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ics, that is, statistical mechanics before the advent of
quantum mechanics, is concerned, the Ehrenfests
(11E2) in their well-known survey article in the Ensy-
klopaedie der mathematischen Wissenschaften have dis-

cussed the foundations of statistical mechanics and, as
we shall see, their conclusions are still valid in more or
less the same form as stated by them. ' However, no
such account of the state of the foundations of statis-
tical mechanics including quantum mechanics is avail-
able, and it is the purpose of the present paper to at-
tempt to give such an account. The present author has
discussed in a recently published monograph (54H1)'
some of the problems to be covered here, but, on the
one hand, since that monograph was written a number
of new developments have arisen, and, on the other
hand, the emphasis in the present paper will be more on
the present status of the foundations of statistical
mechanics that on the historical development of these
foundations as was the case in the earlier discussion.
The present discussion is thus to a large extent com-
plementary to the discussion in ESM. This does, of
course, not mean that now we are to neglect completely
the historical aspects of the development of statistical
mechanics.

One might argue that the proof of the pudding is in

the eating, and that the fact that statistical mechanics
has been able to predict accurately and successfully the
behavior of physical systems under equilibrium condi-
tions —and even under certain circumstances in non-

equilibrium conditions4 —should be a sufficient justi6ca-
tion for the methods used. This is especially the case
nowadays since the introduction of quantum mechanics
has cleared up such seemingly unsurmountable difficul-

ties as the paradox of the specific heats or Gibbs'

paradox. However, it is only logical that many physi-
cists have not felt satisfied by this argument and have
therefore attempted to show that the statistical formal-
ism follows in a straightforward manner from classical
or quantum mechanics. In the present survey we shall

discuss in how far these authors have succeeded. Even
if success has been limited, these attempts have been
extremely important and very helpful in showing both
the possibilities and the limitations of the statistical
approach.

~ R. Kurth (55K) has also considered the foundations of classical
thermostatistics from a more axiomatic point of view. I should
like to express to him my thanks for showing me his paper before
publication.' We shall use, as far as feasible, the notation of this publication,
and we refer to it as ESM.

4 For a discussion of the statistical mechanics of nonequilibrium
processes we refer to a recent review article by Montroll and
Green (55M} and its bibliography.
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Before we can start the discussion of the various
papers on the fundamental ideas of statistical mechan-
ics, we must remind ourselves that we shall mainly be
concerned with the following two questions.

(A) Why is it possible to describe the behavior of
almost all physical systems by considering only equi-
librium situations?

(8) Why is it possible to describe the behavior of an
actual physical system by considering a large number
of identical systems (in ensemble theory) and identifying
the average beha, vior of this group of systems with the
behavior of the physical system in which we are
interested?

In the following discussion it will become clear that
these two questions are intimately related. The first
one arises not only in statistical mechanics, but also
in thermodynamics and kinetic theory, and a related
problem is the question,

(A1) How can one define an equilibrium situation?
The second question is of a truly statistical nature,

and is related to the question,
(81) How can we construct an ensemble such that it

will "represent" an actual, given physical system?
This question of representative ensembles which will

play an important role in our discussion was especially
stressed by Tolman (38T, 40T).

At this point we must introduce a definition of
statistical mechanics, and we shall do this by using the
definition given by Kramers in his presidential address
to the International Conference on Statistical Me-
chanics at Florence in 1949 (49K3): "For a physicist
nowadays Statistical Mechanics is just that branch of
physics which deals with the atomistic interpretation
of the thermal properties of matter and radiation; for
this reason one might also call it 'thermostatistics'. "

In our discussion we shall not be concerned explicitly
with radiation, but restrict ourselves to systems con-

taining particles. However, in discussing transitions
from one state to another, the existence of a radiation
field, which in many cases will be the agent enabling
the transitions to take place, will tacitly be assumed.

Statistical mechanics has its origin in the kinetic
theory of gases which was developed in the nineteenth
century. It is probably justifiable to call Kronig the
father of the kinetic theory, even though more than a
century earlier Bernoulli (388) had related the proper-
ties of a gas to the properties of individual particles.

. Kronig (56K) draws attention to the fact that although
the orbit of any atom in a gas will be so irregular that
it is impossible to follow the atom, one can use the
theory of probability to reduce this completely chaotic
behavior to the ordered behavior of a gas, The kinetic
theory of gases was further developed by Clausius
(57C1, 57C2, 58C, 62C, 70C1, 70C2), Maxwell (60M,
67M, 68M1, 68M2), and Boltzmann (688, 728, 968,

988).' In his Gastheorie Boltzmann was especially
concerned with question (A) and he had introduced in
1872 (728) his famous H-theorem in order to show that
any nonequilibrium situation would develop in such
a way that it would approach an equilibrium situa-
tion. The answer to question (A1) is in this case that the
equilibrium situation is the most probable situation,
that is, the most probable situation compatible with a
few restricting conditions. In its original unrestricted
form the H-theorem, if correct, proved that any system
will tend toward equilibrium, if equilibrium does not
initially exist. ' This would mean that provided one
waited a sufficiently long time one would find the system
in an equilibrium situation and, moreover, this equi-
librium situation would persist for ever after. From this
it would follow that equilibrium would be the rule and
nonequilibrium the exception so that question (A) is
answered.

However, it was soon realized that the H-theorem in
its original unrestricted form was not an absolute proof,
but was based on certain assumptions about the number
of collisions which a given particle will undergo during
a specified time interval. Moreover, Loschmidt (76L,
77L) and Zermelo (96Z) showed conclusively that the
H-theorem in its original form could not be true. In
his later papers Boltzmann was therefore careful to
stress the statistical aspects of the H-theorem. This
means that the II-theorem is a statement about the
most probable behavior of a system. Fluctuations
around the equilibrium situation are, however, no
longer prohibited. The statistical aspects of the
H-theorem were especially stressed by the Ehrenfests
(07E, 11E2) both in general and by considering simple
models. '

In the first part of the present article we shall discuss
this stage of the discussion of the foundations of sta-
tistical mechanics. In Sec. A(1) we shall discuss the
unrestricted H-theorem. The arguments of I.oschmidt
and Zermelo against the H-theorem in its original form
will be discussed in Sec. A(2), while we discuss in
Sec. A(3) the statistical aspects of the H-theorem.

Apart, from introducing the H-theorem to prove (A)
Boltzmann also tried to prove that the average behavior
of a system is the same as its equilibrium behavior.
The contents of this statement are that the time aver-
age taken over an infinite period of any phase function,
that is, a function depending on the values of the coordi-
nates and velocities which completely determine the
physical situation, or phase, of the system under con-
sideration, should be equal to the value of this phase
function at equilibrium. It can easily be seen that this

' We may refer here to the Bibliographical notes at the end of
chapters I and II and at the end of Appendix I of ESM for more
historical details.

'We exclude clearly hypothetical systems such as completely
perfect gases within idealized walls. In such a system there would
be no mechanism to alter the distribution function, and a non-
equilibrium situation would persist.

~ The importance of the statistical nature of the II-theorem is
not properly taken into account by Sartre (54S) in a recent note.
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second way of attacking (A) is equivalent to the first
one. Firstly, if the EI-theorem is correct, it follows that
any nonequilibrium situation will develop into an
equilibrium situation which will then persist. In taking
a time average of a phase function over an infinite
period we thus obtain the value of this phase function
at equilibrium. Secondly, if the time average is equal
to the value at equilibrium, it means that the system
must be in an equilibrium state during most of the time
and hence return to equilibrium from any nonequilib-
rium state. ' In order to prove that average behavior and
behavior at equilibrium are the same, it is necessary to
calculate time averages and one then meets with serious
difficulties. Boltzmann tried to get over these di%cul-
ties by assuming that most physical systems are ergodi c.'
An ergodic system is one which has a representative
point in I" space" which passes through every point of
the energy surface corresponding to the energy of the
system. The evaluation of the time average is in this
case the same as taking the average over the energy
surface, that is, taking the average over a collection of
systems which possess all the same energy. This par-
ticular collection of systems, or ensemge, to use the
term coined by Gibbs, is a so-called microcanonical
ensemble. Since according to our assumptions the
representative point of any system in the ensemble will

pass through every point on the energy surface, the
orbits described by the representative points of the
systems in the ensemble will all be identical, the only
difference between the systems being the exact moment
at which a point of the orbit is passed. "It follows then
that the time average which is the average taken over
the one and only orbit on the energy surface where
diferent points are passed at different times will give
the same result as the average taken over the micro-
canonical ensemble which is the average taken over the
same'orbit, but now considering all points at the same
time.

In considering averages over the energy surface, or
over a microcanonical ensemble, Boltzmann departed
from kinetic theory and really and truly entered the
realm of statistical mechanics, if we use Gibbs defini-
tion of statistical mechanics in the preface to his famous

' This equivalence remains if one substitutes the H-theorem in
its statistical form for its unrestricted form as can easily be seen.

Krgodic from the Greek f,rgon (=work, used here in the
sense of energy) and hodos (=path): the representative point in
F space passes through all points of the energy surface. The term
ergodic was first introduced by Boltzmann in 1887 (878). The
assumption of ergodicity is called by Maxwell the assumption
of the continuity of path.

"A system with S degrees of freedom can be described by 8
(generalized} coordinates and S (generalized) momenta. The
values of these 2S quantities at a given time will define a point,
the so-called representative point, in a 25-dimensional space,
called F space (F for gas), or phase space. A 25—1-dimensional
hypersurface in F space, defined by the equation e=constant,
where e is the energy of the system, is called an energy surface.

"We use here the fact that the direction of the orbit at any
point of F space is uniquely defined from the Hamiltonian equa-
tions of motion. From this it follows too that an orbit can never
return to a point in F space through which it has passed —unless
we are dealing with a strictly periodic orbit.

monograph (02G)."It must, however, be noticed that
ensemble theory enters, so to speak, by the back door,
as it is only introduced as a mathematical trick to
calculate the behavior of one isolated system.

Around the turn of the century with the develop-
ment of measure theory it was realized that ergodic
systems would never occur, but it was hoped that most
physical systems would be quasi ergodic. A quasi-
ergodic system is one which has an orbit in I' space
which covers the energy surface everywhere densely,
even though not actually passing through every point
of it. It was also hoped that quasi ergodicity would be
sufhcient to ensure the equality of time averages and
averages taken over a suitably chosen ensemble. This
was, for instance, the point of view taken by the
Ehrenfests (11E2). In 1913 Rosenthal (13R) and
Plancherel (13P) independently proved the irnpossi-
bility of ergodic systems, while in 1923 Fermi (23F1)
showed that a certain class of systems was quasi
ergodic —without, however, proving the equality of
time averages and ensemble averages. " This equality
had been proved by Rosenthal (14R2), but his proof
was not completely rigorous. '4 More recently this
problem of the equivalence of time and ensemble

averages has been studied mainly by mathematicians.
It is usually called the ergodhc theorem. In 1931and 1932
Birkhoff (3181, 3182, 328) and von Neumann (32N1,
32N2) have shown that, provided certain plausible
mathematical conditions were fulfilled, the two kinds of
averages would give the same result, while Oxtoby and
Ularn (410) recently showed that a very wide class of
systems would satisfy these mathematical conditions.
The ergodic theorem will be discussed in Sec. B. In
Sec. 8(1) we shall discuss the developments up to
about 1930, while modern developments are discussed
in Sec. 8(2).

The approach via the ergodic theorem is still con-

"We may at this point perhaps advise every student of sta-
tistical mechanics to read and reread carefully this preface, as it
expresses more clearly than anywhere else the basic ideas of
rational thermodynamics, as Gibbs calls it. It is in this preface
also that the term statistical mechanics is coined. In view of the
diFficulties encountered by kinetic theory at the time that Gibbs'
monograph appeared (paradox of specific heats, the under-
standing of Planck's radiation law, ) Gibbs tried to build
up a rational system based on a few axioms and not necessarily
connected with natural phenomena. As Gibbs put it, "It is
well known that while theory would assign to the gas (of di-
atomic molecules) six degrees of freedom per molecule, in our
experiments on specific heat we cannot account for more than five.
Certainly, one is building on an insecure foundation, who rests
his work on hypotheses concerning the constitution of matter.
DifFiculties of this kind have deterred the author from attempting
to explain the mysteries of nature, and have forced him to be
contented with the more modest aim of deducing some of the more
obvious propositions relating to the statistical branch of mechan-
ics. Here, there can be no mistake in regard to the agreement of
the hypotheses with the facts of nature, for nothing is assumed in
that respect. The only error into which one can fall, is the want of
agreement between the premises and the conclusions, and this,
with care, one may hope, in the main, to avoid. "

"We shall see later on, however, that this equality holds
indeed for all quasi-ergodic systems.

'4 In his proof a double transition to the limit is taken, as was
pointed olif. Qy Rosenthal himself to Epstein (see 86E, p. 478).
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sidered by many physicists to be the most satisfactory,
if not the only one, and the one providing the best
justification for the use of statistical methods. It is
felt by these people that mechanics can only deal with
isolated systems and that the statistical approach is a
necessary mathematical device without any further
physical interest. It seems to the present author that
this point of view fails to take into account the physical
reason for a statistical approach. "The reason is that
the enormously large number of particles in most physi-
cal systems will make it impossible for us to determine
the values of all the integrals of motion. In general, we
shall only determine the energy, the total linear mo-
mentum, and perhaps one or two more. We then must
use this very inadequate knowledge about the system to
predict its future behavior. Since our knowledge is
clearly insufficient to predict the future of the system
with complete certainty, we must have recourse to
statistical methods and this is the point where repre
seetative ensembles enter. " Instead of considering one
system, we consider a large collection of systems all
possessing the same values of those quantities of which
we know the value, but otherwise differing widely. In
order to construct such a representative ensemble
satisfactorily, we must know what weight to give to the
various systems in the ensemble, or, in other words,
we must make assumptions about a priori probabilities.

Once the need for representative ensembles is recog-
nized and accepted, question (8) is solved in ensemble
theory by showing that the great majority of the sys-
tems in the ensembles considered behave in practically
the same way and, moreover, give just those values for
phase functions which one should expect from a system
at equilibrium. 'r However, question (81) remains to
be answered. One always 6nds that a canonical en-

semble is the representative ensemble of a system in
temperature equilibrium. In order to prove this one
introduces a generalized JI-theorem and shows that, if
the representative ensemble at one moment is not a
canonical ensemble, the situation at a later moment
will be such that we are forced to use a representative
ensemble which resembles much more closely a canonical
ensemble. This question of the approach to equilibrium
described by ensembles and the question of the repre-

'5 We might also add that completely isolated systems are of no
interest to a physicist, since it is impossible to perform experi-
ments with or on them. Of course, as long as we are dealing with
classical systems, we can always consider idealized experiments
and thus still talk about isolated systems. Moreover, Pauli
(49P) has pointed out that also in the case of quantum-mechanical
systems the inRuence of the act of observation on the system can
be neglected, as long as we are dealing with statistical mechanics,
although it is of paramount importance in the case of quantum
mechanics.

"See Secs. 24, 86 112) 117p and 120 of Tolman's monograph
(38T) and part B of ESM for a discussion of representative en-
sembles; compare also the discussion in Secs. C2 and D3 of the
present paper.

'~The proof of this statement can be found in any text-
book on statistical mechanics dealing with ensemble theory
(02G, 38T, 5481).

sentative ensembles will be discussed in part C, as far
as classical ensemble theory is concerned.

The transition from classical to quantum statistics
does not introduce any fundamental changes. As a
matter of fact, one could develop the two cases, that is,
the classical and the quantum-mechanical case, at the
same time to emphasize the close similarity. There are,
however, certain differences and for that reason we have
preferred to discuss the two cases separately. In the
quantum-mechanical case one can again approach the
problem either via ensemble theory or via an ergodic
theorem. We shall discuss these two alternative methods
of approach in parts D and K, respectively.

In concluding this Introduction, I should like to
make a few remarks concerning some general aspects of
the second law of thermodynamics and its place in
statistical mechanics. " The fact that in all practical
applications of thermodynamics the second law holds,
that is, the entropy increases, is due to the combination
of two effects. First of all, if the entropy at a certain
moment is smaller than its equilibrium value, the prob-
ability that it will increase is overwhelmingly larger
than that it will decrease. Secondly, our observations
are always made in such a way that starting from a
given situation we watch the future development, but
it is impossible for us to start from a given situation
and watch the preceding time interval. The fact that
we can do the one, but not the other is related to the
fact that we have a memory of the past and we can
thus possess knowledge of what happened at an earlier
time, but not of what will happen at a later moment.
To this extent the irreversibility of the second law of
thermodynamics is physiological and basic.

Another point is that, as far as one can judge at this
moment, all observations regarding phenomena in the
universe are reconcilable with the idea that the universe
as a whole is developing from some reasonable, though
thermodynamically or statistically unlikely, state in

the distant past. This may be thought to be connected
with cosmogonical ideas involving a more or less singular
beginning at, say, three to 6ve billion years ago. On
the other hand, it can also be argued, as was, for in-

stance, done by 8oltzmann (958), that the fact that
our world seems to be developing from a less probable
to a more probable state is not necessarily in contradic-
tion to the idea that the universe as a whole is in thermo-
dynamic equilibrium. To quote Boltzmann: "%e
assume that the whole universe is, and rests for ever,
in thermal equilibrium. The probability that one (only
one) part of the universe is in a certain state is the
smaller the further this state is from thermal equi-
librium but this probability is greater, the greater is
the universe itself. If we assume the universe great
enough, we can make the probability of one relatively
small part being in any given state (however far from
the state of equilibrium) as great as we please. We can

"I should like to express my thanks to Professor R. E.
Peierls for some clarifying and critical remarks on these points,
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also make the probability great that, though the whole
universe is in thermal equilibrium, our world is in its
present state. It may be said that the world is so far
from thermal equilibrium that we cannot imagine the
improbability of such a state. But can we imagine on
the other side how small a part of the whole universe
this world is 2 Assuming the universe great enough, the
probability that such a small part of it as our world
should be in its present state is no longer small.

If this assumption were correct, one would return
more and more to thermal equilibrium; but because the
whole universe is so great, it might be probable that
at some future time some other world might deviate
as far from equilibrium as our world does at present.
Then the aforementioned B-curve" would form a repre-
sentation of what takes place in the universe. The
summits of the curve would represent the worlds where
visible motion and life exists. "

In giving this quotation we are not subscribing to
Boltzmann s point of view, only mentioning it. In
judging this point of view on its merits one must in-
vestigate the dificult problem in how far it is possible
to talk about thermal equilibrium in an open system
such as our universe.

(Bf/Bt) dudvdwdt = —A+ B. (A1.01)

In Eq. (A1.01)fdudvdw is the number of atoms per unit
volume which have velocities with components in the
intervals (u, u+du), (v, v+dv), and (w, w+dw), A is
the number of atoms per unit volume with velocities
inside the selected range which during a time interval

' This is essentially a curve giving the entropy as a function of
time; compare Sec. A(3).

A. THE K-THEOREM IN CLASSICAL STATISTICAL
MECHANICS

(1) The Kinetic Aspect of the H-Theorem;
Stosszahlansatz

In 1872 8oltzmann (728) introduced his famous
H-, theorem in order to prove that any nonequilibrium
distribution will tend to an equilibrium distribution.
Let us briefly summarize his reasoning. He was con-
cerned with the case of an isolated system, and in
particular with the case of a monatomic gas and no
external forces, although he later extended his considera-
tions to the case of polyatomic gases under the influence
of external forces (758).

We are interested to compute the rate of change due
to collisions of the distribution function f, which in the
present simple case is a function of the three (Cartesian)
components N, v, and m of the velocity c of an atom,
and of the time t only. We must therefore consider, on
the one hand, the rate at which atoms with velocities
between c and c+dc change their velocities, and, on
the other hand, consider the rate at which atoms with
velocities within the selected range are produced
through collisions. In formula

Ch change their velocities, and 8 is the number of
atoms per unit volume which during a time interval
dt change their velocities in such a way that after colli-
sions their velocities lie inside the prescribed range. It
can be shown (see, e.g., ESM Sec. I.4) that 2 is given
by the equation

A = f(u, v, w)dudvdwdt

X f(u1,v1,w1)du1dv1dw1 ad&. (A1.02)

In Eq. (A1.02) du is an element of solid angle around
the so-called line of centers ~ which is the vector from
the one colliding atom to the other at the moment of
impact, a is a quantity which depends only on the ab-
solute magnitude of the relative velocity c„& and on
the angle 0 between the relative velocity vector and a,
and the integration is over all values of NI, v~, and zv~,

and over all possible directions of the line of centers.
Equation (A1.02) is obtained by multiplying the num-
ber of atoms with velocities within the specified range
(f(u, v,w)dudvdw) with the number of atoms which
collide with one atom in a time interval dt. Consider
atoms having a velocity between c&, with components
u1, v1, and w1, and c1+dc1. Provided we may assume that
there is no correlation between velocities and positions of
diferent atoms, the number of collisions between these
atoms and one particular atom in the case where the
line of centers lies within a solid angle d~ will be equal
to it: af(u1, vr, w1)du1dv1dw, dtd1o, where the quantity a is
a normalizing constant depending on c„& and 0. Equa-
tion (A1.02) now follows by integration over all possible
values of N~, v&, and m~, and over all possible directions
of 6).

Similarly, we have for 8 the equation

tr

B=dt ~ du'dv'dw'f(u', v', w')

Xdul dv1 dwl f(ul vl wl ) J
a d61 ~ (A1 03)

The integral signs are primed to indicate that we now
may integrate only over those values of c' and c&' and
those directions of ~' which are such that the velocities
after the collision, which are completely determined
by c', c&', and ~', satisfy the condition that one of them
lies between c and c+dc. Expressing the primed quanti-
ties in terms of the unprimed ones we can write instead
of Eq. (A1.03) (see, e.g. , ESM Sec. I.4)

B=
dudvdwdt~ ~du1dv1dw1f

(u,v, w )

Xf(u1', v1',w1')) ad~, (A1.04)

where N', e', m', N~', e~', and m~' are functions of 0, v, zv,
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I&, s&, and zv& through the equations expressing the
conservation of linear momentum and energy.

Combining Eqs. (A1.01), (A1.02), and (A1.04) we

get for the rate of change of the distribution function
due to collisions,

H= f lnfdudiidw, (A1.07)

we get for the rate of change of H from Eq. (A1.05)

dH
V'f ' ffi)(l—nf+1)

dt
Xadudiidwduidiiidw id'. (A1.08)

By observing the equivalence of e, c&, c', e&' in Eq.
(A1.08), one can write this equation in the form (see,
e.g. , ESM Sec. I.5)

dH
(f'fi' ffi)»(ff—i/f'fi')

dt 4~
X«udidwd»di, dw, d~ (A1.09. )

Since

(P—q) ln(P/q))0, if P&q, and =0,
if P = q, (A1.10)

and since a is a positive quantity, we have from

Eq. (A1.09)
dH/dt & 0, (A1.11)

where the equality in Eq. (A1.11) only holds, if for any
two velocities c and ci we have ffi= f'fi'.

It follows thus from Eq. (A1.11) that, provided our
basic assumptions are correct, H will steadily decrease
until it reaches a minimum value which is reached as
soon as the distribution function satisfies the relation

fA= f'fi' (A1.12)

for any pair of velocities c and c&. The minimum or
equilibrium value of H is in most cases reached rapidly,
if H diQers appreciably from this value. The relaxation
time in the case of a gas at room temperature and one
atmosphere of pressure is, e.g., of the order of 10 ' sec
(ESM p. 390).

One can derive a formula for the equilibrium distribu-
tion function either by using Eq. (A1.12) or by taking
as the equilibrium condition that for equilibrium H is
minimum, in both cases under the restricting conditions

20 In his first paper on the H-theorem Boltzmann used E
(entropy) for JI.

(ffi f'f—,')adu, dnidw, dna, (A1.05)
8f

where we have used the short-hand notation

f=f(u, iiw), f'= f(u', v', w'), fi= f(ui, »,wi),
fi'= f(ui', »', wl ) ~ (A1.06)

Introducing a quantity H by the equation"

f(g, q)dna =47rN, (A1.13)

where the integration extends over the unit sphere.
According to our assumption about the model we

have for the number of electrons per unit volume,
iV„„dfd~d~, which change their directions from within
an element of solid angle d~ to within a solid angle d~'
during a time interval dt:

I

N„, „dtdaads&'= f(e, q)ec~(d~/47r)(d~'/47r)dt, (A1.14)

where we have used the assumption of isotropic scat-
tering.

Using Eqs. (A1.13) and (A1.14), we can easily com-

pute the rate of change of f(0,q), and we get

df(0,y)/dt =0. f(0', p')des'/47r f(tt, q)—
=aiDV f1, (A1.15)—

of given total number of particles, given total energy,
and given total linear momentum. The result is the so-
called generalized Maxwell distribution.

Unfortunately the case of a real gas is not easy to
treat in detail and, although it is possible to derive the
H-theorem, it is not easy to discuss critically the various
assumptions made in arriving at Eq. (A1.11) and the
consequences of the removal of these restricting condi-
tions. However, it is possible to introduce simplified
models (11E2, 53H, 54G, 55G, 55H2) and we shall

especially consider a model which is essentially the same
as the model used by Lorentz (09L) in his discussion
of the electron theory of metals. In this model we have
two kinds of particles. The first kind (the lattice points,
or metallic ions) are Axed in space, and we shall assume
them to be randomly distributed in space with a density
of n per unit volume. The second kind (the electrons)
are traveling through the lattice and their density is X
per unit volume. We neglect electron-electron en-
counters and, furthermore, assume that the electron-
lattice collisions are elastic and isotropic. This means

(a) that on such a collision the electron will not change
the absolute magnitude of its velocity, and (b) that if

p(0, q; 0', ~t ') is the probability that an electron traveling
in the direction determined by the polar angles 8 and p
changes to a direction characterized by 0' and

P(e, q&;8', p') will be independent of 8' and q'. Since
the absolute magnitude of the velocity does not change
during the collision, we can simplify our model by
assuming that all electrons are moving with the same
speed c. Finally, we shall denote by 0. the cross section
for an electron-lattice collision.

In order to consider the approach to equilibrium, we
introduce a distribution function. Let f(8,p)d~/4'
(du=sinededp=element of solid angle) be the number
of electrons per unit volume with velocities in direc-
tions within the solid angle d~. We have then the
normalization condition
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with
o.'= SCO'. (A1.16)

In the general case H is given instead of by Eq.
(A1.07) by the equation

From Eq. (A1.15), we get

f(8,q)=N A—e ' A=A(8 p)=N f —s(8 p) (A1.17)
H= t f 1nfdki, (A2.03)

that is, an exponential approach to the equilibrium
value, if at 1=0 a nonequilibrium situation were
present.

Once again, as in Eq. (A1.11) we see a uniform ap-
proach to the equilibrium situation. However, once
again we have introduced a basic assumption in writing
down Eq. (A1.14), and again this assumption is one
regarding the number of collisions, or a so-called 5/oss-
M,hlansats. As collisions play the dominant role in our
discussion, we call this method of treating the problem
the kinetical treatment. We shall show, however, in
the next section that the unrestricted Stosssahlansuts
leads to contradictions and that we therefore rather
should base our discussion on the so-called statistical
treatment, which pays due regard to possible
fluctuations.

(2) Reversibility and Recurrence Paradox

Let us restate the H-theorem in a slightly diferent
way. We are considering systems made up of a large
number of identical particles and we have discussed the
distribution function, and its rate of change, corre-
sponding to such a system. However, a diBerent way of
looking at the behavior of the system is by depicting
its situation, or phase, at each moment by a representa-
tive point in 1' space (see ESM p. 100 for a definition
of 1' space). Each situation which, on the one hand,
corresponds to a given distribution will, on the other
hand, correspond to one point in I' space. We have thus
a one-'to-one correspondence between, on the one hand,
points in F space, and, on the other hand, values of the
distribution function. "Consider now a series of instants
~, t&, t2, ., t„, . Thephaseof our

systematic

will

correspond to a point P„ in I' space and the orbit
described by the representative point of the system
will pass through the sequence of points

, Pi, Ps, , P„ i, P„,P„+„. (A2.01)

As each point corresponds to a distribution function,
we can evaluate the value of II corresponding to each
point. Let II„be the value of H in the situation corre-
sponding to P'„. If we accept the II-theorem in its un-
restricted form, it then follows that the following
inequalities should hold

)~H, ~&H, )~ ~) H„ t)~H„~&~, (A2.02)

where the equal signs only hold, if equilibrium has been
reached.

"This is, of course, only true as long as we restrict ourselves to
the discussion of the relatively unimportant specific phases, If
we use generic phases to each distribution corresponds a set of
points in I' Lcompare Sec. A (3)g.

where the integration extends over the whole of p space
(ESM p. 30), where f is now a function of the s gen-
eralized coordinates qI, and the s generalized momenta
ps (s=number of degrees of freedom of one particle),
and where Cko is a volume element in p space,

8

d&= g dpstfqs
k~1

(A2.04)

II;=H . (A2.07)

This can be seen by performing the transformation
under the integral sign and then changing to new
variables,

H'=
)I f'(p', q') lnf'(p', q')dk&'

= i"f(p",q") lnf(P", q")Cki"=H, (A2.08)

where ps"—— pk, qs" ——qi. —
From Eqs. (A2.07) and (A2.02), it follows that the

sequence (A2.06) corresponds to a sequence of H-values
which satisfy the inequalities

~( jP„+t~&H„'~&H'„ t~( ~&Hs(&Hr&~ . (A209)

Ke see thus that for each system which shows a steady
decrease of B we can construct a system for which H

Consider now two situations corresponding to the
representative points P; and P which differ only in
that all the ps have the same absolute values, but with
opposite signs, while the qI, in the two situations are the
same. Since the Hamiltonian K(p&, q&) of the system is
a homogeneous quadratic polynomial in the Ps, it is
invariant against the transformation qs—+qs', ps—+—ps',
which is the transformation from P; to P . We see then
from the canonical equations of motion,

qs= BR/Ops, ps= —BBC/Bqs, (A2.05)

that the transformation from P; to P", corresponds to a
reversal of the time axis. If we now consider a system
going through the sequence (A2.01), then, on trans-
formation, we obtain a system which goes through the
sequence

, P'„~t, P„', P„ i', , Ps', Pi', . (A2.06)

From the definition of H, Eq. (A2.03), it follows

easily that
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is steadily increasing. This fact constitutes the so-
called Umkehreinwand or reversibility paradox of
Loschmidt's (76L, 77L).

%e can easily see the difficulty by considering the
simple model introduced at the end of Sec. A(1). By
reversing the direction of time we get a steady depar-
ture from the equilibrium distribution as can be seen
from Eq. (A1.17).

Another difficulty was pointed out by Zermelo
(96Z) who used a theorem of Poincare's (90P; see also
978). Poincare had shown that if a system enclosed
in a finite volume passes through the sequence (A2.01)
from t& to t„+&, say, this sequence will be repeated as
accurately as we wish it to be repeated after a finite
time interval. ""More specifically, for any finite length
element hs in I" space we can find a time interval T such
that the sequence at 3i+T, t2+T, , t,+T, &„+&+T
will be given by the points

, Pi", P2", , P ",P"
p&, , (A2. 10)

arbitrary time interval At during the evolution of the
system and denote by f(8, q ) the distribution function
at the beginning of this time interval. Denote further
once again by iV„,„Atd~d~' the number of collisions
leading during this time interval to the change of a
velocity within the solid angle d~ to a velocity within
the solid angle du'. Consider now the corresponding
evolution with the time direction reversed and consider
the corresponding time interval. The distribution func-
tion at the beginning of the time interval in this second
case may be denoted by f'(0, p). If 1V' Atd~d~' is the
number of collisions leading from ~' to ~ within At of
the reversed evolution, we have

(A2. 14)

for any pair of directions ~ and ~'. From Eq. (A1.14)
it then follows that, if the Stosssahlclnsalz were valid for
bo/A: evotlfioes, we would have

(A2. 15)

where
(A2.11)

independent of 0, q, 0', and q', or

f(8,p) = constant. (A2. 16)
The time interval T can be extremely long. For the

case of 10"atoms within 10 ' m' moving with an aver-
age velocity of 5.10' m sec ', Boltzmann (96B, see also
43C) estimated that it would take more than 10""years
to reproduce the positions within 10A and the velocities
within 104 m sec '.

If As is chosen sufficiently small, we have for the
H-values corresponding to the sequence (A2. 10)

(A2.12)

and hence we have the following sequence at t&, t2,

, 3,+T, . , t+T:
~,H, H, , H„, , H ",H ", , H„", ~

(A2.13)

Using Eqs. (A2.02) and (A2. 12) we see that in going
from 3„ to t,+T we have an increase in H. This paradox
is the so-called Wiederkehrei rlvvand or recurrence paradox

In the next section we shall show how statistical
considerations can clarify the situation. However, we
wish to emphasize at this moment that in so far as the
reversibility and recurrence paradoxes invalidate the
H-theorem in its unrestricted form, that is, the state-
ment that H can never decrease, they show that the
Stosssahlaesats cannot be true under all circumstances.
We shall illustrate this by considering two simple cases.

The first example is drawn from the consideration of
the simple model of the previous section. Consider an

"We refer to the literature (96Z, 43C, ESM p. 341, which
latter proof is not very rigorous) for a proof of Poincare's theorem.
The proof follows essentially from the fact that a finite region in
F space will sweep through the available part of phase space,
which is finite in the case of a system enclosed inside a volume,
within a finite period.

"For the relationship between Poincar6's theorem and Birk-
hoR's ergodic theorem we refer to a monograph by Wintner (41W,
pp. 90—91).

We see thus that the StosszahLarssatz cannot be valid for
at least one of the two evolutions, unless we are dealing
with the equilibrium situation.

The second example is the following one. '4 Consider a
stream of point particles moving all in the same direc-
tion, say, the +x-direction and being scattered by a
system of hard spheres which are randomly distributed
over a plane perpendicular to the x-axis. The result of
the scattering will be that the point particles after their
encounter with the plane of spheres will form a system
of particles the velocities of which are isotropically dis-
tributed. Consider now the evolution of the system
obtained from the previous system by reversing the
direction of the velocities of all the particles. Clearly
after a while all the particles will be moving in the
—x-direction, that is, the system will proceed from a
disordered condition to a highly ordered pattern. The
reason for this can easily be seen when we consider the
collisions of the particles of the second system with the
spheres. Although the system seemed to be completely
random, all collisions with the spheres occur on that
half of the spheres which is turned to the —x-axis and
clearly the collisions are not taking place in a random
manner. For this second system we see thus that the
Stosszahlaesafs would certainly not be satisfied.

(3) Statistical Aspects of the H-Theorem

We mentioned before that the nature of the situations
studied by statistical mechanics is such that we are led
to statistical considerations. The first man to use a
truly statistical approa, ch was Boltzmann (778) and
at that point kinetic theory changed into statistical

24 I am greatly indebted to Dr. H. M. James for providing me
with this example.
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mechanics even though it was another twenty odd years
before Gibbs coined the expression.

In his statistical considerations Boltzmann was con-
cerned first of all with the answer to question (A1),
especially for the case of an isolated system, and he sug-
gested two possible definitions of an equilibrium
situation.

(a) The equilibrium situation is that one which is the
most probable one for a given energy.

(b) The equilibrium situation is the average situation
in which the system will find itself during an infinite
time interval.

Let us first in this section consider the approach via
the most probable situation. In order to prove that the
most probable situation corresponds to the equilibriu~
situation characterized in the case of a system of inde-
pendent particles, such as Boltzmann was considering,
by the Maxwell-Boltzmann distribution we proceed
as follows.

Consider an isolated system of E independent par-
ticles. Each particle will have a representative point
Q&"& in tt space, where k numbers the particles in the
system (k=1, , N). The phase of the whole system,
and thus its representative point in I' space, is then
determined by the N points Q"&, , Q'~&. We now
divide tt space into very small but finite cells of equal
volume co, which we number consecutively, coi, co2,

This divisionis one of the fttrtdameltal steps in
the urglmeet. The size of co is such that, on the one hand,
the dimensions of a cell are small compared to the
smallest macroscopically measurable dimensions, but,
on the other hand, the number of representative points
Q'"& contained in each of them is large. "

Let now E;be the number of representative points in
the ith cell. The situation Z" is then completely de-
scribed by giving the S;. The description of the situa-
tion by the S; instead of by the actual position of the
Q&s& corresponds to our experimental limitations, since
the size of the cells has been chosen such that we cannot
distinguish by experimental means between different
points within one cell.

The relation between the representative point of the
system in I' space and the situation Z described by the
A; is as follows.

(a) To each point in I' space corresponds one situa-
tion Z.

(b) For each Z there exists a volume in I' space such

"This division seems on first sight artificial in classical sta-
tistics, while it occurs naturally in quantum statistics. Uhlenbeck
(27U) discussing this step remarks: "It is as if Boltzmann had a
premonition of the occurrence of discrete quantum states in
p space. " There is, however, more to it than this and to a large
extent one may say that even in classical statistics the division
is natural as it corresponds to the limitations of our macroscopic
measurements. Compare in this connection the discussion of the
coarse grained ensemble density in Sec. C(1) and the discussion
at the end of the present section."We use here the Ehrenfests' notation (11E2):Z for Zustands
ve teilgng.

that each point of this volume corresponds to the same
Z. Such a region we shall call a Z-star, and its volume
is given by the equation

W(Z) = [N!/II,N, l]~". (A3.01)

Equation (A3.01) can be derived if we remember that
the collective of the numbers E; remains unchanged,
and hence Z remains the same, under the following two
operations. (a) Each of the N points Q'"' sweeps through
its own cell, resulting in the filling out of a volume
0=o&~ in I' space. (b) Any permutation of the N points
such that only points in different cells are permuted.

We now introduce a quantity H(Z) by the equation

H(Z) = —lnW(Z). (A3.02)

Substituting expression (A3.01) for W(Z) into (A3.02),
using Stirling's formula for the factorial in the form

lnx! =x lnx —x

and neglecting additive constants, we get

H (Z) =Z,N, lnN;.

(A3.03)

(A3.04)

Comparing Eqs. (A2.03) and (A3.04) we see that
H(Z) is the same as Boltzmann's H with the proviso
that instead of integrating we take a sum over the cells
which we introduced in p, space.

It can easily be shown (e.g. , ESM Sec. I.7) that, if
we define the equilibrium distribution E,' as that dis-
tribution for which W(Z) is maximum, it follows that
in the case where the total energy E and the total
number of particles 3T is fixed, corresponding to the
restricting conditions

S=ZN;,

E=ZNQ

(A3.05)

(A3.06)

where E; is a representative energy for the ith cell,
the E obey the equation

N,'= exp(tt —PE,), (A3.07)

which is the so-called Maxwell-Boltzmann distribution.
In identifying the equilibrium distribution with the
distribution for which W(Z) is maximum, we have
defined the probability for a situation as the correspond-
ing volume in F space.

In order to prove that the equilibrium distribution
is the one for which W(Z) is maximum, or H(Z) mini-
mum, we should like to introduce an H-theorem, that is,
show that dH/dt is always negative, unless H=H;,
or something of this kind. However, as soon as we start
discussing the behavior of H(Z) as a function of time,
we realize that any function which depends on the
coordinates and momenta of the particles in the system
through the E; will be a discontinuous function, since
whenever one of the representative points in y space
leaves one cell and enters another, the two X;concerned
alter by unity. For the time dependence of H(Z), we
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get thus a step function" and its time derivative will

only have three possible values, —~, 0, and +~.'™
From the step function we now obtain the so-called

II-clrve by selecting a discrete set of points which are
separated by constant time intervals. The length of the
time interval r, say, is chosen in such a way that it is
small compared to experimental time intervals, but

sufficiently large so that during ~ a large number of
collisions occur. '

We can now use the properties of the H-curve to
illustrate the following points. "We shall use the simple
model introduced in Sec. A(1) for this illustration. It
can be shown (54G, 55G) that this model is only one of
a larger class of models all showing the same behavior. "

I. It is possible to find a function 6 which, on the one
hand, measures the departure from equilibrium and,
on the other hand, is directly related to the entropy of
the system, or B."

II. If the history of a system is followed in time, the
equilibrium distribution, for which 6 is equal to its
minimum value, will be realized much more often
than any other distribution. Furthermore, the chance
of observing another distribution is so small that the
equilibrium distribution is the same as the average
distribution.

III. If the system is in a situation corresponding to
A&A;„, the development of the system will be such
that 6 will most probably decrease.

IV. The previous statement will be true whether we

read the 6 curve —which is obtained from the step
function h(t) in the same way as the IX curve is ob--
tained from H(t)—from t= —pp to 3= jpp, or from
t=+~ to t= —pp.

V. The 6 curve will practically always be in the
neighborhood of 6;„.

VI. The time between the reoccurrence of a 6 value
different from 6; increases steeply with increasing A.

VII. If Z„ is the average of all 6 values at tp+BT,
starting from Ap at ip," the Z-curve, that is, the se-

quence of values Zi, Z&, , Z„, will decrease
monotonically from 60 approaching 6;„asymptotically.

VIII. By far the most of the 6 curves will follow the

"It must be noted that this fact does not depend on the char-
acter of the intermolecular forces but is solely a consequence of
the introduction of finite cells co." More mathematically expressed: the time derivative is
everywhere zero except where H is discontinuous when it is not
defined.

-" Compare the choice of the size of the cells in p space.
"The numbering of the points, and the contents of some of

them, is different from that of the Ehrenfests (11E2) or that
in ESM."See also 5132 and 52H.

3' We have not proved that apart from additive and multiplying
constants, H given by Eq. (A2.03) is the entropy of the system.
For such a proof we refer to the literature (see, e.g. ESM pp. 22
and 43).

32 In considering points VII and VIII (and also to some extent
point III), it must be borne in mind that H and thus 6 does not
determine the situation uniquely. For a given value of 6 there are
thus several possible situations Z.

Z-curve for an appreciable period, but practically none
of them will follow the Z-curve at all times.

We shall call the sequence of values 6&', 6&',

, which would follow from 60 by an application
of the unrestricted II-theorem based on the Stosssahlm-
sa/s, the SfosssuM curve. "We then have the following
point.

IX.The Stosssahl curve and the g-curve are identical.

Let us now consider the Lorentz model. The function
6 mentioned in I will be de6.ned by the equation

(A3.08)

where the f„' are defined by Eq. (A3.11). In Eq.
(A3.08) we have introduced the division of p space—
which in this case reduces to the unity sphere —into
finite cells. Each cell is an element of solid angle of
extension Ro, where

(A3.09)

The 2m+1 expressions f„which are functions of time
and which together determine the state of the system
are defined in such a way that f„ is the number of elec-
trons moving in the direction specified by the vth
element of solid angle. Only 2m of the f„are independent
as they satisfy the relation

(A3.10)

The equilibrium values f„' of the f„are all equal and
given by the equation

f„'=1V/ (2m+ 1). (A3.11)

As one can show that the f„are practically always
in the neighborhood of f„' Lcompare Eq. (A3.16)$ so
that we can assume f„f„'((f„'we—have up to second-
order terms in (f„f„')/f,'—
H =Z„f„ ln f„=Z„f„' ln f„'+6/21V

=H„,+2,/2' . (A3.12)

From Eqs. (A3.08) and (A3.12) we see first of all
that it makes no difference whether we use H or 6 to
describe the departure from equilibrium, and secondly
that 6 is a non-negative function of the f„which is only
zero when all the f„are equal to their equilibrium values.

As far as point II is concerned, we can first of all
calculate the relative occurrence of a state of the system
corresponding to a nonequilibrium value of h. We find
in this way for the normalized probability w(A)dA that
5 has a value in the interval (6, 6+dh) the expressionP4

w(h)dh= )(2m+1)/2IVj~LD" '/(m —1)!j
Xexp f —(2m+1)6/22V }dh. (A3.13)

"In the Ehrenfests' discussion where H was considered instead
of 6, this curve is called the H-theorem curve (see also 54G, 556).

'4 For a detailed discussion and derivation of the formulas in
the remainder of this section, we refer to Appendix I.
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The function w(D) takes the place of the W(Z) of the
beginning of the section and we see that, indeed, w(A)
reaches its maximum value for 6=0, that is, for the
equilibrium situation.

We now make the assumption that the time t(Z)
spent in a situation described by Z will be proportional
to W(Z)." In that case the time average 6 of a phase
function 6 will be given by the equation

G= PZ xG(Z) W(Z)3/I Z zW(Z)$. (A3.14)

The assumption which we have just made about the
proportionality of t(Z) and W(Z) is necessary in order
to continue the argument. It is also an assumption which
is closely related to assumptions made in such theories
as those which discuss the outcome of lotteries. In the
latter case since each draw is supposedly independent
of all the preceding ones, the proportionality of the
probability for a certain result to the number of times
such a result occurs in an in6nite series of draws is
fundamental and, indeed, used to define the probability.
However, when one is dealing with processes which are
in fact determined by the preceding history, the pro-
portionality of time spent in a situation and the
probability for this situation must be assumed. More-
over, it cannot be used to define the probability since
the processes considered are not even Markovian. The
diKculty lies in the fact that t(Z) is concerned with the
long-time behavior of a system, but as the orbit is

completely determined once one point of it is known in
I' space, the longer we follow the orbit the more data
we obtain from which to determine completely the
orbit and hence we are no longer dealing with purely
statistical situations. We may refer in this connection
to the discussion given by Tolman (p. 148 of 38T; see
also 508). Our assumption is thus closely connected
with the Markovization of the processes giving the
development of a system (compare 49S, 54G, 55G,
55H2).

We must also draw attention to the fact that the
proportionality of t(Z) and W(Z) is rot proved by the
ergodic or quasi-ergodic theorem —as one might have
hoped —since this theorem only proves the propor-
tionality of t(Z) and W&(Z), but not the proportion-
ality of Wz(Z) and W(Z). It remains thus one of the
basic assumptions in the approach to the H-theorem
in the form in which we discuss it at the moment and,
moreover, one which seems to be no nearer to a proof
notwithstanding the vast amount of work done either
on simpli6ed models or on the rgodic theorem.

To continue our discussion &f points II to IX, we

shall con6ne ourselves mainly to those phase functions

35 We do not wish to stress here the point that this assumption
really involves two steps (see ESM p. 350). The erst step is the
assumption that the area 8'E(Z), cut out of the energy surface
on which the representative point of our system is situated, will
be proportional to lV(Z). The second step consists in assuming
t(Z) to be proportional to 8'E(Z). It may be mentioned here that
Einstein (03K, 10K) made the same (combined) assumption as
we are making here.

which depend on the p's and g's only through A. For
such functions Eq. (A3.14) can be written in the form

G= w(h)G(a)dh, (A3.15)

since w(A) is normalized. We can, for instance, calcu-
late the average value of 6 and the dispersion around
this average value, and we find

hA,
——X, ((s—aA, )')A, ——Ã'/m. (A3.16)

In order to discuss the variation of 6 with time, we
introduce the time interval 7 and calculate the prob-
ability w(D, A') that 6 changes its value from 6 to 6'
during this time interval 7-. Once these transition prob-
abilities are obtained, we 6nd the average value of 6'
after r when at the beginning of the interval the value
was 6 from the equation

I w(A, h')6'dA', (A3.17)

provided w(A, h') is normalized with respect to 6', and
for the average rate of change of 6 Land thus of II;
compare Eq. (A3.12)) we have

(d~/«) = (~ ~
—~)/r. (A3.18)

In the special case of the I orentz model, we 6nd for
w(d, A') the expression (see Appendix I)

w(d, d') = (16mXAA) '

Xexp( —
I
6'—

6+Ah�

(2m+1)$'/16$A 6}, (A3.19)

where A is given by the equation

A =2nz, (A3.20)

,

6"w(h")w(d", A)dA"

', 4
w (6")w (6",6)db,", (A3.23)

where the denominator ar;ses from the fact that it is

not equal to unity Lw(5")w(n" d) is only normalized

with n given by Eq. (A1.16). From Eqs. (A3.17) to
(A3.19) we now get

~,„'= (1—A) ~, (A3.21)

(d~/dt). ,= A~/r. —(A3.22)

Point 111 follows immediately from Eq. (A3.22).
Wee see here the same exponential approach to equi-
librium as was found in Sec. A(1) (Eq. (A1.17)). We
shall see presently the close connection which exists
between Eqs. (A1.15) and (A3.22).

In order to prove point IV, we must calculate the

average value 6",~„~ of 6 which after a time interval v

leads to a value A. This quantity is given by the
equation
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if integrated over both 6 and 6"j.From Eqs. (A3.23),
(A3.13), and (A3.19), we find

6",„=(1—A)d, , (A3.24)

and point IV has been proven. "
Point V follows from the expression we found for

w(h) and the assumption that the chance of finding a
value of during a sequence is proportional to w(A).
In order to see point VI, we use a formula of Chan-
drasekhar's (43C) for the recurrence time 0(h) of a
state characterized by 6,"

values of 6 recur with a frequency given by Q~(&)
—',

point VIII follows.
Let us now consider finally the SfossMhl curve. We

note that from Eq. (A3.08) it follows that

dA/dt =Z,2(f„f„'—) (df /dt). (A3.33)

Provided the 5tossMhlaesats is valid, the rate of change
of f„with time is given by the equation Lcompare
Eq. (A1.15); the proof of Eq. (A3.34) is given in
Appendix If

df„/dt= [A/rI f, ' j„j.— (A3.34)

or
O~(h) = r/1 —w(A))/$tt (6)—tt (A)rt (A,A)$, (A3.25)

o(~)=r/~(~), (A3.26)

Combining Eqs. (A3.33) and (A3.34), we get for the
Stosszahl curve the diGerential equation

Z„=~ 6 V(&; &p,&i,~p, ,& i)

Xd&,d&s .d&„) (A3.28)

from which follows that

Z.= (1—A)-~,

and putting t= er we get

Atlr g e pa&— —

(A3.29)

(A3.30)

Point VII follows immediately from Eqs. (A3.29) or
(A3.30).

We can also calculate the dispersion O„of 6„ for
which we have the equation

0„= (2„—A.)'w(d. ; Ap, Ai, . ,A„ i)

or
0.„=0.

Xddt dA, (A3.31)

(A3.32)

From Eq. (A3.32) and the fact that nonequilibrium

"lt must be remarked here that in an earlier paper i33Hl we
used for the proof of the equivalence of the sequence with
]=—~~I=+~ and the sequence with t=+oo —+3= —oo the
relation zv(A}m(~, A') =2'(A')m(A', 4) which holds also in the
present model.

'7 The objections raised by Bartlett (508, 538) against Chan-
drasekhar's formula are no longer valid, if we consider the se-
quences which are continually Markovized (see 50M).

'8 It may be noted that in writing down Eq. (A3.27) use is made
of the assumption of continued Markovization.

from which point VI follows )see Eq. (A3.13)j.
In order to calculate Q„, that is, the average

of all 6 values at tp+trr, starting from Ap at
$0, we must compute 6rst of all the normalized prob-
abt»ty tt(&~;&p,At, A&, ,A. i) for a sequence of
values dp at fp, At at fp+T, 6s at 3p+2r, , 6„ i at
tp+ (tr —1)r, and h„at tp+tsr. This quantity is given by
the equation (compare 55G)"

tt(h; Ap, hi, Dp, . ,& i)
=w(Ap, d„)tt (r1r,hs) te(A~i, D~). (A3.27)

For Z)„we now get

dh/dt = A5/r, — (A3.35)

and we see from comparing Eqs. (A3.30) and (A3.35)
that point IX is also proved for the model considered.

Let us now summarize the situation as regards the
present position of the H-theorem in classical statistics.
We notice, first of all that, although the situation has
improved by the study of simplihed models since the
Ehrenfests (11E2) considered this problem in great
detail, much remains to be done. As far as the ap-
proach to equilibrium and the fluctuations around the
equilibrium situation are concerned, the study of sim-
plified models has shown that the situation is much as
one would have expected (points II to VI)—provided
we may treat the process as a true Markov process.
We have discussed the behavior of the system mainly
from the point of view of the Quctuations, but we could
have done the same for the return to equilibrium. Siegert
(49S) has, for instance, shown that starting from any 6
at t=to, the probability for finding a value of 5 at
t= pp will always be given by w(D). We have tacitly
assumed that we are always dealing with a situation
which has essentially forgotten its initial state. This
may be done provided the relaxation time of the system
is suKciently short. The relaxation time 3„& is essen-
tially given by r/A which, if we assume tr=10" m ',
c=10' m sec ', 0-=10 "m' m=10' leads to t„i~10 '
sec (compare ESM p. 390). This fast relaxation accom-
panied by long recurrence times for appreciable devia-
tions from equilibrium" are the reasons why there are
very few exceptions to the second law of thermo-
dynamics, or, to put it slightly differently, why fluctua-
tions very seldom play an important role in the
behavior of macroscopic physical systems. As Smoluchow-
ski (12S) puts it, a system will appear to behave ir-
reversibly if its initial state is characterized by an
average time of recurrence which is long compared to
the period available to the experimenter. In this con-
nection, we also see confirmed Tolman's suggestion
(38T, p. 179) that the relaxation time would be very
short compared to the period of the Poincare cycle
(Sec. A(2)), provided the size of the elementary cells

"For an average deviation of 10 ' f ' from f;, we get O(h)
of the order of 10"' years l
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were not too large. Since 3 is inversely proportional to
2m+1, the number of the cells, we see indeed that t,.~

increases with m, and we saw a moment ago that t„i
took on a reasonable value for a reasonable value of m.

The main problem still remaining is the justification
of the Markovization (point VII of the Ehrenfests
(11E2), or point IX of ESM). This seems an extremely
dificult problem to tackle, but it might be possible,
certainly with the powerful calculating machines avail-
able these days, to calculate the II-curve of a given
system for a variety of initial conditions using the exact
equations of motion.

In conclusion we wish to point out that even though
to some extent the ergodic, or better, the quasi-ergodic
theorem has solved the question of the equivalence of
time averages and ensemble averages, because of the
incompleteness and inexactness of available experi-
mental data we can only define a situation up to a
limited accuracy. Even if we are dealing with an
isolated system so that its representative point will stay
on an energy surface, we do not know on which energy
surface, and the only truly representative ensemble will

be one which consists of all the systems whose repre-
sentative points at to fill up a Z-star. Hence, the discus-
sion of the B-theorem still remains germane to the
problem we are discussing.

B. THE CLASSICAL ERGODIC THEOREM

(1) The Ergodic and Quasi-Ergodic Theorem

We mentioned in the Introduction that many authors
prefer the approach via the ergodic theorem to the one
using the H-theorem. At the end of Sec. A(3) we

mentioned our reasons against this point of view and we

shall return to this discussion in Part C. However, the
ergodic theorem has played such an important role in
the development of the subject of statistical mechanics
that the omission of a discussion of this problem in an
article such as the present one would be unforgivable.

We mentioned at the beginning of Sec. A(3) that
Boltzmann considered two diGerent de6nitions of an
equilibrium situation, namely, as the most probable
situation or as the average situation. We considered
the 6rst possibility and we shall now consider the second
one. Boltzmann (7181, 7182; see also 688) and
Maxwell (79M) thought that one could prove in a more
or less straightforward manner the theorem: The
average behavior of a system of independent particles
will correspond to the Maxwell-Boltzmann distribution.
The average is taken in the sense of a time average over
an infinite period.

The reason for believing in this theorem was that
Boltzmann expected the existence of so-called ergodic

systems. An ergodic system is one such that the orbit
of its representative point in F space will go through
every point of its energy surface. Once the existence
of ergodic system is accepted one can easily see the
advantage of considering time averages. First of all it

has to be borne in mind that one always measures time
averages in any physical experiment. Moreover, as
relaxation times are usually small as compared to the
period over which an experimentally determined quan-
tity is measured, it does not matter whether we take'
the averages over a finite interval or over an infinite
period. Secondly, if one could prove that actual physical
systems were ergodic the following equalities would
hold for any phase function p(p, q):

(v)A. =(v»A. =(g)A.= p, (81.01)

where the bar (—) indicates a time average and ()A an
average taken over a microcononical ensemble. The
second and third terms in Eq. (81.01) indicate the time
average of the ensemble average and the ensemble
average of the time average, respectively. We shall

presently indicate a proof of Eq. (81.01), but at the mo-
ment only remark that from these equations it follows
that one can calculate instead of time averages ensemble
averages and, since those can be calculated much more
easily, we have a clear gain.

The time average of g of a phase function is defined

by the equation

g= lim'-"2r ~, T

q (p,q)dt, (81.02)

where p's and q's are the values at the time t of the
coordinates of the representation point of the system is
I' space. In order to see whether or not the average
behavior of one system corresponds to a Maxwell-
Boltzmann distribution, one selects a set of phase
functions which together determine the distribution
and compares their time averages with the values to be
expected for a Maxwell-Boltzmann distribution.

The ensemble average (p)A„ is taken over a micro-
canonical ensemble. This average is given by the
equation

(~)A.= ~(p, q)~(p, q)dg
f

0 (p, q) dS, (81.03)

where 5 is the number of degrees of freedom of the sys-
tem, and thus the number of dimensions of F space,
and K is the Hamiltonian of the system.

From Liouville's theorem (ESM p. 102) it follows

The expression inside the braces in Eq. (B1.04) is nothing but
the absolute value of the "velocity&' of the representative points
in F space.

where the two integrations extend over the whole of
the energy surface g, and where a(p, q) is the surface
density on S corresponding to a microcanonical en-
semble. This surface density is given by the equation"

( BX) (BK).(p,q)= P I I+I I ~, (81.04)
~=~ . E ap„i &aq„&
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(see, e.g. , ESM p. 355) that the only stationary en-
sembles on an energy surface are those for which the
surface density along an orbit satisfies Eq. (81.04).

We can now proceed to the discussion of Eqs. (81.01).
The first equality follows immediately from the fact
that a microcanonical ensemble is a stationary en-
semble. The second equality is due to the interchange-
ability of averages. There remains the last equality
which holds for ergodic system, since g is the same
for all systems in the ensemble. This can be seen as
follows. Since for an ergodic system the orbit of the
representative point passes through every point of S,
and since it follows from the canonical equations of
motion (A2.05) that in each point the direction of
the orbit is uniquely determined, therefore there is
only one orbit on S. The only difference for diferent
systems in the ensemble lies in the exact moment at
which a point of the orbit is passed. " As all systems
follow the same orbit, it follows from Eq. (81.02) that
p is the same for all systems and the last equality of
Eq. (81.01) follows.

For an ergodic system one can even go one step
further and prove that the following equation holds
(718):

(81.05)

where dt is the time spent by the representative point
within a surface element dS of S during the period T.
From Eq. (81.05) we can, in principle, calculate the
frequency of the occurrence of nonequilibrium situations.

The problem is now reduced to a proof of the ergodicity
of mechanical systems. However, one can easily see that
it is unlikely that any system is ergodic (38T, p. 67).
We remind ourselves that the system of Eqs. (A2.05)
possesses 25 integrals of motion. One of these is the
energy and one fixes the time along the orbit. By
choosing a point P on the energy surface, we fix the
values of the 25—2 other constants of motion. Choosing
different values for these constants, but the same value
for the energy, we find another point Q on the same
energy surface, but there is no orbit connecting P with

Q. In order to complete the proof one should, however,
show that the 2S—2 constants of motion are not con-
stant almost everywhere on the energy surface —which
seems unlikely.

We enter the realm of measure theory4' with the
expression "almost everywhere, " arid it is by using this
theory that one can prove the nonexistence of ergodic
systems (13R, 13P; see also 52R). The crux of this
proof is that the points of an orbit form a set of measure

"We have excluded exceptional orbits which are strictly
periodic.

~ It may be noted here that many mathematical statisticians
(see, e.g. , 53D) consider statistics purely as a branch of measure
theory. For a discussion of measure theory we refer to a recent
text book by Halmos (50H; see also 53D).

zero on the energy surface, the measure of which is
not zero. 4' We can see this as follows (52R). Consider
a point P of the orbit of the representative point and
consider a small region 8 of finite measure around P'.
As the orbit can clearly not stay indefinitely in 0'„ if it
is to cover S completely, the only part of the orbit in 0',

will be a collection of separate segments, "corresponding
to a succession of finite intervals of time. As the set of
such time intervals is enumerable, the segments of the
orbit inside 0', will also be enumerable and thus have
measure zero.

Although the impossibility of ergodic systems was
only proved by Rosenthal and Plancherel in 1913, the
Ehrenfests (11E2, especially footnote 89a; see also
91K, p. 484) were apparently well aware of the im-
probability of ergodic systems and of the fact that the
points of an orbit and all the points of an energy surface
have different measures. In order to avoid this difficulty
it was suggested that mechanical systems might be
qlasi ergodic. The representative point of a quasi-
ergodic system4' will come arbitrarily near every point
of the energy surface without, however, passing through
each point.

The introduction of the possibility of quasi-ergodic
systems did not, however, solve the problem how to
prove Eq. (81.01), although Rosenthal (14R2; see,
however, reference 14) gave a not completely rigorous
proof. of Eq. (81.05) based on the quasi ergodicity of
mechanical systems and also proved the equivalence of
time and ensemble averages. Fermi (23F1) proved that
a certain class of systems, the so called Eamoeische
3~0rmalsys/erne, 46 were quasi ergodic. A sketch of his
proof is given in Appendix II.

In order to advance it was necessary to find an inde-
pendent proof of the equivalence of time and ensemble
averages and that is the purpose of more modern de-
velopments of the ergodic theorem which are discussed
in the next section. The term ergodic theorem is nowa-
days used to indicate a proof of the equivalence of time
and ensemble averages, and the term quasi-ergodic
theorem would probably have been more relevant from
a historical point of view.

(2) Recent Developnmnts4'

Modern ergodic theory started with the paper by
Birkhoff (3182) who considered the following time

4'The measure of a point set OR on g is defined as follows:
Let f(I') be a function which is 1, if P belongs to mt and to 0
otherwise. The Lebesgue integral J'fdg extending over the whole
of g is then called the Lebesgue measure of OR on g and denoted
by K OR.

44 They have to be separate, as for a nonperiodic orbit no point
of g is ever passed twice.

4'It may be noted here that in view of the impossibility of
ergodic systems in the original sense of the word, modern authors
often refer to quasi-ergodic systems as ergodic systems.

4'It is interesting to note that Einstein (02E, 03E) when he,
independently of Gibbs, introduced ensemble theory, restricted
himself to these systems (see also 11K2).

"See also 20M1, 20M2, 2782.
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averages:
~ tp+T

f(Pj tp)T)'~ f(Pg)dl) (82 01)
T tp

lim
+~00

dt(P; OR) KOR

Kg
(82.02)

where dt(P; OR) is the fraction of time a representative
point of the orbit going through P spends in the region
OR during a period T. Once again Eq. (82.02) is only
true provided the group of transformations P—+P&

is metrically transitive. "
BirkhoG's proof is slightly stronger than the one given

by von Neumann (32N1, 32N2) who showed that the
convergence of f(P; tp, T) was true in the mean, while

Birkhoff showed that it was true for practically all P.
4~'The group of transformations P~P& is called metrically

transitive and g is called metrically indecomposable, if g cannot
be decomposed into two parts g1 and g2 both of positive measure
and both invariant under every transformation of the group.' We do not wish to discuss here the complications due to the
existence of other integrals of motion such as linear momentum,
angular momentum, and so on. These introduce what is called by
Rosenfeld an inessential decomposition of Q, while we are only
concerned with the essential indecomposability of g. For our
discussion we shall assume that there are no uniform integrals of
motion apart from the energy and, moreover, we shall only con-
sider metrical indecomposability in the physical sense. For a dis-
cussion of complications which we avoid this way we refer to the
literature (see, e.g. , 52R). We must also refer to the work of
Grad (5261, 5262) who has considered in detail statistical me-
chanics of systems with integrals other than energy.

"From Eq. (B2.02) we see the relation between BirkhoB's
ergodic theorem and Poincare's recurrence theorem (compare 41W
pp. 90—91).This equation expresses the fact that the representa-
tive point will spend a finite period in each region of positive
measure.

where P& is the point passed at t of an orbit which passed
through P at to. He showed, first of all, that for practi-
cally all points P of the energy surface S the limit of
f(P; tp, T) exists for T~rc. Moreover, Birkhoff showed
that f(P; fp, T) in the limit of T +~ i—s independent of
to for practically all points P. The proof of this property
of time averages on an energy surface is -given in
Appendix III. "Practically all" is understood here, as
surmized by Birkho6 in 1922 (228; see also 26S2), in
the sense that the exceptional orbits would form a set
of measure zero on S.

Secondly, Birkhoff showed that f(P; ~), i.e., the
time average taken over an infinite period, is constant
almost everywhere on 8, provided the group of trans-
formations P—+P& is metrically transitive, or in other
words, provided S is metrically indecomposable. 4" The
constancy of f(P; po) follows from the fact that, if it
were not fulfilled, one could find a value F of f(P; po)

such that the conditions f(P; po)(F and f(P; po) &~F

would define two sets of positive measure on S which
would both be invariant against the transformations
P—&P).4'

Birkhoff went even further and proved the equivalent
of Eq. (81.05), namely, that for practically all points
P on S

X=Xp+nXi+n'Xs+ (82.03)

(iii) the first term Xp in Eq. (82.03) does not depend on
the x;, but the other terms may depend on both the

~ The parameter a occurring in Ecl. (B2.03) is then the ratio
ms/mz, where the three masses, m&, ms, and m3, satisfy the in-
equalities m3((m2 (mI.

The problem of the ergodic theorem is now reduced
to the problem of proving that in general energy sur-
faces are metrically indecomposable. In 1941 Oxtoby
and Ulam (410) proved this for a quite general class of
surfaces, which were polyhedra of dimension three or
more. They thus showed, in their own words, "that the
ergodic hypothesis in its modern form of metrical
transitivity is at least free from any objection on
topological grounds. " According to Gamow (49K1,
p. 54; the italics are Gamow's) this implied "that in a
certain sense almost every continuous transformation is
metrically transitive. " Gamow unfortunately does not
give a justification for his statement. However, the
energy surfaces considered by Oxtoby and Ulam are not
quite physical systems, and it has often been felt there-
fore that, although Birkhoff's ergodic theorem had
brought the problem a great deal nearer solution, one
was still faced with a hypothesis. As Birkhoff and Koop-
man (328) put it: "The quasi-ergodic hypothesis has
been replaced by its modern version: the hypothesis of
metrical transitivity. "However, it has apparently been
overlooked that the metrical indecomposability of the
energy surface had been proven for a certain class of
physical systems of which some are known to exist.
In order to see this, we first observe that, for any
system which is quasi ergodic, the energy surface is
metrically indecomposable; thus justifying the con-
jecture of the Ehrenfests that, for quasi-ergodic systems,
Eq. (81.05) would hold. Indeed, quasi ergodicity implies
that every orbit on the energy surface will pass through
any region 8, of positive measure. Since an orbit is
produced by the collective of the transformations
P~P, with t ranging from —co to + po, it follows that
the condition of metrical indecomposability is satisfied
for the energy surface of any quasi-ergodic system.
Secondly we remember that Fermi (23F1) proved the
quasi ergodicity of Eanomsche Ãormulsysteme and that
Poincare (92P) has shown that in the reduced three-
body problem one is dealing with such a system. "Of
course, in this case the number of degrees of freedom
is very small and it wouM be of interest to show that
other physical systems also belong to the same class.
Eueoeische Normulsysteme are characterized by the
following properties. After eliminating the uniform
integrals of motion such as the components of the total
momentum, it is possible to introduce sets of canonically
conjugate variables a; and y;, such that (i) the energy F.
is independent of the time; (ii) there exists in the system
a parameter o., such that the Hamiltonian K can be
expressed as a power series in n,
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x; and the y;; (iv) all the K, are periodic with a common
period in the x;.

Before we discuss briefiy Hopf's ergodic theorem, we
want to draw attention to two points. The first one is
that Einstein and other writers (02E, 03E, 06P, 11K2)
explicitly state that they believe all physical systems
to belong to the class of Eanonische NormaLsysteme.

Secondly, we want to point out that, in the case of a
system satisfying the condition of metrical indecom-
posability of its energy surface, the various integrals of
motion are nearly5' constant over the whole of the
energy surface and that thus Boltzmann's and Maxwell's
assumption of ergodicity, which involved as we saw
exactly constant integrals of motion almost everywhere
on the energy surface, was not as far removed from ac-
tual fact as one might think. .

The ergodic theorem of BirkhoG's is restricted to the
discussion of orbits on one energy surface. However, as
we have emphasized before, it is more in accordance
with the physical reality to consider a set of energy
surfaces corresponding to energies within a finite in-

terval, say,

Ep —5&E&Ep+5, (82.04)

(compare ESM p. 99) where B«Ep in order that we can
still speak of a system with a (more or less) well-defined

energy. For such an energy shell Hopf (37H;" see also
30H2, 32H1, 32H2, 32H3, 32H4, 34H, 52R) has given
a slightly modified ergodic theorem which again proves
the equality of time and ensemble averages. The neces-

sary condition for the validity of Hopf's ergodic theorem
is that not only each energy surface in the shell is
metrically indecomposable, but that also almost every
energy surface of each product space, which is obtained
by introducing a phase space the coordinates of which
consist of a pair of sets of coordinates of F space, " is
metrically indecomposable. If this condition is satisfied,
any distribution in the energy shell will ultimately
become a more or less uniform one (compare the dis-
cussion in Sec. C). Hopf's ergodic theorem does not
introduce any new essential feature. The main impor-
tance lies probably —apart from its mathematical in-

terest —in the fact that the quantum-mechanical
counterpart of the ergodic theorem is more closely
related to Hopf's than to Birkho6's theorem, as we shall

see in Part E.

C. THE H-THEOREM IN CLASSICAL ENSEMBLE
THEORY

(1) Fine-Grained and Coarse-Grained Densities

Up to now we have been considering only the be-
havior of isolated systems. As we have already men-

5 We do not wish to make our statement more rigorous as
this would involve a lengthy discussion.

~~ This reference gives an extensive bibliography on the mathe-
matical aspects of the quasi-ergodic theorem.

"The phase space is so to speak duplicated. For a more exten-
sive discussion we refer to Hopf's papers (see also 52R).

tioned a few times, this approach does not do justice,
in our opinion, to truly statistical considerations. It is
rather the approach appropriate to the kinetic theory of
gases, and it is, therefore, not surprising that both the
original form of the H-theorem —which we discussed in
Part A—and the classical ergodic theorem (Part 8)
found their origin in Boltzmann's work which found its
culmination in his Gaslheorte (968, 988). When Gibbs
developed his statistical mechanics and introduced the
ensemble theory, a new element entered the discussion.
Gibbs tried to show (02G, especially Chapter XII; see
also 07L) that an ensemble of systems would evolve in
such a way that it. would approach to a micro- or a
macrocanonical ensemble. '4 In order to do this one
must introduce a slightly diGerent Il-theorem and this
will be discussed in the present section. Ke shall base
our discussion on grand ensembles, partly because one
can easily adopt the discussion to the case of petit
ensembles, and partly because it is, in our opinion, the
logical consequence of statistical considerations to
consider these ensembles, first introduced by Gibbsin
the last chapter of his monograph (02G, Chapter XV).
Once the importance of the idea of representative en-
sembles is accepted, one is led automatically to grand
ensembles as we shall see in the next section (see also
ESM p. 235 and 55H1).

To simplify our discussions we shall consider only
systems containing one kind of particles. Ke shall
denote by v the number of particles in a system. A
system containing v particles each with s degrees of
freedom can be described by vs generalized coordinates

(q) and vs generalized momenta (p). Its phase space, or
F space, has thus 2sv dimensions. If we consider a grand
ensemble, we are dealing with systems of a varying
number of degrees of freedom. Let D(v; p, q)dQ„denote
the number of systems in the ensemble with v particles
and with a representative point (the point in its phase
space with coordinates equal to the values of the
generalized coordinates and momenta is called the
representative point) within the volume dQ„of its
phase space. Here we have

(C1.01)

%e have indicated the dependence of D on the qI, and

p& by p, q. Let 1V,„, be the number of systems in the
ensemble, so that we have

(C1.02)

where the integration extends each time over the whole
of phase space. %e now introduce the density of the

'4 We often use the term mucrocamorIical for ensembles called by
Gibbs calomccl. The reasons for this deviation from orthodoxy
have been given elsewhere (54H2).
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ensemble, s' p(v; p, q) by the equation

p= D/cV..„
and from Eqs. (C1.02) and (C1.03) it follows that p
satisfies the normalization condition

(b) If our ensemble is such that all systems have the
same number of particles, but only the average energy
is given, that is, p must satisfy the condition"

(C1.09)

P„ i p(v; p, q)dQ„=1. C1.04
then o will be minimum, if p satisfies the equation

The index of probability q is given by the equation
p=8(v —N)ee&& ', (C1.10)

g = lnp. (C1.05)

The average value (G) of any phase function G(v; p, q) is

given by the equation

(G)=P, "pGdQ„. (C1.06)

o =P„p lnpdQ„. (C1.07)

We see, 6rst of all, that 0. is the average value of the
index of probability, p. Secondly we shall show that 0.

has the following properties.
(a,) If our ensemble is such that all systems have the

same number of particles N and that the energy e of all
systems lies in the interval E&e~&E+8E, o will be
minimum if p is given by the equation

p=constant 6(v —E) for E~&e~&E+fiE;
p=0 for E~&e or E+oE&e, (C1.08)

where 8(x) is the Dirac delta function (35D, Secs. 20, 21).

's Gibbs calls D the density (in phase) and p the coefficient of
probability.

Up to this point we have not yet taken into account the
implications of the fact that in a system containing only
one kind of particles we are dealing with v identical
entities, and that we must make up our minds whether
or not to consider situations which differ only in the
permutation of some of the particles as being different.
If we consider them to be diferent, we are dealing with

specific phases, but if we consider them to be the same,
we are dealing with geleric phases. As is easily seen each
generic phase contains v ~ specific phases. Although,
even before the introduction of quantum mechanics,
there were strong reasons to prefer the generic phases
to the specific phases (see, e.g. , 02G, or ESM p. 142),
the decisive argument in favor of generic phases is that
only they lead to formulas which are the limiting cases
of the quantum-mechanical ones. In the following we

shall only deal with generic phases and, moreover,
assume that integrations such as occur in Eqs. (C1.02),
(C1.04), or (C1.06) are extended only over all different
generic phases; that is, of all v ~ different specific phases,
only one is taken into account.

We now consider the properties of a quantity 0- de-
fined by the equation

where P and P are constants which can be determined
from Eqs. (C1.04) and (C1.09).

(c) If only the average number of particles and the
average energy of the systems in the ensemble are given
so that p must satisfy Eq. (C1.09) and the condition

t pdQ„=1V, (C1.11)

y= xe' —e*+1, (C1.13)

is positive for x&0 and zero for x=0. This property of

y follows most easily if one sees (i) that y(0) =0, and

(ii) that dy/dx(= re*) has the same sign as x.
Compare now in the three cases (a), (b), and (c) two

densities p& and p& where p~ in each case is the one which
should lead to the minimum value of o., that is, p~ is
given, respectively, by Eqs. (C1.08), (C1.10), and

~' The summation over v is here trivial as only one term of the
sum contributes.

57 This ensemble is sometimes called a microcanonical ensemble,
although the microcanonical ensemble is really only the limiting
case of an energy-shell ensemble.

"This is another example of the advantage of the generic
densities over the speci6c densities, as this relation between 5 and
p does not hold for the specific density„

o- will be minimum, if p satisfies the equation

p =exp[ q+ vp P—e). — (C1.12)

Once again P, p, and q are constan. ts, that is, they do not
depend on the pi„qk, or v, and they can be determined
from Eqs. (C1.04), (C1.09), and (C1.11).

Before we prove these properties of 0, we may just
remind ourselves that the densities given in the three
cases correspond, respectively, to an energy-shell
ensemble, "a macrocanonical ensemble, and a canonical
grand ensemble. It follows from the usual considera-
tions (e.g. , ESM Secs. 5.3 and 6.1) that P, which is
equal to the inverse of the modulus of the ensemble, is
equal to 1/kT (k: Boltzmann's constant; T: absolute
temperature), that P is the free energy of the system
represented by the macrocanonical ensemble, that p,

is equal to P times the partial free energy or the partial
thermal potential, that q is Kramers' q-potential —which
for a homogeneous system is equal to PpV (p: pressure
V: volume) —and that in both case (a) and case (c)
(ti) is equal to —S/'k (S:entropy). "

The proof of the minimum properties of 0. rests mainly
on the fact that the function y, given by the equation
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(C1.12) while ps is given by the equation

p2= p&e ") (C1.14)

where At) may be any function of the ps and qs and in
case (c) of p. Both pt and ps satisfy Eq. (C1.04),

P IpdQ=P pdQ=1,
J

(C1.15)

I

while in cases (b) and (c) both satisfy Eq. (C1.09),

eptdQ=Q ' epsdQ=E. (C1.16)

In case (c) both satisfy Eq. (C1.11),

(C1.17)

Finally we have

os —or= Q J (ps lnps —pt lnpt)dQ. (C1.18)

From Eq. (C1.18), one can derive for all three cases the
equation"

os—or=a] pt$Ar)e " e "+1]dQ&~ 0,—(C1.19)

the last inequality being a consequence of the proper-
ties of the function given by Eq. (C1.13).

We have now proved that (T is minimum for an energy
shell, macrocanonical, or canonical grand ensemble
under certain circumstances (we shall investigate in the
next section the physical significance of these circum-
stances). Comparing Eq. (C1.07) for o. with Eq. (A2.03)
for H, we might think for a moment that we might be
able to prove that do/dt will always b. e negative and thus
be able to show a tendency for the establishment of
canonical ensembles. However, it is easy to show that
do/dt= 0. This was pointed out soon after the publica-
tion of Gibb's monography by Burbury (038). In
order to see this we write

o(f")=PJ"p" lnp"dQ"=P I p'lnp'JdQ'

p' lnp'dQ'= a(t'), (C1.20)

where p"Lp') is a short-hand notation for p(p",q"; t")

~'The derivation of Eq. (C1.19) follows in case (a) by adding
to the right-hand side of Eq. (C1.18) the expressions J (1—lnpr}
X (pr —ps)oQ, which is zero by virtue of Eq. (C1.15) and the fact
that pq=constant. In case (b) one adds to the right-hand side of
Eq. (C1.18} the expression Z j'D&(rg —e)+1](pr—ps)or& which is
zero by virtue of Eqs. (C1.15) and (C1.16).Finally in case (c) one
adds the expression Z J'f(t —vp+pe —1}(p2—pI)dQ which is zero
by virtue of Eqs. (C1.15) to (C1.17).

Lp(p', q'; t') J, where the relation between p", g" and
p', q' is such that a representative point p', q' at time f'

will have moved to P", q" by f",ss where J is the
Jacobian of the transformation from p", q" to p', q'

which by virtue of Liouville's theorem (e.g. , ESM
p. 102) is equal to 1.

Although we see that o- is constant, there is still in a
certain sense an approach to a stationary state. We
shall first illustrate this by an example due to Gibbs
(02G; see also the discussion in 038, 0481, 0482,
06E2, 11E2). Consider a container with a liquid, say
water, in which is put some coloring material and let
us assume that this coloring material is nondiffusible
and consists of colloidal particles. It is a well-known
empirical fact that, if we start from a state where the
coloring material is unevenly distributed, practically
any kind of stirring will produce a situation where the
color distribution is, as far as our eye can see, uniform.
That means that stirring will produce an "equilibrium"
state. However, if we look at the system very closely,
we will still find that, in microscopic volumes, part of
the space is occupied by the water and part occupied by
the colloidal particles. Although the coarse distribution
is uniform the finer distribution is still uneven.

From this example it follows that it might be ad-
vantageous to introduce apart from the fine graieed-

density p a coarse-grained density P dined as follows.
Divide for each v the corresponding F space into finite,
but small, cells" Q'"' of volume W(Q'"&) and let P t"I

be the average of p over 0,&"),

P'"'=-
) pdQ W(Qt ) (C1.21)

where the integration extends over the cell Q, &").62

We now introduce the coarse-grained density
P(p; P,q) by putting it constant in each cell Q, l "& and
equal to P, l"&. From Eq. (C1.04) we now get, as can
easily be verified,

P P P l &W(Q & &) =1, (C1.22)
or

PdQ= 1,
J

(C1.23)

and we see that P is normalized.
Instead of 0 we now introduce a function Z by the

equation
&=+ Q W(Q'"&)P &"& 1nP, &"& (C1.24)

"As we are dealing with systems with only one constituent the
representative point of a system will stay in the same I' space and
there will not be a change in v. The situation is, however, much
more complicated if we consider systems in which chemical reac-
tions can take place. These might be tackled using the second
quantization methods developed by Schonberg (52S1, 53S1,53S2).

"Compare introduction of cells in Sec. A3.
'We could have slightly generalized the defInition of the

coarse-grained density by also dividing the possible v-values into
intervals containing a few integers each. However, in order not to
complicate our formulas we have not done this, as it is not neces-
sary for our arguments in the case of systems containing only one
constituent.
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which expressed in the coarse-grained density P gives hold and we have
II~plf (C1.29)

Z=P P lnPdQ, (C1.25)

or, if we remember that lnP is constant over each cell
0;("' and that the integration of P over 0,("& is the same
as that of p over 0,("),

Z=(lnP). (C1.26)

The properties of o. of cases (a), (b), and (c) now hold
for Z, if we everywhere change p to P. However, now Z
is no longer constant and we can, indeed, show that Z
will decrease; thus showing a tendency toward the
establishment of canonical ensembles —at any rate in
so far as the coarse-grained density is concerned. We
may remark at this point that although the distinction
between fine-grained and coarse-grained densities is
assumed in Gibbs' monograph (02G), the two are not
clearly distinguished in the discussion and the same is to
a large extent true also for the discussion of Burbury
(038, 0482) and Bumstead (0481); we may further
refer to discussions by the Ehrenfests (06E2, 11E2),
Poincare (06P), Lorentz (07L), and Kroo (11K2).

Let us now consider the change of Z with time. In
order to do this we have to anticipate some of the argu-
ments of the next section where representative en-
sembles are discussed. Let us assume that we have made
some observations about a physical system at t'. Since
these observations will never give us the maximum
possible information, we can construct an ensemble, the
average properties of which at t' correspond to the
observed properties of the system under observation
at t'. Because of experimental limitations, we shall at
most be able to give p(v; p, q) changing from one cell
to another, if we have chosen the size of the cells in
accordance with the experimental limitations, as we
shall assume to have done. We choose thus the fine-

grained density constant in each cell and have then at t'

and for 2,
pE —1 (C1.27)

P' lnP'dQ= Q p' lnp'dQ. (C1.28)

If the situation at t' already corresponded to an
equilibrium situation, Z would have had its minimum
value and no change could be expected, since the three
ensembles corresponding to minimum Z in cases

(a), (b), and (c) are all three stationary ensembles

(see, e.g. , ESM pp. 105 and 137). Let us therefore as-
sume that p' does not correspond to a stationary en-
semble. At a later" time t" Eq. (C1.27) will no longer

"Strictly speaking we should say "at another time, " leaving
open the question whether t" is later or earlier than t'. However,
since we have set up our ensemble to represent a system observed
at t', we are only interested in predictions which might be verified
by experiment, that is, in /ater times t". In this connection it is
interesting to read Burbury's and the Ehrenfests' remarks on this
point (03B, 04B2, 06E2; see also 02G, 04B1).

because of the fact that, although p will stay constant
in extensions in phase of unchanging volume W(Q, t"&),

the shape of these extensions will change and at a
later moment each of the cells will be covered by
points which at 3' belonged to many diRerent cells.

We write Eq. (C1.29) in the form

p"=P"e~, (C1.30)

where 0 is a function of v and the p's and q's. For Z
we have now

gll P t Pl/ 1 P//dQ (C1.31)

and for the change of Z we have"

P"P ea —ca+1]dQ)0. (C1.32)

case (b) P=8(v cV)eeM'—
case (c) P= exp) q+ vfz Pef. — —

(C1.34)

(C1.35)

As soon as the distribution (C1.33) to (C1.35) are
reached, 2 has reached its minimum value and will

therefore no longer decrease. In that case we would
thus, on observation, reach the conclusion that the
state of the system under consideration would best be
represented by a microcanonical or a canonical grand
ensemble —which are stationary ensembles. This pre-
sents us with another justification for using these en-
sembles to describe systems in thermodynamical
equilibrium. "

The time needed to reach the equilibrium distribu-
tions will, in general, be of the order of the relaxation
time, and not—as suggested by the Ehrenfests (11E2)—
of the order of the recurrence times of the Poincare
cycle (Sec. A2). It seems to us that they forget to take
into account the indistinguishability of the constituent

"Equation (C1.32) is obtained by subtracting Eq. (C1.31)
from Eq. (C1.28) changing in the integrand of (C1.28) p' to p"
which can be done since dp/dt=0 [compare Eq. (C1.20)], and
adding the ex ression ZJ'(P"—p")dQ, which is zero by virtue
of Eqs. (C1.04 and (C1.23).

6' For the usual justi6cation see, e.g. , Gibbs' monograph
(02G, especially Chapters IV, X, and XV) or ESM, Secs. 5.3,
5.7, and 6.1 (compare also ESM Secs. 5.6 and 6.3).

We see now that Z" will be less than Z' because of the
fact that p" and P" are no longer everywhere equal.
Comparing the present situation with the case of the
coloring material in a liquid, we may expect that, as
time marches on, p and P will differ more and more and
that Z will continue to decrease until equilibrium dis-
tributions of P have been reached, that is,

case (a) P=5(v —ter) constant, E&~e&E+oE;
P=O, e&E or E+oE&e;

(C1.33)
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particles in the system. This means that the Poincare
period must be divided by E . and time intervals of the
order of the relaxation time ensue.

To conclude this section there are two points which
we should like to mention. First of all we have proved
that, if we have set up a representation ensemble at t',
the quantity Z will decrease from its value at t' to a
smaller value at t", but we have rot proved, but only
made plausible by appealing to the case of coloring
material in water that Z will continue to decrease.
The situation is very similar to the one encountered in
Sec. A(3), where we discussed the statistical aspects of
the H-theorem. It would be worth while to investigate
the behavior of Z as a function of time in more detail
along lines analogous to the discussion of Sec. A(3).
It is interesting to note that Gibbs (02G) himself did
not state that Z' would monotonically decrease, but
only that

lim Z(&) &Z(t'), (C1.36)

a property which he did not prove, but which for a
special case was proven by Poincare (06P) and Kroo
(11K2). We may also refer to the discussion of Tol-
man's (38T, especially Secs. 49 and 51) and the discus-
sion in the next section.

The second point to which we wish to draw attention
is that the decrease of Z resulted from the fact that we

came from a state where p and P were equal to a state
where p was no longer everywhere equal to P. As P is
obtained by experimental observation we may say that
at t' we "know" p. However, at t" we no longer
possess the same amount of specific information. Since
Z can be considered to be a "coarse-grained" o- and since
o- is related to the entropy by the relation

o = (g) = —5/k, (C1.37)

we see once more how increase of lack of knowledge

corresponds to an increase in entropy. "
(2) Representative Ensembles

In the preceding section we have considered the be-
havior of ensembles and we have thus started the dis-

cussion of question (B) of the Introduction, that is,
the question: Why is it possible to describe the be-
havior of a system by considering the average behavior
of a system in an ensemble. This is perhaps the most
important question in statistical mechanics, but for
some queer reasons it has not been considered as care-
fully as it deserved. This may be partly due to the fact
that Gibbs himself introduced ensembles to use them
rather for statistical considerations than to illustrate
the behavior of physical systems —even though he did
not adhere strictly to his original intentions as set out
in the introduction to his monograph. As a matter of
fact, there are some indications that Gibbs had in mind

We do not wish to pursue this correspondence between en-
tropy and lack of detailed information or extent of ignorance, but
refer to the literature; see, e.g. , ESM p. 160 and papers by Szilard
(29S) and Brillouin (5IB4;see also 48W, 49S1, 54M1, 54G1, 55G1).

the possibility that the average behavior of a system in a
micro- or macrocanonical ensemble might represent
the actual behavior of a physical system in equilibrium
Lsee, e.g. , the remarks made by Bumstead (04B1)j.
In the same year as Gibbs and independently, Einstein
(02E, 03E) introduced the ensemble theory and he
definitely had in mind this possibility of the equivalence
of the average behavior in an ensemble and the actual
behavior of a physical system. However, the Ehrenfests
(11E2), Ornstein (080), and Uhlenbeck (27U) con-
sidered the ensemble theory mainly as a mathematical
trick to lighten the calculation of average values of
phase functions. Uhlenbeck, for instance, definitely
puts the ensemble theory on a par with the Darwin-
Fowler method (22D1, 22D2, 22D3, 23F2, 23F3, 23D1,
23D2, 25F1, 26F2, 26F3; for a brief account see ESM,
Appendix IV or 48S, Chapter VI). It was not until
Tolman (38T, 40T) introduced the concept of repre
sewtative eesemges that ensemble theory got a thorough
physical foundation, but his point of view has not
always been properly taken into account. We shall dis-
cuss his approach in some detail in the present section
as far as classical statistical mechanics is concerned,
reserving for Sec. D(3) the corresponding discussion
of the quantum-mechanical case.

We have mentioned several times before in this paper
that owing to severe limitations to our possibilities, we
can only obtain very inadequate knowledge about the
initial condition, say, of the physical systems which we

happen to study. If we remind ourselves that one mole
of gas contains 6.1023 atoms, we see immediately that
instead of obtaining values for the 36.1023 coordinates
and momenta which we should have to know in order
to characterize the situation completely (assuming
each atom to be a point particle with only three degrees
of freedom) we can only obtain a few relations between
them, for instance, by measuring the pressure, the
linear momentum, and the angular momentum of the
system. Moreover, we certainly will not know the total
number of particles in the system; we have only to
remind ourselves that Avogadro's number is only
known to a few parts in ten thousand (51B1, 51D).
Having obtained this very scant information we now
want to make predictions about the future behavior of
the system from this information. Clearly the only
possible way to do so is by using probability theory and
statistical methods. If we could have obtained the values
of all the coordinates and momenta at one moment-
and if we could have solved the equations of motion-
the behavior of the system would be completely de-
terrnined, as we would then be dealing with a problem
of classical mechanics with a sufFicient number of
boundary conditions to determine the orbit of the repre-
sentative point of the system in phase space. However,
as we cannot obtain these values we are reduced to
making statements about the most probable behavior
of the system. In order to determine this most probable
behavior we compare various systems which all possess
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pdQ= 1, (C2.01)

P I'pdQ=1, (C2.02)

~ (e+e')pp'dQdQ' = constant, (C2.03)

P (v+ v') pp'dQdQ'= constant, (C2.04)

"This assumption was tacitly introduced when we wrote down
expression (A3.01) for the probability of a situation Z.

the same value of those quantities which have been
measured, but which otherwise may diGer widely.
This means, that we construct an ensemble to represent
our systems. There remains the question how we can
construct such a representative ensemble, and this
introduces the problem of u priori probabilities In.

constructing a classical ensemble we use the assumption
of equal a priori probabilities for equal volumes in
I' space. "As far as petit ensembles are concerned this
leads to a straightforward prescription, but in the case
of the construction of a representative grand en-
semble we must remember that we are dealing with
I' spaces of differing dimensions and that those with
larger numbers of dimensions have thus larger a priori
weights. We shall return presently to discuss the
plausibility or justification of our choice for the a priori
probability.

In order to see what kind of ensemble will best repre-
sent a system under consideration, we must erst of all
bear in mind that in practically all circumstances we

only measure the properties of a small subsystem. In
measuring the pressure of a gas, only the part of the
gas near the wall takes part in exerting the force on the
wall which is registered by our instruments. In de-
termining the density of a system by optical method
only part of the system is traversed by the light beam
(compare, e.g. , the case of critical opalescence). In
measuring the electrical conductivity of a serniconduc-
tor, a probe is put on the piece of material and, indeed,
is often used to find out differences between situations
at one place or another, and so on. This entails that we
are really interested only in predicting the future be-
havior of a subsystem. For the sake of simplicity we
shall assume that the complete system —which may be
either the whole of the physical system in our apparatus
or even this system plus part of the surroundings —is
isolated so that it cannot exchange either energy or
particles with its surroundings. Let p be the density
of the ensemble describing one subsystem and p' the
density of the ensemble describing the "rest system, "
that is, the complete system minus the subsystem.
Let furthermore e and v denote the energy and number
of particles in the subsystem and e' and v' those in the
rest system. The densities p and p' will then satisfy
the relations

where Eqs. (C2.03) and (C2.04) express the fact that
in an isolated system the total energy and the total
number of particles is constant. Let us, furthermore,
assume that an equilibrium situation has been reached,
which means that 2 is minimum for the complete
system, or,

(pp') ln(pp')dQdQ'=minimum. (C2.05)

In writing down Eqs. (C2.03) to (C2.05) we have used
the fact that the ensemble of the complete system is the
product of the ensembles of the subsystem and the rest
system. Combining Eqs. (C2.01) to (C2.04) we can
write instead of Eqs. (C2.03) and (C2.04),

epdQ+P e'p'dQ'= constant, (C2.06)

Pv pdQ+Pv' ' p'dQ'= constant. (C2.07)

The equilibrium density now follows from the minimum
condition (C2.05) which must be satisfied under the
conditions (C2.01), (C2.02), (C2.06), and (C2.07).
This leads in the well-known way (method of Lagrangian
multipliers, see, e.g., ESM p. 20 or 444) to the following
equilibrium expression for p;

p = expL —q+ vp, —Pe(. (C2.08)

We may remark here that, as Eq. (C2.05) really only
holds for the coarse-grained density, we really only
obtain expression (C2.08) for P.

Secondly, we may draw attention to the fact that our
assumption about the a priori probabilities is used in
writing down Eqs. (C2.01) to (C2.04) without introduc-
ing apart from p a density function which would indicate
the a pnori weights of the various volumes in phase
space.

We have proved here in a manner slightly diferent
from the one used in the previous section that the
canonical grand ensemble will represent any sub-
system in equilibrium. We must, however, pay some
attention to the problem of nonequilibrium systems and
we will follow Tolman's discussion (38T, especially
Secs. 79b, 51c, and 112) to a large extent. After that we
conclude this section by discussing the choice of equal
u priori probabilities for equal volumes in phase space.

Let us assume that our system is in a nonequilibrium
situation and that we have ascertained this by making
suitable observations on the system at t'. In order to
predict its future behavior we construct an ensemble
to represent the system, using, on the one hand, our
observational information and, on the other hand, the
assumption of equal a priori probabilities (or equal
weights) for equal volumes in phase space. As we dis-
cussed in the previous section we can only determine
at most the coarse-grained density P' and, using the
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p(0',)= ~F(e,y;)dn, (C2.11)

assumption of equal weights for equal volumes, we are
thus led to choose our fine-grained density p' according
to Eq. (C1.27). At a later time 3" the fine-grained density
p" which follows from p' will no longer be constant in
each of the cells into which we have divided phase
space. As we saw earlier this results from the fact that
P" and p" are no longer equal. From Eq. (C1.32) we

see that 5'—2" is the larger, the more P" and p" differ,
and we can thus expect a continued decrease of Z until
the distributions of Eqs. (C1.33) to (C1.35) are reached.

In order to see this approach to equilibrium we might
make suitable observations on the system. From the
forgoing discussion we would expect that these observa-
tions would lead to coarse-grained densities such that
Z is a steadily decreasing function of time. However,
in making that assumption we, first of all, have tacitly
assumed that the mixing of the various cells in phase
space is a thorough one corresponding to the mixing
of coloring material in water, and, secondly, we have
forgotten to take into account the fact that each time
we perform an observation this will add to the amount
of available information and hence our choice of a
representative ensemble at t'", say, will no longer be as
simple as at t', since the information obtained at t' and
t" must be taken into account. As far as the mixing is
concerned, we see that we are back to the question
treated in Hopf's ergodic theorem and we see that,
indeed, the approach via the ergodic theorem or via
the ensemble theory, once we get down to the basic
essentials, do not differ as much as one would expect
beforehand.

I.et us now consider the problem of a priori proba-
bilities. Let us restrict ourselves for the sake of sim-

plicity to petit ensembles. Consider two regions Qo

and $0 of F space. I.et those two regions at to be filled
with representative points of an ensemble and let
p(O!s) and p($s) be the a priori probabilities for the two
regions. At t&, t~, the representative points which at
to filled up Q, o and $0 will 611 up regions 8& and S&,
Q, s and $s with u priori probabilities p(8t) and

p($,), p(Q, ,), and p($s) . One can clearly only
tolerate such a choice of a priori probabilities that

p(0:o)/p($o) =p(o')/p($ )
=p(e, )/p($, ) = ., (C2.09)

and these relations are satisfied, if we take

p(O', )=W(e), p($) =W($), (C2.10)

where W(Q, ) or W($) is the volume of the region 0', or $
in F space. We remark here that Eq. (C2.10) will only
satisfy Eq. (C2.09) if we are dealing with a phase space
made up of canonically conjugated p's and q's—one
of the reasons for choosing the canonical coordinates to
describe the phase of a system.

Instead of Eq. (C2.10) one could choose the more
general form

where the integration extends over the region 8, and
where F(e,q;) is a once and for all chosen function of
the energy e and the other constants of motion p;.

The reason for putting F(e, tp, ) equal to 1, which
means choosing Eq. (C2.10) instead of the more general
form (C2.11) was originally historical and was based
on the assumption that ergodic systems existed. Since
we are nowadays convinced that mechanical systems
are quasi ergodic, which means essentially that the
various possible values of p; all occur with practically
equal frequency in each part of phase space, we can
immediately restrict ourselves to what the Ehrenfests
call the ergodic choice,

p(e) = F(e)dQ. (C2.12)

However, since the density p of the representative
ensembles of equilibrium systems are functions of the
energy only, the choice (C2.12) instead of (C2.10)
would correspond to a density

p'(e) =p(e)/F (e), (C2.13)

SUMMARY OF THE SITUATION IN
CLASSICAL THERMOSTATISTICS

Before we start the discussion of the status of
H-theorem and ergodic theorem in quantum statistics,
we wish to summarize briefly the contents of Parts A,
B, and C. There are essentially three diferent methods
of approaching the problem of how to justify the
method of statistical mechanics: (1) the utilitarian
approach; (2) the formalistic approach; and (3) the

physical approach, "although the last two can overlap
to some extent.

The utilitarian approach justifies the statistical
method by its results and feels no need for a further
justification. In this approach calculations made by
any method, be it the Darwin-Fowler method, the use

of microcanonical ensembles, the use of macrocanonical
ensembles, or the use of grand ensembles, are welcome

as long as they lead to useful results. The fact that for
physical systems with many degrees of freedom all
these calculations lead to the same results makes it a

~ We may also refer to a paper by Ehreniest (14El discussing
the possible choices of F(e,p;).

6' The reader will forgive me, I hope, for this classification which
shows clearly my own prejudices and preference.

instead of the p(e) given by Eqs. (C1.08) or (C1.10).
The F(e) would occur in all integrals, but the final
results would be the same.

We may mention here that the Ehrenfests' remark
that the ergodic choice is often inexpedient is no longer
relevant as it was based on diS.culties encountered by
thermostatistics before the introduction of quantum
mechanics "
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matter of expediency to choose the method ultimately
used. "

The formalistic approach usually argues that a
mechanical system should be an isolated one and thus
possess a definite value of its energy as well as of the
number of particles in it, since these are the only systems
with which classical mechanics is concerned. The only
stationary ensemble to be considered is thus the micro-
canonical petit ensemble although one may use the
macrocanonical or grand ensembles as a mathematical
trick to ease the calculations. Moreover, the micro-
canonical ensemble is only introduced once it is realized
that probably the time average of any phase function,
if calculated for one system, is the same as the average
taken over a microcanonical ensemble. In order to
prove this one must introduce the ergodic or better the
quasi-ergodic theorem, and adherents to the formalistic
school of thought place the ergodic theorem in the
center of their considerations.

The physical approach emphasizes the fact that we
can only obtain a limited amount of information about
the systems in which we are actually interested and
that we thus must work with representative ensembles.
In this case, one must prove that the development of a
nonequilibrium situation will be such that the ensemble
representing the system under observation will resemble
a canonical ensemble more and more closely.

The considerations trying to justify the assump-
tions of the last two methods of approach fall into
three groups. One can either try to use the straight-
forward II-theorem, but as we saw in Part A, one runs
into trouble. The straightforward H-theorem would
provide an alternative to the ergodic theorem, but the
H-theorem in its statistical form does not do this,
unless one is willing to introduce the various assump-
tions about transition probabilities without further
proofs. However, the statistical form of the H-theorem
does serve a useful purpose in that it shows the relative
frequency with which fluctuations will occur and the
rate at which nonequilibrium situations may be ex-
pected to return to equilibrium.

One is then led to the ergodic theorem and as we saw
in Part 8 the problem is at the present time reduced to a
proof of the metrical indecomposability of the relevant
phase spaces. If one could prove that physical systems
are in general quasi ergodic, the ergodic theorem would
have been proved but this has not been done. It is
interesting to note that both Einstein (02E, 03E) and
Poincare (06P) explicitly state that they expect that
the energy is the only time-independent, uniquely
valued, analytical integral of a physical system. If one
introduces a slight amount of reality in the considera-
tions by allowing the energy to vary over a small, but
finite range, one has recourse to Hopf's ergodic theorem
where the mixing of various energy surfaces takes place.

Once again the metrical indecomposability of the phase
spaces involved has not yet been proved.

If one prefers the approach via the representative
ensembles, one uses the H-theorem in the form suitable
for ensemble theory, that is, where H is identified with
the average value of the natural logarithm of the coarse-
grained density. The approach to equilibrium follows
easily, but the considerations are based on a special
choice for a priori probabilities, and as we saw at the
end of Sec. C(2) this choice can only be justified, if the
systems under consideration are quasi ergodic.

%e see thus that all methods have in common the
lack of proof of the quasi ergodicity of physical systems.
Once this proof is given, one can either use the formal-
istic approach since the (quasi) ergodic theorem is
then proved, or the physical approach since the choice
of a Priori probabilities is justified from first principles.
Concluding we can thus say that although there seems
to be a large difference between the formalistic and the
physical approach, this difference is in fact not so
enormous, and both break down on the same point.

D. THE H-THEOREM IN QUANTUM STATISTICS

(1) The H-Theorem in the Elementary Method

It is well known that statistical mechanics was rela-
tively little affected by the change over from classical
to quantum mechanics. The same methods which were
used to good e8ect in classical thermostatistics could
be taken over in quantum thermostatistics. If anything,
statistical methods were more suited to the new situa-
tion. Since quantum mechanics started from statistical
considerations, namely, Planck's discussion of black-
body radiation (00P1, 00P2; see also 43P for an account
by Planck himself of the reasons for introducing the
quantum of action), it is not surprising that the ques-
tions raised by the introduction of quantum theory into
statistical discussions have been the subject of papers
both before the advent of Bohr's old quantum theory
(13B1, 13B2) and before and after the development of
modern quantum theory, the so-called wave or matrix
mechanics (25H, 25B, 26S1).r' In the beginning the
discussion was mainly on the subject of a priori weights
(see Sec. D3), but after the start of wave mechanics,
many authors (e.g. , 27N1, 27N2, 29D, 32N3, 35D, 36D,
40H) have shown how Gibbs' ensembles can be intro-
duced to advantage in quantum mechanics. In many
ways thermostatistics fits more easily into quantum
mechanics than into classical mechanics, since quantum
mechanics involves statistical predictions. For instance,
even if we have the maximum amount of information
about the physical system under consideration, that is,
when we are dealing with that von Neumann calls a
pure case (Reinter Fal1), we can only verify the predic-

"It is interesting to note that even Tolman uses this utilitarian
point of view when he justifies the assumption of equal u priori
probabilities for equal votu, m,es in I' space,

"For an account of the development of both the old and the
modern quantum theory we must refer to the literature (e.g.

&

$9S, 33H, 38K).
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tions which can be made from the appropriate wave
function by using an ensemble. 72

In quantum statistics as in classical statistics there
are different ways of tackling the problem with which
we are concerned in the present paper. Once again we

are confronted with questions (A) and (8) of the
Introduction and once again we can try to consider
first of all isolated systems, either by using the quantum-
mechanical analogy of the II-theorem or by considering
a quantum-mechanical ergodic theorem. Alternatively,
we can consider ensembles and the question of represen-
tative ensembles. In this part we shall begin by con-
sidering [Sec. D(1)$ the question of isolated systems

by using the so-called elementary method (see ESM
Ch. IV) and, firstly, show how one derives the equi-
librium distribution in this case and, secondly, discuss
the H-theorem. After that [Sec. D(2)] we shall discuss
the II-theorem in ensemble theory, while we conclude
this chapter with a discussion of representative en-
sembles and the choice of a priori weights [Sec. D(3)$.
In the next part (E) we shall discuss the quantum-
mechanical ergodic theorem.

Before we discuss the elementary method, we wish
to consider briefly Ornstein and Kramer's consideration
(270) of the equilibrium of a system of Fermi-Dirac
particles (compare also papers by Nordheim (28N)
and Halpern. and Doermann (39H)). In their paper
they show how one can derive the Fermi distribution
from purely (or better nearly purely) kinetic argu-
ments. Their argument runs as follows. Consider a
system of independent particles and let each particle
be capable of occupying energy levels eA, which, for the
sake of simplicity, we assume to be nondegenerate.
Consider now a "collision" between two particles such
that the energies before the collision were e; and ej and
after the collision e, and ej. Conservation of energy
gives us the relation

otherwise the transition cannot take place because of
the Pauli principle (25P, 27P).

If the system is in equilibrium, we have

A =A'.

We shall now assume that

(D1.04)

and from Eqs. (D1.02) to (D1.05) we then get

(D1.05)

where
mmmm j m$ mj (D1.06)

(D1.07)

Equation (D1.06) must be satisfied for any pair of
states e;, e; in equilibrium. Just as the Maxwell dis-
tribution followed from Eq. (A1.12) and the condition
of conservation of energy, so we get from Eqs. (D1.06)
which have to be satisfied under the condition (D1.01)
that in equilibrium

nz, = exp (y —Pe,),

or, using Eq. (D1.07),

(D1.08)

(D1.09)

the Fermi distribution (26F1).
It must be noted here (i) that Eq. (D1.02) is purely

based on a kinetic argument and not on any quantum-
mechanical formalism, and (ii) that Eq. (D1.05) is
introduced as an assumption —an assumption which
takes the place of the Stosssuhlaesats in Sec. A1. We
may mention here that Ornstein and Kramers actually
discussed whether Eq. (D1.05) could be derived from
first principles and mentioned that it followed from
considerations by Heisenberg (26H) and Jordan (26J)
that only the much weaker relation

ei+ ej = ep+ ep ~ (D1.01)
(D1.10)

I.et the transition probability for this transition be
denoted by a, the transition probability for the inverse
transition (i'j' +ij) by a', —the number of transitions
per unit time in the one direction by A, and the number
of transitions in the opposite direction by A . The quan-
tities A and A' satisfy the equations

(D1.02)

(D1.03)

where n, (n, ,n, ,n, ) is the average number of particles in

the energy state e;(e, , e;.,e;), and where Eqs. (D1.02)
and (D1.03) follow from the fact that the number of
transitions is not only proportional to the average
number of particles in the states i and j, but also to the
chance of finding states i' and j' unoccupied, since

"This is, for instance, discussed in detail by Kemble (37K;
especially Sec. 14b); see also Sec. D(3).

instead of relation (D1.05) could be derived from quan-
tum mechanics. In Eq. (D1.10) a;..., (a;;...) is the
transition probability up to now denoted by a(a'), and
the summation is over all pairs e,, e, for which e;+e; is
the same. The question in how far Eq. (D1.05) can be
derived from Kq. (D1.10) is connected with questions
discussed in Sec. D(3) and in Appendix V, to which

we refer. "
We have not yet proved that a distribution different

from the one given by Eq. (D1.09) will tend toward this
distribution. This follows easily, if we use the expression
for the entropy of a system of independent Fermi-Dirac
particles" [see, e.g., ESM p. 406, Eq. (A3.06) and com-

' It is interesting to note that Eq. (D1.10) is sufficient to de-
rive from Eq. (D1.04) and condition (D1.01) the Maxwe11-
Boltzmann distribution when, of course, we do not have the factors
(1—is; ), etc. in Eqs. (D1.02) and (D1.03); compare in this con-
nection also 54K Sec. 14, 53T and 54L.

74 Such particles are sometimes called ferrnioes and the Bose-
Einstein particles, bosoms.



TH E FOUN DATIONS OF STATI STI CAL ME CHAN I CS 3i3

pare also Eq. (D1.28)g and write

H= —5/k =P,[(1—n, ) ln(1 —I,)+e, inn, j. (D1.11)

The rate of change of H is given by the equation

dH/dt =P; in[a;/(1 —rs;) jde, /dk

=P;, ;; in[re;/(1 —e,)j
X{a;;., ;,e,'I,' (1—n, ) (1—e,)

a—,; ;;r,spz; (1 rs—,') (1—e,')}. (D1.12)

In Eq. (D1.12) we sum firstly over all energy levels
e;, secondly over all energy levels e; with which colli-
sions can take place, and thirdly over all pairs of energy
levels e; and e, which can be obtained from a collision
between particles in states e; and e, . In order to get a
symmetrical expression, where the summation is both
over all pairs e; and e, and over all pairs e,' and e; we
write

dH/dt =P;,, ;,' a[a,'n, ' (1—is;) (1—ri, )
—e,~, (1—n,') (1—e,')j
X{in[a,is,/(1 —rs;) (1—I;)j), (D1.13)

where we have used Eq. (D1.05). If we now take the
mean of the expression on the right-hand side of Eq.
(D1.13) and the expression obtained from this one by
exchanging ij and i'j ', we get [compare the discussion
of Eq. (A1.09)$

dH/dt= s P;,, , ; a{ln[rsos, (1—n, ,')
X (1—ei )/(1 ri,) (1—rs, )r—s,'e, $)
X[e,'e; (1—rs;) (1—rs;) —cps, (1—e,')

X (1—n,')7& 0, (D1.14)

where the equal sign only holds, if the e; satisfy Eq.
(D1.09). We see here, thus, once again the approach
to an equilibrium distribution proved by using an as-
sumption about the number of transitions. We leave a
discussion of the derivation of Eq. (D1.14) until we
have considered the approach via the elementary
method.

In the elementary method one takes the energy levels
together in groups with all approximately the same
energy. Let the ith group contain Z; levels, let there be
N; particles in the system with energies within the
group, and let E; be the (approximate) value of the
energy of the levels in the group. We first of all want to
find the equilibrium distribution of the E; and once
again we shall, as in Sec. A(3), define this as the most
probable distribution, and we must thus find the
a priori probability W(Ã, ) for a given distribution,
corresponding to the W(Z) of Eq. (A3.01). At this
point we must differentiate between Boltzmann (Bo),
Fermi-Dirac (F-D) and Bose-Einstein (B-E) statistics.
We must first of all remind ourselves that quantum
mechanics introduces two aspects different from those
of classical mechanics, namely, diffraction effects and
symmetry effects."The first aspect entered already in

7' For a discussion of the importance of this distinction see $4H3.

the old quantum mechanics and is responsible for the
existence of the quantization of energy, angular mo-
mentum, and so on. The second aspect enters when one
takes into account that apparently nature only permits
wave functions of a system of identical particles which
are either completely symmetric in all particles (B-E)
or completely antisymmetric (F-D)." At first sight
one might think therefore that only 8-E or F-D
statistics would occur. However there are cases such as,
for instance, a system of particles arranged on a crystal
lattice, where identical particles can be distinguished,
e.g., in the case of a crystal, by the lattice site they
occupy (compare 49R, Chap. III, Sec. 1). In such a
case we are dealing with Boltzmann statistics —with
one slight difference which we shall discuss presently.
B-E statistics were introduced by Bose (24B) ' for the
case of light quanta who used them to derive Planck's
radiation law. Einstein (24E2, 25E1, 25E2) applied
8-E statistics to a perfect gas, and showed how they
led to the so-called Einstein condensation —a phe-
nomenon which may have a bearing on the X transition
of liquid helium (compare the discussion in Ch. IX of
ESM). Fermi (26F1) introduced Pauli's exclusion prin-
ciple (25P, 27P) into the statistical discussion, while
Dirac (26D) discussed the connection between statistics
and wave mechanics. Ehrenfest and Uhlenbeck (27E,
see also 27U) showed how also the Boltzmann statistics
can be incorporated in quantum statistics.

We can now proceed to evaluate W(Ã;). Let rs; be
the number of particles in the energy level ~, and let
W(e, ) be the probability for a distribution of the ri, .
We then have

Qe, =N, , (D1.16)

where the e, over which is summed belong to the group
Z;. Our problem is now reduced to finding W(n, ),
that is, the probability that E particles are distributed
over the various energy levels which are all assumed to
be nondegenerate in such a way that these are e, par-
ticles in level e;.

In the case of 8-E statistics for any given distribu-
tion there exists just one wave function and hence

Wa E(ej)=1. (D1.17)

In the case of F-D statistics only completely anti-
symmetric wave functions are possible —which means
that each level can be either occupied by one particle

7' For a discussion of the reasons why some particles obey B-E
and others F-D statistics we refer to the literature (e.g. , 39B2,
40P1, 40P2, 49W2).

77 This paper was translated by Einstein who added the follow-
ing remark: "Boses Ableitung der Planckschen Formel bedeutet
nach meiner Meinung einen wichtigen Fortschritt. Die hier
benutzte Methode liefert auch die Quantentheorie des idealen
gases, wie ich an anderer Stelle ausfiihren will. "

W(1V,)=Q W(e;), (D1.15)

where the summation extends over all e,-distributions
such that for each group
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E;f
Ws. (N') =ll

' 1V;!
=II'(z' '/N") (D1 21)

6)' .l

In the case of B-E statistics we must And the number
of different ways in which S;particles can be distributed
over Z; levels and we get

W ( V,)=II, [(1V~+Z,—1) !/N;! (Z;—1) !]. (D1.22)

Finally in the case of F-D statistics we must find the
number of diferent ways in which 3T, particles can be
distributed over Z; levels without having more than
one particle in any level, and we get

w, o(N, ) =II, [z, !/N, !(z,—N,)!]. (D1.23)

We now assume that all Z;, N;, and Z, —N, (in the
F-D case) are large numbers so that we can use Eq.
(A3.03) for the factorials. We then get

lnW(lV, ) =Q; ( (1V,+nZ, ) ln[(Z, /1V, )+n]
—nZ, ln (Z,/N, )), (D1.24)

where
n&. ——0) ns s.=1, ns Q —. 1, (D1.25)

and where we have omitted a term Z1V, (=N) in the
Bo case, which is unimportant for our discussion. From
Eq. (D1.24) it can be seen that in the limit where

N,/Z, ~O, that is, for highly diluted systems, or systems

"For the importance of the omission of the factor X!see also
Gibbs' monograph (02G, Chap. XV) aud a paper by Nord-
heim (24N).

or unoccupied, but cannot be occupied by more than
one particle —and we have thus either one possible
wave function, or none,

WF-D(is, ) = 1, if all I, are 0 or 1;
(D1.18)

WF D(e,) =0, if at least one rt, )1.

Finally in the case of Bo statistics any of the iV I

permutations of the arguments of the E particles in the
wave function will lead to another permitted wave
function. As a permutation of the e;-particles in the
same level would not change the wave function we
might expect

W'n. ——1V!II, (1/e, !). (D1.19)

This does not take into account that, although we can
sometimes label our particles, we cannot keep track of
each separate atom and are thus overestimating the
weight of each e,-distribution by a factor E!which is
the number of different microsituations corresponding
to the same macrosituation. "We must thus use in the
case of Bo statistics instead of Eq. (D1.19), the ex-
pression

W .(~)=II (1/~ ) (D12o)

We can now use Eqs. (D1.15) to (D1.18) and (D1.20)
to calculate W(N, ). In the case of Bo statistics one
finds easily (compare ESM, p. 74) that

E,.+E .=E,, +E, (D1.29)

It will be shown in Appendix V that the S;;.;, satisfy
the equations

1V;, ,'p =A, ;,.;,'1V,N, (Z, +nN, ) (Z,'+nN, '), (D1.30)

while we shall assume [compare Eq. (D1.05)] that

(D1.31)

We get now, in a manner completely analogous to
the one leading to Eq. (D1.14),"
dH/dt= P, (dN~/dt) ln[N, /(Z„+n1V, )]

=-', Q, ,„'p A[1V, IVY (Z,+nN~)(Z, +nN;)
N,N, (Z, +nN—,')(Z; +nN, ')]

Xln[N~, (Z,'+nN; ) ( pZ+ nNp)/

N; N,'(Z,+nN, ) (Z,+nN, )]~&0. (D1.32)

The equal sign only holds when Eq. (D1.27) is satisfied.
Once again we have arrived at an equation showing

the steady decrease of H until equilibrium has been
reached. Both Eq. (D1.32) and Eq. (D1.14) are derived

by using a Stosszahlamsatz and by considering transition
probabilities. The discussion is thus on the same level
as that of Sec. A(3) and we could also, in the present,
case consider the frequency with which we can expect
Ructuations to occur. Just as the use of Eq. (A3.01)
for the probability of the occurrence of a situation was
based on the choice of equal a priori probabilities for

'+ We follow here the considerations of Pauli (28P); Compare
also the considers, tious by Nordheim (28N). Nordheim is especially
interested in the distribution of electrons in metals (compare
also 29P).

It must be noted that, Z, +o,Ã; is never negative, since in the
F-D case X;~&Z, .

at very high temperatures, the three expressions become
the same.

We find the equilibrium distribution by maximizing
1nW(N, ) under the conditions of given total energy and
given total number of particles,

Q)V, =1V, QNQ, =E, (D1.26)

and the result is [compare the discussion in Sec. A(3)],

in[(Z~+nN, )/N, ]= tj,+P—E,, (D1.27)

leading to the well-known expressions for the Boltz-
mann, Fermi-Dirac, and Bose-Einstein distributions.

We now must prove the approach to equilibrium. "
Using the relation g= —5/k and the Boltzmann-
Planck relation 5=k in%, we have for our II-function

II=Q, (nz, ln(Z, /N, )
—(N, +nz, ) ln[(Z, +n1V,)/1V, ]). (D1.28)

I et A;;.;; be the number of transitions per unit time
where the groups Z; and Z, each lose one particle and
the groups Z; and Z; each gain one particle. Such
transitions will be possible only if energy is conserved
ol lf
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equal volumes in phase space, so the use of Eqs. (D1.21)
to (D1.23) is based on the assumption of equal g priori
probabilities for all nondegenerate quantum states as
can be seen from the derivation of these equations. This
assumption will be discussed in Sec. D(3) when we also
shall discuss how far Eq. (D1.31) can. be justified from
first principles. "

(2) H-Theorem in Quantum Ensemble Theory"

The considerations of the preceding section corre-
sponded to the considerations of Sec. A(3) in the classi-
cal case. We shall now be concerned with the quantum-
mechanical analogy to Part C. First of all, in the present
section we shall consider the 6ne-grained density. We
shall then introduce a coarse-grained density and con-
sider again a quantity Z which is related to the Z of
Sec. C(1), and we draw attention to a few points where
slight diGerences from the classical case occur. After
that we shall brieRy consider the inR.uence of measure-
ments. "The question of representative ensembles and
of a priori probabilities is deferred until Sec. D(3).

It is well known that the so-called density matrix g~
introduced by von Neumann (27N1; see also 27N2,
29D, 30D1, 30D2, 31D, 32N3, 33P, 35D, 36D, 37K,
40H, 54T, ESM Chapter UII) replaces in quantum
statistics the role of the ensemble density p in classical
statistics. This density matrix also plays an important
part in many quantum-mechanical discussions, but this
is not the place to discuss the use of the density matrix
for anything but statistical purposes.

The (fine-grained) density matrix y is introduced as
follows. I.et P be the normalized wave function describ-
ing the kth system of the ensemble and let cp be a
complete set of orthonormal functions in the Hilbert
space of the wave functions. " We can then expand
the Pk as follows:

Pm +nm&m y (D2.04)

where the H „are the matrix elements of the Hamil-
tonian operator H,

H„„= q „*Hp„dr. (D2.05)

The physical significance of the a ~ is that they are
probability amplitudes,

~

a„k
~

' being the probability
that the kth system is characterized by the function p„.
From the normalization of the Pk and the fact that the
p„ form a complete orthonormal set, it follows that

(D2.06)

We can now introduce the density operator g or
density maAix by defining it through its elements,

Pmn ~ ~m ~n )b+

+Is 1
(D2.07)

where S is the number of systems in the ensemble.
The average value (G) of a physical quantity G,

which now corresponds to an operator G, is given by
the equation

(G) = cV ' Q „tPk*GPkdr (D2.08)

which is twice an average, firstly an average over the
wave function, and secondly an average over the en-
semble.

Introducing the a„, we gets'

and, while the P satisfy the Schrodinger equation

Hf" = i7ipk, (D2.03)

the a„satisfy the transformed Schrodinger equation

where

g k — t ~ +Pkdr

(D2.01)

(D2.02)

(G) +—i Q„Q g kryo
k+G

=P, „p .G. =Tr(pG). (D2.09)

An example of Eq. (D2.09) is the normalization of p.
Putting G=1, we have

where a star indicates the conjugate complex and where
d7 is a volume element of the coordinate space."

We can use the a„k instead of the Pk to describe the
kth system. The two representations are equivalent

"Recently Stueckelberg and co-workers (52S2, 54I) have based
the decrease of H on the unitarity of the so-called S-matrix.

Compare 38T, Chap. XII, part A, which we follow to a large
extent in our discussion.

"For a thorough discussion of this subject we refer to von
Neumann's book (32N3) and a recent paper by Groenewold
(4662).

"We denote all matrices by bold face characters.
8' For the sake of simplicity we shall assume that the p., form

a discrete set so that in Eq. (D2.01) we are dealing with a sum.
It is not difhcult to extend the formulas to the case where the
sum has to be replaced by an integral (a Stieltjes integral, if
necessary) but we leave this to the reader.

We restrict ourselves in our formulas to the case where the
wave functions are scalars. It is not difFicult to extend our formulas
to the case where they are spinors or undors (39Ii1).

1=Trp) (D2.10)

an equation which also follows directly from Eq.
(D2.06).

The index of probability n is again related to y by
the equation

(D2.11)g = expn,

where the right-hand side is an abbreviated notation for
the infinite exponential power series:

expn=g(ts!) 'n". (D2.12)

At this point we may draw attention to the fact that
the introduction of grand ensembles in quantum
statistics does not involve any extra complications.

8'TrA is a shorthand notation for the trace, or spur, of an
operator, that is, the sum of its diagonal elements: TrA=Z„A„~.
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We can assume that second quantization has taken
place and that thus all wave functions are expressed
as products of Jordan-Klein and Jordan-Wigner ma-
trices. The formalism remains unchanged.

We now introduce a quantity 0- by the equation

(D2.13)

or, using Eqs. (D2.11) and (D2.09)

0 =Tr (tl lntl). (D2.14)

As in Sec. C(1) we can show that 0. possesses a number
of minimum properties (compare 36D). In order to
show this, we first choose as our complete orthonormal
set p„a complete set of characteristic functions of the
Hamiltonian operator and of the number operator. "
We shall indicate the state corresponding to v particles
while the energy of the system is E&(v)22 by a double
index k, v and matrix elements between two states, say
k, vi and I, v, by (k, vl, l, v2) for instance H(k, vl, l, v2).

We have now the following properties of o-.

(a) If our ensemble is such that all systems have the
same number of particles E and that the energy of all
systems lies within a given interval E, E+8E, 0 will
be minimum if y is given by the equation

p (kv pl j ly p2) =Cojvl8vlN8v2N

for Z & Es(1lr) & E+8E; r (D2.15)
p (k, vl, l, vs) =0 OtherWiSe,

where 6&& is the Kronecker symbol and where c is a
constant.
(b) If our ensemble is such that all systems have the
same number of particles E but that only the average
energy is given, that is, that g must satisfy the condition

Tr(AH) =E, (D2.16)

o- will be minimum, if g satisfies the equation

p(k, vl, l, v2) =bulb. lx8.2&v exp(P[g —Es(1V)]}. (D2.17)

(c) If only the average number of particles and the
average energy of the systems in the ensemble are given
so that 9 must satisfy Eq. (D2.16) and the condition

Tr(yv) =1V, (D2.18)

where v is the number operator, o. will be minimum, if

p satisfies the equation"

p(k, vl ', l, v2) =l5lvs3 l 2 exp[ —/+Pill pals(vl)]. (D2.19)—

analogous. As in Sec. C(1), the densities given by
Eqs. (D2.15), (D2.17), and (D2.19) correspond to our
energy-shell ensemble, a macrocanonical ensemble, and
a canonical grand ensemble and P, f, and fl have here
the same meaning as there.

The proof of (c) is as follows (compare 36D Sec. 8):
Compare two density matrices g& and g2, where g& is
given by Eq. (D2.19) and gs by the equation

g2= 9, exp(hn).

The quantity o-&—0-& is given by the equation

02 0 l= Tl (n2 eXpll2 nl eXplll).

(D2.20)

(D2.21)

0'2 —0'l= Tl'[(ll2 —nl) exptl2]. (D2.22)

The right-hand side of Eq. (D2.22) is positive, except
when g, &

——n~. This can be seen as follows. We 6rst of
all note that for any Hermitean operator A the following
inequality holds (compare 38P):

[exPA]22 &~ exPA ss, (D2.23)

the equal sign only holding when A is on diagonal form.

One proves Eq. (D2.23) by considering a unitary transforma-
tion U which brings A onto diagonal form with diagonal elements
(characteristic values) As. We then have

A22=Zy)UIl)2Al, Z2)U2~)'=1, (D2.24)
and

Lf(A) jli= &a~ Ual ~Pf(Ar),
= Z

~
U2t ~'{f(A22)+ (Al A22)f'(A22)—

+-,'(Al A22)2f" (A2—2+02t[Al —A22))l(0~&esl &~1)

=f(A 22)+-', 2
~

U2l
~

'(Al Aa„)sf", — (D2.23)

where we have used Eqs. (D2.24). If f(A) is the exponential
function, Eq. (D2.23) follows.

We now choose a representation in which n2 is on
diagonal form. Since from Eq. (D2.10) it follows that

The right-hand side of Eq. (D2.21) can be written as

Tr[(ns —nl) expn2]+Tr[nl (92—fit)]
=Tr[(ns —nl) expn2]+Tr[( —q+ vp, —PH) (fl2 tll)

=Tr[(n2 nl) ezpn2]

where we have used the fact that both p& and y2 satisfy
Eqs. (D2.16), (D2.18), and the normalization condi-
tion (D2.10), and where we have used Eqs. (D2.19) and
(D2.11).We have thus

We shall prove only the last statement since the
proofs of the two other statements are completely

we get
Tr(expni) =Tr(expns) (= 1), (D2.26)

For an account of the method of second quantization (28J;
see also 27J2, 34F) we refer to Kramers' monograph (38K Sec, 72).

Once again we shall restrict ourselves to the case where only
one kind of particle is present. In the present discussion it would,
however, be simple to extend the discussion to the case of a num-
ber of different kinds of particles.

~Re shall assume for the sake of simplicity that all energy
levels are nondegenerate.' In this case it is really unnecessary to make a particu-
lar choice for the 2v„. In general Eq. (D2.19) would read
fi=exPL —g+Vp —PHg.

Tr[(n, —n,) expn, ]
=Tr[n2 —nl) expn2 —expn2+ expnl]
=Q[(212 ' ill ',) exP212,—exP212;+ (exPnl) ' ']

~~2[(rf 2 21 1 ') exP212, —exP21 2,+exP21 i;,]
=p (exptl, „,)[(212,—ill, ,—1) exp(21„—ill;,)+1]~&0,

where we have first used Eq. (D2.23) and then used the
properties of the function y given by Eq. (C1.13).
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UtU= UUt= I (D2.28)

Any average value (G) is invariant against a unitary
transformation. This follows since Tr(AB) =Tr(BA),
and thus

Tr (p"G")=Tr(Utp'UUtG'U) = Tr(Utp'G'U)
= Tr(G'UUtp') =Tr(G'p') = Tr(p'G'). (D2.29)

Since 0- is the average value of n we see that 0-'=0-" as
in the classical case.

We shall now introduce as in Sec. C(1) a coarse-
grained density, or in this case a coarse-grained density
matrix P. We choose now as our complete orthonormal
set of functions the characteristic functions of the
Hamiltonian H of the system. Furthermore, we shall
divide the stationary states into groups, as before, but
now we shall assume the grouping to be in such a way
as to correspond to the inaccuracy of our observation,
this is, we shall assume that by means of our available
observational methods we can discriminate between the
diferent groups, but not within them. "Let S; be the
number of levels in the ith group. We now define the
coarse-grained density matrix P by its matrix elements
in the particular representation which we are using at
the moment, as follows:

P) t=4i E) p))/~') (D2.30)

where the energy level EI, belongs to the ith group and
where the summation is taken over all the states of the
ith group. Since p;; is the probability of finding a
system of the ensemble in the state characterized by
p;, we see that S,P» is the probability of finding a
system of the ensemble in a state belonging to the ith
group. Equation (D2.30) defines the coarse-grained
density in a particular representation; its matrix ele-
ments in any other representation follow by the usual
transformation rules. "

From Eqs. (D2.30) and (D2.10) it follows that P is
also normalized,

(D2.31)

We now define a quantity Z by the equation

Z= Tr(P lnP) =Ps Pss 1nprs, (D2.32)

as long as we stay in the representation which we chose

~ There is a difference between the grouping here and in Sec.
D(1).Previously we grouped the energy levels oi the constituent
particles but now we group the energy levels of the whole system.

9' For a discussion of the choice of the coarse-grained density
matrix see also a recent paper by van Kampen (54K).

Once again, however, a- will not change with time.
This follows from the fact that we can transform from
one instant (t') to another (l") by a unitary trans-
formation. This means that, if y' and y" denote the
density matrices at t' and t", they are related by the
equation

(D2.27)

where Ut is the Hermitean conjugate of U and where

)r~=Zpss lnpI s (D2.34)

We shall see later on that |TED and Z are sometimes the
same, namely, for an ensemble representing a system on
which a measurement has just been made.

The second step in their discussion consists in ob-
serving that one is usually interested in systems which
are in contact with their surroundings so that the
Hamiltonian of the system consists of two parts,

8=Ho+V, (D2.35)

where Hs is the Hamiltonian of the system if inter-
action with the outside world is neglected, and V the
interaction energy operator. It is a well-known result
from quantum-mechanical perturbation theory that
transitions between characteristic states of Hs can occur
under the influence of V. Choose now for the tp„ the
characteristic functions of Hs and of any other operators
which commute with Hs. For reasoris which will become
clear presently [compare Eqs. (D2.37) and (D2.41)j,
we are especially interested in the case where the energy
characteristic values are degenerate. To indicate this
degeneracy we shall give two indices to the p„.q» &,

where the first index indicates the energy value E&, and
the second index distinguishes between the various
states belonging to the same EI,.

Since we are only dealing with the diagonal elements
of y which are, as we saw a moment ago, the probabili-
ties of finding a system of the ensemble in a particular
state, we can use the quantum-mechanical formulas for
the time dependence of these probabilities, and we find"

p(kl)kl; t) =p(kl kl) lo)+Q), & J(kl)k'l')
X (p(k'l', k'l'; lo) p(kl, kl; lo)), (D2—36)

where

J(kl)k'1') =bs), (47r'/k)
~

V(kl)k'l') ~'(t —ls). (D2.37)

In Eq. (D2.37) the 8),s shows that J is zero unless
energy is conserved, that is, transitions only take place

'4 Compare the discussion in Appendix V.

originally. Using Eq. (D2.30) we can also write

Z=gp)s lnPs), =Tr(p lnP) =(lnP). (D2.33)

There are several ways of studying the behavior of 2
in time. Possibly the crudest way is the one used by Born
and Green (4881, 4882, 4981, 4982, 4983) who, in
our opinion, do not properly distinguish between fine-
grained and coarse-grained densities and, moreover,
do not take into account the fact that coarse-grained
densities are introduced as a necessary step to keep our
formalism in accordance with our experimental possi-
bilities. In their work they define as the entropy a
quantity which is not proportional to either —0- or —2,
but to a hybrid of the two, which we shall call —oZ.
The quantity OZ can be obtained from Z by putting
all S; equal to one, or from o- by assuming p to be
always diagonalized,
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and we shall assume
U(kL, k'L') = V*(k'L', kL), (D2.38)

between states of the same energy, h is Planck's con- E;, is given by the equation
stant, and V(kl, k'L') is the matrix element of V which
satisfies the equation ~) (D2 45)

(D2.46)

&,=S,&ra, (D2.42)

because V is a Hermitean matrix. By virtue of Eq.
(D2.38) we have the relation

J(kL,k'L') = J(k'L', kL). (D2.39)

Substituting from Eq. (D2.36) into Eq. (D2.34), we

get up to the first order in J"
OZ( t)=oZ(to) —

& +st y t J(kL,k'L')Q(kL, k'L') (D2.40)

with

Q(kL, k'L') = fp(kL, kL; to) —p(k'L', O'L'; to)$

&&InLp(kL, kL; to)/p(k'L', k L'; to)g. (D2.41)

As Q is never negative and J always positive and,
moreover, a monotonically increasing function of t,
we have in o-Z a monotonically decreasing function.

One can object to this argument on the grounds that
Eq. (D2.37) is only valid for small values of t fo, —
but Green has shown that the argument can be changed
so as to be valid for all values of t—to. The most im-

portant objection is, however, against the use of the
function —(TZ as a measure for the entropy. As was
pointed out by Pauli (49P) as soon as this choice is

made everything else follows as can be seen from the
work of Klein (31K) which we discuss in Appendix VI
(see also later in this section).

A second method of discussing the behavior of Z the
one due to Pauli (28P). I.et P, be the probability of
6nding a system of the ensemble in the ith group.
We then have the following relation":

/=I ) (D2.51)

We then get

dP, /Ct=p; (N;, N, ,—)=Q;A,;[S,P, S;P,—j, (D2.47)

and in much the same manner as we derived Eq.
(D2.40) we get now

dZ/dt= —,
' g, , , A,,ttP, S P,S,j—ln(P, S;/P, S;). (D2.48)

Once again it follows from the form of the right-hand
side of equation. (D2.48) that dZ/dt will never be positive.

We may at this point draw attention to the fact that
dZ/dt will only be zero if

P,S;=P,S';, or, P;/S; =P,/S;, (D2.49)

or, when use is made of Eqs. (D2.45) and (D2.46),

&V,,=N, ;, (D2.50)

and we see that at equilibrium there are as many
transitions from group S; to group S, as the other way
round. This is an example of the so-called priecipLe of
detailed balumcieg which we shall discuss in more detail
in Appendix VII.

We shall return presently to the discussion of this
second method of considering the variation with time of
Z, but we want first to discuss a third method which is
completely analogous to the consideration of the varia-
tion with time of Z in Sec. C(1)."

I et us assume that we have made observations on our
system at 3' which will give us the coarse-grained den-

sity P. The fine-grained density g at 3' will then be
given by the equation Lcompare the discussion in
Sec. D(3)g.

Z'= Tr(P' lnP') =Tr(y' 1ng'). (D2.52)

If the situation at t' did not correspond to an equi-
librium situation so that p' (or P ) did not satisfy one
of the Eqs. (D2.15), (D2.17), or (D2.19), we cannot
expect Eq. (D2.51) to hold at a later time t", but we

would have

Z=P, g(P,/5;) ln(P, /5, )=P;P, ln(P, /5, ), (D2.43)

where in the second member the first summation is
over all groups and the second summation over the
S, members of the group.

The time derivation of Z is now given by the equation
(D2.53)

(D2.54)

//g~//

y//~g/
and as a result

dZ/dt= P, (lnP, —lnS;) (dP, /dt), (D2.44)

where I'I,~ is one of the S; equal diagonal elements be- while we have for Z'

longing to the tth group. From Eq. (D2.32) we then
have in terms of the I';

where we used the fact that gP; = 1, or PdP, /dt=0 as
follows from Eqs. (D2.31) and (D2.42).

I.et E;; be the average transition probability from
group S; to group S;.In Appendix V we shall prove that

"We use here Eq. (D2.39) (i) to show that the. sum

& 1 (kl, kV) Lp(k'l', k'l'; t) p(kl, kl; t)]-
is zero, and (ii) to obtain the sum on the right-hand side of Eq.
(D2.40) )compare the derivation of Eq. (D1.14); hence the
factor"Compare the discussion of Eq. (D2.30).

I et us consider in slightly more detail how Eq.
(D2.54) follows from Eq. (D2.53)."We are concerned
with the expression

Z' —2"=Tr(P' lnP') —Tr(P" lnP")
= Tr(9' 1np') —Tr(9" lnP")

=Qp pj, g' 1npss' —P„p„„"lnP„„", (D2.55)

"Ishould like to express my thanks to Professor O. Klein for a
discussion of some points connected with this method of approach.

"The discussion on p. 373 of ESM is too short and rather
misleading.
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where we have used the fact that the coarse-grained
density is always a diagonal matrix Lsee Eq. (D2.30)$.
We add now to the right-hand side of equation (D2.55)
first of all the expression

P„p„„"lnp„„"—Pa PI,a' lnps~', (D2.56)

which by Klein's lemma (31K) is never positive and

only equal to zero, if y" is a diagonal matrix as is

proved in Appendix VI. We also add to the right-hand
side of Eq. (D2.55) the expression Tr P"—Tr y" which

is zero since both g" and I'" are normalized. The final

result is

=Pn (Pnn lnPnn Pnn lnPnn
—p„„"+P„„")& 0, (D2.57)

the last inequality following from the properties of the
function y given by Eq. (C1.13), since substituting
x= inn —lnP and multiplying by P gives for P) 0

nln n n lnP n+P—)—0, nAP;
(D2.58)

)

The fact that we expect Z to continue to decrease is
based on considerations similar to those discussed in
Sec. C(1).This decrease will continue until a stationary
state is reached where I' is given by one of the three

Eqs. (D2.15), (D2.17), or (D2.19), and where g=P.
We must now discuss the diGerent ways of consider-

ing the time dependence of Z. As we mentioned before,
we are not convinced of the validity of Born and
Green's method of approach and we shall not discuss

it any further at this point. The second method of

approach is the one used by Pauli. This method is

actually closely connected with the simple approach of
Sec. D(1). This we can see as follows. We write Z of

Eq. (D2.43) in the form

Z =P, P, lnP, —P, P, 1nS;. (D2.59)

Now, I'; is the probability of finding a system in one

of the states corresponding to the ith group, and 5;
is the number of states in this group. The number of
states in a group is, however, just equal to the function

W(1V,) discussed in Sec. D(1) as will be seen after a
moment's thought, and using the relation between H
and 1nW which led to Eq. (D1.28) we can. write Eq.
(D2.59) in the form

Z=P, P,H,+P; P, 1nP, =(H)+Z,P; lnP, , (D2.60)

where H; is the value of II if the system is in a state
belonging to the ith group, "and (H) the average of H
over the ensemble.

Using Eq. (D2.60) we see erst of all that if we are

dealing with an ensemble representing a system which

by measurement has just been found to be in one par-
ticular state so that one of the I', is equal to one and

"We may remark here that we could have derived an equation
similar to Eq. (D2.60) in the classical case. The discussion would
have been analogous to the present discussion.

the others equal to zero, this equation would reduce to
the form

Z=H. (D2.61)

Secondly, taking the time derivation of Eq. (D2.60),
we get

dZ/dt = (dH/dt)+g, (dP, /dt) lnP, , (D2.62)

and we see that the decrease of Z is due to two facts
(i) the general decrease in H for each system of the
ensemble, and (ii) the tendency to decrease Z,P; lnP,
by a more uniform distribution of the systems in the
ensemble over the different groups of states.

Let us now consider Eq. (D2.57). We saw that Z
decreased firstly because of the fact that g and P were
no longer the same, a cause for the decrease of Z which
also operated in the classical case, and secondly because
the expression Zp~~ lnp~, ~ decreased (Klein's lemma).
For the second cause there does not exist a classical
counterpart and we must discuss it briefly. It is called

by Tolman (38T) the quantum mech-apical spreadkeg of
fiv grail-ed probability. There is no classical counter-
part since the quantity Zp» lnp» is not a trace of a
quantum-mechanical operator. The more states are
occupied the lower the value of this sum becomes.
This decrease is associated with the irreversible dis-
turbance due to observations on the system. " The
effect will thus be most pronounced in the case where
observations are such as to approach the limits set by
the Heisenberg relation, but will be unimportant in
those cases where the disturbance of the system by
the observation may be neglected. In the latter case
the growing difference between g and P will be re-
sponsible for the decrease of Z.

It is of interest to note that some authors (36D, 37S)
only consider this inhuence of measurements on the
system without properly paying attention to the role
of fine-grained and coarse-grained densities and to the
fact that the approach to equilibrium should be inde-

pendent of whether or not the system is actually
observed. '"

In the next section we shall discuss how one can set

up representative ensembles in quantum statistics, but
some aspects of the consequences of observations on a
physical system we wish to discuss briefly now, es-

pecially the importance of the pure case.
In classical statistics we introduce ensembles since

our knowledge about the physical systems under con-
sideration is practically always far removed from the
maximum attainable knowledge. In quantum statistics
the situation is, however, complicated due to the
statistical aspects inherent in quantum mechanics.
In the ideal (and always idealized) case we may, in
classical statistics, know the values of all constants of
motion so that the problem of the behavior of the sys-
tem reduces to a problem of classical mechanics. In the

"0 Compare, for instance, the discussion by Bohr (3331,3332)."' Compare the criticism raised by Pauli and Pierz I'37P). We
also may refer to a paper by Davydov (47D).
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ideal (and always idealized) case in quantum statistics,
we may know that one system is in a characteristic
state of a quantum-mechanical operator for which for
the sake of simplicity we shall choose the energy
operator'" so that we are dealing with the system
in a stationary state. We are dealing with a pure case
(Reiver Fall) and all the systems in the representative
ensemble will possess the same wave function, namely,
the one corresponding to the characteristics state in
question. Only one of the two averaging processes
described by Eq. (D2.08) remains, namely, the quan-
tum-mechanical average. We still must use statistical
considerations, although our knowledge is maximal.

In general, however, the situation will not be so
favorable and the construction of the representative
ensemble is much more complicated. Both averages in
Eq. (D2.08) must be taken into account. We are dealing
with a mixed case (Gemisch)

In the pure case, if the state of the system is charac-
terized by one of the functions forming the complete
orthonormal set q „, say y&, the f" are all equal to y&,

and we have

and hence
Pmn ~mn~ml

(D2.63)

(D2.64)

In this case we have for 0-

tr =Tr (g lnp) =0. (D2.65)

In a mixed case, there are more than one p „which
are different from zero and o- is smaller than zero. '"
This is probably the reason by Elsasser (37E) calls o.

the mixture index. '"The decrease of 0- when we go from
a pure case to a mixed case once again shows the rela-
tion between entropy —which is proportional to —0=
and lack of information as the decrease of detailed
information involves the decrease of o (compare also
the discussion in 39K1, 39K2).

In the next section we shall see that the representa-
tive ensemble of a subsystem which is part of a large
isolated system will be a canonical grand ensemble. This
means that while the larger system may be represented
by a pure case, the subsystems will certainly correspond
to a mixture. This fact has been the source of a long
discussion started oG by a paper by Einstein, Podolski,
and Rosen (35E) in which the paradox which bears
their names was first stated. We have not got the space
to discuss this paradox and refer to the literature (35B,
35S1, 35S2, 35S3, 35S4, 36M, 36F, 36S, 5183; compare
also 27N1).

'~ It is easy to extend the discussion to include the case where
the system is in a characteristic state of two or more commuting
operators.

M' Equation (D2.65) is a necessary and suificient condition for
a pure case (33P) and is equivalent to the usual condition g = p,

M4 In his paper Elsasser discusses how one can use measurements
to set up representative ensembles. Instead of making assumptions
about u priori probabilities Elsasser chooses his ensembles in
such a way that they make 0 minimum. In this way he, of course,
arrives at the same results as we do, in the more conventional way,
since the normal method leads to minimum values of 0-.

Tr(Hy)+Tr(H'y') = constant, (D3.03)

Tr(vy)+Tr(v'y') = constant, (D3.04)

where the unprimed quantities refer to the subsystem
and the primed quantities to the rest system. If equi-
librium has been attained Z should be a minimum, or,

Trt (pg') ln(gp') 1=minimum. (D3.05)

Using the method of undetermined multipliers, one then
finds (see, e.g., 40H for a discussion'") for the equi-
librium expression for

p= exp[ —q+ vp —pH], (D3.06)

in accordance with what we discussed in the previous
section. As in Sec. C(2), Eq. (D3.06) really only holds
for the coarse-grained density P as Eq. (D3.05) only
holds for Z and not for 0.

The situation is also completely analogous to the
classical case as far as nonequilibrium situations are
concerned and we refer to the discussion of Sec. C(2)
which can be immediately applied to the present case.

We wish to make one more remark about the setting
up of a representative ensemble after an observation
has been made on a system. We can only distinguish
between states belonging to different groups as we
discussed before and we can thus only determine the
coarse-grained density, or, the PI, I,. In accordance with
the assumption of equal a priori probabilities for all
nondegenerate states we should then put all diagonal
elements of p corresponding to one group equal to each
other and equal to the corresponding P». As far as the
o6-diagonal elements of p are concerned, since these are

' 5 If a state is g-fold degenerate, it is counted as g nondegenerate
states.' ' One varies both the characteristic values and the charac-
teristic functions of g in this case.

(3) Representative Ensembles

Once again the situation is very similar to the situa-
tion in classical statistics. We have only incomplete
data from which to predict the future behavior of our
system and we must have recourse to representative
ensembles. Once again the question of a priori prob-
abilities crops up, and as we really need the a„~'s, also
the question of the a priori phases, as we shall see
presently. We use the assumption of equal u priori
probabilities for all nondegenerate states'" and the
assumption of random a priori phases, where we shall
see presently what we Incan by the term random in this
connection. Our discussion will now proceed analogous
to the discussion in Sec. C(2). We assume again that
our system is part of a larger, isolated system and
instead of Eqs. (C2.01) to (C2.04) we have now

(D3.01)

(D3.02)
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the average values of the product of two a„~ we have

1
pm' Jam an

E

The uniform ensemble can be considered to have been
obtained by applying the prescription of equal a priori
probabilities and random a priori phases for different
states, since we have from Eq. (D2.07)

1
kr s exp[i(y s y s)jS

(D3.07)
pmn, (aman )Asy (D3.11)

where the average is tak.en over all the systems in the
ensemble. Putting

where r "is the modulus of a„s and tt "its phase.
Using the assumption of random a priori phases, we

may expect the average of exp[i(p "—p„')$ to be zero,
and we have thus for the fine-grained density of our
ensemble

pl i=I'I rAI i, (D3.08)

plcl =po~jet) Or, p= p01& (D3.09)

where 1 is the unit matrix. Equation (D3.09) will be
satisfied by y independent of the choice of the complete
orthonormal system, as we can easily show by perform-
ing a unitary transformation U,

y' = UtgU= UtpolU =psUtlU = poUtU =pol. (D3.10)

"'We refer to a paper by Uhlenbeck (35U) for a discussion of
some other aspects of the transition from quantum to classical
statistics,

and we see that, indeed, as we remarked when discussing
Eqs. (D2.34), o., Z, and oZ are all three equal.

We come now to a discussion of our choice of a priori
probabilities and a priori phases. When we discussed
the analogous situation in classical statistics we showed
first of all that the a priori weights should be such as to
be invariant against the movement of the representative
point along its orbit. We thus showed that in the case
of quasi-ergodic systems, the a priori weights would be
functions of the energy only and couM thus be taken
to be equal for equal volumes in phase space. The
situation in quantum statistics is both simpli6ed and
complicated as compared with the situation in classical
statistics. We shall erst show that an ensemble con-
structed without any conditions according to the pre-
scription of equal a priori probabilities and random
a priori phases for different nondegenerate quantum
states will be a stationary ensemble and will, more-
over, correspond to a similar ensemble if we change our
representation. Secondly we shall briefly discuss in this
connection the importance of the so-called adiabatic
invariance of the weights of the different quantum
states. Ke shall then briefiy discuss the relation be-
tween our choice of a priori probabilities and the condi-
tion of nondegeneracy of energy states which is the
ergodic condition (see Part E). Finally we shall show
how in the classical limit, the condition of equal a Priori
probabilities and random a priori phases from different
nondegenerate states leads to the condition of equal
a priori probabilities for equal volumes in phase space. '"

Consider the so-called isni forris emsemble whose
density matrix is given by the equation

a„=r exp (in„), (D3.12)

where r is the modulus and n the phase of u, we
have from Eq. (D3.11)

pms {rmrs exp[i(nm nn)] )Av.

Equal a priori probabilities means

r = independent of ni=gps,

so that Eq. (D3.13) reduces to

p„„=ps{exp[i(n„—n„)$),„,

(D3.13)

(D3 14)

(D3.15)

which because of the random distribution of the phases
reduces to Eq. (D3.09).

The uniform ensemble is also a stationary ensemble.
This follows immediately from Eq. (D2.27) [compare
Eq. (D3.10)7.

We see here that the condition of equal a priori
probabilities and random a priori phases for different
states is invariant both against the passage of time and
against transformations from one representation to
another. The assumption of random a priori phases is
necessary in order to assure the establishment of these
invariances, as the density matrix given by the equation

pki= ps8qi+As(1 —8s~) (D3.16)

would satisfy the requirement of equal a priori prob-
ability but would not be a stationary density or a
density invariant against a unitary transformation.

We may remark here that Dirac (29D; see also 27N1)
singles out the uniform ensemble since it remains in-
variant against arbitrary slight perturbations of the
Hamiltonian and thus gives the a priori distribution of
quantum statistics. He also draws attention to the fact
that it leads —as we just saw—to equal a priori prob-
abilities for all discrete states.

The equality of a priori weights for nondegenerate
states follows also from the so-called adiabatic PririciPte
to which Ehrenfest's name is usually attached. We
cannot enter into a detailed discussion of this very
important subject and must refer to the literature"'
(06E1, 11E1,14E, 16E, 1781, 1782, 1783, 1784, 17E1,
183, 2382, 27U, and especially 23E1, where further ref-
erences can be found). This principle states that if the
external parameters are varied adiabatically, the rela-
tive weights of the different states cannot change.
From this it follows directly that in the case of multiply

I Some of Ehrenfest's papers also discuss the importance of this
principle for the choice of the u priori weights in classical statistics.
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periodic systems each nondegenerate quantum state
has the same a priori weight.

We come now to the important question whether,
as in the classical case, the choice of a priori probabili-
ties is determined completely, if we are dealing with
ergodic systems. We saw in Sec. C(3) that this was the
case in classical statistics due to the fact that the other
constants of motion take up their possible values with
practically equal frequency' v different parts of phase
space, or, as it is sometimes put, are practically con-
stant over an energy surface. This latter property is
also true for an ergodic system in quantum mechanics
as we can see easily. If all energy states are nondegen-
erate, the energy characteristic functions will form a
complete orthonormal set. Since a constant of motion
corresponds to an operator which commutes with the
energy operator, it follows from quantum theory (e.g. ,
38K Sec. 38) that the energy characteristic functions
are also characteristic functions of all the operators
corresponding to the integrals of motion. It then follows
that in each energy state —which, because of the non-
degeneracy corresponds to one and only one character-
istic function —the integrals of motion have well-
defined constant values.

Unfortunately, however, this does not ensure that
our choice of a priori probabilities and of a priori
phases follows. As far as the a priori probabilities are
concerned, we hardly need the ergodicity of the systems
under consideration, since as we saw a moment ago, the
adiabatic principle allows only those a priori weights
which we have used throughout. The choice of a priori
phases is, however, more difficult to justify from first
principles —and that is what we are trying to do at the
moment.

Let us consider a moment the plausibility of the
existence of ergodic systems. We know from quantum
theory that degenerate levels are the rule rather than
the exception when we are dealing with simple systems
such as atoms and molecules, and it seems unlikely
that the situation would be different when we come to
complicated systems such as are considered in statistical
mechanics. In this connection it is of interest to remind
ourselves of the fact that it has not even been possible
to prove that the ground state of any system is non-
degenerate —a property which is important for a dis-
cussion of the third law of thermodynamics, the so-
called Nernst heat theorem. '" We must therefore also
face the possibility that physical systems are not
ergodic. Let us brieQy consider in how far the ergodic
theorem of Part E, that is, the equality of time and
ensemble averages can still be saved. This equality is
based on Eq. (E.26) which is proved in Appendix IV.
From the discussion in that appendix we see that Eq.
(E.26) can also be proved, if we may average over the
phases on the right-hand side of Eq. (IV.07)."' I
would like to suggest that this averaging is in accordance

' 9 For a discussion see 30S, 51S, 16S, and ESM Appendix III."s Compare also Eq. (E.08).

with the basic ideas of quantum mechanics. It is well
known that in no' physical quantities the (initial)
phases of the wave functions play a role, and it is
therefore tempting to suggest that each wave function
be considered to be an average (or better a mixture) of
a large number of wave functions, only differing in their
phases, but otherwise being the same. This would not
alter any results obtained from the normal wave me-
chanics and would ensure the ergodic theorem as well
as justifying the manner in which we set up our repre-
sentative ensembles. We transfer in this w'ay the as-
sumption of random a priori phases from statistical
mechanics to quantum mechanics itself.

We conclude this section with a discussion of how our
classical a priori probabilities are the limiting case of
the assumption regarding a priori weights and a priori
phases made in quantum statistics. The transition
could easily be justified in the old (model) quantum
mechanics, at any rate, as long as one was dealing with
multiply periodic systems (compare 18B), since in the
old quantum theory the energy levels were just ob-
tained by dividing phase space into cells of volume h'
(h: Planck's constant; s: number of degrees of freedom)
and assigning one level to each cell.

In modern quantum mechanics, the situation is
more complicated. One often finds the cryptic statement
that the assignment of a volume h' in phase space for
each state is connected with the Heisenberg relations
(27H1) which are then written in the form

AP. hg&~ fi, (D3.17)

(D3.18)

where dq stands for a volume element in q-space. The
probability density in p-space is obtained by first
transforming the wave function iP (q) in coordinate
representation to the probability amplitude A(p) in

where p and q are a canonically conjugate momentum-
coordinate pair, and where Ap and Dg are the ranges of
accuracy with which they can be measured simul-
taneously. It is not explained in these cases, why the
volume would not be (h(4')', as the right-hand side of
inequality (D3.17) in the most rigorous form should be
h/4m and not h (30H1).

However, one can probably justify the choice of a
volume h' in phase space for each state as follows
(ESM p. 60; compare also 35D Sec. 37, 49M). In
classical mechanics the phase of the particle is given by
the representative point in phase space. This point can
be considered to be the combination of a point in co-
ordinate —or q-space —and a point in momentum —or
p-space. In quantum mechanics we must, however,
consider probability densities. The two probability
densities in p and in q-space are -not independent. The
probability density in q-space is determined by the
wave function P and is ~f~, which is normalized,
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momentum space. The probability density in p-space
is then ~A~'. It follows from transformation theory
that A and P are each other's Fourier transforms, if we
consider q and p/h as the variables, '" and that thus

iA i'dp=h'. (D3.19)

We can now say that the total volume of phase space
corresponding to one state of the system is obtained by
multiplying the probability densities in p- and q-space
and integrating over the whole of phase space, and we

get from Eqs. (D3.18) and (D3.19) as the final result
a volume h'.

From the foregoing discussion we can conclude that
in the limit of k~0, indeed, equal volumes of phase
space —which contain equal numbers of cells of volume
Is'—correspond to equal u priori probabilities, once we
have accepted the equal a priori probabilities for all
nondegenerate states. The necessity of random a priori
phases in this connection is not so apparent. It follows,
however, from the considerations of the uniform en-
semble. We should like to have equal weights for non-
degenerate states independent of the representation
we are using, and this can only be ensured if we use the
additional assumption of random a priori phases as we
saw earlier in the present section.

can be reached from all other states within the range—
even if only via other intermediate states. '"

Let PI, denote once again the probability of ending
the system in the 4th state, and let m»& be the transition
probability for a transition from the kth to the 3th
state. We then have the following equation governing
the temporal behavior of the PJ, .'

dPs/d1= —Pi Pswi~+Pi Patois

=Pt nw(Pi —Pg, ), (E.02)

'" It is at this point that Planck's constant enters —one might
say through the de Broglie relations, or through the commutation
relations which also lead to the Heisenberg relation.'" See 33J, Sec. 2.2; 40M, p. 56; 46J, p. 152.

E. THE ERGODIC THEOREM IN QUANTUM
STATISTICS

We saw earlier that apart from the approach via the
II-theorem one could justify the use of statistical
methods by using the ergodic (or quasi-ergodic)
theorem and proving the equivalence of equality of time
and ensemble averages. The same choice of method of
approach exists in quantum statistics, and we do now
wish to consider the quantum-statistical ergodic
theorem. In analogy with the old ergodic theorem
[Sec. B(1)j one can assume the existence of ergodic
systems. Such systems are defined as such systems
where all states EJ, within a given energy range

E&~Es&&8+88

where we have used the fact that mI, ~=+~~."' The equi-
librium solution of Eq. (E.02) which is attained ex-
ponentially is

Ps= constant= 1/n, (E.03)

if n is the number of states in the range (E.01). From
this it follows that the average time spent in any of the
e states is the same and to calculate the time average of
any quantity we can take the mean over the states of
the range (E.01), or over a representative micro-
canonical ensemble [compare the density for such an
ensemble given by Eq. (D2.15)j.We have thus proved
that for ergodic systems the two averages are the same.
The problem remains whether or not ergodic systems
exist. In the present case it seems very likely that this
is the case. In a closed system radiation must have been
included and this should make transitions from one
state to another possible. '"

There is, however, also in quantum mechanics a
diferent method of approach which is analogous to
BirkhoG's or Hopf's ergodic theorem. This method
consists of proving directly the equivalence of time and
ensemble averages. The erst proof was given by von
Neumann (29N) and it was later simplified by Pauli
and Fierz (37P) and by Fierz (private com-
munication). "s

As in the classical case we can distinguish two differ-
ent ergodic theorems according to whether or not we
allow a "coarsening" of the energy of the system. In the
quantum-statistical case the second ergodic theorem is
the more important one, but we shall first discuss

briefly the first ergodic theorem and we shall follow
largely the exposition given by Rosenfeld (52R).

In the 6rst case we are dealing with a pure case. Let
P(t) be the wave function describing the system under
consideration. We choose now for our complete ortho-
normal set p„ the characteristic functions of the energy
operator H and denote by P.„ the corresponding char-
acteristic values. We now write

(E.04)
with

(E.05)

where r„ is the modulus and a„ the phase of u„. For
P(t) we then have in the usual way

P(t) =Pr„exp(in„) exp( —iE„t/fi) p„, (E.06)

and the density matrix as a function of time is given
by the equation

p „(t)=r r„e px[ (in —n„))
Xexp[ —i (E —E„)1/5$. (E.07)

ns Van Kampen (54K) has shown that Eq. (E.02) can also be
derived under conditions where zvI, ~/m~J, .'"We may mention in this connection the recent paper by M. J.
Klein (52K) who makes some explicit assumptions about the
interactions allowing the transitions to take place.

"5 I am greatly indebted to Professor M. Fierz for putting at
my disposal his latest considerations which were discussed at the
Les Houches Summer School of 1953.
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(E.09)

We can now take the time average of (A) and we see
that, if there is no degeneracy, that is, if no two char-
acteristic energy values are the same, we have

(A) =P„p„&„„, (E.10)

which is independent of the initial phases (the n„)
We see that (A) will only be independent of the

initial conditions, in this case, the initial phases, if
there is no degeneracy. The requirement of nondegen-
eracy thus takes the place of the requirement of metrical
transitivity in the classical case.

That Eq. (E.10) gives (A) as a statistical average
can be seen when we introduce the so-called projection
operators R (p). This operator is defined by the equation

which should be valid for any pair of functions p and p.
The geometric meaning of the projection operator is
simple, if we may use for a moment the language of the
Hilbert space. The integral fy*ydr then corresponds
to the scalar product of the two vectors y and q in
Hilbert space and the right-hand side of Eq. (E.11)
gives thus the 'projection" of y on q if q is normalized,
and thus corresponds to a unit vector in Hilbert space."'

One can easily see that, in the case where the system
is characterized by the wave function P, the operator
RQ) is diagonal and its diagonal elements are equal
to the diagonal elements of the density matrix so that
we can write Eq. (E.10) in the form

(A) = Tr(R(1t)A). (E.12)

From Eq. (E.07) it follows also that R(f) can be
obtained by averaging the density matrix over the
different values of the initial phases, or,

the subscript "Av" indicating here the averaging over
the values of the n„, and Eq. (E.12) or (E.10) can also
be written in the form

Loosely speaking we may interpret this result as
meaning that the temporal change of the wave function

"6We use the notation R instead of P to emphasize the relation
with the density matrix,

The average value of any physical quantity A is the
quantum-mechanical average given by the equation

(A)=g„„r„r„expti(n„—n„)
i (E— E„—)t/h7A „, (E.08)

where 3 „is given by the equation

corresponds to a uniform distributing of the o.„over all
possible values, corresponding to the classical picture
of the trajectory completely covering the energy
surface.

If we are dealing with an isolated system of constant
energy the P(0) is one of the p„and we are dealing with
a pure case with a microcanonical density matrix. In
the general case discussed at this moment time averag-
ing has the effect of replacing the pure case by a mixture
obtained by averaging over the initial phases.

The discussion of the first ergodic theorem is mainly
of importance for the discussion of the inQuence of ob-
servations on the state of the system and the discussion
of the change from a pure to a mixed case by observa-
tion. We have discussed some aspects of this at the end
of Sec. D (2) and are not going to discuss it any further
at this point.

The second ergodic theorem deals as does Hopf's
ergodic theorem with an energy shell. At the same time
it meets the difFiculty that we often use to describe a
system a number of physical quantities which do not
correspond to commuting operators so that it is not
possible to have a wave function which is a character-
istic function of all these operators. It is then necessary
to introduce instead of these microscopic operators
so-called macroscopic operators as was first done by
von Neumann. "' Roughly speaking a macroscopic
operator can be obtained from its microscopic counter-
part as follows. Let A be a continuous variable which
can take on any value between —~ and +~ and let
macroscopic measurements be such that only the
intervals

k &~A ~& k+1, k =0, &1, &2, (E 15)

"7 We must refer here to a paper by van Kampen (54K}which
was published after this was written and which discusses in great
detail and rigor the introduction of these macroscopic operators." Compare~&also the discussion given by von Weizsacker
(49W1).

can be distinguished. Let further f(x) be defined by
the equation

f(*)=k, k&x&k+1, k=0, &1, &2, . (E.16)

The macroscopic variable corresponding to 3 will then
be f(A) As is empha. sized by von Neumann, "' macro-
scopic variables can always be measured simultaneously.
It is instructive to quote his actual remarks: "During a
macroscopic simultaneous measurement of coordinate
and momentum (or of another pair of quantities which
cannot be measured simultaneously due to the Heisen-
berg relations) we measure indeed two physical quanti-
ties simultaneously and accurately, but these two quan-
tities are not exactly coordinate and momentum. We
measure, for instance, the positions of two needles or
the positions of two images on a photographic plate and
nothing can prevent us from measuring these simul-
taneously and as accurately as we wish, but the coup-
ling between them and the quantities in which we are



THE FOUNDATIONS OF STATISTI CAL MECHANI CS 325

interested (qs and ps) is a loose one and the looseness of
the coupling is determined by the Heisenberg relations. "

We first of all introduce energy shells in such a way
that we group the energy levels together as before and
assign to each group of S; levels one representative
energy value E,. Inside each shell we introduce (phase)
cells [compare the discussion in Sec. A(3)] which each
contain s„states, say. In each cell the macroscopic
variables A, 8, in which we are interested will have
a constant value. This means that we have introduced
macroscopic operators for the energy, A, 0, and so on,
in such a way that they all commute and that their
characteristic values are s„-fold degenerate. If co, are
the characteristic functions of the macroenergy, and
the macro-operators corresponding to A, 8, , they
correspond inside a cell to the same characteristic values.
We further have

P, s,=S,, (E.17)

where v runs from 1 to N;, if N; is the number of cells
in the shell.

I.et now P„be the probability of finding the system
in the ith cell and let p„be the probability of finding
the system in one of the states belonging to the vth cell."'
We have then [compare Eq. (D.242)]

P =s„p„. (E.18)

2 (/) = —Q„P„ins„. (E.21)

On the other hand consider the quantity

(Z)A„———g. (s./5, ) 1ns„. (E.22)

For (Z)&„we can easily prove the following inequalities:

lnS;~&P„(s„/5,) 1n(s„/5,)
+P„(s„/5,) lnS, = —(Z)„„, (E.23)

—(Z)A, )~P„(1/X,) ln(5, /E, ) =lnS, —inly, . (E.24)
'" The p„would be the coarse-grained density of an ensemble

where all systems corresponded to the same wave function,
namely, the wave function of the system which we are considering."' I am indebted to Professor M. Fierz for these considerations.

We now define a quantity Z (t) by the equation [com-
pare Eq. (D2.43)]

2 =Q„P„ln (P„/s„). (E»)
We must bear in mind that the number of cells in an

energy shell, that is, the number of states which can be
distinguished by an observer will be of the order of
magnitude of (at most) 10" say. On the other hand,
—Z which is a measure of the entropy of the system in
units k (=Boltzmann's constant) will also be of the
order of magnitude 10", that is, if the order of Avo-
gadro's number, which means that the s„will be
enormously big, "'

s„exp(10") and also S; exp(10"). (E.20)

As a result P„will be of the order of magnitude 10 "
and lns„will be extremely large compared to —lnP„
so that we can write instead of Eq. (E.19)

P„=s„/5;, (E.26)

a relation which is strongly reminiscent of Eq. (E.03).
It is possible, that Eq. (E.26) holds on the average.

The average is here taken over all possible divisions of
an energy shell into cells. The way in which the various
divisions are weighted is the one introduced by Weyl
(25W). In Appendix IV we shall discuss the proof of
Eq. (E.26). A necessary condition for the proof is that
there are no degenerate energy levels. '"

We have now proved the equivalence of time and
ensemble averages in the case of the function Z. How-
ever, as soon as Eq. (E.26) holds, one can also prove the
equivalence of time and ensemble averages for other
variables. This follows from the considerations of von
Neumann, '" but can also be seen by our argument
similar to the one discussed in the Introduction and
which runs as follows. From the fact that Z and (Z)A„

are the same, it follows that the system spends most of
the time in the equilibrium state and that thus the time
average of any variable will correspond to the equi-
librium value. We must also mention that in proving
Eq. (E.26) we have really proved more than just the
equivalence of Z and (Z)A„, but have made a statement
about the relative periods spent in the different cells.
Equation (E.26) corresponds to Eq. (B1.05) of the
classical case.

We may, in conclusion, say a few words about a
recent paper by Klein (52K). His point of view is
similar to the one of Born and Green in that only
systems in a well-defined state are considered. In that
case it is necessary to introduce an interaction between
the system and the outside world. This interaction,
provided it satisfies certain mixing conditions, will
ensure the equivalence of time and ensemble averages.
However, this method of approach does not, in our
opinion, do justice to the fact that an observer is dealing

"' lt must be noted here that if we use, with Fierz, Kq. (E.21)
for Z(t), we only need the condition of nondegeneracy, but not
the extra restriction of no resonances. This is very satisfactory,
since, while the energy differences have a physical meaning (they
enter into expressions for relaxation times, for instance), the second
differences do not have such a physical meaning. I am indebted
to Professor Fierz for calling my attention to this point.

&& gee Appendix IV.

The first inequality follows since 0&s„/5, &1, and the
second inequality since a sum of the kind Za„inc,
under the condition Zu„= 1 is minimum for all a„being
equal. By Eq. (E.20), lnS; is of the order 10" while
1nN; is only of the order 50, so that we can neglect lnN;
with respect to lnS; and write

(Z)„=—lnS, . (E.25)

Since S; is the number of states in the energy shell,
—(Z)s„can be interpreted (apart from a factor k) as
the entropy of the microcanonical ensemble [compare
the discussion just before Eq. (D1.28)].

We can prove the ergodic theorem, if we can prove
that (2)A„ is the time average of 2 (/) given by Eq. (E.21)
or, that
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with macroscopic variables. We refer to his paper for a
detailed discussion of his very interesting analysis.

SUMMARY OF THE SITUATION IN QUANTUM
THERM 0 STATISTICS

Once again we can briefly summarize the results of the
two preceding parts (D and E). There is no need to dis-
cuss again the utilitarian approach as there is no
difference between the classical and the quantum-
mechanical case.

In the case of the formalistic approach, once again
one investigates the necessary conditions for the
equality of time and ensemble averages. In the quan-
tum-mechanical case the condition is the one of non-
degeneracy of all energy characteristic states.

In the case of the physical approach, one works again
with representative ensembles and shows that the de-
velopment of a nonequilibrium situation will be such
that the ensemble representing the system under
consideration will approach a canonical ensemble when
time goes on. The problem here reduces to finding the
rules according to which the representative ensembles
can be set up. These rules are the assumption of equal
g priori probabilities for all nondegenerate states and
of random a pri ori phases for the probability amplitudes.
Once these assumptions are made, one can either use
the quantum-mechanical version of the statistical
H-theorem, or one can use the F/-theorem as applied to
ensembles. The discussion is very similar to the one
applicable in the classical case.

In the classical case we saw that in the last instance
the basic ideas of both the physical and the formalistic
approach were the same. Once one has proved that
physical systems are quasi ergodic, the ergodic theorem
follows, but one can also justify from first principles
the choice of a priori probabilities. In the quantum-
mechanical case, the situation is not so simple. One can
justify from first principles the assumption of equal
a priori weights, but one is left with the assumption
of random g priori phases. On the other hand, it seems
unlikely that physical systems are really ergodic in the
quantum-mechanical sense, and in that case the quan-
tum-mechanical ergodic theorem must also use an
assumption about the distribution of the phases. Since
in quantum-mechanics the (initial) phases do not play
a physical role, one might with some justification say
that one should really always average over these phases.
In that case the quantum-mechanical ergodic theorem is
always true, and the assumption of random a priori
phases is also justified. As in the classical case we see
that the two dif'ferent methods of approach are not
differing by as much as one would expect at first sight.

kind of particle is fixed in space, randomly distributed
with a density of e per unit volume. A second kind of
particle is traveling through the lattice colliding elasti-
cally and isotropically with the 6rst kind, but not
interacting with its own kind. Its density in space is g
per unit volume and its speed is c. The cross section for
a collision is denoted by 0..

For our discussion we assume phase space, which in
the present case is the unit sphere, to be divided into
2m+1 finite cells, each of extension lory,

b~ = 4ir/(2m+1), (I.01)

We can now ask for the probability w(A)dh of finding
a value of 6 in the interval A, d, +diI. We use the method
introduced by Markoff (12M; see also 43C, 46C) to
find a probability distribution for a quantity which is a
sum of a number of similar terms of functions, the
probability distribution of which is given. We mention
the result (see 43C) but give no proof. If

(I.05)

where the q; are stochastic variables such that

p(q, )IIdq; (I.06)

is the probability of 6nding the q; within ranges q;,
q,+dq;, the probability w(C)dC to find C between C

and C+dC is given by the equation

w(C)dC = (dC/2~) ~ exp( —ipC)A (p)dp, (1.07)

where A (p) 'is determined from

' ' '
J exp(ipse~&)P(q')IIdq' (I 0g)

and numbered by an index ~ which runs through the
sequence —m, —m+1, , 0, , m —1, m. We denote
by f„ the number per unit volume of particles of the
second kind —which in order to keep the analogy with
Lorentz's model of a metal we shall call electrons—
moving in the direction specified by the vth element of
solid angle. The f„satisfy the condition

(I.02)

and their equilibrium values f„' are given by the
equation

f„'=cV/(2m+1). (I.03)

To characterize the state of the system, we introduce
6 by the equation

APPENDIX I. THE LORENTZ MODEL'"

In Sec. A(1) we introduced a model of a physical
system which possessed the following propertieg, ODc

In our case Eq. (I.04) takes the place of Eq. (I.05),
and the probability of fjLnding a certain set of values
for the f„ is a compound probability. Using Eq. (I.02),
we find

'2' See 54G; compare aIso 55G, 5582. p (f„)= t E!/IIf„!j(2 +m1) ~, (I.09)
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which for large values of the f„which are in the neigh-
borhood of f ' takes the form"4

p(f„)= L(2m+1)/27rN] (2m+1)'*

&&expL —(2 m+1)g(f f—') /2N], (I.10)

which is normalized.
For the function A (P) we get

A(P) = P(f.) exp( —iP~)df=" df- (I 11)

where the integral is 2m-fold since by virtue of Eq.
(I.02) only 2m of the f„are independent. Since one of
the f. must be eliminated, for which fs is chosen to
preserve the symmetry, the integration is rather tedious,
but luckily straightforward and one find

A (p) =!1—2iNP/(2m+1)] . (I.12)

Substituting from Eq. (I.12) into Eq. (I.07) one finds

by contour integration

tt&(h)dh= L(2m+1)/2N] (6 '/(m —1)!]
)& exp( —(2m+1)h/2N)dh, (I.13)

which is Eq. (A3.13).
From Eq. (I.13) one gets

Eq. (I.17). If the distribution of the fixed particles in

space is random we may assume this distribution to be a
Bernoul lian one.

The time interval r will be-chosen in such a way that
the probability of any one electron undergoing more
than one collision during 7. is negligibly small, or

r((1/no. c. (I.19)

If we chose E so large that aA' is still large compared to
one so that we have the inequalities

A'&)aS»1, (I.20)

we can use the Gaussian form for the x„, -distribution,

P(x„„)= (27ruf„) ' expL —(x„„uf„)—'/2uf„] (I..21)

The change of the f„during a time interval r is
governed by the x„and we have

(I.22)

Combining Eqs. (I.16) and (I.22) we see that we have
once again a problem of the kind which led to tt&(h).
The expression tt&(h)tt&(A, h') now takes the place C of
Eq. (I.05) and the &1 s are expressions in the f„and the
x„„.From Eq. (I.07) we now have

w(A)w(A, A') = (1/4s')

and

"Am (6)dA= 2mN/(2m+ 1), (I.14) XJ expf —iarh —ip(6' —A)]A (p,4r)dpdo, (I.23)

(444') 4&
—— Lett(2&)dh = 2m(2m+2)N'/(2m+1)'& (I.15)

from which Eqs. (A3.16) follow if we neglect in the
final result 1 against 2', since nz))1.

We now must evaluate the probability tt&(D, A') that
5 changes its value from 6 to 6' during a time interval
7.. The change in 6 is related to the changes in the
values of the f„by

since from Eq. (I.02) it follows that gf„'=Pf„.
Let x„be the actual number of electrons passing

from cell e to cell e' during a time interval w. If we could

use a Stosssahlunsats, we would have

where
x„„=af„,

u= e4rrc/(2m+1),

(I.17)

where we have used the assumption of isotropic scatter-
ing )compare Eq. (A1.15)].

We are, however, interested in fluctuations and in-

stead of Eq. (I.17) we must consider a distribution of

the x„around an average value which will be given by
&44 To derive Eq. (I.10)& one uses the Stirling formula in the

form lnx!=x lnx —x+~ lnx+~ ln2x and expands in terms of
U. f:)If:. —

where

A(po)= df ~ ~ df d~x, ds
aJ

u = (f. f ')/f. ', — (I.25)

and neglect cubic terms in the exponent with respect
to quadratic terms. We are then left with a quadratic
expression in the exponent and can integrate. The final

result leads to

A(p, )=L(2m+1)/2] L4Nap(2NP+2m+1)
—2Ni4r+2m+1], (I.26)

and from Eqs. (I.23) and (I.13) we get the normalized

expression

w(a, a') = (32 Va~)—'*

)&exp/ —(444' —6+2 (2m+ 1)ah)'/32Nah], (I.27)

which is Eq. (A3.19).

&&P(f )P(&-= ) P(* -)
&«xpLi Z(f.—f.')'+» ZPf (f'—f.)] (I 24)

The integration over the (2m+1)' variables x„„ is
straightforward after we have substituted from Eqs.
(I.21) and (I.22). The integration over the 2m variables

f„( /t&0) is more complicated. We introduce new vari-
ables e„ through
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Equation (A3.21) follows from the equation

6'w (h,A') dA', (I.28)

describe a family of surfaces (R and that the functions C
are uniquely valued, analytical and periodic in the x;.
We must show that each of the (R coincides with an
energy surface S.

We expand C in powers of n and have
using Eq. (I.27).

In footnote 36 we mentioned that the following
relation held:

w(A)w(D, D') =w(6')w(D', 6). (I.29)

We must draw attention to the fact that in proving
Eq. (I.29) one neglects higher-order terms in a which is
permitted because of inequality (I.19).

Using Eqs. (A3.27), (A3.28), (A3.31), and (I.27),
Eqs. (A3.19) and (A3.32) follow, again up to first-order
terms in a. Similarly, Eq. (A3.30) follows from Eq.
(A3.29) by neglecting terms in a' and higher-order
terms.

If the Stossmhlaesats would be valid, one can use for
the rate of change of the f„Eqs. (I.22) and (I.17) which

gives us

df./dh = (f„' f.)/r = Q—„.(x„„—x„„)
= (a/r)EE" f. (2m+—1)f7

C =C'p+~, +a'C', + (II.03)

{X,C}=0 (II.04)

must be a consequence of Eq. (II.02), where {A,B} is
the Poisson bracket defined by

{A,B}=Q, P(BA/By, ) (BB/Bx,)
—(BA/Bx, ) (BB/By; )7. (11.05)

From Eq. (II.04) and the series expansions (II.01) and
(II.03) it follows that the following equations must hold:

If the S are given we can still to a large extent choose
our 4; arbitrarily and especially it is possible to prove"'
that one can for given R choose Co not to depend on
the x,. Moreover, one can choose the C; arbitrarily
outside Ro.

As the (R are surfaces such that an orbit starting
from one of its points will stay on the same surface, the
equation

whence Eq. (A3.34) follows by using the fact that
Zf„.=Zf„"=(2m+1) f„'.

{Xp,Cp} =0,

{XpCi}+{Xi;Cp}=0,
(II.06)

(II.07)
APPENDIX II. PROOF OF THE EXISTENCE OF

QUASI-ERGODIC SYSTEMS"'

Fermi's proof of the quasi ergodicity of kamoeische
gormalsysteme with more than two degrees of freedom
consists of two parts. The first part is a proof that the
energy surfaces S are the only family of surfaces in
phase space which have the property that any orbit
starting from a point of one of the surfaces of the
family will always stay on the same surface. The second
part then consists of showing that, if there are two
arbitrary regions 0- and 0-* on S, there will be orbits
passing through both g. and o.*.

The proof of the first part is slightly complicated and
runs as follows. A kamomsches cVornsalsystens is a system
where one can introduce canonically conjugate coordi-
nates x, and y, such that:

(a) the energy is time independent;
(b) the Hamiltonian X of the system can be developed

in a power series of a parameter o,,

X=Xp+nXi+n'Xp+ . ; (II.01)

(c) the Hamiltonian and thus all X, are periodic in all
the x;. We can then choose our x; such that the
period is the same for all x,, say, 2x,

(d) the first term in the series expansion in Eq. (II.01),
BCO, dpes not depend on the x,.

Let us assume now that the equations

Equation (II.06) is trivial as neither Xp nor Cp contain
the x;.

As both 4» and BC» are periodic in all the x, , we can
write

with

Ci ——PA (y,) expe„,

X&——QB (y,) expo„,

(II.08)

(II.09)

A„P, m, pp, =B P, m, x, , (II.12)
where

p~, = pjXp/pjy, , x,= BCp/By, . (II.13)

If we exclude the possibility that the 8 can be zero, "'
it follows from Eq. (II.12) that in any point of 6tp
where Zm, co; is zero, Zm;y, . must also be zero.

Assume now m=3. The discussion is equally valid for
m) 3, but not for rh=2 (compare 23F1). In general at
most one of the three ratios happ/&p&, &pp/&up will be con-
stant in $0. Ke may thus assume the first two ratios to
be varying on (Ro. In that case (Ro is covered densely

e~=p(mixi+mpxp+ +m„x„)) (II.10)

where m is a short-hand notation for all the e m; and
where the summations in Eqs. (II.08) and (II.09) are
over all e m;.

From Eqs. (II.07) to (II.09) we get

P expo„(A„Q, m,&u, —B„g;m;x,7=0, (II.11)
or

'~5 See 23FI.

C(x,y;a)=0 (II.02) " See Sec. 3 of 23F1; one uses the fact that the 6t~ are surfaces
on which an orbit stays."'For a discussion of this case see 92P.
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with points where a&s/rpi takes on rational values so
that one can find m~ and m2 such that

tmioii+tmpMs= 0.

It then follows that in these points

(II.14)

so that
tmiXi+ tmsXs ——0,

pp2/oil X2/Xl.

(II.15)

(II.16)

4p=Xp+cp, (II.18)

where cp is a constant. As Cp can be chosen arbitrarily
outside (Rp, we can choose it in such a way that Eq
(II.18) holds everywhere in phase space.

If our system is nondegenerate, the equation

Ptm, ip, =0 (II.19)

cannot hold identically on (Rp and we can divide Eq.
(II.12) by Ztm, pp, which by virtue of Eq. (II.18) is
equal to Zm;x;. The result is

=8 except when all tm, =0. (II.20)

It follows that on (Rp

4i(z, ,y,) =Xi(x,,y,)+fi(y, ), (II.21)

and once again we can choose pi outside (Rp such that.

Eq. (II.21) holds everywhere in phase space.
One can now easily prove by complete induction from

Eqs. (II.18) and (II.21) that

C,=X,+c,, (II.22)

where the c; are constants. The proof is along the same
lines as the proof of Eqs. (II.18) and (II.21).

Equations (II.22) lead to the result that Eq. (II.02) is
equivalent to the equation

X(x,,y;; n) =pc„n"=c, (II.23)

and the R thus coincide with energy surfaces.
The second part of Fermi's proof is much less com-

plicated. Let o- and o* be two arbitrary regions on S.
Let o' be that part of S which is covered by the orbits
which start somewhere in S. If o-' would cover all of S our
point would have been proved. If a' does not cover all
of S, let o" be that part of S which is not covered, and
let S be the boundary surface between o-' and o.".There
can be no orbit which contains points both in o-' and o.",
as can be seen as follows. Let P' in a' be passed at t'

by an orbit which at t" passes through P" in a". Since
the solutions of the equations of motion are analytical
functions, we can find small regions q' in a' around P'
and g" in o" around P" such that the orbit passing

As Eq. (II.16) holds in a point set which is everywhere
dense on (Rp, it holds identically on (Rp. The same is
true for equation

~s/~i= Xs/Xi (II.17)

From Eqs. (II.13), (II.16), (II.17) and the fact that
3Cp and 4 p do not depend on the x;, it follows that on (Rp

through an arbitrary point Q' of rf' at t' will pass through
q" at t". Since, however, q' lies in o.' there will be points
Q' lying on an orbit starting from o and we have arrived
at a contradiction.

Let now P be a point of S and once again P' and P"
be points of o-' and a", respectively. If we consider
orbits passing at t through P, P', P", these orbits will

pass at t~ through points P~, P~', PI", at t2 through
P2, P2', P2", and so on, where P&', P2', are all lying
in o-' and P&", P2", . are all lying in a". We can
choose P' and P" so close to P that P~' and P~" are
close to P~, P'2', and P'2" close to P2, and so on. It then
follows that P, P~, P2, must all lie on S and S thus
contains an orbit. We saw, however, that the only sur-
face on which an orbit could stay was an energy surface.
Hence, 65 cannot exist, or, o' must cover S completely.
That means that o-* will be part of o-' and there will be
orbits starting from a which pass through o.*.As both
o- and o-* can be taken arbitrarily small we have proved
the quasi ergodicity of the systems considered.

where P& is the point passed at t of an orbit which

passed through P at tp. We shall first of all prove that
for almost all orbits the following limit exists:

f(P; tp, ~) = lim f(P; fp, T). (III.02)

Secondly we shall show that this limit is independent of
tp. Finally we shall show that this limit is constant
almost everywhere on S.

To prove the first part we divide the time scale in
finite segments and write

and
f„(P; fp) = fp(P; tp, mr).

(III.03)

(III.04)

If P were a phase point for which the limit of Eq.
(III.02) would not exist, the lower bound I.(P) of

f„(P;fp) and the upper bound U(P) of f (P; fp) would

be different and one could find two quantities n and P

"'The proof we give here is due to Kolomogoroff (see 52R,
49K1).

"'Well-behaved is understood here in the sense of summable
over the energy surface which is assumed to be of 6nite volume.

APPENDIX III. PROOF OF THE CLASSICAL
ERGODIC THEOREM'"

Birkhoff's ergodic theorem proves the equivalence of
the average taken over an energy surface and a time
average taken for practically all orbits on the energy
surface, provided the energy surface is metrically inde-
composable. Let f(P) be a well-behaved phase func-
tion, '" that is, a function of the phase represented by a
point P on the energy surface S.

Consider the function f(P; fp, T) defined by the
equation

p t,0+X

f(P; f p, T) = f(Pi)df (III.01)
T ~&0'



330 D. TER HAAR

such that
1.(P)&ct&P&U(P). (III.05)

One can similarly prove the inequality

p
ted+1

~,(P)=- ~ f(Pt)dt (III.06)

By shifting the origin one sees easily that

*~(P)=*o(P~). (III.07)

The time average f„(P; to) can be expressed in the
xl, as follows:

1n—1

j'.(P; tp) =—P x),(P). (111.08)

Moreover, if the set S of phase points for which the
limit of Eq. (III.02) did not exist were of positive meas-
ure, one could find a subset S' of S also of positive
measure and a set of values n and P such that the
inequalities (III.05) would be satis6ed for all points P
of X)'. This, however, leads to a contradiction, as follows.

Let P), be the phase point at to+kr and let xt, (P) be
defined by the equation

fop (P)doo' &nK (Z)'), (III.14)

p
tQ+7

f(P,)dt
~ tp+nr

f(Pt)dt, (III.15)
e7. ~tp

where now Eq. (III.03) does not necessarily hold, but tt
is the largest integer contained in T(r. We can split 3
into two parts,

A =Hi+do, (III.16)

and combining inequalities (III.13) and (III.14) with
the assumption K($'))0 we arrive at a contradiction
with our choice of n&P. It thus follows that S is of
measure zero and that the limit of Eq. (III.02) exists
for practically all orbits.

The first part of the proof is now concluded by
considering

We now integrate f„(P; to) over a set of points So(")
which is a subset of X)' such that for any point of X)0(

we have

(n to+ n r

f(Pt)dt,
ET nr) ~to

(III.17)

f.(P; t )&P

The result of the integration is

nPK(So ) &n ff (P; tp)d(t)p

(III.09) tp+T

F19
JT tp

~ to+n&

f(P,)dt
~ ~tp

f(P,)dt . (III.18)

Since f„(P; to) had a limiting value for tt—+~, say,
F, we have for A1 the limit

n—1 n—1

= E I
&.(P)d~o= Z ' ~o(P.)d~., (III.10)

1=0 j ~=o J
RT —T

A1 -. T~', (III.19)

where gg(So( ') is the measure of the set So(n), where
d~o(") indicates integration on the set X)o("& and dku~' )

integration over the set X)A, (") obtained from X)p( ) by
the transformation I'—+I'q.

Suppose that the sets $~(") are nonoverlapping and
let their sum be S~"),

and we see that A1—+0 for T—+~.
For A2 we have the inequality

f(P,)dt &—
~
x„(P)~, (III.20)

From Eq. (III.10) we now have

fg (P)dto(n) )ping(~(n))

(III 11) and for any well-behaved function f(P) x (P) will be
bounded and thus A 2~0 for T~~. This concludes the
first part of the argument.

The fact that f(P; to, ~) is independent of to follows

easily from the equations

Jfxo(P)dog') pgg(p'), (III.13)

where J dho' indicates integration over the whole of X)'.

where J'doo( ' indicates integration over S(") and
where we have used the fact that gg(X)), ("))=PP(X)o("))
for all k, as a consequence of Liouville's theorem.

It can be shown that one can find such sums X)(") of
nonoverlapping sets for each value of e in such a way
that they exhaust X)' and from inequality (III.12) it
thus follows that

p t0+& ~ t]+T

lim — f(P,)dt= lim — f(P,)dt

(tl 1 f
tl+F

+lim — f(Pt)dt —lim — f(Pt)dt, (III.21)
T J to T to+T

and for any well-behaved function f(P) the last two
limits will be equal to zero.

The final part of the proof of BirkhoB's ergodic
theorem follows from the fact that, if f(P; to, ~) were
not constant practically everywhere on S it would be
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possible to find a value F of f(P; fo, ~) such that the
conditions f(P; tp, ~)(F and f(P; to, ~) &~F would
define two sets of positive measure on S which would
both be invariant against the transformations P—&P~,

since f(P; to, ~) is invariant against such transforma-
tions. This would, however, be in contradiction to the
assumed metrical indecomposability of S.

4=&.r.q„ (IV.01)

(IV.02)

The q and or, are related to each other through a
unitary transformation,

(v, =Q, U,.q„y,=g, U.,*(u„(IV.03)

and the different ways in which the phase cells can be
chosen is rejected in the diGerent transformation
matrices U.

From Eqs. (IV.01) to (IV.03) it follows that

&,=P.r.U,.*, (IV.04)

and since the p, are the characteristic functions of the
energy operator we have

APPENDIX IV. PROOF OF THE QUANTUM-
MECHANICAL ERGODIC THEOREM'"

In Sec. E we found that the quantum mechanical
ergodic theorem was proved once we could show that
the time average P„of the probability P„of finding
the system in the vth cell is practically always equal to
the ratio of the number of states s„ in the cell to the
number of states 5; of the corresponding energy shell.
In our discussion we had used the fact that both s„and
S, are of the order of magnitude of exp(10") and we
shall use this fact also in the following. The expression
"practically always" is meant in the sense that Eq.
(E.26) holds for practically all subdivisions of phase
space into phase cells, where the weight of different sub-
divisions will be defined presently.

Let P be the wave function of our system, let p, be a
complete orthonormal system corresponding to the
Hamiltonian operator H, and let cu, be a complete
orthonormal system corresponding to the macroscopic
operators discussed in part E. The set of the co, will

depend on the manner in which we have chosen our
phase cells. We can express P in terms of the q, or in
terms of the co„

and for the time average

P,=r„.f .I IU,.f', (IV.08)

c.=E, I
U,.l,

and where we have used the fact that

(IV.10)

(IV.11)

From Eqs. (IV.09) and (IV.11) it follows that

~
P„s„/S,—

~

(max
~
C,—s„/5, ~. (IV.12)

If we can prove that, for practically all transforma-
tions matrices U, C, is practically equal to s„/5, our
theorem is proved. We must thus 6nd the probability
distribution of the quantity C, given by Eq. (IV.10).
The U„are the components of unitary unit vectors in
Hilbert space and the C, are the square of the length of
the projection of these vectors on the subspace corre-
sponding to the s„states of the phase cell under con-
sideration. If we now assume that the probability of
6nding divisions corresponding to the unitary unit
vectors U lying within a given solid angle in Hilbert
space is proportional to the measure of this solid angle-
or to the surface area cut out of the unit sphere in
Hilbert space —the determination of the probability
W(C)dC that C lies between C and C+dc is reduced
to a problem in multidimensional geometry. Similar
problems are discussed by von Neumann (29N) and
Pauli and Fierz (37P), and we shall only give the final
result for W(C) which is

W(C) k.c.,(1 C)s;—s„(IV13)

where k is a normalizing constant and where we have
made use of Eqs. (E.20).

From Eq. (IV.13) we see, first of all, that the most
probable value for C. is s„/5, , and secondly, that the
maximum is extremely sharp. In fact, the function
W(C) is reduced to half its value at a distance 5 '* from
its maximum. From this it follows that for "practically
all" divisions C will have a value "practically" equal
to s„/5, and that thus Eq. (E.26) is "practically always"
satisfied.

where we used the fact that no two energy levels are
the same. "'

Consider now

P„—~„/S, l
= lg. lr. l (C.—~„/5~) I, (IV.09)

where

r.= ~r, ( exp(iE, t/k). (IV.05) APPENDIX V. TIME-PROPORTIONAL TRANSITIONS' »

The quantity P„ is given by the equation

(IV.06)

where the summation extends over the s„ levels of the
vth cell. From Eqs. (IV.04) to (IV.06) we get

P„=P„,
~
r,

~ ~
r,

~
U„*U„expLi(E —E„)t/A7, (IV.07)

'30 See 29N, 37P, 52R; I am also indebted to Professor M. Fierz
for correspondence on this topic.

In this appendix we wish to sketch the derivation of
Eqs. (D2.45) and (D1.30) which played such an im-

portant role in our discussion of the quantum-mechani-
cal H-theorem.

We, 6rst of all, remember that in ordinary quantum-
mechanical perturbation theory it follows from the

"' It must be noticed that the additional condition of no de-
generacy of resonances is not needed.

'3' Compare 38T, Secs. 99, 100.
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method of the variation of the constants (26D, 27D,
28P, 38K Sec. 53) that if ak(0) are the amplitudes at
t=0, the amplitudes at a later time t will be given by
the formula

~.(t) =2k Uk. {exp&(E-—Ek)t/kj —1}
&&~k(0)/(Ek —E„), (V.O1)

where the summation is over all these states which were
represented at 3=0, where the state e was not repre-
sented at 3=0, where V~„ is the matrix element of the
perturbation opera, tor V through which the transitions
take place t compare the discussion of the Born-Green
considerations in Sec. D (2)), and where Ek is the energy
value of the state k.

Consider now the situation where we want to know
the number of transitions from one group S, of energy
levels to another group S; of energy levels. Let us first
of all assume that at 1=0 we know from observation
that the system is in one of the S, states of the ith
group. In accordance with our basic assumption of equal
g prior probabilities and random u priori phases we

have at t=0 for the density matrix representing our
system

Pkl (~k&l ) Pkl/56
if state k belongs to the ith group, '(V.02)

=0, otherwise.

These equations follow since if both 0 and l belong to
the ith group and are unequal (akap) is zero when we

average over the phases; the remainder of the equations
follows easily. '"

The probability P,' of finding the system at t in a
state of the jth group follows from Eq. (V.01) and we get

P,' =P„a.*(t)a.(t)
=Qk, E, „Uk„*U)„{exp[ —t'(Ek —E„)t/hf —1}

X {expLi(Ei—E„)t/hj —1}
*(o) (o)/(E- —E ) (E.—E ). (V.03)

Averaging over the representative ensemble and using
Eqs. (V.02), we get for the P; the expression

P, (t) = (4/5, ) P„,k I Uk„l

)& /sin'-,' (Ek—E„)t/It)/(Ek —E„)'. (V.04)

In Eqs. (V.03) and (V.04) the states k and t belong to
the ith group and the states m to the jth group. To
evaluate the sum in Eq. (V.04) we replace it by a
double integration and get (compare 38T Sec. 99)

P, (t) = (27r/ItS, ) gk„i Uk„i'0„(E)~k(E)aE t, (V.05)

where 0 „(ok) are the density of the energy levels in the
jth (ith) group and where AE is the range of energy
corresponding to the jth group.

Equation (V.05) can be written in the form

and, if we had been interested in a situation where
originally observation had shown the system to be in
the jth group and we would like to know the probability
of hnding the systems in a state of the ith group, we
would have got the result

P,= T, ;t/5;, (V.07)

tV;, = T,;P,/S, , (V.10)

which reduces to Eq. (D2.45) by the substitution

A;;= T,;/S,S;, (V.11)

while from Eqs. (V.08) and (V.11) Eq. (D2.46) follows.
In order to derive Eq. (D1.30) we remind ourselves

that we are dealing with a system containing l'lt prac-
tically independent particles so that the Hamiltonian
of the system can be written in the form

where
H=Hp+V,

Hp ——P;H;,

(V.12)

(V.13)

H, being the Hamiltonian of the ith particle, and where
V is the interaction operator which is neglected to a
first approximation, but which is necessary in order that
transitions can take place between different states of the
system. '" The characteristic functions of Hp are of the
form

(V.14)

where the q; are the characteristic functions of the H, ,
EI, the characteristic value of Hp corresponding to CI„
and the e, the characteristic values of the H;. A wave
function PC» obtained from 4» by a permutation of the
arguments of the E particles is another characteristic
function of Hp belonging to Ek.

If we are dealing with a system of Fermi-Dirac par-
ticles we can only allow those wave functions which are
antisymmetrical in the arguments of all S particles
and we have thus only one acceptable combination of
the PC» in this case, namely,

C'x n=CQ( —)~PC k, (V.15)

and from Eq. (V.05) and the Hermitean character of V
it follows that

T'~= T2' (V.08)

If observation had only shown that at 3=0 the diff'er-

ent groups were occupied with probabilities P;, P;,
we should instead of Eq. (V.02) for g have used the
equation

pki
——8kiP;/5, (state k belonging to the ith group), (V.09)

and by an analysis similar to the one just given we
would have found that the rate of transition E;; from
the ith group to the jth group would be given by the
equation

P; = T,,t/5;,

'~'One takes into account the fact that y is normalized.

(V.06)
" Compare the analogous position in the case of Boltzmann's

B-theorem, where the Maxwell-Boltzmann distribution which
really presupposes independent particles is established through
collisions, that is, by means of their interactions.
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when (—)" is +1 or —1 according as the permutation
is even or odd.

In the case of a system of Bose-Einstein particles the
only acceptable wave function is completely sym-
metrical, or,

Cs g=CQPCs, (V.16)

where in Eqs. (V.15) and (V.16) the summations extend
over all S!permutations, and where in both cases the
factor C occurs as a normalization constant.

In the following we shall restrict ourselves to a system
of Bose-Einstein particles. The case of Fermi-Dirac
particles is simpler, but otherwise analogous. We first
of all assume that V is of the form

V=+V.p, (V.17)

where n and P number the N particles, and where the
summation extends over all pairs of the system (o.(P).
This means that we assume that only two-body colli-
sions are of importance and that three-body or higher-
order collisions can be neglected. As we are already
assuming that the system is so dilute that to a first
approximation V can be neglected this is a reasonable
assumption. "'

The wave function 4» may contain e& factors p&, e&

factors p2, .
, e, factors p;, , where the q; are a

set of ortho-normalized characteristic functions. In
order to evaluate the factor C in Eq. (V.16), one must
combine only those permutations which do not lead to
products of orthogonal p, with the same argument"
so that we finally get for C the equation

ICI'=I N!ni!ns!ns! .n;! j '. (V.18)

In a similar manner we can evaluate the matrix ele-

ment UI, ~ corresponding to a transition from the original
state to a state where instead of e; factors q, , e, factors

y, , n,' factors ip,', and n; factors q, we have n, +1
factors q, , n,+1 factors q, , n.,' 1 factors q,', and-
n,'—1 factors q;. Introducing the two integrals

In the Fermi-Dirac case we would have found instead
of Eq. (V.21) the expression"'

Vsi ——I Ii—Is
I
'n,'ni (n;—1) (n,—1). (V.22)

Up to now we have not introduced the groups of
energy levels which we considered in Sec. D(1). We do
this now and then ask for the number of transitions
which take place per unit time from Z, and Z, to Z,
and Z,', where therefore E;, S;, g, , E;, change to
N, —1, N, —1, N„+1, N, +1. Once again we use the
method of the variation of constants and the analysis
very similar to the one leading to Eq. (V.06) so that
we shall only sketch it.

The probability of P&(t)"s of finding the system at t

in one of the states corresponding to S;—1, Ã, —1,
N,'+1, N, +1, if the state was originally in one of the
states corresponding to E;, E,, E,', E;, is given by
the expression

Pr —ZrIa (t) I

—2&oo' J'&o' J'&opoo'(0)

X {expI —s (Er—E,)t/I't j—1}
X{exp L- i (Er—E;)t/5$ —1}/

(E. —Er) (E.—Er), (V.23)

where p„(0) is the density matrix at t=0,

p.. (0)=a. *(0)a.(0), (V.24)

and where the a&'s and a,,'s are again the probability
amplitudes.

Again, we assume that we have made a measuremeat
at t =0 giving us the information that at t =0 one of the
initial states was realized so that we can write for the
density matrix

p- (o)= (1/g.)~".,
if state o satisfies our requirements, p(V. 25)

=0, otherwise,

where g, is the number of states satisfying our require-
ments.

In Eq. (V.23) we can now introduce expressions
(V.21) and (V.22) for Vl, i and write for Er E„—

f Er E()=ej+ej ep ej' ~

I = &;*()&;*(P)V.&;()&,'(P)d .d, (V.19)
Writing further

(V.26)

~'*(&)v'*(~)V-pm' (~) ~»'(P)dr-&r p, (V 2o)
n, = N,/Z, , n;= N, /Z, , n,'=N, '/Z, ',

n,' =N,'/Zp, (V.27)

one finds

Vii= IIi+IsI'(n, +1)(n,+1)n, n;.
"5 There are very few cases where three-body collisio

restrict ourselves to those —have been considered. They e ter
into the calculation of the third virial coeKcient (39B3, 40B,
41M) but up to now only the classical case has been studied and
the difhculties to be expected in a quantum-mechanical considera-
tion are formidable." We only sketch the argument here and refer to Tolman
(38T Sec. 100) for a detailed derivation.

""This formula can be found in papers b Jordan (25J, 27J1),
Ornstein and Kramers (270), and Bothe 28B); the further de-
velopment is due to Tolman.

138 The subscript f indicates the 6nal state, while the subscripts
o and o' indicate the original states.

that is, replacing the e;, . by their mean values in the
corresponding group, and integrating we finally get for
Pr(t) the expression

V.21
Pr(t) = (2~/@)I IIi+Is I'/~El

XN,N, (Z,'+N, ') (Zp+N, ')t, (V.28)
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where AE is the width of the energy groups. From Eq.
(V.28) Eq. (D1.30) follows easily, and Eq. (D1.31) is
now a consequence of the Hermitean nature of the
operator V.

We have now derived Eqs. (D1.30) and (D2.45)
which played such an important role in the discussion
of the quantum-mechanical H-theorem. We have used
(i) the quantum-mechanical picture of time dependent
transitions, and (ii) the statistical assumption of equal
a priori probabilities and random a priori phases. The
second point has been discussed in Sec. D(3), but with
regard to the erst point we should like to conclude this
appendix with a quotation from Pauli's classical paper
(28P): "The statistical la, ws for the frequency of transi-
tions between stationary states, which are of the same
character as the laws for radioactive decay, guarantee
in themselves such a sufhcient degree of randomness
as is necessary for the statistical interpretation of the
second law of thermodynamics. ""'

I I
Pkl Pkk ~klan (VI.01)

but lo" is not necessarily a diagonal matrix. The diagonal
elements pkk' (pkk") are, as we saw in Sec. D(2), the
probabilities of finding the system at f' (t") in the kth
state. They are thus never negative and the expression
Qk„given by the equation

Qk =pkk'Dnpkk' —»p.."—1/+ p. " (VI.02)

is never negative as a consequence of Eqs. (D2.58).
The pki" are determined through Eq. (D2.07) by

the probability amplitudes at t" which in turn follow
from the probability amplitudes at t' by integration of
the Schrodinger equation. It is well known that one can
obtain the probability amplitudes at f", a„k(f"), from
those at f', a„k(f'), by a unitary transformation U,

a„k(f")=Pi ark(t') U„i. (VI.03)

Using Eq. (VI.03), we get from Eq. (D2.07)

P '=&kl U-kl'p»'+Zi~kU-~"'U-kpki', (VI 04)

or using Eq. (VI.01),

p.."=pk I U.k I'pkk'. (VI.05)

"'After this was written a paper by van Kampen (54K) was
published in which the symmetry of the transition matrix is dis-
cussed. Van Kampen draws special attention to the fact that, if
magnetic 6elds or Coriolis forces are present, this symmetry must
be replaced by a slightly weaker condition which does not follow
from the Hermiticity of the Hamiltonian. Van Kampen also dis-
cusses in his paper the relation between the Onsager relations
(3101,3102, 45C) and the symmetry of the transition matrix.'" See 31K; 38T, Secs. 101 and 106.

APPENDIX VI. KLEIN'S LEMMA'"

In Sec. D (2) we used the fact that expression (D2.56)
would never be positive. This property will now be
proved. We are dealing with two density matrices lo'

and Io" representing a system at t' and t" with matrix
elements pk~' and pk~", where

Multiplying Eq. (VI.02) by the positive quantity
I U„k la and summing over all values of m and k, we get

Zk, -IU-kl'p. '»p-' —Z, -IU-. I'p-'»p. ."
+—Qk, „l U kl'pkk'+Qk „IU„kl'p„„"&~0. (VI 06)

Using Eq. (VI.05) and the property of unitary mat-
rices that

Eq. (VI.06) reduces to

Pk pkk lnpkk P n pnn lnpnn
—Qk pkk'+2 o ."&&0, (VIo8)

or
gk pkk' lnpkk' —p„p„„"lnp„„" ~& 0, (VI,09)

since as a result of the normalization of g' and g"
[Eq. (D2.10)$ we have

Pk Pkk'= P.P..". (VI.10)

We have now proved Klein's lemma. It was stressed
by Pauli (49P) that the essential content of this
lemma is that Tr(ging) increases on the substitution
of Io by a diagonalized matrix in such a way that one
just puts the off-diagonal elements equal to zero. As
soon as this is realized, Born and Green's proof of the
decrease of f7' is really trivial and couM have been
replaced by a reference to Klein's lemma.

"' See 25F2, 25T, 387 Sec. 50, ESM p. 381.
I~ For a discussion of this more general JI-theorem we refer the

reader to Tolman's monograph (38T). On p. 119 of this mono-
graph one fInds an example of a collision which does not, possess
an inverse collision.

APPENDIX VII. THE PRINCIPLE OF DETAILED
BALANCING'"

In Sec. D(2) we mentioned that Eq. (D2.50) ex-
pressed the fact that at equilibrium as many transitions
from the ith groups of energy levels to the jth group
as the other way round. This is an example of a principle
which is valid in a great many cases and which states
that at equilibrium the number of processes destroying
situation A and creating situation 8 will be equal to the
number of processes producing 2 and destroying B.
Other instances of situations where the principle of
detailed balancing applies were met in Sec. A(1)
[Eq. (A1.12)$ in the case of a gas of spherical molecules,
Sec. A(3) (equation in footnote 36) in the case of some
general models of a gas, and Sec. D(1) [Eq. (D1.04)
and Eq. (D1.31) combined with Eqs. (D1.30) and
(D1.27)$.

Prom these examples one might get the impression
that detailed balancing would always hold. In the case
of classical statistics, Lorentz (87L) showed tha, t it
could not hold in the case of polyatomic molecules
which could not be considered to be spheres (see also
988).He showed how one could still prove an II-theorem
where now cycles of transitions had to be considered
instead of collisions and their inverse collisions. '4'
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The same difficulty arises in quantum statistics. '"
Hamilton and Peng (44H1; see also 44H2, 52S2) have
shown that in the system composed of particles with
spin and electromagnetic radiation detailed balancing
does not apply. '~

The principle is of great importance for its applica-
tions, for instance, in the consideration of rate processes
(11K1, 15M, 23C2). If, for instance, we wish to calcu-
late the number of collisions in a gas which lead to
excited states of a molecule —which may be a chemically
active state —we can calculate the number of collisions
leading to deactivation and use detailed balancing to
give us the first number. Since the second number is
more easily computed than the first, we have a clear
gain.

In 1925 an article by Lewis (25L1) evoked a discus-
sion (25F2, 25L2, 25T) of the principle of detailed
balancing, called by Lewis the principle of entire equi-
librium or the law of reversibility to the last detail. '4'

Fowler and Milne especially give an impressive list of
applications. They point out that the principle was to a
large extent inspired by Einstein's classical paper
(17E2) on transition probabilities. They also point out
that the principle is really an extension of the ideas of
Kirchhoff (60K) while it was probably first formulated
by Richardson (14R1, 24R).

In 1916 Langmuir (16L) applied the principle to the
problem of evaporation and condensation, stating:
"Since evaporation and condensation are in general
thermodynamically reversible phenomena, the mecha-

rtism of evaporation must be the exact reverse of that of
comdeesaliom, "' even down to the smallest detail. "

In 1921 Klein and Rosseland (21K) used the prin-
ciple of detailed balancing in their discussion of in-

elastic collisions between atoms and electrons. Franck
and Cario (22F, 22C1, 22C2, 23C1, 23F4, 24F4) ap-
plied it also to collision processes. Fowler (24F1, 24F2,
24F3) applied it to the phenomena of capture and
loss of electrons by high velocity n particles. Becker
(2381), Kramers (23K), and Milne (24M) applied it to
the photoelectric process of ionization and capture.
Eddington (22E, 24E1) used it in his investigations of
the stellar absorption coefficient. Pauli (23P) and Ein-
stein and Ehrenfest (23E2) discussed with its aid the
scattering of radiation by electrons. Dirac (24D) used
it to discuss multiple collision processes. Lewis (25L2)
used it to discuss Planck's radiation law. From this list
it can be seen that the principle is certainly one of the

'4' The statement in ESM that in quantum mechanics the prin-
ciple of detailed balancing always holds is incorrect.

'44 See also the recent paper by van Kampen (54K) which shows
that the same applies to situations where magnetic fields are
present. See also a paper by Klein (55K1) showing that detailed
balancing does not hold generally for nonequilibrium steady states
(compare also 54L2).

'4' Tolman (24T, 25T) sometimes uses the expression "principle
of microscopic reversibility. "

Langmuir's italics. We may remark here that Langmuir's
statement only holds at equilibrium (compare also footnote 144),

more important ones and one which can be applied to
a large number of diferent problems.
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