»)
have, respectively, the eigenvalues 9, 0, 0 and 1, —2, 4
for the same states. Hence introducing three new
matrices A„(n= 1, 2, 3) such that

where the matrix A is

—8 16

3=1/9 —2 (6.16)

where one can point out, in addition, that since b(o&,)
satisfies, as it must, the Gell-Mann —Goldberger cross-
ing theorem, one must have

(—cog) 'Q„X„A„'=cog 'Q„X~,
which reduces to "

(6.17)

'A is therefore an eigenvector of the matrix A.
To sum up, one inserts (6.13), (6.14), and (6.8')

into (6.9), and taking into account Eq. (6.15) one finds
Low's three equations:

Equation (6.15) allows us to express the last term in
(6.9) as a matrix element with uncrossed indices. The
whole equation then becomes a matrix equation, of the
form P X„A. =0 where X„ is not a matrix; clearly
this gives three equations X„=O.

In the foregoing statement, we have made use of the
fact that the Born matrix (6.8) is itself of the form

(6.8') .

e= 9Ag,

f= Ai —2A2+4Ag,

1= Ai+ A2+ A3,

(6.12)

the eigenvalues of these A matrices will be 1, 0, 0 for
A~, O, 1, 0 forA~, and0, 0, 1 forA. We thenhave

(6.13)

and since A„ t =A =A„' we have also

(6.14)

In order to cross the indices X and p, we may consider
three other matrices A„' such that (A ')„i= (A„)i„.
Crossing indices, however, simply interchange e and t;
one finds then

3

A„'= P A„A„„ (6.15)

' Theauthorisalso indebted to Dr. R. Serber and Dr. T. D. Lee
for an instructive conversation about a paper they are preparing
on this subject.

"Reference 7, Eq (3.11). .

(6.18)

where a P„has been tacitly understood. To complete
the discussion, we have only to establish the connection
between the functions g (&u) and the phase shifts 6ii,

and 833, which, with the abbreviation
(e= 1, 2, 3) for 8ii(co,), etc., is

(6.19)

i.e., apart from the cut-oG factor, which Low omits,

g is just e" sinb. This comes about as follows:
Adapting Eq. (5.19) to the present situation, let us

write the relation between incident and scattered wave
packet in the form

c,p'= —2s i+,5(~,—~„)R (gP)c„. (6.20)

We notice that (5.39) and (1.20) indicate that R is
proportional to Ã"; this cancels against the inverse
factor in the density of states (1.16), as expected.
Transforming to states of definite J and T, c„becomes
c„(~„) and using (6.6) and (6.13) the relation (6.20)

'8 G. F. Low, Proceedings of the Fifth Annual Rochester Con-
ference.
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becomes a simple proportionality relation

(6.21)

f'=0 08 (7.1)

in reasonable agreement with previous estimates. These
earlier estimates also gave a cut-off momentum of the
order

&m ax (7.2)

where M is the nucleon mass. As is well known, the
phase shifts 63~=8~3 and b~~ are very small, and a com-
parison between calculated and measured values has
not yet been possible. It would provide a very interest-
ing test of the theory. It will also be quite interesting
to see, how different these phase shifts turn out to be
in the new as against the older formulation. A plausible
guess is that they will be aGected by the change much
more than 833.

There are many other problems to which methods
similar to those described here can be applied. One is,
of course, photomeson production; this problem too
has been formulated by I.ow in terms of an integral
equation, and work is being done on its solution. t This
report, however, is already too long to allow us to
include a discussion of this, except for one point, which
is too essential to be overlooked.

Kroll and Ruderman' have proved an important

"G. F. Chew (private communication}.
t The reader will Gnd a simple discussion of photomeson pro-

duction in; E. Fermi, "Lectures on Pions and Nucleons, " repro-
duced in Nuovo cimento Suppl. 17 (1955).

~
¹ M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).

both sides are taken at the same energy or, . Now the
wave packet existing after the process is equal to inci-
dent+scattered wave packet, i.e., c+c'; this must.
have the same norm as the incident packet, hence the
ratio of c„+c„' to c„must be merely a phase factor,
which is usually written in the form e"'", where 6„ is
called the phase shift. Hence

c„'=2ie" sin8„c„

which together with (6.21) yields immediately (6.19).

'7. SOME CONCLUSIONS AND REMARKS

We shall not attempt to discuss the problem of
solving Eq. (6.18). If the "crossed" term is left out,
the three functions g become uncoupled, and it is
rather easy to find a solution. "This turns out to be
identical with an approximate solution of the earlier
formulation by Chew, in terms of a linear integral
equation. This earlier formulation was able to reproduce
the data for the large phase shift 6» quite accurately.
One has good reason to believe therefore, that also the
newer and a priori better formulation will possess this
feature. By means of an extrapolation to zero meson
energy' it now seems that the best values for the
coupling constant is

theorem on photomeson production at threshold, in
the relativistic theory. A similar relationship holds' in
the cut-off theory. It may be explained as follows.

In order to discuss photomeson production we must
add to the Hamiltonian (1.10) terms representing the
interaction with an incident electromagnetic wave. Of
these terms, the only one that matters near threshold,
has the form

(4z.) l (f/p) e o"A (r res rgi)—p (x)dx, (7.3)

where A is the vector potential of the electromagnetic
wave. It is a term one must introduce in order to
satisfy the continuity equation of charge and current4
(the finite size of the source function gives rise to some
complications which we cannot discuss here).

An interesting feature of (7.3) is that it contains the
coupling constants f and e simultaneously. Owing to
the smallness of e, it is much more reasonable to apply
perturbation theory to (7.3) than to the pure meson
term. We then calculate the matrix element of (7.3)
between the initial state which is a rea/ nucleon state
~n) (we do not apply perturbation theory to f!) and
a final state consisting of a real nucleon and a real
meson. The interesting point arises, that in this case
the meson is in an s state and can be treated as free
Lthis is because the wavelength of the incident quantum
is large compared to the size of the source function p,
hence A may be pulled out of the integral, which then
involves J'@pdx and expanding P in spherical waves,
only s states will contribute; for the sake of comparison
(1.10) involves V'P instead of p!j.

Owing to the fact that mesons in s states do not
interact [except through (7.3)j the final state is not
one of the complicated states of the previous para-
graphs, but just of the form a„*~/) where a„* is a
creation operator for an s state. One then sees that
(7.3) involves precisely a matrix element of the form
(2.13). The result is that the cross section at threshold
can be expressed directly in terms of the renormalized
coupling constant, and gives another, completely inde-
pendent determination of this constant. ' Comparison
with experiment" gives a value in tolerable agreement
with (7.1)!

Other problems to which similar methods can be
applied are the anomalous magnetic moments of the
nucleon, 4' and probably nuclear forces and meson pro-
duction in the nudeon-nucleon encounters.
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APPENDIX A

We summarize here Kemmer's classical argument4'
for the isotopic-spin dependence of the Hamiltonian
(1.10). We assume the following:

(a) Nuclear forces, as observed in low-energy nucleon
phenomena, are due to virtual emissions and reabsorp-
tions of x mesons, according to the Vukawa scheme.

(b) Nuclear forces (as distinct from Coulomb inter-
actions and other minor electromagnetic interactions)
are strictly charge independent, as erst postulated by
Breit and Feenberg.

Assumption (b), which is now much strengthened

by the comparison of levels in "mirror nuclei, " asserts,
roughly speaking, that the energy of a nucleon level is
not altered (apart from Coulomb corrections) if some
of the neutrons are changed into protons or vice versa.

It is necessary, however, to formulate this more
precisely. To this end we avail ourselves of the isotopic
spin formalism. If we did not do this, the state of the
nucleus would be described by a wave function

(A.1)

antisymrnetric in the proton coordinates x~ to x,
and again in the neutron coordinates x~r to x„(x
summarizes space and ordinary spin coordinates). A
discussion of the relationship between states with the
same number e of nucleons, but different neutron-
proton ratios then involves rather complicated con-
siderations about permutation operators, similar to
those which are necessary when one deals with the
n-electron problem Veitholt t'ntrodncing the spt'n coordi

nates exp/icitly. As is well known, this procedure, al-
though the most natural one when one neglects spin
interactions, leads one to consider a wave function
which is separately antisymmetric in the electrons with
"spin up" and those with "spin down. " It is then
rather complicated to discuss the relationship between
states with different up/down ratios.

If we introduce the spin coordinates explicitly, a
change in the relative numbers of spin-up and spin-
down electrons may be achieved very simply by a
simultaneous rotation of all electron spins, or more
precisely by repeated application of the operators
S,&iS„, where S, S„, and S, are the components of
total spin (which correspond to infinitesimal rotations
of the aforementioned kind).

A rotation of the spin of an electron, however, is
described in quantum mechariics by a unitary trans-
formation in the two-dimensional vector space sub-

tended by the two basic spin states a and t3. On thjs
rests the possibility of an analogous treatment of our
problem. We assume that the reader is familiar with
the elements of the isotopic spin formalism. ' The
analogies noted previously will explain its usefulness
in the present context. Regarding proton and neutron
as two states of a single particle, two states, that is,
of some internal degree of freedom, distinct from trans-
lational motion and ordinary spin, we may treat these
states, P and N, on the same footing as cr and P. One
introduces then operators 7 ~, v~, 73 defined by

7jP=S,
v2P=iS,

r3P=P,

7-gA =P,
~2K= —iP,
7-3E= —S,

(A.2)

in analogy with Pauli's spin operators 0-„0.„, 0,. Of
course, P and N may be regarded as functions P(i)
and N(i) of an isotopic spin variable. The wave function
of an rs-nucleon system is now obtained multiplying
(A1) by spin factors P(ii) P(i„)N(i„+r) N(i„),
where iI, is the isotopic spin of the 4th nucleon, and
antisymmetizing the whole, so as to satisfy the Pauli
principle for all nucleons.

All these formal manipulations are completely anal-
ogous to those normally carried out with electrons;
the result at which we are aiming is the following. If
we introduce the components of the total isotopic spin

T),——-,'Qi, r), &"& P = 1,2,3) (A.3)

LT„ej=0 (A.6)

for X=1, 2. This is the formulation of charge inde-
pendence which lends itself to a discussion of meson
theory. Before we proceed, let us take note of the com-
mutation relations

where rq&~l is the operator ri, Eq. (A.2), for the kth
nucleon, we notice that the operators T~, T2, T3 repre-
sent simultaneous infinitesimal unitary transformations
of the spin states of each nucleon and may thus be
used to alter the neutron-proton ratio (in analogy to
what we said about S, S„,S,). In fact noting that the
linear combinations

(A.4)

enjoy the properties

rM=&2N, r+N=V2P, r N=r+P=O (A.5)

one sees at once that (Ti+iT2)lt is a state with one
proton more (less) than f; it satisfies the Pauli prin-
ciple if ip does. The charge independence assumption
then states that the foregoing state (if not identically
zero) satisfies the Schrodinger equation if f does, and
with the same energy eigenvalue. This shows that
T~+iT2 commutes with H, so that finally we can write

~ N. Kemmer, Proc. Cambridge Phil. Soc. 34, 354 (1938l. [Tg,T„]=iT„, (A.7)
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(A.8)2 x =
2 r1+81)

where eq is a Hermitean operator acting on the states
of a meson or more generally on the state of the meson
field. ~ We may assume, for example, that ~+, z,
and z' are three diGerent states of the same particle,
forming as it were a counterpart of the two states S
and I' of the nucleon. We might, however, also consider
a theory in which only two states, say m.+ and x, play
a role. For this reason we shall leave the number of
charge states of the meson undetermined for the
moment and designate an arbitrary orthogonal set of
them by co, where m may take 3 or possibly 2 values.
For the sake of simplicity we shall forget all dynamical
variables other than the i spin of the particles involved.

According to our basic assumption, the Hamiltonian
BC is a linear combination of absorption and emission
operators b and b *, where b absorbs mesons in the
state co . The coefficients are then operators on the
nucleon only, i.e., linear combinations of 7.~, v-~, ~3, and
the unit matrix 1. Hence the absorption part A of the
Hamiltonian will be of the form

A=+ b (A pl+Pgd„pre, ) (A.9)

with numerical coefficients A 0, A ),. We set

fap= P b~ p,
'

fag, =P b A 1 (A.10)

where f is a proportionality constant to be determined
later. We shall see that the a), are themselves absorption
operators from a set of orthogonal meson states. Now

'4 It is customary, in discussing Op„ to rely heavily on the analogy
with angular momenta. This allows one to short cut some of the
mathematical detail. The following more abstract approach is
mainly for those readers who do not 6nd the analogy with angular
momenta and rotations in ordinary space particularly convincing.

where (Xtz3) is any cyclical permutation of (1 2 3). As
a consequence, (A.6) is valid also for X=3.

We now ask, what requirements a meson theory
must satisfy, in order to yield (after elimination of the
degrees of freedom of the meson field) a Hamiltonian
possessing the three Hermitean integrals of the motion
T~. It is hard to see how this can happen, unless the
theory possesses quite generally three such hermitean
integrals (in the same way as, say, conservation of
energy, momentum, etc. in the interaction between
charged particles is the result of the validity of more
detailed conservation theorems in the interaction be-
tween each particle and the electromagnetic field). The
quantity T), which is conserved in meson theory, how-
ever, need not be the expression on the right-hand side
of (A.3), but may contain in addition to (A.3) a con-
tribution 0), of the meson 6eld. In fact the assumption
that 0&—=0 leads, as one can see by an analysis similar
to the following, to the conclusion that only neutral
mesons are involved. In view of the facts now known,
this is not an interesting possibility and we shall not
pursue it further.

Let us then write, considering for simplicity the case
of one nucleon only

[81,ap] = [8t,at]=0,
[8„a2]=Z'as ,

.[81,as]= Z'—a2

plus the Hermitean conjugates thereof

[81,a2*]=Zap*, [81,at*]=0,

(A.12)

(A.13)

etc. We now notice that according to the well-known
commutation laws

D,b„]=0; [b.,b„*]=8„„
and Eq. (A.10) one has

(A.14)

[ai,a„]=0; f'[ai, a„*]=g~„gA„„* (A.15)

By using (A.12) to express a2 and the identity

Q)8 )Zg = Q) P)ZV V) ZV)Q

we 6.nd

—[.„.*]=[[8, ], *]=[8,[, *]]+[,[ *,8]]
Now using the fact that [as,at*] is a c number, see Eq.
(A.15) and (A.13), we see that the foregoing expression
vanishes. Similarly

Z[r32&t32 ]= [[81)t33])tZ2 ]=[81)[r33)g2 )]
+[a„[a2*,81]]= —2[as,as*].

More generally one sees that, by an appropriate choice
of the arbitrary constant f, we can set

(A.16)

We thus see that the a~'s satisfy the canonical commuta-
tion laws. This has immediately several important con-
sequences. First we see from (A.15) that the matrix

f A„i is unitary. This implies that the states &p can-
rzot be less tharz three (a charged-meson theory, with no
m' is ruled out; in this way the existence of a neutral
meson was correctly predicted before 1940!). If we
take the states,

fli=f 'ZW i*to, (A.17)

as basic states for the meson, instead of or~, cog, co&, we
see" that the variables ai, Eq. (A.10), represent absorp-
tion operators for these states. We also see that ao,
Eq. (A.10), can be expressed linearly in the ai's; no
such linear combination can satisfy [8&,ap]=0, llow-

ever, unless it is identically zero. The unit matrix term
in (A.9) therefore vanishes. 4' In conclusion we have

45 It is actually even easier to see that u)I,
* when applied to the

zero meson state creates a meson in a state (A.17). From that,
however, the inverse statement follows.

4 An alternative possibility exists: f=O) and only the 1 is
present. This leads, however, to the already discarded theory
with neutral mesons only.

~=A+A*, and we shall satisfy (A.6) by the assump-
tion that Tq commutes with A and A* separately:

[81,ap]l++„[8i,a ]r„+P rz„[ri—„r„]=0. (A.11)

Using —2,[rt, r2]=irs, etc. , one sees that (A.11) reduces to
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reduced A to the form

A=f Q ui,ri„ (A.18)

where a», a~, a3 are absorption operators from the
states (A.17). This is, however, just the i-spin de-
pendence postulated in (1.10); all one has to do is to
add momentum indices and ordinary spin variables to
the nucleon.

For the sake of completeness, however, let us still
consider the structure of the operators 0~. As operators
on the meson 6eld they must be expressible in terms
of the aq and ai* variables. The linearity of (A.12) in
the uq variables, indicates that 0~ is a bilinear form in

c), and u~*. One then easily finds by trial that

01 Z(8283 8382 ) (A.19)

0»Q» =0, 0»Q2= iQ3, 0»Qg = —iQ2. (A.21)

Thus the matrix (ti)„i= (Q„,OiQ&, ) which represents ei in
the case of a single meson is of the form

0 0

t»= 0 0

0 i

0

0

(A.22)

Similarly one finds

0 0 0 —i 0

0 0; t3= i 0 0

0 0 0 0 0

One should also point out that these matrices, as well
as the operators (A.19) or (A.20) satisfy the usual
commutation rules

etc. In order to get the general expression of 0» for the
whole meson field we must append a momentum index
to a~ thus uk~ and write

ei ip——g(a~2ag3* a~3—a~2*) . (A.20)

On the other hand we may wish to specialize (A.19)
even further, namely to apply to a one-meson state
only. Applying (A.19) to the one-meson states Qi, Q~, Q3

we 6nd

corresponding geometrical interpretation as a rotation
in a mystical three-dimensional "isotopic-spin space"
is of doubtful pedagogical value.

Finally we should explain the relation of the states
Q», Q2, Q3 to the physically more significant x+ and x'
states. By means of the inear combinations (A.4) we
can write

PiA&i= &~+++&—+—+&3+3,

a~= (aiaia2)/V2.
(A.24)

The passage from a»a2a3 to a+, a, u3 is a unitary trans-
formation similar to (A.10) and correspond. s to using a
new set of meson states [compare (A.17)J.

Qg ——(Qi+iQ2)/v2; Q3. (A.25)

From (A.S) we see that destruction of a meson in a
state Q+ (by means of a+) accompanies a nucleon
transition from neutron to proton, etc. Taking charge
conservation into account, we are thus led to identify
the states Q+, Q, Q3 with x+, m, m0 states in the same
order.

It is clear that in calculations we are free to use
either the states Qi, Q2, Q3 or the states (A.25); as
(A.24) shows even the symbol Piazri can be inter-
preted to fit either scheme, one has only to remember
that in the second scheme two matrices vq are not
Her mitean.

The eigenvalues of this operator are of the form
T(T+1) where 7 is a half-integer. This follows from
the commutation laws (A.7) in the usual way. Here
the analogy with angular momenta is really useful.

The value of T is used as a quantum number, the
total isotopic-spin quantum number; the latter is, of
course, well known from nuclear spectroscopy. If, in
particular, we have only one meson, we see from (A.22)
that

(B.2)

APPENDIX 8

If the three operators (A.8) are constants of the
motion, then another important integral is

(B 1)

(A 23) and (B.1) becomes

and that therefore the total operators (A.8) do also.
All this boils down to the fact, then„ that the Harnil-
tonian (A.18) or (1.10) is invariant against a unitary
transformation in the nucleon (X,P) space, and a
simultaneous unitary transformation of the meson
states Q», Q2, Q3 the infinitesimal unitary transformation
being in one case of the form 1—(i/2)~ri (with
infinitesimal angles qi) and. in the other of the form
1—iy), t~. In the latter case the matrix turns out to be
a real orthogonal matrix in three dimensions, but the

(2'+ ')'=3+ (t s)-(B.3)

meaning, of course, that the number on the left is an
eigenvalue of the operator on the right. By means of
(A.22) it is an easy matter to find which linear com-
binations of the states

I'Q», I'Q2, ~ ., SQ3 (B.4)

are eigenstates of T'. One finds for example that PQ+
is such an eigenstate, with T=-,'. On the other hand
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EQ+ is not, etc. We need not go into details, as the
subject is treated in detail elsewhere. 4'

&qp+lp+&= &pl, l~-+&
+ &p[V,*(E,—i&—H)- lp~+&.

The second term on the right may be written as

(, . i—~)-'&—Pl v,*lp +&

(C 1)

which contains a quantity similar to (5.35) and may
be similarly transformed to

(co, co, —ig) —'(&p[V, (E, ~, H) 'V—,*[n)+
( )

&Pl V,*( E+'~- H)- V.I-»
The first term on the right of (C.1) can be transformed
as follows, by means of (5.32)

&p[a, [pa+& = &p[a,a„*[+&+
&p[a, (E„yi„—H)-iV [~&.

(C.33

In the first term we use a,a„*=8,„+a~~a, and then

4' See for example Bethe and de HoGman. '

APPENDIX C

One proves (5.33) as follows: Using (5.32) to repre-
sent )qP+) we find

use (5.37) twice, getting

8q„& p+ &P[a~*(E,—o),—H) 'V~*[+)=
5 p+ &pl V (E —ca H) —'(E——(o —H)-' V,'[n).

(C 4)

In order to evaluate the second term of (C.3) we notice
that, owing to (5.27)

a, (E„+ig H) '—
= (E„cu,+—ig H) —'f,a,+V,*(E~+ig H) —').

The second term of (C.3) then becomes

((o„cv,+—ig) '( &-P[a,V„[n)
+ &P[ V,*(E +ig —H) 'V~[n)

or, after interchanging a, and V„and using again (5.37),

(. ,+—'~)-'{&PlV.(E. —H)- V,*l &
+ &P[V,*(E„+';,-H)- V„l.). (")

We must now add (C.2), (C.4), and (C.5). This gives

&qP+ [P +& =&,.&.s+ &P[V„L,V,*[ &,

L= (v, cu„—ig) —'((E,—co„—H) ' —(E,—~ —H)—')
+ (E —(o —H) '(E —co —H)—'=0

Hence (5.33)


