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I. INTRODUCTION

HE Dirac matrices arise in Dirac’s theory of
electrons and positrons.! The elementary prop-
erties of these matrices are very well known. However,
in order to understand some of the features of Dirac’s
theory, a person needs to be fluent with more than these
elementary properties. Also some of the current applica-
tions of Dirac’s theory are based on some of the less
well-known theorems. The purpose of this paper is to
give a consistent and reasonably complete account of
the properties of these matrices.

The discussion below is restricted to four-by-four
matrices since only these are needed in Dirac’s theory.
Most of the algebraic properties of the matrices were
originally developed by Pauli?; the treatment given here
follows his work closely, especially in the sections on the
fundamental theorem and on the identities between
scalars formed from four wave functions.

In the next section an outline of the derivation of the
Dirac equation is given in order to introduce the
matrices. Section III contains Pauli’s proof of the
fundamental theorem—that any two sets of four-by-
four Dirac matrices are connected by a similarity trans-
formation. Sections IV to VI contain discussions of the
Lorentz transformation properties of the Dirac wave
functions, the charge-conjugation operation, and the
formation of covariants. Some special examples of sets
of Dirac matrices are given in Sec. VII, especially the
set which is used to show the nonrelativistic limit of
Dirac’s theory, the set used in developing the spinor
point of view, and a set which makes charge conjugation
identical with complex conjugation. Finally in Sec. VIII
the quadratic identities connecting scalars formed from

1 P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford
University Press, London, England, 1947), third edition,

Chap. XTI.
2W, Pauli, Ann. inst. Henri Poincaré 6, 109 (1936).

four wave functions are derived and some of the
consequences of the identities are discussed.

The paper is written entirely in terms of ordinary
matrix theory even though some of the proofs could be
shortened by using theorems from abstract algebra.
(The matrices form a set of hypercomplex numbers of
the type first studied by Clifford.?) Especially the funda-
mental theorem can be proven very neatly by using
group theoretical ideas; this was done by van der
Waerden.* Matrix theory is used exclusively and Pauli’s
proof of the fundamental theorem is given rather than
van der Waerden’s in order to emphasize the matrices
themselves rather than their abstract algebraic prop-
erties. This point of view makes the arguments closer to
the applications of the Dirac theory and also makes
them readable to people not well versed in modern
algebra.

II. THE DIRAC EQUATION

The purpose of this section is to review the derivation
of the Dirac equation for a charged particle in an electro-
magnetic field. The starting point is the Lagrangian for
the classical relativistic motion of the particle:

L(x2)=—mc(1—c 2% &,)—ed4ec™@4;, (1)

where m and e are the mass and charge of the particle,
x; and &; are its position and velocity, and ¢ is the speed
of light. For an electron, e is negative. The functions
®(x,0) and 4 ;(x,t) are the scalar and vector potentials of
the external field. The actual classical equations of
motion are not needed below but, as a matter of
completeness, are

d m:i'i

dt (1—c22;a,)}

P laAi e 6Aj 6A¢
()
dx; ¢ 9t c dx; 0x;

=eE¢+ec_leijk.7'chk, (2)

where
Ei=—(0®/0x:) —c'(94/d0),

B= eklm(8«/‘1171/69(:!)

are the electromagnetic-field vectors and e;; is the usual
Levi-Civita three-index symbol, zero if any two of the

3W. K. Clifford, Am. J. Math. 1, 350 (1878).

4 B. L. van der Waerden, Die Grup pentheoretische M ethode in der
Quantenmechanik (Verlag Julius Springer, Berlin, Germany, 1932),
p- 55. :

s Lower case Latin indices range from 1 to 3; lower case Greek
from 1 to 4. Indices repeated in a product are to be summed.
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indices are equal and plus or minus one, according to
whether 77k is an even or an odd permutation of 123.
These equations can be cast into a Hamiltonian form
in the usual way. The momenta conjugate to the
coordinates are

= (1—c%,2;) ma+ec 14, 3)
and the Hamiltonian is
H(x,p)=piti—L
= m*+ (pj—ec™'4;) (pi—ec4;) J+ed.  (4)
The nonrelativistic approximation is valid when the
second term in the brackets is small compared to the

first. If an expansion of the square root is made, and
only the first two terms are retained the result is

H(x,p) =mc+ (2m)(p;—ec A ;) (pj—ec™ 4 ;) +ed, (5)

as expected.

The usual procedure for setting up the quantum me-
chanics of a particle is to introduce a wave function
¥ (x,f) satisfying the equation,

H(x, —ihd/dx)y=1hoy/dt, (6)
where % is Planck’s constant divided by 2. This

procedure leads to
o e o e 3
[t 20)
7 0%; ¢ 19x; ¢
hd e
+——+@}¢=o. ™

ic 9t ¢

Dirac! regards this equation as unsatisfactory from a
relativistic point of view because of the dissymmetry
between the time and space coordinates. However, he
points out that in the field-free case

L LA
[+==h-0

[m202_h2
0x,;0%; ic Ot

and solutions of this equation also satisfy the equation,

—m?+-h? 9

¢ o

9% #* 9?
jo=o.
ox;0x;

as is seen by operating on Eq. (8) with

# 1P A9

—[mzcz—hz ] +——

9% ;0% ic 9t
Equation (9) is of a relativistically invariant form
although Eq. (8) is not. The solutions of the equation,
[(Bmc+a;(—ihd/0x,)4c 1 (i2d/08) =0, (10)

also satisfy Eq. (9) if 8 and the «; are operators which
are independent of the coordinates and the time and

R. H. GOOD,

JR.

which satisfy

ajak+akaj= 26jk, (11)
a;8+4Ba;=0, (12)
g=1. (13)

(Here 8,1 is the usual Kronecker delta, one when the
indices are the same, otherwise zero.) This statement is
easily verified by operating on Eq. (10) with

—Bmc—a;(—ihd/dx;)+c1(ihd/L).

The end result of these considerations is Eq. (10), again
of first order in the time-differentiation but now with
the space and time coordinates on an equal footing.
However the wave function must be enlarged to depend
on more than space and time in order to accommodate
the operators a;, 8. In Eq. (10) and in the rest of the
paper ¢ is given the meaning of a column matrix, each
element of which is a function of space and time, and
a;, B are square matrices which operate ony to produce a
new column matrix. In the next section it is shown that
four rows in the column are needed to make the above
equations sensible. Dirac thus proposes Eq. (10) to
govern the motion of a free particle. Written in the form
of Eq. (6) it is

[—Bmct—ca;(—ihd/dx;) W=1ihdy/dt. (14)
The generalization to the case when fields are present is
made, as suggested by Eqs. (3) and (4), by decreasing

the momenta by ec~'4 ; and the Hamiltonian by e®. The
result is that

Hpy=1ihdy/ o, (15)
where the Dirac Hamiltonian is given by
Hp=—Bmc*—ca (—ihd/dx;)—ec'A; ]+eb. (16)

The Dirac equation can be written very neatly by
using a relativistic notation. Combining Eqs. (15) and
(16) and introducing

Xy4= 1:(?15,
A 4= i‘p,
one finds that

[ i} ieA )+ d ieA ) mc] (7
joj{ ———A; —_ —B—=0. (1
¢ dx; he oxs tc ! Bh i )

This is evidently to be simplified by multiplying on the
left by —8 and by introducing

Yi= _7:,301]', (18)
yi=—0 (19)
so that the equation becomes
a e mc
———m)w+—¢=o. (20)
I, T 7

As a consequence of Egs. (11)—-(13), the v, satisfy the
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equations
VYt YYu= 204

21

Matrices which satisfy these relations are called Dirac
matrices.

The matrices v, in Eq. (20) will always be chosen
Hermitian, in the sense that the complex conjugate is
equal to the transpose. It is seen from Egs. (18) and (19)
that if ;, 8 are Hermitian, then the v, are also, for®

v = (—iBaj)E=ia A" =ia ;8= —ifa;="v;, (22)
v = (—B)H=—B=1y. (23)

The converse of this statement can be verified easily in
the same way. As a consequence of choosing the v,
Hermitian, one can set up a row-matrix equation
complementary to the column matrix Eq. (20). The
Hermitian conjugate of Eq. (20) is

—“+_A )W"Y:

0x;

v+~—A 4)¢H’Y4

6904

mc
=0, (2
%

where the nonuniformity in the space and time parts
comes about because x4 and A4 are pure imaginary.
From Eq. (21) it is seen that vy, anticommutes with each
of the v;. Accordingly, multiplying on the right with
—+, and introducing what is called the adjoint wave
function by

A=Yy, (25)
one obtains

———+—A

(26)
Xy

)1/’A'YM _KI’A 0,
ordinarily called the adjoint equation. The conservation
of probability equation follows immediately by multi-
plying Eq. (20) on the left by icy4, multiplying Eq. (26)
on the right by ic, and adding:

9 (icp Ay )/ dxw= (27)

This equation, together with the fact (discussed in
Sec. VI) that iy 4y, is a vector with respect to Lorentz
transformations, permits

YAyah=yHy
to be interpreted as the probability density and
icpAyp=—cbfay

to be interpreted as the probability current.
As an example of Dirac matrices, one set can be built

% Superscripts 7, ¢, # are used to designate the transposed, com-
plex conjugated, and Hermitian conjugated matrices. The Dirac
wave functions ¥ are treated strictly as matrices of many rows and
one column. For example, if the elements of ¥ are 1, ¥, ¥3, ¥4
reading from the top down, then ¥ represents the row matrix

(1€ e ¥sC ¢u©).
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up from the two-by-two Pauli spin matrices,
01 0 —1 1 0
G'1=( )) JZ:( ); 03=( )’ (28)
10 i 0 0 —1
which are Hermitian and satisfy the equations
o'ja'k=i€jk10'l+5jk, (29)
so that
U,’O’)c'*‘dkdj:zajk. (30)
As a consequence of Eq. (30) it is seen that the four-by-
four matrices,
0 oy 1 0
w(C ) os=(, _) o
o; 0 0 —1

where here the 0’s and 1’s represent the zero and unit
two-by-two matrices, fulfil Egs. (11) to (13). Also they
are evidently Hermitian since the ¢; are Hermitian.

For some of the arguments in the following sections
it is useful to keep the nonrelativistic limit of the Dirac
equation in mind and so an outline of how the limit may
be obtained is given next. In discussions involving this
limit the matrices in Eq. (31) are especially appropriate.
As suggested by the form of the matrices, one may
write the four-rowed column matrix ¢ in terms of two
two-rowed column matrices ¢, ¥, so that

Y= (':j) exp (mci/if). (32)

The exponential factor is added also to remove the rest-
mass contribution to the wave function. Then Eq. (15)
may be rewritten as two equations:

—2mctys—coi{ (—ihd/dx;) —ecA; WL

+edys—ihdys/dt=0, (33)
—co{ (—ihd/0x;)—ec A Ws
+edyr—ihdyr/0t=0. (34)

The nonrelativistic approximation applies when the last
two terms in Eq. (33) can be neglected compared to the
—2mcips term. Then, introducing the abbreviation

wi=(—1hd/dx;)—ec'4}, (35)
one can solve Eq. (33) for ys:
Ys=—(2me) om 1. (36)

Since the ¢ s are of order ¢! compared to the ¢, the Y5
are called the small components of ¥ and the ¢, the
large. This value of ¥s can now be inserted into Eq. (34)
to obtain an equation involving the large components
only:

(2m) o jm jo ki 1+ ePY L= hdY 1/ 1. 37

The properties of the Pauli matrices, Egs. (29), lead to
the following simplification of the operator in the first
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term:
a'jo'kﬂ"j’lrk:iejkla'l7r]7rk+5jk7rj1rk
1, 1,
=30€jk T k0 1t Fl€ kT 01T T
1-
=%l mmiJortmm,
where [7;,m ] indicates the commutator of 7; and 7,

mw— ;. From the definition, Eq. (35), this is readily
found to be

['n'j,ﬂ’ka iehc“[(aA k/ax]‘) - (aA j/axk)].
The result for the operator is
00T = — %eﬁc“lo lelj;c[(aA k/axj) - ((914 j/axk):H-rﬂr

= ——ehc‘lazeljk(aA k/axj)-l-?rﬂrj
= —ehc o 1B tmim;.

(38)

(39)

The final equation for the large component is found by
substituting Eq. (39) into Eq. (37) and by using Eq.
(35) to remove the ; abbreviations:

1 /9 e o e
2m\1 6xj c 7 ax,- c

eh W
2me at

(40)

This is of course the Schrédinger equation increased by
the Pauli spin contribution. The nonrelativistic expres-
sion for the probability density results when the
products of the small components are discarded com-
pared to the products of the large components:

VY =y sty
=y Y1
The first step in finding the corresponding expression for

the probability current is to use Eq. (36) to eliminate
the small components,

—opagy=—cps"oyr—cprfo s
= 2m)L(mY L)oo Yo+ oommbr],

and Eq. (35) to remove the 7; abbreviations,

—opHagy= (2m)~[ih(9Y 1/ xr)oro WL
—ec ' A oo Wr— iy oo 9/ 0xr)
—ec ' AwFoopr].
The terms involving A4 are easily simplified by Eq.

(30); the other terms are reduced with the help of
Eq. (29). The result is evidently

ih oYLH ih WL e
—pHagy=— Yo=Y ————AgMY
2m  0x; 2m dx;  mc

(41)

% d
+2_ejkl~(‘l/LHUﬂ//L).

m axk

(42)

The first three are the usual nonrelativistic current

R. H. GOOD,

JR.

terms, and the last is a contribution from the spin.
A more complete discussion of this transition to
the nonrelativistic limit is given by Pauli.” A differ-
ent way of studying the limiting process, which has
certain definite advantages, has been developed by
Foldy and Wouthuysen.®

III. THE FUNDAMENTAL THEOREM

As outlined in the previous section, Dirac’s theory of
electrons and positrons leads to the consideration of sets
of four Hermitian matrices vy, satisfying Egs. (21). The
Hermitian property provides the adjoint equation and
the conservation of probability; also it assures the
reality of the probability density and current. However,
in some of the subsequent arguments, it is convenient to
consider non-Hermitian sets of matrices satisfying Eqgs.
(21) ; accordingly in this section the matrices will not be
assumed Hermitian. A basic property of these matrices
is that any two sets of four-by-four matrices, each of
which satisfy Egs. (21), are connected by a similarity
transformation. In other words, if y, and v, are two
sets of four four-by-four matrices such that

'Y#'/v+7v7n= 20,5 (43)
and

26,0, (44)

then there exists a nonsingular four-by-four matrix .S,
such that

v v =

V' =SyuS7L (45)

Pauli? has called this the fundamental theorem of the
Dirac matrices and has given the simple algebraic proof
which is reviewed below.

In making the proof the number of matrices considered
is increased from the four v, to the following sixteen:

1

Y1 Y2 Y3 Y4

Tyays y3Y1 y1ye Y1Y4 TY2Ys TYsY4
TYry2Ys  UYrYeva Fysyrye Gyzvsva

YIY2Y3Y+4 *

where 1 refers to the unit four-by-four matrix. The
factors of 7 in the third and fourth rows are chosen so
that the square of each of these matrices is the unit
matrix®:

yai=1. (46)

This is easily verified in each case since, according to
Eq. (43), the square of each v, is one, and the v,
anticommute with each other. If the v, happen to be
Hermitian, it is seen that the v4 are Hermitian also.
Occasionally the matrices in the third and fourth rows

"W. Pauli, Handbuch der Physik, H. Geiger and K. Scheel,
editors (Verlag Julius Springer, Berlin, Germany, 1933), second
edition, Vol. 24, Part 1, p. 236.

8L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

9 Capital Latin indices are used to range from 1 to 16 so that 4
represents any of the sixteen matrices displayed above.
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are represented by the symbols vy, and ypui,
where the brackets indicate that the indices are unequal
and that their order is immaterial. An abbreviation
often used is

(47)

This is appropriate because v; has the same properties
as the four v,:

Y5=Y1Y2Y3Y4.

(48)
(49)

As a matter of convenience the proof of the theorem
will be broken up into a series of eight steps. The first
five steps deal with properties of just one set of matrices
v, and the last three with connections between two sets
of Dirac matrices v, and v,".

752: 17
vsYutvuys=0.

1. For each v, except the identity, one can choose a
vg such that!?

(50)

A proof of this statement can be made by considering
each type of v separately. It is easily seen that Eq. (50)
is fulfilled when y4=7v, by vg="1s, when ya=vyu by
YB=%u When ya=vypun by vs=7s and when y4=1vs
by y=74

2. The spurs of all the v, except the identity are zero:

Splya)=0 if ya1. (51)

This is easily seen by taking the spur of Eq. (50). Since
the spur of the product of two matrices is independent
of the order of the factors, and since yg?is 1 the left side
becomes simply Sp(y.) while the right is —Sp(v.).

3. The y4 are linearly independent. In other words
the equation,

YBYAYB= —YA.

16

2. aava=0,

A=]

(52)

where the a4 are complex numbers, only holds when the
a4 are all zero. To show that, for example, a3 is zero, one
multiplies Eq. (52) through by v to obtain

(83)

With the help of Egs. (43) a product y4y s can always be
reduced to the form byc where & is some complex
number. By considering the various types of products it
is easily seen that if 47 B, y¢ will not be the identity.
Accordingly, all the matrices in the sum in Eq. (53)
have zero spur and, by taking the spur of the equation,
one concludes that ap is zero. A consequence of this
proof is that the sixteen y4 are all distinct. In this re-
spect the properties of the Dirac matrices v, are different
from those of the Pauli matrices o; even though they
satisfy similar sets of equations, Egs. (43) and Egs. (30),
for there are connections like

ap+2  a=Byaayayp=0.

010’2=1.0‘3

10 The convention of summing on repeated indices is not used
when capital Latin indices are involved.
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between the Pauli matrices. Also at this point it is seen
that a set of matrices satisfying Eqgs. (43) must be at
least four-by-four in order to generate a set of sixteen
linearly independent matrices, for the above arguments
hold regardless of the size of the matrices.

4. An arbitrary four-by-four matrix X can be written
as a linear combination of the sixteen v, matrices:

16
X=3 %ava.

A=l

(54)

This statement is obviously true since a set of sixteen
linearly independent vectors form a basis for a space of
sixteen dimensions. In any special case the expansion
coefficients x5 will be given by the formula

(55)

as is seen by multiplying Eq. (54) by v5 and taking the
spur.

5. A four-by-four matrix which commutes with each
of the v, is a multiple of the unit matrix. Let X be the
matrix in question; as argued in step 4, one may write it
as a linear combination of the y4. Equation (54) may be
written in the form

xp=7% Sp(vsX),

(56)

where yp is one of the sixteen matrices and is chosen
arbitrarily except that it is not the identity. The asser-
tion will be proven if it can be demonstrated that xp is 0.
According to step 1, a matrix y¢ can be chosen so that

(57)

By hypothesis X commutes with all of the v, and
therefore with y¢ so that

X=upyp+2 ac<m)y%ava,

YCYBYC= —VB.

X=")/0X’)/c. (58)

In terms of the expansion coefficients of Eq. (56), Eq.
(58) reads

XBYBT 2 A< BXAYA=XBYCYBYC+ 2 AR X AYCY AV C
and this can be written in the form

xpYBt+ 2 a=Bbava=—xBYB+2 a5 (ED)xaya,

as a consequence of Eq. (57) and the fact that ycand y4
either commute or anticommute. If finally this-equation
is multiplied by y5 and the spur is taken, the result is

X¥B= —XB
so that xp is zero as required. In summary, if

X’Y;r: YuX
then
X=k,

where % is a complex number times the unit matrix. This
result, a special consequence of Schur’s lemma," will
often be used below.

11 See, for example, Hermann Weyl, The Theory of Groups and

Quantum Mechanics (Dover Publications, New York, 1931),
p. 153. )
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6. If v, and v, are two sets of matrices satisfying
Eqgs. (43) and (44) and if v4 and 4’ are sets of sixteen
matrices formed in parallel from them according to the
definitions at the beginning of this section, then

v4'S=Sva4, (59)
where
16
S=3 v5'Fys, (60)
B=1

and F is any four-by-four matrix. (The last two steps in
the proof of the theorem consist of showing that F can
be chosen so that .S is nonsingular. Pauli attributes this
method of proof to Schur.’?) This assertion is easily
proven from a consideration of the matrix

16
Ya'Sva= 2 va"vB'Fypya. (61)
B=1

The product ypya can always be simplified so that
(62)

where ec¢ has one of the four values 41, 4=7. For arbi-
trary vy, as B ranges from 1 to 16, C must range also
from 1 to 16 since if both

YBYA= €CYC)

YBYA= €cYC
and

Ypya=0cyc

for two different matrices v and vyp, then

vB=¢€cycya= (ec/8¢)¥p,

and this would contradict the linear independence
demonstrated in step 3. Furthermore, the e¢ in Eq. (62)
are determined by the definitions of the y4 in terms of
the vy, and by the anticommutation rules, Egs. (43).
Since these definitions are made in parallel for the primed
matrices and since the primed matrices satisfy the same
anticommutation rules, Eqgs. (44), the same numbers
will arise in the primed system:

vB'v4 =e€cvc.

The product y4'ys’ is conveniently found by taking the
inverse of this last equation:

va'vys'=(1/ec)vc. (63)

Introducing Egs. (62) and (63) into Eq. (61) and
changing the sum-index from B to C one finds

16
va'Sva=2 (I/GC)YC'FGC‘YC
C=1

16
=3 v'Fyc
Cc=1

2 Reference 2, pp. 110, 115; I. Schur, Berliner Sitzber., 406
(1905).

R. H. GOOD,
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and obtains Eq. (59) by multiplying from the right
with YA-

7. The matrix F can be chosen so that S is not zero.
If S were zero for all F, the equations

jél(')/B,)pv('YB)pa'=0 (64)

could be constructed from Eq. (60) by choosing F
successively to be the various matrices which have one
element unity and the other fifteen zero. Here, (v5') .,
are the elements of the matrix v5'. Equations (64) imply
the matrix equation

16
Z (’YB/);U"YB=O-
B=1

The (y5")u» are not all zero since y5?=1, so this equa-
tion is incompatible with the linear independence of the
v . It must be concluded that some matrices F exist for
which S, defined by Eq. (60), is not zero.

8. The matrix F can be chosen so that .S is non-
singular. A proof of this statement can be made easily
with the help of a matrix 7" defined by

16
T=73 vsGvs/, (65)
B=1

where G is a four-by-four matrix to be chosen below.
The matrix F in the definition of .S,

16
S= Z ’YB'F‘YB,
B

=1

(66)

will also be left arbitrary for the moment. The argument
of step 6 with the primed and unprimed matrices
interchanged can be applied to the 7" matrix so that

vaT=Ty4', (67)
and step 6 applied directly to .S gives
")/A,S= S’YA. (68)

However, from Eqs. (67) and (68) together it may be
concluded that
'yATS= T’)/A'S= TS’)'A

so that, as a consequence of step 35,

TS=*%, (69)

where £ is a complex number times the unit matrix. At
this point the matrix G will be chosen so that T is not
zero; this was demonstrated to be possible in step 7.
Then the matrix F will be chosen so that % is not zero.
To see that this also is possible one notices that, if % is
zero for every choice of F, Egs. (69) and (66) imply that

16
Z T’YBIF’YB= 0.
B=1

Therefore, if F is chosen successively to be the matrices
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with one element unity and the rest zero, one finds

16

2 (Tv8")w(vB)pe=0.

B=1

Written as a matrix equation in the vz this becomes
16
Z (T'YB’)uv’YB=0-
B=1

Not all of the (Tys’)., are zero since 7' was chosen
previously not zero and v’ includes the identity in its
range. The assumption that % is zero for all F is then in
contradiction with the proven linear independence of
the vp. It must then be possible to choose F and G so
that Egs. (68) and (69) hold, where % is not zero.
Accordingly, there must exist a matrix .S, nonsingular,
such that

’YMI=S’Y#S“I‘

This completes the proof of the theorem.

The matrix S which connects two sets of Dirac
matrices according to Eq. (70) is uniquely determined
by the two sets except for an arbitrary numerical factor.
In order to prove this suppose that v, and v,’ are two
definite sets of Dirac matrices and suppose also that
there are two matrices Sy and S, such that

(70)

' =SryuSi,
V' =SayuSa.

If v,/ is eliminated from these two equations, it is seen
that

S1ypSi = SyyuSe
S2_1Sr)’,‘= 7}152_1'51-
Here again, step 5 can be applied; since S;15; com-

mutes with each of the v,, it must be a number, say
k, times the unit matrix so that

S1=kS2,

and this proves the assertion. Occasionally it is con-
venient to impose the extra condition

detS=1.

Evidently this condition can always be fulfilled by an
appropriate choice of the numerical factor £. The effect
of this condition is that S is determined except for an
arbitrary factor of 41, ==1.

As an example, the operation of taking the transpose
of a matrix provides a direct application of the funda-
mental theorem. Let v, be a set of Dirac matrices so that

Yot Y Y= 20u.
The transpose of this equation is
Vo v vy = 200,

so that the v,7 also form a set of Dirac matrices. Ac-
cording to the fundamental theorem there must exist a
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nonsingular matrix B such that

vu"'=By,B. (71)

This matrix is of special interest in some of the sections
below. An interesting property of it is that it is anti-
symmetric. Still following Pauli,? one can demonstrate
this by first of all taking the transpose of Eq. (71) and
then substituting Eq. (71) into the result:

vp= (B Ty, BT
= (B™)"By,B~B"
= (B-1BT) by, (BB,
This equation can then be multiplied from the left by
(B7'BT); the result is that (B~1BT) commutes with the

v, and so, according to step 5 of the proof of the funda-
mental theorem, is a constant times the identity:

B 1BT=k.
However, the equation
BT=kB (72)
implies that
B=kBT=kB

so that & is &=1; this establishes that B is either sym-
metric or antisymmetric. The possibility that B is
symmetric can be ruled out by means of an argument
which Pauli credits to Haantjes.”® In this argument one
counts which of the By, are symmetric and which are
antisymmetric. On rewriting Eq. (71) in the form

v'B=By,, (73)

it is easily seen that
(B1)T=Fk(B1), (74)
(Byw"=kv,"B=Fk(Byy), (75)
(iBywyy)"=kiv,"y,"B= —k(iBv,y»), (76)
(EByxvuy) T=kiv,"y"nB= —k(iByxyuys), (77)
(Byryoysy) "= kys"ys"ve "1 " B=k(Byryzvyys), (78)

where Eq. (72) has been used to eliminate B7, and
A, u, » are all unequal. If B is symmetric so that & is 41
it is seen that there are ten antisymmetric matrices
Bypun and Bypys. These ten matrices must be linearly
independent since the vy, and vy, are linearly inde-
pendent and B has an inverse. This is an impossibility;
there can only be six linearly-independent antisym-
metric four-by-four matrices. It must be concluded that
kis —1 and the B matrix is antisymmetric. It is also
pertinent to consider the connection between the B
matrices defined for different sets of v,. That is, if

vu"'=By,B, (79)
v/'T=B"y,/B (80)

define the matrices B, B’ while
v =SyuS™ (45)

13 Reference 2, p. 121.
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gives the connection between the v,/ and the v,, one
may ask for the corresponding connection between B’
and B. This connection can be found by substituting
Eq. (45) into Eq. (80) to eliminate the v,/,

(577,757 = B'Sy,S B,

then substituting Eq. (79) on the left to eliminate
the v,.7,
(S)TBy,BST=B'Sy,5B',

and then multiplying from the left and right by the
proper quantities to cast the equation into the form

STBHST) T By,=v,S™' B (S)"B.

The matrix which here commutes with the v, must be a
number, say k, times the unit matrix so that

STB-(S)TB=F,
or

B=#ESTB'S, (81)

which is the required connection. A final property of the
B matrix is that, if the vy, are Hermitian, B can be
chosen unitary. This is easily seen by taking the
Hermitian conjugate of the defining equation, Eq. (71),
to obtain, when v, 2 =1,,

v = (B™)#y.BY,
and by recombining this equation with Eq. (71) so that

BHBy,=,B¥B,
which implies that
BEB=k,

where £ is some number. The number £ is easily shown
to be real and positive by writing in detail one of the
diagonal elements of B¥B. Accordingly, by proper
choice of the arbitrary factor in B, BEB can be adjusted
until it is the unit matrix and B is unitary. In the
applications below it is always assumed that this adjust-
ment has been made so that B is unitary; it is clear that
then B-is determined uniquely except for an arbitrary
factor whose absolute value is one. As a concrete ex-
ample, for the set of Dirac matrices v, defined by Egs.
(18), (19), and (31), the antisymmetric unitary matrix

g2 0
(s )
0 g2
satisfies the defining equation, Eq. (71). This can be
seen by expressing the v, explicitly in terms of the o,

0 —ioj -1 0
(O ) ()
wo; O 0o 1

and noticing that, as a consequence of the definitions of
the Pauli matrices Eq. (28), v1 and 3 are antisymmetric
while s and v4 are symmetric. The matrix of Eq. (82)
evidently anticommutes with v; and ;3 but commutes
with vz and v, and so it does give a solution of Eq. (71).

(82)

R. H. GOOD,
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In Sec. VII examples of the form of the B matrix for
other special sets of Dirac matrices are given.

IV. LORENTZ TRANSFORMATIONS OF DIRAC
WAVE FUNCTIONS

In this section the Lorentz transformation properties
of the four-component Dirac wave functions introduced
in Sec. II are reviewed. A Lorentz transformation is
defined as a coordinate transformation of the type

(83)

where the transformation coefficients satisfy the orthogo-
nality relations

’
Xp = CQuyky,

Qur@us= Oy (84)

or, equivalently,
(85)

and also satisfy the conditions of reality: a;x, 1a4;, 101,
aqs are real. It is well known that the group of Lorentz
transformations consists of two types of reflections as
well as the transformations which can be formed con-
tinuously from the identity. The first type arises in
considering the determinant of the transformation
coefficients a,,. If 4 is the square four-by-four matrix
formed from these coefficients, Eq. (84) can be written
in the form

@oulsu=0yt,

AT4=1,
and the determinant of this equation gives

det(A74)= (detAT)(detd)
= (det4)?
=1,
so that

detd==+1. (86)

Evidently, the plus sign will apply for transformations
continuous with the identity. However, as well as these,
transformations in which the determinant is —1 also
must be taken into account. The other type of reflection
arises in considering the sign of the transformation
coefficient as. When both » and £ are 4, Eq. (84) reads

@124 a2t asd+asl=1.

Since, according to the conditions of reality, the e;; are
pure imaginary,

ai=—aul?
where the vertical bars indicate the absolute value, and
therefore

0442=1+ldl4f2+f(124l2+l(134l2-
In consequence there are two possibilities for a@ss:
(87)

The first alternative applies to transformations continu-
ous with the identity, but transformations in which @44
is negative also must be taken into account. It is not
convenient below to treat the Lorentz transformations
entirely uniformly; the Lorentz group will on occasion

either au>1 or au<-—1.
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be regarded as consisting of the transformations continu-
ous with the identity, the space reflection

af =—aj =, (88)
which has detd = —1, a4s=1, and the time reflection
x.i,:xf, x4,= — X, (89)

which has detd=—1, au="—1.

There are three considerations involved in assigning
the transformation properties of the Dirac wave func-
tion y. First of all the Dirac equation, Eq. (20), should
be covariant with respect to Lorentz transformations;
this requirement is discussed in the present section. The
other considerations arise when the subjects of charge
conjugation and the formation of covariants quad-
ratically from wave functions are treated; they are
discussed in Secs. V and VI. The Dirac equation is to be
covariant in the sense that, when the Lorentz trans-
formation of Eq. (83) is applied, the equation

d e me
(_"—Au)'ﬁt\b”"‘”‘\b:o (90)
dx, he /
leads to the equation
d e me
( ——Aﬂ')vn¢'+—¢'=o. 1)
ax, he %
The operator (9/9dx,) is a vector,
(a/ﬁx#') = a’w(a/axl')y (92)
but, following Watanabe’s assignments,* the four-

vector potential transformation rule has an extra sign
change whenever there is a time-reflection:

A, (&) = (a4s/ | asa] ) 0,04, (). (93)

Because of this nonuniformity it is convenient to post-
pone the discussion of time-reflections and give them
separate consideration later. For transformations in
which @44 1s positive the covariance can be obtained by
the transformation

¥ (@) =AM (), (94)

provided the matrix A is appropriately chosen. It is
assumed that A has an inverse. In view of the arbi-
trariness of the Lorentz transformation under discus-
sion, the covariance can be demonstrated by showing
that Eq. (90) follows from Eq. (91) rather than vice
versa. Substituting Egs. (92), (93), (94) into Eq. (91)
and operating from the left with A=, one finds

J e me
———A4 v) a’uvA_l'YMAKb'l'?: 0,

dx, *c
so the covariance is established if A can be chosen so that

(95)

14 Satosi Watanabe, Revs. Modern Phys. 27, 26 (1955). See also
Satosi Watanabe, Phys. Rev. 84, 1008 (1951).

Gy A="y,.

195

The existence of a matrix A satisfying this condition is
easily shown in the following way. As a consequence of
the orthogonality relations, Eq. (85), the matrices v,.’
defined by

'Yu,= AupYp (96)

satisfy the anticommutation rules

O T e s T T O O o ol 0 R 8
=Quplye (’Yp'Yd”"Ya'Yp)
=2up0150ps
=204p0s,
=20,

and so, according to the fundamental theorem, a matrix
A such that

7o' = Ay 97

can be found. This is just the matrix required to satisfy
Eq. (95) since Egs. (96) and (97), together with the
orthogonality conditions Egs. (84), yield

Ay A= auy,)
= AuQppYp
= 0,570
=,.

Thev,’ defined in Eq. (96) are not necessarily Hermitian
even though the v, are Hermitian because the a,, are
not necessarily real; it is important here that the
fundamental theorem holds between sets of matrices
which need not be Hermitian. In summary, the covari-
ance of Eq. (90) with respect to Lorentz transformations
which preserve the direction of the time is obtained if
the wave function transforms according to

V(@) =AY (x), (98)

where the matrix A is connected with the Lorentz
transformation coefficients by

(99)

According to the discussion in the paragraph following
Eq. (70), this defines A except for an arbitrary numerical
factor.

When there is a time-reflection, ¢4 < —1, the covari-
ance requires a different treatment than in the previous
paragraph because of the extra sign change of the four-
potential in Eq. (93). As a first step in compensating for
the extra sign change, one takes the complex conjugate
of Eq. (91) because this operation also changes the sign
of the four-vector potential relative to the gradient
operator:

a e
( +—4 j')WC*VC
dx;/ hc

Y, =A"1y,A.

a e me
_( +~—A4’)v40w'0+~¢'0=0- (100)
(9304’ #c %
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Here the difference in sign between the first two terms
arises because x," and A4’ are pure imaginary. From the
form of this equation one is led to introduce a matrix C
such that

vi¢=Cy,C, (101)
’)’40-—_— —C’Y4C~1 (102)
because then, in terms of ¢’ defined by

Y'o(a')=Co' (x), (103)

and after multiplying by C—1, Eq. (100) becomes

J e me
( +—AM')7#¢'+—¢'=O. (104)
ax, e %

The fundamental theorem ensures the existence of such
a matrix C, for the v, are a set of Dirac matrices
satisfying the anticommutation rules Eq. (43) and, by
taking the complex conjugate of Eq. (43), it is seen that
v;¢, —v4© satisfy a similar set of equations. In fact it is
easily verified that the matrix

(105)

satisfies Egs. (101) and (102), as a consequence of the
defining equation for B, Eq. (71), and of the fact that
the v, are Hermitian. The final step is to transform Eq.
(104) to the unprimed quantities according to Egs. (92)
and (93), keeping in mind that ¢4 < —1. By comparing
this with the non-time-reflection case discussed above it
is obvious that if

C=Byusys

@' (2") =AY (x), (106)
where

@Y o=A"1y,A, (99)

then Eq. (104) becomes
J e

me
———A4 u)'Yu‘//‘*'_"p =0,
ox, e %

as required. The complete wave-function transformation
is found by combining Eqs. (103) and (106). The Dirac
equation is covariant with respect to time reflections if
the wave function transforms according to

Yo =Chy(x), (107)

where A is chosen to satisfy Eq. (99), the same as for
non-time-reflections. (One could, of course, perform the
two steps above in the opposite order, first transforming
to the unprimed quantities and then making the
transformation with the C matrix. This leads to the
alternate transformation rule

PO =AY (x). (108)

In the next section it is argued that only transformations
such that
CA=ACC

should be considered ; in that case Egs. (107) and (108)
are equivalent.)

R. H. GOOD,

JR.

Regardless of whether it is a time reflection or not,
when the Lorentz transformation

x4 = au%,
is applied, a matrix A such that
(109)

must be found before the transformation of the wave
function is known. It would be a complicated affair to
write down A explicitly in the general case, but for the
special cases of two-dimensional rotations and the space
and time reflections of Egs. (88) and (89) the matrix A
has a simple form, as exhibited below. In a sense the
formulas below give A in the general case because any
Lorentz transformation can be expressed as a sequence
of reflections and two-dimensional rotations. To begin
with, the matrix

A=cos(w/2)+v,v» sin(w/2) (110)

(where ps%£v) corresponds to a rotation in the u» plane;
the parameter w measures the rotation angle. The
inverse of this matrix is

A= cos(w/2) —yuv» sin(w/2),

as is easily verified by direct multiplication. When p=1,
y=2 for example, it is easily seen that

Cue¥ p=A""y,A

A'y1A=cosw y1+sinw vys,
A7y A = —sinw y14-cosw v,
AysA =13,

AlyA =7,

By comparison with Eq. (109) this is found to corre-
spond to the Lorentz transformation

%1’ = cosw x1+sinw %,

%' = —sinw x4 cosw 2,
I

X3 = X3,
I

X4 =Xy,

which is a space rotation through an angle w about the
x3 axis. A parallel result is obtained for the case u=3,
v=4 with the difference that » must be pure imaginary
to satisfy the conditions of reality. With the change to
the parameter v such that

f e Ar—lo (1 — —202)—}
o ey SR
the transformation can be written in the form
w1 =1,
m = (112)

x3' = (23— vt) (1— 2?73,
= (t—c2vxs) (1 —c 2?3,
which is the usual form for the Lorentz transformation

between two parallel coordinate systems with relative
velocity v in the x5 direction. A more complete discussion
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of the matrix in Eq. (110) is given by Pauli.!® For a space
reflection, the assignment

(113)

gives, on substitution into Eq. (109), the Lorentz
transformation coefficients required in Eq. (88). Finally
it is easily verified that the matrix

A=1y,

(114)

corresponds to the time reflection of Eq. (89). From
Egs. (107), (105), and (114) combined, it is seen that
the net wave function transformation, corresponding to
the time reflection of Eq. (89), is

YC(@)=CAy(x)
= Byyysysysp (%)
=By (x). (115)

The arbitrary numerical factors in the matrices A of
Eqgs. (110), (113), and (114) have been chosen in advance
to satisfy conditions which will be imposed in the next
two sections. It will be seen that these conditions deter-
mine these matrices except for an arbitrary factor of —1.
In the case of the transformations continuous with the
identity this indeterminacy is in keeping with the de-
pendence of the matrices in Eq. (110) on the half-angle,
because if w is increased by 2, the matrix in Eq. (110)
changes sign but the corresponding Lorentz transforma-
tion is unaffected.

The matrix A of Eq. (109) has an especially simple
form in the special case of a space rotation or reflection,

A=1v5y4

’ ’
Xj =QjrXr, X4 =%y,

and when the matrices introduced in Sec. II, Egs. (18),
(19), and (31), are used for the v,:

0 —ioj -1 0
'Yf=(, ), 74=( ) (116)
10 ; 0 0 1

First of all, from the fourth component of Eq. (109), it is
seen that
Ya=A"lyA.
If the equation
Ayi=v

is written in terms of two-by-two matrices using v, as
given in Eq. (116), it is seen that A has the form

As O
(o a)
0 Ar
where Ag and Az, are two-by-two matrices which have
yet to be determined and O indicates the zero two-by-
two matrix. The subscripts.S and L are used because Ag
and Az are the transformation matrices for the small and

large components of the wave function in the non-
relativistic limit. The next step is obviously to restate

15 Reference 7, pp. 222-224.
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the equation for A, Eq. (109), in terms of Agand Ar. The
first three of Egs. (109) become

0 —ia’k
)
10k 0
(AS_1 0 )(0 —'I:G'j)(AS 0)
“No a1/ \is;, o A

where the v; have been replaced according to Eq. (116).

On multiplying out the right-hand side, one finds that
the equation will be satisfied provided the equations

(117)
(118)

are valid. These two equations can be uncoupled by
using the properties of the Pauli matrices. If Eq. (29) is
operated on from the left by Az and from the right by
Az, the result is

AL—Ia'jAsA,g—lakAL= ’iejszL—lalAL"}“ajk,

where the factor AgA g™ has been added in the middle of
the term on the left to facilitate the substitution of
Eqgs. (117) and (118):

a0 r=A~Ag"lo;AL,

Q0= AL_IO']'A,g,

41018 kmOm= €A L7 01 A L0
This equation can be considerably simplified by ap-

plying Eq. (29) again on the left to make the equation
linear in the ¢;. It is seen that

@18 km (L€tmno nt-01m) = t€; A L0 0A L0

The terms independent of the o; cancel as a consequence
of the orthogonality relations. These relations can also
be introduced into the first term on the left so that the
equation becomes

010 km (@ pr@ pn) €1mr0n= €A L7 T IA L.
The reason for this introduction is that now the well-
known fact
@18k pr€im,= (deta)e;ip
brings the equation to the form
(deta) ek p@ pnon=€jh LA L
so that, finally,

(deta)aion,=Ar oA L. (119)

This equation is to be compared with Eq. (109); it is
seen that the Pauli matrices play a part in the theory of
three-dimensional orthogonal transformations parallel
to the Dirac matrices in the theory of four-dimensional
orthogonal transformations. The connection between A g
and Ay is easily found by combining Egs. (118) and
(119):

a'jAs = ALajkO'k
= (deta)“lojAL,
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and therefore, since the square of the determinant is one
and ¢ is 1,

Ag= (deta)AL. (120)

The problem of finding the four-by-four matrix A is thus
reduced to the problem of solving Eq. (119) for the two-
by-two matrix A . Solutions of Eq. (119) in the case of a
rotation about one of the coordinate axes are easily
obtained by substituting the v; from Eq. (116) into Eq.
(110) and using Eq. (29) to simplify the products of the
Pauli matrices. For a rotation through an angle w in the
right-hand sense about the k-axis the result is

Ar=cos(w/2)+io; sin(w/2). (121)

For rotations the matrix Az is just the matrix of the
Cayley-Klein parameters.’®* A matrix Az for the space
reflection of Eq. (88) is

(122)

as may be found by using the v, of Eq. (116) in Eq.
(113).

The covariance of the Dirac equation with respect to
Lorentz transformations leads uniformly in the non-
relativistic limit to the covariance of the Schrodinger-
Pauli equation, Eq. (40), with respect to space rotations
and reflections, Galilean transformations, and time
reflection. As discussed in Sec. IT the nonrelativistic
limit of the Dirac equation may be taken by introducing
the matrices of Eq. (116) and discarding the small
components of the wave function compared to the large.
For a space rotation or reflection the results of the
previous paragraph may be used. The small components
do not even enter in to the transformation rule for the
large components. It is easily verified that Eq. (40) is
covariant with respect to the transformation

AL=i,

%' = ajxr,
V=t
A ()= ajd x(x),
(') =2(v),
By («")= (deta)a;rBi(%),
Y/ (&) =Aryr(x),
where
a; Q1= 0 kly
(deta)ajror=Ar"'0;AL.
For the Galilean transformation it is convenient to refer
to the Lorentz transformation of Eq. (112) which, when
the terms involving (/c) can be neglected, reduces to
xl’ =¥1,
xgl =X,
X 3I =X3— ‘Z)t,
t'=t.

(123)

16 See, for example, Herbert Goldstein, Classical Mechanics
(Addison-Wesley Press, Inc., Cambridge, Massachusetts, 1950),
p. 116.
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The corresponding transformation of the space and time
derivatives is easily seen to be

(0/ 0xf')=(8/ 0;),
(8/0t')=(9/0t)+v(9/ o).
The potentials 4}, i1® form a four-vector in parallel with

the coordinates x;, ict; by comparison with Eq. (112)
one has

(124)

A3I= (Ag—c“lsz) (1— _27)2)_%,‘

&' = (®—cvd;) (1—c22) 4,
where the nonrelativistic limit has yet to be taken. In
Eq. (40) it is seen that an effect of the limiting process
was to multiply the scalar potential by a factor of ¢
relative to the vector potential. Therefore in the
nonrelativistic limit one must carry the transformation

rule for the scalar potential to one higher order than for
the vector potential and write

Ai=4;
&'=&— (v/c)A4s.

A minor consequence of the first of these is that

B/=B;.

(125)

(126)

The matrix A corresponding to the Lorentz transforma-
tion of Eq. (112) is given by Eq. (110) when u=3, v=4,
and when the parameter w is given by Egs. (111). When
(v/c) is small compared to 1, it is seen that w is just
1(v/c), A is the identity, and

Y (@) =y¢(x).

In view of the defining equation for the large com-
ponents, Eq. (32), they transform according to

Y1/ (&) =y (%) explme(t—1')/ih]
=y1.(x) exp[ (movxs—3met)/in], (127)

where the last of Egs. (112) has been used to find the
limiting value of the exponent. One can then easily
verify by direct differentiation that Eq. (40) is covariant
with respect to the transformation of Egs. (124) to (127)
so the covariance with respect to Galilean transforma-
tions does come out as a limit of the covariance with
respect to Lorentz transformations. The final transfor-
mation to be considered is the time reflection

{=—1. (128)

L
Xj = Xj,

As required by Eq. (93) the potentials transform ac-
cording to

A/=—4; =9, (129)
and so the rule for the magnetic field is
B/=—B,;. (130)

Substituting for the B matrix from Eq. (82) into the
wave-function transformation rule, Eq. (115), and using
the definition of the large components, Eq. (32), one
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finds that
Yu'o(x") = o (). (131)

In order to demonstrate the covariance, it is convenient
to start with the complex conjugate of Eq. (40) in the
primed coordinate system :

J
8¢L

( )O'JCB]I—}-B(I”}//L'C“ —lh
2mec or

If here the primed quantities are eliminated in favor of
the unprimed by Egs. (128) to (131) and if then the
equation is multiplied through by o, the result is

1 hd e hd e
HEEERICT®
2m 10x; ¢ 10%; ¢
eh oYL
+ (——-—)azajcasz—l-e@]l//L: h—.
2mc at

The remark that, as a consequence of the definition of
the Pauli matrices Eq. (28),

0’20']'00'2: —0j

completes the proof of the covariance with respect to
time reflection. Time reflection in the nonrelativistic
limit has been discussed especially by Wigner.!?

In the treatment of time reflections given above, the
vector-potential transformation rule was assumed to be

4 ;4, (x’) = (a44/ l A44 I )GWA ,,(x), (93)
and this led to the wave-function transformation
Y'0(a") =CAy(x), (107)
where
@Y p=A"1v,A. (109)

If, in contrast to this approach, the vector potential is
assumed to be a regular vector even with respect to time
reflections,

AM’ (xl) =au4, (x);

then the time reflections will not require a separate

treatment and
Y (2)=Ay(x) (132)

will hold for all Lorentz transformations. This point of
view has the advantage that it permits a uniform
treatment for all Lorentz transformations, and it has the
disadvantage that it does not lead to the nonrelativistic
time-reflection of the preceding paragraph.

V. CHARGE CONJUGATION

In this section the basic idea of charge conjugation is
outlined, and some of the properties of the operation are

17 E. Wigner, Gottinger Nachrichten 31, 546 (1932).
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discussed. The effect on the transformation matrix A of
requiring that charge conjugation be a covariant opera-
tion is discussed in detail.

The idea of charge conjugation arises in a further
consideration of the C-matrix substitution made in the
treatment of time reflections in the preceding section.
Referring back to Egs. (100) to (105), one sees that the
substitution

YO(x)=Co(x) (133)
carries the equation
a e me
£_;I;Au)'}'#¢+;¢=0 (134)
into the equation
d e me
5;"+;;A“)vu¢+;¢=o, (135)
where the C matrix may be defined by
C=Bryyys, (136)
and has the properties
vi¢=Cy,C, (137)
v4C=—Cy, (138)

Before discussing the significance of this substitution,
some properties of the C matrix and of Eq. (133) will be
pointed out. Two properties of C are that it is symmetric
and unitary. These are consequences of the properties of
the B matrix discussed at the end of Sec. III. The
symmetry of C follows from the antisymmetry of B:

CT= (Bysys)”
=v5"v4"BT
=—vs7v4s"B
=—Bysvs
= Bv4ys
=C, (139)
where Eq. (73) was used to eliminate the transposed

matrices. The fact that C is unitary follows from the fact
that B is unitary:

CHC= (37475)H (B’Y 4y 5)
=57y BEByyys
=YsY4Y4Y5

=1, (140)

The function ¢(x) connected with ¢ (x) according to
Eq. (133) is called the charge conjugate wave function
to ¢(x). Charge conjugation is reciprocal in the sense
that if ¢ is charge conjugate to ¢ then ¢ is charge
conjugate to ¢. This can be seen by multiplying Eq.
(133) by C¥ to obtain

CHYC(x) =CHCo(x).
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On the right Eq. (140) may be applied, and on the left
CH can be replaced by C¢ in view of Eq. (139). Then, on
taking the complex conjugate, one finds

¢'C(x) =Cy (x)’

which proves the assertion. Now that these properties
have been established, the significance of the charge-
conjugation operation can be discussed. From Egs. (134)
and (135) it is seen that, for a certain set of potentials
A, (x), if Y(x) is a solution of the Dirac equation for a
particle with charge e then ¢(x) is a solution for a
particle with charge —e. In view of the reciprocal
property of the charge conjugation this correspondence
between solutions is one-to-one. The corresponding
solutions have opposite signs of energy for if

ihoy/ot=Wy
then it is seen that

1hde/d1=1hd(CHYC)/dt
=—CC(ihdy/98)¢
=—WCYC
=—We¢.

This is the basis of Dirac’s theory of the positron!®: the
correspondence between negative-energy solutions of
the electron equation and positive-energy solutions of
the positron equation led him to propose a single theory
which includes both particles. In it he makes the
assumption that the negative-energy electron states are
nearly all filled and that a positron is the absence of an
electron from one of the negative energy states. This
theory has the advantage that it explains why electrons
in positive-energy states do not ordinarily fall to nega-
tive-energy states; such transitions are forbidden by the
Pauli exclusion principle as long as the negative-energy
states are already filled. In many of the modern theories
the postulate of the infinite number of electrons in
negative-energy states is avoided by quantizing the
particle field in such a way that electrons and positrons
appear on an equal footing from the start.!®

Especially if Dirac’s theory of the positron is used, it
is to be assumed that the correspondence between
positive-energy positron states and negative-energy
electron states is independent of a particular Lorentz
frame of reference, so that the charge conjugation
operation is covariant with respect to Lorentz trans-
formations. This has been pointed out by Pauli.®® To put
this requirement in symbols, if

YO (x)=Co(x), (141)
and if a Lorentz transformation is made so that
¢ (2)=Ay(x),
) (142)

¢’ (x")=A¢(w)

18 Reference 1, p. 272.

19 See, for example, W. Heitler, T'he Quantum T heory of Radiation
(Oxford University Press, London, England, 1954), third edition,
Chap. II1.

2 Reference 2, p. 129.
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when the time is not reflected or so that
Yo(x") =CAy(x),
¢'¢(«") =CAg(x)

otherwise, then it is to be assumed in consequence that
Yo)=Co' (). (144)

This assumption imposes a condition on the trans-
formation matrix A. Considering a non-time-reflection,
if one substitutes Egs. (142) into Eq. (144) the result is

A% (x)=CAd(x),
and if then Eq. (141) is used on the left,

ACCo(x)=CA¢(x), -
so A should satisfy

(143)

ACC=CA. (145)

The same condition is obtained in a similar way when a
time-reflection is considered. Given the Lorentz trans-
formation coefficients @,,, A is determined except for an
arbitrary numerical factor by Eq. (109):

@Y p=A"1y,A. (146)

It is easily seen that A must satisfy an equation like
Eq. (145) as a consequence of the conditions of reality
on the a,,. The complex conjugate of Egs. (146) is

@k 16— aiavaC= (A1) Cy;CAC,
— @iy st aaryaC= (A7) Oy, CAC,

and these equations can be combined with the help of
Egs. (137) and (138) into the form

@,,Cy,C 1= (A1) CCy,C-1AC.

Here Egs. (146) may be reapplied to eliminate the a,, on
the left

CA 1y, AC = (A1) CCy,C1AC,

and if this equation is multiplied from the left by C—1A¢
and from the right by CA™! the result is

CACCA Yy, =7,CACCA-L.

Thus the matrix C'TA°CA~ commutes with the v, and
so, according to step 5 of the proof of the fundamental
theorem, it is a number, say %, times the identity. This
means that

ACC=FECA. (147)

Furthermore by taking the determinant of this last
equation one sees that the absolute value of % is unity.
Then from Eq. (147) it is clear that % can be adjusted to
unity by proper choice of the argument of the arbitrary
complex number in A. One can thus obtain the covari-
ance of the charge conjugation operation in this simple
way. In what follows it will be supposed that this
adjustment has been made so that Eq. (145) does apply
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to A. It is clear that Eqgs. (145) and (146) determine A

except for a real (positive or negative) numerical factor.

A consequence of Eq. (145) is that when a series of
Lorentz transformations is applied, the net wave-
function transformation can be found by multiplying all
the A matrices together and using

¢ () = Ay (x)
¥e(a)=CAY(x)

depending on whether the over-all transformation is a
time-reflection or not. For example suppose the time-
reflection,

or

xu, =Dy,
Y'C(x") =CMy (),
buy,=M"y, M,

is followed by the non-time-reflection,
x)\”= a“x“/’
P (") =AY (x),
Y= A_I’Y)\A.
Then the net transformation is found by direct substitu-
tion to be
" = anbusty,
P (a") =ACMYC (x),
anuburyy=ar M1y, M
= M_IA_I’Y)\AM
= (AM)7'yx(AM).

Since Eq. (145) applies to A, the wave-function trans-
formation can be rewritten as

P70 (x") = A°CMY ()
=C(AM)Y (x),

which proves the assertion in this particular case. The
assertion in the other cases can be verified in a similar
way. The special values of A given in Egs. (110), (113),
and (114) have been chosen so that they satisfy Eq.
(145). That charge conjugation should be covariant
with respect to those two reflections was first pointed
out by Racah. Any matrix compounded from those
given in Egs. (110), (113), and (114) will still satisfy
Eq. (145) since if both

ACC=CA
and
MCC=CM,
then for the product AM,
(AM)€C=ACMEC

=A°CM

=C(AM),
as required.

2 Giulio Racah, Nuovo cimento 14, 322 (1937).
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VI. COVARIANTS FORMED QUADRATICALLY FROM
DIRAC WAVE FUNCTIONS

In this section it is shown how tensors can be formed
quadratically from Dirac wave functions. These tensors
are of physical interest because they can be chosen so
that their components are real or pure imaginary ac-
cording to whether their indices contain an even or an
odd number of fours—with such a choice they can
represent observable quantities. The discussion of these
tensors leads to an additional condition which is im-
posed on the wave function transformation matrix A.

In forming tensors the basic idea is to consider the
quantities Y4y g where ¢ is a Dirac wave function and
¥4 is the adjoint wave function of Eq. (25). Therefore
the first thing to be discussed is the transformation rule
for the adjoint wave function. In an unprimed coordi-
nate system the adjoint is defined by

A=y (148
and in a primed system by
Ya=yty, (149)

If the two coordinate systems are connected by a non-
time-reflection,

¥ =AY, (150)
then, combining these three equations, it is seen that
VA=Y
=¢HAH‘Y 4
=yAydFy, (151)

On the other hand, if the two are connected by a time-
reflection

Y'o=Cry, (152)

it is found that

@' 4)0= ' ya)¢
= @),
= (CAY)ys©
=y HAHCHy,C
=P AyATCy
= — ¢y By, C, (153)

where properties of the C matrix, Eqs. (140) and (138)
have been used in the last two steps. One can see that if
Y4 were to transform with a factor of A=, the tensor
transformation rules for the quantities ¢4ypy would
result in a direct way from the fact that

@upYo=A"1y,A. (154)

It does happen that the matrix ysA#y, is related to A™*
as long as the a,, satisfy the conditions of reality. This
can easily be seen by taking the Hermitian conjugate of
Eq. (154),

@iy r— @igeys= Ay ;(A)H,
— aary it Guya= ATy (ATHE,
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noticing that these equations can be combined into the
form

@Yy Ya= Ay gyy s (A,
substituting Eq. (154) on the left to eliminate the a,,,
YahTYuhy = Ay gy v (A,

and multiplying from the left by Ay, and from the right
by AHv, to obtain

Yuldy A HEy = Ay A By gy,

Thus the matrix Ay4AHy, commutes with the v, and so,
according to step 5 of the proof of the fundamental
theorem, is a number, say %, times the identity

AydEyi=F. (155)

It can further be seen that % here is real by taking the
Hermitian conjugate of this equation,

74A'Y4AH= kC',
and multiplying from the left and right by v,:
Ay ATy =kC, (156)

Equations (155) and (156) show that % is equal to its
conjugate and so is real. Furthermore from Eq. (155) it
is seen that by proper choice of the absolute value of the
arbitrary factor in A one can adjust the absolute value
of & to be one. This can be done independently of the
assignment made in the preceding section to obtain Eq.
(145) since that required a choice of the phase of the
arbitrary factor only. In what follows it will be supposed
that the arbitrary factor in A has been chosen so that
both Eq. (145) and

A’)/4AH’Y4= :ﬂ:l (157)

are satisfied by A. It happens that the sign in Eq. (157)
is just the sign of @4. One can see this by multiplying the
fourth of Egs. (154),

a4P'};p = A—“LY‘}A’

from the left and from the right by v, and adding to
obtain

a1, (Ve v oy = VATV A Ay Ay s,

The term on the left can be simplified by using the
anticommutation relations of the v,. Also according to
Eq. (157), v4A™! can be replaced by ==Afy, in the first
term on the right and Ays by Z=y4(A~)# in the second.
The equation then becomes

2a4=+[AFAFATI(AD)H].

The sign can now be decided by considering one of the
diagonal elements of this matrix equation. A diagonal
element of the product of a matrix and its Hermitian
conjugate must be real and positive so the term in the
square brackets gives a positive contribution. The sign
must accordingly be identical with the sign of @44 and
Eq. (157) can be written

Ay AFy = (a4s/ | asa]). (158)

R. H. GOOD,

JR.

In view of this equation the transformation rules for the
adjoint wave function, Egs. (151) and (153), are as
follows:

YA=yApT (159)
for a non-time-reflection, and
W'4)C=yAA1C (160)

for a time-reflection.

Further discussion of the formation of tensors will be
postponed for a paragraph in order to make a few more
remarks about the wave-function transformation matrix
A. Given a set of Lorentz transformation coefficients a,,,
A is to be chosen so that it satisfies Egs. (109), (145),
and (158):

aMV’Yv=A—17ﬂA1 (161)
ACC=CA, (162)
Ay A By = (a44/ | Qu4]). (163)

Equation (161) determines A as far as a numerical
factor, Eq. (162) fixes the argument of the factor as far
as a multiple of 7, and Eq. (163) specifies the absolute
value of the factor. These three equations then de-
termine A except for a factor of 4=1. For each Lorentz
transformation there are two matrices A satisfying
these conditions and these two differ only in sign. The
special solutions for A given in Egs. (110), (113), (114)
have already been chosen to satisfy Eq. (163) as well as
the other two. Products of these matrices will also
satisfy Eq. (163) properly, as well as the other two
equations, for if also

M’Y4MH’Y4= (b44/[b44])
then, for the product AM,

(AM)y4(AM)#ryy= AMyMZAHy,
= (bas/ | baa| JAvaAEy4
= (bas/ | bas|) (4s/ | asa]).

It can easily be seen that the matrix A is unimodular:
detA=1. (164)

To prove this one takes the determinant of Eq. (162) to
see that detA is real and the determinant of Eq. (163) to
see that detA has absolute value unity. The last step is
to decide between the values plus and minus one. For
the identity Lorentz transformation evidently A is plus
or minus the identity so the sign of the determinant
must be positive for Lorentz transformations continuous
with the identity. For the space and time reflections
whose matrices A are iy4 and vsys, Eqs. (113) and (114),
the determinants of the matrices v, and ¢ysys may be
considered since they have the same value. Each of the
matrices y4 and 4ysys is Hermitian and so has real
eigenvalues; each squared is one and so its eigenvalues
are either plus or minus one; each has zero spur (step 2
of the proof of the fundamental theorem) and so its
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eigenvalues are +1, +1, —1, —1; therefore, each has
determinant plus one. The determinant then is positive
for transformations continuous with the identity and for
these two special space and time reflections. It will still
be positive for arbitrary products of transformation
matrices so Eq. (164) must hold in general. Another
property of A is that, when @;4 and a4; are zero so that
the a,, are all real, A is unitary. This is easily demon-
strated by taking the Hermitian conjugate of Eq. (161)

awyy=A"y, (A,
recombining the result with Eq. (161)
Ay A=Ay, (AT,
and rearranging the equation into the form
VulbAT =AMy,

which implies that
AAE =k,

where £ is a positive number. It can be concluded that %
is 1 by taking the determinant of this last equation; this
completes the proof that

AAF=1 (165)

when the a,, are all real.

Returning to the subject of the construction of tensors,
one can find the transformation properties of the
quantities Y4y gy from the transformation properties of
the wave function and its adjoint. The results of argu-
ments to be given below are the following transforma-
tion rules, corresponding to the Lorentz transformation

’
Xy =au,%,
of the coordinates:

YA =yhy,
WAy = (a14/ | Gas] )@, Ay 3,

WA (Vv — Yy ¥ = (0as/ | aaa]) 04,000 _
XA (Yeyo—vavo ¥, (168)

W 4ysy = (deta)auib vsy b, (169)
W/ Ay’ = (deta)idysp. (170)

The five quantities on the left are often called the Dirac
covariants; individually they are known as the scalar,
vector, tensor, axial or pseudovector, and pseudoscalar
because of the way they transform with respect to non-
time-reflections. Evidently the tensor is antisymmetric.
The factors of 7 have been chosen so that a component is
real if its indices contain an even number of fours and so
that otherwise it is pure imaginary. For example, for the
space parts of the vector one finds

(N’A'Yﬂl/) O=— i(lﬁH’Y{Yﬁﬁ) "
=—wpHyyg
=iy
=iy

(166)
(167)
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(Y4v# is a one-by-one matrix and so is trivially equal to
its transpose), and similarly finds for its time part

(W Ay )= —pFyeyab

= —ipAyap.
The proof of the first three transformation rules, Eqgs.
(166) to (168), for non-time-reflections follows directly
from the transformation rules for the wave function,
Eqgs. (150) and (159), and the first property of the A
matrix, Eq. (161). For example the proof of the tensor
rule is as follows:

N/A ('Y#'Yv - 'YV'YM)‘V =qpAAt ('Yu'yv - v'Yu)A'p
=W ANy oy Ay — ANy y A
= Quply et Ay oY A — Qoo i Ay oy W
= aupawi‘l’A ('Yp’Ya_ ’Yv'Yp)‘p
for non-time-reflections. The proofs for the axial vector

and pseudoscalar follow directly in the same way once
it is established that

A~ ysA= (deta)ys. (171)

This can easily be proven by writing v in the form
(4D eurtoYuY»Y Yo This form is allowable because there
are 4! nonzero terms in the sum, in each of which the
indices are all different so that both €.z and yuyyvevo
are completely antisymmetric—this means that each
such term can be reduced to vs. The proof is then as
follows: :

A lysA= (4D Teus A vy vevol
= (4D Y eurtoupy olgrlovY oY Y 1Y v
= (4)1(deta) epor Y5 Y VY v
= (deta)ys.

The next thing to discuss is the derivation of the
transformation rules when there is a time-reflection. It
is convenient to consider all the covariants at the same
time. From Egs. (152) and (160) it is found that
YAy =L/ 4) v %Y ¢
= [VANIC Iy 57O
= [YHy ATIC 1y pCCAY JH.
It is a property of A, Eq. (163), that ysA™tis —AHy4s0
YAy pp = —[YHAEy CysCCAY 17,
and it is a property of C, Eq. (138), that y,C7' is
—C 1y 50
YAy Y =[YEAEC v CysCCAY JH. (172)
The expression has been cast into this form in order to
make use of the fact that
CyeyCl'=—«(vsv8)", (173)
k=1 when vyz=1, vsvs OF s
=—1 Yuy» ().

Equation (173) is just a convenient way of summarizing

where
when  yp=1v, or
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the symmetries considered by Haantjes in his proof of
the antisymmetry of B, Eqs. (74) to (78). Equation
(173) can be rewritten in the form

Cvavs=—«(v4yB)"C

or, since C is symmetric,
Cyeys=—x(Cvsrp)".

If C is replaced by Bysys according to Eq. (136) the
statement becomes

Bysys=—«(Bysyn)7,

and the truth of this is easily verified from Egs. (74) to
(78), in which % is —1. This establishes the validity of
Eq. (173). Since C is symmetric and unitary its inverse
is its conjugate, and the complex conjugate of Eq. (173)
is

Clysy3°C=—k(vayn)H.

This last equation can now be introduced into Eq. (172)
so that

YAyl = —k[YHIAH (v 5) FAY T2
= K\//HAH’Y «YBAY
= — iy Ay Ay py gAY
= )4 A1y gAY, (174)

where Eq. (163) has been used again in the last step.
This equation shows that the transformation rule for
non-time-reflections differs from the rule for time-
reflections only by the factor «. This difference has been
taken into account in the transformation rules for the
covariants, Egs. (166) to (170), by adding the factor
(a4s/ | ass]) in the vector and tensor equations. This
completes the discussion of these transformation rules.
If the time-reflection viewpoint discussed at the end of
Sec. IV is adopted then evidently the adjoint wave
function always transforms according to Eq. (151),

Y A=yAy Ty,
or, from Eq. (163)

YV A= (ass/ | asa] JWAA

It is seen that when this point of view is used all of the
above covariants transform with the factor (as/|asul)
rather than just the vector and tensor.

Since the charge conjugation operation is covariant,
it is clear that five other covariants of the form ¢4ypep
can be constructed, where ¢ is (Cy)¢, the charge conju-
gate wave function to ¢. These, however, are propor-
tional to the covariants above:

o4y pp=¢ vy 5o
=[(CY) TyeysCHYC]T
=yHC (yav5)"CY
= —iHysypy
=—iysy, 175)

where Eq. (173) is used to obtain the fourth line. One
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may consider next quantities of the form

oAy pY =ty ypd
=yTCyyyay. (176)

First of all it is clear that these are identically zero

unless yp is v, or v, for, as another application of
Eq. (173),

VICyoypy=—? (vovs)"CY
==Y (veyp) TCY 1"
==y "Cyeys¥, (177)
and « is 41 except for those assignments of v 5. Only the
quantities ¢4yyry need be considered, where yyr is any

one of the vy, or y,;. With respect to non-time-reflec-
tions their transformation rule is

& Ayyr = ANy yrAY (178)

and, in parallel with the derivation of Eq. (174), with
respect to time-reflections it is found that

¢ Ayyr = —YAA Iy yrAd.

In view of Eq. (179) these quantities are not covariants.
However, one may consider also the quantities Y4y p¢
which are plus or minus the complex conjugates of the

dhypY:

(179)

(@ s9) = (¢"vay )
=¢" (vevn)W°
=y C (vsy8)°Co
=—x" (yey5) o
==Yy g,
where Eq. (173) has been used and the last step is justi-
fied since y4y 5 is either Hermitian or anti-Hermitian. In

view of Eq. (180) only the y4yyrp are not zero;
evidently they transform according to

(180)

V' 4yvre =¢AAyyrAd (181)
for non-time-reflections and according to
Y Ayvrg' = —¢AA lyyrAy (182)

for time-reflections. From Egs. (178), (179), (181),
(182) it is seen that the sum and difference of ¢p4yyry
and Y4yyr¢ are covariant quantities. In detail in terms
of the wave function ¢ one finds, corresponding to the
Lorentz transformation

!
Xy = QuyXy,
the following transformation rules:

i TCyay i+ Fy iy CY/ €]
= (aas/ | @as| ) @i Y Cray b4y ey CHC],  (183)

i TCys(vurs— vy ¥+ Ty s (v — vy ) C/C]
= ((l44/| a44l)dupdwi[‘)bTC'Y‘l(’Yp'yrr_'Ya'Yp%b

+'//H74 (797v—7v7p)01¢037 (184)
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TCyay ' =y By ey ,CY'C]
l“,,[lﬁTC’y,;'y = ¢H74'ch~1¢c] s

Ve v =YYV =¥ Eya(vivs— vy ) C Y/ C]
"ﬂpavv["l/TC'Yfi ('Yp'Y«r_ 767p)¢
— Yy (v pve—vov,)CWC].  (186)

Here also the factors of ¢ have been added so that the j
components of the vectors and the j& components of the
tensors are real and the other components are pure
imaginary. Covariants can be constructed quadratically
from two different wave functions in a similar way. The
ambiguity in the sign of A has no effect on any of the
transformation rules above because A and A~! always
enter together into any specific term.

(185)

VII. SPECIAL EXAMPLES OF DIRAC MATRICES

The effect on the Dirac equation and on the covariants
of introducing a different set of Dirac matrices is the
first subject treated in this section. Following that, three
special sets of Dirac matrices are discussed: the set
already considered above in discussions of the non-
relativistic limit, a set in which the matrix C is the
identity so that charge conjugation is identical with
complex conjugation, and a set which leads to the spinor
terminology.

In order to discuss the effect of using different sets of
matrices, suppose v, and ¥, are two sets of Hermitian
Dirac matrices:

VYt VY= 26;“0

’7#’71/—'—'7117#: 26/411-
According to the fundamental theorem of Sec. III these
are connected by a similarity transformation:

Vu=SvuS™" (187)
Since both vy, and ¥, are Hermitian, .S can be chosen
unitary,
SHS=1. (188)
This is easily proven by substituting Eq. (187) into

Vi =Yu
to obtain
(S HyuSH=Sy,57,

which can be rewritten in the form
YuSES=SHSy,.

However, if SES commutes with each of the vy, it must,
according to the fifth step in the proof of the funda-
mental theorem, be a multiple, say %, of the identity

SHS=F.

The diagonal element of the product of a matrix and its
Hermitian conjugate is real and positive so % is real and
positive. It is then possible to choose the arbitrary
factor in S so that Eq. (188) is fulfilled. In what follows
it is assumed that this choice has always been made at
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the beginning. One can see next that the substitution

¥ () =Sy () (189)
carries the Dirac equation with matrices v,
d e me
@‘%Au)7n¢+;¢= 0

into the Dirac equation with matrices ¥,

d ieA) ‘l_/+mc_ 0
——— ¥ —y¢=0.
0x, te AR

Therefore the introduction of a different set of Her-
mitian-Dirac matrices only amounts to a unitary trans-
formation among the four components of the wave
function. It will next be shown that Eq. (189) also
applies to the charge conjugate wave function. To make
this proof one may begin with the connection between

Band B, Eq. (81), ~

B=kSTBS.
As argued following Eq. (81), B and B are both unitary
and are undetermined as far as a numerical factor which

has unit absolute value. This means that the absolute
value of % is also one, for

BHB=pkCSHBH(ST)HSTBS
= |k|2SHBH(SSH)TBS
and, since .S also is unitary, this reduces to
1=|k|2

Suppose the relative phase of the arbitrary factors in B
and B or the argument of the arbitrary factor in S is
always chosen so that _
B=STBS
or
B=5°BS—1. (190)

The corresponding connection between C and C is then
found directly to be
C=By:¥s
=SCBS1SyyysS™?
=S5CCS. (191)
Finally then, for the charge conjugate wave function,
§=C0p°
=SCC(S1)CSCyc
= CC¢C
=5¢,
as required. However this result holds only if some of the

arbitrary factors are adjusted until Eq. (190) is valid.
Since

VAP =yH7, 7Y
=y HSHSy ypSISY
=¢A73¢7
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it is immaterial whether the barred or unbarred
quantities are used to evaluate the covariants. Next it
will be shown that the connection between the two wave
functions, Eq. (189), is covariant with respect to
Lorentz transformations. Assume it holds in the un-
primed system. By operating from the left and right
appropriately with factors of S, S¢, and S—* one may
convert Egs. (161) to (163) into the form

AuyYr= (A_)MLVMA_y
(A~)°C=CA-,
A~y (A)H 7= (ass/ I (144] ),

where
A—=SAS.

Therefore, A~ is the transformation matrix for the
barred wave functions and, for non-time-reflections

¥ () =29 (x)
=SAS1S5¢ (%)
=SAY (%)
= S‘pl (xl) )
as required. Using Eq. (191), one can easily construct a

similar proof for time-reflections.
One special set of Hermitian-Dirac matrices is as

follows:
0 —io; -1 0
vi= ( ), ’Y4=( ); (192)
ic; 0 0 1

where the ¢; are the Pauli matrices,

() ()

For this set ys=v1yzysys, @ B chosen unitary, and
C=Byyys are:

01 oz O 0 —oq
() () (0T oo
1 0 0 g2 a2 0

In Sec. IT it is shown how, when these matrices are used,
the Schrodinger-Pauli limit of the Dirac theory is
obtained. At the end of Sec. III this choice of the B
matrix is discussed. In Sec. IV these matrices are used to
discuss the matrix A for a space rotation and to show the
connection between A and the Cayley-Klein parameters.
Another special set of Hermitian-Dirac matrices is

(0 61) (1 O)
Y1= y V2= )
"\ 0/ 7 o -1
0 o3 0 o2
)
g3 0 a2 0

This is a natural type to consider because, as is seen

from the definitions of the Pauli matrices above, the v;
here are real, and 4 is pure imaginary. The matrices vs,

(195)
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B, C as previously defined are for this set

0 i icy 0 10
() (0 )Gy
—i 0 0 —ioy 01

Since the charge conjugation matrix C is the idfjJ
when this set of matrices is used charge conjuf = n,
Eq. (133), reduces to complex conjugation and, as is
seen from Eq. (162), the wave-function transformation
matrix A is always real. It is clear from Egs. (137) and
(138) that C can be the identity whenever v ;, ¢y, are all
real. ‘
Since v; is Hermitian, anticommutes with each of the
74, and gives unity when squared, another set of Dirac
matrices can be formed by interchanging the definitions
of v4 and 5 in Eqgs. (192) and (194). Such a set is of
interest because the diagonal elements of all of the v,,
when written in terms of two-by-two matrices, are then
zero. This property permits the Dirac equation for the
four-component wave function ¢ to be written neatly as
two coupled equations involving two-component func-
tions called spinors which, it develops, transform sepa-
rately with respect to Lorentz transformations con-
tinuous with the identity. Spinors were originally
discovered by Cartan® but had no application in physics
before Dirac’s theory. The spinor point of view has
recently been reviewed by Bade and Jehle.? The basic
properties of spinors are developed below.in order to
show how they arise from the general treatment of the
Dirac equation; for further information the work of
Bade and Jehle can be consulted. Besides the permuta-
tion of the matrices in Eqgs. (192) and (194) mentioned
above, there are other sets of matrices which also are
used to divide the four-component wave function into
two spinors. To conform with the general practice the
discussion here will be based on the two-by-two

matrices
-1 0 i 0
() )
0o 1 0 12
01 0 1
P3=( ): P4=( ):
10 -7 0

which are an arrangement of the Pauli matrices and the
identity with various factors added. It is easily verified
that these matrices satisfy the equations

(197)

piCprtpiCpi=28;,
ps%pi—p;i%ps=0,
paCpa=— I

(198)

and that, as a consequence, the matrices

0 p; (UN "
w=( } w=( ), (199)
pi€ 0 —p 0

2 F, Cartan, Bull. Soc. Math. France 41, 53 (1913).
( B V&; L. Bade and Herbert Jehle, Revs. Modern Phys. 25, 714
1953).
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satisfy the equations

YuYrFvsYe= 20,

and so are a set of Dirac matrices. The v, are evidently
also Hermitian. This starting point is similar to Bade
and Jehle’s—they use a different metric. The matrices
vs, B, C defined as above are easily found to be

1 0 ps€ O 0 1
S W ) W G
0 —1 0 p4 10

Next the four-component Dirac equation

9 e mc

(—‘_——AM)'YMP‘*"_'P:O (201)
ox, hic %

will be broken up into two coupled two-component

equations. The four-component wave function ¢ will be
written as (
¢ (x)
o= (" )
1(x)

where ¢ and 7 are two-rowed column matrices. Two-
component functions like ¢ and 5 are called spinors.
Substituting Egs. (199) and (202) into Eq. (201), one

(202)

finds
e mc
(—_—An)l’nﬂ‘*‘—*fc:(), (203)
0x, ke h
J e mc
(——+—Au)pﬁr+—n0=o, (204)
ox, ke /2

where the complex conjugate of the second equation was
taken to bring the j- and 4-terms together. The charge
conjugate wave function is

() =Cov)= ";g)),

so charge conjugation is equivalent to interchanging ¢
and 7. This can be verified directly in Egs. (203) and
(204) for if ¢ and n are interchanged there the equations
are reproduced except with e replaced by —e. The
transformation properties of the spinors { and 5 can be
found from the transformation properties of the wave
function y; it is assumed that the same decomposition,
Eq. (202), is made in each coordinate system. With
respect to the space reflection

x]/: —Xj x4’=x47 (88)
it is seen from Eq. (113) that
¢ ) =ipan (),
o (205)
7'C (") =ipg (%).
With respect to the time-reflection
xf=wj, g =—ay (89)

207
it is seen from Eq. (115) that
£ () =pas (),

206
7'¢(*") = pan (). (200

The remainder of the discussion will be restricted to the
transformations continuous with the identity. The
matrix A is of course determined by Egs. (161), (162),

(163). However, before applying them, one may notice
that Eq. (171)

A~lysA = (deta)ys
means, when v; is as defined in Eq. (200), that A is of the

form
AC 0
(5 4
0 A
where A, and A; are two-by-two matrices. Then, from
Eq. (162),

(207)

ACC=CA,
and C as given in Eq. (200), it is seen that
A=Ay, (208)
so that the two spinors transform identically :
§'(@)=Ag (),
(209)

7' (") =AM ().

Next it is found that Eq. (163) for non-time-reflections
AyAHy, =1,
rewritten in terms of A, becomes

Agp4CAsTp4= - 1. (210)

From this equation it can be concluded that the spinor
transformation is unimodular. By taking the determi-
nant of the equation one can see that (detA,)? is unity
since, according to the definition of ps in Eq. (197),
(detpy) is minus one. However, A, is continuous with the
identity and therefore

detA,=1. (11)
Finally it is easily seen that Eq. (161)
awyy=A"1y,A (161)
is equivalent to
QuvPy= (Ashl) CPuAs, (212)

which is somewhat in parallel with Egs. (119) and (161).
The covariance of Egs. (203) and (204) with respect to
Lorentz transformations continuous with the identity
can be seen directly as a consequence of Eqgs. (209) and
(212). Independent of the choice of the v,, it was shown
that A is unitary when a4;, a4 are zero, Eq. (165). This
property applies also to A, in view of Eq. (207); for a
space rotation A, is unitary. For any two-dimensional
rotation A, can be found explicitly by specializing Eq.
(110) to the matrices above, Eq. (199). If the adjoint
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spinor is introduced according to

§A=FHps=—¢pC, (213)
then it is found to transform according to
(A= —Hp,C
=—{ HAsHIMC
= —{“piAHp,C
={4 (A (214)

where the conjugate of Eq. (210) was used in the last
step. As a consequence of this and Eq. (212) one sees
that 4{4p,{ is a vector with respect to transformations
continuous with the identity:

if,APug'l = 'L‘g‘A (Asﬁl) CPuAJ

=auiip.g. (215)

The factor of 7 was added here so that the j-components
would be real and the fourth component pure imaginary.
To demonstrate that this result has been obtained, one
takes the complex conjugate of each component and
manipulates it in the following way:

(ig—Apﬂg‘)C= i(i'HlecPug')H
=1 HPMHP4T§'
= —1i{4psCp,Hp,7¢.
From Egs. (197) and (198) it is easily found that
p4%p;7p4T is —p; and that psCpsHp4T is ps. Therefore the
equation
(ig‘APMg‘)C= :Eig‘APui‘
is valid, where the plus sign applies for the j components
and the minus for the fourth component as required.
Also it can be shown that —4¢{1Tpsls is a scalar with re-
spect to Lorentz transformations continuous with the
identity, where ¢; and {, are two spinors:

— 151 Tpats’ = — 151 TAT Pl o2

=—i01TpA A
= —1{17pal’2; (216)
here Eq. (210) was used in the first step. By writing it
explicitly in terms of the components of the spinors, one
finds that this scalar can be expressed as the determi-

nant of the two-by-two matrix whose columns are {;
and ¢»:

—i$1Tpaba=det(§1 §). (217)

Evidently this scalar is zero when ¢ and ¢ are identical.
An alternative proof that this quantity is a scalar rests
on the fact that the transformation is unimodular. It is
easily seen that

det (¢ ¢2) =det (A1 Asl2)

=det[ (A:) §1$2)]
=det(A,) det ({1 )

=det(§1 g‘z):

which proves the assertion.
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VIIL. IDENTITIES BETWEEN SCALARS FORMED
FROM FOUR WAVE FUNCTIONS

In theories of reactions involving four particles which
have Dirac four-component wave functions, the problem
of forming scalars proportional to each of the four wave
functions arises.” In this section connections between
some of the possible scalars will be given. The prototype
of these theories is Fermi’s theory of beta-decay?®; the
arguments below are put in the terms of this theory
although they have somewhat greater applicability.

For emission of electrons the reaction considered is

Ne2P+et-7, (219)

where IV, P, ¢, 7 indicate the neutron, proton, electron,
and antineutrino. Dirac’s theory of holes is assumed to
apply to both the electron and neutrino so the creation
of an electron and antineutrino is identical with the
destruction of a positron and a neutrino. Therefore the
reaction of Eq. (219) can also be written in the form

PN+t (220)

where ¢, » indicate a positron and a neutrino, and thus
the theory of positron emission is included in the theory
of electron emission. Various arguments in the theory?
require the interaction term to be real, a scalar with
respect to Lorentz transformations, proportional to the
wave function of a particle when that particle is de-
stroyed, and proportional to the complex conjugate of
the wave function when the corresponding particle is
created. Actually in the theory the wave functions are
second quantization operators. However they commute
with each other and so, for the present purposes, the
operator properties can be disregarded. The reactions of
Egs. (219) and (220) can be written in the form

N+4ve2P+e,
and then it is easily seen that the interaction terms
Ji=[ptyan WAy ah, I+ v p [ Ay e, (222)
Je=[ryey ¥ ¥ Hvey ¥y ]

+nTvey e T vay b,

Js=—3[¥rTys(v,ve—vovo)¥n]
X va(voyo—vovo)¥s]
— sl Eva(y o= rov P ]
Xy (voYo—vey )Wels

Jo=— [‘PPH“/475’YMI’N:[‘PeH’Y4’Ys’YM0v:|
- [¢NH Y 4757,.%01:][1[/””7 4“/5’)’#%],

Js=[¥rHveyshn [Ty aeysby]
+nEyars e A yeysbe],  (226)

contain the wave functions and their complex conjugates
in the proper way. In each case the first term applies

(221)

(223)

(224)

(225)

% See, for example, Enrico Fermi, Elementary Particles (Yale
University Press, New Haven, Connecticut, 1951).
25 . Fermi, Z. Physik 88, 161 (1934).
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when the reaction of Eq. (221) is to proceed to the
right—electron emission or positron capture. The second
term applies when the reaction is to proceed to the left—
positron emission or electron capture. The constant
factors in the J’s have been chosen so that each of them
can be written in the form

Z{¥rvey sy W H vy s¥]
+WnHyeys¥r W Ey ey sde},

where the sum extends only over the appropriate type of
v - Referring to the definitions of the v 5 at the beginning
of Sec. III, one sees that the negative signs in the
definitions of J3 and J4 correspond to the factors of ¢ in
the definitions of vy, and yp,, and that the factor of
(1/8) in the definition of J3 will reduce the sum of 48
terms to a sum of 6 terms, involving the six vy,,;. For
brevity Eqgs. (222) to (226) will be written collectively
as

Jr= WrvQrn) @lvQrd,)
+ @I p) G v Qrde),  (227)

where the constant real factor and the sums on the right
are not explicitly indicated and the capital Greek
subscripts run from 1 to 5. These Jr are all real, for the
second terms are the complex conjugates of the first:

[ WrHyQrdn) Wy Qry,) 16
= WrTyQoym)? @y L) ¥
=[Yn (vaQr) Y p ] (vaQ20) HY. ]
= YTy Qryp) W Ty Q).

The last step is permitted since v,Qr is just some product
of the v, and so is either Hermitian or anti-Hermitian.
With respect to Lorentz transformations which do not
reflect the time the wave functions transform according
to Egs. (150) and (159), and it is evident that the Jrare
scalars. When there is a time reflection, Eqgs. (152) and
(160) are to be used. One finds, in parallel with the
derivation of Eq. (174), that

V' By Qe = kv Hy AT QrAY p,

where «, defined just below Eq. (173), is +1 when T' is
1,4,or 5and is —1 when I'is 2 or 3. In any case k*is +1
and so the Jr are scalars with respect to time-reflections
also, the first terms transforming into the second. These
five interaction terms thus fulfil all the conditions
imposed above, but of course there are several other
possibilities. For example, a linear combination of these
interactions,

5
]=26r]r,

I'=1

(228)

where the ¢r are any real numbers, also fulfils the
requirements. In beta-decay theory it is customary to
take the five Jr as the primary interactions and to
express other interactions linearly in terms of them
when possible ; this is what is done below. In terms of the
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matrices a;, 8 defined by Eq. (31) and connected with
the v, according to Egs. (18) and (19), the interactions
have the form

J1= WrHBYN) WHBY,)+c.c.,
Jo= Y rtYn) W AY,) — Wrfayy) WLlay,)+c.c.,
Js= W r B85 hn) B )

+ W rHBaiyn) WBa,)+-c.c.,
Js= WpHen) W Heib) — Wpysdn) Wlyal,)+c.c.,
Js= pByshn) @ ABysd,)+e.c,

where c.c. indicates the complex conjugate and

e 0 01
6i=( )1 75:( )
0 o; 10

gives the matrices ¢, vs. These forms of the interactions
are frequently used as the starting point of treatments
of beta-decay theory.?® Papers concerned with linear
combinations of interactions have recently been pub-
lished by Michel and Wightman?” and by King and
Peaslee.?® Michel and Wightman give a résumé of the
earlier work done on the subject.

One can easily construct other permissible interactions
by forming scalars similar to the Jr but with the wave
functions arranged differently within the products. The
main purpose of this section is to show how these other
interactions can be expressed as linear combinations of
the Jpr. One approach to the study of these other
interactions is to rewrite the reaction equation in the
form

P+4-N+e+ve0,

so that all the particles are uniformly created or
annihilated. This corresponds to introducing the charge-
conjugate wave functions for the proton and electron so
that the interactions are written as

Jr= (¢pTCyQrdn) (¢.TCvQr,)+c.c.

The other interactions are then easily formed by
interchanging positions of the wave functions. The first
type which will be discussed is formed by interchanging
the wave functions of the heavy particles:

Kr= YnTCyQrép) (¢.TCyQmd,)+c.c.  (230)

The Kr are simply related to the Jr, as a consequence of
Eq. (173):

YnTCy&rpp= —kYnT (v4Qr)TChp
= —k[YnT (vr)TCohpr "
= K¢PTC74SZI"‘I/N7

and this implies that
K r=—- K] T.

(229)

(231)

26 See, for example, E. J. Konopinski, Revs. Modern Phys. 15,
209 (1943).

27 1,, Michel and A. Wightman, Phys. Rev. 93, 354 (1954).

28 R. W. King and D. C. Peaslee, Phys. Rev. 94, 1284 (1954).
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Evidently a similar result applies when the light particle
wave functions are interchanged so that

Kr=(¢pTCvlr¥n) ¥, TCylré.)+c.c.

is an alternative expression for Kr.

The next set of interaction-terms which will be dis-
cussed is formed by interchanging the wave functions of
the charged particles in Eq. (229):

Lr= (¢eTC74QI'1//N) (¢PTC’Y4QI'¢,>—|—C.C.
= YAy Qryn) ¥ pvQr¢,)+c.c. (232)

These interactions also can be expressed linearly in
terms of the Jr; the formulas were first published by
Fierz.® The proof given below follows Pauli’s proof of de
Broglie’s identities,® and is based on the fact that

16
BZ ('YB)#V('YB)pv=46;prv, (233)
—1

where (vg),. are the elements of the matrix 3. One can
prove this identity by specializing step 6 of the proof of
the fundamental theorem to the case when the two sets
of matrices involved, v, and v,/, are identical. Then,
from Egs. (59) and (60), for any four-by-four matrix F
the matrix S defined by

16
S=2 vsFys
B=1

has the property
Y4S=Sya4.

However, from the fifth step in the proof of the funda-
mental theorem, a matrix which commutes with the v,
is a constant times the identity. It can be concluded
that, for any matrix F,

16
2. vFvp=k,
B=1

where % is some number times the identity. One may
now choose in succession for F the sixteen different
matrices which have one element unity and the rest
zero; this gives

16
gl(’YB)IW('YB)/m: kl}papa-

The constants k,, can be found by contracting on u
and o:

16
4kyp_= Bz:_l('YB)uV<'YB) o

16
= Z (732);711
B=1
=168,,.

2 M. Fierz, Z. Physik 104, 553 (1937). A general treatment of
?tlxggsi)dentities has been given by K. M. Case, Phys. Rev. 97, 810
® Reference 2, p. 131,
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The last step here results from the fact that the square
of each of the vp is the identity, Eq. (46). Substituting
back for %,,, one obtains

16
;2 (YB) ur(YB) po="48,468 p», (233)
=1

as required. If this equation is multiplied by

Y1) u(¥2) o (W¥3) »(Wa)», Wwhere Y1, ¥s, Y3, Y4 are any column
matrices, and if the sum on B is expanded to show the
five types of v, the result is

4(Y1"o) (W)
= (YaTY2) W1TVa) + WsTydbe) W Ty .be)
+ @y rune) @1 "y wods)
+ WsTivsyabe) Wi Tivsybs)
-+ (‘/fsT'Yslh) (¢1T’Y 5‘#4)- (234)
In the third term the sum is to be carried over the six
Yw1- Then, keeping in mind that each Jr involves a sum

over one type of yp, it is easily seen that the five
specializations

1. T =y,Hy,, Vo=vn, ¥sT=y¢pfy,, Ya=y,
2. ‘plT':'/’eH'Y‘l'Ym Y=y, ¢3T=1//PH'Y4'YW Ya=v,
3. U=V vy, Yo=v¥n, ¥sT=¥ryeyim, vi=v,

4 "=y sy, Ya=v¥n, VsT=y¥rTvdvsve, Ya=y,
S.onT=vveys,  Ye=vw, vT=¥rfvers,  Ya=Y,
give directly these relations between the interaction

terms:
4L1= ]1+ ]2+ ]3+ J4+ J5;

4Lo=4J1—2J, +2J4—47T5,
4L3=6]1 _213 +6J5,
AL4=4J1+2J; —2J4—4T5,

4L5= ]1—-' J2+ ]3— ]4+ ]5-

These equations will be summarized in the form

5
Lr=73" AraJa, (235)
A=l
where
1 1 1 1 1
4 -2 0 2 —4
Ara=%6 0 =2 0 6 |. (236)
4 2 0o -2 —4
i -1 1 -1 1
Evidently
A42=1 (237)

because if the wave functions of the charged particles
are interchanged twice, the original interaction is re-
covered. The interaction terms formed by interchanging
in Eq. (229) the wave functions of the heavy particles,
the light particles, and the charged particles have now
been discussed, and all other possible interchanges can.
be expressed in terms of them.
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Sometimes interactions which are symmetric or anti-
symmetric with respect to an interchange of the wave
functions of two of the particles are considered. From
Eq. (231) it is seen that the interaction

J= ah—}—b];; (238)

is symmetric with respect to an interchange of the wave
functions of either the heavy particles or the light
particles and that the interaction

]= 6]1+d]4+e]5 (239)

is correspondingly antisymmetric, where a, b, ¢, d, e are
any real numbers. It is evident that interchanging the
charged particle wave functions is equivalent to inter-
changing the uncharged particle wave functions. If the
interaction

5
J=ZC[‘]I‘

r=1
is symmetric or antisymmetric with respect to such an
interchange, then the cr will satisfy the equation

5

5
> crlr==%3 crJr

=1 r=1
or, in view of Eq. (235),
5 5 5
> Y crAraJa==£D cala.
I'=l A=1 A=1
However, this implies the equation
5
> (AT)arcr===ca,
T=1

which may be used to determine the ca. This is in fact
the eigenvalue problem for the transpose of the matrix
4, because its square is unity and so its eigenvalues are
=1. The result is that the interaction

T=(12f+39)J1+3fT o+ (2f+)Ts+3fT+3g]5  (240)

is symmetric with respect to an interchange of the wave
functions of either the charged or the uncharged
particles, and that the interaction ‘

J=(=2h—0)J1+ (h—k+DJo+hTs+kT 175 (241)

is correspondingly antisymmetric, where f, g, &, k, [ are
any real numbers.
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It is easily verified from Egs. (238) to (241) that the
only interaction which is either symmetric or anti-
symmetric with respect to an interchange of any two
wave functions is

J=m(=Ti+TetT5), (242)

where m is some real number. Since this is a special case
of both Egs. (239) and (241), this interaction is anti-
symmetric with respect to an interchange of any two
wave functions. It was originally proposed by Wigner
and Critchfield.3-%? Since (—J:1+Js+J5) is antisym-
metric with respect to interchanges of any pair of the
wave functions ¢ », ¥, ¢, ¥, it must be proportional to
the determinant formed from these four wave functions.
The proportionality constant depends on what set of
Dirac matrices are involved. The matrices of Egs. (192)
and (194) are used almost exclusively in beta-decay
theory and the rest of the discussion is restricted to
them. By calculating out some of the terms it can be
verified that, with those matrices,

—J1 Tt Ts=—2det(pp ¥ ¢e ¥s)+cc. (243)

In parallel with the treatment of the spinor-scalar, Eq.
(218), the Wigner-Critchfield interaction can be shown
directly to be a scalar as a consequence of the fact that
the transformations of the wave function are uni-
modular, Eq. (164). For a non-time-reflection it is seen
that

det(¢r’ ¥n' ¢, ¥')+c.c.

=det(Appr AYn Ap. AY,)+c.cC.

=det[A(dr ¥n ¢, ¥») J+c.c.

=det(¢1’ EI/N e ¢V)+C'C'7
as required. For a time-reflection one must also note
from Eq. (194) that

detC=1,

and then the result is

det(d’P' "pN, ¢e/ ‘pvl)’l“(lc-
=det(¢pr'® ¥n'% ¢./C ¥,'O)Fc.c.
=det(CA¢pp CAYy CAgp, CAY,)+c.c.
=det[CA(¢p ¥ b, ¥») J+c.C.
=det(¢r ¥n b ¢p)+C.C.,

which proves the assertion.

31 C, L. Critchfield and E. P. Wigner, Phys. Rev. 60, 412 (1941).
# C, L. Critchfield, Phys. Rev. 63, 417 (1943).



