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Theorems
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In default of the theorem of “detailed balance”: P;;= P;;, with
regard to elementary transition probabilities, several ‘“balance”
theorems are introduced and proved on the basis of symmetry of
physical laws in space-time. (1) First theorem of “averaged
balance” (Sec. 5): We can establish P;;=Pj; by averaging over
quantities of “minus class.” Table V (Sec. 3) gives a list of
“minus” quantities. (2) The so-called “detailed balance of col-
lisions” in classical physics is a special case of Theorem I. (3)
Heitler-Coester’s theorem of “semidetailed balance” is also a
special case of Theorem I. (4) Second theorem of “averaged
balance” (Sec. 5): We can establish P;;=P;j; by averaging over
quantities with pr= —1. The quantities with pg=—1 are listed
in Table II (Sec. 2). (5) Theorem of “cyclic balance” (Sec. 7):

In classical physics, a chain of transitions i—j—k—- - -—i repeats
itself cyclically. (6) Theorem of “long-range balance” (Sec. 7):
The time average of transition probability from i to j is equal to
the time average of transition probability from 7 to 7. Theorems
I, II, and III, are direct consequences of inversibility (covariance
for space-and-time inversion). Theorem IV is a consequence of re-
versibility (covariance for time reversal). Theorems V and VI are
connected with ergodicity of Markoff’s chains. This ergodicity is
proved by the condition of bilateral normalization of transition
probabilities: Z; P;;=1, Z; P;;=1. This bilateral normalization
in turn can be derived from either reversibility or inversibility.
The limits of validity of all these balance theorems in actual
applications are carefully examined in the text.

1. INTRODUCTION

T has previously come to general attention that the
principle of detailed balance by no means represents
a universal rule in quantum physics.! Thus, thanks to
Pauli’s timely remark, the demonstration of the
H-theorem which does not utilize the assumption of
detailed balance has acquired a new importance.?
The transition probability P;; from state S; to state
S; has to obey, because of the very nature of prob-
ability,

> Py=1, P;>0. 1.1)
i
However, the inverse normalization,
> Py=1, (1.2)

is not self-evident.

Husimi® and Stiickelberg? demonstrated that condi-
tions (1.1) and (1.2) are sufficient for derivation of the
H-theorem.* A simplified version of this proof was given
by Pauli.2

Obviously, the detailed balance condition,

Pj]'z.Pji’ (1.3)

1 J. Hamilton and H. W. Peng, Proc. Roy. Irish Acad. A49, 197
(1944); W. Heitler, Quantum Theory of Radiation (Oxford Univer-
sity Press, London, 1944), second edition, p. 252.

2E. C. G. Stiickelberg, Helv. Phys. Acta, 25, 577 (1952).

3Kodi Husimi, Theory of Probability and Siatistics (Kawade
Shobo, Tokyo, 1942, in Japanese), p. 277.

* Note added in proof.—See also K. Yosida, Proc. Acad. (Tokyo)
19, 43 (1940). Dr. Brockway McMillan was kind enough to point
out that the mathematical theorem underlying Husimi-Stiickel-
berg’s proof has been known to mathematicians for a long time
and that von Neumann also used the same theorem in his book :
Johann von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Verlag Julius Springer, Berlin, Germany, 1932), in
particular, p. 207,

26

allows one to deduce Eq. (1.2) from Eq. (1.1), but this
is too restrictive a condition.

It is known that the bilateral normalization, Egs.
(1.1) and (1.2), can be derived from the unitarity of
transition matrix (S-matrix) in quantum physics. But,
in this paper, the bilateral normalization is considered
in connection with the symmetry of physical laws in
space-time. It will be pointed out that either reversi-
bility (covariance for time-reversal) or inversibility
(covariance for space-and-time inversion) is sufficient
to deduce the bilateral normalization, without making
use of the unitarity of transition matrices or of detailed
balance. Indeed, reversibility or inversibility has a very
clear physical meaning and may be considered as a
more basic physical principle than the unitarity of
transition matrices, which is specifically a quantum-
mechanical situation. In the quantum theory of ele-
mentary processes there never appear transition matrices
which do not obey reversibility or inversibility; there-
fore, reversibility or inversibility can be considered to
be a sufficiently general rationalization of the bilateral
normalization.

The principle of detailed balance, Eq. (1.3), is
sometimes resorted to in problems other than the
H-theorem. It is therefore worthwhile investigating its
limits of validity. From Boltzmann’s classical work, it
is clear that this principle is intimately related to inver-
sibility. Our investigation will show that if the physical
system has inversibility, the theorem of detailed balance
can be re-established in a broader sense with the help
of hypotheses of elementary disorder (or simply chaos
hypotheses) with regard to the physical quantities of
what will be called the “minus class.” To the minus
class belong regular tensors and first kind pseudo-



SYMMETRY OF PHYSICAL LAWS.

tensors of odd ranks and second and third kind pseudo-
tensors of even ranks. This classification of tensors will
be discussed in detail in Sec. 2.4

This result clearly explains that the principle of
detailed balance in classical physics is bound to utilize
the chaos hypothesis with regard to the positions of
molecules, which are minus variables. Heitler-Coester’s
so-called theorem of semidetailed balance® is also. a
variant of the above-mentioned general rule. Rather
inexactly expressed, this theorem of semidetailed
balance means that we can re-establish the detailed
balance by averaging over the spin directions of par-
ticles. Since spin is a minus variable, it is natural that
a chaos hypothesis is necessitated with regard to this
variable. Although this theorem is particularly con-
venient for considerations in the perturbation theory,
its domain of validity should not be overestimated. In
order to apply this theorem, we have to describe the
particles only by plane waves and to describe the elec-
tromagnetic field, not by the field strengths, but by its
sources. Otherwise, we need further averaging or chaos
hypothesis regarding other variables of minus class. On
the other hand, it is also not a general rule that each
time the particles have an “internal” freedom, averaging
or chaos hypothesis is needed regarding this freedom.

Boltzmann already noticed that even if the detailed
balance does not hold, i.e., if the system in state .S;
does not return to .S; after a double transition, S,—S;
—.S;, there will be a chain of transitions, S—S;—Sk
—-+-—S;, by which the system will come back to the
original state. This “cyclic balance,” or “closed cycle of
corresponding collisions” as Tolman® calls it, can be
considered as a generalization of detailed balance.
Although lacking proof, Stiickelberg? pointed out that
the mechanism of his H-theorem is connected with
cyclic balance.” It is obvious that cyclic balance is a
manifestation of the ergodic nature of physical phe-
nomena.

In the last section of this paper, we shall give a sim-
plified version of the ergodic theorem, using only the
hypothesis of bilateral normalization of transition prob-
abilities. This will provide a general (though schema-
tized) basis for the theorem of cyclic balance, without
referring to collision processes.

This simplified ergodic theorem cannot be directly
applied to the actual physical problems, because of
various simplifying conditions which will be explained
at an appropriate place. For instance, the number of
states is assumed to be finite, which is not permissible
for the applications in classical physics. We also ignore

© 4S. Watanabe, Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 39,
157 (1941); S. Watanabe, Phys. Rev. 84, 1008 (1951).
5 W. Heitler, reference 1; W. Heitler, lecture notes, Ecole d’Eté
céeggil)ysique Théorique, 1952; F. Coester, Phys. Rev. 84, 1259
1 .
8 R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, London, 1938), p. 114.
7 The author is indebted to Professor W. Pauli, who in a private
communication, emphasized the importance of cyclic balance.
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the important notion of “macroscopic cell” on the
energy shell. But, on the other hand, our ergodic
theorem has the advantages not only of being very
simple and mathematically rigorous, but also of ex-
hibiting all the essential assumptions necessary for the
deduction of the ergodic nature of transition prob-
abilities. It will be shown that the simplifying conditions
being admitted, the bilateral normalization is the neces-
sary and sufficient condition for the ‘“‘ergodicity.” The
term ergodicity will be defined in accordance with the
general ergodic theorem in physics. If reversibility or
inversibility is taken as the foundation of the bilateral
normalization, we can attribute ergodicity to the rever-
sibility or iaversibility of the physical laws. As in other
versions of the H-theorem and the ergodic theorem in
quantum physics, here also, the noncommutability of
the Hamiltonian with the operators defining the states
plays an essential role.

It is intended in Part II to examine reversibility,
reflectibility (symmetry in space) and inversibility of
quantum field theory,? and to discuss their bearings on
the interaction types and other allied problems. In this
paper, these symmetry properties are formally defined
and, assumed to exist. The classification of physical
quantities into four “kinds” is explained in a fashion
which may seem unduly elaborate. But this will prove
to be instrumental not only for the discussion of the
principle of semidetailed balance but also for the dis-
cussion of reversibility, reflectibility, and inversibility
in general.

2. “KINDS” AND “CLASSES” OF TENSORS

In this section, we shall give the mathematical defi-
nitions of the four “kinds’ and two “classes” of tensors.
In the next section, we shall first introduce a formal
method to determine the kinds of tensors representing
various physical quantities, and then clarify the physical
implication of this determination.

We consider the entire group of congruent trans-
formations of coordinates,

r=atx, (u,v=1,2,3,0) (2.1)
which leave invariant
Bt = g = () (O (= (O (2.2)

It is essential in the investigations involving inversions
to use only the real coordinates, lest the connectivity
of the Minkowski space may be altered. '

The tensors ¢ of the “regular’ kind are defined by
the transformation rule,

=gt @ -t (regular)  (2.3)

8 As far as reversibility is concerned, the subject is fairly fully
covered in the second paper quoted under reference 4. See also
the earlier works on this subject: E. P. Wigner, Géttinger Nachr.
546 (1932); S. Watanabe, Le Deuxiéme Théoréme de la Thermo-
dynamique et la Mécanique Ondulatoire (Hermann et Cie, Paris,
1935); S. Watanabe, Sci. Pap. Inst. Phys. Chem. Research
(Tokyo) 31, 109 (1937). )
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TasLE I. The kind to which a product of two tensors belongs.

Reg. 1 2 3
Reg. Reg. 1 2 3
1 1 Reg. 3 2
2 2 3 Reg. 1
3 3 2 1 Reg

which we write for simplicity as
=Tt (regular) (2.4)

The pseudotensors ##*** of the first, second, and third
kinds are defined, respectively, by*

=0T, (1st kind) (2.5)
V=0Tt (2nd kind) (2.6)
and i'=0,Tt, (3rd kind) (2.7)
where
9 (x",%"2,%"3,%"0)
T=owy=———————————— (2.8)
9 (x1,2%,23,20)
9x ;] 9x"0
or=c0=—/ |—]|, (2.9)
90 90
0 (x",x",2") /19 (2", 5"2,57%)
0s=001= / (2.10)

The usual definition of ordinary tensors includes
regular and second kinds, and that of pseudotensors
includes first and third kinds, since only the “ortho-
chronous” transformations are considered in their
definition.

It is obvious from the foregoing definition that the
kind to which a product (with or without contraction)
of two tensors belongs is determined by the following
rules: (a) The product of two tensors of the same kind
is a regular tensor. (b) The product of a regular tensor
and a pseudotensor of a given kind belongs to the last-
named kind. (c) The product of two pseudotensors of
different kinds is a pseudotensor whose kind is different
from either one of the two factors (see Table I). These
rules are symmetrical regarding three tensors involved
in the operation of multiplication.

The antisymmetric tensor® - of the rank » which
is “complementary” to an antisymmetric tensor® /#---
of the rank (4—) is defined by

r=(1/24) ewart?, (2.11)
7= (1/6) ewrt™®, (2.12)
7w=(1/2) ewal®, (2.13)
Turk= €l (2.14)
A= €wirl, (2.15)

. ® The modifier “antisymmetric” applies only to ranks higher
than one.

where the tensor e is completely antisymmetric, and its
component e, (= — ) is 41 or —1 in any coordinate
system, accordingly as (u,»,x,\) is an even or odd per-
mutation of (1,2,3,0). To satisfy this definition, € must
be a pseudotensor of the fourth rank of the first kind.

This complementary relation is reciprocal with regard
to 7 and £.1° The kinds of 7, ¢, and e (1st kind) are related
by the product rule. Thus, the second line of Table I
will give the kind of » as dependent on the kind of .
The scalar defined by Eq. (2.11), as complementary to
e itself, is a regular scalar and has the value —1 in any
coordinate system. This e, should not be confused
with a regular tensor 7w which is 41 or —1 accord-
ingly as (u,v,x,\) is an even or odd permutation of
(1,2,3,0) in a particular coordinate system. Such a
tensor changes the signs of its components by a trans-
formation in which ¢=—1. The complementary scalar
to 7 is then a pseudoscalar of the first kind.

If a physical quantity is to be expressed as a tensor
component, we have to determine (a) the rank of the
tensor, (b) the component which represents it, and (c)
the kind of the tensor. We assume in this work that
(a) and (b) are already determined by the Lorentz
transformations in the narrow sense, except for the
ambiguity due to the possible complementary repre-
sentation.

To determine the kind of a tensor, it is sufficient to
examine its behavior for time-reversal (hereinafter
reversion),

(2.16)

and its behavior for total space-reflection (hereinafter
mirage),

xt, af) Bd—al, &%) ol 2'——af,

(2.17)

For reversion or mirage, a component Q of any
tensor will retain or change its sign, but its absolute
value remains unchanged. We write for reversion

aty ot - —al, —a? —aP 20—,

Q’=pRQ) PR=+1 or —17 (218)
and for mirage
Q'=puQ, pu=-+1 or —1. (2.19)

The four possible combinations of the values of pr and
e will lead the classification into four kinds.

TasLE II. The sign of pr for various components as
dependent on the kind.

Rank Component Reg. 1st 2nd 3rd
Scalar + - - +
Vector Space + - - +

Time - + + -
Tensor, 2nd rank Space-space

Time-time + - - +

Space-time — - - —

10 A [1ttle caution must be taken regarding the sign. For instance,
2= but #2=—r%, also r=#%" but {=—7r*0 according to the
above definition.
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According to the definition of the four kinds of
tensors, pr and pyr are directly determined by the kind
of the tensor and by the nature of the component in
consideration. Tables II and III list pr and pu for
various components up to the second rank. In the
designation of the nature of components in these tables,
“space” means p=1, 2, 3 and “time”” means u=0.

For the combination of reversion and mirage (herein-
after total inversion or inversion),

al, 2, of, ad——at, —a? —af —af (2.20)
we have
Q,=PIQ, (221)
with
PI=PRPM. (2.22)

For total inversion, the transformation matrix 7" of
Egs. (2.4)-(2.7) becomes simply

T=+1 or —I, (2.23)

as the rank of the tensor is even or odd. In Eq. (2.23),
I means the identity matrix. Here the ¢’s are

o=+1, (2.24)

Definitions (2.4)-(2.7) show that the coefficient pr is
then simply the product of 7 in Eq. (2.23) and one of
the ¢’s in Eq. (2.24). Thus we obtain a simple rule for
pr which depends only on the rank and the kind of the
tensor: pr is positive for regular tensors and first kind
pseudotensors of even ranks and for second and third
kind of pseudotensors of odd ranks. For regular tensors
and first kind pseudotensors of odd ranks and for second
and third kind pseudotensors of even ranks, pr is
negative. All the quantities of the former group will
form the “plus class,” and all the quantities of the latter
group the “minus class.” See Table IV.

oi=—1, oy=—1.

3. DETERMINATION OF THE KINDS OF .
PHYSICAL QUANTITIES

It is a basic assumption of this entire work that any
physical quantity can be represented as a component
of a tensor of a certain kind. We are now going to intro-
duce a set of formal prescriptions by which the kinds
of various physical quantities can be determined ac-
cording to the definition of each quantity. Admittedly,
“definitions” of physical quantities and “physical laws”
involving those quantities are hardly separable in many
cases. As a result, one may raise an objection to the

TastE IIL. The sign of pyr for various components as
dependent on the kind.

Rank Component Reg. 1st 2nd 3rd
Scalar + — + —
Vector Space - + - -+

Time + - + -
Tensor, 2nd rank Space-space

Time-time + - + -

Space-time - + - +

N
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TasLE IV. The class of a tensor determined by its rank and kind.

Rank Reg. 1st 2nd 3rd
Even -+ -+ — —
0dd - - + +

“proof” of reversibility, etc., to the effect that the kinds
of the physical quantities are determined in such a way
that the reversibility, etc. may hold automatically. The
point is, however, that the same physical quantities
appear in various physical laws, and that it is meaning-
ful to verify that there is no internal contradictions
among these laws. We shall use as elementary a defini-
tion as possible to determine each physical quantity’s
kind. The basic rules serving this purpose are as follows:

(a) The attributes of elementary particles, i.e., rest-
mass, electric charge, mesic charge, and magni-
tude of spin, are regular scalars.

(b) The proper-time differential ds is a pseudoscalar
of the second kind.

Rule (b) means that the sign of ds is determined by
the sign of the time differential d¢. In addition to these
rules, we notice that the transformations (2.16) and
(2.17) do not change the sign of the operation

f f f dxtdx?dx®.

This means that, as far as the signs of pr and par are
concerned, a physical quantity and its density behave
in the same manner. i
To begin with, we note that four-velocity dx*/ds is a
second kind pseudovector, since dx* is a regular vector
while ds is a second kind pseudoscalar. By the regular
invariance of intrinsic mass, the momentum of a particle
mdx*/ds then becomes a second kind pseudovector. This
warrants the positive-definite definition of energy, since
pr=pyu =1 for the time component of a second kind
vector. Force md?x*/ds® must be a regular vector, for dx*
is a regular vector and ds stands here squared. Since the
total charge of an elementary particle is a regular scalar
the current-density vector should be a second kind
pseudovector, the only kind of vector whose time com-
ponents (charge-density in this case) has pr=pu=1.
The orbital angular momentum, being the product of a
position-vector (regular) and a momentum-vector
(second kind), should be represented by the space-
space components of a second kind pseudotensor. From
Tables IT and III, we see that the space-space com-
ponents of a second kind pseudotensor have the same
values of pr and par as the space components of a first
kind pseudovector. This suggests that the spin-density
of a particle, if expressed as a vector, should belong to
the first kind. The magnetic moment density can be
pictured as the product of charge (regular) and angular
momentum (second kind); hence, it must be repre-
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TasLE V. Classification of various quantities into
kinds and classes.

Rank Kind  Class Quantities
Scalar Reg. + Intrinsic mass, electric charge, mesic
charge, magnitude of spin, Lagrangian
1st -+ Magnetic pole strength
Vector Reg. - Position-time, force
1st - Spin density
2nd + Four-velocity, momentum-energy,
current-charge density, electromag-
netic potentials, linear polarization of
photon
Tensor Reg. + Energy-momentum density
2nd - Angular momentum (space-space),
electric field (space-time), magnetic
field (space-space), electric moment
density (space-time), magnetic mo-
ment density (space-space), circular
polarization of photon (space-space)
3rd - All the quantities listed under 2nd

class pseudotensor become 3rd class
pseudotensors by the interchange of
space-space components and space-
time components

sented as the space-space components of a second kind
pseudotensor. If it is represented as space-time com-
ponents of a tensor, this tensor must belong to the
third kind in virtue of the theorem of complementary
tensors. By the definition of the electric field as the
force on a charge, the pr and py of the electric field
must be the same as those of the space components of
a regular vector which is force. From Tables II and III
we see that the electric field, if represented as the space-
time components of a tensor, must belong to the second
kind. If we know, from the Lorentz transformation in
the narrower sense, that the electric and magnetic fields
build a tensor, the magnetic field should then be repre-
sented as space-space components of a second kind
tensor. An alternative representation of the electro-
magnetic field is, in virtue of the theorem of comple-
mentary tensors, such that the electric and the mag-
netic fields are respectively represented as space-space
components and space-time components of a third kind
pseudotensor. If the magnetic pole strength is defined
as the ratio of the force to the magnetic field, it must
behave like a first kind scalar, since we have pr=1 and
pu=—1 for force and pp=—1 and pyr=1 for magnetic
field.

The kind to which energy-momentum density tensor
belongs can be determined by the requirement that its
space-time components and time-time component
should behave like the momentum-energy vector which
is a second kind vector. This classifies the energy-
momentum density tensor as a regular tensor. From the
relation between the energy-momentum density tensor
and the Lagrangian density, it follows that the latter
has to behave like the diagonal elements of the former.
In other words it is a regular scalar.

The ranks and kinds of various physical quantities
heing thus determined, their classes immediately follow
from the rule which is tabulated in Table IV. All these

results together with some results which can easily be
inferred are listed in Table V.

The determination of the kinds to which various
“internal” variables (i.e., other than position-time and
energy-momentum) of a spinor field belong, requires a
further discussion in quantum field theory, which will
be given in Part II. Only some of the results will be
given here. The pr of these quantities have already been
determined in a previous paper'! while the pjr of these
quantities can be shown to be the same as in the
c-number theory as determined by the transformation
properties of spinors. Table VI lists the classification
of these quantities, assuming that the two spinors
appearing in each expression belong to the same trans-
formation rule for reversion, and mirage.!*

The kind of the pi-meson field is the same as the kind
of its source, since the differentiation operator, if
involved, is a regular vector. If the spinors representing
the nucleons before and after the emission or absorption
of a pi meson are of the same kind, then the above table
(under g-number theory) will immediately give the
kind of the pi-meson field.®? An inspection of Table VI
will tell that a combination of scalar and vector types
of interaction and a combination of pseudovector and
pseudotensor types of interaction are not allowed.
This “exclusion rule” of combination arises not from
mirage but from reversion due to the change of pg in
g-number theory.”® This change of pg is exactly what is
required to give to these quantities their respective
physical meanings.!! (See for instance that spin #W/tysyy
becomes, as it should, a first kind vector.)

We now proceed to introduce the notions of “re-
versed state,” “miraged state,” and “inverted state.”
The determination of kinds of the physical quantities
given above is based essentially on a comparison of the
two descriptions of the same physical phenomenon
referring to two different coordinate systems related to

TasLE VI. The kinds and classes of various tensorial quantities
built with two spinors of the same kind. The results for two
spinors of different kinds can easily be inferred from this table (see
reference 11).

¢-number theory g-number theory

Kind Class Kind Class
\u"ﬁ 2nd —_ reg. _|_
Wy 2nd + 2nd +
W vy 2nd - 2nd -
iwlyay 3rd - Ist +
W ysvap 3rd + 1st -
Yivsvurw 3rd - 3rd -

11 The second paper quoted under reference 4. These topics will
be discussed in detail in Part IT, Secs. 9 and 10.

12 This is true for neutral pi mesons. The situation is more com-
plicated for charged pi mesons. See Part II.

13 Thus, this is a direct consequence of the results of the second
paper quoted under footnote 4. See also G. Liiders, Z. Physik 133,
325 (1952). For a more general discussion, see Sec. 10, Part IT of
the present paper. We shall see that the above “exclusion rules”
hold also in cases where the two spinors involved belong to dif-
ferent transformation laws.
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each other by Eq. (2.16) or Eq. (2.17). The physical
insight into the meanings of “kinds” can be obtained
more easily by an alternative interpretation of the
transformation (2.16) or (2.17), namely by considering
two phenomena connected by this transformation
described by the same coordinate system.

Two phenomena are said to be reversed phenomena
of each other if, by suitably choosing the coordinate
origin, all the space coordinates involved in one phe-
nomenon at any instant /=x° become the same as those
involved in the other phenomenon at —¢. It is hereby
understood that the corresponding coordinates refer to
the same physical entities, e.g., the particles of the
same attributes. The two states of the physical system,
one referring to a phenomenon at 7, the other referring
to its reversed phenomenon at —/, are said to be
reversed states of each other.

From this definition it follows that in two mutually
reversed states, the same particles have the same posi-
tions but the opposite velocities. Thus the current in
the reversed state should have the opposite sign, re-
sulting in the opposite sign of magnetic field, etc. The
rest of the argument then follows the same pattern as
in the preceding determination of kinds of tensors. We
can confirm, in this manner, that the invariance or
change of the signs of the physical quantities in the
reversed state is exactly the same as pr determined in
the foregoing. The reversed state Sr of a state .S can
now be redefined as a state in which all the physical
quantities with prp=1 have the same values as in S
and all the quantities with pg= —1 have the same ab-
solute values but with the opposite signs.

Two phenomena are said to be miraged phenomena
of each other if, by a suitable choice of the coordinate
origin, all the space coordinates involved in one phe-
nomenon at ¢ are the negative of all the coordinates
involved in the other phenomenon at the same instant
t; these coordinates are supposed to refer to the same
physical entities. The states of the physical system in
such two phenomena at the same instant are said to
be the miraged states of each other.

Comparing the consequences of this definition of the
miraged states with the preceding determination of the
kinds of tensors, we can redefine the miraged state .Sy
of a state .S as a state in which all the physical quan-
tities with par=1 have the same values as in .S and all
the physical quantities with py=—1 have the same
absolute values but with the opposite signs.

Two phenomena are said to be totally inverted phe-
nomena of each other if, with a suitable choice of the
space-time origin, all the space-coordinates involved in

one phenomenon at ¢ are the negative of the corre-

sponding space-coordinates involved in the other phe-
nomenon at —/. The two states compared here are
totally inverted states of each other. The totally in-
verted state St of a state S can be defined as a state in
which all the physical quantities with py=1 have the
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same values as in S and all the physical quantities with
pr=—1 have the same absolute values but with the
opposite signs.

4. REVERSIBILITY, REFLECTIBILITY AND
INVERSIBILITY

Every closed system of physical laws must include a
time-dependent law from which it is possible to deduce
predictive statements. Such a theoretical system should
be capable of answering questions of the following type:
What is the probability P(S—S’; ¢) of finding a physical
system in state S’ at the end of a period of time ¢ if the
system was found in state .S at the beginning of this
period? Such a probability will be simply called transi-
tion probability from S to S’.

If the description of the system by states .S and .S’
is maximal, i.e., as detailed as allowed in principle, the
prediction may be called a microscopic or dynamical
prediction, while in other cases it is only statistical.l*
If the transition probability refers to a “statistical”
prediction, we shall use the symbol W instead of P.
We shall deal only with the dynamical probability P in
this section. In classical physics, P is either 1 or O,
while in quantum physics we have only

0<PL1.

In classical physics, a state is maximally defined if
the values of all the independent physical quantities
are furnished. In quantum physics, a maximally defined
state is a “pure state,” or a quantum state, in contrast
to a “mixture” (Gibbs ensemble or density matrix).
Such a pure state may be considered as an eigenstate
of a set of mutually commuting operators, representing
a group of physical quantities, although in some cases
these operators may be quite complicated.

Covariance for reversion, or reversibility, means that
a process and its reversed process have the same prob-
ability, i.e., the transition probability from S to S’
during ¢ is equal to the transition probability from the
reversed state Sg’ of S’ to the reversed state Sg of S
during time {. Symbolically:

P(S—S";{)=P(Sg'—>Sr; ). (4.1)
If a state S is characterized by the values Q of physical
quantities, Sg is characterized by prQ. We write for

brevity
S={0}, Se={prQ}, S'={Q}, Sr'={exQ’}. (4.2)

Covariance for mirage, or reflectibility, then means,
in a similar symbolism,

P(S—S";0)=P(Su—Sx’; t) (4.3)

14 According to this usage of words, the ordinary transition prob-
ability in quantum physics from one quantum state to another
should be qualified as microscopical or dynamical and not statis-
tical. The “statistical”’ transition probability in quantum physics
then refers to a transition of a system known to be in a Hilbert
subspace to another Hilbert subspace, where the dimensions of
snhspaces are more than one.
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with
S={0}, Su={pnQ}, S'={0}, Su'={pnQ’}. (44)

Finally, covariance for total inversion, or inversi-
bility, means

P(S—8";0)=P(Sr'—>Sr1; 1) (4.5)

with
S={0}, Si={p:Q}, S'=(Q}, S’'={pQ’}. (4.6)

There is a simple theorem which follows directly
from this definition, because of (2.22).

Theorem: If a physical system obeying a certain set
of physical laws has any two of the three kinds of co-
variance, reversibility, reflectibility, and inversibility,
then it also has the third one.

For instance, suppose that a system enjoys reversi-
bility and inversibility. First, by reversibility, we have

PHQ}—{Q'}; )=P{prQ'}—{pr0}; 1), &7)

and second, by invefsibility,

P({prQ'}—{pr0Q}; )= P({p1prQ}—{p1prQ’};#). (4.8)
Combining these two we obtain Eq. (4.3), for

(4.9)

It should be noted, however, that it is quite possible
that a physical system possesses only one of the three
kinds of covariance. Physical systems which obey re-
flectibility but not reversibility (hence not inversi-
bility) are familiar to us. It may also very well happen
that a physical system does not obey Egs. (4.1) and
(4.3) with the right signs of pr and par but does obey
them with wrong signs of pr and py for some of the
quantities, leading however to the right signs of
pr=prpxm. This statement is true for any permutation
of pr, pu, and pr.

In classical physics, all the physical laws are written
in terms of tensorial components. Therefore, if the
physical quantities appearing in each equation belong
to the same kind, reversibility and reflectibility (hence
also inversibility) are automatically guaranteed, since
the existence of a solution representing a process will
imply the existence of another solution representing the
reversed or miraged process. As this situation is well
known, we shall limit ourselves to some remarks of
general nature.

The mechanical laws are covariant for both reversion
and mirage as far as the force md®x#/ds? is equated to a
regular vector. The space components should then have
pr=+1, py=—1. The frictional force, e.g.,
—k(v/|v|)v* (Newtonian), has py=—1 but pr=—1;
thus, it satisfies reflectibility but not reversibility.
However, the Lorentz force e(E+[vXH]) has the
right signs. The Maxwellian equations are covariant for
both reversion and mirage, since the electromagnetic
field tensor and its source, the current vector, belong
both to the second kind. (See Table V.) In contrast to

PM=PIPR.

this, Ohm’s law, I=0E is not covariant for reversion;
the left side has pr=—1, par=—1 while the right side
has pr=-1, psr=—1 (see Tables II, III, and V).

In quantum physics, the physical laws are not
written in tensorial expressions. Therefore we have to
examine whether we can construct the whole theory in
such a way that the expectation values (including
eigenvalues) of all the relevant physical quantities
behave for reversion and mirage as their respective
kinds will dictate. The kinds of the physical quantities
which have classical analogs can easily be determined
by classical physics. The purely quantum mechanical
quantities such as spin, magnetic moment, etc., can also
be determined by their relations to known classical
quantities. For instance, from the conservation law of
total angular momentum, we have to assume the same
pr and py for spin as for orbital angular momentum.
This is what has been done in Sec. 3. The question as to
whether quantum physics in its entirety can be for-
mulated in a covariant way for reversion and mirage
will be studied in Part II.

In the remainder of this paper it is assumed that the
physical laws governing the physical systems under
consideration obey reversibility, reflectibility, and in-
versibility. This assumption may be considered to be
warranted as far as atomistic laws are concerned. In
particular, it is understood that these covariance prop-
erties exist independently of how the states .S and S’
are defined, in so far as they are maximally defined.

5. DETAILED BALANCE, SEMIDETAILED BALANCE
AND AVERAGED BALANCE

The theorem of detailed balance, literally taken,
would mean

P(S—S";)=P(S"—S;1). (5.1)

This type of theorem holds only in the first-order per-
turbation theorem in quantum theory and, of course,
is not of a general validity.

The so-called theorem of detailed balance in classical
physics by no means claims Eq. (5.1), which is a dy-
namical or microscopic law, but it does represent a
statistical law in which the state of a system is charac-
terized by a distribution function in velocities (or
momenta). It may be written, to exploit the distinction
between P and W, as

W(S—S"; =W (S"-S; 1), (5.2)

where S is defined only by a certain distribution in
velocities. This "theorem is based essentially on the
interesting fact that, as far as the linear momentum
and energy of particles are concerned, a state and its
totally inverted state are identical, since p;=1 for all
the four components of momentum-energy vectors
which are pseudovectors of the second kind. (See
Table IV.)

This indicates that the basic fact underlying the
theorem of detailed balance is the theorem of total
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inversibility. This theorem which can be written as
P(S—S";)=P(S/—Sr1; 1), (5.3)

means that the (dynamical) transition probability from
state S to state S’ is equal to the (dynamical) transition
probability from the inverted state S;/ of S’ to the
inverted state S; of S, whereby the inverted state is
constructed from the original state by keeping the
values of all the quantities of the “plus” class and
changing the signs of all the quantities of the “minus”
class (see Table V). It should be noted that since the
position is a minus quantity, comparison must be made
between a quantity at x in .S and the same quantity at
—x in S;. For instance the electric field (a minus
quantity) at x in S must be equal in magnitude and
opposite to the electric field at —x in S;. This is in
agreement with the situation created by the source
point of this electric field placed at x in .S and the same
source point placed at —x in Sj.

Let us now disregard the electromagnetic field
strengths and the notion ‘“force.” Then, if we con-
sider only particles without spin, the only difference
between a state and its inverted state lies in position
coordinates and angular momenta (see Table V). This
means that coordinates should be miraged; the change
in sign of angular momentum ensues automatically.
This mirage of coordinates (x——x) involves not only
the mirage of positions of particles but also the mirage
of shapes of particles and mirage of the boundary.

It is now clear that, if the molecules are spherical
(or points) and spinless and the boundary is symmetrical
with regard to mirage, then the classical theorem of
detailed balance in Eq. (5.2) can be deduced, without
discussion of collision processes, simply by the as-
sumption that the distribution function is independent
of position. This shows that the classical theorem of
detailed balance is based on the “chaos’ hypothesis in
regard to the positions of molecules. (Chaos in angular
momenta is a result of the chaos in positions.)

If the molecules are not spherical and/or the boundary
is not mirage-invariant, the chaos hypothesis regarding
positions does not guarantee Eq. (5.2), since we still
have miraged molecules and the miraged boundary in
the inverted state. If the particles have at least one
plane of symmetry, the miraged shapes of the particles
can be reached by some rotations. If the boundary has
at least one plane of symmetry, the miraged boundary
can be considered as a rotated position of the same
boundary. In this case, we can further introduce a
chaos hypothesis in regard to the orientations of the
molecules. This will secure a type of relation in Eq.
(5.2), but the right hand side will still refer to the
rotated position of the boundary. Only if the boundary
has a symmetry with regard to mirage, can we have
the classical theorem of detailed balance on assumption
of two kinds of chaos, one regarding positions, the other
regarding the orientations of molecules. This situation
explains why the usual illustrations of the breakdown
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of the theorem of detailed balance concerns either non-
spherical molecules!® or some irregular boundary.!® The
first categories of cases of breakdown can be remedied
by the assumption of chaos with regard to the orien-
tations of molecules if they have at least one plane of
symmetry. It is possible that this hypothesis should be
sufficient even if the molecules do not have a plane of
symmetry, but in such a case we shall have to discuss
the collision process in more detail. In case of a bound-
ary which does not have a mirage-invariant shape we
had better resort to a long-range balance, or cyclic
balance, on which we shall touch in the last section.

The above derivation of the classical theorem of
detailed balance suggests an immediate generalization.
We can always establish a statistical balance of type in
Eq. (5.2), by assuming as many chaos hypotheses as we
need quantities of minus class to describe the state.!”
This general rule will be called the “principle of aver-
aged balance.”

In classical physics as well as in quantum physics, we
can limit the number of necessary minus quantities to a
certain degree by suitably choosing the employed
variables. For instance, we can use the electromagnetic
potentials (plus quantities) instead of electromagnetic
field strengths (minus quantities) ; we can even describe
the electromagnetic field by its source alone. In more
elementary examples, ‘“force” can be replaced by
“potential.’”” 18

In quantum physics, there is further a simplifying
situation due to the existence of noncommuting quan-
tities. If we characterize particles by their linear
momenta (plus), we must disregard their positions
(minus) and angular momenta (minus). Hence, for the
quantum mechanics of spinless particles, we have
the detailed balance in the strictest sense (5.1) if we
adopt the plane wave description ; the total Hamiltonian
is assumed to satisfy inversibility.

In case of the particles with spin, we can only derive
the statistical balance of Eq. (5.2) by one chaos
hypothesis regarding spin. This can be done by de-
scribing the electromagnetic field by its sources and
describing these charged particles by linear momenta.
From Table V, we see that the remaining physical
quantities of the minus class are only spin and electro-
magnetic moments. Therefore, averaging over spin
directions will yield the averaged balance of Eq. (5.2).
This is what Heitler? calls the principle of sem idetailed

1BR. C. Tolman’s textbook (quoted in reference 6), p. 119.
Heitler’s lecture note (quoted in reference 5). J. M. Blatt and
V. F. Weiskopf, Theoretical Nuclear Physics (John Wiley and
Sons, Inc., New York, 1952), p. 530.

16 E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book
Company, Inc., New York, 1938), p. 57.

17 We should keep in mind that in some cases the chaos hy-
Eothesis regarding one variable automatically entails the chaos

ypothesis regarding another variable. For instance, the chaos
regarding position will result in chaos regarding angular momen-
tum. The same is true for spin and magnetic moment. -

18 Thus, this situation is taken care of by the positional chaos;
“force” changes its sign, but “attraction” and “repulsion” are
invariant notions.
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balance and it is a special case of our principle of
averaged balance.

The theorem of semidetailed balance is obviously
very convenient when applied to the usual perturbation
theory in which plane waves are taken as unperturbed
states, i.e., eigenstates of the noninteracting Hamil-
tonian. Moreover, the spin Wiysyqsl (e=1, 2, 3) in the
direction of propagation of the plane wave and the
magnetic moment Wiyeyp(a,b=1,2,3) in a direction
perpendicular to this direction of propagation commute
with the noninteracting Hamiltonian in the Dirac
theory as well as with the momentum operator. The
characterization of a state by the momentum and one
of these “internal” variables is therefore suitable for
discussions in the perturbation theory. But this is only
one of the possible modes of description. For instance,
the total angular momentum, which is a minus variable,
is also a constant of motion of the noninteracting
Hamiltonian. It should also be noted that the inverted
state of a diverging wave is a converging wave, there-
fore it is also outside the scope of this theorem.

There is no reason to limit the initial and final states
to the eigenstates of the noninteracting Hamiltonian.
If, for instance, the probability of existence of particles
is more or less localized (wave packet), position variables
(minus) will intervene in the description of state, thus
we shall again need a hypothesis of chaos regarding
these “external” variables. On the other hand, we could
avoid internal variables of the minus group by using,
for instance, the spin-orbit interaction energy instead
of spin (or magnetic moment) itself. If we consider
two charged particles in interaction, the magnetic
moment is reversed in the inverted state; however, the
magnetic field strength, due to the other particle, also
changes its sign in the inverted state at the point, so
that the magnetic interaction will remain unchanged.
Since this description involves more or less localized
particles, we shall have to use a chaos hypothesis for
“external” variables. We are faced with a kind of com-
plementarity; to avoid one kind of chaos, we have to
introduce another kind of chaos. It should also be
recalled that there are also internal variables of the
plus group (see Table VI).

We thus see that we have to be very cautious in
application of Heitler-Coester’s principle of semi-
detailed balance. A general rule, which does not fail,
is that we should first determine the classes (plus or
minus) of all the variables used in the description of the
system, and, if we want to use a theorem of the type of
Eq. (5.2), we should assume chaos hypotheses for all
the minus class variables (principle of averaged balance).
We sometimes encounter, in the existing literature,
statements to the effect that every time particles have
an internal freedom, we have to perform an averaging
with regard to this freedom. But, the coincidence of
external and internal variables with plus and minus
variables in the case of Heitler-Coester’s theorem is
only accidental.

We have used the words averaging and chaos in the
above exposition without precise definitions. Now we
should like to provide such definitions. We take a
mixture M of state S and its inverted state S; with
equal weights. Then the average probability (average
over .S and S7) of transition of a system in this mixture
to .S” or St is given by

Wie= %{P(S—>S/) +P(S—->S[I)

+P(Sr—8)+P(Sr—Sr)}. (5.4)

Due to inversibility in Eq. (5.3), this probability is
equal to the average transition probability of a system
in a mixture M, of S” and S/’ with equal weights to .S
or Sr.

W21=%{P(S,-—>S)+P(SI—>S[)

+P(S["—>S)+P(S[I—SI)}=I/V12 (55)

is the exact meaning of Eq. (5.2).

It should not be understood that this general con-
sideration provides any justification for the chaos
hypothesis (equal weight of a state and its inverted
state). In fact, if a system in mixture M, had the same
average transition probability to S’ end to S7/, ie., if

#{ P(§—=5)+P(Sr—>5")}

=Y P(S—S!)+P(S1—Sr)} (5.6)

were true, then a ‘“‘chaos” would remain a ‘“chaos’ after
transition. By no means is Eq. (5.6) guaranteed by
inversibility. One general way of justifying the chaos
hypothesis is to take a mixture of e/l the possible states
with equal weight; then we can expect that a system in
this general mixture has an equal average transition
probability to S’ and to .S//. In this case, the equal
weight of a state and its inverted state holds as well
before as after transition. This property implies that
> i Pyj=2; Py where S; and S, are inverted states of
each other. This condition is guaranteed by the inverse
normalization which is always true whenever there is
inversibility or reversibility, as we shall see in the next
section.

As far as the theorem of averaged balance is con-
cerned, averaging is supposed to be made over each
pair of states S and Sz, or {Q} and {p;Q}. But, in case
of space coordinates, pairing of x and —x with regard
to a particular coordinate system does not have an
invariant meaning for translation; averaging all the
values of coordinates is usually required.

Our derivation of the theorem of averaged balance
using inversibility shows that we can also introduce a
second theorem of averaged balance by considering
reversed states instead of inverted states. Thus, we
can obtain a type of relation, as Eq. (5.2), by averaging,
or introducing chaos hypotheses, with regard to all the
variables involved which have pr=—1 (instead of
pr=—1).
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6. BILATERAL NORMALIZATION OF TRANSITION
PROBABILITIES

First we shall consider the condition of bilateral nor-
malization of microscopic transition probabilities P,
and then consider the same condition in regard to statis-
tical transition probabilities W.

For a given maximally defined state .S, we think of a
series of maximally defined states S; (=1, 2, 3, ---)
such that S is one of them, say, .S;. Let us take the
physical system in any condition, and represent the
probability of finding it in state S, by p,. If

2 pi=1 (6.1)
we speak of a “complete’ set of states. While in quan-
tum physics there are more than one such set, in clas-
sical physics there is only one complete set. In classical
physics, the number of possible values of ¢ are usually
continuously infinite, and even multi-dimensional. In
these variables (i.e., in the phase space) p; will be a kind
of & function. Thus Eq. (6.1) should be understood as
a schematic simplification of the situation.

Take two such complete sets (which may be the same
or different) of states.S; and S; and consider the transi-
tion probability:

P(S—S;; ). (6.2)

The definition of P (Sec. 4) results, in virtue of (6.1),
in the normalization regarding the final states:

> P(S—S;; £)=0. (6.3)
7
However, the normalization with regard to the initial
states:

> P(S—S;;H)=1 (6.4)
is not guaranteed by the definition. We shall see that
if the physical system obeys reversibility or inversi-
bility, inverse normalization, Eq. (6.4), follows from
the first normalization, Eq. (6.3). In the discussion
which immediately follows, we shall speak only of
reversibility, but the word “inversibility” can always be
substituted for the word “reversibility.”

The basis of the demonstration is the fact that if .S
belongs to a complete set .S;, its reversed state Sg also
belongs to set S;. Because of reversibility, if S—S’ is a
solution of the dynamical law, Sz'—Sr is also a solu-
tion, implying that if .S is a possible state, Sk is also a
possible state. In classical physics, there is only one
complete set of states, therefore, this means that if S
is a member of the set, Sk is also its member.

In quantum physics, a pure state S={Q} can be
considered as an eigenstate of a family of Hermitian
operators which, though complicated at times, represent
some physical quantities belonging to one or other of
the four kinds. Therefore, each of them has a definite
sign of pg. If the reversed state is a possible state (which
is the case here), this state must also be an eigenstate

of this family of physical quantities, for it is charac-
terized by {prQ} of the same physical quantities.
Hence, Sr belongs to the same complete set as .S. We
can thus conclude that a complete set of states is
composed of self-reversed states and pairs of mutually
reversed states.

This being the case, the summation over all the Sy’s
and the summation over all the .S;z’s must mean the
same operation. First, by reversibility,

which, due to the above remarks, equals
2 P(Sir—Si50), (6.6)

which is on account of the first normalization condition
(6.3) equal to unity. Hence Eq. (6.4), Q.E.D.

It is true that the physical meaning underlying the
unitarity of transformation matrices in quantum
physics is connected with the “‘completeness” of repre-
sentation. But here we have derived the bilateral
normalization without utilizing specifically quantum-
mechanical relations.

We now pass to the bilateral normalization with
regard to the statistical transition probabilities W.
It is usually the case that states .S defined only statis-
tically exhibit also “completeness.” In other words, we
can consider any nonmaximally defined state S as a
member of a series of nonmaximally defined states S;
(=1, 2, 3, ---) such that the probability w; of finding
the system in a state .S; of the series obey a normaliza-
tion condition:

Z W= 1.
7

6.7)

For example, in classical physics, after averaging over
all space-coordinates, the state of each molecule of a
gas is characterized only by velocities v. Then the
velocity space can be divided into small volume ele-
ments, which certainly have the property of complete-
ness in the sense of Eq. (6.7). We can also apply this
consideration to a pair of molecules, as is usually done
in the discussion of collision processes. In case of Heitler-
Coester’s mode of description, after the averaging over
the spin directions, the possible values of the momenta
will constitute a complete set.

Now, if such a set of nonmaximally defined states is
so chosen that the theorem of averaged balance in Eq.
(5.2) is true, then the inverse normalization,

L W(S—S;50=1, (6.8)
follows immediately from the first normalization,
2 W(Se—S;; 1) =1, (6.9)

J

which is a consequence of Eq. (6.7). The reversibility
relation, Eq. (6.5), or the corresponding inversibility
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relation, cannot be adapted in the same form to the
W'’s for arbitrarily chosen sets of nonmaximally defined
states.

It should be recalled that even in classical physics,
the w’s and WW’s are not limited to zero and unity, which
is the case for the p’s and P’s in this form of physics.

7. ERGODIC PROPERTY OF TRANSITION
PROBABILITIES

It is well known that the Markoff chain exhibits a
particular property which may be called “ergodic.”
The usual exposition of this subject is too mathematical
in nature and often overly simplified by the assumption
of detailed balance: P;;=P;,.

This section intends to point out that the bilateral
normalization of transition probabilities is just neces-
sary and sufficient to derive the “ergodicity” of the
Markoff chain; the section also hopes to clarify in what
sense we can speak of an ergodic theorem. In the fol-
lowing, we shall discuss the subject in terms of the
microscopic, or dynamical probabilities P, but we shall
soon find that the main body of argument also applies
to the statistical probabilities W.

We take a complete set & of maximally defined states
S, and the indices 7, 7, etc., of the S’s are supposed
always to refer to this same set. We limit ourselves to
the cases where there are a finite number of states in
the set:

1=1,2,3,---,7. (71)

In classical physics, there are usually a continuously
infinite number of the S’s. In this case, the entire
argument that follows offers only a mathematical model
which may approximate the real physical situation. In
quantum physics, Eq. (7.1) does not imply a real
limitation, since we need actually consider only a
limited region of energy values (microcanonical shell)
and we can also assume the space domain to be limited.
Then the number of quantum states will become finite.

Among these states S; (=1, 2, « -, r), some will be
disconnected from one another due to various conser-
vation laws. For instance, two states belonging to dif-
ferent values of the total angular momentum will allow
no transitions from one to the other. Thus, the entire
set of .S; will be divided into subsets, in each of which
the states are “connected.” Hereinafter such a subset
will be called a “subshell.” A more rigorous definition
of subshells will be given soon. )

The theory of Markoff chains pertains to the “re-
peated” transition probability P;;¢» which is defined by

Pij(")=z Pik("‘l)PkJ':Z Pikij("_l) (72)
k k

where
Py =Py =P(SS;; 7).

In classical physics, we have P;;=1 or 0, therefore
also P;;™=1 or 0. In quantum physics, 0<P;;(™ <1.

(7.3)-

In both cases, we have

Z Pij(")=1, (74)

7
which follows from Eq. (7.2) in virtue of the first
normalization:

Z_ Py=1. (7.5)
i
In the same manner, the inverse normalization:
> Py=1 (7.6)
will result in 1
2 Pym=1. (7.7)

The classical physics is characterized by the fact that
Pij(")=P(Sr—>Sj; nT), (78)

which means that the physical system is not disturbed
by observation. In quantum physics this is not the case,
in general, unless the operators defining .S; commute
with the exact Hamiltonian. In quantum physics, the
repeated transition probability in Eq. (7.2) acquires a
physical meaning only on assumption that the system
is observed every 7 seconds with the operators defining
S;. In other words, starting with a pure state .S,, we
observe the system after = seconds, and the result is
statistically represented by a mixture (ensemble or
density matrix) composed of various.S; with the weight
P;;. By repeating this process at each interval of
seconds, we obtain- after #7 seconds a mixture of S;’s
with the respective weights P;;(®. This means that
although we start with the microscopic transition prob-
abilities P,;, we have to interpret the repeated transition
probabilities P;; in quantum physics in terms of
“mixtures.” The ergodic theorem discussed in this
section thus refers to a chain of repeated observations
and should not be confused with the more important
ergodic theorem! which refers to two observations, one
at the initial instant and the other at the final instant.

Closely related to P;;”, and physically and mathe-
matically more significant than these are the quantities:

QM =3 Pi;™/n. (7.9)
m=1

They are physically important since @;;® represents
the “time average” of transition from .S; to S; during
the time n7 seconds, while P;;(" represents the transi-
tion probability at the instant nr seconds after the
initial instant. Indeed, the main concept in an ergodic
theorem, in physics, is a comparison of ‘“‘average in
time” with ‘“‘average in microcanonical ensemble.”
Furthermore they are mathematically useful since Q™

1 T, von Neumann, Z. Physik 57, 30 (1929); W. Pauli and M.
Fierz, Z. Physik 106, 572 (1937). For an interpretation of Neu-
mann’s ergodic theorem in terms of initial and final observations,
see an article by S. Watanabe in the monograph, Louis de Broglie
(Albin Michel, Paris, 1952), p. 385.
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has a better convergence than P for n—c. Although
P™ is zero or unity in classical physics, 2™ is not
necessarily so: 0 <Q,;™ <1.

From the first normalization, Eq. (7.5), follows:

> Q=1 (7.10)
H
and from the inverse normalization, Eq. (7.6),
> Qum=1. (7.11)

2

Now the “ergodic theorem’” which we are going to
prove can be enunciated as follows: The time average
Q;; (n—) of the probability of finding a system,
which started from any .S, in a state .S; of the same
subshell is equal to the @ priori probability of a state
in the subshell, i.e., equal to 1/s if s is the number of
states in the subshell. This statement is certainly a
faithful adaptation of the general ergodic theorem to
our simplified case, since the microcanonical ensemble
represents a mixture of all the states on an energy shell
with equal weights. The main purpose of this section
is to show that the inverse normalization is the neces-
sary and sufficient condition for this simplified ergodic
theorem, the first normalization being always assumed
for the Markoff chain.

First we shall enumerate, without proofs, some of the
elementary theorems and definitions regarding the
Markoff chain which can be found in any exposition of
the subject.? We shall denote by & the original
complete set of states in Eq. (7.1). Only the first
normalization is assumed in the following theorems.

Theorem I. The sequence

Qi) Qi@ o) (S5, S;e©) (7.12)
converges to a limit:
l,.i—rf:oﬂij(”)zﬂijw' (7.13)
Of course, we have
(7.14)

0<0:,°<1, ¥ Q=1
7

In the set & there can be some states S; such that the
average transition probabilities @, to them vanish for
any arbitrary initial state S;.

Definition I. The “vanishing” part L of & is the set
of all states S; such that

Q,‘jw=0, (S,f@, S]-e%). (715)

For the rest of the original set: &' =&—L (which can
easily be shown not to be empty), we have the following
theorem:

2 Theorems I-IV are given in Husimi’s textbook (Husimi,
reference 3, p. 280), but their physical applications in physics,
including Theorems V and VI, are not given there. Husimi’s ex-
position is based on K. Yosida and S. Kakutani, Topological
Mathematics (Iwanami, Tokyo, 1939, in Japanese), Vol. 2, p. 20.
See also, W. Feller, Iniroduction to Probability Theory and its
Application (John Wiley, New York, 1950), p. 307 ff.
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Theorem I1. If Q;2>0, then

jSw>0, (S,', Sje@'). (716)
In other words, if Q;°=0, then
Qﬁw: 0, (S,', ij:@’). (717)

Using Theorem II, we can divide &’ into subsets
(“subshells”) such that Q;;* is zero if S; and S; belong
to different subshells, and Q;>*>0 for S; and .S;
belonging to the same subshell.

Definition I1.
&' =Ct+Cot---+6,, (7.18)
Qi7=0, (SiC,S5;C), (7.19)
Q:°>0, (5,5;¢8). (7.20)

A subshell € is disconnected from the vanishing part B

and from another subshell € not only in terms of Q;;°

[see Egs. (7.15) and (7.19)] but also in terms of P;;.
Theorem 111.

P«;j= 0, (Sﬂ@, Sjé%)
P;i=0, (S:, S;ed) (7.21)
Pij"—‘ 0, (Sﬁ@/, Sjé@)

Obviously the inverse of this theorem is not true. It can
happen that P;;=0 even for .S; and .S; belonging to the
same subshell, i.e., in spite of ©;;°>0.

We now pass to study the properties of those Q,;*
whose initial and final states belong to the same
subshell § consisting of s states .S;:

i=1,2,3, 5. (7.22)
In virtue of Eq. (7.21), we can derive from Eq. (7.4)

Z P,'j= 1, (Si, Sje@). (723)
i=1

Similarly, because of (7.15) and (7.19), we have
S =1, (S, S;eC). (7.24)

i=1

The relations (7.23) and (7.24) show that the first
normalization Egs. (7.4), (7.14), remains unchanged
when the initial and final states are limited to a subshell.
We are now prepared to introduce an important
theorem. :
Theorem IV. Q; (S; S;e€) is independent of the
initial state S;:

Q;°=9;, (S S;€8). (7.25)
Of course, we have, due to Eq. (7.24),
2 =1 (7.26)

The discussion up to this point assumes only the first
normalization. We now investigate the implication of



38 SATOSI WATANABE

the inverse normalization. We shall consider the con-
dition,

ZPij:]-; (Si) SJ'EQ))

=1

(7.27)

which exhibits a symmetry to Eq. (7.23). Because of
Eq. (7.21), the summation with regard to Sy in

PiiW =3 PuPri" ™D, (Si S;e€; Sie®),
%

actually extends only over Sie€. Hence

2 Pym=1, (Ss, S;e8), (7.28)
and, by Egs. (7.9) and (7.13), also
T =% =1, (S55;6).  (7.29)

We now propose to show that the inverse normaliza-
tion as in Eq. (7.27) is equivalent to the condition that
Q; is not only independent of the initial state S;
(Theorem IV) but also independent of the final state S;.
This last condition can be written, in view of (7.26), as

Q¢j°°=1/s, (Si, Sjé@). (730)

Theorem V. The necessary and sufficient condition for
Eq. (7.30) is Eq. (7.27).

Proof : From the definition of @, in Egs. (7.9) and
(7.13), we can easily obtain

QifO:Z Qikakjy (S;, S](:@, S}ﬁ@) (7.31)
k

Because of Eqs. (7.15) and (7.19), the summation over
Si, in reality, extends only over Sie€. If Eq. (7.30) is
the case, Eq. (7.31) becomes

1 15
ZHZPIC]}

S Sk=1

(Sk, Si€€) (7.32)

showing that Eq. (7.27) is a necessafy condition for Eq.
(7.30).

Next we shall show that Eq. (7.27) is also a suf-
ficient condition.

If Eq. (7.27) is true, then we have Eq. (7.29), which
in view of Eq. (7.25) means

> Q2=sQ=1, (S S;e€)

=1

(7.33)
or

Q.E.D. (7.34)

Theorem V is obviously equivalent to the ergodic
theorem we stated at the beginning of this section.

It should be noted that our inverse normalization in
Eq. (7.27) is not necessarily equivalent to the inverse

normalization with regard to the entire set:

It is, however, easy to see that if Eq. (7.35) is true then
Eq. (7.27) is also true, and that if Eq. (7.27) is true
and if the entire set & has no vanishing part 2, then
Eq. (7.35) is true. Actually, in Eq. (7.27), S; and S;
can be extended, without any additional assumption,
to all the states belonging to &' =&—8:

Z P,‘j= 1, (Sl, Sjé@l), (736)

on account of Eq. (7.21). The summation in Eq. (7.36)
extends to all the states in &’. Equation (7.36) is
equivalent to Eq. (7.27).

Now, if Eq. (7.35) is true, we shall have Eq. (7.11),
with S;, S;6©. But this contradicts the existence of a
vanishing part in Eq. (7.15). Hence, if Eq. (7.35) is
true, then ©=&’, and Egs. (7.36) and (7.27) ensue.
On the other hand, if we have Eq. (7.36) as a given
premise, then the conclusion of Eq. (7.35) can be drawn
only with the help of an additional condition &= &'.

From whatever state one may start, ultimately there
will be a vanishing probability of having the system in
a state belonging to the vanishing part as in Eq. (7.15).
Furthermore starting from a state in any one of the
@’s, we have a vanishing single transition probability
P;; landing in a state in the vanishing part as in Eq.
(7.21). In physical problems, an initial state is, after
all, the final state of another chain of observation. We
may justifiably exclude states of the vanishing part
also as initial states. In any event, symmetry of the
physical laws in time (reversibility or inversibility)
results in the inverse normalization, Eq. (7.35), which
implies nonexistence of the vanishing part.

The ergodic theorem is sometimes expressed as a
statement regarding the eventual return to the initial
state. For actual physical problems in classical physics,
a rigorous return to the initial state is not to be expected,
but the return to a state infinitely close to the original
state (the so-called quasi-ergodic theorem) is sufficient.
However, in our simplified theory, a rigorous return to
the initial state can be concluded in classical physics.

Theorem VI. If the values of P,; are limited to zero
and unity, then there exists a value of # such that

P m=1, (7.37)
except for .S; belonging to the vanishing part.
Proof : Taking ¢= 7 in (7.20), we have
Q;2>0 (7.38)
Hence, for large enough values of #, we have
Qi ™>0, (n>n0). (7.39)

Comparing Eq. (7.39) with Eq. (7.9), we see that there
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must be a value of # (indeed there must be an infinite
number of such #»’s) for which

P;;m>0. (7.40)

If P;;is zero or unity as we assume, then P.;(" is also
limited to the values zero and unity. Then Eq. (7.40)
means that there is a value of # for which

P,,;i(n)z 1 (7.41)

Taking the smallest value of such #’s, we can further
infer, in virtue of Eq. (7.2),

1=Pii(n)=P'ii(2")=Pii(3n)= sy (7'42)

showing a cyclic return to the initial state.?* This repre-
sents the fundamental fact upon which Boltzmann’s
theorem, which Tolman calls “cycle of corresponding
collisions,” is based.® Our proof of the cyclic balance as
seen in Eq. (7.42) is more general than Tolman’s argu-
ment, since he (1) assumes without verification the
ergodic nature of physical phenomena, (2) utilizes,
throughout the chaos, hypothesis regarding the position
of molecules, and (3) limits his discussion to collision
processes. Admittedly, our proof is conditioned by the
assumption that the number of possible states is finite.

It is not surprising that the proof of Theorem VI does
not utilize the inverse-normalization, since, in classical
physics, exclusion of vanishing part immediately results
in inverse normalization. Indeed, states belonging to
©'=&— are connected in this case by a one-to-one
correspondence.?

The theorem of cyclic balance, in Eq. (7.42), can be
considered as a generalization of the theorem of detailed
balance, which is a special case of Eq. (7.42) for n=2.
Indeed, from

Pij=Pj; (7.43)

follows

P,,'i@) =Z PilcPki=Z (P‘,k)Z (7.44)
k k

In classical physics, only one of Py (k=1, 2, ---) is

2 Taking the smallest common multiple of the #’s for various 7,
(7.37) and (7.42) will become valid for all the #’s.

2 This means that P;; is actually a permutation, and it is
obvious that a finite number of repeated permutations results in
the identity transformation. The author’s thanks are due Pro-
fessor S. Kakutani for reading this section before publication
and for pointing out various interesting facts pertinent to the
subject matter, including the point mentioned in this footnote.
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different from zero and equal to unity. Thence,

Pi¢(2)= 1. (7.45)

In quantum physics also, we have Eq. (7.40), but it
is not of particular interest. Probably another generali-
zation of Eq. (7.43) may be more useful.

In classical as well as quantum physics, we have

Qi]_oo=9j‘_oo, (746)

which is an obvious consequence of Theorem V. This
means that the time average of transition probability
from S; to S; is equal to the time average of transition
probability from .S; to S;. This is also equal to the time
average of probability of return to the original state:
Q; or Q;;°. The theorem presented in Eq. (7.46) may
be called the theorem of “long-range balance.”

In the entire, foregoing discussions, we used chiefly
Q;;( instead of P;;™, but it is evident that if P;;™
(n—0) has a limit, this limit is the same as Q;;°.

It should also be noticed that we can apply all the
foregoing discussions to W (S—S;; f), if Eq. (6.8) holds.
Even in classical physics this quantity is not limited to
the values zero and unity. Therefore, what has been
stated above, with regard to quantum theoretical P’s
applies, mutalis mulandis, to the W’s.

For applications of our results to quantum theo-
retical problems the following remarks should be kept
in mind, as should the comment with regard to chains
of repeated observations in connection with Eq. (7.2).
If the S’s are defined by operators which commute with
the exact total Hamiltonian, then P;;=§;; and the
subshell will reduce to one quantum state. In this case,
the entire argument loses its physical interest. Therefore,
the essential point in the discussion of ergodicity lies in
the tacit assumption that the operators defining the
states S; do not commute with the exact, total Hamil-
tonian. In fact, this assumption is adopted, explicitly
or implicitly, in any version of H-theorem or ergodic
theorem in quantum physics.”® In applications to ther-
modynamics, it is necessary to introduce the idea of
macroscopic cells on the macroscopically defined energy
shell.”® Our derivation, which does not make use of this
concept, should therefore be considered as a simplified
model which serves only to clarify the mathematical
gist underlying more elaborate formulations.

The author would like to thank Dr. Cecile M. DeWitt
whose instructive seminar talk partly motivated the
author to undertake this work.



