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The Fermi statistical theory of multiple meson production is examined, and its application to medium-
energy pion-nucleon and nucleon-nucleon collisions is discussed. Various approximate calculational pro-
cedures are described and their results compared critically. It is found, by the use of a precise integration
procedure, that a rigorous relativistic inclusion of the meson rest mass is necessary if one is to draw accurate
conclusions from the postulates of the theory. The consequences of isotopic spin conservation are described
and tables are given for the expected distribution of charged products from both pion-nucleon and nucleon-
nucleon collisions. The theory is applied to the case of pion-nucleon collisions at 1.4 Bev, and is found to
predict only poorly the tentative results of recent experiments. The failure of the theory to predict nucleon-
nucleon collisions is also described, and possible modifications and improvements are discussed.

I. PREFACE approximations of a somewhat unsatisfactory sort, and
in general have been directed toward the prediction of
events occurring at one or another specific primary
energy. To facilitate and stimulate more exact calcula-
tions, and applications to a wider variety of problems,
there is included in the following a discussion of the
various methods of computation which may be utilized,
and a comparison of the several sorts of approximation
which may be made. We shall not discuss, however, the
thermodynamic approximation, which applies to events
of extremely high energy, and which involves theoretical
methods of a diferent nature from those useful at the
lower energies of interest here. This theory has been
described in detail elsewhere. '~'

INCE the original introduction by Fermi of a sta-
tistical theory of multiple meson production, ' nu-

merous workers have sought to apply such a theory to
various sorts of high-energy interactions. Recent experi-
ments with the Cosmotron at the Brookhaven National
Laboratory, and impending experiments at the Beva-
tron in Berkeley have stimulated interest in the applica-
tion of the theory to nucleon-nucleon and meson-
nucleon events occurring at energies of the order of
one to ten billion electron volts. Except for two basic
papers by Fermi, ' ' and a paper by Lepore and Stuart, '
much of this work has appeared only in the form of
internal or project reports of limited circulation. ' '
It seems desirable, therefore, to present a summary
describing the present state of the Fermi theory for the
use, primarily, of experimental workers. One must
observe in addition, as we shall illustrate, that a strict
application of Fermi's simple basic postulates requires
meticulous attention to detail. Most existing calcula-
tions have, of practical necessity, been based upon

II. INTRODUCTION TO THE THEORY

We wish to predict the outcome of nucleon-nucleon
and meson-nucleon collisions occurring at energies suK-
ciently high for meson production and other possible
inelastic processes to become signiicant. We assume,
with Fermi, "that the two incident particles in each
of such collisions coalesce and that the energy brought
in by them is released within a common region of inter-
action. After a time this region of interaction is then
considered to disintegrate into one or another of the

e E. Fermi, Phys. Rev. 81, 683 (1951).' R. Marshak, Meson Physics (McGraw-Hill Book Company,
Inc. , New York, 1952), p. 290 K' W. Kraushaar and L. Marks, Phys. Rev. 93, 326 (1954).

e E. Fermi, Elemerttary Particles (Yale University Press, New
Haven, 1951),p. 84 G.

* Supported by the Ofhce of Naval Research.' E. Fermi, Progr. Theoret. Phys. (Japan) 5, 570 (1950).'E. Fermi, Phys Rev. 92, 45.2 (1953); Phys. Rev. 93, 1434
(1954).

3 J. V. Lepore and R. N. Stuart, UCRL-2386, Nov. 17, 1953;
Phys. Rev. 94, 1724 (1954). 1Vote: In Eq. (33) of UCRL-2386
and Eq. (20) of the Phys. Rev. article, the factor (4rt 3)!should—
read (4rt —4)!

4 J. V. Lepore, UCRL-2396, UCRL-2398.
~ C. Yang and R. Christian, Brookhaven Cosmotron Internal

Report,
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possible final states of the system. We further assume
that the interactions involved are sufFiciently strong,
and that the interaction region survives sufFiciently long,
for all of the possible final states to have become equally
excited. By thus assuming the attainment-of a statistical
equilibrium among all possible final states we may
prorate the probability for a given outcome according
to the number of states embraced by that outcome.
The ensemble of possible final states is to be selected on
the basis of those conservation laws which are expected
to apply during the interaction. Besides the usual laws
of energy, momentum, and charge conservation, one

may also require that the total isotopic spin of the
system, the number of nucleonic particles, and similar
variables be subject to appropriate constraints.

The foregoing assumptions should be phrased in

formal terms before proceeding with calculations based
upon the Fermi statistical theory. The transition rate,
w, from the initial state, li), of a quantum mechanical
system to a 6nal state,

I f), is given by the customary
formula

(2.1)

(fIK li) =const(Q/V) o"' (2.2)

where (fIXli) is the matrix element of the Hamiltonian
connecting the two states and where the factor p(W)
represents the density of 6nal states of the system
evaluated for a total energy W. In general we shall

specify the final states in terms of the numbers and
charges of the nucleons, mesons, and perhaps other
particles which emerge from the interaction region.

The matrix element (flKli) vanishes, of course, for
interactions which do not connect states satisfying the
laws of energy, momentum, angular momentum, and
charge conservation. It may also be assumed to vanish
for other interactions, such as those which, a priori, do
not conserve isotopic spin. To apply the Fermi assump-
tion that equilibrium is attained, we consider that the
interaction K projects the initial state vector li) uni-

formly over the space of all state vectors which are
compatible with the conservation laws and which repre-
sent the existence of virtual particles of all possible
momenta confined to the interaction volume Q. The
final state vector

I f) represents a state containing free

particles, and will consist of the direct product of inde-

pendent free-particle wave functions. I.et us assume

that these individual wave functions are normalized

with respect to a large spatial volume V. For a total
of X particles in the final state the function

I f) will

thus contain the normalizing factor (V) i'"'~. On the
other hand, each of the E-particle virtual states con-

tained initially within the volume 0, will have a normal-

izing factor of the order of (Q) o "&~. Upon computing
the overlap integrals for each of the E particles the
matrix element becomes

where the constant, by the assumption of statistical
equilibrium, is independent of the 6nal state. Put more
physically, the transition rate m to a given 6nal state
is proportional to (Q/V)~, which is the probability
that E particles con6ned to a box of volume V will

simultaneously be observed within a region of volume
Q. The constant appearing above is useful only in de-
termining the over-all transition rate for all types of
final states. Since the purpose here is to establish the
relative abundance of different final states for a given
sort of interaction, this constant will be neglected in
calculations. The only remaining parameter in the
theory is the interaction volume Q. Fermi assumes that
Q will be of nucleonic dimensions, say Q= (4/3)7rro',
where ro is the approximate radius of the meson cloud
surrounding a nucleon. Also 0 may be made energy
dependent, if desired. However, for the moment we

shall consider 0 to be a free parameter of the system.
R.efinements may be made in the above estimate of

the matrix element. If e of the total of Ã particles are
considered to be physically indistinguishable, then only
those wave functions for the final state,

I f), are ad-
missible which are completely symmetric (or, appro-
priately, antisymmetric) in the coordinates of the
identical particles. The degeneracy so introduced is
re'lected by the replacement of

I f) with (e!) '"If),
wherever the former function occurs. Hence the matrix
element becomes, in this case,

(Qp NI2 1
(flxli) =constl —

I

&V) (ri t) i/2
(2.3)

Generalizations of this procedure are evident. It should
be remarked that the concept of indistinguishability
must be carefully applied. Consider the case of pions.
Were one to treat positive pions as being distinguishable
from negative pions, that is, as being essentially differ-
ent particles, then one would allow for possible de-
generacies through dividing the matrix element by

L(~')'(~ ) j'",
where e+ and e represent the number of positive and
negative pions present in the final state. In this scheme,

say, a state of one positive pion and one negative pion
would be considered to have twice the weight —from
the (2!)—of a state containing two positive pions. If,
on the other hand, we wish to impose the requirement
that the total isotopic spin of the system is conserved
during the interaction, we must then consider that
positive, neutral, and negative pions are three states of
a siegte particle. The matrix element for the process
must then be divided by (e!)'",where m represents the
total number of pions present. In this case the weights
for the various combinations of charges must be estab-
lished by a more complicated process which will be
described in Sec. IV of this paper.

One may, of course, modify the matrix element in
still other manners in order to refine the theory further.
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A few such refinements will be discussed at the end of
Sec. III.

The density of final states, p(W), depends both upon
the phase space available to the particles in the final
state of energy H/', and upon the number of possible
charge and angular momentum states consistent with
the constraints on the system. Henceforth we shall
consider only situations in which pions and nucleons are
produced. %e shall specify the final state according to
the number and charge of these particles, irrespective
of their individual energies, momenta, and angular
momenta. Since one state for each particle produced
corresponds to a volume (2m&)' in the phase space of
that particle, g independent particles, of total energy
lV, will possess the density of states per unit energy:

K

(d/dW) (2m It) '" t t—II d'x, d'p;.
~v ~w'-i

(2.4)

The spatial integral for each particle is taken over the
large normalization volume t/', while each momentum
integral is required to be consistent with a total energy
H/. The relative probability that e pions and s nucleons
will emerge from a high-energy interaction will then be
given by

S'(N, s) = (Q/V)" Q (d/d W) (27rk) '"
N

&&
~ II d' 'd'p', (2 3)

vow ~1

S(e,s) = (Q/ V) ~—' P (d/d W) (2n-I&) '&~ '&

N—1

II d' 'd'p' (2 6)
vow

with iV= (r&+s), where it has been assumed for the
moment that the pions are all distinguishable. The inte-
grations above must be restricted to conform to the
various constraints upon the system. The conservation
of linear momentum will, for example, reduce the num-
ber of dynamically independent particles from E to
(X—1). Not only will the integrations above be taken
over the phase space of only (1V—1) particles, but also
the matrix element factor (Q/ V)~" will become
(Q/V)&~ '&&', for the same reason. The relative prob-
abilities then become

becomes (V)~ ', cancelling a similar factor in the
matrix element. Thus we find

S(e,s)=Q~ '(2+&&i) '&~ '& Q (d/dW) g d'p,

=Q~ '(2gr&r&)-'t~ '& P (d/dW)us (e,s). (2.7)

Here 'U&r is the volume of the 3(X—1) dimensional
momentum space corresponding to the (1V 1) ind—e-
pendent particles, calculated to be consistent with the
law of momentum conservation, and such that the total
energy of.all E particles is less than or equal to 8'.

In Sec. III we shall discuss various procedures and
results for the calculation of (d/dW)*U&r. In Sec. IV,
on the other hand, we shall consider the calculation of
the sum over charge states which is required if we are
to assume that the total isotopic spin is conserved
during the interaction. We shall then illustrate the
application of the theory to experimental situations
and shall also describe certain modifications which have
been proposed.

III. THE PHASE SPACE CALCULATIONS

The problem is to calculate the quantity 'U~ as seen
in Eq. (2.7), and from it d'U &r/d W, where 'Us is the total
volume of momentum space available to all the inde-
pendent particles of the system, subject to the law of
conservation of momentum, and to the requirement
that the total energy of all particles, independent or not,
is less than or equal to O'. The calculation of this
quantity becomes very diKcult if one tries to treat all
particles concerned in a proper relativistic manner. To
date, numerical results have been yielded only by
treatments in which one or another drastic approxima-
tion has been made. In the following sections we shall
summarize and illustrate some of these results.

A. The General Formula of Leyore and Stuart

First we shall describe a general formula developed

by Lepore and Stuart. ' This formula, although resistant
to numerical calculation in the general case, still repre-
sents a powerful approach to the problem. The quantity
of interest in Eq. (2.7) may be written

A summation symbol has been included in the above
equations to indicate that a suitable sum must be taken
over the various possible charge and angular momentum
states.

From this point on, the determination of the relative
probabilities, S(n,s); is largely one of mathematical
calculation. We may simplify the problem considerably
by neglecting entirely the conservation of angular
momentum. The eQ'ects of such a neglect have been
estimated by Fermi, The spatial integration in (2.6)

XUPW —P (f& +M )'&q, (3.1)

where the integrals are taken over the momentum space
of all Ã particles, with masses M;. The units are such
that c= i. The delta function in the momentum insures
that momentum will be conserved (effectively reducing
the number of independent integrations by one). Also,

U(x) is a step function equalling unity for positive
values of its argument and zero for other values, The
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momentum integrals may now be taken to plus-or-minus When the phase of z is either 0 or —i~ we may write
infinity. The discontinuous functions have the Fourier the integral in terms of Hankel functions'o
representations

and

8(x)=(2sr) '
I )t dskexp(ik x), (3.2) d8' cosh8' exp( i—s cosh8') =—srHi&" (s), (3.9)

where the relation

(e)0). (3.3) Hi&'~(Ze' ) =Hi&'&(Z), (3.10)

1 d (H,&'~(Z))

Zdz& Z

Hs "&(Z)
(3.11)

(~
—ae

id W (2sr)'

N

dn e' ~
I dsgQI, (34).

i=1

Z2

we may write
where

Th F (3 1) b k d
' t d t f

' t 1
has been used. "Hence, utilizing the recursion formula, "

of similar form,

I,= dsp exp[i' p —iver(P'+M, s)'*]. (3.5)
Hs'@ [M;(cr'—X')'"]

Ii=2m'M n
(n' —X')

(3.12)

This has been derived only for n lying on those parts of
the real axis such that IcrI)X. However, both Eq. (3.5)
and Eq. (3.12) represent analytic functions of cr. By an
analytic continuation argument Eq. (3.12) can be
stated to hold for all n's lying on Ime= —e. Indeed, the
equation holds for the entire plane provided only that
one does not cross the branch line between &) . Finally
we may write that

The angular integration may be conducted by taking 2
to be the polar axis. If in addition one substitutes
p=M sinh8, At=MA, and crt=Mrs, one finds that

2sr

I,= dP P—exp(iP, P—cr(P'+M, s)'"])
iX~

2aM d
d0 cosh0

dA, y"
d~ .~N .

~ilaw

doer 2 oa—ie'

(2sr')N g M'
i.exp[i(Xr sinh8 —nr cosh8)]. (3.6)

We may write

Xi sinh8 —ni cosh8= —(crP —ltP)'" cosh(8 —q), (3.7)

with cosh' =ni(nP —XP) 't'. Considering Xi to be fixed
and positive, we observe (nP —XP)'t' to be an analytic
function of the complex variable o.~, having branch
points at &X~ on the real axis. The function is specified
completely by requiring that (esp —Xp)'ts be positive
for large positive values of ni. In particular (ctP—XP)'t'
is analytic in a neighborhood of the line Imo. = —e, along
which crt will later be integrated. Letting s= (crP—XP)'t',
and requiring that e be infinitesimal, we see that the
phase of s will be 0, for ni)Xr)0; (—isr/2), for
Xt)crt) —Xi, and (—isr), for ai( —lti. We may then
write, putting (8—ss) =8',

2zrM
d0 'cosh0

dpi (otP XP)'ts"—

-exp[—i(cr '—XP)'" cosh8']

f
=2xM e~.——— d0' cosh0'sos~

„

.exp[—is cosh8 ] . (3.8)

r" dP X'

II {H "'[M (~'—~')']), (3 13)
~ (n' —2)" t=i

which is the formula derived by Lepore and Stuart. '

B. Calculation for Zero-Mass Particles

Hs&'~ [M;(n' —X')'"]='

M,ssr (cr' —Xs)
(3.14)

"G. Watson, Besse/ Fttactsoas (Cambridge University Press,
Cambridge, England, 1952), p. 180."See reference 10, p. 75."See reference 10, p. 74.

"See reference 10, p. 84.

The general formula just derived. is such that the
remaining integrations are dificult to perform, a prob-
lem arising from the fact that the points &) are essen-
tial singularities with respect to the a plane. Results
may be obtained, however, for the case of zero-mass

particles, that is, for the case in which all particles are
treated as being extreme-relativistic. Following the pro-
cedure of Lepore and Stuart, ' we expand the Hankel
function about the origin and keep only the first
term. "Thus,
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Substituting this in Eq. (3.13) we have

28N—8 N ()0—ie
Z

00

d~. ~N. ~7aW

TABLE I. A comparison of statistical weights for massless
particles. The numbers in brackets show the weights relative to
the case %=2.

8—N7r ~—M (n2 )(2)2X
Method N=2

Number of particles
N=3 %=4

or finally,

[(2X—1)!)2

dn, (3.15)
8(N—1)—ao—ie

Fermi 12.6W2
(1)

5.26W~
(0.42W')

Exact 1.57W2 0.287W5
(1) (0.18W')

(3.5) may be written as

0.394W' 0.0100W"
(0.031W') (0.00079W')

0.0127W' 0.000218$"
(0.0081W') (0.00014W')

d'U)4 ~~ 2r~ ' (41V—4)!(21V—1) 00

I»=- 2~ )( d d)
dW 2 ' [(2X—1) ij'(3X—4) i

where both the A and the n integrals are evaluated by
the method of residues upon closing the contours above
the real axis. It must be remembered that o. has an
infinitesimal negative imaginary part.

It is well to compare this result with that obtained
originally by Fermi for the same quantity. ' Fermi
initially neglected momentum conservation and calcu-
lated the phase space available to E extreme-relativistic
particles. This was subject only to the condition that
the upper bound of the total energy be fixed. Therefore,

Xexp{i[)(p—n(M+ p'/2M)]}

——8( 3/28 4~/ 4 (2M/n) 3/28 «5re(3r )—2/» (3.19)

ss ss

= (22r) 4J dn(l' 42r dX X (Iv/8)'

where the calculation is carried out by completing the
square in the exponent. The phase space calculation
then is reduced to the determination of two elementary
integrals, and yields

Q p;~&W.
i—1

The integrals may be calculated directly, with the result (sM)'" 1'[3(s—1)/2i

23(s—()/2~3(s —1)/2M8s/2 (g7 +M)(8s/2 —5/2)

(3.20)

(U ')'- = (4 )" p 'dp
&0 ~0

N—1

p2 dp2' ' '
When classical particles of diferent masses are involved
the same formula holds, provided one makes the
replacement

28N~N

X ~ p5/2dp/(/= W8~. (3.17)
Jo (31V)!

Fermi then assumed that momentum conservation
could be taken into account simply by reducing the
number of independent particles by unity, that is, by
letting E~(X 1). Doing t—his and taking the energy
derivative one obtains

sM—+Q M;,

8

M8s/2~/ (M.8/2)

i=1

D. Approximate Calculations for
Nucleon-Nucleon Collisions

(3.21)

7r N—128(N—1)(dsU ZBq

dg ) 8„;(3Q—4)!
.g78N—4 (3.18)

C. Classical Particles

An exact calculation may also be made for the case
of s classical particles of mass M. The integral in Eq.

This has the same energy dependence as the exact value
in Eq. (3.16), but quite a different coeKcient. Table I
shows the numerical results for small values of E, and
arbitrary t/t'. It is evident from this table that the strict
imposition of momentum conservation has a marked
effect upon the relative statistical weights for diEerent
multiplicities.

It is of considerable practical interest to examine the
case in which s nucleons and m pions are emitted.
I.epore and Stuart' studied this case under the assump-
tion that the nucleons are classical particles of mass 3f,
and the pions are extreme-relativistic particles. Account
was taken of the pion mass p by assuming that the pion
total energy has the expression (p+/4). This serves to
'limit pion production to within energetically feasible
limits, but is a somewhat dubious, if necessary, approxi-
mation. The calculation proceeds as before, yielding, in

process, the integral

42r I dX X' ()(2—n') '" exp{iX2sM/2n} (3.22).
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P (W)

Fze. 1. Momentum configuration for two particles.

(/f'U w 'i

E dW ]Approx.

Mss/2(2~) s(s—i)/2-

(sM)'"
. L2 sean)

$W sM r//s —j"'+'—" '/'

F1 3 (s—1)/2+3rsf
(3.23)

Although perfectly convergent, because of the in-
Qnitesimal negative imaginary part of 0,, this integral
leads on computation to Fresnel integrals which are
resistant to further analysis. Lepore and Stuart make
the approximation that the denominator may be re-
placed by e4". Thus it follows that

contracted by the appropriate Lorentz factor. The
variation of multiplicity with energy is quite apparent
in Table II. An accurate allowance for pion momentum
conservation would probably somewhat reduce the
above multiplicites. Calculations for the production of
classical heavy mesons and of nucleon pairs are also to
be found in the report of Lepore and Stuart. '

E. Step-by-Step Calculations

However satisfactory or unsatisfactory it may be in
nucleon-nucleon collisions to require momentum con-
servation of the heavy particles alone, such an approxi-
mation clearly will not sufhce for meson-nucleon
collisions. This is particularly true for energies at which
only one nucleon is expected to be present. Rather than
attempting to solve the problem in general terms by an
attack on the formula in Eq. (3.13), we may proceed
in the manner now to be described.

Consider two particles, having total energies zv, w'

and momenta p and p', respectively. Suppose that these
two particles are combined into a system having a fixed

2.5 Bev 3.9 Bev 4.71 Bev

0.5846
0.4127
0.0027
0.0000

0.0074
0.2302
0.3679
0.0919
0.0050
0.0001

0.0008
0.0647
0.2957
0.2547
0.0601
0.0046

It is seen that this result is essentially the product of
Eqs. (3.20) and (3.17), where energy conservation
among the increased number of particles has been taken
into account through the adoption of a common energy
factor, and through a suitable change in the argument
of the gamma-function. Essentially, this approximation
assumes that momentum conservation holds only for
the s nucleons, while the e pions are allowed to take on
any energies consistent with over-all energy conserva-
tion. If there are a variety of classical particles they may
again be accounted for by the substitution in Eq. (3.21).

From the above formula Lepore and Stuart have
calculated the relative probabilities for various pion
multiplicities, as obtained by substituting Eq. (3.23) in

Eq. (2.7) for S(rs,s). Their results for several different
tofal energies in the center-of-mass system are given in
Table II,' where s=2 for all cases. In these calculations
the interaction volume 0 was taken to be, following
Fermi '

0= (2M/W) (4/3)srR', 8= 5//sc= 1.4X10 "cm. (3.24)

This is simply the volume of the nucleonic pion cloud

TABLE II. The approximate weights for pion multiplicities in
nucleon-nucleon collisions (reference 3) where s=2=number of
nucleons emitted, n=number of pions produced, and lV=total
center-of-mass energy. No account is taken of charge states or of
particle indistinguishability.

p (+1)

FIG. 2. Region of momentum integration.

tl x

total momentum P=p+p'. We then ask, what is the
total volume of momentum space available to one of
these particles, such that the total energy of the pair,
u/+rr/', is less than or equal to some fixed energy W. The
momentum configuration may be drawn as shown in
Fig. 1. Let the vector p be taken to represent the inde-
pendent particle of the system. Then the momentum
volume available to this particle will be given by

t
u(~)

Uw, p= 2sl
J 0 m+ti/'& W

d (cos8). (3.25)

Here the upper limit to the p integration has been
indicated as p(W), or the momentum that the one
particle would have were it given the entire energy of
the system. In general, momentum conservation forces
the upper limit to be somewhat less than this, and the
angular integral will vanish except for certain ranges
of p. By definition, the integral in Eq. (3.25) is taken
over values of p and 0 such that rr/'& (W—r//), or such
that, equivalently, p' ~& Lsome known function of
(W—u/) j.Now ro is a known function of p, and p"=p'
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+P' 2p—P cosg. Hence, for fixed W and P, the bound-
ary of the region of integration will be specified by a
definite equation relating p and x= cos8, from which we
may calculate the functions p(x) or x(p). The region of
integration is shown in Fig. 2. In practice, calculations
are easier if one inverts the order of integration, to
obtain Similarly,

'U (3)= [W'—P']'[7W' —P')
2 6f

(3.31)

The first root of this is at P= W. Hence, to find 'U(3),
we may use the same limit p(x) as found in Eq. (3.29)
for 'U(2). Thus,

( n(*)

'Ugr i =2m'J dx) dp p .
—1 0

(3.26)
37r3

~ (4) — W[W2 P2]3[11W2 3P2] (3 32)
2.9t

'U(1) =0, (3.28)

since only one particle is involved. To calculate 'U (2) we
observe that the integration limits are determined by

P'+ p' 2ppx= (P')'= (I')—'= (W P)', —
or

To add a third particle to the system one repeats the
above process by taking the dependent variables p' and
m' to represent the energy and momentum of the com-
bined system formed by the first two particles. These
two variables may be calculated in terms of p and r(1

which are now the variables of the independent third
particle. The total momentum space available to the
tz 0 independent particles of this system is then given by

n(~)

Uw, P 27r dxJ dP'P U ~'(u &) n'(s &)1 (3 27)
—1 0

where 'U' is the momentum-space volume previously
calculated for the first two particles. Here again p(x)
enforces the conservation of energy and momentum
upon the system. In general, p(x) may be calculated by
taking the first root of the integrand 'U'„,„.Then 'U'

will vanish when p' is too large in relation to u)'.

Understood, of course, in these formulas are W and I',
the total energy and net momentum of the entire sys-
tem. The dynamic complexities of the particles involved
are entirely contained in the computation of the limit
p(x). Aside from calculational difTiculties, one could
iterate the above process to include in the system as
many particles as desired. To deal with a center-of-mass
system one takes I'=0 in the final result, and to estab-
lish the density of states at a given energy 8" one
differentiates 'U~ 0 with respect to 8'.

F. Special Cases—Extreme Relativistic Particles

%e shall now calculate a number of special cases, in
order of increasing complexity. First, let us reconsider
the case of extreme relativistic particles in Sec (III.B).
One may denote the total phase-space volume for e such
particles by 'U(n). Then it would clearly follow that

The corresponding momentum-space weight factors are
then found by taking P=O and diGerentiating with
respect' to H/. One obtains

dv(1)
=0,

dS"

and

du(2) = (vr/2) W',
dW'

d'U (3) 7m'
-- 8",

25t
d'U (4) 3 11m'

dS" 2.81

(3.33)

These results are the same as those given by the general
formula in Eq. (3.16).

G. One Mass-N Particle with
n Extreme-Relativistic Particles

With but little extra difhculty it is possible to include
one mass-.V particle in a system with e massless par-
ticles, a calculation of particular relevance to pion-
nucleon events. One calculates'U (e) as for the e massless
particles, and then adds the mass-E particle and the
simultaneous requirement that the total momentum
E=O. In all cases the momentum limit is determined
from the equation

p2 (PI)2 (u)~)2 (W i())2 [W (N2+P2)1 2]2 (3 34)

which yields
p= (W' —N')/2W, (3.35)

t

y(&)

'U (1N,10)= 2m- dx p'dp
~ —1 ~0

a quantity independent of the variable x. Let the mo-
mentum volume be denoted by 'U(1N, n0). Then for
e= 1 we have

which yields

(3.29)p(x) =
2[W Px]— 6 8' (3.36)

Other results follow similarly. Since the formulas are
complicated, however, we shall quote only the energy
derivatives, which are of paramount interest. These

1

'U(2) =21r t dX. —',[p(X)]'= (~/6)W(W' P'). (3.30)—
—1
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include

O'U (1Ã,10) 2r
W2I 1—121I 1—P

dS' 2 W lV Ec

2xk Sc 2m& vX~
(3.41)O'U (1iV,20) 2r2W6

(1—P') (7—43P' —23 P'
dg' 2 5I

Here X11 ——(22rk/1Vc) =1.2&&10 " cm is approximately
the extent of the meson cloud around a nucleon. Defin-
ing further the nucleon volume, Q0 ——(42r/3)X106, one may
express the results in terms of the ratio of the interaction
volume 0 to the nucleon volume 00. Thus

—3p'+2p')+120p' ln—, (3.38)

aIld

The total energy appearing in Eq. (3.40) is actually
expressed in momentum units, and the factor in W

(3 37)
becomes

O'U (1)V,30) 32r2W6

2 81

4697
11—196v2—

3430
P4+ P6

3 3

28 7 2
PS —P10 P12+ P14

3 3 3

1
+280p4L7+10p2+ p411n— . (3.39)

and

S(2,1) t
Q i S(3,1) pQq= 2.04I —I, =0.3181 —I,

S(1,1) &Q, 3
'

S(2,1) ~Q,) '

S(3,1)s(1,1)=0.156.
I:S(2,1)7

(3.42)

Q y'2r2W6
s(2, 1'l =

I

—
I

(1.547)
&8~2a6) 2 S! (340)

( Q ) 2 32r2W6

s(3,1)= I I
. (0.48s).

&82r656) 2 8!

Here P=X/W represents the relative eGect of the
mass-E particle over what it would have as a mass-zero
particle. It is to be noted that the above weights tend to
their extreme-relativistic values as E—&0, and to zero
as E—+TV. The complexity of these formulas, and par-
ticularly the presence of the logarithm, presumably
reAect the presence of the branch point in the Hankel
functions in Eq. (3.13). In addition one should observe
that the particle of mass S has been treated with all
due relativistic rigor. Numerical calculations with the
above formulas must be made with considerable care
since many of the large individual terms cancel one
another, leaving but a small result.

These formulas permit one to calculate the relative
probabilities for the production of various numbers of
mesons in pion-nucleon collisions. We have carried out
such a calculation for a center-of-mass energy of 1.92
Bev (corresponding to 1.37 Bev pions in the laboratory
system) and for a nucleon mass of 0.938 Bev. In this
case v=0.487. Neglecting the e6ects of factors arising
from the consideration of charge states and the identity
of particles, the relative statistical weights may be
calculated from Eq. (2.7). Denoting the relative prob-
ability for the emission of e pions and one nucleon by
S(N, 1), one finds that

Q q ~W'
s(1,1)= I I (0.720),

(82r2f22 j 2

It is quite clear that the interaction volume plays a
predominant role in the determination of the meson
multiplicity.

or

p = 1/2Wt (W2—M' —1V2) 2—4M21V2)'". (3.43)

From this we find that

~ - (W2 M2 Q2)2 4M2+2- 3/2

'U(1M, 1Ã) =—
6 +72

(3.44)

It is to be noticed that this reduces to the correct forms,
Eqs. (3.36) and (3.33), as M and 1V tend to zero. Also,
'0= 0 when W= M+1V, as is to be expected from energy
conservation.

Since we would like to apply our results to the
multiple production of pions, let us next consider the
case where two particles (the pions) have a mass M,
and one particle (the nucleon) has a mass 1V. We first
must derive a formula analogous to Eq. (3.30) for the
two particles of mass M. The function p(x) is deter-
mined from

P'+ P' 2PPx =P"=2p" M'— —
=I W —(M +p2)112j2—M'. (3.43)

H. Several Particles of Finite Mass

To consider correctly the case of several particles of
nonvanishing mass involves one in calculations which,
while elementary from the mathematical standpoint,
still offer great practical difficulties. Initially let us
discuss the case of two particles having masses M and E.
For zero total momentum the limit function p(x) is
independent of x and is given by the equation

p2 —p~2 —2p&2 +2—{W 2p)2 Q2
—

I
W (M2+ p2) 1l2)2 gV2
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If we define the dimensionless quantities

p I' M N
y= —, P=

W W 8" 8'
we find that

=y(x)S'

(3.46)

formula

d'U (2M, 1N) (1—v) /4p,

= (4/3)2r2W2/44 ~ d24. („1)2/2„—1/2

d8' 1

.[(1+p2 4~224)2 4p2]—1/2

f (1—p2+ p4 —2p'+ v')

—4/4224 (1+2 p2 —2p4+4 p')
p2+2 4+2 ~

1/2 [1 P2]
= P+(1—

1 —P2 1—P2) .2[1—P2g2]

From this one may calculate, by elementary methods,
that

V(2M) =
4/42 ) 2/2

(1—P')i 1—
1-P2)

(3.48)

When I'=0 this volume vanishes for M= (1/2)W, as
is to be expected. To include the third particle, of mass
E, the new limit function is determined from the first
root of 'U(2M) above. Expressed in terms of the vari-
ables 24/' and p', this integrand is

O'U (2M, 1N) 2r2W'
(1.162) .

2 51
(3.54)

+ 16/44242 (1+2p2+ 6p4)

—64/4'242(2/4p')+256/4'24'}. (3.53)

The calculations were performed for a total energy of
1.920 Bev (laboratory pions of 1.37 Bev), with a nucleon
mass of 0.938 Bev (p=0.487), and a pion mass of
0.136 Bev (/t4=0. 071). Using Simpson's method, except
at the upper limit in Eq. (3.53) where the irrational
singularity is calculated in closed form, we find the
result to be

'U'(2M) = gr N'

1— 1—

( ')'f 1—, , ( p'lt
Wr2)

O'U (1M,1N) 2rW2
-(0.714).

dS' 2
(3.55)

The exact one-pion, one-nucleon weight may also be
. (3.49) readily found from Eq. (3.44) and is

Hence the condition for p(x) is, with (P=O),

4M2 —24/r2 pr2 —[W (N2+p2)1/2]2 p2

giving

(3.50)

('1+p'

y(~)= I

2

) 2 -1/2

(3.51)

'U (2M, 1N) =
3 0

dy y2[1 (p2+y2)1/2]

(L1—("+y')']'—y'}

3/2

X 1— . (3.52)
[1 (p2+y2)r]2 y2

This quantity resists ready calculation in closed form.
Although one is tempted to assume that in practical
cases the relative pion mass, p, , will be small with respect
to unity, and to expand the integral in Eq. (3.52) to the
6rst order in p,', such a procedure turns out to be quite
inaccurate. Indeed, this approximation will overesti-
mate the eGect of the pion mass by a factor of nearly
two. To see the actual eBect of the pion mass, the above
quantity, or rather its more interesting energy deriva-
tive, may be calculated numerically from the equivalent

From this we may write the desired three-particle
momentum volume for zero net momentum, and total
energy 8". It is

2m'S'

The inclusion of the pion mass has thus reduced the
one-pion weight in Eq. (3.37) by a factor of 0.99, and
the two-pion weight in Eq. (3.38) by a factor of 0.75.
Hence the ratio of the relative production probabilities
becomes

S(2,1)

s(1,1) E... / Qq
=1.54] —[.

&n, )
(3.56)

and

S(2,1)

&(1r1) Appro~.

5(3,1)

&(2r 1) Approx.

=0.550] —f,
/'~ 'I

En, )

=0.028 '
—

I

)Qy

&n,)

(3.57)

The exact calculation of the relative probability for the
production of three or more pions would be very com-
plex. It is of interest, therefore, to compare the results
of the exact calculations above with those for zero pion
mass as seen in Eqs. (3.37), (3.38), and (3.39), under
the simple assumption that the total energy available
is merely reduced by the total mass of the produced
pions. Thus, the total energy of 1.920 Bev is reduced
to 1.784 Bev for one pion, to 1.648 Bev for two pions,
and to 1.512 Bev for three pions. These give v=0.525
for one pion, v=0.569 for two pions, and v=0.619 for
three pions. Vpon direct calculation from Eqs. (3.37),
(3.38), and (3.39) the relative probabilities become
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It is evident from the disparity between Eq. (3.56) and
Eq. (3.57) that the simpler approximations do not
sufFice to give results which do justice to the theory.
Since just such an approximation was made in deriving
Eq. (3.23) for the nucleon-nucleon case, one may per-
haps infer that more exact calculations are also neces-
sary here. It has been reported that Yang and Christian
at Brookhaven have made such calculations by a
numerical integration of Eq. (3.1).'

I. Elaborations of the Fermi Theory

Clearly, the preceding calculations do not represent
the'ultimate in deductions from the Fermi theory. First
of all, angular momentum conservation was grossly
neglected in deriving Eq. (2.7) from Eq. (2.6). It would
evidently be desirable to have this procedure checked
by a rigorous calculation, based, perhaps, upon the
insertion of a suitable additional delta function in

Eq. (3.1). An attempt of the author's in this direction
has met with little success in the face of mathematical
complications.

Another sort of refinement has been suggested by
Lepore, Stuart, and Neuman, "4 and is based upon the
requirement of the Lorentz covariance for the inter-
acting system. Each particle of the system may be
described by a space-time four-vector

matrix element in Eq. (2.3) to allow for the fact that
the higher the energy of a virtual particle created
momentarily within the interaction volume, the more
closely confined that particle will be to the point of
origin. This property is included numerically in the form
of a Gaussian weighting factor

exp[—W 'x 2/ksc2] (3.62)

The following modified formula is then used for the
statistical weight:

S(E)=(22rlt) 8&N"

d'x; d'y, exp[ —W,'x /Pi'c'j
i=1

X& (Qy;) & (W—QW;) 8 (Qx;W;/W). (3.63)

Upon calculation of the Gaussian spatial integral one
derives

2N 8~8(N l)/2 (W) 3 N ) d3y, jp
sy)= . .

i
—

i II
(2~$)3(N ll7lt8 —2 ( t3 J ~l 3 [p 2+~ ]8

X~(zy')~(W —ZW'). (3 64)

The most striking effect of these new requirements is
the factor

2:;= (ixj,its, its, ct),
h,8[p,spy, sj-st2, (3.65)

L;;=x;u; —xm;= —L;;, (3.58)

which is the general angular momentum tensor of the
particle. In the absence of an external interaction the
sum of these tensors taken for all the particles of the
system will be conserved. Therefore,

g, L, &'&=const, " (3.59)

where the index s represents the particle taken in the
sum. This equation, for i and j= 1, 2, 3, represents the
law of conservation of angular momentum as discussed
above. The (i4) component written in vector form is

and by an energy-momentum four-vector

28;= (ipl, ips, ip8, W)

From these one may form a skew-symmetric tensor of
rank two

included in the momentum integral for each particle.
This represents a reduction in the phase space available
to high-momentum particles, and corresponds to the
reduced overlap between the higher energy bound vir-
tual particles and the corresponding free particles. One
would expect these factors taken together to favor the
production of more low-energy particles and fewer high-
energy particles, that is, to increase the multiplicity.
The originators of this modi6cation to the Fermi theory
have not yet published any numerical results. " Since
their approach would seem to yield an increase in the
expected multiplicities, while previous refinements of
the momentum-space integrations have tended to de-
crease these multiplicities, their results will be of con-
siderable interest. Ke shall further discuss these various
calculations in Sec. V.

P, (x&'&W&'~ —y'~t'&) =const. (3.60) IV. CONSERVATION OF CHARGE AND ISOTOPIC SPIN

Using the fact that in a particular coordinate system
the time factor for all particles will be the same, and
that the total momentum will be conserved, one deduces
a law for the conservation of the center of energy

This reduces to the usual center-of-mass conservation
law in the nonrelativistic limit.

In addition, Lepore, Stuart, and Neuman modify the

"Lepore, Neuman, and Stuart, Phys. Rev. 94, 788 (1954).

It has been suggested by Fermi' that, besides charge
conservation, one might also impose isotopic spin con-
servation upon the interacting pion-nucleon system.
The background relating to this restriction has been
thoroughly discussed in the literature. "We shall here
describe only its application to multiple meson produc-
tion. For simplicity we shall describe the theory as
applied to pion-nucleon collisions. Following this we

'5 Henley, Ruderman, and Steinberger, "Reactions of pi-mesons
with nucleons, " in Annual Review of Xucleur 5cience (Stanford,
California, 1953), Vol. 3, pp. 1—38.
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shall append a tabulation of Fermi's earlier results for
nucleon-nucleon collisions. "

The behavior of the isotopic spin of a system of
particles is conveniently described in the language of a
fully equivalent system of angular momenta. Thus a
nucleon, with respect to its charge state, is considered
to behave like a particle of total "charge" angular
momentum, or isospin, one-half. The two possible pro-
jections of this charge vector along a given axis in

charge space represent the two possible charge states
of a nucleon, that is, a proton or a neutron. Similarly
a pion, which can have positive, zero, or negative
charge states, is represented by a total isospin of unity.
One may summarize this correspondence as

Nucleons: Isospin T~= 1/2;
State of TP=+1/2 is a proton (p)

TP = —1/2 is a neutron (e)

Pions: Isospin T"=1; State of T, =+1 is a z+
T, = Oisax'
Tg = —1 ls a 7r

If a number of pions and nucleons are combined to form
a joint system, the total isospin vector is formed in the
same way that one forms the total angular momentum
of a number of particles. The resultant isospin is thus
the vector sum of the isospins of the component par-
ticles, and may be written

T—g, 'f li)

The total charge of the composite system is related to
the s component of T by

Q =+e[T,+ (1/2) s),

where s is the number of nucleons present. Charge
conservation is equivalent to the requirement that T,
be a good quantum number during the interaction.
Isotopic spin conservation similarly is equivalent to the
requirement that the total isospin T be a good quantum
number.

We shall illustrate this with the case of a system
formed from a negative pion and either a neutron or a
proton. Only two resultant total isospins are possible
in this case, T=1/2 and T=3/2. Because of charge
conservation we are only interested in states having
T,= —3/2, for interactions with neutrons, and T,=—1/2, for interactions with protons. Henceforth we
shall adopt the notation (T,M) for states having total
isospin T and charge component T,=M; and also, for
example, the notation (p++ —0) for a state containing
one proton, two positive, one neutral, and one negative
pion. The ordering of the pions is of no significance here.
In order to relate the description in terms of isospin
with that in terms of the charges of the two particles

' A thorough description of the isotopic spin calculations for
nucleon-nucleon collisions is contained in a set of hectographed
notes transcribed by G. Yodh from a course in Meson Physics
given by Professor H. Anderson at the University of Chicago
during the fall of 1953.

TABLE III. Clebsch-Gordon coefFicients for a pion-nucleon
system (all other entries are zero).

(M 1 MQ) (7 M) ' (3/2, —3/2) (3/2, —1/2) (1/2, —I/2)

(P+) 1/2
(PO) ii2 0
(P—) 1/2 —1
(n+) —1/2 1
(e0) —1/2 0
(n —) —1/2 —1

v'(1/3) —v'(2/3)

v'(2/3) v'(1/3)

"E.U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, England, 1935),pp. 76 ff.

' Anderson, Fermi, Martin, and Nagle, Phys. Rev. 91, 155
(1953).

one must know the transformation coeKcients connect-
ing the two representations. These coefficients are just
the Clebsch-Gordon, or vector-addition, coefficients,
and may be computed from formulas arising in
the theory of atomic spectra. " Using the notation
(Tt, Ts,Mt, Ms~ Ti, Ts, T,M), the coefficients of interest
in the present case are those with Ti 1/2 and T——

&
——1.

Here M~ represents the charge component of the nu-
cleon, and M2 that of the pion. These coefficients are
given in Table III. From this table one may see immedi-
ately that a system composed of a negative pion and
a, neutron will surely be in a state T=3/2, M= —3/2,
or (3/2, —3/2), for short. A negative pion and a proton,
on the other hand, will, with a probability of 1/3, be
found in a combined state (3/2, —1/2) and with a
probability of 2/3 in (1/2, —1/2). Assuming charge and
isospin conservation, only these three states will be
needed for the following computations. Conversely,
one may also deduce from this table that a system
composed of one nucleon and one meson, known to be
in a state (3/2, —1/2), will, with a probability of 1/3
be observed as a (p —), and with a probability of 2/3 as
a (it0). If one assumes that the (vr -p) interaction cross
section is the same for both possible states of isospin,
then final states of T=3/2 and T=1/2 will be formed
with probabilities 1/3 and 2/3, respectively. The prob-
ability of observing (p —) will then be: (1/3 1/3)
+(2/3 2/3) =5/9, and of observing (n0): (1/3 2/3)
+ (2/3 1/3) =4/9. The two possible one-pion final
states thus will be observed in the ratio (p —):(n0)
=5:4.Actually the assumption of equal cross sections
is a rather dubious one in the light of evidence pertain-
ing to medium energy pion scattering, which suggests
the existence of a resonance or near-resonance in the
T=3/2 state. ""For negative pions colliding on neu-
trons no charge exchange scattering is possible, and the
(e—) final state will be produced with unit probability,
assuming no other pions are produced.

When one admits the possibility of producing more
than one pion, the situation becomes a little more
complicated. With two pions and one nucleon, for
example, the state (3/2, —3/2) can be formed in one

way when the total isospin of the two pions is equal
to two (Ts~ 2), and another wh——en Ts =1. Following
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TABLE IV. The statistical weights for the products of (~ -nucleon) collisions. For (s -nucleon) collisions exchange (+) for (—) and
(p) for (e) everywhere. The numbers in brackets represent the total statistical weight of the state under which they are entered.

No. Pions

1

. Final

(f —)
(e—)
(eO)
Total

(P——)
(pO —)
(eO —)
(~00)
(e+—)
Total

(Po- -)
(P+ )——
(poo —)
(a+ ——)
(Noo —)
(Nyo —)
(%000)
Total

(P+ )———
(POO ——)(p+0--)
(pooo —)
(a+0——)
(F000—)
(e++——)
(~+00—)
(e0000)
Total

Initial: (3/2, -3/2}

(1)

4/5

6/5

(2)

8/5

10/5
75

(5)

80/35
88/35

200/35
52/35

(12)

(3/2, —1/2)

1/3

2/3
(1)

14/i5

4/15
12/15
(2)

6/5
5/5

12/5
2/5
(5)

152/35
44/35

87/35
129/35

8/35
(12)

(1/2, —1/2)

2/3

1/3
(1)

2/3

1/3
3/3
(2)

6/5
4/5'

9/5
1/5
(4)

192/60
48/60

123/60
165/60

12/60
(9)

4/5

6/5

(2)

8/5

10/5
7/5

(5)

80/35
88/35

200/35
52/35

(12)

4/9
(1)

34/45

14/45
42/45

(2)

18/15
13/15

30/15
4/15

(13/3)

752/21o
200/210

461/210
643/210
44/210
(10)

the spirit of Fermi's statistical theory we assume that
these two possibilities are equally excited, and that this
degeneracy provides the state (3/2, —3/2) with the
over-all weight 2. To proceed with the calculations one
must 6rst relate the various two-pion states according
to their total isospin T2, and total charge component
M2 . This relation is provided by the set of coefficients,
(1, 1;M&, Ms ~1, 1; Ts., Ms ), evaluated for Ts 2,1——
0. Only the intensities are of interest. They are, writing

(T&,M& ), given compactly by

(2,2) = (++)
(2,0) = 1/3 (+—)+2/3 (00)
(» -2)=(--)
(1,0) = (+—)
(0,0) =2/3(+ —)+1/3(00).

Once in possession of these two-pion states one may
add the nucleon as before by utilizing the coefficients
(Ts,1/2; Ms, M~ITs, 1/2; T,M). Thus one finds di-

rectly, for example, that a system in the state
(3/2, —3/2) will form two-pion, one-nucleon states
with the relative weights for (p ——): 4/5 and for
(m0 —): 6/5. The sum of these two weights is just 2,
representing the over-all degeneracy of the (3/2, —3/2)
state.

One may proceed in this way to build up the relative
weights for as many pions and nucleons as desired.
Results are given in Table IV for (w -nucleon) collisions
which produce one nucleon and up to four pions. The
weights for (w -p) events are calculated, assuming

equal cross sections for the two possible charge states.
Weights for one charge state or the other may be found
directly from the appropriate column. One should also
note that as a result of charge symmetry the table will
also give the weights for (w+-nucleon) collisions. One
need only exchange everywhere in Table IV + for —,
and p for e.

These weights include the over-all contribution result-
ing from the degeneracy of the charge states. The total
charge space weights are written in brackets. In practice
these factors will be nullified by the reduction in the
over-all weight arising from the indistinguishability of
the pions.

Fermi2 has made similar calculations for the products
of nucleon-nucleon collisions. These are given in Table
V. Two protons are necessarily in the isospin state 1, 1,
two neutrons in the state 1, —1, and a neutron and a
proton in either 1, 0 or 0, 0. In the last case, provided
the interaction cross sections are equal for T=1 and
T=O, one may assume that the interacting e-p system
is equally divided between the 1, 0 and 0, 0 states. The
results in the table are for e-p and p-p collisions. Again,
one may obtain n-e results from the p-p results by
everywhere exchanging + for —and p for e.

V. DISCUSSION OF RESULTS

A. Application of the Fermi Theory to ~ -p
Events at 1.37' Bev

Ke shall illustrate, finally, the application of the
Fermi theory to a particular case which corresponds to
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the conditions of some recent experiments at the
Brookhaven Cosmotron. Negative pions are incident on
protons with a laboratory energy of 1.37 Bev, corre-
sponding to a center-of-mass energy of 1.92 Bev. We
have already calculated the phase-space contributions
to the statistical weights at this energy. For zero-mass
pions we found, in Eq. (3.42), that

S(2,1)/S(1,1)=2.04(Q/Qp),
and

S(3,1)/S (2,1)=0.32 (Q/Q p) . (3.42)

An exact calculation taking into account the pion mass
gave, however,

LS(2,1)/S(1,1)$E„.,t ——1.54(Q/Qp). (3.56)

In the absence of similar calculations for the three
meson case we may estimate approximately that

LS(3,1)/S(2, 1)jz t='0 2(Q/Qo) (5 1)

These weights must be adjusted for the degeneracy of
states in charge space (Table IV), and for the fact that
the pions are identical particles as seen in Eq. (2.3). For
one pion produced this factor is just 1/1!=1. For two
pions it is 2/2! = 1, and for three pions (13/3)/3! =0.72.
We final1y obtain the corrected weights

S,(2,1)/S, (1,1)= 1.54(Q/Qs),

Case A (0=Q0)

S(1,1)=036
S(2,1)=0.56
'S(3,1)=0.08

Case B (0 =0.7800)

S(1,1)=0.42
S(2,1)=0.51
S(3,1)=0.07

Case C (0 =0.500)

S(1,1)=0.55
S(2,1)=0.42
S(3,1)=0.03

TABLE VII. Distribution of secondary products in
~=P collisions at 1.37 Bev.

Secondary
products

(P—)
(00)
(P0-)
(aoo)
(a+—)

(P+ )——
(P0o —)
(a+0 )—
(n 000)

Case A
(0 =00)

0.20
0.16

0.21
0.09
0.26

0.02
0.02
0.04
0.00

Case B
(0 =0.7800)

0.24
0.18

0.19
0.08
0.24

0.02
0.02
0.03
0.00

Case C
(0 -0.500)

0.31
0.24

0.16
0.07
0.19

0.01
0.01
0.01
0.00

TABLE VIII. Distribution of charged secondary products
in x -p collisions at 1.37 Bev.

Charged
secondaries

Case A
(0 =00)

Case B
(0 =0.7800)

Case C
(0 =0.500)

Experi-
ment19

TABLE VI. Relative production probabilities for 1, 2, and 3
pions in ~=p collisions at 1.37 Bev.

and
S (3,1)/S (2,1)=0 14(Q/Qo).

(5.2)

TABLE V. Statistical weights for the products of (nucleon-
nucleon) collisions (after Fermi). For e-e collisions use p-p
results exchanging + for —and p for e everywhere.

(~ +p).i..
(s' +P)inc&
(7r++7r-)
(a++2m +p)

0.27
0.30
0.40
0.03

0.32
0.29
0.36
0.03

0.45
'

0.25
0.29
0.01

0.11
0.35
0.50
0.04

Assuming that no more than three pions are produced
in significant quantities, and making three possible
choices for the interaction volume 0, we find the nor-
malized relative probabilities listed in Table VI. Case 8,
0=0.780p, assumes the interaction volume is that of the
proton, Lorentz-contracted to allow for its motion in
the center-of-mass system.

In terms of the above, and the charge distribution
given in Table IV, we may predict the over-all distribu-
tion of secondary particles shown in Table VII.

Of somewhat greater experimental interest is a table
in which only the observable charged secondaries are
entered. Elastic scatterings are frequently distinguish-

able experimentally aiId hence are separated in Table
VIII. Included are some tentative experimental re-
sults from photographs of 147 events in a difFusion

cloud chamber filled with hydrogen at high pressure. "
The fit of theory to experiment is not very good for

the theory predicts many more incoherent elastic

No.
Pions Final Initial: «,1) «.0) «,0) V -&) (n-P)

(PP)
(ap)
Total

(PP0)
(pe+)
(PP )—
(pl0)
(en+)
Total

2 (pp+ —}
(PPoo)
(P~+0)
(en++)
(PPo )—
(P~00)
(P~+ )—
(me+0)
Total

(1)

1/2
3/2

(2)

6/5
2/5
9/5
3/5

(4)

(1) (1)

1/2 1/3
2/2 1/3
1/2 1/3
(2) (1)

4/5 1/3
3/5 1/3
9/5 3/3
4/5 1/3
(4) (2)

(1)

1/2
3/2

(2)

6/5
2/5
9/5
3/5

(4)

5/12
8/12
5/12

(3/2)

17/30
14/30
42/30
17/30
(3)

154/60
18/60

175/60
121/60

72/60
9/10 2/5

12/10 3/5
6/10 1/5

42/10 9/5
9/10 2/5

12/10 3/5
(9) (4)(9)

154/60
18/60

17.'. '60
121/60
72/60

13/10
18/10
8/10

60/10
13/10
18/10

(9) (13/2)

(Pp+o-)
(ppOO0)
(Pn+ y )—
(pal+00)
(an++0)
(PPoo-)
(PP+ )——
(pe000)
(p~+0—)
(en+00}
(Ne++ —}
Total

"Eisberg, Fowler, Lea, Shepard, Shutt, Thorndike and Whitte-
more, Phys. Rev. in press. Of the observed events 31 were iden-
tifiable only as inelastic collisions with two emerging charged
prongs. The assignment of these events to the categories in Table
VIII according to the theoretical weights quoted there for Case B
was suggested by J. C. Street. The separation of the 147 events
into 95 inelastic and 52 elastic cases, and the division of the elastic
events into 40 coherent (diffraction) and 12 incoherent scat terings,
are as quoted by Eisberg et al. he Fermi theory does not include
di6raction scattering.
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(m -p) events than appear to occur. The experimental
uncertainties in the data are considerable, however, and
the fractioning oG of 80 percent of the elastic scatterings
as coherent may turn out to have been too arbitrary.
Of course the theory was also oversimplified by neglect-
ing angular momentum and other refinements in the
calculation of the phase space factor. A somewhat
different fit can be obtained if only (3/2, —1/2) states
are permitted to occur.

B. Nucleon-Nucleon Collisions

Unfortunately the fit of theory with experiment ob-
tained in the last section deteriorates further when
nucleon-nucleon collisions are considered. In a recent
experiment to determine the meson production in (e-p)
and (p-p) collisions at Cosmotron energies (1.0-2.2
Bev) s' it was found that double-pion production oc-
curred much more frequently than could be accounted
for by a simple statistical theory. For example, neutrons
of a median energy 1.7 Bev (total center-of-mass energy
2.6 Bev) produced two pions about 2.2 times as often
as one pion. A Fermi theory calculation by Yang and
Christian' predicted this ra, tio to be about 1/11 (cf.
Table II). Even admitting many refinements it would

seem to be dificult to reconcile these two figures. To ex-

plain this sort of result Peaslee has advanced a theory in

which the two colliding nucleons become excited,
separate, and finally, when some distance apart, decay
to produce one, and perhaps more pions. " The inter-

mediate, excited-nucleon states were considered to be

~ Foozler, Shutt, Thorndike, and Whittemore, preprint, Brook-
haven National Laboratory, Upton, Long Island; Phys. Rev.
95, 1026 (1954)."D. Pesslee, Phys. Rev. 94, 1085 (1954).

states of angular momentum and isospin each equal
to 3/2, and excitation energy about 160 NIev, to corre-
spond to the apparent m+-p resonance peak observed
in scattering experiments. Peaslee found that such a
hypothesis would su%.ce to give the anomalously large
two-pion production observed experimentally. His
theory also suggests that when the produced particles
are (pe+ —) there should be a correlation between the
decay planes of the m and the e, arising from the ex-
cited neutron of charge state (3/2, —3/2), and a similar
correlation for the 7r+ and the p, of charge state
(3/2, 3/2). Such a correlation was indeed indicated, if
not assured, by the experimental data. A preliminary
analysis of p-p collisions led the same authors" to
conclude that the Fermi theory is again inadequate to
predict the observed interactions, while the Peaslee
model overs a much closer fit.

VI. CONCLUSION

Pion-nucleon and nucleon-nucleon experiments con-
ducted in the energy range of 5—10 Hev would shed
great light upon the problem of multiple meson produc-
tion. For the pion-nucleon case at such energies the
Fermi theory predicts multiplicities of sufficient mag-
nitude to give the one parameter fit, inconclusive at 1.4
Bev, a severe test, and may enable one to determine
whether any particular charge states are formed prefer-
entially. For the nucleon-nucleon case one would per-
haps expect, following Peaslee's approach, that excited
nucleons would be created which are capable of decaying
into two or more pions. If so, then one would hope to
be able to compare these excited nucleons with similar
excited states formed in pion-nucleon collisions. Con-
clusions must await the acquisition of experimental
data of suitable quality and quantity.


