REVIEWS OF MODERN PHYSICS

VOLUME 27,

NUMBER 2 APRIL, 1955

Symmetry of Physical Laws. Part I11.
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U. S. Naval Postgraduate School Monterey, California

An attempt is made within the framework of the accepted quantum physics to achieve the maximum
parallelism between prediction (inference of the future observational data from the present ones) and
retrodiction (inference of the past observational data from the present ones). To implement this program, it
is shown that the “retrodictive state function” (extrapolation of the present data to the past) can be just as
useful as the ordinary “predictive state function” (extrapolation of the present data to the future). This leads
to a formalism in which time-reversal becomes a linear transformation and double time-reversal becomes a
c-number. In spite of this formal symmetry, it can be shown that the actual success of a retrodiction depends
on the satisfaction of an additional condition which is not required in prediction, and which is not always
fulfilled. From the same point of view, a logical loophole is pointed out in the indiscriminate application of the
H-theorem to the past. The so-called irreversibility of observation is interpreted in terms of the decrease of

“information” in the process of inference.

1. INTRODUCTION,

N accordance with its expected role in human ac-
tivities, physical theory is pre-eminently a pre-
dictive instrument. Man is, however, not immune to
temptation of the adventure of guessing with the same
instrument what happened in the past outside the reach
of his own observation. In the nonstatistical domain of
classical physics, retrodiction must be in principle just
as successful as prediction. However, in statistical
applications of classical physics and in quantum physics,
a careful study is needed to determine the confirmability
of an attempted retrodiction. The present paper is
intended to provide an answer to some of the rudi-
mentary questions in this rather neglected field of
intellectual interest. Although some new points of view
and a new formalism are introduced, the content of this
paper will remain perfectly faithful to the accepted
premises of classical and quantum physics. It should be
noted that retrodiction is a question defined differently
from the so-called time-reversal, although it is related to
this in a certain way which will become clear in our
Sections 3 and 5.

There have been at least three circumstantial in-
centives which motivated undertaking this work. In the
first place, it was emphasized by the author in a previous
paper! that an essential difference between classical
physics and quantum physics lies in the fact that in the
latter the result of an observation can be used as the
initial condition of the “state” immediately after the
observation, but not as the final condition of the “‘state”
immediately before the observation. Although this is in
agreement with the customary usage of quantum
physics, the conscious emphasis on this fact led the
author himself to inquire whether one could not formu-
late quantum physics in such a way that the result of an
observation can bé used as the “retrodictive state’ just

1 An article contributed by the author to the monograph, Louis
de Broglie, physicien et penseur (Albin Michel, Paris, 1952), p. 385.

before the observation.? This question will be answered
in Section S of this paper. Although the answer is in the
affirmative, the actual usefulness of such a retrodictive
theory is extremely limited.

The second motive stemmed from an enlightening
illustration that Dr. Keith Symon chose in a conversa-
tion to explain the reason why the H-theorem cannot be
used for the past. He imagines that a man discovers on
a desk two piles of playing cards, one in a perfect order
and another in disorder. In spite of the fact that every
permutation of cards has the same a priori probability,
he would not guess that the well-ordered pile is a result
of shuffling, but he would justifiably infer a selective
human intervention in the past of the well-ordered pile.
Keeping in mind that a “permutation of cards” corre-
sponds to a quantum state, ‘“well-ordered-ness” and
“disordered-ness” to macroscopic cells, and “shuffling”
to ergodic process, the reader will find that this pattern
of inference is given a mathematical expression in our
formulation of retrodiction in Section 4.

Thirdly, everyone familiar with the quantum theory
of time-reversal® is rather disturbed by the fact that the
operation of time-reversal is not a linear transformation,
and also by the fact that the operation of double time-
reversal does not become an identity transformation.
One could expect that these esthetically unwelcome
features of the theory may be avoided by a formulation
which treats prediction and retrodiction on an equal
footing. It will be shown in Section 5 that this expecta-
tion is justified.

The problem of retrodiction may be formulated in
brief as follows: An observer B would like to guess from
his own experimental data the result of another observer

2Tt is the pleasure of the author to note with thanks that Dr.
Adolf Griinbaum in a private communication encouraged under-
taking clarification of this question. See also A. Griinbaum’s
article in the monograph, Philosophy of Rudolf Carnap (Tudor
Publishing Company) (to be published).

3S. Watanabe, Phys. Rev. 84, 1008 (1951). See also, S.
Watanabe, Revs. Modern Phys. 27, 26, 40 (1955).
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A who observed the system some time before B and who
has not confided his result to B. The main difficulty for
retrodictor B arises from the fact that in his retrodictive
inference he has to assume, apart from his own experi-
mental finding, an a priori probability to each possible
initial state (in which 4 might have found the system).
There is in general no reason to assume an equal @ prior:
probability for each quantum state except when the
initial ensemble given to 4 can justifiably be assumed to
be the result of an ergodic process. It will be explained in
Section 3 by a simple example how easily a retrodictor
can completely fail while a predictor cannot fail,
naturally in the statistical sense of the word.

However, by assuming the uniform @ priori initial
probability, one can obtain an interesting formalism
which exhibits on one hand a complete symmetry with
respect to the two directions of “time,” but which on the
other manifests a definite one-way-ness of the direction
of human “inference.” In short, the present paper may
be said to be an elaboration in the light of quantum
physics of the following pregnant words due to W.
Gibbs*:

“It should not be forgotten, when our ensembles are
chosen to illustrate the probabilities of events in the real
world, that while the probabilities of subsequent events
may often be determined from the probabilities of prior
events, it is rarely the case that probabilities of prior
events can be determined from those of subsequent
events, for we are rarely justified in excluding the con-
sideration of the antecedent probability of the prior
events.”

2. MICROSCOPIC RETRODICTION
Let S be a complete set of eigenstates,
51752753) “'7Si: ) (21)

of a family of mutually commuting observables defined
with respect to a certain physical system. We shall use
the same symbol S also to designate this family of
observables. The completeness of S implies that the
probability p; of the system being found in state .S;
satisfies

ipi=1 (2.2)

A family T of mutually commuting observables which
do not commute with S will define another complete set
T of eigenfunctions.

The probability that the system which was in state .S;
at the initial instant will be found in state 7'; after =
seconds will be denoted by

P(Si_)Tf; T)=P(¢—_).7)7
Siés, TjGT,

(2.3)
(2.4)
where S and T may or may not be the same complete

4]J. W. Gibbs, Elemeniary Principles in Statistical Mechanics
(Yale University Press, New Haven, Connecticut, 1914), p. 150.
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set. On account of the assumed completeness, we have
> i P(i—j)=1. (2.5)

From the invariance of dynamical laws for time-
reversal (reversibility) or from the invariance for space-
and-time-inversion (inversibility) we can conclude the
inverse normalization?®:

> P(i—j)=1. (2.6

This can also be derived from the unitarity of transition
matrix.

Suppose that an observer 4 observes the system at
t=0 with the observable-family S, and that observer B
observes the same system at =7 with the observable-
family T. “Prediction” consists in the following position
of problem on the part of 4. Knowing that observer B
will observe with T at #= 7, observer 4 proposes to guess
the result of B on the basis of his own result. If observer
A had the result S;, then his prediction will be that the
probability of B obtaining 7; will be P(+—j). This
means that, if observer 4 prepares a large number & of
the cases where the result at /=0 was .S;, then NP (i—7)
will be the number of cases where observer B will obtain
T; at t=r. Observer A will be called predictor and ob-
server B monitor.

“Retrodiction” is now to be defined in a close analogy
to the previous problem, only interchanging the roles of
A and B. Knowing that observer 4 observed the system
with S at {=0, but not knowing what his result was,
observer B proposes to infer the result of 4 from his own
result that the system is found in 7'; at t=7. B will be
called retrodictor and 4 monitor.

This question does not have a unique answer unless
retrodictor B assumes a certain statistical behavior of
monitor A4 regarding selection of the initial states.
Independently of his own result at ¢=7, retrodictor B
may have some general information about 4, on the
basis of which he may assume that monitor 4 has the
general habit of selecting (and handing over to B) states
S; with weight w,(3-;w;=1). If A prepared a large
number NV of cases at /=0, then Nw, among them must
have been in .S, according to the assumption. At the
receiving end, Nw.P(i—7) among these Nw, will turn
out to be in T';. The total number of cases which will
land in 7T°; will then be

among which Nw,P(i—j7) have originated from S,.
Then retrodictor B will say that the probability Q (i< 7)
that a system which was found at ¢=r to be in 7; had
been found in S, at t=0is

NwP(i—7) w:P(i—7)
i NwiP(i—)) 3w (i—j)

We use the “left-to-right” order to indicate the chrono-
logical direction, and an arrow to indicate the direction
of inference.

Qli—y)=

(2.8)
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It should be clearly understood that the foregoing
result does not mean at all that if 4 prepared an en-
semble with the weight given by Eq. (2.8) for each .S;,
then retrodictor B would obtain the result 7';. Indeed,
if A started with the weight distribution given in Eq.
(2.8), then B would obtain T’ with weight

> i wiP(i—f)P(i—k)
YiwiP(i—j)

In other words, Eq. (2.8) represents the weight of .S; in
the subset of systems ending in 7'; when the entire
ensemble has the weight distribution w;. Insofar as the
estimation of w,; is correct, observer B’s retrodiction
based on Eq. (2.8) must be statistically successful in
this subensemble. If the estimation of w; is unreliable,
all retrodiction is meaningless.

It is true that retrodictor B could in principle find
out the w’s from the observed values of the quantity
(2.7) for all the 77s, if the number of the .S’s equals
(or is less than) the number of the 77s, and if the deter-
minant of P(i—j) does not vanish. This, however,
implies that before any attempt at retrodiction starting
from a particular final state 7'; can be made, a very
large number of observations has to be made for all
T’s. Furthermore, it must be guaranteed that the values
of the w’s are kept fixed during all the observations.
Thus, determination of the w’s by retrodictor B is
seldom feasible in practice.

If retrodictor B does not have any preliminary
knowledge about the habit of A4, the only thing he can
do is to resort to the principle of ignorance and to assume
that the a priori probability w; is equal for each quantum
state .S;. This attitude of B will be successful (verifiable
by repetition) only if 4 prepares an ensemble with equal
weight for all quantum states (similar to the micro-
canonical ensemble on an energy shell), and if B picks up
only those cases which have landed in T'; and then
classifies them according to various possible initial
states. According to this simplifying assumption, Eq.
(2.8) will become

2 i P(i—7)

and, further with the help of the inverse normalization
(Eq. 2.6), :

Qo(ic—7) =P (i—7). (2.10)

It should be well noted that Egs. (2.9) and (2.10) are
based on a specific assumption that w; is uniform. In
fact, retrodictor B can very easily be “fooled” by
monitor A. Suppose for instance that there are only two
possible states (1) and (2) and P(1—1)=P(1-2)
= P(2—1)=P(2—2)=1%. No matter what ratio w:/ws
monitor 4 may choose, retrodictor B will find one half of
the cases in state (1) and the other half in state (2).
Conversely, observer B’s retrodiction based on the equal

Qolie—7) = (2.9)
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distribution that one half of the cases must have origi-
nated from (1) and the other half from (2) may be com-
pletely wrong; monitor 4 may have handed over to
retrodictor B only those systems which were found by 4
tobein (1) at #=0. The best way to avoid this deception
on the part of B would be to impose on 4, as a rule of the
game, that he should pick up cases at random from the
“microcanonical ensemble.” Then Eq. (2.9) or Eq. (2.10)
will have a meaning in a subensemble which lands in
T;. We shall hereinafter refer to the retrodiction based
on the uniform w’s as a “blind retrodiction.”
Prediction, in contrast to retrodiction, has a simpler
rule of game: the monitor (posterior observer here) is
required to show all his results. Then, the prediction
based on Eq. (2.3) will always be statistically successful.
It should be emphasized that this asymmetry between
prediction and retrodiction originates from the asym-
metry of the ‘“rules of game.” In prediction, the
predictor has the right to prepare the ensemble, while in
retrodiction, the monitor has the right. We can easily
change the rules to make prediction just as unreliable as
retrodiction. Suppose monitor B referring to a prediction
has the tendency to forget to record some of the cases in
such a way that the chance of state T'; being recorded by
him is proportional to w;. Then, the prediction by 4
will be that the systems registered by him as .S; will be
recorded by monitor B with the distribution given by

P(i—f)w;
i P(i—j)w;

which offers a nice parallelism to Eq. (2.8). We shall
however seldom have to deal with such a “forgetful”
observer. The “rules of game” must be chosen in each
case in such a way that they correspond faithfully to the
nature of the actual description of physical phenomena
under consideration. In this sense, P(i—j) given in
Eq. (2.3) may be used for prediction, but for retrodiction
we have to use Q(i«—j) given in Eq. (2.8) with inde-
terminate w; in general cases.

Exception has to be made to the entire consideration
of this section either if (1) S and T are the same set and
it commutes with the Hamiltonian of the system or if
(2) S and T are the same and the time duration 7 is zero.
In this case, P(i—j)=0;; and Eq. (2.10) follows auto-
matically from Eq. (2.8) irrespective of the w’s:

Qlic—j) =P (i—7) = b (2.12)

Retrodiction is perfectly successful in this special case.

The situation in classical physics may be included in
Eq. (2.10), if the “state” is determined as precisely as
possible in principle, i.e., if the system is located at a
point in the phase space.

3. MACROSCOPIC RETRODICTION

We shall now introduce the concept of macroscopic
cells in our consideration. The macroscopic observations
are known to be compatible with one another, therefore

(2.11)
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we can think of a family S of microscopic observables
which are compatible with all these macroscopic obser-
vations. In general, this S will not be commutable with
the exact Hamiltonian of the system.® Suppose further
that the eigenstates, Si, S, etc., are grouped into
macroscopic cells which are labeled by p=1, 2, ---,in
such a way that cell u=1 contains #, eigenstates of S,
cell u=2 contains 7, eigenstates of S, etc.

A macroscopic prediction consists in inferring the
probability of finding the system in cell » at {=7 when
it is known that the system was found in cell x at {=0.
The answer will be, in terms of the microscopic transi-
tion probabilities,*

1w w
P(u—)=—¥. 3 P(i—j),

Ny i

(3.1)

where Y means that ¢ should run over all the
eigenstates contained in cell u. It should be noted that
this answer is based on the equal weight of .S; within cell
, and complete disorder of phase among these states.S..
In other words, we are taking as the initial state a
density matrix (statistical ensemble) which corresponds
to the Hilbert subspace p. Writing @[ ¢ for the projec-
tion operator for quantum state ¢, we can express our
initial ensemble by

1 w

G=—2:CLe:]

By

(3.2)

This is the best we can do under the given information
that the system was found in u at /=0. The quantity
given in Eq. (3.1) is of course normalized with regard to
v, ie., >, P(u—v)=1.

Now the retrodiction consists in inferring the proba-
bility that the system had been found in macroscopic
state u at =0, when it is known that the system was
found to be in macroscopic state » at (=7. Again
introducing the a priori probability w, for each quantum
state in cell u, one will answer that the probability in
question is given by

W, P (u—v) |

© (e V) B 2w, P (P"_’V)

£ s

Wy 2 i 2 i Pi—]

. ’ . (33)
w

2pwu i 2 Pi—j)

If we can assume that the background ensemble of 4
was a microcanonical ensemble, i.e., if all the »’s are
equal, then we can simplify Eq. (3.3) to the form:

Qo(ue—v) = (m,/n,) P (u—v),

5 The exact Hamiltonian may commute with the “macroscopic
energy’” but not with the other macroscopic quantities. J. v.
Neumann, Z. Physik 57, 30 (1929).

* Note added in proof.—The P on the left hand side of Eq. (3.1)
is what was denoted by W in Part I. (See reference 6.)

(3.4)
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where the inverse normalization given in Eq. (2.4) has
been utilized. The probability given in Eq. (3.3) or
(3.4) satisfies the normalization condition with regard
to p: 24 Que—»)=0.

It might appear as if prediction in the macroscopic
case were equally unreliable as retrodiction since we
have to use the assumption of equal probability (within
cell u) also for prediction here. However, it should not
be forgotten that it is observer-predictor 4 himself who
prepares the initial ensemble, therefore unless he puts
uneven, selective weights to various states within cell
he can succeed. On the other hand, the supposed even
weight all over the energy shell assumed in Eq. (3.4) is
not in the control of observer-retrodictor B, who there-
fore can very easily fail in his retrodiction.

Let us next examine the consequences of reversibility
(invariance for time-reversal) and inversibility (invari-
ance for space-and-time inversion) on our problem. The
reversed state S’ of a state S means the one in which all
the particles have the same positions as in S but the
equal and opposite velocities to those in .S.% The inverted
state .S’ of a state S means the one in which all the
particles have the same velocities as in S and the
space-inverted positions as compared with .S.% Reversi-
bility and inversibility, which hold in the basic processes
in quantum mechanics, then mean:

P(S—T)=P(T"—S"). (3.5)

The macroscopic observations usually’ cannot dis-
tinguish a state from its reversed or inverted state. In
other words, a cell u contains the reversed, as well as
inverted, state S’ of a state S if it contains.S. Then from
Eq. (3.1), we obtain in virtue of Eq. (3.5),

1 w S m
P(u—v)=—73 0 X j» P(j'—i")=—P(v—np).

ny Ny,

(3.6)

Using this relation, we can write Eq. (3.3) in the form:

WP (y—p)
Que—r)=———, (3.7)
2w w,P(v—p)
and with the assumption of uniform weight,
Qo(us—r) =P (v—n) (3.8)

which has a striking simplicity. Equations (3.4) and
(3.8) are applicable only to the ‘“blind” macroscopic
retrodiction.

What has been developed in this section also applies
to classical, statistical considerations if we replace the
number of quantum states by the volume in the phase
space.

6 For the precise definition of time-reversal and space-and-time
inversion, see Sections 3, 4, Part I, and Section 3, Part II, S.
Watanabe, Revs. Modern Phys. 27, 26-76 (1955).

7 This is certainly the case if we limit the macroscopic quantities
to a certain category, for instance to the thermodynamical
variables.
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4. APPLICATION OF THE H-THEOREM TO THE PAST

The probability P(y—u) depends naturally on the
length of the interval 7 between the two observations.
The ergodic H-theorem, in essence, states that if the
exact Hamiltonian does not commute with the observa-
ble-family S which is compatible with the macroscopic
observations,® then the probability P(v—u), averaged
over possible values of 7,° is proportional to the size of
the final cell u:

<P(”—>ﬂ)>=nﬂ/Ny

where XV is the total number of quantum states on the
energy shell.

Equation (4.1) shows that if we take a value of 7
arbitrarily from its possible domain, 0<7< o, the
probability P (»—u) of finding the system in a large cell
u is large. Invoking now the relation (3.8), we can say
that on the assumption of blind retrodiction, the proba-
bility Qo(u¢<—») that the system had been found at
t=—rin a large cell u is also large if —7 is arbitrarily
taken from its possible domain — » < —7<0. If we use
the Boltzmann entropy 8z,

(4.1)

8p=logn,. (4.2)

We can say on the basis of blind retrodiction that if 85
at £=0 has a certain nonmaximum value, then it is just
as probable to have a larger entropy value in the future
as in the past. This is the well-known conclusion of a
formal application of the H-theorem to the past. We
could also use the Gibbs entropy 8¢,

Sa(1)= =24 P(v—p) log[ P (v—u)/n,],
8e¢(—7)=—2, Q(ue—v) log[Q (ue—»)/n,],

with 7>0, but it may be easier to visualize the situation
with the help of the Boltzmannian entropy.

The foregoing argument is based on the premise of
blind retrodiction which may be the only possible basis
of inference if it is perfectly certain that the system had
been isolated from the exterior system (except a possible
prior observer who does not perform any kind of
selection) and if we have absolutely no other informa-
tion about the system than that it was found in v at ¢=0.
However, such conditions are seldom satisfied in the
actual circumstances. A sounder inference than the
mere blind retrodiction, in line with Symon’s idea ex-
plained in our Section 1, would be somewhat as follows:

Consider two cells x and » such that #,>>n,. Then

(4.3)
(4.4)

8 Although the noncommutability of the exact Hamiltonian with
S is the main hypothesis, we need some more auxiliary conditions
to derive this result. For the two versions of these conditions, see
J. von Neumann, Z. Physik 57, 30 (1929); and W. Pauli and M.
Fierz, Z. Physik 106, 572 (1937).

9 The time-average in v. Neumann’s proof can be only for the
positive values of 7. It should be noted also that the H-theorem
considered here refers to one initial observation (/=0) and one
final observation ({=7) and is different from the consideration
based on repeated observations. See Section 7, Part I, S.
Watanabe, Revs. Modern Phys. 27, 26 (1955).
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according to Eq. (3.6), we have
P(u—v) n,
—=<1, (4.5)
P(r—op) n,
and according to Eq. (4.1) we have also
(P—v)) ny
—————=—<1 (k, \ arbitrary). (4.6)

<P O\_‘)ﬂ» ou

Now let us assume that we find a system at =0 in cell ».
Seeing from Eq. (4.5) that it is extremely improbable
for a system starting from a large cell u to reach a small
cell », we suspect that such was not the actual history
behind the system we have just found in ». This infer-
ence is a direct contradiction to the aforementioned re-
sult based on the uniform w. Thus we are led to modify
the assumption of uniform w in such a manner as to give
less weight w, to larger cells x and larger weight to
smaller cells. Such an assumption of nonuniform w is
perfectly allowable according to our theory. In fact, if
there is any possible doubt about the isolation of the
system in the past, for instance, there is no reason to
adopt the hypothesis of blind retrodiction. Then the
result of ‘observation that the system was found in a
small cell at present can very well reflect itself in our
estimation of the w’s.

Once we have abandoned the assumption of uniform
w, we cannot use Eq. (3.8) any longer and have to go
back to Eq. (3.7). In spite of the fact that P(y—y) may
be large, Q (u<—v) can be small if w, is small in Eq. (3.7).
And the probability of the system having originated
from a small cell can become quite large. Thus the
entropy value 8$p at {=-—r may probably have been
smaller. Our formalism is flexible enough to incorporate
this very reasonable inference.

The foregoing argument can be applied also to the
classical, statistical mechanics. It is interesting to note
how our argument can stand the famous objection due
to Loschmidt. It is true that in cell » there are just as
many microstates headed for larger values of entropy
$g in the future as those which have originated from
larger values of entropy in the past. If w is uniform, then
each microstate inside cell » will be occupied by the
same weight on account of the permanence of the
microcanonical ensemble.® Then, Loschmidt’s argu-
ment becomes valid, and we have to conclude larger
values of entropy for the future as well as for the past.
But if w is not necessarily uniform, then we need not
assume equal weight for each microstate inside the cell
for the purpose of extrapolation towards the past. Then
Loschmidt’s objection does not hold any longer. For a
realistic macroscopic retrodiction, we should not use the
uniform weight within the macroscopic cell », while it
may be assumed for prediction.

It is interesting to note that the blind application of
the ergodic H-theorem to the past does not actually

1 This is a consequence of the inverse normalization, Eq. (2.6).
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yield any newer information than what one has put in as
the assumption. The combination of Egs. (4.1) and
(3.8) gives

(Qo(ue—2))=mnu/N, (4.7)

which is nothing but an expression of the uniform
probability, an assumption which has been used in
deriving Eq. (3.8).

5. RETRODICTIVE QUANTUM MECHANICS

Our basic equation (2.8) for retrodiction can be
written as

Qli—j)=wQo(i—7)/2 s wQo(i—7),  (5.1)
with the help of Eq. (2.10):
Qo(ie—j) = P(i—7), (5.2)

where the w; depends on the over-all judgment of the
retrodictor. Only when the system has been isolated in
the past and there is no other clue to its past history
than the observational fact that the system is found at
present in state j, will the retrodictor use the uniform
value of w; for various ¢’s and Q(i#«—7) will reduce to
Qo(i<—7). What follows mainly concerns the blind
retrodiction represented by Qo, but Q can be derived
from Qo by the use of Eq. (5.1) if there is any way of
estimating w,.

In this section, we shall first show that the quantity
given in Eq. (5.2) can be calculated in two ways: either
solving the Schrédinger equation with the initial condi-
tion .S, or solving the same equation with the final
condition 7';. Although the resulting values of proba-
bility are the same, the first method agrees better with
the idea suggested by the right hand side of Eq. (5.2),
while the second method reflects more faithfully the idea
suggested by the left hand side. Since the first method is
the customary one, we shall only show how the second
method can be used to evaluate the same probability.

- Let the eigenfunctions of Sbe called ¢1, @2, * - -, @4, - - -

and those of T ¢1, ¥, - - -, ¢, - - -. Further, let the solu-
tion of the Schrédinger equation,
AV (f)/dt=—iH ()T (1), (5.3)
satisfying the final condition,
()=, (54)

be denoted by ¥,(#). Expanding ¥,.(0) according to
the ¢;:
V(0)=2:aip: (5.5)

we can easily show that a.;*e; represents the probability
(5.2).
Consider the transition matrix U (#1,f2) defined by:
6U(t1,t2)/é)t1= —’iH(ll) U(tl,tz),
aU(tl,tz)/at?,: +iU(t1,t2)H(t2),

Ultity) =1, Utaty)=U(t1,t2) = U (t1,15).

(5.6)

5.7
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Then according to the customary theory, the proba-
bility (5.2) is given by

On the other hand, ¥,(¢) considered in the foregoing is

V. (O)=U ()i (5.9)
and the coefficients a; are
ai= (¢, U(0,7)¥;). (5.10)

On account of the unitarity of U and of the relation
U(0,7)=U"(+,0), as in Eq. (5.7), we obtain

ai=(U0,7) iy

5.11
— U et) = WU 0pyn. Y
Hence, in view of Eq. (5.8),

This situation suggests a new picture of the “state”
of a system between two observations, one at =0 and
the other at 1= 7: There exist simultaneously two states,
one being a predictive state ¥,(f) which complies with
the initial condition at £=0, and the other a retrodictive
state ¥,(#) which complies with the final condition at
t=7. Both ¥,(¢) and ¥,(f) obey the same Schridinger
equation. This picture, though redundant in practical
applications, offers certain intellectual interest, for it
provides a complete symmetry between two consecutive
observations. ¥, can be given just as much, or just as
little, “reality” as ¥,

Now, we should like to look upon the same situation
from a slightly different point of view, namely we
attempt to establish a time-symmetry, not with regard
to two observations, but with regard to the future and
past referring to a single observation at hand. Suppose
we make an observation at =0 and obtain a result ¢;.
Then our inference will develop towards the past just
as well as towards the future. Let us introduce a new
variable s, called inference parameter, which coincides
with £ when it refers to prediction, and which is equal to
minus ¢ when it refers to retrodiction. s is then always
positive.

The development of a retrodictive state ¥, (¢) starting
backward from ¢; at ¢=0 is nothing but the extrapola-
tion of the predictive state and obeys

or in terms of s, v
oV, (—s)/ds=—+iH(—s5)¥.(—s). (5.14)

The Hamiltonian being Hermitian, the complex conju-
gate of Eq. (5.14) becomes
OV, *(—s)/ds=—i¥,*(—s)H(—s).  (5.15)

Introducing a time-independent unitary operator R,
called reversion operator,® such that

(R'H(—s)R)T=H(s), (5.16)
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we can rewrite Eq. (5.15) in the form:
ORTY *(—s)/ds= —1H (s)RTYV ,*(—s5).
This means that ®(s) defined by
&(s)=R™W,*(—s) or V¥.(—s)=Rd*(s) (5.18)

(5.17)

satisfies the same equation as the predictive state,
0P (s)/ds= —1iH (5)®(s). (5.19)

The only difference is that ®(s) satisfies the initial
condition :

®(0)=R"p* (5.20)
while the predictive state ¥ ,(s) satisfies
¥,(0)= o (5.21)

The probability of finding this system at {=s>0 in
state ¢; will be

P(i—f)=|@5¥,()) %

while the blind probability that the system had been
found at = —s<0 in state ¢; will be

Qo(j—i)=| W5¥(—3)|*
=| W5, R2*(5)) |*= [ (RTY*2(s)) [ ™.

In brief, the two inferential states ¥ ,(s) and ®(s) can
be treated in a parallel fashion, only using R7¢* for ®(s)
wherever we would use ¢ for ¥,(s). Compare Egs.
(5.20) and (5.23), respectively, with Eqgs. (5.21) and
(5.22). It would then be a tempting idea to introduce a
quantity which comprises both ¥, and ® on the same
footing. A “double inferential state” composed of two
components is defined by

V,(s) v, ()
w ()= = .
®(s) ®(—1)
where s is now freed from the condition s>0. This
function will obey

W (1) /at=—iH ()W (1),

(5.22)

(5.23)

(5.25)
with

HE= (H:) -H(z—x))

H(®) 0
—( 0 —(R-IH(:)R)T)' (5:20)

The initial condition of W (Z) is

0= (R;:i*)’

and the solution of Eq. (5.25) at an arbitrary value of ¢

(5.27)

(5.24) .
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will then have the form:

= (R;I,\I/(i)(t) )

We can however liberalize the relationship between the
two components of Eq. (5.28) without.affecting their
physical meaning. Namely, taking any unitary operator
W1 which commutes with all the known physical
quantities, we can write, instead of Eq. (5.28),

70,
wi)= (RTW*\I/*(t)) '

This amounts to replacing ¥(¢¥) by W¥(¢), which of
course does not change the meaning of a state function.
The initial condition of Eq. (5.29) is then

o= (RTI;:‘W*)'

To make our discussion more concrete let us take as W
W=An", (5.31)

where # in any arbitrary integer and A is given by!!
all

A=AV1=AT= A*=RTR~1=H7:<_ 1)Ni’

(5.28)

(5.29)

(5.30)

(5.32)

in which N, is the occupation number operator for the
spinor eigenstate labeled 7. A is known to commute with
the reversion operator, R. Then the general pattern of a
double inferential function is

)= (A"J\ZIIT(\I/D*(t)) ’

with arbitrary »#. A" is unity when # is even.
We can now introduce the “reversed” inferential
flinction W of Eq. (5.33) by

ARRTT*(1)
Y20) )

(5.33)

wol)= ( (5.34)

which certainly falls in the supposed general pattern of
an inferential function (5.33), only the arbitrary number
n being replaced by n-+1, for
¥ (£)=A"HRT (A"RTE*(1)*. (5.35)
Furthermore, at each value of ¢, the first and the second
components of Eq. (5.34) represent respectively the so-
called “reversed states” of the first and the second
components of Eq. (5.33).% Indeed, for a given state
¢ (1), its reversed state can be expressed by WRT¢* ().
The transformation from Eq. (5.33) to Eq. (5.34) can be
written
ve()=R¥ (), W({)=Rw¥g(), (5.36)

11 See Section 12, Part I, S. Watanabe, Revs. Modern Phys. 27,
40 (1955).
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with
(5.37)

01
r-(, )
10
The formalism presented here has no practical ad-
vantage over the current quantum theory, but it has a
formal advantige in that time-reversal is represented
here by a linear iransformation (5.37), and double time-
reversal® becomes an identity transformation:

R=1. (5.38)

6. IRREVERSIBILITY OF INFERENCE AND
INFORMATION

Suppose observer A prepares a large number N of
systems which were found at /=0 in state ¢;. After 7
seconds, each system will become U(7,0)¢,. If observer
B performs at =7 an observation with the complete set
T®¥e,- - +), then N| ;U (r,0) 0.) |? systems will turn
out to be in state ¢;. With the help of projection
operators ® ¢ ] we can write this process in the following
schema :

G1=CL i |=>G=CLU(7,0) 0. ]—
93= Z]! (\b]')U(T;O) @i) |2(P[¢J]

The amount of “information’? carried by the knowl-
edge about the system represented by G is

I'=Spur(g logG)+const. (6.2)

This quantity does not change in the first step of
transition in Eq. (6.1), but does decrease in the second
step. This is the famous irreversibility of observation
pointed out by von Neumann.!? It should be noted that
Gs in Eq. (6.1) does not represent the knowledge ob-
tained by observer B in individual cases, for in each case
observer B knows perfectly well in which one of the
¥’s the system is found. G; can be considered as a global
description of the entire ensemble after the observation,
or as the prediction of the result of B in each case.
‘Next, suppose that observer 4 prepares at /=0 a large
number of systems with equal weight in all possible
¢’s (eS). Observer B performs at =7 an observation
with T, and a certain large number N of systems is
12 C, Shannon and W. Weaver, Mathematical Theory of Com-
munication (University of Illinois Press, Urbana, Illinois, 1949).
We do not indulge here in the discussion regarding the sign before
the Spur and regarding the constant in Eq. (6.2). The quantity
(6.2) was first used by von Neumann, Mathematische Grundlagen
der Quanienmechanik (Verlag Julius Springer, Berlin, Germany,
1932). See also L. Szilard, Z. Physik 53, 840 (1929). For an early

application of the quantity (6.2) to a concrete physical problem,
see S. Watanabe, Z. Physik 113, 482 (1939).
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found to be in state y;. He considers now only those
systems ending in ¢, and ask what percent of them had
been registered as ¢, by the previous observer 4. Then,
he extrapolates y; backward by the Schrédinger equa-
tion from ¢=7 to #=0, and calculates | (., U (0,7)¢;)|%
His inference will then be that, among N systems that
he found in ¢, N| (¢, U(0,7)¢,)?| systems must have
been found by 4 to be in ¢,. Schematically, this infer-
ence can be denoted by

Gs'=2":] (05,U(0,7)¢)) |20L @i ]
G =CLU(0,)¥; S/ =C[¥;],

which exhibits a parallelism to (6.1). G’ in (6.3)
represents a partial ensemble immersed in the uniform

ensemble :
Go=A2:CLe:] (6.4)

prepared by 4. If A would have started with Gs’, then B
would not obtain G;’. Nonetheless, G;’ represents the
legitimate inference made by B based on the blind
retrodiction hypothesis with regard to the results that 4
had obtained in the systems which were later found by
Bin tl/ 7o

If B has any further source of judgment about the
initial ensemble, he will modify the assumption of
uniform weight, and attach a reappraised a prior:
probability w; to each ¢,. In this case, G;’ will become

G’ ={2 i wi| (5, U0,7)¥;)|*PLe:]}/
{Zz wl, (QpiaU(O;T)Il’f) 12}

in accordance with Egs. (2.8) or (5.1).

It is evident that, no matter whether one uses G;’ of
Eqs. (6.3) or that of Eq. (6.5), the amount of informa-
tion carried by Gs’ is smaller than that carried by G/,
i.e., the decrease of information here takes place in the
backward direction of time. Both the case of prediction,
Eq. (6.1), and the case of retrodiction, Egs. (6.3) or
(6.5), can, however, be included in the statement that
the amount of information decreases in the direction of
inference, i.e., in the positive direction of the inference
parameter of the last section. This last result is in a good
agreement with the common sense, for an inference
cannot contain more information than the fact from
which the inference is drawn.

In the statements in the foregoing, the phrase ““infor-
mation decreases” must be replaced by “information
remains constant” in the following two cases: When
(1) S and T are the same set and the elapse of time 7 is
zero, or (2) S and T are the same set and commute with
the Hamiltonian of the system.

(6.3)

(6.5)



