Energy Levels of Light Nuclei (Z=11 to Z=20)

P. M. ENDT, Physisch Laboratorium der Rijksuniversiteit, Utrecht, Netherlands

AND

J. C. KLUYVER, Stichting Fundamenteel Onderzoek der Materie, Utrecht, Netherlands

INTRODUCTION

HIS compilation of nuclear energy levels in the Z=11 to Z=20 region is designed as an extension of the series of papers covering the region up to $Z=10.^{1-4}$ We have followed their method of presentation of the material in detail not only for the sake of uniformity, but also because according to our experience their presentation gave clear, concise, and complete information to the experimenter. Although their example simplified our task considerably, we were aware of the fact that it might not be easy to come up to their standard.

There exists one other compilation covering the same region of nuclides, viz., that of Alburger and Hafner.⁵ They gave a list of excitation energies, values averaged over different reactions and different observers, without error limits and without discussion of experimental details or of the consistency of the data. Since in the last few years a vast mass of new experimental data has accumulated, we feel that the writing of a new summary is justified. A recent compilation by Cappeller⁶ covering the region from Z=9 to Z=17 does not supply this need because of the brevity of its presentation and its limited scope.

New experimental material is especially copious in the lower half of the Z region considered, containing the elements sodium, magnesium, aluminum, silicon, and phosphorus. Accurate links between the ground states of many nuclides have been established by magnetic analysis of charged particles from (d,p) and (d,α) reactions (notably by the group working at Massachusetts Institute of Technology) and the positions of many low energy levels have been determined by the same method with an accuracy of 15 kev or better. The perfect agreement obtained for the level schemes in the cases (e.g., Mg^{25} or Si^{29}) where the same nucleus can be reached both by a (d,p) and a (d,α) reaction is very gratifying and gives full confidence in this method.

Our knowledge regarding nuclei above phosphorus is by no means in such a satisfactory state, and it would have been only natural to break off the present compilation at this dividing line. However, recently work at Massachusetts Institute of Technology has been started on elements above phosphorus (e.g., on potassium and calcium), and also Holt and Marsham's⁷ measurements of (d, p) angular distributions and the accurate determinations of γ -ray energies resulting from thermal neutron capture by Kinsey et al.⁸ extend up to Z=20. These arguments convinced us that it is useful to include the Z=16 to Z=20 region into this compilation (in accordance with Alburger and Hafner).

The most important quantities characterizing nuclear states are energy, spin, and parity. In principle one could add magnetic dipole moment and electric quadrupole moment, but as this compilation is concerned chiefly with excited nuclear states and as next to nothing is known about their magnetic and electric moments we have not included any data on these moments. For ground-state moments the reader is referred to Mack's9 tables.

Neither have we given a thorough discussion of the shell-model assignment of the observed nuclear states. There are arguments both against and in favor of this attitude. Of course the success of the shell model in predicting spin and parities of ground states cannot be denied. The sequence of subshells in our region of nuclides would be $d_{\frac{5}{2}}, s_{\frac{1}{2}}, d_{\frac{3}{2}}, f_{7/2}, p_{\frac{3}{2}}$. But the order of the $d_{\frac{1}{2}}$ and $s_{\frac{1}{2}}$ subshells is none too certain as is evidenced by the notable shell-model exception F^{19} $(J=\frac{1}{2})$, while Na²³ $(J=\frac{3}{2})$ helps further to confuse the simple picture in this region. Nor do excited states adhere to the order given above, as there seem to be at least as many low multiple-excitation levels as single-particle levels in the region of nuclides considered here. Thus, the shell model should be handled with caution and we have preferred to present only the experimental spin and parity determinations without possible shell-model inferences. Most data on spins and parities of low (nonresonance) levels are obtained from (d,p) angular distribution measurements and from β decay. In several cases it has been possible to make unique spin and parity assignments just by putting together the data from these two sources. The β decay ft values have all been recomputed for this compilation in view of the better set of mass defects now available. For $\Delta J = 2$, yes,

¹W. F. Hornyak and T. Lauritsen, Revs. Modern Phys. 20, 191 (1948).

¹⁹¹ (1948).
² T. Lauritsen, National Research Council Preliminary Report No. 5 (1949).
³ Hornyak, Lauritsen, Morrison, and Fowler, Revs. Modern Phys. 22, 219 (1950).
⁴ F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 24, 321 (1952).

^{(1952).} The notation of Ajzenberg and Lauritsen is used in the

present paper. ⁵ D. E. Alburger and E. M. Hafner, Revs. Modern Phys. 22, 373 (1950).
 ⁶ M. Cappeller, Ergeb. exakt. Naturw. 27, 125 (1953).

⁷ J. R. Holt and T. N. Marsham, Proc. Phys. Soc. (London) A66, 249, 258, 467, 565 and 1032 (1953).

⁸ Kinsey, Bartholomew, and Walker, Phys. Rev. 83, 519 (1951) and 85, 1012 (1952).

⁹ J. É. Mack, Revs. Modern Phys. 22, 64 (1950).

transitions, also $\log(W_0^2-1)ft$ has been computed, where W_0 is the maximum electron or positron energy inclusive of the rest mass of electron or positron in units mc^2 .

ISOTOPIC SPIN

It is interesting to look for experimental facts in the Z=11 to Z=20 region which can be correlated with the important concept of isotopic spin. A direct consequence is the similarity of level schemes of mirror nuclei to which rule apparently no exceptions are known in the lower Z region. There are two cases in our region where such a comparison can also be made, viz., for the mirror pairs A = 25 and A = 33. The level schemes of the nuclei concerned are given in Fig. 1 and Fig. 2. The experimental material both regarding excitation energies and spins and parities is still pretty incomplete but it may safely be said that there are no apparent contradictions and that especially the lower states show a satisfactory agreement. On the average the excitation energy of a level in the odd-proton nucleus is somewhat lower than that of its mirror level in the odd-neutron nucleus, which is also the general rule for levels in lighter mirror pairs.

The next point to look for is the occurrence of analog states of the same isotopic spin in even A isobars. The most interesting example in the Z=11 to Z=20 region is A=34. If the mass of Cl^{34} is lowered by an amount equal to the Coulomb energy difference with S^{34} (taking the nuclear radius equal to $R=1.4 A^{\frac{1}{3}} 10^{-13}$ cm) and raised by an amount equal to the n-p mass difference, the Cl^{34} mass comes out nearly equal to that of S^{34}

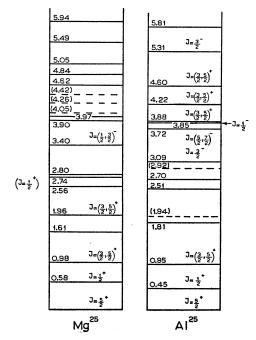
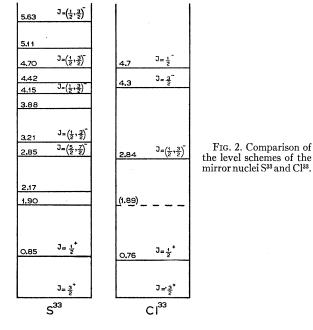



FIG. 1. Comparison of the level schemes of the mirror nuclei Mg^{25} and Al^{25} .

(actually 0.2 Mev higher). One would then be inclined to regard the Cl³⁴ and S³⁴ ground states as components of an isotopic spin triplet $(T=1, J=0^+)$.¹⁰ The excited state in \mathbb{Cl}^{34} at 142 kev (\mathbb{Cl}^{34m}) is then the first T=0state $(T=0, J=3^+)$. The spin assignments quoted here follow from the Cl³⁴ and Cl³⁴ β^+ decay.¹¹ It is remarkable that in Cl^{34} the lowest state is a T=1 state in contradistinction to Li⁶, B¹⁰, and N¹⁴ where the ground states are T=0 states. Also in Na²², Al²⁶, and P³⁰ one might expect T=0 ground states with the first T=1states (corresponding to the ground states of Ne²², Mg²⁶, and Si³⁰) at about 0.8 Mev, 0.5 Mev, and 0.5 Mev, respectively. None of these latter levels have been observed as yet. On the other hand it would be logical to assume that the K³⁸ ground state (and that of the unknown Sc⁴²) is a T=1 state like the Cl³⁴ ground state. Arguments in favor of these isotopic spin assignments in Al²⁶, P³⁰, and K³⁸ have recently been given by Stähelin.12

SCOPE

The criteria of selection of experimental data to be included in the present compilation were very similar to those used in the Z=1 to Z=10 reviews. As a deadline, December 1, 1953 was chosen but in a few cases references could be inserted to papers received somewhat later.

The limited availability (also to us) of theses, U. S. Atomic Energy Commission Reports, and other analogous papers has made us decide to quote them only

¹² P. Stähelin, Helv. Phys. Acta 26, 691 (1953).

¹⁰ D. C. Peaslee, Nuovo cimento 10, 1349(L) (1953).

¹¹ W. Arber and P. Stähelin, Helv. Phys. Acta 26, 433(A) (1953); P. Stähelin and P. Preiswerk, Nuovo cimento 10, 1219 (1953).

in exceptional cases. The same applies to papers or communications to which we had no direct access (e.g., private communications to others).

As a general rule, no very high energy or spallation reactions have been included and the presentation of papers bearing on theoretical aspects is also certainly incomplete. The same pertains to elastic neutron scattering especially at very low energies.

No relative intensities have been given of particle groups observed from a specific reaction at only one particular angle (e.g., 90°).

MASSES

The mass defect used for each nucleus is stated under the heading for that nucleus. In the region from Na²¹ to S³³ the masses are taken (whenever possible) from Li's¹³ tables. These are given without further comment or reference. In accordance with Li the mass defect is defined as M-A in Mev; a better name would be "mass excess." The masses of the nuclei in this region which are not present in Li's table are computed from the Q values of reactions connecting these nuclei to Li's set. In these cases they are called "adopted mass defects" and the pertinent reactions or investigations are reported.

The absence of a continuous chain of carefully determined Q values complicates the situation for the nuclei above S³³. Mass-spectrographic measurements of all stable isotopes except S³⁶ and Ca⁴⁶ have been performed by Collins et al.;¹⁴ of S³⁴, Cl³⁵, Cl³⁷, and A⁴⁰ by Ogata and Matsuda;¹⁵ of S³⁴ and A⁴⁰ by Ewald;¹⁶ and of A⁴⁰, K⁴⁰, and Ca⁴⁰ by Johnson.¹⁷ However, their results are not directly comparable as they have used different mass values for the substandards H1, C12, and S32. Obviously the best connection to the masses below S³³ will be obtained if as masses of substandards Li's values from nuclear reaction energies are used. This attitude has been adopted for H1 and C12. However, for S³² the error in Li's mass surpasses (by the accumulation of errors through successive steps) considerably the mass-spectrographic value derived directly from the O216-S32 doublet. For these reasons the following substandards have been chosen:

> $H^1 = 1.008 \ 142 \pm 3$, (reference 13), $C^{12} = 12.003 \ 804 \pm 17$, (reference 13),

 $S^{32} = 31.982\ 236 \pm 7$, (reference 14).

This combination of substandards has also been used by Collins et al. as an alternate method. For the stable isotopes the weighted mean of the cited measurements has been taken, if necessary after correction of the

reported values to the adopted substandards. In view of this rather arbitrary convention and the possibility of unaccounted systematic errors in mass spectrography, the final values have been rounded off to 0.1 Mev which is about (or perhaps somewhat larger than) the internal consistency of the mass-spectrographic data.

Microwave mass determinations are generally inferior to mass spectrography and have not been taken into account, except for S36 where the microwave measurement¹⁸ is the only available mass determination. The mass of Ca⁴⁶ is as yet unknown.

Masses of many unstable nuclides from sulfur to scandium are linked to stable nuclides by nuclear reaction Q values and our adopted mass defects are discussed under each heading.

The procedure of mass assignment followed here for the nuclei from sulfur upwards is certainly not without objection. Accurate Q value determinations connecting two stable nuclei have been neglected. For instance, the masses of K³⁹ and K⁴⁰ (determined mass spectrographically) have been rounded off to 100 kev although the mass difference is known with 10 kev accuracy from the $K^{39}(d,p)K^{40}Q$ value. However, the construction of a more accurate set of masses in this region should await the establishment of at least one chain of nuclei connected through accurate Q values. In one such chain $(S^{33}-Cl^{35}-S^{35}-Cl^{37}-A^{37}-K^{39}-K^{40}-Ca^{40}-Ca^{41})$ all links are known with an accuracy of 15 kev or better, but for the Q values of the reactions $Cl^{35}(d,\alpha)S^{33}$ $(Q_m = 8.3 \text{ Mev}), Cl^{37}(d,\alpha)S^{35}$ $(Q_m = 7.6 \text{ Mev}), \text{ and}$ $K^{39}(d,\alpha)A^{37}$ ($Q_m = 7.8$ Mev). Also the mass of A^{39} is already directly connected to this chain by a precision measurement.

ARRANGEMENT OF THE MATERIAL

Generally each nuclear reaction is treated under the heading of the final nucleus. Exceptions form reactions where resonances have been observed which are treated under the compound nucleus. A second exception forms the β decay of unstable nuclei which is treated under the parent nucleus and then as the first reaction. The order of the other reactions is determined by the initial nucleus starting with the lowest-Z element and within that element with the lowest-A isotope. Angular distributions, cross sections, and excitation curves are discussed under the final nucleus (apart from resonances). Also included are reactions which have not yet been reported but which could (if observed) give additional information about the final nucleus and which are in principle feasible with natural or enriched targets.

Discussions on the energy levels of a particular nucleus which do not fit naturally under the heading of a specific reaction leading to that nucleus have been given as "General Remarks" at the end of the treatment of that nucleus.

The diagram is the synthesis of the discussions of

¹³ C. W. Li, Phys. Rev. 88, 1038 (1952); Li, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512 (1951). ¹⁴ Collins, Nier, and Johnson, Phys. Rev. 84, 717 (1951); 86,

^{408 (1952).}

K. Ogata and H. Matsuda, Phys. Rev. 89, 27 (1953).
 H. Ewald, Z. Naturforsch. 6a, 293 (1951).
 W. H. Johnson, Phys. Rev. 88, 1213(L) (1952).

¹⁸ W. Low and C. H. Townes, Phys. Rev. 75, 529(L) (1949).

the experimental material. The excitation energies given in the diagrams are the weighted means of all separate determinations available. Levels known with an accuracy of 15 kev or better, and found preferably from two or more reactions, are marked by thick lines, doubtful levels by hatched lines. Three decimal figures are reserved for levels known with an accuracy of 5 kev or better.

All reactions leading to a particular nucleus have been indicated in its level diagram, also unobserved reactions. If the absolute value of the reaction energy of an unobserved reaction is so large that the horizontal line representing it falls outside the energy range of the diagram, this line is drawn in an arbitrary position and provided with two arrows pointing upwards or downwards.

The indication of resonances in the diagram has been somewhat simplified in comparison to the presentation in the Z=1-10 papers. The density of resonance levels in our higher-Z region is so much larger that it proved impossible to represent resonances by schematic yield curves. Instead resonance levels have only been indicated by marking their position on the primary particle energy scale. Relative intensities and widths can only be found in the text or relevant tables. In some cases (e.g., Si²⁸ where some 100 resonance levels are known) it has even been necessary to omit every indication of individual resonances in the diagram. Reactions in which the central nucleus in the diagram occurs as a compound nucleus have also generally been omitted, unless resonances were observed.

Resonance energies, both in level diagrams and in the text, have always been given in laboratory coordinates, except in one or two cases where the use of center-ofmass coordinates is explicitly mentioned.

OTHER COMPILATIONS

Apart from the compilations mentioned elsewhere in this introduction, the following review papers also considerably simplified the present work:

(a) the 1937 Livingston and Bethe¹⁹ compilation of nuclear reactions;

(b) the 1949 "Isotopenbericht" by Mattauch and Flammersfeld:20

(c) the National Bureau of Standards, Nuclear Data:21

(d) the Nuclear Science Abstracts:

(e) the 1952 Van Patter²² compilation of ground-state *Q* values and beta-decay energies (up to Z = 20);

(f) the 1952 compilation of neutron cross sections by Hughes et al.;23

(g) the 1953 "Table of isotopes" by Hollander et al.²⁴

ACKNOWLEDGMENTS

We are especially grateful to Dr. D. M. Van Patter who was the originator of this compilation and has guided us with frequent advice and criticism. Also our thanks are due to Dr. W. W. Buechner, Dr. T. Lauritsen, and Dr. B. B. Kinsey, and several of their co-workers for kindly reading through the manuscript and suggesting many improvements and additions. We are finally indebted to the many physicists who have sent us results before publication.

Na^{20}

(not illustrated)

Adopted mass defect: 14.2 Mev (Al 50a).*

I. $Na^{20}(\beta^+)Ne^{20}$ $Q_m = 15.3^{\dagger}$

The positron decay proceeds at least partly to states of Ne²⁰ between 6.8 and 10.8 Mev which decay by α emission. The half-life measured by α detection is 0.25 sec (Al 50a) and by β^+ detection is 0.23 \pm 0.08 sec (Sh 51b). Another value for the half-life: 0.385 ± 0.01 sec is reported by Birge (Aj 52). The energy of the α 's is > 2 Mev (Al 50a).

For a theoretical prediction of the Na²⁰ spin see De 53a.

II. Ne²⁰(p,n)Na²⁰ $Q_m = -16.1$

The threshold for this reaction is 16.9 Mev (Al 50a).

III. Na²³(γ , 3*n*)Na²⁰ $Q_m = -42.0$

The Na²⁰ activity has been produced by bombarding sodium with the γ rays of a 76-Mev betatron (Sh 51b).

Na^{21}

Mass defect: 3.991 Mev

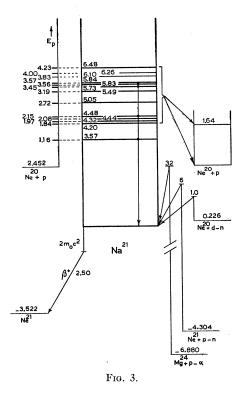
I. $Na^{21}(\beta^+)Ne^{21}$ $Q_m = 3.522$

The half-life is 23 ± 2 sec (Cr 40) and 22.8 ± 0.5 sec (Sc 52). The maximum β^+ energy is 2.50 \pm 0.03 Mev as determined with a 180° spectrometer (Sc 52). Whereas early investigations indicate a γ ray in this decay (Po 40), more recent observations show no γ ray of $E_{\gamma} > 0.5$ Mev (Sc 52).

The log ft value is 3.6, the usual value for superallowed transitions between mirror nuclei.

¹⁹ M. S. Livingston and H. A. Bethe, Revs. Modern Phys. 9, 245 (1937).
 ²⁰ J. Mattauch and A. Flammersfeld, Z. Naturforsch. (special

issue) (1949). ²¹ Natl. Bur. Standards U. S. circ. No. 499 (1950) with 3 supple-


ments (1950, 1951). ²² D. M. Van Patter, Technical Report No. 57, (L.N.S.E.), Massachusetts Institute of Technology (1952).

²³ Hughes et al., A.E.C.U.-2040 (1952).

²⁴ Hollander, Perlman, and Seaborg, Revs. Modern Phys. 25, 469 (1953). * All references indicated in this manner, initials and year, are

listed at the end of the article.

[†] For each reaction the Q value calculated from the masses is designated Q_m

II.
$$Ne^{20}(p,\gamma)Na^{21}$$
 $Q_m = 2.452$

A weak resonance at $E_p = 1.165$ Mev was found in the γ -ray yield for protons in the 0.5–1.3 Mev region bombarding a thin isotopic Ne²⁰ target (Br 47). This corresponds to a level in Na²¹ at 3.566 Mev. See Table I (last column) for more resonances in this reaction (Va 53).

III. $\operatorname{Ne}^{20}(p,p)\operatorname{Ne}^{20}$ $\operatorname{Ne}^{20}(p,p')\operatorname{Ne}^{20}$ $E_b = 2.452$

Elastically scattered protons observed at 6 angles from 90° to 167.5° indicate resonances at $E_p = 1.84$, 1.95, 2.13, 2.72, 3.20, 3.55, 3.57, and 4.23 Mev corresponding to levels in the range from $E_x=2.64$ to 6.61 Mev at 4.20, 4.31, 4.48, 5.04, 5.50, 5.83, 5.85, and 6.48 Mev (Ha 53). At each elastic resonance inelastic scattering

TABLE I. Resonances in the Ne²⁰ $(p, p'\gamma)$ Ne²⁰ reaction (Va 53, Co 53b).

E_p (lab) (Mev)	Exp. halfwidth (kev)	Relative yield (1.64 Mev γ ray)	Proton capture (annih. radiation from $Na^{21}(\beta^+)Ne^{21}$)
1.970	16	15	
2.085	17	5	• • •
2.150 ± 0.005	29	260	Yes
2.725 ± 0.005	35	$24\ 000$	No
3.190 ± 0.007	100	2400	No
3.450 ± 0.005	(36)	900	(Weak)
3.560*	· · · <i>í</i>	• • •	Yes
3.565 ± 0.005	46	5800	Yes
3.835 ± 0.005	(12)	1500	
4.005	`14 ´	240	

* Asymmetry of the 3.565 resonance probably due to a double peak.

also occurs to the 1.64 Mev level in Ne²⁰ with cross sections at 168°: 0.13 b ($E_p = 2.72$ Mev), 0.006 b (3.21 Mev), 0.013 b (3.56 Mev), and 0.015 b (3.58 Mev). Moreover, there is an inelastic resonance at $E_p = 3.42$ Mev of cross section 0.014 b and 10-kev width. The angular distribution of the inelastically scattered protons at the 2.72-Mev resonance is not isotropic (Ga 53a).

With a scintillation spectrometer the yield has been measured of the 1.64-Mev γ ray (photopeak) resulting from inelastic scattering. Observed resonances, experimental half-widths, and relative yields are collected in Table I. Some resonances (last column of Table I) show also proton capture detected by the annihilation radiation from the positron decay of 23 sec Na²¹. For a number of resonances the γ -ray angular distribution has also been measured. No evidence was found from the γ ray spectrum for a level in Ne²⁰ at about 2.2 Mev (Co 53b, Va 53). For Ne²⁰ levels found from inelastic scattering see Aj 52.

IV.
$$Ne^{20}(d,n)Na^{21}$$
 $Q_m = 0.226$

At $E_d = 1.0$ Mev recoil protons have been detected in nuclear emulsions. The measured $Q = -0.17 \pm 0.05$ Mev would perhaps indicate that this neutron group does not lead to the ground state, or that the β^+ decay of Na²¹ is followed by a γ transition (Sw 52). See also Po 40.

V. Ne²¹(p,n)Na²¹ $Q_m = -4.304$

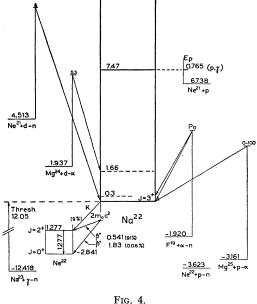
The Na²¹ activity has been observed in the bombardment of neon with 6-Mev protons (Cr 40).

VI. Mg²⁴(p,α)Na²¹ $Q_m = -6.880$

The Na²¹ activity has been observed from natural magnesium bombardments at $E_p = 18.5$ Mev (Sc 52) and from bombardments of targets enriched in Mg²⁴ at $E_p = 32$ Mev (Br 48).

Na^{22}

Mass defect: 1.312 Mev


I. $Na^{22}(\beta^+)Ne^{22}$ $Q_m = 2.841$

The half-life is given as 3.0 ± 0.2 yr (La 37), 2.8 yr (Sa 39), and 2.60 yr (La 49).

The decay proceeds predominantly by β^+ emission followed by a γ ray. Determinations of the end point of the β^+ spectrum and of the γ -ray energy are collected in Table II. See also Me 34a, Fr 35.

TABLE II. Decay of Na²².

Author	Method	$E_{m{eta}^+\mathrm{max}}$ (kev)	E_{γ} (Mev)
La 37	cl. chamber	580 ± 30	
La 37, Bl 46c	abs.	530 ± 40	
Op 39	spectrom.	550	1.3
Ma 41	spectrom.	600 ± 60	
Go 46a	spectrom.	575 ± 10	1.30 ± 0.03
Al 49a	spectrom.		1.277 ± 0.004
Ma 50a	spectrom.	542 ± 5	
Wr 53	spectrom.	540 ± 5	

The ground-state β^+ transition is very weak. The end point of this high-energy β^+ spectrum is 1.83 ± 0.06 Mev and its intensity is (0.062 ± 0.015) percent (Wr 53). Its log ft value is 13.1. See also Mo 49.

Besides β^+ emission electron capture also occurs. Recent measurements are (9.9 ± 0.6) percent (Mi 53, Sh 53b) and (7.1 ± 2.0) percent (Ho 53g) for the number of electron captures per disintegration. Earlier measurements were mutually contradictory (Ma 43a, We 43, Go 46a).

The internal K-conversion coefficient of the 1.28-Mev γ ray has been measured as $(6.3\pm2)\times10^{-6}$ (Hi 53) which points to an E2 transition. The spin of the 1.27 Mev level in Ne^{22} is then 2⁺, in agreement with the general rule for even-even nuclei (Sc 53). The spin of Na²² being J=3 (Da 48, Da 49b), the predominant β^+ branch is allowed in agreement with the shape of the spectrum (Ma 50a, Al 50b), although the ft value is rather high (log ft=7.6). The allowed character is confirmed by the absence of $\beta - \gamma$ angular correlation (St 51a).

For a theoretical discussion of the Na²² ground-state spin see De 53a.

II. $F^{19}(\alpha, n) Na^{22}$ $Q_m = -1.920$

By bombarding a thick CaF_2 target with Po α 's and detecting recoil protons in a cloud chamber, neutron groups were found corresponding to Q values of -2.3and -2.6 Mev (Bo 34, Li 37). This would point to a level in Na²² at 0.3 Mev. See also Fr 35.

With α particles from a Van De Graaff accelerator thresholds in the neutron production are observed at $E_{\alpha} = 2.4$ and 3.05 Mev. For $E_{\alpha} > 3.05$ Mev γ rays are observed of $E_{\gamma} = 593 \pm 3$ kev, measured by a scintilla-

tion spectrometer. The half-life for γ emission of the first level is <0.1 sec (Te 54a).

For resonances see Na²³.

III. Ne²¹(
$$p,\gamma$$
)Na²² $Q_m = 6.738$

In the region $E_p = 0.6 - 1.3$ Mev one resonance at $E_p = 0.765$ Mev was found in the γ -ray yield by use of a thin enriched Ne²¹ target (Br 47).

IV.
$$Ne^{21}(d,n)Na^{22}$$
 $Q_m = 4.513$

Weak long-lived sodium β^+ activity has been observed from neon bombarded by deuterons (La 37).

V.
$$Ne^{22}(p,n)Na^{22}$$
 $Q_m = -3.623$

The threshold is greater than $E_p = 3.35$ Mev (Ri 48).

VI.
$$Na^{23}(\gamma, n)Na^{22}$$
 $Q_m = -12.418$

The threshold was measured as 12.05 ± 0.20 Mev (Sh 51a).

The excitation curve has a maximum at 18.3 Mev of half-width 6.0 Mev. The maximum cross section is 13 mb and the integrated cross section for the (γ,n) , (γ, np) , and $(\gamma, 2n)$ reactions together is 81-Mev mb (Mo 53a). See also Mc 50.

VII. Na²³
$$(n,2n)$$
Na²² $Q_m = -12.418$

Not observed.

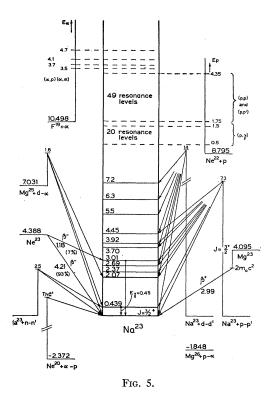
VIII.
$$Mg^{24}(d,\alpha)Na^{22}$$
 $Q_m = 1.937$

From the bombardment of natural magnesium by deuterons at $E_d = 5.3$ Mev one α group of $E_{\alpha} = 4.32$ Mev is found by magnetic analysis at $\theta = 90^{\circ}$. If assigned to Mg^{24} the Q value would be 0.28 Mev, yielding a level in Na²² at 1.66 Mev (As 51). See also La 37. The excitation curve has been measured up to $E_d = 14$ Mev and shows a maximum of 150 mb at $E_d = 9.5$ Mev (Cl 46).

IX. $Mg^{25}(p,\alpha)Na^{22}$ $Q_m = -3.161$

The Na²² yield has been measured from threshold to $E_p = 100 \text{ Mev}$ (Me 51).

GENERAL REMARKS


For isotopic spin predictions in Na²² see St 53b, St 53c, Mo 53b. A $J=0^+$, T=1 state is expected at about 0.6-Mev excitation, and it is very probable, that the 593-kev level found in reaction II may be identified with this state (Te 54a).

Na^{23}

Mass defect: -2.742 Mev

I. $F^{19}(\alpha, n) Na^{22}$ $E_b = 10.498$ $Q_m = -1.920$

From thick target bombardments with Po α particles resonances in the neutron yield are found at $E_{\alpha} = 3.31$, 3.81, 4.29, 4.56, 4.91, and 5.16 Mev (Sa 38). Resonances

are also reported at 3.4 and 4.1 Mev (Bo 34, Li 37). Resonances in the γ -ray yield are found at 3.34, 3.85, and 4.54 Mev (Sa 38). For Q values see Na²².

II. $F^{19}(\alpha, p) Ne^{22}$ $E_b = 10.498$ $Q_m = 1.703$

With Po α 's broad resonances have been found at $E_{\alpha}=3.7$ and 4.1 Mev for two proton groups with Q values of 1.58 and 0.98 Mev (Ch 32, Ch 34, Li 37). Later work with Po α particles has shown resonances at 3.78, 4.71, and 5.09 Mev (Sa 38). For Q values see Aj 52.

III. $F^{19}(\alpha, \alpha) F^{19}$ $E_b = 10.498$

Broad resonances at $E_{\alpha} = 3.5$ and 4.7 Mev were found for RaC' α 's scattered at 90° (De 39).

Recently resonances have been observed at $E_{\alpha} = 2.48$, 2.55, 2.64, 2.77, 2.90, 3.02, 3.05, 3.18, and 3.34 Mev. Gamma rays of $E_{\gamma} = 108 \pm 2$ and 196 ± 2 kev observed by scintillation spectrometry indicate inelastic scattering. There is evidence for Coulomb-excitation of the 196 kev level in F¹⁹ below $E_{\alpha} = 2.2$ Mev (He 54).

IV. $Ne^{20}(\alpha, p)Na^{23}$ $Q_m = -2.372$

One proton group (Q = -2.54 Mev) has been found with ThC' α particles (Po 37, Li 37). See also Ru 24, Ch 48.

V. $Ne^{22}(p,\gamma)Na^{23}$ $Q_m = 8.795$

Twenty narrow resonances in the γ -ray yield were found for protons in the 0.5–1.5 Mev region on a thin isotopic Ne²² target. A plot is presented from which positions and relative intensities of the resonances may be estimated (Br 47).

VI.
$$\operatorname{Ne}^{22}(p,p)\operatorname{Ne}^{22}_{22}$$

 $\operatorname{Ne}^{22}(p,p')\operatorname{Ne}^{22}$
 $E_{b}=8.795$

Resonances both for elastic scattering and for inelastic scattering to the 1.28-Mev Ne²² level have been observed at $E_p = 2.43$, 2.67, 2.83, 2.87, and 3.19 Mev corresponding to Na²³ levels at 11.12, 11.35, 11.50, 11.54, and 11.85 Mev (Ha 53, Ga 53a).

With a scintillation spectrometer the yield of the 1.28-Mev γ ray (photopeak) resulting from inelastic scattering has been measured. A list of the observed resonances, their experimental half-widths and relative yields is given in Table III. No indication can be found in the γ -ray spectrum of a Ne²² level at about 0.4 Mev (Va 53).

VII. Ne²³(β ⁻)Na²³ $Q_m = 4.388$

The half-life has been given as 40 sec (Am 35), 33±1 sec (Na 36), 35 to 40 sec (Bj 37), 43±3 sec (Po 40) and 40.2±0.4 sec (Br 50). The β^- decay is complex and consists of two components with end points 4.21±0.01⁵ Mev (93 percent) and 1.18±0.04 Mev (7 percent) (Br 50). Both transitions are allowed (log ft=5.0 and 3.8). See also Po 40, Bl 46c. A γ ray of 2.5 to 3.5 Mev has been observed (Pe 50). Note that there is a striking disagreement between the measured β^- ray end point and the one calculated from Li's masses (Li 52) which is based on a Q value of 2.964 ±0.007 Mev (Va 52a) for the Ne²²(d, p)Ne²³ reaction.

TABLE III. Resonances in the Ne²² $(p,p'\gamma)$ Ne²² reaction (Va 53).

$E_{ m lab}$ (Mev)	Exp. half width (kev)	Relative yield (1.28 Mev γ ray)	Elab (Mev)	Exp. half width (kev)	Relative yield (1.28 Mev γ ray)
1.755	17	• • •	3.435	22	70
1.915	15		3.470	18	120
1.970	32		3.560	36	270
2.130	22	50	3.585	(22)	90
2.190	20	22	3.645	(32)	20
2.220	17	77	3.685	(29)	30
2.240	20	40	3.725	16	90
2.355	15	10	3.755	9	320
2.405	25	10	3.800	24	45
2.430	16	45	3.845	16	120
2.565	20	40	3.895	(22)	35
2.610	24	40	3.920	11	370
2.675	18	175	3.940	(15)	90
2.795	11	40	3.985	(45)	150
2.835	20	130	4.035	15	130
2.865	24	85	4.055	16	170
2.940	37	30	4.090	18	160
2.965	16	40	4.125	23	290
3.020	20	50	4.165	(15)	280
3.055	26	160	4.190	29	350
3.105	(29)	100	4.235	(12)	120
3.160	•••	•••	4.255	23	210
3.215	(29)	160	4.300	16	255
3.330	18	35	4.345	15	360
3.380	22	185			

VIII. $Na^{23}(n,n')Na^{23}$

With 2.5 Mev neutrons incident on a NaI scintillation crystal a photopeak was observed at 0.45 Mev (Gr 52). This might be explained by inelastic scattering leading to the 0.44-Mev level in Na²³.

IX. $Na^{23}(p, p')Na^{23}$

A level in Na²³ at 0.439±0.001 Mev has been determined by electrostatic analysis of incoming and scattered protons at $E_p=1.5$ Mev (Do 53). A γ ray of 0.45±0.01 Mev was found by scintillation spectrometer at proton energies between 1.0 and 2.6 Mev (St 52a). At $E_p=7.26$ Mev the energies of scattered protons have been determined with a thin NaI-crystal scintillation spectrometer yielding Na²³ levels at 2.10, 2.37, 2.69, 3.01, 3.70, 3.92, and 4.45 Mev all ±0.04 Mev (St 52). A level at 3.67 Mev has also been found by an absorption method at $E_p=7.4$ Mev (Co 52). See also Ha 52c.

For resonances see Mg²⁴.

X. $Na^{23}(d,d')Na^{23}$

At $E_d = 14$ Mev levels in Na²³ are found from this reaction at 1.9, 2.6, 3.75, 4.45, 5.5, 6.3, and 7.2 Mev (Bo 50).

XI. Na²³ (α, α') Na²³

At $E_{\alpha}=3$ Mev a γ ray of 430 kev is observed by scintillation spectrometer, probably resulting from inelastic scattering (Te 54).

XII. $Mg^{23}(\beta^+)Na^{23}$ See Mg^{23}

XIII. Mg²⁵(d,α)Na²³ $Q_m = 7.031$

By use of enriched targets and magnetic analysis $(\vartheta = 90^{\circ})$ at $E_d = 1.8$ Mev the ground-state Q value has been measured as 7.019 \pm 0.013 Mev and levels in Na²³ are found at 0.427 \pm 0.018 and 2.073 \pm 0.015 Mev (En 52a). See also Le 33, Li 37, Al 49b, Va52a.

XIV.
$$Mg^{26}(p,\alpha)Na^{23}$$
 $Q_m = -1.848$

Not observed.

Mg^{23}

(not illustrated)

Mass defect: 1.353 Mev

I. $Mg^{23}(\beta^+)Na^{23}$ $Q_m = 4.095$

Half-life determinations are 11.6 ± 0.5 sec (Wh 39), 11.9 ± 0.3 sec (Hu 43, see also Hu 42), 12 sec (Ba 46), 12.3 ± 0.4 sec (Bo 51), and 11.4 sec (Ed 52).

The maximum β^+ energy is 2.82 Mev (Wh 39) or 2.99 \pm 0.09 Mev (Bo 51). No gamma rays are observed with a cloud chamber (Wh 39). The β^+ decay is superallowed as follows from the small *ft* value (log *ft*=3.7).

II. Ne²⁰(α , n)Mg²³ $Q_m = -7.249$

Not observed.

III. $Na^{23}(p,n)Mg^{23}$ $Q_m = -4.877$

The threshold is accurately determined as $E_p = 5.091 \pm 0.010$ Mev (Wi 52). See also Wh 39 and Bl 51. For resonances in this reaction see Mg²⁴.

i or resonances in this reaction see my

IV. $Mg^{24}(\gamma, n)Mg^{23}$ $Q_m = -16.581$

The threshold is measured as 16.4 ± 0.3 Mev (Be 47a), 16.2 ± 0.3 Mev (Mc 49), and 16.55 ± 0.25 Mev (Sh 51a). The yield curve, measured by the activity of the residual nucleus, has a maximum of $\sigma = 8.1$ mb at 19.2 Mev with a half-width of 4.7 Mev and an integrated cross section of 45 Mev mb (Ka 51b).

The photoneutron cross section for natural magnesium measured by the neutron intensity has a maximum of 11 mb at $E_{\gamma} = 18.8$ Mev. The half-width is 3.9 Mev and the integrated cross section is 48-Mev mb. The difference with the proceeding values may be attributed to Mg²⁵ and Mg²⁶ (Mo 53a).

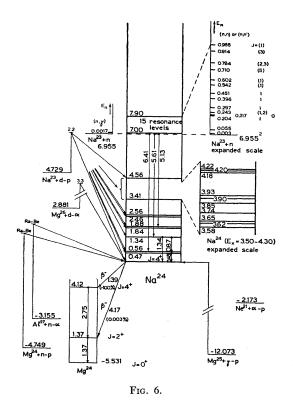
Another value for the integrated cross section is 72-Mev mb (Ed 52). See also Wa 48, Mc 50.

V.
$$Mg^{24}(n,2n)Mg^{23}$$
 $Q_m = -16.581$

Not observed.

Na^{24}

Mass defect: -1.333 Mev


I. Na²⁴(
$$\beta$$
⁻)Mg²⁴ $O_m = 5.531$

The half-life is given as 14.96 ± 0.10 hr (Wi 49, Bi 50, Sr 51), 15.04 ± 0.06 hr (So 50), 15.10 ± 0.04 hr (Co 50a), 15.0 ± 0.1 hr (Si 51), 15.060 ± 0.039 hr (Sr 51), 15.28 ± 0.19 hr (Bl 52) and 14.97 ± 0.02 hr (Lo 53). See also Am 35, La 35, Va 36.

The decay scheme of Na²⁴ has been very thoroughly investigated. The β^- decay goes predominantly to the 4.12-Mev level in Mg²⁴ and is followed by two γ rays in cascade through the 1.37-Mev level (La 39, Ma 43a, Co 46, Sa 47, Si 47a, Ba 47, Wi 47). The β^- ray end point and the energies of the two γ rays have been accurately measured (Table IV). See also Ri 36, Ku 36,

TABLE IV. Na²⁴ beta decay.

Author	Method	β ⁻ ray endpoint in Mev	E_{γ_1} in Mev	E_{γ_2} in Mev
Mo 40 It 41 El 43 Ma 43 Go 44 Si 46 Wa 47	ion. ch. spectrom. spectrom. (γ, n) spectrom. Be (γ, n)	1.36 ± 0.05 1.390 ± 0.005	$\begin{array}{cccc} 2.80 & \pm 0.02 \\ 2.76 & \pm 0.06 \\ 2.94 & \pm 0.06 \\ 2.87 & \pm 0.05 \\ 2.758 \\ 2.75 \\ 2.75 \\ 2.75 \end{array}$	$\begin{array}{cccc} 1.38 & \pm 0.02 \\ 1.38 & \pm 0.03 \\ 1.38 & \pm 0.03 \\ 1.380 \end{array}$
Wa 47 Hi 48 Ro 49 Wo 50 He 52 Ki 53d	$D(\gamma, n)$ abs. spectrom. spectrom. pair spectrom.	1.41	2.72 2.765 2.755 ± 0.005 2.753 ± 0.0010 2.753 ± 0.005	1.380 1.3680 ±0.0010

Ri 38, Fe 38, La 39a, Cu 40, Kr 45. A weak high-energy β^- component, going to the 1.37-Mev level, has also been found with an endpoint of 4.17 Mev and an intensity of 0.003 percent (log ft=12.7) (Tu 51). See also Gr 50a. A weak crossover γ ray of about 4 Mev and intensity 0.05 percent has been observed (Tu 51) although others report its intensity as lower than 0.005 percent (Bi 50). A reported γ ray of 3.62±0.05 Mev and intensity 0.04 percent (Be 51) could perhaps be an indication of a weak β^- transition to a Mg²⁴ level at 4.99 Mev.

There are strong arguments that both the 2.75- and 1.37-Mev γ rays are electric quadrupole. This follows from $\gamma - \gamma$ angular correlation measurements (Wa 41, Ki 42, Br 50a, Ch 50) and from measurements of the internal pair-formation coefficients. For the 2.75-Mev γ ray the latter has been given as $(1.16\pm0.10)\times10^{-3}$ (Ra 49), $(7.6\pm1.9)\times10^{-4}$ and $(8.25\pm1.05)\times10^{-4}$ (Mi 50), $(6.7\pm1.0)\times10^{-4}$ (Cl 51), 8.0×10^{-4} (Sl 52) and $(7.1\pm0.2)\times10^{-4}$ (Bl 52), while for the 1.37-Mev γ ray has been found 0.3×10^{-4} (Sl 52) and $(0.6\pm0.1)\times10^{-4}$ (Bl 52). Also the shape of the internal pair spectrum (Bl 52) and the angular correlation between e^+ and e^- indicate the E2 character of the 2.76-Mev γ ray.

The internal conversion coefficient of the 2.75-Mev γ ray is 3×10^{-6} (Si 50), which also points to a quadrupole transition. From delayed $\beta - \gamma$ coincidence measurements an upper limit for the lifetime of the 1.38-Mev level is found of 2×10^{-9} sec, from which it follows that the multipole order of the 1.38-Mev γ ray is smaller

than 3 (En 53). On the other hand, the multipole order of this γ ray must be larger than 1 because of the failure to detect resonant nuclear scattering of Na²⁴ γ rays in magnesium (Po 48). The most probable spin and parity assignments for the 4.12- and 1.37-Mev level and ground state in Mg²⁴ are then: 4⁺, 2⁺, and 0⁺, which is the general rule for even-even nuclei (Sc 53). The β^- decay to the 4.12-Mev level is then allowed because the Na²⁴ spin has been measured as J=4 (Sm 51, Be 53). The allowed character of the β^- decay has been confirmed experimentally by the shape of the β^- spectrum (Si 46) and by the absence of $\beta - \gamma$ angular correlation (Be 50a, St 51a). The *ft* value is rather large (log *ft*=6.1).

For a theoretical discussion of the Na^{24} spin see De 53a.

II. Ne²¹(α, p)Na²⁴ $Q_m = -2.173$

Not observed.

III. $Na^{23}(n,\gamma)Na^{24}$ $Q_m = 6.955$

Recent measurements of the thermal neutron capture cross section are 0.47 ± 0.04 b (Co 46a), 0.63 ± 0.13 b (Se 47), 0.52 ± 0.03 b (Ha 50), 0.50 ± 0.015 b (Co 50), 0.47 ± 0.02 b (Po 51), and 0.53 ± 0.03 b (Ba 53c). See also La 40, Ra 40, On 41, Si 41a, Vo 43.

For $E_n \approx 1$ Mev the capture cross section is 0.26 mb (Hu 53a). See also Hu 49.

A resonance in the Na²⁴ activation cross section has been found at $E_n = 1.71$ kev by a boron absorption method (Li 47).

The thermal neutron capture γ rays measured by pair spectrometer (Ki 51) are given in Table V. Lines A, B, C, and I can be explained by transitions to the Na²⁴ levels at 0.56, 1.34, 1.84, and 3.41 Mev. Lines F, G, and H could correspond to transitions from the levels at 3.93, 3.86, and 3.58 Mev to ground.

Gamma rays of 2.0, 1.66, 1.34, 0.86, and 0.48 Mev have been found with a two-crystal scintillation spectrometer (Br 53a) and γ rays of 0.877 ± 0.010 and 0.475 ± 0.010 Mev with a lens spectrometer (Mo 53). The 1.34- and 0.47-Mev lines are probably transitions from the corresponding Na²⁴ levels to ground, and the 0.87-Mev line the transition from the 1.34 Mev to the 0.47-Mev level.

Thermal neutron capture γ rays have also been detected with deuterium-loaded nuclear emulsions. The following γ -ray energies were found (relative intensities

TABLE V. Na²³ (n,γ) Na²⁴ γ rays (Ki 51).

γ ray	Energy in Mev	Intensity in photons per 100 captures
A	6.41 ± 0.03	20
В	5.61 ± 0.03	7.5
С	5.13 ± 0.03	1.8
\bar{F}	3.96 ± 0.03	20
G	3.85 ± 0.05	11
\overline{H}	3.60 ± 0.03	10
\overline{I}	3.56 ± 0.05	20

Resonance energy in kev	Na²4 level in Mev	Width in kev	σ _{res} in barns	J	l_n
204	7.150	5	5.2	1	(1)
217	7.163	14	~ 1.3	0	(1)
243	7.188	7	5.9	1 or 2	(1)
297	7.240	4		1	`0´
396	7.335	23	2.1	1	(1)
451	7.387	9	2.5	1	(1 or 2)
542	7.474	39		(1)	(0)
602	7.532	6	1.4	(1)	
710	7.635	72		(5)	
784	7.706	38		(2 or 3)	
914	7.831	36	•••	(3)	
988	7.902	24	•••	(1)	•••

TABLE VI. Levels in Na²⁴ from Na²³(n,n)Na²³ (St 52b).

in brackets): 2.79 (45), 3.05 (61), 3.25 (56), 3.55 (70), 3.92 (39), 4.35 (89), 4.82 (100), and 5.37 Mev (31) (Mi 50a). The first γ ray results from the Na²⁴ β^- decay. The γ rays at 3.55 and 3.92 Mev check with Kinsey's lines *I* and *F* (see Table V).

See also Bj 34a, Am 35.

IV. $Na^{23}(n,n)Na^{23}$ $E_b = 6.955$

Measurements up to 1950 of total cross section vs neutron energy have been reviewed by Adair (Ad 50). The cross section is constant (3 b) below $E_n=1$ kev (Hi 50a, Ho 52).

In the $E_n=1-100$ kev region resonances are found at 3.0 ± 0.6 kev (J=2) (Hi 50a, Hi 52, Ho 52) and at 55 kev (Ad 49, Hi 52). Twelve resonances (Table VI) were found in the $E_n=0.12-1.0$ Mev region which has been explored at high resolution with Li(p,n) neutrons (St 52b). See also Ad 49. Resonances found with D(d,n) neutrons at 30-50 kev resolution have been reported at $E_n=1.97$, (2.07), 2.10, 2.17, 2.21, 2.29, 2.42, (2.46), 2.55, 2.65, 2.73, 3.26, 3.36, 3.54, and 3.68 Mev (Me 53).

At $E_n = 14$ Mev the total cross section is 1.71 ± 0.03 b (Co 52a). See also Ma 40, Hi 50, Dv 53.

V. $Na^{23}(d,p)Na^{24}$ $Q_m = 4.729$

The ground-state Q value has been measured by magnetic analysis as 4.731 ± 0.007 Mev (Sp 52) and 4.723 ± 0.008 Mev (Mi 52). Eighteen levels in Na²⁴ have been found by high-resolution magnetic analysis at deuteron energies between 1.5 and 2.2 Mev (Sp 52). They are collected in Table VII together with the levels found by an absorption method at $E_d = 3$ Mev (Wh 50). See also La 35, La 35a, Li 37, Mu 39, Ba 42, Cl 44, Cl 46a, Ne 50b, St 51.

The angular distribution of the secondary protons has been measured at $E_d = 1.15$ MeV with nuclear emulsions both for the ground-state group and for groups leading to the Na²⁴ excited states at 0.47 and 0.56 MeV (unresolved). Butler analysis yields $l_n=2$ for the ground-state group in agreement with known spins and parities of Na²³ and Na²⁴ (Ta 53). The angular distribution of the secondary protons at $E_d=3$ MeV gives also $l_n=2$ for the ground-state group, $l_n=0$ and 2 for the unresolved groups to the 0.47- and 0.56-Mev levels, and $l_n=0$ for the group to the 1.34-Mev level, indicating $J=1^+$ or 2^+ for this level (Sh 54).

VI. $Mg^{24}(n,p)Na^{24}$ $Q_m = -4.749$

The cross section of this reaction for $\operatorname{Be}(d,n)$ neutrons $(E_d=15 \text{ Mev})$ is $39\pm4 \text{ mb}$ (Co 51). At $E_n=14.5$ Mev, the cross section is $191\pm35 \text{ mb}$ (Pa 53). See also Am 35.

VII. $Mg^{25}(\gamma, p)Na^{24}$ $Q_m = -12.073$

The cross section shows a maximum of 14.8 mb at $E_{\gamma}=21.7$ Mev with 6.0-Mev width and the integrated cross section is 100-Mev mb (Ka 51b). From enriched target bombardments a maximum of 13.7 mb is found at 20.5 Mev with an integrated cross section of 56-Mev mb (To 51). See also Ba 46, Hi 47. The threshold has been measured as 11.5 ± 1.0 Mev (Mc 49).

VIII. $Mg^{26}(d,\alpha)Na^{24}$ $Q_m = 2.881$

The Na²⁴ activity has been measured as a function of deuteron energy up to 14 Mev (He 35, Cl 46, Cl 46a). At $E_d=8.7$ Mev the cross section for this reaction has a maximum of 95 mb (Cl 46). See also Al 49, Al 49b.

IX. $Al^{27}(n,\alpha)Na^{24}$ $Q_m = -3.155$

At $E_n = 14$ Mev the cross section is 135 ± 10 mb (Fo 52a) and 79 ± 16 mb (Pa 53). See also Kl 34, Am 35, Po 36, Po 38.

X. Al²⁷($d,\alpha p$)Na²⁴ $Q_m = -5.381$

The absolute cross section for this reaction has been measured from the threshold $E_d=11.0\pm0.5$ Mev to 190 Mev. A sharp maximum of 53 mb exists at approximately 22 Mev followed by a broad minimum of

TABLE VII. Levels in Na²⁴ from Na²³(d,p)Na²⁴.

Group	Q values (Mev) (Sp 52)	Na ²⁴ levels (Mev) (Sp 52)	Na ²⁴ levels (Mev) (Wh 50)
(0)	4.731 ± 0.007	0	
(1)	4.259 ± 0.007	0.472 ± 0.008	
(2)	4.167 ± 0.007	0.564 ± 0.008	0.54
(3)	3.390 ± 0.006	1.341 ± 0.008	1.32
(4)	2.887 ± 0.006	1.844 ± 0.008	1.83
(5)	2.847 ± 0.006	1.884 ± 0.008	
(6)	2.267 ± 0.006	2.464 ± 0.008	• • •
(7)	2.170 ± 0.006	2.561 ± 0.008	2.55
(8)	1.322 ± 0.005	3.409 ± 0.008	3.44
(9)	1.149 ± 0.006	3.582 ± 0.009	
(10)	1.108 ± 0.006	3.623 ± 0.009	• • •
(11)	1.083 ± 0.006	3.648 ± 0.009	• • •
(12)	0.993 ± 0.005	3.738 ± 0.008	3.81
(13)	0.881 ± 0.005	3.850 ± 0.008	
(14)	0.832 ± 0.005	3.899 ± 0.008	• • •
(15)	0.802 ± 0.005	3.929 ± 0.008	3.99
(16)	0.547 ± 0.005	4.184 ± 0.008	
(17)	0.529 ± 0.005	4.202 ± 0.008	4.27
(18)	0.512 ± 0.005	4.219 ± 0.008	•••
(19)	0.173 ± 0.005	4.558 ± 0.009	4.64

18 mb near 60 Mev and a gradual rise to 22 mb at 190 Mev (Ba 53a). See also Cl 46, Cl 47.

GENERAL REMARKS

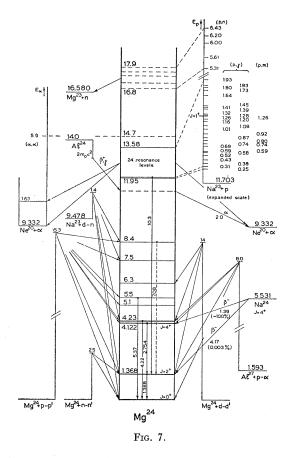
For a theoretical discussion regarding doublet levels in Na^{24} see In 53.

$$Mg^{24}$$

Mass defect: -6.864 Mev

I. Ne²⁰(α, α)Ne²⁰ $E_b = 9.332$

With α particles from RaC' and ThC' and mica absorbers a resonance has been observed at $E_{\alpha} = 5.9$ Mev indicating a level in Mg²⁴ at 14.7 Mev (Br 38a). Thirteen sharp resonances (half-width, $\Gamma \leq 10$ kev) have recently been observed in the neon elastic cross section at four different scattering angles for $E_{\alpha} = 2 - 4$ Mev. Eleven of these are assigned to Ne²⁰ (compound nucleus Mg²⁴) and two to Ne²² (compound nucleus Mg²⁶). Spins and parities are found from partial wave analysis. The resonances in Mg²⁴ occur at E_{α} (in Mev)=2.488 $(J=1^{-}), 2.573 (0^{+}), 2.652 (2^{+}), 2.903 (0^{+}), 3.062 (1^{-}),$ 3.184 (2+), 3.548 (3-), 3.780 (1-), 3.801 (2+), 3.839 (4+), and 3.923 (2⁺), corresponding to Mg²⁴ levels between 11.4 and 12.6 Mev. The resonances in Mg²⁶ are found at E_{α} =3.245 (3⁻), and 3.418 Mev (3⁻) corresponding to Mg²⁶ levels at 13.388 and 13.543 Mev (Go 53e).


IA. Ne²¹(α ,n)Mg²⁴ $Q_m = 2.576$

Not observed.

TABLE VIII. Resonances in the proton bombardment of Na²³.

Author:	Cu 39	Bu 41	Ta 46	Fr 48
	G.M.	G.M.	G.M.	Ion.
	counter	counter	counter	chamber
Detection:	$(\gamma \text{ rays})$	(γ rays)	$(\gamma \text{ rays})$	(α particles
$E_{\rm res}$ in	• • • •	•••	255 ± 3	•••
kev		310	310 ± 3	• • •
		• • •	375 ± 4	
	425		445 ± 5	
	525	515	510 ± 5	
		576		• • •
	590	598	• • •	590
	690			
	755	735		740
				800
	875	867		
				920
		1006		
		1080		• • •
		1159		
		1206		
		1255		
		1281		
		1324		
		1392		
		1412		
		1454		
		1638 ^a		
		1732		
		1795		
		1829		
		1930		
	•••	1930		

^a Width 70 kev, probably unresolved doublet.

II. $Na^{23}(p,\gamma)Mg^{24}$ $Q_m = 11.703$

The resonances observed in the proton bombardment of sodium are collected in Table VIII.

The region from $E_p=0.8$ to 1.7 Mev has also been explored by Teener *et al.* (Te 53) who find the same thirteen resonances as given in Table VIII (Bu 41). In the region from $E_p=1.0$ to 2.6 Mev thirty-seven resonances are observed (St 52a). No specific resonance energies are reported in these latter two investigations.

The following γ -ray energies have been determined by absorption: 6.8 Mev (Ta 46) and 8.3 Mev (Ge 37) for the resonance at $E_p = 310$ kev, 9.0 Mev for the resonance at 510 kev (Ta 46), and 11.2 Mev for the resonance at 750 kev (Cu 39). Gamma-ray energies and relative intensities determined by scintillation spectrometer at the 310 kev resonance are given in Table IX. Lines A and Ecan be explained as a cascade through the Mg²⁴ level at 1.37 Mev, line D corresponds to a transition from the resonance level to the doublet level around 4.2 Mev (Ca 53). At the resonances above $E_p = 1.0$ Mev mainly two γ rays of $E_{\gamma} = 0.45 \pm 0.01$ and 1.63 ± 0.02 MeV are found by scintillation spectrometer. The first results from the $Na^{23}(p,p')$ reaction and the second from the $Na^{23}(p,\alpha')Ne^{20*}$ reaction leading to the 1.63-Mev level in Ne²⁰. Only at the $E_p = 1.415$ Mev resonance is hard capture radiation observed (St 52a). In more recent

TABLE IX. Gamma rays from Na²³ (p,γ) Mg²⁴ at $E_p = 305$ kev (Ca 53).

Line	Energy (Mev)	Rel. intensity
A	1.38 ± 0.04	28
B	(3.6 ± 0.2)	
D^{C}	6.84 ± 0.24 7.50 ± 0.20	20
E	10.3 ± 0.3	· 11

work 52 $(p,p'\gamma)$ resonances are found in the $E_p = 1.01$ -2.43 Mev region, of which 35 are resonant for hard capture γ rays (St 53d). See also He 37, Ho 41.

III. Na²³(p,n)Mg²³ $E_b = 11.703$ $Q_m = -4.877$

Resonances in the Mg²³ activity yield are observed at $E_p = 5.31$, 5.61, 6.00, 6.20, and 6.43 Mev (Bl 51). For threshold determinations see Mg²³.

IV. $Na^{23}(p,p')Na^{23}$ $E_b = 11.703$

For resonances in the inelastic scattering leading to the 0.44-Mev level in Na^{23} see Mg^{24} reaction II.

For Na^{23} levels found from inelastic scattering see Na^{23} .

V. $Na^{23}(p,\alpha)Ne^{20}$ $E_b = 11.703$ $Q_m = 2.372$

Resonances in the ground-state transition of this reaction are given in Table VI, last column (Fr 48). For resonances in this reaction leading to the 1.63-Mev level in Ne²⁰ see Mg²⁴ reaction II. The $\alpha - \gamma$ angular correlation of this transition has been measured at the $E_p = 1.255$ Mev resonance in planes parallel and perpendicular to the proton beam. The result can be explained by taking $J = 2^+$ for the Ne²⁰ 1.63-Mev level and $J = 1^+$ for the Mg²⁴ resonance level (Se 53). Angular distributions of α particles leading to the Ne²⁰ ground state and first excited state have been measured at six resonances in the $E_p = 1$ to 2 Mev region (St 53a). Of 52 Na²³($p,p'\gamma$) resonances in the $E_p = 1.01 - 2.43$ Mev region 17 are resonant for the Na²³(p,α) reaction (St 53d).

VI. $Na^{23}(d,n)Mg^{24}$ $Q_m = 9.478$

In the bombardment of sodium with 1.4-Mev deuterons several neutron groups are observed by their recoil protons in nuclear emulsions. The reported Qvalue of the ground-state transition is 9.23 Mev. The other Q values indicate levels in Mg²⁴ at 0.83, 1.24, 1.66, 4.16, 7.70, and 8.64 Mev (Ma 49). The levels at 0.83 and 1.66 Mev have not been observed in other reactions. At $E_d=3.7$ Mev a γ ray of $E_{\gamma}=8.8\pm0.6$ Mev is found, which might also belong to Na²³(d,α)Ne²¹ (Al 49b). See also La 35, Hu 51.

VII. $Na^{24}(\beta)Mg^{24}$ See Na^{24}

Precision measurements of the γ rays in this decay $(E_{\gamma}=2.7535\pm0.0010 \text{ and } E_{\gamma}=1.3680\pm0.0010 \text{ Mev})$ constitute the most accurate determination of the ex-

citation energies of the two lowest levels in Mg²⁴, viz., 1.3680 ± 0.0010 Mev and 4.1215 ± 0.0014 Mev (He 52).

VIII. $Mg^{24}(n,n')Mg^{24}$

Inelastic scattering of 2.5-Mev neutrons has been investigated by several authors. Observation of the recoil protons in a cloud chamber yields a level at 1.30 Mev (Li 46). The energy of the γ rays has been determined by an absorption method as $E_{\gamma} = 1.4 \pm 0.1$ Mev (Gr 51) and by scintillation spectrometer as $E_{\gamma} = 1.365 \pm 0.02$ Mev (Da 53) and $E_{\gamma} = 1.40$ Mev (Ga 53). The inelastic scattering cross section is measured as 0.75 ± 0.23 b (Gr 51) and 0.6 b (Li 46) and the elastic cross section as 1.6 b (Li 46).

IX. $Mg^{24}(p,p')Mg^{24}$

Inelastically scattered protons have been observed by numerous authors using bombarding energies from 2.4 to 15.3 Mev. Only Mooring et al. (Mo 51) have worked with enriched targets. The 1.37-Mev level has been observed by all (Wi 41, Di 43, Rh 49, Fu 48, Mo 51, Ba 52, Ha 52, and St 52) and is most accurately determined as 1.371 ± 0.002 Mev by electrostatic analysis of the scattered protons (Do 53). A level near 4.17 Mev has been found by Wi 41, Fu 48, and Ba 52. whereas Hausman et al. (Ha 52), using magnetic analysis, proved it to be a doublet of 4.13 ± 0.02 and 4.24 ± 0.02 Mev. All other levels reported below 4 Mev (Wi 41, Di 43, Fu 48) can be assigned to Mg²⁵ or Mg²⁶. The levels at 5.10 Mev (St 52), 5.51 ± 0.3 , 7.32 ± 0.3 , 8.30 ± 0.4 Mev (Fu 48), and 6.38 ± 0.08 Mev (Ba 52) may belong to Mg²⁴, but are possibly due to Mg²⁵ or Mg²⁶.

The angular distribution of elastically scattered protons and of inelastically scattered protons corresponding to transition to the 1.37 Mev Mg²⁴ level has been measured at $E_p=4.5$ Mev (Rh 50), at 6.9 Mev (Wi 41, Wr 43), at 7.3 Mev (Go 52), and at 9.6 Mev (Ba 52). See also Wi 40a, Ha 52c.

The $p-\gamma$ angular correlation (transitions to the 1.37 Mev Mg²⁴ level) has been measured at $E_p=7.3$ Mev (Go 52a).

See Al^{25} for resonances in the elastic scattering cross section.

X. $Mg^{24}(d,d')Mg^{24}$

The 1.37-Mev level is observed from the inelastic scattering of deuterons of bombarding energy 6 Mev (Gr 49), 7.5 Mev (Ho 49), and 14 Mev (Bo 50). Moreover, levels at 4.4 and 6.3 Mev are found at $E_d = 14$ Mev (Bo 50).

The angular distribution of the inelastically scattered deuterons ($E_d = 7.5$ Mev) shows maxima at 35° and 80°, and minima at 60° and 120° (Ho 49). This indicates $l_n = 2$ and $y = (1, 2 \text{ or } 3)^+$ for the 1.37-Mev level (Hu 51a).

XI. $Mg^{24}(\alpha,\alpha)Mg^{24}$

See Si^{28} for resonances in the elastic scattering cross section.

XII. $Mg^{25}(\gamma, n)Mg^{24}$ $Q_m = -7.324$

The threshold is $E_{\gamma} = 7.25 \pm 0.20$ Mev (Sh 51a). See also Mg²³ reaction IV.

XIII. Al²⁴(β ⁺)Mg²⁴ See Al²⁴

XIV. Al²⁷(p, α)Mg²⁴ $Q_m = 1.593$

Recent determinations of the Q value are:

 $Q=1.585\pm0.015$ Mev (magnetic analysis, $E_p=0.94$ Mev) (Fr 50b);

 $Q=1.595\pm0.007$ Mev (magnetic analysis, $E_p=1.8$ Mev) (Va 52a);

$$Q=1.594\pm0.002$$
 Mev (electrostatic analysis,
 $E_p=1.2$ Mev) (Do 53);

 $Q=1.61 \pm 0.02$ Mev (magnetic analysis, $E_p=0.5-0.7$ Mev) (Ru 53a).

See also Fr 48, Ka 52.

Transitions to the 1.38, 4.11, and 4.21 Mev levels are observed by magnetic analysis at $E_p=8$ Mev (Re 52). An accurate determination by electrostatic analysis at $E_p=2.7$ and 3.4 Mev gives a mean value of 1.366 ± 0.004 Mev for the first level in Mg²⁴ (Do 53). See Si²⁸ for resonances. See also Sh 51.

A1²⁴

(not illustrated)

Adopted mass defect: 7.1 Mev (Bi 52)

I. $Al^{24}(\beta^+)Mg^{24}$ $Q_m = 14.0$

The half-life is given as 2.3 ± 0.2 sec (Bi 52), 2.10 ± 0.04 sec (Gl 53) and 2.0 ± 0.1 sec (Br 53c). Gamma rays observed by scintillation spectrometer are listed in Table X.

The 1.39-, 4.22-, and 5.36-Mev γ rays correspond probably to de-excitation of known levels in Mg²⁴ to the ground state, the 2.72- and 7.08-Mev γ rays to transitions from the 4.122- and 8.4-Mev level to the 1.368-Mev level. It is noteworthy, that whereas the 4.12-Mev level decays by a cascade through the 1.37-Mev level (as in the decay of Na²⁴), the 4.23-Mev level is deexcited by a direct transition to the ground state.

TABLE X. Gamma rays in the decay of Al²⁴.

Author	Gl 53, Ri 53	Br 53c
E_{γ} in Mev	1.39 ± 0.03	1.38 ± 0.04
1	2.73 ± 0.06	2.70 ± 0.06
	4.22 ± 0.10	4.21 ± 0.12
	5.35 ± 0.10	5.37 ± 0.14
	(6.4)	(5.66 ± 0.18)
	7.12 ± 0.10	7.02 ± 0.20

One per several thousand disintegrations proceeds through an excited level in Mg²⁴, which emits α particles of $E_{\alpha} = 2 \pm 0.5$ Mev (Bi 52, Gl 53, Gl 53b, Ri 53).

For a theoretical prediction of the Al^{24} spin see De 53a.

II. $Mg^{24}(p,n)Al^{24}$ $Q_m = 14.8$

The Al²⁴ activity has been discovered in the bombardment of magnesium with protons of a 30-Mev linear accelerator. The threshold is determined as $E_p=15.4$ ± 0.3 Mev (Bi 52).

Na²⁵

(not illustrated)

Adopted mass defect: -2.1 Mev (Mc 49, Bl 47).

I. Na²⁵(
$$\beta$$
⁻)Mg²⁵ $Q_m = 3.7$

The half-life has been determined as 61.3 ± 2.4 sec (Hu 44), 60.0 ± 1.2 sec (Ri 44), 62.5 sec (Ba 46), 58.2 ± 1.3 sec, and 62.0 sec (Pe 48). See also Hu 43 and Hu 43a. The maximum β^- energy is about 3.4 Mev (Hu 44, Ri 44, and Mc 49). Bleuler and Zünti suggest a mixture of two β transitions with maximum energies 2.7 and 3.7 ± 0.3 Mev and relative intensities of 45 percent and 55 percent, as they have detected low-energy γ radiation of an intensity less than one γ per β transition (Bl 47). Both transitions are allowed as follows from the *ft* values (log *ft*=4.8 and 5.3).

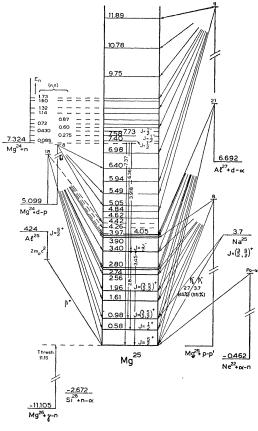
II. Ne²²(α, ϕ)Na²⁵ $Q_m = -3.4$

Na²⁵ activity has been found by the bombardment of neon with Po α particles (Ol 51).

III. $Mg^{25}(n,p)Na^{25}$ $Q_m = -3.0$

At $E_n = 14.5$ Mev the cross section is 45 ± 18 mb (Pa 53). See also Hu 44, Ri 44.

IV. $Mg^{26}(\gamma, p)Na^{25}$ $Q_m = -14.0$


By this reaction Na²⁵ has been discovered (Hu 43, Hu 43a, and Hu 44) with γ 's from the proton bombardment of lithium (E_{γ} =14.8 and 17.6 Mev). The cross section at these γ energies is 1.9 mb (Hi 47, Wa 48). The threshold is at E_{γ} =14.0±1.0 Mev (Mc 49). A detailed study of the cross section as a function of E_{γ} shows a maximum (σ =19.3 mb) at E_{γ} =22.6 Mev with a half-width of 3.3 Mev and $\int \sigma dE$ =0.085 Mev b (Ka 51b). With the x-rays of a 70 Mev synchrotron $\int \sigma dE$ =0.092 Mev b has been found (Ed 52). See also Ba 49.

Mg^{25}

Mass defect: -5.824 Mev

I. Ne²²(α ,n)Mg²⁵ $Q_m = -0.462$

Two neutron groups are reported from this reaction with Q values: -0.916 ± 0.07 Mev and -1.71 ± 0.08

F1G. 8.

Mev. Po $-\alpha$'s and photographic emulsion technique (Ol 51) were used.

II. Na²⁵(β ⁻)Mg²⁵ See Na²⁵

III. $Mg^{24}(n,\gamma)Mg^{25}$ $Q_m = 7.324$

The thermal neutron capture cross section of isotopic Mg²⁴ has been determined as 33 ± 10 mb (Po 52a). For natural magnesium values have been reported of 60 ± 3 mb (Ha 50), 57 ± 6 mb (Co 50), and 60 ± 6 mb (Po 51). See also Ra 42, Vo 43, Co 46a.

By high-resolution pair spectrometer thirteen γ rays have been found resulting from the capture of thermal neutrons in natural magnesium (see Table XI) (Ki 51, Ki 53a). Nine of these might be ascribed with more or less certainty to capture in Mg²⁶ although in principle some of them might also be due to captures in Mg²⁵ or Mg²⁶. Line *C* almost certainly corresponds to transitions leading to the ground state of Mg²⁵; lines *E*, *F*₂, and *G* could lead to known levels at 0.58, 0.976, and 1.61 Mev. Lines *J* and *K* form a cascade to the ground state through the 3.405-Mev level, which level is also de-excited by line *L* to the first level. Finally, lines *H* and *I* might also be fitted into the Mg²⁵ level scheme. The 2.8-Mev line, in addition to one more line at $E_{\gamma} = 1.9$ Mev, has also been observed with a twocrystal scintillation spectrometer (Br 53b). The great intensity of line J (from the capture state to the p level at 3.405 Mev in Mg²⁶) is explained in a natural way as being the most energetic E1 transition. Since this level is de-excited by γ rays K and L to the ground state (spin 5/2⁺) and the first level (spin $\frac{1}{2}^+$), both these competing transitions must be E1, and the spin of the 3.405 level is uniquely determined as $\frac{3}{2}^-$ (Ki 53e).

A recalculation of the intensities of some lines in photons per 100 captures in Mg^{24} is given in (Ki 53e).

IV. $Mg^{24}(n,n)Mg^{24}$ $E_b = 7.324$

The earlier data on neutron cross sections of natural magnesium have been compiled by Adair (Ad 50). Up to $E_n = 400$ ev no resonances are observed (Ra 48, Hi 49a), whereas some broad resonances have been found between 0.1 and 2.0 Mev (Fr 50, Fi 47) indicating levels in Mg²⁵ at 0.58, 0.69, 1.09, 1.27, 1.60, and 1.66 Mev above the neutron binding energy (Fr 50).

The cross section is about 2 b at $E_n \simeq 2.5$ Mev (Ao 39, Zi 39, Ma 40) and 1.75 ± 0.03 b at $E_n = 14$ Mev (Go 52a). See also Am 46, Am 46a.

Fields and Walt (Fi 51) have observed resonances at $E_n=85$, 275, and 430 kev, which are attributed to Mg²⁴ and indicate $J=\frac{1}{2}^{-}, \frac{1}{2}^{-}$, and $\frac{3}{2}^{-}$ for corresponding levels in Mg²⁵ at 7.40, 7.58, and 7.73 Mev. Also broad resonances were found at $E_n=560$ and 680 kev and a weak narrow resonance at 22 kev, which might be due to one of the less abundant magnesium isotopes.

V. $Mg^{24}(d,p)Mg^{25}$ $Q_m = 5.099$

The most accurate Q value obtained by magnetic analysis for the ground-state transition is 5.097 ± 0.007 Mev (En 52b). This figure supersedes an earlier value given by the Massachusetts Institute of Technology group of 5.094 ± 0.010 Mev (St 51). Ten levels in Mg²⁵ (see Table XII) have been found from the magnetic analysis work using natural magnesium targets (En 52b). Assignment of proton groups to Mg²⁴(d,p)Mg²⁵ was done by comparison with Mg²⁵ levels found from

TABLE XI. Gamma rays found from capture of thermal neutrons in natural magnesium (Ki 51, Ki 53a).

γ ray	Energy in Mev	Intensity in photons per 100 captures	Final nucleus
A	9.26 ± 0.04	1	Mg^{26}
B	8.16 ± 0.03	9	Mg^{26}
С	7.37 ± 0.08	0.5	Mg^{25}
D	7.15 ± 0.04	1	Mg^{26}
E	6.75 ± 0.04	2.5	Mg^{25}, Mg^{26}
F_1	6.440 ± 0.008	1.3	Mg^{27}
F_2	6.358 ± 0.007	3.5	Mg^{25}
\overline{G}	5.73 ± 0.04	1	Mg^{25}
H	5.50 ± 0.04	7	$(Mg^{25}), Mg^{26}$
Ι	5.05 ± 0.07	9	(Mg^{25})
J	3.918 ± 0.004	70	Mg^{25}
K	3.45 ± 0.07	16	Mg^{25}
L	2.83 ± 0.05	39	Mg^{25}

TABLE XII. Energy levels in Mg^{25} from $Mg^{24}(d,p)Mg^{25}$.

		·····		
Author:	Al 49	En 52b, En 53a	Am 52	Ho 53c
E_d in Mev:	0.93 Al	1.8	1.9	8
	absorp-	Magnetic	Nuclear	Al
Method:	tion	analysis	emulsions	absorption
Q_0 (Mev):	5.03	5.097 ± 0.007	4.99 ± 0.10	• • • 8
Levels in Mg ²⁵	0.58	0.582 ± 0.006	0.58 ± 0.10	
in Mev	0.98	0.976 ± 0.006	0.94 ± 0.10	
		1.612 ± 0.006	1.62 ± 0.10	
		1.957 ± 0.006	1.00	
		2.565 ± 0.006		
		2.742 ± 0.008		
		2.806 ± 0.007		
		3.405 ± 0.007		
		3.899 ± 0.008		
		3.972 ± 0.010		
		(4.052 ± 0.010)		
		(4.265 ± 0.007)		
		(4.421 ± 0.010)		
		,,		4.62 ± 0.05
				5.05 ± 0.07
				5.47 ± 0.05
				6.40 ± 0.03
				0. 1 0±0.0

	o 49 3.79	Fr 50a 0.93	Sc 50 11.1	To 52 10.8	En 52b, En 53a 2.1
	Al orption ±0.06	$\begin{array}{c} \text{Air} \\ \text{absorption} \\ 6.62 \pm 0.05 \end{array}$	$\begin{array}{c} \text{Al}\\ \text{absorption}\\ 6.58\pm0.03 \end{array}$	Nuclear emulsions	Magnetic analysis 6.694±0.010
in Mev 1.58	±0.07 ±0.07 ±0.07	0.58 ± 0.05 0.94 ± 0.05 1.54 ± 0.05 1.87 ± 0.05	$\begin{array}{c} 0.57 \pm 0.05\\ 0.96 \pm 0.05\\ 1.63 \pm 0.04\\ 1.97 \pm 0.05\\ 2.74 \pm 0.04\\ 3.36 \pm 0.04\\ 4.01 \pm 0.05\\ 4.81 \pm 0.05\\ 5.48 \pm 0.05\\ 5.95 \pm 0.05\\ \end{array}$	$\begin{array}{c} 0.58 \pm 0.02 \\ 0.93 \pm 0.04 \\ 1.62 \pm 0.03 \\ 2.09 \pm 0.05 \\ 2.74 \pm 0.03 \\ 3.36 \pm 0.04 \\ 4.12 \pm 0.04 \\ 4.12 \pm 0.04 \\ 4.556 \pm 0.03 \\ 5.56 \pm 0.03 \\ 5.93 \pm 0.03 \\ 6.98 \pm 0.03 \\ 6.98 \pm 0.03 \\ 6.98 \pm 0.03 \\ 9.06 \pm 0.04 \\ 9.75 \pm 0.04 \\ 10.78 \pm 0.04 \\ 11.89 \pm 0.05 \end{array}$	$\begin{array}{c} 0.584\pm\!0.00\\ 0.977\pm\!0.01\\ 1.610\pm\!0.01\\ 1.958\pm\!0.01\\ 2.729\pm\!0.01\\ 2.729\pm\!0.01\\ 2.729\pm\!0.01\\ 3.404\pm\!0.01\\ 3.404\pm\!0.01\\ 3.960\pm\!0.01\\ 4.057\pm\!0.01\\ \end{array}$

TABLE XIII. Energy levels in Mg^{25} from $Al^{27}(d,\alpha)Mg^{25}$.

* A ground-state Q value of 5.097 Mev has been assumed.

 $Al^{27}(d,\alpha)Mg^{25}$ and by comparison with proton groups found from targets enriched in Mg^{25} or Mg^{26} content. The lower levels are in good agreement with other authors using enriched targets (Al 49, Am 52). Four levels above 4.6 Mev have been observed by Holt and Marsham (Ho 53c). See also Al 46, Al 48, Ne 48, Ne 50b, Va 52a.

In the bombardment of natural magnesium with 3.7-Mev deuterons a γ ray of 5.1 \pm 0.3 Mev is observed with an absorber technique (Al 49b). This γ ray may be attributed to Mg²⁴(d,p)Mg²⁵, but could also belong to several other reactions.

Angular distribution measurements and Butler analysis yield $l_n=0(J=\frac{1}{2}^+)$ for the level at 0.58 Mev and for one or more of the three levels around 2.7 Mev, $l_n=1(J=\frac{1}{2}^- \text{ or } \frac{3}{2}^-)$ for the level at 3.40 Mev and $l_n=2(J=\frac{3}{2}^+ \text{ or } 5/2^+)$ for the ground state and the levels at 0.98 and 1.96 Mev. The angular distribution of protons associated with transitions to the level at 1.61 Mev is isotropic. From the relative intensities of the proton groups neutron capture probabilities can be deduced which give some more information on the configuration (single particle or multiple excitation) of the level concerned (Ho 53c).

VI. $Mg^{25}(\gamma, p)Na^{24}$ $Q_m = -12.072$

With x-rays from a 61 Mev synchrotron a maximum in the cross section was observed at $E_{\gamma}=22\pm3$ Mev with a half-width of 12 ± 3 Mev (Sa 51).

VII. $Mg^{25}(p,p')Mg^{25}$

By magnetic analysis of the scattered protons of bombarding energy $E_p=8$ Mev on natural magnesium targets levels are found at 0.61; 1.62; 1.98; 2.56; 2.76 (possibly a doublet); 3.41; and 3.91 all ± 0.02 Mev ^a A ground-state Q value of 6.694 Mev was assumed.

(Ha 52). They agree well with levels in Mg^{25} found from other reactions.

Probably some levels observed by other authors (Wi 41, Di 43, Fu 48, and St 52) in the bombardment of natural magnesium have to be assigned also to this reaction.

VIII. $Mg^{26}(\gamma, n)Mg^{25}$ $Q_m = -11.105$

The threshold of this reaction was measured as 11.15 ± 0.20 Mev (Sh 51a). See also Mg²³ reaction IV.

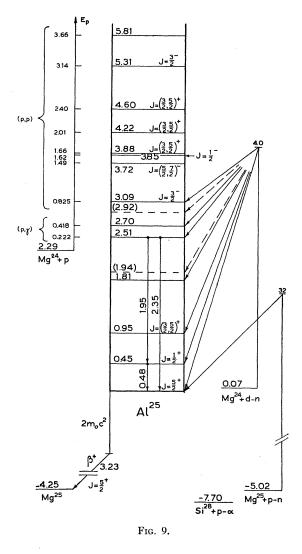
IX.
$$Al^{25}(\beta^+)Mg^{25}$$
 See Al^{25}

X. $Al^{27}(d,\alpha)Mg^{25}$ $Q_m = 6.692$

Table XIII shows good agreement between the level positions found with different bombarding energies and detection methods by different authors and also with the level positions deduced from $Mg^{24}(d,p)Mg^{25}$ studies (Table XII). See also Le 33, Mc 35, Al 49b, En 51, St 51.

The α -particle yield measured at $E_d = 11.1$ Mev depends markedly on angle for most groups. Only the α -particle group leading to the 1.61-Mev level is isotropic (Sc 50).

XI.
$$Si^{28}(n,\alpha)Mg^{25}$$
 $Q_m = -2.672$
Not observed.


A125

Adopted mass defect: -1.58 Mev (Go 53)

I. $Al^{25}(\beta^+)Mg^{25}$ $Q_m = 4.24$

The half-life has been measured as 7.3 sec (Br 48), and 7.62 ± 0.13 sec (Ch 53).

If it is assumed that the β^+ decay proceeds to the Mg²⁵ ground state the log *ft* value would be 3.5, the

usual value for super-allowed transitions between mirror pairs.

II. $Mg^{24}(p,\gamma)Al^{25}$ $Q_m = 2.29$

From thin enriched target measurements resonances have been found in the production of radioactive Al^{25} at $E_p=222$ and 417 kev (Gr 50) corresponding to levels in Al^{25} at 2.50 and 2.69 Mev.

High-precision measurement of the energy of the second resonance by electrostatic deflection of the protons and a thin separated Mg²⁴ target yields $E_p=418.0 \pm 0.5$ kev (Hu 53).

From thin natural magnesium target bombardments resonances have been found in the γ -ray yield accompanied by β^+ activity at $E_p = 222 \pm 1$, 310 ± 3 , 392 ± 4 , 417 ± 4 , 492 ± 5 , 508 ± 5 , and 525 ± 6 kev (Ta 46). They might be assigned to levels either in Al²⁵ or in Al²⁶. See also Cu 39, and Ho 41.

The following γ -ray energies have been measured at the 222 kev resonance making use of a scintillation-

spectrometer: 0.48 ± 0.05 , 1.95 ± 0.06 , and 2.35 ± 0.1 Mev (Ca 53). They might be interpreted as transitions between the following Al²⁵ levels: 0.45 Mev \rightarrow ground, 2.51 Mev \rightarrow 0.45 Mev, and 2.51 Mev \rightarrow ground. The thick Mg-target proton capture probability is given as 5×10^{-12} captures/proton.

III. $Mg^{24}(p,p)Mg^{24}$ $E_b = 2.29$

The differential cross section at 164° has been determined with thin enriched targets and magnetic analysis of elastically scattered protons for protonbombarding energies between 0.4 and 3.9 Mev (Mo 51). Partial-wave analysis (Ko 52) of these data yields eight levels in Al²⁵ and their width and classification (Table XIV). No resonance has been detected at

TABLE XIV. Levels in Al²⁵ from the Mg²⁴(p,p)Mg²⁴ reaction (Mo 51, Ko 52).

Bombarding energy in lab. system (Mev)	Levela in Al25 (Mev)	Width (kev)	Classification
0.825	3.08	1.5	Pı
1.49	3.72	0.3	\overline{F}^{*}
1.62	3.85	36	P_{*}
1.66	3.88	0.1	D
2.01	4.22	0.15	\overline{D}
2.40	4.60	0.3	\overline{D}
3.14	5.31	200	\overline{P}_{1}
3.66	5.80		(\tilde{D})

^a Using a proton binding energy in Al²⁵ of 2.29 Mey.

 $E_p=0.417$ Mev as found from the Mg²⁴ (p,γ) Al²⁵ reaction.

IV. $Mg^{24}(d,n)Al^{25}$ $Q_m = 0.07$

Thin enriched targets were bombarded at $E_d=4.0$ Mev (Go 53). Neutrons were detected with nuclear emulsions at six angles. Q values, levels in Al²⁵, counted number of tracks, maximum value of the differential cross section, and classification of levels (from Butler analysis) are assembled in Table XV. See also Fa 51, Hu 51.

TABLE XV. Levels in A^{125} from the $Mg^{24}(d,n)A^{125}$ reaction (Go 53).

Q value (Mev)	Level in Al ²⁵ (Mev)	Number of tracks counted	$\begin{array}{c} \text{Maximum} \\ \text{value} \\ \text{of } \boldsymbol{\sigma}(\boldsymbol{\theta}) \\ (\text{mb/sterad}) \end{array}$	Classi- fication
$\begin{array}{c} 0.07\pm0.06\\ -0.38\pm0.06\\ -0.88\pm0.05\\ -1.74\pm0.04\\ -1.87\pm0.04\\ -2.44\pm0.04\\ -2.67\pm0.04\\ -2.85\pm0.04\\ -3.04\pm0.03\end{array}$	$\begin{array}{c} 0 \\ 0.45 \pm 0.03 \\ 0.95 \pm 0.03 \\ 1.81 \pm 0.04 \\ (1.94) \\ 2.51 \pm 0.05 \\ 2.70 \pm 0.05 \\ (2.92) \\ 3.09 \pm 0.06 \end{array}$	$267 \\ 1100 \\ 430 \\ 103 \\ 14 \\ 372 \\ 302 \\ 35 \\ 750$	3.0 57 2.5	D Si D

V. $Mg^{25}(p,n)Al^{25}$ $Q_m = -5.02$

The threshold for production of radioactive Al²⁵ is given as $E_p = 5.1$ Mev (Bl 51). See also Br 48.

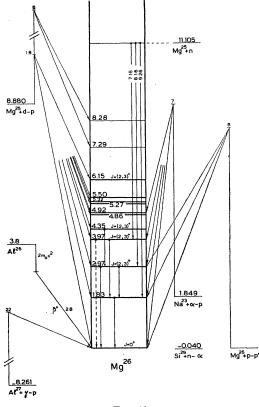
VI. $Si^{28}(p,\alpha)Al^{25}$ $Q_m = -7.70$

Not observed.

GENERAL REMARKS

Excitation energies, spins, and parities of Al^{25} levels agree well with corresponding levels in the mirror nucleus Mg^{25} .

Mg^{26}


Mass defect: -8.565 Mev

I. Ne²²(α, α)Ne²² $E_b = 10.643$

See Mg²⁴ reaction I for resonances.

IA. Na²³(α, p)Mg²⁶ $Q_m = 1.849$

Several proton groups from this reaction have been reported (Ko 34, Li 37, Ma 36, Me 40, Mo 48, Hj 52). The corresponding Q values and levels in Mg²⁶ (average values from different authors) are summarized in Table XVI. Levels are also found at 0.22, 0.60, 1.18, 1.92, and 2.75 Mev (the ground-state Q value is not given) (Hu 41). The agreement between different observers is none too good, but levels at 1.8, 2.7, 3.9, and 4.9 Mev check approximately with the results from the $Mg^{25}(d,p)Mg^{26}$ reaction. A level at 0.4 Mev is not found from $Mg^{25}(d,p)Mg^{26}$ measurements and would be contradictory to the general rule of high first excited states in even-even nuclei. See also Ch 31. Gammatransitions, in coincidence with the proton groups to the first four excited levels, are established by scintillation spectrometer from the 1.83-Mev level to the ground state, from the 2.97-Mev level to the ground state, but more frequent $(6\times)$ to the 1.83-Mev level, from the 3.97-Mev level to the 1.83-Mev level and probably to the ground state, and from the 4.35-Mev level to the 2.97-Mev level. These data combined with the angular distributions of the $Mg^{25}(d,p)Mg^{26}$ reaction (Ho 53c) indicate spins and parities: 0+, 1+, 2+, 2+, 3+, for the ground state and the four first excited states in Mg²⁶ (Ma 53). See also Ko 46, Al 48a.

Fig. 10.

II. $Mg^{25}(n,\gamma)Mg^{26}$ $Q_m = 11.105$

The thermal neutron absorption cross section is 0.27 ± 0.09 b (Po 52a).

Twelve different γ rays (see Table XI) were found by pair spectrometer in the region of $E_{\gamma} = 2.8$ to 12.5 Mev from the capture of thermal pile neutrons in natural magnesium (Ki 51). Only the γ rays A, B, and D may be ascribed with certainty to captures in Mg²⁵ (transitions to levels in Mg²⁶ at 1.84, 2.94 and 3.93 Mev). Some others (notably lines E and H of Table XI) might be due to capture in Mg²⁶, but could also be ascribed to captures in Mg²⁶.

III. $Mg^{25}(d,p)Mg^{26}$ $Q_m = 8.880 Mev$

This reaction has been studied both with natural magnesium targets (Po 41, Al 46, Al 48, Ne 48) and

Т	ABLE	XVI.	Proton	groups	from	Na ²³	[α,]	p)Mg ²⁶ .	
---	------	------	--------	--------	------	------------------	-------	----------------------	--

Author	a source	Energy measurement			Q •	values (M	ev)	
Ko 34 Li 37 Ma 36 Li 37 Me 40	Ро	Al abs.	1.91		-0.2			
Ma 36 Li 37	$\operatorname{Ra}(B+C)$	Al abs.	*		$-0.4{\pm}0.2$		-2.1 ± 0.2	$-3.1{\pm}0.2$
Me 40	Po	nucl. emuls.	1.64		-0.15			
Mo 48	cyclotron (7 Mev)	Al abs.	1.44	1.12	-0.30	-1.3		
Нј 52	Po	nucl. emuls.	1.55	1.15	-0.17	-1.17		
Levels in M	g ²⁶ (average):		0	(0.36)	1.8	2.7	3.9	4.9

TABLE XVII. Proton groups from $Mg^{25}(d,p)Mg^{26}$.

Author:	Am 5	2	En	52a
E_d (Mev):	1.9		1	.8
Method:	Nuclear em	ulsions	Magnetic	e analysis
	Q value (Mev)	Mg ²⁵ level (Mev)	Q value (Mev)	Mg ²⁵ level (Mev)
	$\begin{array}{c} 8.86 \pm 0.10 \\ 7.02 \pm 0.10 \\ 5.86 \pm 0.10 \\ 4.86 \pm 0.10 \\ 4.45 \pm 0.10 \\ 3.95 \pm 0.10 \end{array}$	1.84 3.00 4.00 4.41 4.91	$\begin{array}{c} 8.880 \pm 0.012 \\ 7.055 \pm 0.015 \\ 5.908 \pm 0.008 \\ 4.911 \pm 0.007 \\ 4.527 \pm 0.008 \\ 4.017 \pm 0.009 \\ 3.956 \pm 0.007 \\ 3.610 \pm 0.007 \\ 3.578 \pm 0.007 \\ 3.378 \pm 0.007 \\ 2.733 \pm 0.005 \end{array}$	$\begin{array}{c} \dots \\ 1.825 \pm 0.015 \\ 2.972 \pm 0.010 \\ 3.969 \pm 0.010 \\ 4.353 \pm 0.011 \\ 4.863 \pm 0.011 \\ 4.924 \pm 0.011 \\ 5.270 \pm 0.011 \\ 5.322 \pm 0.011 \\ 5.302 \pm 0.011 \\ 6.147 \pm 0.011 \end{array}$

enriched targets (Al 49, Am 52, En 52a). In Table XVII are given Q values and Mg²⁶ levels reported by the latter two authors. No indication is found of a level at 0.4 Mev.

An angular distribution study at $E_d=8$ Mev indicates that an orbital angular momentum $l_n=0$ is associated with the captured neutron for transitions to the 2.97-, 3.97-, 4.35-, and 6.15-Mev levels $(J=2^+ \text{ or } 3^+)$ and both $l_n=0$ and $l_n=2$ for transitions to the 1.83-Mev level. Moreover, two levels at 7.29 ± 0.06 and 8.28 ± 0.06 Mev are found in this study (Ho 53c).

IV. $Mg^{26}(p,p')Mg^{26}$

Magnetic analysis of scattered protons with bombarding energy $E_p=8$ Mev on natural magnesium confirms the levels at 1.83 ± 0.02 and 2.96 ± 0.02 Mev (Ha 52). The 1.83-Mev level had also been found previously (Rh 49, Rh 50). See also Fu 48.

V.
$$Al^{26}(\beta^+)Mg^{26}$$
 See Al^{26}

VI. Al²⁷ (γ, p) Mg²⁶ $Q_m = -8.261$

The threshold is reported as $E_{\gamma} = 8.6 \pm 0.5$ Mev (Di 50). The cross section has a maximum of 22 ± 6 mb at $E_{\gamma} = 21.2 \pm 0.5$ Mev with a half-width of 5.4 ± 0.5 Mev and an integrated cross section of 0.12 Mev b (Ha 51). The proton angular distribution is isotropic below $E_{\gamma} = 22$ Mev (Di 50), but anisotropic at $E_{\gamma} = 25$, 40, and 65 Mev (Ho 53h).

VII. Si²⁹ (n,α) Mg²⁶ $Q_m = -0.040$ Not observed.

A126

Adopted mass defect: -4.8 Mev

(The adopted mass defect is consistent with determinations of the end point of the Al²⁶ β^+ spectrum and with the threshold for the Al²⁷(γ, n)Al²⁶ reaction determined by Sher *et al.* (Sh 51a). The experimental Q value of the Mg²⁵(d, n)Al²⁶ reaction (Sw 50) would lead to a mass defect of -6.0 ± 0.1 Mev and the Al²⁷(γ ,n)Al²⁶ threshold determined by McElhinney *et al.* (Mc 49) to a mass defect of -3.6 ± 0.4 Mev.)

I. $Al^{26}(\beta^+)Mg^{26}$ $Q_m = 3.8$

Half-life determinations are 7 ± 1 sec (Fr 34), 7 sec (Ma 37), 7.25 ± 0.2 sec (Hu 43), 6.3 sec (Br 48), 6.49 ± 0.10 sec (Ka 51b), 6.3 sec (Ed 52), and 6.68 ± 0.11 sec (Ch 53). The earlier determinations are subject to doubt because of the approximate equality of the Al²⁶ and Al²⁵ (7.3 sec) half-lives.

The β^+ end point has been measured by Al absorption as 3.4 ± 0.5 Mev (Fr 34, Bl 46c) and 2.8 Mev (Al 48), and by cloud chamber as 2.99 Mev (Wh 39). See also Ma 37, Br 38, Na 41. No γ rays have been observed (St 53b).

The β^+ decay would be super-allowed because of its low ft value (log ft=3.3).

II. Na²³(α ,n)Al²⁶ $Q_m = -2.7$

A threshold is reported of 3.7 to 4.0 Mev (Sa 35). See also Cu 33, Fr 34, Ma 37, Br 38. See Al²⁷ for resonances.

III. Mg²⁵(p, γ)Al²⁶ $Q_m = 6.6$

By the use of thin enriched targets well-resolved resonances were found in the positron yield at $E_p=386$, 489, 508, 586, 650, 680, 722, 777, 812, 880, 924, 980, and 1043 kev (Ru 52a).

Resonances in the γ -ray yield are reported at $E_p = 180$, 410, 480, 575, and 825 kev (Cu 39), and at $E_p = 310 \pm 3$,

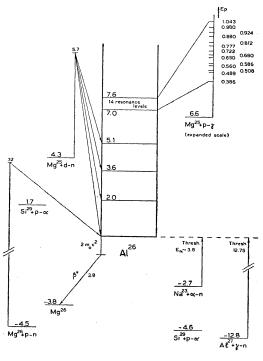


Fig. 11.

 392 ± 4 , 492 ± 5 , 508 ± 5 , and 525 ± 6 kev (Ta 46) but the assignment to Mg²⁵ is less certain in these cases as targets were used of natural isotopic abundance. See also Ho 41.

IV. $Mg^{25}(p,n)Al^{25}$ $E_b = 6.6$ $Q_m = -5.02$

Resonances in the Al²⁵ activity yield from natural magnesium targets have been observed at $E_p=5.47$, 5.80, 6.02, 6.31, and 6.49 Mev. They may also be assigned to Mg²⁶(p,n)Al²⁶ (Bl 51). See Al²⁵ for threshold measurements.

V. $Mg^{25}(d,n)Al^{26}$ $Q_m = 4.3$

At $E_d=1.47$ Mev (thick enriched targets, nuclear emulsion technique) a ground-state Q value of 5.58 ± 0.10 Mev has been measured. Three more neutron groups were found corresponding to levels in Al²⁶ at 2.00, 3.63, and 5.13 ± 0.18 Mev (Sw 50). See also Al 49b.

VI. $Mg^{26}(p,n)Al^{26}$ $Q_m = -4.5$

Production of radioactive Al²⁶ has been observed (Br 48). See also Wh 39 and Bl 51. See also reaction IV.

VII. Al²⁷(γ , *n*)Al²⁶ $Q_m = -12.8$

The threshold for this reaction has been measured as 12.75 ± 0.20 Mev (Sh 51a) and 14.0 ± 0.4 Mev (Mc 49). The excitation curve (measured by neutron detection) has a peak at 19.7 Mev of 4.0 Mev width. The maximum cross section is 23 mb and the integrated cross section 100 Mev mb (Mo 53a) or 80 Mev mb (Ed 52). The maximum cross section for the production of 6.3 sec Al²⁶ is much smaller (8.1 mb). The yield has a peak at 19.2 Mev of 4.7 Mev width and the integrated activity cross section is 45 Mev mb (Ka 51b). See also Hu 42, Be 47a, Wa 48, Pe 48, Di 50, Mc 50.

VIII.
$$Al^{27}(n,2n)Al^{26}$$
 $Q_m = -12.8$

Not observed.

 IX. $Si^{28}(d,\alpha)Al^{26}$ $Q_m = 1.7$

 Not observed.
 $X. Si^{29}(p,\alpha)Al^{26}$
 $Q_m = -4.6$

Not observed.

GENERAL REMARKS

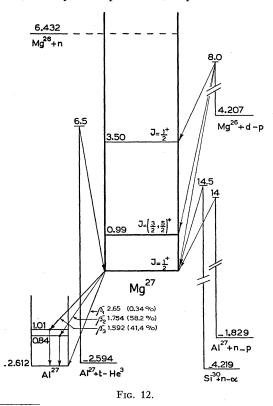
It has been suggested (St 53b, St 53c, see also Mo 53b) that the 6.3 sec activity might have to be assigned not to the Al²⁶ ground state but to the level at 2.0 Mev known from the Mg²⁵(d,n)Al²⁶ reaction. This excited (isomeric) state might then be the $J=0^+$, T=1 analog of the Mg²⁶ ground state. The spin of the Al²⁶ ground state (about 2.3 Mev above the Mg²⁶ ground state) is uniquely fixed as $J=5^+$ through shell-model considerations ($d_{\frac{1}{2}}$ proton, $d_{\frac{1}{2}}$ neutron) and through the fact that no γ rays have been observed in

the Al^{26m} decay. The Al²⁶ ground state would presumably decay by electron capture to the 1.83-Mev level $(J=2^+)$ in Mg²⁶ with an estimated half-life of 10⁸ years.

An experimental confirmation of the Al²⁶ isomerism is found in the fact that the Al²⁷ (γ, n) Al²⁶ cross section is about three times greater if the neutron yield is measured instead of the yield of the Al^{26m} 6.3 sec activity (Mo 53a).

Another indication of a low state in Al^{26} is found in the observation of neutrons (unaccompanied by positrons below $E_p = 5.3$ Mev) from Mg(p,n)Al down to proton energies as low as $E_p = 3.5$ Mev. From Q-value considerations it may be concluded, that these neutrons cannot result from $Mg^{24}(p,n)Al^{24}$ or $Mg^{25}(p,n) Al^{25}$ (St 54).

For a theoretical prediction of the Al^{26} spin see De 53a.


Mg^{27}

Mass defect: -6.633 Mev‡

I. $Mg^{27}(\beta) Al^{27} Q_m = 2.612$

Determinations of the half-life are: 10.0 ± 0.1 min (Cr 39), 9.58 ± 0.10 min (Ek 43), 9.45 ± 0.04 min (Sa 53), 9.51 ± 0.03 min (Da 53a) and 9.39 ± 0.03 min (Lo 53). See also Fl 34, He 35.

The β^- decay is complex. The β^- spectrum has three

[‡] The error in the mass defect of Mg^{27} given by Li (Li 52) (-8.633 Mev instead of -6.633 Mev) has here been corrected [Phys. Rev. 90, 1131 (1953)].

Ref.	Method	E_{β_1} (Mev)	E_{β_2} (Mev)	E_{β_3} (Mev)	E_{γ_1} (Mev)	E_{γ_8} (Mev)
He 35	Al abs.		2.05			
Wi 38	Al abs.		1.96 ± 0.15			
Ri 38	cl. chamber					0.88 ± 0.05
Cr 39	cl. chamber		1.8			0.00 10.00
Mo 40	Al abs.		1.74 ± 0.05			
It 41	spectrom.				1.02 ± 0.02	0.84 ± 0.02^{a}
Ek 43	cl. chamber		1.77 ± 0.09		1.05 ± 0.08	0101 120102
Bl 47	Al abs.		1.78	1.32	1.1 ± 0.1	
Be 48	spectrom.		(75%) 1.80 (80%)	(25%) (20%)	1.01 ± 0.03	0.835 ± 0.025
Da 53a	Al abs.		1.72 ± 0.06 (75%)	1.5 ± 0.1 (25%)		0.88 ± 0.08
Da 53a	scint.		(/ 0/	<u> </u>	1.00 ± 0.03	0.84 ± 0.05
	spectrom.					
Da 53a	spectrom.	2.65 ± 0.14 (0.34%)	1.754 ± 0.004 (58.2%)	1.592 ± 0.005 (41.4%)	1.020 ± 0.008	0.839 ± 0.008

TABLE XVIII. Beta decay of Mg²⁷.

^a Intensity 45 percent of 1.02 Mev γ ray.

components and two γ rays are observed. Measurements of end points, γ -ray energies, and relative intensities are collected in Table XVIII. A third γ ray of $E_{\gamma}=0.64\pm0.01$ Mev and an intensity of 30 percent of the 1.02-Mev γ ray (It 41) has later not been confirmed. Because $\gamma - \gamma$ coincidences had been reported (Be 48) it has been assumed until recently that the lowenergy β^- component proceeded through a 1.8-Mev level in Al²⁷, which level, however, was not found from other nuclear reactions. It has now been shown that there are no $\gamma - \gamma$ coincidences and that only the well-known Al²⁷ levels at 0.84 and 1.02 Mev are involved. Such a decay scheme is strengthened by $\beta - \gamma$ coincidence measurements (Da 53a). See also Bl 45, Va 52c.

The β^- transitions to the 0.84- and 1.02-Mev levels are allowed (both log ft=4.8), while the ground-state transition is forbidden (log ft=7.8). The latter $(J=\frac{1}{2}+\rightarrow 5/2^+)$ would be about 10⁵ times faster than is usual for second forbidden transitions.

II. $Mg^{26}(n,\gamma)Mg^{27}$ $Q_m = 6.432$

The thermal neutron absorption cross section of isotopic Mg^{26} is 60 ± 60 mb (Po 52a) and the activation cross section 48 ± 10 mb (Se 47). For fission neutrons $(E_n\sim1$ Mev) the activation cross section is 0.60 mb (Hu 49, Hu 53a). See also On 41, Si 41a.

Energies of a number of γ rays from the capture of thermal neutrons in natural magnesium have been determined by pair spectrometer (Ki 51, Ki 53a) (see

TABLE XIX. Proton groups from $Mg^{26}(d,p)Mg^{27}$.

Author Method Ed(Mev)	Am 52 nucl. emuls. 1.9 Q value (Mev)	En 52a magn. anal. 1.8 Q value (Mev)	Ho 53c Al abs. 8.05 Q value (Mev)	Mg²5 level (Mev)
	4.16 ± 0.10 3.18 ± 0.2	4.207 ± 0.006 3.220 ± 0.005	…ª …ª 0.71 ±0.05	0 0.987±0.006 (En 52a 3.50 (Ho 53a

^a These two proton groups were observed but no Q values are given.

Table XI). Line F_1 ($E_{\gamma} = 6.440 \pm 0.008$ Mev) results from capture in Mg²⁶ and represents the ground-state transition.

III. $Mg^{26}(d,p)Mg^{27}$ $Q_m = 4.207$

Measurements of Q values and Mg²⁷ levels from enriched targets are collected in Table XIX. See also He 35, Cr 39, Al 46, Al 48, Ne 48, Al 49b, Va 52a.

Angular distributions of three proton groups from this reaction have been measured at $E_d=8$ Mev. From Butler analysis $l_n=0$ is found for transitions to the ground state and the 3.50-Mev level and $l_n=2$ for transitions to the 0.98 Mev level. This fixes the ground state and 3.50 Mev level as $J=\frac{1}{2}^+$, and the 0.98-Mev level as $J=5/2^+$ or $\frac{3}{2}^+$ (Ho 53c).

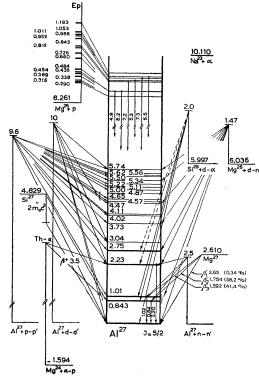
IV. $Al^{27}(n,p)Mg^{27}$ $Q_m = -1.829$

The yield has been measured from threshold to $E_n=4$ Mev (Br 49b). The cross section for Be(d,n) neutrons ($E_d=15$ Mev) is 25 ± 2.5 mb (Co 51) and at $E_n=14$ Mev 79 ±6 mb (Fo 52a) or 52 ± 10 mb (Pa 53). See also Fl 34, Me 34a, Am 35, Kl 35, Hi 40, Go 50a, Ya 52.

V. $Al^{27}(t, He^3)Mg^{27}$ $Q_m = -2.594$

The bombardment of aluminum with 6.5-Mev tritons yields radioactive Mg²⁷ (Po 52b).

VI. $Si^{30}(n,\alpha)Mg^{27}$ $Q_m = -4.219$


The cross section at $E_n = 14.5$ MeV is 46 ± 23 mb (Pa 53).

A127

Mass defect: -9.245 Mev

I. Na²³(α ,n)Al²⁶ $E_b = 10.110$

Resonances are reported at $E_{\alpha} = 6.2$ and 6.8 Mev with RaC' α 's (thick target) (Br 38). See Al²⁶ for threshold measurement.

II.
$$Mg^{24}(\alpha, p)Al^{27}$$
 $Q_m = -1.593$

Early measurements with RaC' α 's (Du 34) and ThC' α 's (Ha 35) indicate levels at 0.8 and 1.7 Mev. See Si²⁸ for resonances. See also Li 37.

From a comparison of the resonances in $Mg^{24}(\alpha, p)Al^{27}$ and $Al^{27}(p,\alpha)Mg^{24}$ a Q value of -1.613 ± 0.010 Mev is derived (Ka 52).

$$\frac{\text{III. Mg}^{25}(d,n)\text{A}|^{26}}{\text{IV. Mg}^{25}(d,\phi)\text{Mg}^{26}} \Big\} E_b = 17.141$$

A resonance is found in both the neutron and proton yield at $E_d = 0.965 \pm 0.015$ Mev from natural Mg-target bombardments. If assigned to Mg²⁵, this would correspond to a level in Al²⁷ at 18.07 Mev (Al 48). However, assignment to Mg²⁴ seems more probable.

V. $Mg^{26}(p,\gamma)Al^{27}$ $Q_m = 8.261$

Resonances observed in the γ -ray yield are collected in Table XX. Only those γ -ray resonances which are not accompanied by β^+ emission are assigned by Tangen (Ta 46) to Mg²⁶(p,γ)Al²⁷. See also Cu 39, Ho 41.

Gamma-ray energies have been measured at some resonances and are summarized in Table XXI.

The γ ray with $E_{\gamma} = 8.70$ Mev corresponds to the direct de-excitation to the ground state. The greater part of the other γ rays represent cascades through known levels in Al²⁷ to the ground state.

VI.
$$Mg^{26}(p,n)Al^{26}$$
 $E_b = 8.261$ $Q_m = -4.5$

For resonances see Al²⁶ reaction IV.

VII. $Mg^{26}(d,n)Al^{27}$ $Q_m = 6.036$

Eight neutron groups have been observed with nuclear emulsions from an enriched target at $E_d=1.47$ Mev corresponding to the ground state ($Q_0=5.68\pm0.05$ Mev) and levels at 0.88, 1.92, 2.75, 3.65, 4.33, 5.32, and 5.81 Mev (± 0.07 Mev) (Sw 50). See also Al 49b.

VIII.
$$Mg^{27}(\beta)$$
 Al²⁷ See Mg^{27}

IX. $Al^{27}(n,n')Al^{27}$

Inelastic scattering of 2.5-Mev neutrons in aluminum yields a level in Al²⁷ at 0.9 Mev. Neutrons were detected by their recoil protons in an anthracene scintillation spectrometer (Po 52, Po 53a).

From 2.5-Mev neutrons on Al²⁷ γ -ray energies of $E_{\gamma}=0.843$, 1.018, and 2.20 Mev (±1.5 percent) have been determined with a scintillation spectrometer (Da 53). These results have later been confirmed by a similar method ($E_{\gamma}=0.82$, 1.02, and 2.34 Mev) (Ga 53). The observed γ rays represent direct de-excitation of the lowest three excited states in Al²⁷ to ground.

The inelastic cross section has been measured at $E_n = 14$ Mev (Ph 52).

TABLE XX. Resonances in $Mg^{26}(p,\gamma)Al^{27}$.

Author Target	Ta 46 Natural Mg	Ta 52 Mg ²⁶	Hu 53 Natural Mg
	·····		
E_p (kev)	290 ± 3		
	314 ± 3		314.8 ± 0.5
	336 ± 1.5	339	338.5 ± 0.5
	388 ± 4		389.4 ± 0.5
	430 ± 4		436.5 ± 0.4
	451 ± 2	449	454.2 ± 0.3
	494 ± 5	112	484.0 ± 1.0
	19110	660	101.0121.0
		726	
		812	
		843	
		952	
		986	
		1011	
		1053	
		1183	
		$(all \pm 10)$	

TABLE XXI. Gamma-ray energies from $Mg^{26}(p,\gamma)Al^{27}$.

Author	Method	E_p in Mev	E_{γ} in Mev
Ca 53	scint. spectr.	0.314	4.2 ±0.2
Ca 53	scint. spectr.	0.336	2.83 ± 0.14 and 5.80 ± 0.2
Kl 53	scint. spectr.	0.454	0.81 ± 0.05 ; (2.28 ± 0.10)
	1		2.80 ± 0.10 ; (4.10 ± 0.15)
			$(4.58 \pm 0.15); 5.74 \pm 0.15;$
			6.54 ± 0.20 ; 7.86 ± 0.20 ;
			8.70 ± 0.20 .
Ru 52	Al absorption	0.454	4.9 and 6.2
Ru 52	Al absorption	0.813	7.2
Ru 52	Al absorption	0.840	5.3
Ru 52	Al absorption	0.954	7.3
Ru 52	Al absorption	1.015	5.5

Author: E_p (Mev): Angle: Method:	Sh 51 2–4 164° magn. analysis	Ba 52 9.6 30°–120° range in Al	Re 52 8.0 90° magn. analysis	St 52 7.26 50° and 135° scintill. spectrom.	Do 53 2.309 135° electrostat. analysis	Br 53g 6.5–8.4 90° magn. analysis
Levels in Al ²⁷	0.82		0.844	0.84	0.843	0.843
(Mev)	1.04	0.99 ± 0.05 1.72 ± 0.15	1.016	1.01 ª	± 0.002	1.013
	2.23	2.22 ± 0.08	2.259	2.23		2.211
	2.75		2.782	2.77		2.735 2.981
		3.00 ± 0.05	3.046	3.03		3.004
		3.63 ± 0.12	3.736	3.71		3.681
		3.93 ± 0.10	$4.018 \\ 4.115$	4.00		3.959 4.058
		4.39 ± 0.12	$4.473 \\ 4.575$	4.47		4.404 4.507
		4.66 ± 0.10	4.647	4.60		4.577
			4.875 4.996	4.87		4.806
			5.107 5.220			5.150
			5.341			5.243
	/	5.46 ± 0.08	5.501	5.43		5.416
		5. 1 0±0.00	5.565	3.43 all ± 0.04		$5.430 \\ 5.498$
			5.620	an ±0.04		5.551
			5.736			5.668
			all ± 0.020			5.825
						(5.959)
						all ± 0.020

TABLE XXII. Levels in Al²⁷ from Al²⁷ (p,p')Al²⁷.

* The authors find no indication of a level at 1.8 Mev.

X. $Al^{27}(p, p')Al^{27}$

Levels found from this reaction are represented in Table XXII. The figures given by Browne (Br 53g) must be regarded as preliminary. His levels are consistently lower than those given by Reilly *et al.* (Re 52) by an amount slowly increasing up to 70 kev for the highest levels. No proton groups were found by Browne corresponding to Reilly's level at 4.996 and 5.107 Mev; only a group originating from carbon contamination (inelastic scattering to the C^{12} level at 4.43 Mev) was present in this region. See also Wi 40, Di 43, Fu 48, Br 49, Rh 49, Le 50, Rh 50, Ha 52c, Co 52.

Angular distributions of elastically scattered protons have been measured at $E_p=4.5$ Mev (Rh 50), 6.9 Mev (Wi 41), 9.6 Mev (Ba 52), 15.5 and 18.3 Mev (Gu 52), and 18.6 Mev (Bu 51). At all these energies the ratio of differential cross section to Rutherford scattering has a maximum at about 90°.

XI. $Al^{27}(d, d')Al^{27}$

Levels in Al²⁷ have been found from this reaction with $E_d = 5-6.7$ Mev at 0.85 and 2.13 Mev (Gr 49), with $E_d = 7.5$ Mev at 0.99 \pm 0.05 and 2.17 \pm 0.05 Mev (Ho 49), with $E_d = 10$ Mev at 0.97, 2.39, 3.17, 4.74, and 5.76 (all \pm 0.2) Mev (Ke 51) and with $E_d = 14$ Mev at 1.0, 2.3, and 2.9 Mev (Bo 50). The intensity of the inelastic deuteron group leading to the 0.843-Mev level is (at $E_d = 2.1$ Mev and $\vartheta = 90^\circ$) smaller than 1 percent of the elastic group (En 53a).

The differential cross section for elastic scattering at $E_d=14$ Mev shows maxima at 0°, 70°, and 110° (Go 50).

XII. $Si^{27}(\beta^+)Al^{27}$ See Si^{27}

XIII. Si²⁸(γ ,p)Al²⁷ $Q_m = -11.590$ Not observed.

XIV. $Si^{29}(d,\alpha)Al^{27}$ $Q_m = 5.996$

Magnetic analysis of α particles observed at 90° at $E_d=1.8$ and 2.0 Mev from targets enriched in Si²⁹ content yields a ground-state Q value of 5.994 ± 0.011 Mev and levels in Al²⁷ at 0.837 ± 0.016 and 1.007 ± 0.013 Mev and possibly at 2.21 ± 0.03 and 2.74 ± 0.02 Mev. The authors state that no group was found corresponding to a level at 1.8 Mev (Va 52c). See also Va 52a.

XV. $Si^{30}(p,\alpha)Al^{27}$ $Q_m = -2.389$

Not observed.

Si^{27}

(not illustrated)

Adopted mass defect: -4.416 Mev (Ki 53)

I. $Si^{27}(\beta^+)Al^{27}$ $Q_m = 4.829$

The half-life is given as: 3.7 sec (Ku 39), $4.9\pm1 \text{ sec}$ (Cr 40), $4.92\pm0.1 \text{ sec}$ (El 41), $4.5\pm0.5 \text{ sec}$ (Hu 44a), $5.4\pm0.4 \text{ sec}$ (Bo 51), and $4.45\pm0.05 \text{ sec}$ (Su 53).

The β^+ spectrum end-point determinations are 3.74 Mev (Mc 40), 3.54 ± 0.1 Mev (Ba 40) (both measured by cloud chamber), and 3.48 ± 0.10 Mev (Bo 51)

(scintillation spectrometer). See also Cu 34. The log ft value is 3.6 in accordance with the super-allowed character of this transition between mirror nuclei.

II. $Mg^{24}(\alpha, n)Si^{27}$ $Q_m = -7.205$

Radioactive Si²⁷ is produced at $E_{\alpha} = 15$ Mev (El 41). See also Sa 35.

III. $Al^{27}(p,n)Si^{27}$ $Q_m = -5.611$

The threshold for this reaction has been measured as $E_p = 5.93$ Mev (Bl 51) and $E_p = 5.819 \pm 0.010$ Mev (Ki 53). See also Ku 39, Mc 40, Ba 40, Gu 51. See Si²⁸ for resonances.

IV. $Si^{28}(\gamma, n)Si^{27}$ $Q_m = -17.201$

The threshold has been determined as 16.8 ± 0.4 Mev (Mc 49) and 16.9 ± 0.2 Mev (Su 53). See also Be 47a, Bo 51.

A maximum in the cross section of 21 mb is observed at 20.9 Mev with a half-width of 3.5 Mev and the integrated cross section to 24 Mev is 0.070 Mev b (Su 53). See also Hu 44a, Wa 48.

V. $Si^{28}(n,2n)Si^{27}$ $Q_m = -17.201$

Not observed.

Mg^{28}

(not illustrated)

Adopted mass defect: -6.818 Mev (Ma 53a, Sh 53a)

I. $Mg^{28}(\beta^{-})Al^{28}$ $Q_m = 1.785$

Mg²⁸ has been produced through Mg²⁶(α ,2p), Si³⁰(γ ,2p), Si³⁰(γ ,2p), Si³⁰(γ ,3p), and other spallation reactions.

The half-life is given as 21.3 ± 0.2 hr (Sh 53), 21.2 ± 0.2 hr (Li 53, Li 53a), 20.8 ± 0.5 hr (Ma 53a), 22.1 ± 0.3 hr (Jo 53), 21.85 ± 0.32 hr (Iw 53), and 21.4 ± 0.6 hr (Wa 53).

The β^- spectrum is simple and the Kurie plot is straight (Ma 53a). The end point is given as 0.40 ± 0.06 Mev (Sh 53a), 0.3 Mev (Jo 53), 0.39 ± 0.05 Mev (Wa 53) (all by Al absorption), and 0.418 ± 0.010 Mev (Ma 53a, spectrometer). The allowed character of this transition follows also from the *ft* value (log *ft*=4.2).

At least four different γ rays have been found by scintillation spectrometer. Their energies and relative intensities (given between brackets) are ~0.03 Mev, 0.40±0.02 Mev (30±3 percent), 0.95±0.02 Mev (28±3 percent), and 1.35±0.02 Mev (71±5 percent) (Sh 53a). The intensity of the 1.78-Mev γ ray resulting from Al²⁸ in equilibrium with Mg²⁸ has been taken as unity. A more accurate determination of energy and intensity of the low-energy γ ray is 32.2 kev (70±20 percent) (Wa 53). The three harder γ rays have also been determined by scintillation spectrometer as 0.391±0.005, 0.95, and 1.35 Mev (Iw 53). There may be present more γ rays to at least 2.6 Mev (Jo 53), although this seems difficult to reconcile with the data given above.

The level scheme of Al^{28} up to 6.3 Mev is well known from the $Al^{27}(d,p)Al^{28}$ reaction (En 52c). The γ rays found in the Mg²⁸ decay fit well into this level scheme although the γ -ray energies are not accurate enough to decide whether the 0.95- and 1.35-Mev γ rays go to the 0.03-Mev level or partly to the ground state. It seems certain that the 0.391- and 0.95-Mev γ -ray cascade proceeds through the 0.973 and not through the 1.013-Mev level.

II. $Mg^{26}(t,p)Mg^{28}$ $Q_m = 6.498$

Radioactive Mg^{28} has been produced from this reaction:

- (a) by bombarding MgSO₄ · 6D₂O with deuterons (production of tritons through the D(d,t)H reaction);
- (b) by irradiating Li-Mg alloy with neutrons in a pile (production of tritons through the $\text{Li}^6(n,t)\text{He}^4$ reaction) (Iw 53).

A128

Mass defect: -8.603 Mev

I. Al²⁸(β ⁻)Si²⁸ $Q_m = 4.650$

The most accurate determinations of the half-life are 2.27 ± 0.02 min (Ba 53) and 2.30 ± 0.03 min (Ek 43). Other determinations with 0.1- to 0.2-min errors range from 2.0 to 3.0 min (Cu 34, Cu 34c, Al 35, An 35, Mc 35, Fa 35, El 36, Na 36a, Ec 37, Me 37, Ri 37, He 39, Sz 48, Iw 53, Hu 44a).

The β^- spectrum is simple (Wa 41) and has the allowed shape (Mo 52, Du 47, Ma 53a). The log *ft* value is 4.9. Each β^- particle is followed by one γ ray (Du 47, Bl 45, Bl 47). The ground-state β^- transition is weaker than 2 percent (Mo 52). Determinations of the β^- spectrum end point and of the γ -ray energy are collected in Table XXIII. See also Cu 34, Co 36, Na 36a, Ec 37, Me 37, Ha 51a.

See also the parent nuclide Mg²⁸.

II. $Mg^{25}(\alpha, p)Al^{28}$ $Q_m = -1.196$

Proton groups corresponding to Q values of -1.05, -1.82, and -2.87 Mev, reported from the bombardment of natural magnesium by $\operatorname{Ra}(B+C) \alpha$'s (Du 34,

TABLE XXIII. Beta decay of Al²⁸.

Author	Method	$E_{\beta-\max}$ (Mev)	E_{γ} (Mev)
Al 35	spectrom.	3.05 ± 0.15	
Tt 41	spectrom.		1.82 ± 0.02
Ek 43	cl. chamber	2.98 ± 0.18	2.05 ± 0.15
Du 47	abs.	3.10 ± 0.10	2.15
B1 47	abs.	2.75 ± 0.10	1.80 ± 0.10
Be 48	spectrom.	3.01	1.80
Mo 52	spectrom.	2.865 ± 0.010	1.782 + 0.010
Ma 53a	spectrom.	2.850 ± 0.050	

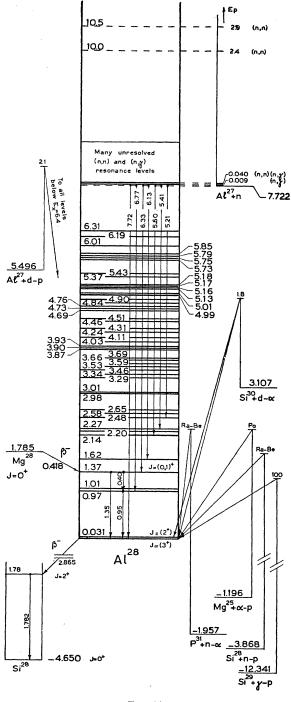


FIG. 14.

Li 37), may also be assigned to the $Mg^{24}(\alpha, p)Al^{27}$ reaction.

The same difficulty exists for the assignment of γ rays of 1.8 ± 0.2 and 4.3 ± 0.3 Mev reported from the bombardment of natural magnesium by 7-Mev α 's (Al 48a). They might result from (α, p) but also from (α, n) reactions.

For resonances reported in the Al²⁸ yield see Si²⁹. See also Al 34, Ec 35, El 35a, El 36, Sz 44, Sz 48.

III.
$$Mg^{28}(\beta^{-})Al^{28}$$
 See Mg^{23}

IV.
$$Al^{27}(n,\gamma)Al^{28}$$
 $Q_m = 7.722$

The thermal neutron capture cross section has been measured as 0.212 ± 0.005 b (Co 50) in good agreement with other determinations (Se 47, Ha 50, Po 51). See also Ra 40, On 41, Si 41a, Ra 42, Vo 43, Co 46a.

The capture cross section at $E_n \approx 1$ Mev (fission neutrons) is 0.37 mb (Hu 53a). See also Hu 49.

Resonances in the Al²⁸ yield have been found by a boron absorption method at $E_n = 60$ ev with an effective level width of 12 ev (Co 48a) and at $E_n = 9.1$ kev (Li 47). See also Gr 43.

With $\operatorname{Li}(p,n)$ neutrons a strong resonance in the Al²⁸ yield is found at 40 kev and many more partly unresolved resonances between 100 and 550 kev (He 50). Several of those capture resonances notably those at $E_n=40$, 215, and 370 kev coincide with resonances found in the total cross section. See also Si 41, Al 48d, Be 49a.

Twenty-nine γ rays resulting from the capture of thermal neutrons in aluminum have been found by pair spectrometer (Ki 51, Ki 53d). They are collected in Table XXIV. The strong γ -ray A represents the groundstate transition. The great intensity of this line is a notable exception to the rule that only E1 ground-state transitions are intense (Ki 52b). It is impossible to fit the other lines uniquely into the complicated Al²⁸ level scheme. Lines C, F, G, I', J, L, and all lower energy lines could be transitions from the capturing state to known Al²⁸ levels. Lines B, B', D, E, F', G', H, K, and L cannot be explained in this way, but have to be transitions from level to ground or from level to level.

From 14 Mev neutrons on aluminum a continuous spectrum of γ rays up to $E_{\gamma} \approx 10$ Mev is found by scintillation spectrometer with weak maxima at $E_{\gamma} = 1.7$, 4.5, and 5.4 Mev (Sc 53b). These γ rays may result from

TABLE XXIV. Gamma rays from thermal neutron capture in aluminum (Ki 51, Ki 53d).

γ ray	Energy (Mev)	Intensity in photons per 100 captures	γ ray	Energy (Mev)	Intensity in photons per 100 captures
A	7.724 ± 0.006	35	L	5.21 ± 0.02	3
В	7.34 ± 0.04	0.7	M	4.94 ± 0.05	1.4
B'	6.98 ± 0.04	0.7	N	4.79 ± 0.02	9
С	6.77 ± 0.02	1.4	N'	4.66 ± 0.05	7
D	6.61 ± 0.03	0.4	$N^{\prime\prime}$	4.45 ± 0.02	3
E	6.50 ± 0.03	0.4	0	4.29 ± 0.02	8
F	6.33 ± 0.02	2	P_{\perp}	4.16 ± 0.02	6
F'	6.22 ± 0.03	0.7	P'	4.06 ± 0.04	3
G	6.13 ± 0.02	2	0	3.88 ± 0.02	8
\bar{G}'	6.01 ± 0.05	0.7	Q R	3.62 ± 0.02	6
Ĥ	5.89 ± 0.04	1.0	S	3.46 ± 0.02	4
Ī	5.78 ± 0.03	1.4	T	3.29 ± 0.02	5
Ī′	5.60 ± 0.02	3	\tilde{v}	3.02 ± 0.05	15
Ĵ	5.41 ± 0.03	3	\tilde{V}	2.84 ± 0.03	13
ĸ	5.32 ± 0.03	1.0	•	2.0 2.22 0100	

inelastic scattering, capture or other neutron-induced reactions.

See also Fl 36, Ha 50b, Ha 51a, Ya 52.

V.
$$Al^{27}(n,n)Al^{27}$$
 $E_b = 7.722$

Measurements of the aluminum total cross section have been surveyed by Adair (Ad 50).

The cross section is 1.38 ± 0.01 b from $E_n=2$ to 5000 ev (Me 52). Some ten partly unresolved resonances were found with Li(p,n) neutrons in the $E_n=10-800$ kev region and resonances at $E_n=2.4$ and 2.9 Mev with D(d,n) neutrons (Ad 50).

Recent measurements of the transmission of D(d,n) neutrons through aluminum at 30–50 kev resolution indicate resonances at E_n =1.90, 1.95, 2.015, 2.095, 2.17, 2.23, 2.29, 2.34, 2.40, 2.51, 2.57, 2.65, 2.80, 2.90, 3.00, 3.12, 3.37, and 3.57 Mev (Me 53). Measurements of the total cross section up to E_n =6 Mev have been performed with N¹⁴(d,n) neutrons (St 51d), and with pile neutrons of E_n =3–12 Mev (Ne 53). At E_n =14 Mev the cross section is 1.73±0.03 b (Co 52a) or 1.86±0.07 b (Ag 53), while 1.84±0.06 b is found at E_n =19 Mev (Da 53b).

The angular distribution of elastically scattered neutrons has been measured at $E_n=3.7$ Mev. The total cross section at $E_n=3.7$ is 2.55 b (Wh 53).

VI. $Al^{27}(d,p)Al^{28}$ $Q_m = 5.496$

Fifty proton groups from this reaction have been found by high-resolution magnetic analysis ($\vartheta = 90^{\circ}$) at deuteron energies up to 2.1 Mev (En 52c, En 53a). The Q values and corresponding Al²⁸ levels are collected in Table XXV. Proton groups have been designated by a capital with an index. The index 1 corresponds to the most intense component of a close doublet or triplet, the index 2 to the next most intense and so on. The first excited state is at 31.2 ± 0.5 kev (En 51, En 53a). The errors associated with the excitation energies of the other levels increase gradually from 4 kev for the levels B_1 and B_2 to 8 kev for the highest levels. The error in the ground-state Q value is 8 kev. For smaller Q values the error decreases to about 3 to 4 kev for Q < 2.5 Mev. See also St 51.

Older work at much lower resolution has not yielded more Al²⁸ levels below 6.3 Mev than those given in Table XXV (La 34, La 35a, Mc 35, Sc 40, Al 46, Al 48, Ne 49a, Ne 50b, Po 49, Wh 50, Ke 51). Above 6.4 Mev levels are reported at 6.9 ± 0.2 , 7.4 ± 0.2 , and 8.5 ± 0.2 Mev (Ke 51), but it is probable that many more levels exist in this region.

The existence of the first excited state at 31 kev has been confirmed by observation of a 31.4 ± 1.0 kev γ ray following the Al²⁷(d,p)Al²⁸ reaction at $E_d=0.7$ Mev both by proportional counter and by scintillation spectrometer. No internal conversion electrons from this γ ray were observed: $\alpha_K < 2$ (Sm 51a). See also Al 49b.

TABLE XXV. Al²⁷(d,p)Al²⁸ Q values and energy levels in Al²⁸ (En 52c, En 53a).

Group	Q value (Mev)	Excitation energy (Mev)	Group	Q value (Mev)	Excitation energy (Mev)
A_1	5.494		L_2	1.383	4.111
A_2	5.463	0.031	$\tilde{M_1}$	1.256	4.238
$\bar{B_2}$	4.521	0.973	M_2	1.186	4.308
B_1	4.481	1.013	N_1	1.036	4.458
C^{-}	4.128	1.366	N_2	0.982	4.512
D	3.873	1.621	O_1	0.808	4.686
E_1	3.359	2.135	O_2	0.758	4.736
E_3	3.298	2.196	P_1	0.735	4.759
E_2	3.228	2.266	P_3	0.656	4.838
F_2	3.012	2.482	P_2	0.596	4.898
F_3	2.917	2.577	Q_1	0.506	4.988
F_1	2.843	2.651	\check{Q}_2	0.486	5.008
G_1	2.513	2.981	Ř1	0.366	5.128
G_2	2.487	3.007	R_2	0.337	5.157
H_1	2.202	3.292	R_3	0.324	5.170
H_2	2.152	3.342	R_4	0.312	5.182
I_2	2.034	3.460	S_2	0.124	5.370
I_3	1.961	3.533	S_1	0.060	5.434
I_1	1.907	3.587	T_2	-0.241	5.735
J_2	1.828	3.666	T_4	-0.261	5.755
J_1	1.796	3.698	T_1	-0.298	5.792
K_1	1.621	3.873	T_3	-0.361	5.855
K_2	1.595	3.899	$U^{'}$	-0.519	6.013
K_3	1.563	3.931	V	-0.696	6.190
L_1	1.464	4.030	W	-0.813	6.307

Proton angular distributions have been determined at several deuteron energies and at relatively lowenergy resolution (Ne 49b, Ho 50, Go 51, Ho 53b), but no definite spin and parity assignments can be made in view of the great complexity of the Al²⁸ levels. The ground-state doublet contains at least one $l_n=0$ component and the angular distribution of the proton group to the doublet around $E_x=1.0$ Mev is represented by a mixture of $l_n=0$ and $l_n=2$ (Ho 53b). The $l_n=0$ assignment to the ground-state doublet has been confirmed (Bl 53).

The excitation curve for the production of the Al^{28} activity has been measured from 1 to 6 Mev (Ri 47).

VII. $Si^{28}(n,p)Al^{28}$ $Q_m = -3.868$

Radioactive Al²⁸ is produced by fast neutrons on silicon (Bj 34, Me 34a, Cu 34c, Am 35, Na 36a, Bl 47). The cross section is 45 ± 5 mb for Be(d,n) neutrons ($E_d=15$ Mev) (Co 51) and 220 ±50 mb for 14.5 Mev neutrons (Pa 53).

VIII. Si²⁹(γ ,p)Al²⁸ $Q_m = -12.341$

Radioactive Al^{28} is found from this reaction (Ba 46, Hi 47).

IX. $Si^{30}(d,\alpha)Al^{28}$ $Q_m = 3.107$

A ground-state Q value of 3.120 ± 0.010 Mev has been measured for this reaction with enriched targets and magnetic analysis at $E_d=1.8$ Mev (St 51). An α -particle group leading to the 31 kev level in Al²³ has also been observed at several deuteron energies up to $E_d=2.0$ Mev, but with insufficient resolution to determine the corresponding excitation energy (En 53a).

X. $P^{81}(n,\alpha)Al^{28}$ $Q_m = -1.957$

Radioactive Al²⁸ is produced by fast neutrons on phosphorus (Bj 34, Cu 34c, Am 35). The cross section at $E_n = 14.5$ Mev is 146 ± 30 mb (Pa 53).

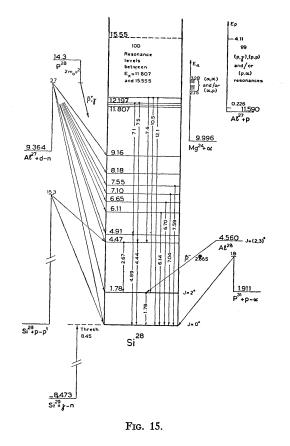
GENERAL REMARKS

The Al²⁸ ground-state doublet could well consist of the $J=2^+$ and 3^+ states corresponding to the $(d_{\frac{1}{2}}$ proton, $s_{\frac{1}{2}}$ neutron) configuration predicted by the shell model. The differential cross sections of the Al²⁷(d,p)Al²⁸ reaction would thus be identical $(l_n=0)$ for the two components leading to the ground-state doublet, apart from a factor $(2J_f+1)$. The experimental yield ratio (intensity of excited-state protons over that of groundstate protons) at $\vartheta=90^\circ$ and $E_d=2.0$ and 2.1 Mev is 0.70 (maybe somewhat lower at lower deuteron energies and 0.55 at $E_d=5.16$ Mev (Bu 53b)). This agrees well with the predicted ratio of 0.71 for a ground-state spin $J=3^+$ and an excited-state spin $J=2^+$ (En 53a).

From the Mg²⁸(β^{-})Al²⁸ data the spin of the 1.366 Mev level in Al²⁸ can be restricted to $J=0^{+}$ or 1⁺, and the spin of the 0.973 Mev level to J=1 or 2.

For a theoretical discussion regarding doublet levels in Al^{28} see In 53.

Si^{28}


Mass defect: -13.253 Mev

I.
$$Mg^{24}(\alpha, p)Al^{27}$$
 $E_b = 9.996$ $Q_m = -1.594$

In experiments with thin separated Mg²⁴F₂ targets and magnetic analysis of the protons resonances are observed at E_{α} =2.755, 2.931, 2.955, 3.002, 3.137, 3.203, 3.280 Mev (center-of-mass system). The same levels have been found in the inverse reaction Al²⁷(p,α)Mg²⁴, when a Q value of 1.613±0.010 Mev is taken. Also the intensities of the corresponding peaks are in good agreement, as suggested by the principle of detailed balancing. A weak resonance has been found at E_{α} =2.84 Mev without corresponding resonance in the (p,α) reaction (Ka 52). See also Du 34, El 36. See Al²⁷ for Q values.

II. $Mg^{24}(\alpha, \alpha)Mg^{24}$ $E_b = 9.996$

In the same investigation as quoted for the $Mg^{24}(\alpha,p)A^{127}$ reaction (Ka 52) resonances in the yield of elastically scattered α particles are observed, again in good agreement with many resonances in the $Al^{27}(p,\alpha)Mg^{24}$ and $Al^{27}(p,p)Al^{27}$ reactions. Partial-wave analysis yields the following spins and parities for the compound nucleus: $J=0^+$ for the resonances at $E_{\alpha}=2.83$ and 3.00 Mev and $J=2^+$ for the resonances at $E_{\alpha}=2.93$ Mev. The S-wave α -scattering resonance at $E_p=3.07$ Mev corresponds to a S-wave proton scattering resonance at $E_p=1.45$ Mev. No single J value of the compound nucleus can explain this behavior. No (α, p) nor (p, α) transitions are observed at $E_{\alpha}=3.07$

Mev. The anomaly near $E_{\alpha}=3.25$ Mev is probably caused by two overlapping levels in Si²⁸ (Ka 52).

III. $Mg^{25}(\alpha, n)Si^{28}Q_m = 2.672$

Gamma rays observed from the bombardment of magnesium with Po α particles belong possibly to this reaction (Sz 48). See also Ha 49a.

IV. $Al^{27}(p,\gamma)Si^{28}$ $Q_m = 11.590$

Numerous resonances have been observed in this reaction by different authors, and these are summarized in Table XXVI. The six lowest resonances are most accurately measured by Hunt and Jones (Hu 53) in good agreement with earlier measurements, notably those of Tangen (Ta 46), who also measured the relative intensities of these resonances.

Broström *et al.* (Br 47a) measured 29 resonances between 600 and 1380 kev with a precision of 0.2 percent, all with a width of ≤ 1 kev; their relative intensities are given in Table XXVI. Fourteen of the resonances in this region are in good agreement with those found by Plain *et al.* (Pl 40). Moreover the latter authors found 17 resonances in the region 1.4 to 2.6 Mev. The yields of the (p,α) and (p,γ) resonances between 500 and 750 kev have also been measured by Rutherglen and Smith (Ru 53a). The region above 1.4 Mev has also been very thoroughly investigated by Shoemaker

120

TABLE XXVI. Energies and relative intensities of resonances in Al+p. For authors see text.

E_p in kev	Relative intensity	Second- ary particle	E_p kev	Secondary particle	E_p	Secondary particle
226.3 ± 1.5	0.005	γ	1393	γþ	2820	α
294.1 ± 0.5	0.015	Ŷ	1445	ά	2849	ά
325.6 ± 0.4	0.080	γ	1461	þ	2869	p
404.7 ± 0.4	0.30	γ	1508	Þ	2880	pα
438.5 ± 0.5	0.050	Ŷ	1523	γp	2999	þ
504.0 ± 0.6	2.0	γα	1583	΄ p α	3020	γρα
609	0.4	γ^{α}	1593	γ^{pa}	3045	γα
630	8.2	γα	1670	γp	3070	γ
652	3.3	γ^{α}	1688	γ	3080	γα
677	1.3	γ	1708	' p	3106	γ α
728	3.0	γα	1729	γρα	3185	γp
733	4.2	γ^{α}	1753	γp	3265	ά
738	0.7	γ	1806	γp	3400	γα
757	3.8	γ	1910	γα	3467	γ^{α}
764	4.5	γ	1973	γp	3531	γ
771	11.5	Ŷ	2039	γρα	3552	γ
880	0.5	γ	2051	γp	3566	γp
918	4.1	γ	2112	γÞ	3599	ά
932	3.9	γ	2132	γρα	3623	γρα
986	47.0	γ	2161	γρα	3662	γ
994	2.0	γ	2175	γα	3705	γ
1018	7.2	γ	2184	γ "	3820	γ
1083	1.5	γ	2206	γα	3850	΄ α
1091	0.8	γ	2288	/ p ¯	3979	α
1112	13.5	γ̈́	2316	γγα	4055	γα
1165	2.4	Ŷ	2333	' p -	4100	γα
1176	6.5	γ	2365	þ	4112	γα
1192	?	γ	2377	γγα		/ u
1205	11.0	γ	2405	γ		
1255	13.0	γ	2445	γα		
1268	1.0	Ý	2480	<i>φ</i> α		
1309	14.0	Ŷ	2491	p u p		
1320	10.5	Ŷ	2536	γ		
1355	15.0	Ŷ	2559	þ		
1372	105.0	γp	2578	βα		
1379	105.0	γÞ	2607	α		
		· r				

et al. (Sh 51) both for (p,γ) , (p,p), and (p,α) resonances. They observed 64 resonances of which 42 are (p,γ) resonances. Only the values of Sh 51 (as reported by Al 50) for the region above 1.4 Mev are listed in Table XXVI. A comparison of the relative intensities (Go 53d), however, makes it probable that the resonances at 1355, 1372, and 1379 kev from Br 47a correspond to the resonances at 1370, 1385, and 1393 kev given by Sh 51, Al 50. It is not possible to decide at present which of the energy scales is the better one. See also He 37, Ge 37, and Ho 41.

An absolute determination of the value of the prominent 985-kev resonance with the Wisconsin electrostatic analyzer yields 993.3 ± 1 kev (He 49).

The shape of the 985 kev resonance has been studied in detail and is in qualitative agreement with the Breit-Wigner theory. When S scattering is assumed, the width is $\Gamma = 100$ ev (Be 49).

Gamma ray energies, measured at several resonances, are summarized in Table XXVII. The three γ rays observed in the thick target bombardment at $E_p = 750$ kev correspond to transitions to the ground state and the Si²⁸ first and second excited states (Ru 51). The gamma rays found at $E_p = 325$ and 404 kev may be accounted for by cascades through the 4.91 and 4.47 Mev levels, the latter being de-excited again by a cascade through the 1.80 Mev level (Ca 53).

The angular distribution of γ rays has been measured at the 404-, 503-, 630-, 652-, and 677-kev resonances. The ground-state γ ray is only observed at the 503-kev resonance, while at the other resonances transitions proceed predominantly to the 1.78-Mev level in Si²⁸. The following spins and parities can be assigned to the resonance levels mentioned above: 4^- , 2^+ , 3^- , 2^- , and 3^+ . The first excited state in Si²⁸ has $J=2^+$ (Gr 53). The 1370, 1385, 1393, and 1523 kev (on the Shoemaker scale) resonances are all de-excited by a transition to the first excited state in Si²⁸ (Go 53d).

V. $Al^{27}(p,n)Si^{27}$ $E_b = 11.590$ $Q_m = -5.611$

Resonances are observed at $E_p = 6.17$ and 6.37 Mev by measuring the Si²⁷ activity produced (Bl 51). See also Mc 40, Gu 51. See Si²⁷ for threshold measurements.

VI.
$$\frac{\mathrm{Al}^{27}(p,p)\mathrm{Al}^{27}}{\mathrm{Al}^{27}(p,p')\mathrm{Al}^{27}}$$
 $E_b = 11.590$

The cross section both for elastic and inelastic scattering shows many resonances which are quoted in Table XXVI (Sh 51). See also Al²⁷.

VII. $Al^{27}(p,\alpha)Mg^{24}$ $E_b = 11.590$ $Q_m = 1.594$

The resonances in this reaction found by Shoemaker *et al.* (Sh 51) are listed in Table XXVI. Alpha particles were also observed at the 503- and 630-kev resonances (Gr 53). See also Mg^{24} .

VIII. Al²⁷(d,n)Si²⁸ $Q_m = 9.364$

A study of this reaction with nuclear emulsion technique at $E_d = 3.68$ Mev reveals 10 neutron groups corresponding to levels in Si²⁸ at 1.78±0.13, 4.47±0.10, (4.91±0.21), 6.11±0.10, 6.65±0.14, (7.10±0.12),

TABLE XXVII. Energies of γ rays from Al²⁷ (p,γ) Si²⁸.

Author	Method	E_p kev	E_{γ} Mev	Relative intensity
Ta 46	absorption	325	5.4	
Ta 46	absorption	404	5.4	
Ta 46	absorption	503	9.2	
Pl 40	absorption	550	6.1	
Pl 40	absorption	700	6.5	
Pl 40	absorption	985	7.7	
Pl 40	absorption	1368	8.2	
Ru 51	pair-spectrometer (thick target)	750	12.12 ± 0.1 10.46 ± 0.07 7.62 ± 0.1	
Ca 53	scintillation spectrometer	$\left. \begin{array}{c} 325\\ 404 \end{array} \right\}$	7.46 ± 0.15 7.12 ± 0.15	(12–16)
		,	5.04 ± 0.10	(5)
			4.65 ± 0.10	• •
			2.82 ± 0.07	12
			1.81 ± 0.04	12

 (7.55 ± 0.12) , 8.18 ± 0.10 , and 9.16 ± 0.17 Mev. The ground-state Q value is 9.08 ± 0.20 Mev (Pe 49).

Gamma rays of $E_{\gamma}=1.72\pm0.08$ and $E_{\gamma}=3.0\pm0.2$ Mev are observed with a beta spectrometer connected to the cyclotron and of $E_{\gamma}=8.5\pm0.5$ with a coincidence absorber technique. They are probably due to this reaction, but might be assigned also to $Al^{27}(d,p)Al^{28}$ or $Al^{27}(d,\alpha)Mg^{25}$ (Al 49b).

The neutron angular distribution has been measured by making use of threshold detectors at deuteron energies of 7.2, 8, 15, and 20 Mev (Ro 47, Hu 51, Fa 51, Sc 51).

IX. $Al^{28}(\beta^{-})Si^{28}$ See Al^{28}

X. $Si^{28}(p, p')Si^{28}$

At 15.3 Mev inelastically scattered protons have been observed corresponding to a level at 4.6 ± 0.3 Mev in Si²⁸. Proton energy was measured by deflection in the magnetic field of the cyclotron (Fu 48).

XI.
$$Si^{29}(\gamma, n)Si^{28}$$
 $Q_m = -8.473$

The threshold is 8.45 ± 0.20 Mev (Sh 51a).

XII. $P^{28}(\beta^+)Si^{28}$ See P^{28}

XIII. $P^{31}(p,\alpha)Si^{28}$ $Q_m = 1.911$

The ground-state Q value has been measured at proton energies from 0.65 to 1.07 Mev as 1.85 ± 0.02 Mev (Fr 51) and at $E_p=1.8$ Mev as 1.909 ± 0.010 Mev (Va 52a) by magnetic analysis of the α particles. For resonances see S³².

\mathbf{P}^{28}

(not illustrated)

Adopted mass defect: 0.9 Mev (Gl 53, Br 53c)

I. $P^{28}(\beta^+)Si^{28}$ $Q_m = 14.2$

The half-life measurements are 0.280 ± 0.010 sec (Gl 53) and 0.29 ± 0.01 sec (Br 53c). The maximum positron energy is 10.6 ± 0.4 MeV, indicating β^+ transi-

TABLE XXVIII. Gamma rays in the decay of P28.

Author	Ri 53, Gl 53b	Br 53c
E_{γ} in Mev	1.79 ± 0.02	1.78 ± 0.04
	2.6 + 0.2	2.67 ± 0.08
		(3.01 ± 0.07)
		(4.26 ± 0.12)
	4.44 ± 0.05	4.63 ± 0.10
	(4.93 ± 0.08)	4.89 ± 0.09
	()	(5.16 ± 0.12)
		(5.46 ± 0.10)
	6.14 ± 0.10	()
	6.70 ± 0.12	6.65 ± 0.11
	7.04 ± 0.08	7.10 ± 0.12
	7.59 ± 0.15	(7.44 ± 0.14)
		(7.73 ± 0.14)
		(8.12 ± 0.21)

tions to the 1.78 Mev level in Si²⁸. Gamma rays observed by scintillation spectrometer are summarized in Table XXVIII. All the lines found by Richardson *et al.* (Ri 53) can be explained as transitions from known levels in Si²⁸ to the ground state but for the 2.66-Mev γ ray which is the transition from the second to the first level in Si²⁸. No delayed α 's have been observed i.e., either $E_{\alpha} < 1$ Mev or the α intensity is smaller than 10 percent of the γ intensity (Gl 53, Gl 53a, Gl 53b).

II. $Si^{28}(p,n)P^{28}$ $Q_m = -14.9$

The threshold is measured by comparison to the $Mg^{24}(p,n)Al^{24}$ threshold measured by Miss Birge (Bi 52) as $E_p = 15.6 \pm 0.5$ Mev (Gl 53) and 15.4 ± 0.5 Mev (Br 53c).

Al²⁹

(not illustrated)

Adopted mass defect: -9.6 Mev (Se 49)

I. $Al^{29}(\beta^{-})Si^{29}$ $Q_m = 3.8$

Determinations of the half-life are 6.6 ± 0.3 min (Me 37), 6.4 ± 0.1 min (He 39), and 6.56 ± 0.06 min (Se 49). See also Fa 35, Ec 35, Ec 37.

The β^- decay is complex and proceeds to the first and third excited states in Si²⁹ (at $E_x=1.28$ and 2.43 Mev), which are de-excited directly to the Si²⁹ ground state. No γ ray of 2.03 Mev corresponding to ground-state de-excitation of the second Si²⁹ level has been observed (intensity <4 percent) (Ro 53). Determinations of $\beta^$ end points, γ -ray energies, and relative intensities are collected in Table XXIX. See also Ec 37.

TABLE XXIX. Beta decay of Al²⁹.

Author	Method	E_{β_1} (Mev)	E_{γ_1} (Mev)	$E_{oldsymbol{eta}_2}$ (Mev)	E_{γ_2} (Mev)
Me 37 Be 39 Se 49 Ro 53	Al abs. cl. chamber Al abs. scint. spectr.	2.75 2.5 2.5 (70%)	1.25 ±0.2 1.28 (85%)	1.4 (30%)	2.35 ±0.5 2.43 (15%)

Both β^- transitions are evidently allowed as follows from the log *ft* values 5.2 and 4.5 (for transitions to the 1.28, *viz.*, 243-Mev level in Si²⁹).

See Si²⁹ "General Remarks" for conclusions about spins and parities.

II. $Mg^{26}(\alpha, p)Al^{29}$ $Q_m = -2.9$

Radioactive Al²⁹ has been found from this reaction (Fa 35, El 36, Me 37, Be 39, Se 49). For resonances see Si^{30} .

III. $Al^{27}(t,p)Al^{29}$ $Q_m = 8.6$

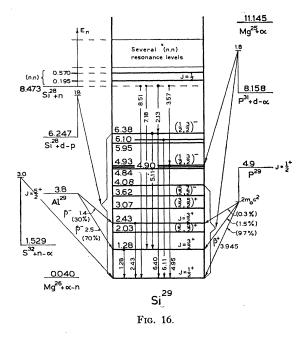
Radioactive Al²⁹ has been produced by bombarding aluminum with 6.5-Mev tritons (Po 52b), and also by bombarding LiAlD₄ with deuterons (production of tritons through the D(d,t)H reaction) (Iw 53). IV. $Si^{29}(n,p)Al^{29}$ $Q_m = -3.0$

The cross section for this reaction is 36 ± 5 mb for Be(d,n) neutrons ($E_d = 15$ Mev) (Co 51) and 101 ± 30 mb for 14.5 Mev neutrons (Pa 53). See also Po 37a.

V.
$$Si^{30}(\gamma, p)Al^{29}$$
 $Q_m = -13.6$

At $E_{\gamma}=17$ Mev the cross section is 1.5 ± 0.3 mb (Hi 47, Wa 48). See also Ba 46, Pe 48.

Si^{29}


Mass defect: -13.362 Mev

I. $Mg^{25}(\alpha, p)Al^{28}$ $E_b = 11.145$ $Q_m = -1.196$

Resonances in the yield of Al²⁸ activity have been found at E_{α} =5.4, 6.2, and 6.9 Mev (Al 35, Fa 35, Ch 37, Me 37). See also Du 34, Ha 35, Sz 44, Sz 48. See Al²⁸ for Q value measurements.

II. $Mg^{26}(\alpha, n)Si^{29}$ $Q_m = 0.040$

Neutrons have been observed from the bombardment of natural magnesium by Po α 's but they may also result from the Mg²⁵(α ,n)Si²⁸ reaction (Sa 35). See also Ha 49a.

III. $Al^{29}(\beta^{-})Si^{29}$ See Al^{29}

IV. $Si^{28}(n,\gamma)Si^{29}$ $Q_m = 8.473$

The thermal neutron capture cross section for isotopic Si²⁸ is 81 ± 24 mb (Po 52a). For natural silicon values are found of 160 ± 10 mb (Co 50), 160 ± 8 mb (Ha 50) and 100 ± 20 mb (Po 51). See also Vo 43.

Energies and intensities of γ rays resulting from the capture of thermal neutrons in natural silicon have

TABLE XXX. Gamma rays from thermal neutron capture in natural silicon (Ki 51, Ki 53d).

γ ray	Energy in Mev	Intensity in photons per 100 captures
A'	10.599 ± 0.011	0.4
В	8.467 ± 0.008	4
C	7.79 ± 0.05	1
D	7.36 ± 0.08	2
E	7.18 ± 0.03	9
E'	6.88 ± 0.03	0.7
F	6.76 ± 0.04	4
G	6.40 ± 0.03	19
H	6.11 ± 0.05	4
I'	5.70 ± 0.04	2
Ι	5.52 ± 0.05	2
J	5.11 ± 0.04	9
K	4.933 ± 0.005	112
K'	4.60 ± 0.08	4
\overline{L}	4.20 ± 0.03	19
M	3.540 ± 0.006	94
\tilde{N}	2.69 ± 0.05	65

been determined by pair spectrometer (Ki 51, Ki 53d). They are collected in Table XXX. A recalculation of the intensities of some lines in photons per capture in Si²⁸ is given in (Ki 53e). Line A' certainly results from capture in Si²⁹ and represents the transition to the Si³⁰ ground state. Lines B, E, G, H, K, and M probably correspond to capture in Si²⁸. Lines B, E, and M check with the ground-state transition and transitions to the levels at 1.28 and 4.93 Mev in Si²⁹ and lines K, H, and G with the de-excitation to the ground state of levels at 4.93, 6.10, and 6.38 Mev. None of the other γ rays can be identified with any certainty.

Gamma rays of 2.13 and 2.65 Mev from the capture of thermal neutrons in natural silicon have been found by scintillation spectrometer (Br 53b). The first represents the transition from the capturing state to the 6.38 Mev level, which level is de-excited by line G to the ground state and by line J to the first excited state. These three lines as well as the predominant K, M cascade are all E1 transitions (Ki 53e).

V. $Si^{28}(n,n)Si^{28}$ $E_b = 8.473$

Data on the silicon total cross section as a function of neutron energy have been reviewed by Adair (Ad 50). The cross section is constant (~2.1 b) below $E_n=200$ ev. Sharp resonances have been found with Li(p,n)neutrons at 195 kev $(J=\frac{1}{2})$ and at 570 kev $(J>\frac{1}{2})$ (Fi 51). Several sharp and several broad resonances exist in the region $E_n=0.8-2.0$ Mev (Fr 50).

From recent measurements of the silicon total cross section with D(d,n) neutrons at 30-50 kev resolution resonances are reported at (≤ 1.84), 1.93, 1.97, 2.11, 2.18, 2.23, 2.30, 2.38, 2.50, 2.57, 2.62, 2.86, 3.05, 3.12, 3.41, and (3.7) Mev (Me 53). With pile neutrons ($E_n=3-12$ Mev) broad maxima are found at 4.8 and 6.0 Mev (Ne 53). At 14 Mev the cross section is 1.83 ± 0.04 b (Co 52a), while 1.94 ± 0.06 b is found at 19 Mev (Da 53b).

TABLE XXXI. $Si^{28}(d,p)Si^{29}Q$ values and levels in Si^{29} .

Author	Va S	Mo 50	
Group	$\mathrm{Si}^{28}(d,p)\mathrm{Si}^{29}\ Q$ value in Mev	Si ²⁹ level in Mev	Si ²⁹ level in Mev
(0)	6.246 ± 0.010	0	0
(1)	4.968 ± 0.008	1.278 ± 0.007	1.29 ± 0.04
(2)	4.219 ± 0.006	2.027 ± 0.007	2.06 ± 0.04
(3)	3.820 ± 0.006	2.426 ± 0.007	2.43 ± 0.04
(4)	3.176 ± 0.006	3.070 ± 0.007	3.08 ± 0.05
(5)	2.623 ± 0.005	3.623 ± 0.007	3.60 ± 0.05
(6)	2.168 ± 0.005	4.078 ± 0.008	4.09 ± 0.06
(7)	1.406 ± 0.004	4.840 ± 0.008	4.87 ± 0.10
(8)	1.349 ± 0.004	4.897 ± 0.008	
(9)	1.312 ± 0.004	4.934 ± 0.008	
(10)	0.300 ± 0.004	5.946 ± 0.009	
(11)	0.141 ± 0.004	6.105 ± 0.009	
(12)	-0.134 ± 0.004	6.380 ± 0.009	

VI. $Si^{28}(d,p)Si^{29}$ $Q_m = 6.247$

Twelve proton groups (see Table XXXI) have been found from this reaction by high-resolution magnetic analysis ($\vartheta = 90^{\circ}$) at deuteron energies up to 2.1 Mev (En 51a, Va 52c). Natural silicon targets were used but proton groups due to Si²⁹ or Si³⁰ could be eliminated by comparison with results obtained from targets enriched in these isotopes. Table XXXI also contains Si²⁹ levels obtained by Al absorption at $E_d = 3.7$ Mev (Mo 50). There is excellent agreement while also the levels given in Table XXXI agree very well with those found from the P³¹(d,α)Si²⁹ reaction (see Table XXXII). See also Po 41, Al 48, Ne 49a, Ne 50b, St 51.

At E_d =3.7 Mev a γ ray of 6.2 \pm 0.3 Mev is found by an absorption method (Al 49b).

Angular distributions of the most prominent proton groups have been measured at $E_d = 8.2$ Mev. By Butler analysis the orbital angular momentum l_n of the captured neutron has been determined. The groundstate transition corresponds to $l_n = 0$ which fixes the Si²⁹ ground-state spin and parity as $J = \frac{1}{2}^{+}$. The levels at 4.93 and 6.38 Mev are reached by $l_n=1$ $(J=\frac{1}{2})$ or $\frac{3}{2}$), the levels at 1.28, 2.03, and 3.07 Mev by $l_n = 2$ $(J=\frac{3}{2}^{+} \text{ or } 5/2^{+})$, the level at 3.62 MeV by $l_{n}=3$ $(J=5/2^{-} \text{ or } 7/2^{-})$ while the transition to the level at 2.43 Mev has an isotropic angular distribution. Shell model assignments are discussed on the basis of l_n values and measured neutron capture probabilities (Ho 53a, Ho 53d). The l_n assignments to the ground state and first excited state transitions are confirmed at $E_d = 14.3 \text{ Mev} (Bl 53).$

TABLE XXXII. $P^{31}(d,\alpha)Si^{29}$ reaction (En 51a, Va 52a).

Group	Q value (Mev)	Si ²⁹ level (Mev)
A	8.158 ± 0.011	0
В	6.885 ± 0.020	1.274 ± 0.010
С	6.126 ± 0.020	2.032 ± 0.014
D	5.727 ± 0.020	2.431 ± 0.015
E_{-}	5.086 ± 0.020	3.072 ± 0.016
F	4.539 ± 0.020	3.619 ± 0.017
G	4.080 ± 0.020	4.078 ± 0.018
H	3.221 ± 0.020	4.937 ± 0.020

VII. $P^{29}(\beta^+)Si^{29}$ See P^{29}

VIII. $P^{31}(d,\alpha)Si^{29}$ $Q_m = 8.158$

Eight α -particle groups (see Table XXXII) have been found by high-resolution magnetic analysis $(\vartheta=0^{\circ})$ at $E_d=1.8$ Mev (En 51a). The ground-state Q value given as 8.170 ± 0.020 Mev has later been remeasured as 8.158 ± 0.011 Mev (Va 52a). The excitation energies of Si²⁹ levels given in Table XXXII have been corrected by this 12 kev.

In the bombardment of phosphorus with 3.7-Mev deuterons a γ ray of 6.2 ± 0.3 Mev is observed by an absorption method, which might also belong to the (d,n) or (d,p) reaction (Al 49b).

IX. $P^{31}(\gamma, np)Si^{29}$ $Q_m = -17.901$

The yield curve of this reaction has been obtained by subtracting the (γ, n) yield, measured by the P³⁰ activity, from the photoneutron yield, measured with BF₃ chambers in paraffin. The integrated cross section is 47 Mev mb (Ha 52a) and 34 Mev mb (Mo 53a).

X. $S^{32}(n,\alpha)Si^{29}$ $Q_m = 1.529$

A ground-state Q value of 1.16 ± 0.15 Mev has been measured at $E_n=3.0$ Mev by pulse-height analysis in an SO₂ gas-filled ionization chamber (St 48). The cross section at $E_n=2.8$ Mev is 65 mb (Hu 41a). See also Wi 37.

For resonances see S³³.

GENERAL REMARKS

Spins and parities of the Al²⁹ ground-state $(J=5/2^+)$, of the P²⁹ ground-state $(J=\frac{1}{2}^+)$ and of the 1.28 and 2.43 Mev levels in Si²⁹ (both $J=\frac{3}{2}^+$) are uniquely determined through consideration of the ft values observed in the β decay of Al²⁹ and P²⁹.

For a theoretical discussion regarding triple levels in Si^{29} see In 53.

\mathbf{P}^{29}

(not illustrated)

Adopted mass defect: -8.395 Mev (Ro 53a)

I. $P^{29}(\beta^+)Si^{29}$ $Q_m = 4.967$

The half-life is determined as 4.6 ± 0.2 sec (Wh 41) and 4.45 ± 0.05 sec (Ro 53).

The β^+ decay goes predominantly to the Si²⁹ ground state. The β^+ end point is determined by means of a cloud chamber as 3.63 ± 0.07 Mev (Wh 41), with a scintillation counter as 3.9 ± 0.2 Mev (Na 53) and with a magnetic spectrometer as 3.945 ± 0.010 Mev (Ro 53a). Gamma rays of 1.28 and 2.43 Mev in coincidence with positrons have been observed indicating weak β^+ transitions to the 1.28 Mev (1.5 percent) and 2.43 Mev (0.3 percent) levels in Si²⁹. The ground-state β^+ transition is super-allowed (log ft=3.7) and the transitions to the 1.28 and 2.43 Mev levels are allowed (log ft=4.7and 4.4). No β^+ transition to the 2.04 Mev Si²⁹ level and no γ cascades between levels were found (Ro 53, Ro 53a). See Si²⁹ "General Remarks" for conclusions about spins and parities.

II. $Si^{28}(p,\gamma)P^{29}$ $Q_m = 2.724$

Not observed (see Ta 46).

III. $Si^{28}(d,n)P^{29}$ $Q_m = 0.498$

A ground-state Q value of 0.29 ± 0.04 Mev has been reported from bombardment of enriched silicon targets at $E_d = 1.4$ Mev and detection of neutrons by nuclear emulsions (Ma 52). From the bombardment of a natural silicon target at $E_d = 3.7$ Mev and neutron detection by nuclear emulsions a Q value is found of -0.80 ± 0.10 Mev. The corresponding neutron group was 25 times more intense than any other group from the same bombardment (Pe 48a). It is not impossible that this group results from C¹² contamination on the target. The next most intense group yields a Q value of 0.71 ± 0.13 Mev. See also Hu 51.

IV. $Si^{29}(p,n)P^{29}$ $Q_m = -5.749$

Radioactive P^{29} has been found from this reaction (Wh 41).

V. $S^{32}(p,\alpha)P^{29}$ $Q_m = -4.220$

Not observed.

Si³⁰

Mass defect: -15.609 Mev

I. $Mg^{26}(\alpha, p)Al^{29}$ $E_b = 10.651$ $Q_m = -2.9$

With RaC' α particles on natural Mg targets resonances in the Al²⁹ yield have been observed at $E_{\alpha} = 5.3$ and 6.0 Mev (Me 37).

II. Al²⁷(α, p)Si³⁰ $Q_m = 2.389$

This reaction has been extensively investigated with natural radioactive α -particle sources. Four proton groups are reported. There is general agreement about the Q values which are: 2.3, 0.0, -1.3, and -2.6 Mev corresponding to levels in Si²⁹ at 2.4, 3.7, and 5.0 Mev (Ch 32, St 32, Ha 33, Du 34, Ha 34, Po 35, Me 40a, Me 40, Sl 51, Sl 51a). Angular distributions have been measured (Po α particles, nuclear emulsions) of the two proton groups with highest Q values at the E_{α} =4.0- and 4.44-Mev resonances (Ro 51). More proton groups have been observed at E_{α} =22 Mev with Q values determined by Al absorption of -3.22, -4.96, -5.98, -7.04, -7.65, and -8.64 Mev corresponding to Si²⁹ levels at 5.61, 7.35, 8.37, 9.43, 10.04, and 11.03 Mev (Br 49). See also Po 29, Po 30, Ch 31, Di 32, Me 34, Ka 37.

Energies of γ rays in coincidence with selected proton groups at $E_{\alpha} = 7.8$ Mev have been measured by scintil-

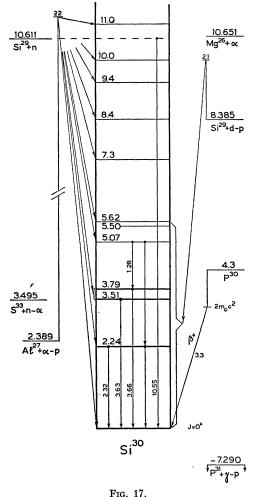


FIG. 17.

lation spectrometer (Al 51, see also La 51, Be 48a). From the first and second (doublet) excited state transitions to the ground state are observed with γ -ray energies of 2.32 ± 0.05 and 3.63 ± 0.15 Mev. The 5.07-Mev level is de-excited either through the second level with γ rays of 1.28 ± 0.06 and 3.55 ± 0.15 Mev or through the first level (less than 15 percent). See also Al 48a, Sz 40. For resonances see P³¹.

III. $Si^{29}(n,\gamma)Si^{30}$ $Q_m = 10.611$

The thermal neutron capture cross section of isotopic Si^{29} is 0.27 ± 0.08 b (Po 52a).

The energy of the γ ray corresponding to the groundstate transition after capture of thermal neutrons in Si²⁹ has been measured by pair spectrometer as 10.599 ± 0.011 Mev (see Table XXX). The transition energy is obtained by adding to E_{γ} 2 kev, the nuclear recoil energy (Ki 53d).

IV. $Si^{29}(d,p)Si^{30}$ $Q_m = 8.383$

Several proton groups from enriched Si²⁹ targets have been found by high-resolution magnetic analysis

Q value (Va 52c) in Mev	Si ³⁰ level (Va 52c) in Mev	Si ³⁰ level (Mo 50 in Mev
8.388 ± 0.013	0	0
6.149 ± 0.015	2.239 ± 0.020	(2.4 ± 0.2)
4.873 ± 0.009	3.515 ± 0.016	· · · ·
4.602 ± 0.015	3.786 ± 0.020	3.91 ± 0.15
	(5.075 ± 0.015)	5.00 ± 0.15
	(5.497 ± 0.015)	
	(5.622 ± 0.015)	5.7 ± 0.2

TABLE XXXIII. $Si^{29}(d,p)Si^{30}$ reaction.

 $(\vartheta = 90^{\circ})$ at deuteron energies up to 2.1 Mev (Va 52c). *Q* values and corresponding Si³⁰ levels are given in Table XXXIII together with Si³⁰ levels obtained by Al absorption at $E_d = 3.7$ Mev from enriched targets (Mo 50). See also Po 41, Va 52a.

V. $P^{30}(\beta^+)Si^{30}$ See P^{30}

VI. $P^{31}(\gamma, p)Si^{30}$ $Q_m = -7.290$

Not observed.

VII. $S^{33}(n,\alpha)Si^{30}$ $Q_m = 3.495$

Not observed.

\mathbf{P}^{30}

Adopted mass defect: -11.3 Mev

(The mass defect has been computed from reactions I, II, V, VII, and IX and the weighted average has been taken.)

I. $P^{30}(\beta^+)Si^{30}$ $Q_m = 4.3$

Accurate measurements of the half-life scatter appreciably, possibly because of the presence of an unknown amount of Al²⁸ (2.3 min). They are 3.25 ± 0.05 min (Al 35), 2.55 ± 0.05 min (Ri 37), 3.15 ± 0.05 min (Sh 37) and 2.18 ± 0.025 min (Ci 38). Other reported values with larger errors range from 2.3 min to 3.2 min (El 34, Fa 35a, Sa 36, Bo 37a, Me 37, Co 40, St 53b). See also Cu 34, Ba 40, Ta 46.

The β^+ -spectrum end point has been determined by spectrometer as 2.8 Mev (El 34), 3.75 ± 0.19 Mev (Al 35), and 3.5 ± 0.3 Mev (Ma 41); by cloud chamber as 3 Mev (Cu 34) and 3.0 ± 0.1 Mev (Ba 40); and by absorption as 2.9 ± 0.1 Mev (El 35), 2.56 Mev (Sh 37), 2.6 Mev (Me 37), and 3.4 ± 0.5 Mev (Fr 34, Bl 46c). See also Cu 34a.

There is no evidence for γ rays (El 35, St 53b).

The log ft value is 5.0 if the β^+ end point is taken as 3.3 Mev and the half-life as 3.2 min.

See St 53b, St 53c and Mo 53b for isotopic spin assignments in P^{30} .

II. Al²⁷(α , *n*)P³⁰ $Q_m = -2.7$

From bombardments of thick aluminum targets at $E_{\alpha} = 7.6$ Mev and detection of neutrons by nuclear

emulsion technique a ground-state Q value of -2.93 ± 0.17 Mev has been reported and a level in P³⁰ at 1.02 ± 0.12 Mev (Pe 48a). See also Cu 33, Cu 34, Cu 34b, Fr 34, Me 34, Sa 34, Sa 35, Me 37, Ri 37. See P³¹ for resonances.

III. $Si^{28}(He^3, p)P^{30}$ $Q_m = 6.3$

Radioactive P^{30} has been found from this reaction (Al 39, Po 52b, Po 53).

IV. $Si^{29}(p,\gamma)P^{30}$ $Q_m = 5.5$

Sharp resonances in the γ ray and P³⁰ activity yield have been found at $E_p = 326$ and 414 kev. The mean γ -ray energy is measured by Al absorption as 5.2 ± 0.7 Mev (Ta 46). See also Ho 41.

V. $Si^{29}(d,n)P^{30}$ $Q_m = 3.3$

By nuclear emulsion technique a ground-state Q value of 3.27 ± 0.04 Mev and levels at 0.75 ± 0.06 , 1.46 ± 0.06 , and 2.00 ± 0.06 Mev have been determined by bombarding enriched silicon targets at $E_d=1.4$ Mev (Ma 52), and a ground-state Q value of 3.38 ± 0.17 Mev and a level at 1.27 ± 0.48 Mev by bombarding natural silicon targets at $E_d=3.7$ Mev (Pe 48a).

VI. $Si^{30}(p,n)P^{30}$ $Q_m = -5.1$

Radioactive P³⁰ has been found from this reaction (Ba 39).

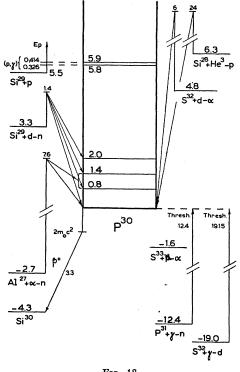


Fig. 18.

VII. $P^{31}(\gamma, n)P^{30}$ $Q_m = -12.4$

The threshold is measured as 12.35 ± 0.2 Mev (Mo 49), 12.4 ± 0.2 Mev (Ka 51a), and 12.05 ± 0.20 Mev (Sh 51a). The cross section has a maximum of 16.7 mb at 19.5 Mev with a half-width of 6.5 Mev and an integrated cross section of 129 Mev mb (Ka 51c) or 99 Mev mb (Ha 52e), as measured by the residual activity. Values found by measuring the neutron intensity with a BF₃ chamber are a maximum cross section of 29 mb at 20.5 Mev, a half-width of 5.7 mb, and an integraded cross section of 140-Mev mb (Mo 53a).

See also Bo 39, Ba 46, Pe 48, Ca 51.

VIII.
$$P^{31}(n,2n)P^{30}$$
 $Q_m = -12.4$

Radioactive P³⁰ has been found from this reaction (Po 37a). The cross section for Be(d,n) neutrons ($E_d=15$ Mev) is 14.4 \pm 1.5 mb (Co 51).

IX.
$$S^{32}(\gamma, d) P^{30}$$
 $Q_m = -19.0$

The threshold is found at 19.15 ± 0.20 Mev (Ka 51a). The cross section shows a maximum of 1.8 mb at 23.6 Mev with a half-width of 2.1 Mev and an integrated cross section of 3.9 Mev mb (Ka 51c).

X. $S^{32}(n,t)P^{30}$ $Q_m = -12.7$

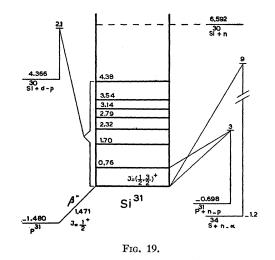
Radioactive P^{30} has been found from this reaction at $E_n = 24$ Mev but not at 13 Mev (Co 40).

XI. $S^{32}(d,\alpha)P^{30}$ $Q_m = 4.8$

Radioactive P^{30} has been found from this reaction (Sa 36, Ho 40b).

XII. $S^{33}(p,\alpha)P^{30}$ $Q_m = -1.6$

Not observed.


Si³¹

Mass defect: -13.837 Mev

I. $Si^{31}(\beta^{-})P^{31}$ $Q_m = 1.480$

Accurate determinations of the half-life yield: 157.3 \pm 0.5 min (Vr 52), 157.1 \pm 0.7 min (We 51), 155.5 \pm 1 min (Lu 50), 159 \pm 1 min (Mo 52a), and 157.1 \pm 1.3 min (Ci 38). See also Cu 34c, Ne 37, Wa 37, Al 40, Ru 52b.

	$Si^{30}(d,p)Si^{31}$ Q value in Mev	Si ³¹ level in Mev		
Group	Va 52c	Va 52c	Mo 50	
(0)	4.364 ± 0.007	0	0	
(1)	3.607 ± 0.006	0.757 ± 0.007	0.73 ± 0.15	
• •	•••	•••	1.23 ± 0.15	
(2)	2.665 ± 0.006	1.699 ± 0.007	1.73 ± 0.15	
(3)	2.045 ± 0.005	2.319 ± 0.008	2.33 ± 0.15	
(4)	1.573 ± 0.005	2.791 ± 0.008	•••	
(5)	1.224 ± 0.005	3.140 ± 0.008		
(6)	0.825 ± 0.004	3.539 ± 0.008	•••	
(7)	-0.020 ± 0.004	4.384 ± 0.008	•••	

The β^- spectrum is simple and has the allowed shape. The end point has been measured by lens spectrometer as: 1.471 ± 0.008 Mev (Mo 52a) and 1.486 ± 0.012 Mev (Wa 52, Wa 53a). The log *ft* value is 5.5. Recently γ rays have been detected by scintillation spectrometer. Their energy is 1.26 Mev and their intensity 0.07 percent. The corresponding β^- transition is allowed (log ft=5.6). There is no indication of γ rays of lower energy (Ly 54). See also Ku 36, Ne 37, Wi 38, We 51.

II. $Si^{30}(n,\gamma)Si^{31}$ $Q_m = 6.592$

The thermal neutron capture cross section has been determined by Si³¹ activity measurements as 0.063 b (Si 41a) and 0.116 ± 0.023 b (Se 47), and by the pile oscillator method as 0.41 ± 0.4 b (Po 52a). See also Am 35, Ki 51, On 41.

For fission neutrons $(E_n \approx 1 \text{ Mev})$ the capture cross section is 1.1 mb (Hu 53a).

II. $Si^{30}(d,p)Si^{31}$ $Q_m = 4.366$

Seven proton groups have been found by high resolution magnetic analysis ($\vartheta = 90^{\circ}$) at deuteron energies up to 2.1 Mev using enriched Si³⁰ targets (Va 52c). Corresponding Q values and levels in Si³¹ are given in Table XXXIV together with results obtained by Al absorption at $E_d = 3.7$ Mev (Mo 50). The proton group corresponding to a level at 1.23 Mev reported by Motz coincides with an intense Si²⁸(d,p)Si²⁹ group and might result from incomplete subtraction of the Si²⁸(d,p)Si²⁹ contribution to the total proton yield. No corresponding group has been found in the high-resolution work with an intensity (at $E_d = 1.8$ Mev and $\theta = 90^{\circ}$) larger than 5 percent of the ground-state group (Va 52c). See also La 35a, Cl 46a, Al 48, St 51.

The excitation curve for production of the Si^{31} activity has been measured from 1 to 6 Mev (Ri 47).

IV. $Si^{30}(He^3, 2p)Si^{31}$ $Q_m = -1.127$

Radioactive Si³¹ has been found from this reaction at $E_{\text{He}^3} = 13$ Mev (Po 53).

V. $P^{31}(n,p)Si^{31}$ $Q_m = -0.698$

By measuring pulse heights from a P_2O_3 gas-filled ionization chamber bombarded by D(d,n) neutrons a Q value of -0.97 ± 0.13 Mev has been found and a level in Si³¹ at 0.7 Mev (Me 48). See also Bj 34, Me 34a, Am 35, Po 37a.

The cross section for Be(d,n) neutrons $(E_d = 15 \text{ Mev})$ is $120 \pm 12 \text{ mb}$ (Go 51); for 14-Mev neutrons $91 \pm 9 \text{ mb}$ (Fo 52a) and $64 \pm 8 \text{ mb}$ (Pa 53).

See P³² for resonances.

VI. $S^{34}(n,\alpha)Si^{31}$ $Q_m = -1.2$

Radioactive Si³¹ has been found from this reaction by bombarding sulfur with fast neutrons (Sa 36, Ci 38). The cross section at $E_n = 14$ Mev is 138 ± 35 mb (Pa 53).

\mathbf{P}^{31}

Mass defect: -15.317 Mev

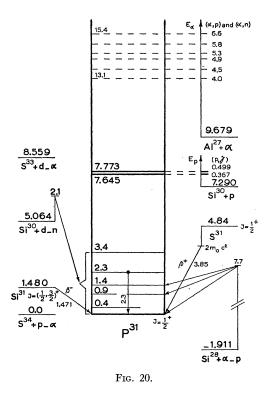
I. Al²⁷(
$$\alpha$$
,n)P³⁰ $E_b = 9.679$ $Q_m = -2.7$

Resonances in this reaction have been found both by measuring the yield of radioactive P^{30} and by detection of the neutrons with boron proportional counters. They are listed in Table XXXV. See also El 34, Li 37, Ha 49a.

See P^{30} for Q values.

II. Al²⁷(
$$\alpha, p$$
)Si³⁰ $E_b = 9.679$ $Q_m = 2.389$

Resonances in the proton yield observed with natural α -particle sources are at E_{α} =4.0, 4.44, 4.86, 5.25, 5.75, and 6.6 Mev (Ch 32, Di 32, Du 34, Ha 34, Ka 37, Sz 39, Me 40, Ne 40a, Li 37). See also Ro 51, Ro 53b.


For Q values and observed γ rays see Si³⁰.

III. Si²⁸(α, p)P³¹ $Q_m = -1.911$

From the bombardment of natural silicon with $Th(B+C) \alpha$ particles three proton groups are observed

TABLE XXXV. Resonances in Al²⁷ (α, n) P³⁰.

Author: Source: Method:	Fa 35a Po, Th $(B+C)$ P ³⁰ (β^+)	Wa 36 RaC P ³⁰ (β ⁺)	Sh 37 Rn P ³⁰ (β ⁺)	Fu 38 Th $(B+C)$ n	Sz 39 Po P ³⁰ (β ⁺)
E_{α} (Mev)		4.0 (4.51)			3.95 4.53 4.70 4.84
	5.1	5.0 5.4 (6.0)	5.7	5.29 5.64 6.01	5.12 5.3
	6.5⁵	6.7	6.6	6.38 6.57 7.00 7.20	
	7.8			7.34 7.60 8.04 8.24	
				8.42 8.62	

corresponding to a ground-state Q value of -2.23 Mev and levels in P³¹ at 1.05 and 1.69 Mev (Ha 35, Li 37). From 7 Mev cyclotron α particles on natural silicon a γ ray is found of 2.3 \pm 0.3 Mev as measured by Al absorption (Al 48a).

IV. Si³⁰(p, γ)P³¹ $Q_m = 7.290$

From natural silicon bombarded by protons sharp resonances not accompanied by positron emission have been observed at 367 and 499 kev corresponding to P³¹ levels at 7.645 and 7.773 Mev (Ta 46). See also Ho 41.

V. $Si^{30}(d,n)P^{31}$ $Q_m = 5.064$

From natural silicon bombardments at $E_d = 3.7$ Mev and with nuclear emulsion technique for neutron detection Q values are found of 4.56 ± 0.14 , 4.12 ± 0.16 , 3.57 ± 0.15 , and 2.78 ± 0.16 Mev (Pe 48a). By the use of enriched Si³⁰ targets at $E_d = 1.4$ Mev and nuclear emulsion technique Q values have been measured of 4.92, 4.59, 3.73, 2.70, and 1.51 Mev all ± 0.04 Mev (Ma 52). If one averages the results of these two investigations (and assumes that in the earlier one the ground-state transition has been missed) the following excitation energies in P³¹ are obtained: 0.4, (0.9), 1.4, 2.3, and 3.4Mev.

VI. $Si^{31}(\beta^{-})P^{31}$ See Si^{31}

VII. $S^{31}(\beta^+)P^{31}$ See S^{31}

128

VIII. $S^{33}(d,\alpha)P^{31}$ $Q_m = 8.559$

Not observed.

IX.
$$S^{34}(p,\alpha)P^{31}$$
 $Q_m = 0.0$

Not observed.

S^{31}

(not illustrated)

Adopted mass defect: -10.2 Mev

(The adopted S³¹ mass gives a β^+ decay energy which is in good agreement with the value determined by scintillation spectrometer (Bo 51). The agreement with the experimental S³²(γ,n)S³¹ thresholds is also reasonable. The cloud-chamber determinations of the β^+ endpoint give a lower value, but this method seems to give too low results also in other cases e.g., P²⁹. An estimate of the Coulomb-energy difference with P³¹ taking into account the small systematic oscillation in mass difference between A=4n+1 and A=4n-1 mirror pairs results in a S³¹ mass defect of -9.9 ± 0.2 Mev.)

I. $S^{31}(\beta^+)P^{31}$ $Q_m = 5.1$

The half-life has been measured as 2.9 ± 0.2 sec (Hu 41b), 3.2 ± 0.2 sec (Wh 41), 3.18 ± 0.04 sec (El 41), 2.6 ± 0.2 sec (Mc 49), 3.2 ± 0.3 sec (Bo 51), and 2.66 ± 0.03 sec (Ha 52a). The β^+ spectrum end point has been determined in a cloud chamber as 3.85 ± 0.07 Mev (Wh 41) and 3.87 ± 0.15 Mev (El 41), and with a scintillation spectrometer as 4.06 ± 0.12 Mev (Bo 51). The log *ft* value is 3.6, the usual value for super-allowed transitions between mirror nuclei.

II. $Si^{28}(\alpha, n)S^{31}$ $Q_m = -7.8$

Radioactive S³¹ has been produced by this reaction at $E_{\alpha} = 15$ Mev (El 41).

III. $P^{31}(p,n)S^{31}$ $Q_m = -5.9$

Radioactive S^{31} has been observed from this reaction (Wh 41).

IV. $S^{32}(\gamma, n)S^{31}$ $Q_m = -14.8$

The threshold has been measured as 15.0 ± 0.3 Mev (Be 47a), 14.8 ± 0.4 Mev (Mc 49), and 15.0 ± 0.1 Mev (Ha 52a). The activation cross section has a maximum of 24.6 mb at 20.1 ± 0.5 Mev with a half-width of 4.5 Mev and an integrated cross section of 120 Mev mb (Ha 52a). The photoneutron cross section (for the (γ,n) , (γ,np) and $(\gamma,2n)$ reactions together) has a maximum of 13 mb at 19.8 Mev with a half-width of 5.2 Mev and an integrated cross section of 75-Mev mb (Mo 53a). See also Hu 42, Hu 43, Wa 48, Mc 50, Bo 51.

Si³²

(not illustrated)

Adopted mass defect: -14.78 Mev (Li 53a)

I.
$$Si^{32}(\beta^{-})P^{32}$$
 $Q_m = 0.10$

Radioactive Si³² has been produced from the reaction $Cl^{37}(p,\alpha 2p)Si^{32}$ at $E_p=340$ Mev. From the measured activity and estimated reaction cross section a half-life is calculated between 100 and 710 years. The β^- spectrum end point is ~ 100 kev. There are no γ rays (Li 53a). See also Li 53.

\mathbf{P}^{32}

Mass defect: -14.883 Mev

I. $P^{32}(\beta^{-})S^{32}$ $Q_m = 1.707$

Accurate determinations of the half-life (differing considerably) are 15.0 ± 0.1 days (Si 36), 14.295 ± 0.005

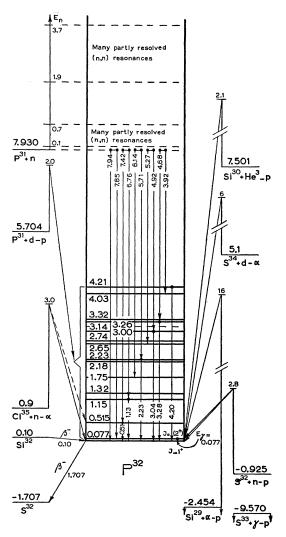


FIG. 21.

Author	End point (Mev)
Ly 37 La 39a Wi 41a Si 46 La 49a Ag 50 Wa 50 Sh 51c Je 52 Mo 52a	$\begin{array}{r} 1.69 \pm 0.03 \\ 1.72 \pm 0.01 \\ 1.75 \pm 0.02 \\ 1.712 \pm 0.008 \\ 1.689 \pm 0.010 \\ 1.718 \pm 0.010 \\ 1.708 \pm 0.008 \\ 1.695 \pm 0.008 \\ 1.695 \pm 0.008 \\ 1.697 \pm 0.008 \\ 1.697 \pm 0.010 \end{array}$

TABLE XXXVI. $P^{32}(\beta^{-})S^{32}$.

days (Ca 38), 14.35 ± 0.01 days (Mu 40), 14.35 ± 0.05 days (Kl 48), 14.59 ± 0.03 days (Si 51), and 14.50 ± 0.02 days (Lo 53). See also Am 34, Am 35, Pr 35, Fa 35, Sa 36, Ne 37.

The β^- spectrum is simple and has the allowed shape. Determinations of the end point are collected in Table XXXVI. The *ft* value is very large for an allowed transition (log *ft*=7.9) but this can be explained by *l*-forbiddenness. See also Al 35a, Ku 36, Li 39, Mo 40, Go 40, Hi 48, Ba 50, Ca 52.

The continuous γ radiation (internal bremsstrahlung) has been investigated by numerous authors. Its intensity, energy distribution, and $\beta - \gamma$ angular distribution have been measured (Wu 41, Si 47b, Ma 51, St 51b, No 53, Bo 53, Go 53b, Go 53c, Re 53a).

II. $Si^{29}(\alpha, p)P^{32}$ $Q_m = -2.454$

Radioactive P^{32} has been produced from this reaction (Fa 35, Ki 39a).

III. $Si^{30}(He^3, p)P^{32}$ $Q_m = 7.501$

Radioactive P^{32} has been found from this reaction at $E_{\text{He}^3} = 13$ and 21 Mev (Po 52b, Po 53).

IV. $P^{31}(n,\gamma)P^{32}$ $Q_m = 7.930$

The thermal neutron capture cross section has been determined as 0.15 ± 0.015 b (Po 51) and 0.193 ± 0.007 b (Co 50) both by pile-oscillator measurements, and as 0.23 ± 0.05 b by measurement of the yield of radioactive P³² (Se 47). See also La 40, Ra 40, On 41, Si 41a, Vo 43.

Twenty γ rays (Table XXXVII) have been found by high-resolution pair spectrometry from the capture of thermal neutrons in phosphorus (Ki 52). In the case of ten of these γ rays (A, A', C, D, F, H, J, K, L, and P) good agreement is obtained if one assumes that transitions take place from the capturing state to the P³² ground state and nine excited states. Three other (O, R, and S) may represent transitions from levels to ground.

Three more γ rays of $E_{\gamma} = 0.51$, 1.13, and 2.23 Mev have been found with a two-crystal scintillation spectrometer (Br 53a). They can well be interpreted as ground-state transitions from corresponding P³² excited states.

V. $P^{31}(n,n)P^{31}$ $E_b = 7.930$

Broad resonances in the phosphorus total cross section (average value about 3.5 b) are found at $E_n=0.22$, 0.38, 0.47, and 0.58 Mev (Sn 53). At high resolution $(\Delta E_n \simeq 2 \text{ kev})$ 31 resonances are observed between $E_n = 125$ and $E_n = 830$ kev (Ha 53a). Many incompletely resolved resonances are reported in the region $E_n = 1.9$ -3.7 Mev (Ri 51). Earlier data have been reviewed by Adair (Ad 50). Below 400 ev the total cross section is essentially constant (3.5 b). The cross section at $E_n = 14$ Mev is 1.97 ± 0.04 b (Co 52a) or 2.22 ± 0.05 b (Ag 53).

VI. $P^{31}(n,p)Si^{31}$ $E_b = 7.930$ $Q_m = -0.698$

A broad resonance in the production of radioactive Si^{31} has been observed at $E_n=2.9$ Mev (Br 49b). At somewhat higher resolution many incompletely resolved resonances are found in the region $E_n=1.9-3.7$ Mev (Lu 50, Ri 51, Ni 52). See also Bj 34, Me 48.

See Si^{31} for Q values.

VII. $P^{31}(d,p)P^{32}$ $Q_m = 5.704$

Fifteen proton groups have been found by highresolution magnetic analysis ($\vartheta = 90^{\circ}$) at deuteron energies of 1.8 and 2.0 Mev (Va 52b). Corresponding Q values and P³² levels are given in Table XXXVIII together with P³² levels obtained by Al absorption at $E_d = 3.76$ Mev (Al 51a). See also Po 40a, Cl 46a, Al 49b, St 51, Va 52a.

Angular distributions of transitions to the groundstate doublet level have been measured at $E_d = 7.2$ Mev (Pa 52) and at $E_d = 14.3$ Mev (Bl 53). It is shown by Butler analysis that these transitions correspond to $l_n=2$ with less than 5 percent $l_n=0$ admixture. The influence of the Coulomb repulsion on stripping has been computed for this case (Bu 54).

TABLE XXXVII. Gamma rays from thermal neutroncapture in phosphorus (Ki 52).

		a second seco
γ ray	Energy in Mev	Intensity in photons per 100 captures
A	7.94 ± 0.03	0.5
A'	7.85 ± 0.05	1.5
$A' \\ B$	7.62 ± 0.03	
\tilde{C}	7.42 ± 0.03	$\frac{2}{7}$
ň	6.76 ± 0.03	24
D E F G	6.33 ± 0.03	0.7
	6.14 ± 0.03	1.5
r C	6.02 ± 0.04	1.5
H		
H	5.71 ± 0.03	6 2 8 4
I	5.41 ± 0.03	2
J	5.27 ± 0.03	8
K	4.92 ± 0.03	
L	4.68 ± 0.03	26
M	4.49 ± 0.03	4
N	4.38 ± 0.03	11 7
0	4.20 ± 0.03	7
P P	3.92 ± 0.03	25
N O P Q R S	3.55 ± 0.03	$\tilde{22}$
Ř	3.28 ± 0.04	
ŝ	3.04 ± 0.04	7
C.	5.0410.04	•

TABLE XXXVIII. Q values for $P^{31}(d,p)P^{32}$ groups and energy levels in P^{32} .

	Q value (Mev)	Levels	n P ³²
Group	Va 52b	Va 52b	Al 51a
(0)	5.704 ± 0.008	0	0
(1)	5.627 ± 0.008	0.077 ± 0.002	
(2)	5.189 ± 0.010	0.515 ± 0.005	0.50 ± 0.05
(3)	4.550 ± 0.007	1.154 ± 0.007	1.10 ± 0.03
(4)	4.388 ± 0.007	1.316 ± 0.008	1.36 ± 0.05
(5)	3.954 ± 0.007	1.750 ± 0.009	1.71 ± 0.04
(6)	3.527 ± 0.008	2.177 ± 0.009	2 22 1 0 04
(7)	3.477 ± 0.008	2.227 ± 0.009	2.22 ± 0.04
(8)	3.054 ± 0.006	2.650 ± 0.008	0 70 1 0 01
(9)	2.962 ± 0.006	2.742 ± 0.008	2.72 ± 0.03
(10)	2.705 ± 0.008	2.999 ± 0.010	
(11)	(2.563 ± 0.010)	(3.141 ± 0.012)	
(12)	2.445 ± 0.006	3.259 ± 0.009	2 07 . 0 04
(13)	2.386 ± 0.006	3.318 ± 0.009	3.27 ± 0.04
(14)	1.672 ± 0.005	4.032 ± 0.009	
(15)	1.497 ± 0.008	4.207 ± 0.010	

VIII. $S^{32}(n,p)P^{32}$ $Q_m = -0.925$

From pulse-height analysis, bombarding SO₂ gas in an ionization chamber with 2.76 Mev neutrons, a Q value has been measured of -0.93 ± 0.1 Mev (Hu 41a). From sulfur bombarded by 2.5 Mev neutrons γ rays were observed of $E_{\gamma}=0.077$ and 2.23 Mev by scintillation spectrometer (Da 53). Both were ascribed to inelastic neutron scattering. The second γ ray corresponds to a known level in S³², but the first γ ray is better explained by assuming that it originates from the S³²(n,p)P³² reaction to the 77 kev level in P³². The cross section for Be(d,n) neutrons ($E_d=15$ Mev) is 285±14 mb (Co 51), and for 14.5 Mev neutrons 369±45 mb (Pa 53). See also Am 34, Am 35, Sa 36, Bo 37, Wi 37.

For resonances see S³³.

IX.
$$S^{33}(\gamma, p)P^{32}$$
 $Q_m = -9.570$

Not observed.

X. $S^{34}(d,\alpha)P^{32}$ $Q_m = 5.1$

Radioactive P^{32} has been found from this reaction (Sa 36).

XI. $Cl^{35}(n,\alpha)P^{32}$ $Q_m = 0.9$

From bombardment with 3- to 4-Mev neutrons and pulse-height analysis with ionization chambers Q values of 1.07 ± 0.15 Mev (Fo 52) and 0.97 ± 0.16 Mev (Ad 53) are found. The latter supersedes a previously reported value (Me 47).

The cross section rises from about 10 mb at $E_n=3$ Mev to about 65 mb at $E_n=4$ Mev (Ad 53). The cross section at $E_n=14.5$ Mev is 191 ± 30 mb (Pa 53).

See also Am 34, Am 35.

GENERAL REMARKS

The P^{32} ground-state doublet might well consist of the $J = 1^+$ and 2^+ states corresponding to the $(s_t \text{ proton})$,

The experimental yield ratio (excited-state protons over ground-state protons) at $\vartheta = 90^{\circ}$ is 1.7 at $E_d = 1.8$ Mev and 1.2 at $E_d = 2.0$ Mev (Va 52b). This agrees reasonably with a predicted ratio of 1.67 for a ground-state spin $J=1^+$ and an excited-state spin $J=2^+$ (En 53a).

For a theoretical discussion regarding doublet levels in P^{32} see In 53.

$$S^{32}$$

Mass defect: -16.590 Mev

I.
$$Si^{29}(\alpha, n)S^{32}$$
 $Q_m = -1.529$

Not observed.

II. $P^{31}(p,\gamma)S^{32}$ $Q_m = 8.855$

Sharp resonances in the γ -ray yield have been observed at $E_p = 440, 550, 650, 817, 890, 1067, 1100, 1129, 1162, 1265, 1421, 1458, 1495, 1538, 1583, and 1610 kev (Gr 51a). Tangen reports resonances at 355, 440, and$

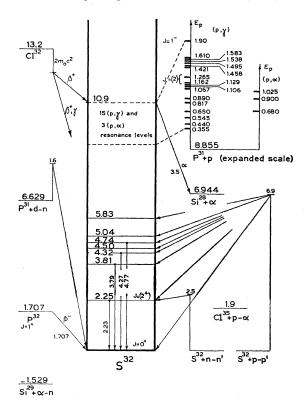


FIG. 22.

540 kev (Ta 46). From relatively thick target measurements resonances are found at 460, 580, 700, and 950 kev (Cu 39). These latter values are probably too high. The region from 1.03 to 2.1 Mev has also been explored by Gove and Paul (Go 53a). Below 1.65 Mev they report the same eleven resonances as found by Grove and Cooper (Gr 51a). There are four more resonances between 1.65 and 2.1 Mev. Gamma-ray angular distributions have been measured at $E_p = 1.17$, 1.27, and 1.90 Mev. At the first two resonances there are at least 10 times more transitions to the S³² first excited state as to the ground state. If the first S^{32} level is taken as $J = 2^+$, the resonance levels at 1.17 and 1.27 Mev have J=2. At $E_p = 1.90$ Mev at least 7 times more transitions to the ground state than to the first excited state are observed. This resonance level has $J = 1^{-1}$ (Go 53a). The γ -ray energy at the 1.27 MeV resonance has been measured by Al absorption as 12 Mev (Gr 51a). See also Ho 41.

III. $P^{31}(p,\alpha)Si^{28}$ $E_b = 8.855$ $Q_m = 1.911$

Sharp resonances at $E_p = 680$, 900, and 1025 kev have been found in the region from 650 to 1070 kev by magnetic analysis of the α particles produced (Fr 51).

See Si^{28} for measurements of the Q value.

IV. $P^{31}(d,n)S^{32}$ $Q_m = 6.629$

From bombardments of thick targets at $E_d = 1.60$ Mev and detection of neutrons in nuclear emulsions at 0° and 90° a ground-state Q value is reported of 6.2 Mev (error ≥ 0.1 Mev) and S³² levels at 0.5, 1.5, 2.2, 2.7, 3.3, 3.8, 4.1, 4.5, 4.9, 5.2, and 5.5 Mev, all ± 0.1 Mev (Sn 52). At $E_d = 8.1$ Mev the ground-state Q value has more accurately been measured as 6.81 ± 0.08 Mev also by nuclear emulsion technique (El 52).

A γ ray of 6.2 \pm 0.3 Mev has been found by Al absorption from bombardment of phosphorus by 3.7-Mev deuterons (Al 49b). This γ ray may equally well originate from the P³¹(d, p) or P³¹(d, α) reaction.

V. $P^{32}(\beta^{-})S^{32}$ See P^{32}

VI. $S^{32}(n,n')S^{32}$

From the inelastic scattering of 2.5-Mev neutrons γ rays have been found by Al absorption of $E_{\gamma}=2.35$ 0.15 Mev (Gr 51, Be 50), and by scintillation spectrometry of $E_{\gamma}=0.077\pm0.002$ Mev and 2.23 ± 0.04 Mev (Da 53).

The inelastic scattering cross section at $E_n = 2.5$ Mev is 0.38 ± 0.1 b (Gr 51).

See P³² reaction VIII for assignment of the 77 kev γ ray.

VII. $S^{32}(p, p')S^{32}$

From inelastic scattering of 6.9-Mev protons and energy measurement of scattered protons by Al absorption levels in S^{32} are reported at 2.25 and 4.34 Mev (Di 43). At E_p =8-Mev levels are found by magnetic analysis at 2.25, 3.81, 4.32, 4.50, 4.74, 5.04, and 5.83 Mev all ± 0.02 Mev (Ar 52).

VIII. $S^{33}(\gamma, n)S^{32}$ $Q_m = -8.645$ Not observed.

IX. $Cl^{32}(\beta^+)S^{32}$ See Cl^{32}

X. $Cl^{35}(p,\alpha)S^{32}$ $Q_m = 1.9$ MeV

Not observed. See Br 51.

$C1^{32}$

(not illustrated)

Adopted mass defect: -3.4 Mev (Gl 53, Br 53c)

I. $Cl^{32}(\beta^+)S^{32}$ $Q_m = 13.2$

The half-life has been measured as 0.306 ± 0.004 sec (Gl 53) and 0.32 ± 0.01 sec (Br 53c). The maximum positron energy is 9.5 ± 0.4 Mev, indicating β^+ transitions to the 2.25-Mev level in S³². Gamma-ray energies measured by scintillation spectrometer are collected in Table XXXIX. The 2.77 Mev peak could either be

TABLE XXXIX. Gamma rays from $Cl^{32}(\beta^+)S^{32}$.

Author	Gl 53, Ri 53	Br 53c
E_{γ} in Mev	$\begin{array}{c} 2.21{\pm}0.03\\ 2.77 \text{ or } 3.79\\ 4.27{\pm}0.08\\ 4.77{\pm}0.04\end{array}$	2.25 ± 0.04 3.79 ± 0.08 4.33 ± 0.09 4.82 ± 0.08

the photopeak of a 2.77-Mev line or the pair peak of a 3.77-Mev γ ray (Ri 53, Gl 53a). The 2.21-Mev and 4.27-Mev γ rays correspond to transitions from known levels in S³² to the ground state. In a small percentage, decay to an α -unstable level in S³² takes place with $E_{\alpha} = 3.5 \pm 0.5$ Mev (Ri 53, Gl 53b).

II. $S^{32}(p,n)Cl^{32}$ $Q_m = 14.0$ Mev

Cl³² has been discovered by this reaction and the threshold has been determined [by comparison to the $Mg^{24}(p,n)Al^{24}$ threshold measured by Miss Birge (Bi 52)] as 14.3 ± 0.5 Mev (Gl 53) and 14.5 ± 0.6 Mev (Br 53c).

\mathbf{P}^{33}

(not illustrated)

Mass defect: -16.606 Mev

I. $P^{33}(\beta^{-})S^{33}$ $Q_m = 0.265$

The half-life has been determined as: 25 ± 2 days (Sh 51c), 24.8 ± 0.5 days (Je 52), and 25 ± 2 days (We 52). See also Ya 51.

The β^{-} spectrum end point is measured by spectrom-

eter as 0.27 ± 0.02 Mev (Sh 51c) and 0.26 ± 0.02 Mev (Je 52), and by Al absorption as 0.246 ± 0.005 Mev (We 52). No γ rays have been found (less than 3 percent) (We 52). The β^- transition is allowed (log ft=5.0) but *l*-forbidden.

II. Si³⁰(α, p)P³³ $Q_m = -2.978$

Not observed.

III. $S^{33}(n, p)P^{33} = Q_m = 0.517$

The cross section of this reaction for thermal neutrons is 2.3 mb (We 52). See also Je 52.

IV.
$$S^{34}(\gamma, p)P^{33}$$
 $Q_m = -10.9$

Radioactive P^{33} has been produced by this reaction (Sh 51c, Je 52).

V.
$$S^{36}(p,\alpha)P^{33}$$
 $Q_m = 1.3$

Not observed.

VI. $Cl^{35}(\gamma, 2p)P^{33}$ $Q_m = -17.2$ $Cl^{37}(\gamma, \alpha)P^{33}$ $Q_m = -7.9$

Radioactive P³³ has been produced by high-energy γ rays on chlorine (Sh 51c, Je 52, Ho 52a).

 S^{33}

I.
$$Si^{30}(\alpha, n)S^{33}$$
 $Q_m = -3.495$

Not observed.

- II. $P^{33}(\beta^{-})S^{33}$ See P^{33}
- III. $S^{32}(n,\gamma)S^{33}$ $Q_m = 8.645$

The thermal neutron absorption cross section of natural sulfur has been measured by the pile-oscillator method as 0.51 ± 0.03 b (Ha 50), 0.49 ± 0.02 b (Co 50), and 0.47 ± 0.05 b (Po 51). It is unknown how much

TABLE XL. Gamma rays from thermal neutron capture in sulfur (Ki 52, Ki 53e).

γ ray	Energy in Mev	Intensity in photons per 100 captures
A	8.64 ± 0.02	1.2
\overline{B}	7.78 ± 0.03	1.6
C	7.42 ± 0.03	(0.7)
\tilde{D}	7.19 ± 0.03	(0.5)
E	6.64 ± 0.03	0.25
F	5.97 ± 0.06	(1)
G	5.43 ± 0.02	60
H	5.03 ± 0.06	(5)
Ι	4.84 ± 0.06	11
J	4.60 ± 0.06	(5)
K	4.38 ± 0.03	7
\overline{L}	3.69 ± 0.05	4
M	3.36 ± 0.05	4 7
\overline{N}	3.21 ± 0.03	20
Ö	2.94 ± 0.05	20

the S³² (n,α) Si²⁹ reaction contributes to the cross section. The contribution of the S³⁴ (n,γ) S³⁵ reaction is 0.011 ± 0.002 b (Se 47). See also Vo 43, Co 46a.

Fifteen γ rays have been found by pair spectrometer from the capture of thermal neutrons in natural sulfur (Ki 52, Ki 53e). They are given in Table XL. The intensities are taken from Ki 53e, but those between brackets are from Ki 52. Gamma rays A and B probably represent transitions to the ground state and first excited state of S³³ and γ rays G and N correspond to a cascade to ground through the level at 3.21 Mev. The identification of the other γ rays is less certain. Gamma rays K, L, and O may be the transitions from the capturing state to the other p states at 4.15, 4.70, and 5.63 Mev (Ki 53e).

Thermal neutron capture γ rays of $E_{\gamma} = 0.84$, 1.52, and 2.34 Mev have been observed with a scintillation spectrometer (Br 53a). The first γ ray corresponds to the de-excitation of the 0.84 Mev level in S³³. From the fact that the energies of the first two γ rays add up pretty nearly to that of the third, one would be inclined to assume a S³³ level at 2.34 Mev, but no such level has been observed from the S³²(d,p)S³³ reaction. A more probable explanation for the 2.34-Mev γ ray is a transition from the strongly excited level at 3.19 Mev to the first level at 0.84 Mev. The 1.52-Mev γ ray then remains unexplained. See also Ku 49.

IV. $S^{32}(n,n)S^{32}$ $E_b = 8.645$

Measurements of the sulfur total neutron cross section have been reviewed by Adair (Ad 50). The cross section decreases slowly from 1.6 b at $E_n = 0.02$ ev to 1.1 b at $E_n = 300$ ev (Ra 48). Below $E_n = 750$ kev sharp well-separated resonances are found at 111, 203, 274, 290, 375, 585, 700, 725, and 742 kev. The width of the 111-kev resonance is 18 kev $(J = \frac{1}{2})$, of the 375- and 700kev resonances $\Gamma = 12 \pm 1.5$ kev $(J = \frac{1}{2})$, and of the 585kev resonance $\Gamma = 1.5$ kev $(J = \frac{3}{2})$. All other resonances have $J = \frac{1}{2}^{-}$ (while $J = \frac{3}{2}^{-}$ is not excluded). Six more sharp resonances are observed in the region from $E_n = 750$ to 1100 kev, while from 1100 to 1450 kev the energy resolution (from 9 to 15 kev) was not sufficient to separate the many resonances completely (Ad 49a, Pe 50a). Also in the region from 1.5 to 12 Mev many incompletely resolved resonances were found (Fr 50, Ri 51, Ne 53, St 51d). At $E_n = 14$ Mev the cross section amounts to 1.92 ± 0.04 b (Co 52a), while 2.06 ± 0.07 b is found at $\bar{E}_n = 13.3$ Mev (Li(d,n) neutrons) (Ag 52, Ag 53).

V. $S^{32}(n,p)P^{32}$ $E_b = 8.645$ $Q_m = -0.925$

The cross section increases monotonically from $E_n = 1.6$ to 4.0 Mev and is constant (0.3 b) from $E_n = 4.0$ to 5.8 Mev (Kl 48). At somewhat better resolution many incompletely resolved resonances are found in the region from $E_n = 1.9$ to 3.7 Mev (Wi 37, Bl 47b, Lu 50, Ri 51). See also P³².

VI. $S^{32}(n,\alpha)Si^{29}$ $E_b = 8.645$ $Q_m = 1.529$

Resonances are reported at 1.77 ± 0.12 and 2.12 ± 0.12 Mev (St 48). See also Wi 37. See Si²⁹ for a measurement of the Q value.

TABLE XLI. Levels in S³³ from $S^{32}(d,p)S^{33}$.

Author	Sm 41	Da 49	Ho	53d
E_d (Mev)	3.1	3.22	8.	0
Ground-state Q value (Mev)	6.62	6.48 ± 0.11		
S ³³ levels (Mev)	0	0	0	J = (3/2, 5/2)
· · ·	1.05	0.79 ± 0.05	0.85	$J = (3/2, 5/2) J = 1/2^+$
		1.90 ± 0.05	8	,
	2.17	2.17 ± 0.05	8.	
		2.85 ± 0.05	2.90	J = (5/2, 7/2)
	3.22	3.15 ± 0.05	3.26	J = (1/2, 3/2)
		3.88 ± 0.05	8	
	4.33	4.15 ± 0.05	4.21	$J = (1/2, 3/2)^{-1}$
		4.42 ± 0.05	• • •	(,,,,,
		4.70 ± 0.05	4.89	$J = (1/2, 3/2)^{-1}$
	5.32	5.11 ± 0.05	8	, , −, −, −,
		5.63 ± 0.05	5.72	$J = (1/2, 3/2)^{-1}$
		6.30 ± 0.05	8	· · - · - · - ·

 ${}^{\rm a}\operatorname{A}$ group leading to this level was present but the Q value has not been determined.

VII. $S^{32}(d, p)S^{33}$ $Q_m = 6.419$

The ground-state Q value has been measured by highresolution magnetic analysis at $E_d = 1.8$ Mev as Q = 6.422 ± 0.011 Mev (St 51). Other values for the ground-state reaction energy and S33 levels found by range analysis at different deuteron energies are collected in Table XLI. The assignment of the ground-state group is confirmed by the absence of $p-\gamma$ coincidences (Da 49). Spins and parities of S33 levels determined from angular distribution measurements and Butler analysis are also given in Table XLI. Shell model assignments have been discussed on the basis of l_n values and measured neutron capture probabilities (Ho 53a, Ho 53d). Angular distribution measurements of proton groups leading to ground state and first excited state have also been performed at $E_d = 14.3$ MeV with the same results as given in Table XLI (Bl 53).

VIII. $S^{34}(\gamma, n)S^{33}$ $Q_m = -11.4$

The threshold for this reaction has been measured as 10.85 ± 0.20 Mev (Sh 51a).

The excitation curve is found by subtracting the $S^{32}(\gamma,n)S^{31}$ yield, measured by the S^{31} activity, from the total photoneutron yield, measured by a BF₃ chamber. The values obtained, although subject to large errors, are a maximum cross section of 60 mb at 17 Mev and a half width of 4 Mev and an integrated cross section of 200 Mev mb (Mo 53a).

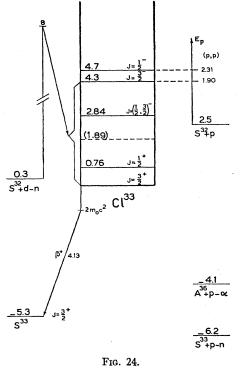
IX. $Cl^{33}(\beta^+)S^{33}$ See Cl^{33}

X.
$$Cl^{35}(d,\alpha)S^{33}$$
 $Q_m = 8.3$

An α -particle group from this reaction may have been observed at $E_d=3.2$ Mev. The Q value measured by range analysis is 9.1 Mev (Sh 41).

XI. $A^{36}(n,\alpha)S^{33}$ $Q_m = 2.0$

Pulse-height analysis from an argon-filled ionization chamber yields a ground-state Q value of 2.0 ± 0.1 Mev. A second α -particle group is observed corresponding to a Q value of 0.9 ± 0.1 Mev. The excitation curve for these two transitions has been measured from $E_n=2.15$ to 4.40 Mev (To 53). The ground-state group was also observed at $E_n=2.5$ Mev, although it was ascribed to the reaction $A^{40}(n,\alpha)S^{37}$. The measured Q value is 1.8 Mev and the cross section 30 mb (Gr 46).


C1³³

Adopted mass defect: -11.5 Mev

(The adopted mass defect has been calculated from the observed $S^{32}(d,n)Cl^{33} Q$ value. It is in reasonable agreement with the measured Cl^{33} positron decay energy.)

I. $Cl^{33}(\beta^+)S^{33}$ $Q_m = 5.4$

The half-life measurements are 2.8 sec (Ho 40b) and 2.8 sec (Sc 48). Other determinations, 2.4 ± 0.2 sec

(Wh 41) and 1.8 ± 0.1 sec (Bo 51), have to be doubted as probably a mixture of Cl³³ and Cl³⁴ has been studied (St 53).

Possible confusion with the short-lived Cl³⁴ also sheds doubt on the measurement of the beta spectrum endpoint: 4.13 ± 0.07 Mev with a cloud chamber (Wh 41) and 4.43 ± 0.13 Mev (Bo 51) and 4.2 ± 0.2 Mev (Na 53) with a scintillation spectrometer. A γ ray of 2.9 Mev is observed in the decay, indicating β^+ transitions to the 2.85 Mev level in S³³, with an intensity of 0.3 percent of the ground-state transition (Me 53a). The log ft value of 4.0 suggests even parity for the 2.85 Mev level in contradiction with the results from the $S^{32}(d,p)S^{33}$ reaction.

II. $S^{32}(p,\gamma)Cl^{33}$ $Q_m = 2.5$

Not observed. See Ta 46.

III.
$$S^{32}(p,p)S^{32}$$
 $E_b = 2.5$

With protons of 1.0 Mev $< E_p < 2.8$ Mev from an electrostatic generator and a H₂S gas target resonances in the elastic scattering cross section have been observed at $E_p = 1.90$ Mev (width <25 kev) and at 2.31 Mev (width ~ 60 kev). The angular distribution of the scattered protons measured from 50° to 150° indicates that both levels have a negative parity, the 4.3 Mev level a spin $\frac{3}{2}$ and the 4.7 Mev level a spin $\frac{1}{2}$. Above 2.31 Mev and under 1.90 Mev the angular distribution complies with Coulomb scattering (Fe 53).

IV. $S^{33}(p,n)Cl^{33}$ $Q_m = -6.2$

Radioactive Cl³³ has been produced by this reaction (Wh 41).

V.
$$S^{32}(d,n)Cl^{33}$$
 $Q_m = 0.3$

Several neutron groups have been observed with nuclear emulsions at $E_d = 8$ Mev. The ground-state Q value is 0.25 Mev, and levels are found at $E_x=0.76$ ± 0.07 , (1.89), 2.84 ± 0.06 and 4.22 ± 0.08 Mev. Several more closely spaced levels are found above 4.22 Mev. From angular distribution measurements and Butler analysis the Cl³³ ground state can be characterized as $J = (\frac{3}{2}, 5/2)^+$ $(l_n = 2)$, the level at 0.76 MeV as $J = \frac{1}{2}^+$ $(l_n=0)$, while the levels at 2.84 and 4.22 Mev check best with $J = (\frac{1}{2}, \frac{3}{2})^{-}$ $(l_n = 1)$ (Mi 53b). See also Ho 40b, Sc 48, Hu 51.

VI.
$$Cl^{35}(\gamma, 2n)Cl^{33}$$
 $O_m = -23.9$

Radioactive Cl³³ has been produced by the irradiation of NH₄Cl with 70-Mev x-rays (Bo 51).

VII.
$$A^{36}(p,\alpha)Cl^{33}$$
 $Q_m = -4.1$

Not observed.

P³⁴

(not illustrated)

Adopted mass defect: -14.8 Mev (Bl 46)

I. $P^{34}(\beta^{-})S^{34}$ $Q_m = 5.1$

The half-life has been given as 12.7 sec (Co 40), $14.5 \pm 1 \text{ sec}$ (Hu 45) and $12.40 \pm 0.12 \text{ sec}$ (Bl 46).

The β^- decay proceeds in two branches. The main branch (75 percent) has an end point measured by Al absorption as 5.1 ± 0.2 MeV, the other branch (25 percent) is in coincidence with γ rays and has an end point of 3.2 ± 0.2 Mev (Bl 46).

The ground-state transition is allowed but l-forbidden (log ft=5.2), while the 3.2 transition is allowed $(\log ft = 4.7).$

The spin and parity of P^{34} are very probably $J = 1^+$ (see S³⁴ "General Remarks").

II. $P^{33}(n,\gamma)P^{34}$ $Q_m = 6.6$

Carrier-free radioactive phosphorus obtained by pileneutron irradiation of sulfur contains about 2.5 atoms P³³ per 100 atoms P³² (Je 52). If this mixture is again irradiated in a pile a 22 ± 5 sec activity is observed (Ya 51) which may be P^{34} (Je 52).

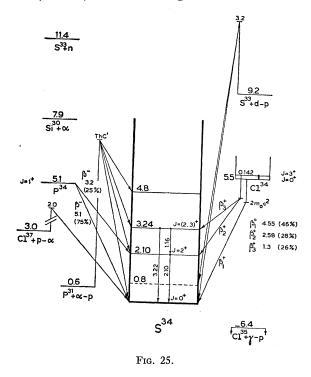
III. $S^{34}(n,p)P^{34}$ $Q_m = -4.3$

Radioactive P³⁴ is produced by fast neutrons on sulfur (Co 40, Bl 46). The cross section at $E_n = 14.5$ MeV is 85 ± 40 mb (Pa 53).

IV.
$$S^{36}(d,\alpha)P^{34}$$
 $Q_m = 5.6$

Not observed.

V. $Cl^{37}(n,\alpha)P^{34}$ $Q_m = -1.3$


Radioactive P³⁴ is produced by fast neutrons on chlorine (Hu 45, Bl 46). See also Hu 42a. The cross section at $E_n = 14.5$ Mev is 52 ± 26 mb (Pa 53).

 S^{34}

Adopted mass defect: -19.9 Mev (see Introduction)

I. $P^{31}(\alpha, p)S^{34}$ $Q_m = 0.6$

From bombardments with α particles from natural radioactive sources average Q values are obtained of 0.31, -1.0, -2.5, and -4.5 Mev corresponding to S³⁴ levels at 1.3, 2.8, and 4.8 Mev (Li 37, Ch 31, Pa 34, Ma 36, Po 36a). In later work Q values were found of

1.3 Mev (very weak and dubious proton group), 0.4, and -1.2 Mev (Me 40).

Two γ rays were observed from bombardment of phosphorus with 7-Mev α particles. Their energies were $E_{\gamma} = 2.55 \pm 0.25$ and 4.1 ± 0.4 Mev as measured by Al absorption (Al 48a). The assignment to the P³¹(α, p)S³⁴ reaction is not unambiguous.

II. $P^{34}(\beta^{-})S^{34}$ See P^{34}

III.
$$S^{33}(n,\gamma)S^{34}$$
 $Q_m = 11.4$

Not observed.

IV.
$$S^{33}(d,p)S^{34}$$
 $Q_m = 9.2$

From bombardments of natural sulfur at E_d =3.22 Mev two weak proton groups were observed which were

ascribed to $S^{33}(d,p)S^{34}$. The Q values determined by range analysis are 8.67 ± 0.25 and 7.85 ± 0.25 Mev corresponding to a S^{34} level at 0.82 Mev (Da 49). This level is not found from other reactions and its excitation energy is rather small for a light even-even nucleus.

V.
$$Cl^{34}(\beta^+)S^{34}$$
 See Cl^{34}

VI.
$$Cl^{35}(\gamma, p)S^{34}$$
 $Q_m = -6.4$
Not observed

Not observed.

VII. $Cl^{37}(p,\alpha)S^{34}$ $Q_m = 3.0$

Alpha particles are observed from targets enriched in Cl^{37} bombarded by 1.45-2.04 Mev protons. From proportional counter pulse-height analysis after magnetic deflection a Q value of 3.2 Mev is derived (Br 51). See A^{38} for resonances.

GENERAL REMARKS

The spins and parities of the P³⁴ ground state $(J=1^+)$ and of the S³⁴ 2.10-Mev level $(J=2^+)$ are determined uniquely from the fact that the P³⁴ (β^-) transitions to the S³⁴ ground state $(J=0^+)$ and 2.10 Mev level are both allowed, while the β^+ decay from Cl^{34m} $(J=3^+)$ to the 2.10-Mev level is also allowed.

C1³⁴

(not illustrated)

Adopted mass defect: -14.3 Mev

(The adopted mass defect is based on the S^{34} mass and the $Cl^{34}(\beta^+)S^{34}$ energy release.)

I. $Cl^{34}(\beta^+)S^{34}$ $Q_m = 5.6$

The half-life is 1.58 ± 0.05 sec (St 53b). The half-life of the isomeric state at 142 kev is considerably longer. The more precise determinations are 32 ± 1 min (Ri 37), 33.2 ± 0.5 min (Hu 43), 33.0 min (Pe 48), and 32.5 ± 0.5 min (Hi 52a). See also Fr 34, Po 37a, Br 38, Bo 39, Ed 52.

The energies of the positrons and γ rays present in the decay of Cl³⁴ and its isomeric state are listed in Table XLII. Ticho (Ti 51) used in turn a three-, twoand one-crystal scintillation spectrometer in order to

TABLE XLII. The decay of Cl³⁴.

Author:	Ho 46a	Ru 51a	Ti 51
Method:	Cloud chamber	Magnetic lens spectrometer	Scintillation spectrometer
E_{β^+} (max) (Mev)	5.1 ± 0.3 2.4	$\begin{array}{c} 4.45 \pm 0.11 \ (46\%) \\ 2.58 \pm 0.26 \ (28\%) \\ 1.3 \ \pm 0.2 \ (26\%) \end{array}$	
E_{γ} (Mev)	3.4 ± 0.3	3.30 ± 0.14 2.13 ± 0.12	3.22 ± 0.03 2.10 ± 0.03 1.16 ± 0.03
		$0.142 {\pm} 0.003$	1.10 ± 0.03

136

discriminate between photo-, pair-, and Compton-peaks in his pulse spectrum. See also Sa 36, Bl 46c.

The isomeric state decays in about equal numbers by β^+ emission to excited levels in S³⁴ and by γ transitions to the Cl³⁴ ground state. It has been shown by means of the Szilard-Chalmers process that Cl³⁴ is a daughter of Cl^{34m} (Ar 53a). The conversion coefficient of the 142 kev γ ray (14 percent±4 percent) indicates it to be M3 radiation. According to its log ft value of 3.5, the 4.45 Mev β^+ decay is a super-allowed transition and determines the ground state of Cl³⁴ as 0⁺.

The β^+ transitions from Cl^{34m} to the S³⁴ levels at 2.1 and 3.2 Mev are allowed (log ft=5.8, viz., 4.5). The isomeric state is then 3⁺ (Ar 53, St 53, St 53c). Peaslee concludes that the isotopic spin of the ground state is T=1 and of the 142 kev level is T=0 (Pe 53).

For theoretical discussions of the Cl^{34} ground state see Ku 53, De 53a.

II. $P^{31}(\alpha, n)Cl^{34}$ $Q_m = -5.8$

Radioactive Cl³⁴ has been produced from this reaction by α particles from natural radioactive elements (Fr 34, Br 38) and from a 9-Mev cyclotron (Ri 37). No resonances are found.

III. $S^{32}(\alpha, d)Cl^{34}$ $Q_m = -12.4$

This has been the first example of an (α, d) reaction (at $E_{\alpha} = 22$ Mev), although the (α, pn) reaction has not been excluded. The product nucleus was chemically determined as chlorine and an absorption curve of the positrons identified it as $\mathbb{C}l^{34}$ (Sh 40).

IV. $S^{33}(p,\gamma)Cl^{34}$ $Q_m = 5.0$

Not observed.

V.
$$S^{33}(d,n)Cl^{34}$$
 $Q_m = 2.8$

 Cl^{34} has been produced by this reaction (Sa 36, Ho 46).

VI. $S^{34}(p,n)Cl^{34}$ $Q_m = -6.5$

Radioactive Cl^{34} has been produced from this reaction, and the excitation curve has been measured to 100 Mev (Hi 52a).

VII. $Cl^{35}(\gamma, n)Cl^{34}$ $Q_m = -12.8$

The cross section at $E_{\gamma} = 17.6$ Mev is 4.4 ± 1 mb (Wa 48). The integrated cross section is 58 Mev mb (Ed 52). See also Bo 39, Hu 43, Pe 48, Mc 50.

The (γ, n) threshold $(9.95 \pm 0.20 \text{ Mev})$ observed in the bombardment of natural chlorine (Sh 51a) should be assigned to $\mathbb{C}l^{37}(\gamma, n)\mathbb{C}l^{36}$.

VIII. $Cl^{35}(p,pn)Cl^{34}$ $Q_m = -12.8$

 Cl^{34} has been produced in the bombardment of NaCl with 18-Mev protons (Ru 51a, Ti 51).

IX. $Cl^{35}(n,2n)Cl^{34}$ $Q_m = -12.8$

The bombardment of chlorine with neutrons from Li+d yields Cl^{34} (Po 37a). The cross section at $E_n = 14.5$ Mev is 3.5 ± 1.5 mb (Pa 53).

\mathbf{S}^{35}

(not illustrated)

Adopted mass defect: -18.5 Mev

(The mass of S³⁵ is very accurately connected to the Cl³⁵ mass by means of the β^- spectrum end point.)

I. $S^{35}(\beta^{-})Cl^{35}$ $Q_m = 0.2$

The half-life has been given as 80 ± 10 days (An 36), 88 ± 5 days (Le 40), 88 ± 3 days (Ka 41), and 87.1 ± 1.2 days (He 43). Determinations of the β^- spectrum end point are collected in Table XLIII. The Kurie plot is

TABLE XLIII. End point of S³⁵ β^- spectrum.

Author	Method	Endpoint (kev)
Li 39	screen-wall counter	107 ± 20
Ka 41	Al absorbers	120 ± 15
So 47	Al absorbers	167 ± 4
Ya 48	Al absorbers	169 ± 5
Al 48c	magn. spectrom.	166
Be 48b	magn. spectrom.	169 ± 3
Co 48	magn. spectrom.	169.1 ± 0.5
Co 49	prop. counter	168
Gr 50b	electrostat. spectrom.	168.3 ± 4
La 50	magn. spectrom.	167.0 ± 0.5

straight down to the point where source thickness distorts the spectrum (Al 48c, Be 48b, Co 48, La 50, Gr 50b, He 51, Mi 53a) although recent measurements in a diffusion cloud chamber indicate a low-energy cut-off at 10 kev (Pl 53). See also Wu 50.

The log *ft* value is 5.0. A spin $y=\frac{3}{2}$ for S³⁵ is found from microwave experiments (We 51a).

II. $S^{34}(n,\gamma)S^{35}$ $Q_m = 7.0$

The thermal neutron capture cross section has been measured by the S³⁵ activity produced as 0.26 ± 0.05 b (Se 47).

III. $S^{34}(d,p)S^{35}$ $Q_m = 4.8$

Radioactive S^{35} has been produced from this reaction (Ka 41).

IV.
$$S^{36}(\gamma, n)S^{35}$$
 $Q_m = -9.2$

Not observed.

V. $Cl^{35}(n,p)S^{35}$ $Q_m = 0.6$

The thermal neutron cross section has been measured by the S^{35} activity produced as 0.169 ± 0.034 b (Se 47) and as 0.29 ± 0.07 b (Ma 49a). with D(d,n) neutrons as 0.52 ± 0.04 Mev (Gi 44).

See also An 36, Le 40, Ka 41, On 41a, Ka 42.

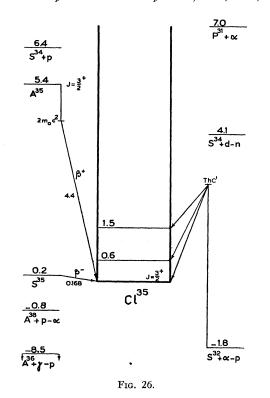
VI. $Cl^{37}(d,\alpha)S^{35}$ $Q_m = 7.7$

Radioactive S³⁵ has been produced from this reaction at $E_d = 14$ Mev (Ka 41).

VII. $A^{38}(n,\alpha)S^{35}$ $Q_m = -0.2$

Not observed.

C1³⁵


Adopted mass defect: -18.7 Mev (see Introduction)

I.
$$S^{32}(\alpha, p)Cl^{35}$$
 $Q_m = -1.8$

With α particles from natural radioactive elements three proton groups are observed with Q values -2.10, -2.7, and -3.6 MeV, indicating levels at 0.6 and 1.5 MeV (Li 37, Ha 35, Br 36). A more recent determination of the ground-state Q value is -2.02 ± 0.11 MeV (Fo 52). With 7 MeV α particles from a cyclotron, a γ ray of $E_{\gamma}=2.4\pm0.3$ MeV is observed by an Al absorption method (Al 48a), which might also result from S³²(α,α')S³².

II. $S^{34}(p,\gamma)Cl^{35}$ $Q_m = 6.4$

With 1 percent energy resolution, resonances are found in the bombardment of sulfur with protons of 0.9 Mev $< E_p < 1.9$ Mev at $E_p = 1.37$, 1.61, 1.69, 1.8,

and 1.86 Mev. As the target shows no radioactivity these resonances are attributed to S^{34} , but in view of the short half-life of Cl³³ capture in S^{32} should not be excluded (Ha 51c).

III. $S^{34}(d,n)Cl^{35}$	$Q_m = 4.1$
Not observed.	
IV. $S^{35}(\beta^{-})Cl^{35}$	See S ³⁵
V. $A^{35}(\beta^+)Cl^{35}$	See A ³⁵
VI. $A^{36}(\gamma, p)Cl^{35}$ Not observed.	$Q_m = -8.5$
	0 00
VII. $A^{38}(p,\alpha)Cl^{35}$	$Q_m = -0.8$

Not observed.

A^{35}

(not illustrated)

Adopted mass defect: -13.3 Mev (Wh 41, El 41)

I. $A^{35}(\beta^+)Cl^{35}$ $Q_m = 5.4$

The half-life is given as $2.2\pm0.2 \text{ sec}$ (Wh 41), 1.88 $\pm 0.04 \text{ sec}$ (El 41), and 1.84 sec (Sc 48). The β^+ spectrum end point is measured by cloud chamber as 4.38 ± 0.07 Mev (Wh 41) and 4.41 ± 0.09 Mev (El 41). The log ft value is 3.5, the usual value for super-allowed transitions between mirror nuclei.

II.
$$S^{32}(\alpha, n)A^{35}$$
 $Q_m = -8.1$

Radioactive A^{35} has been found from this reaction (El 41, Sc 48).

III.
$$Cl^{35}(p,n)A^{35}$$
 $Q_m = -6.2$

Radioactive A^{35} has been found from this reaction (Wh 41).

IV.
$$A^{36}(\gamma, n)A^{35}$$
 $Q_m = -14.7$

Not observed.

\mathbf{S}^{36}

(not illustrated)

Adopted mass defect: -19.3 Mev

(The adopted mass defect is based on microwave determinations of the $S^{36}-S^{34}$ mass difference (Lo 49).)

I.
$$Cl^{37}(\gamma, p)S^{36}$$
 $Q_m = -9.2$

Not observed.

II.
$$A^{40}(\gamma, \alpha)S^{36}$$
 $Q_m = -7.6$

Alpha particles from this reaction have perhaps been observed as a background of large pulses from an argonfilled ionization-chamber bombarded by 17.6-Mev γ rays (Wi 51).

C136

Adopted mass defect: -18.9 Mev

(The adopted mass defect is based on the mass of A^{36} and the end point of the $Cl^{36}(\beta^-)A^{36}$ spectrum.)

I. $Cl^{36}(\beta^{-})A^{36}$ $Q_m = 0.7$

The half-life has been reported as about 10^6 yr (Ov 47a) and $(0.44\pm0.05)\times10^{-6}$ yr (Wu 49). The latter value has been obtained by measuring the absolute decay rate from a NaCl sample, of which the isotopic concentration of Cl³⁶ was determined by microwave spectrometry of ClCN. See also On 41a.

The end point of the β^{-} spectrum is 0.714 \pm 0.005 Mev (Fe 52, Wu 49). See also Gr 41, Ov 47a. The shape of the beta spectrum has been investigated extensively with thin sources and is consistent with a $\Delta J=2$, no, transition (Wu 50, Fu 51, Fe 52). The log *ft* value is 13.4. The number of positrons is less than 10⁻⁴ times the number of electrons (Wu 49, Jo 49), and no γ rays are present with energy $E_{\gamma} > 20$ kev and an intensity of more than 5 percent (Wu 49).

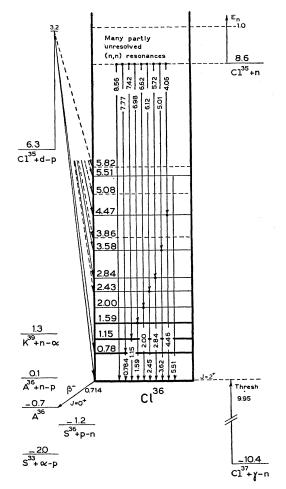


FIG. 27.

TABLE XLIV. Gamma rays from thermal neutron capture in chlorine.

Author	Ki 5	52	Ha 52b	Re 53		Br 53a Two- crystal
Method	Pai spectro	meter Inten-	Scintillation spectrometer	Two-crys scintillati spectrome	on	scintil- lation spec- trometer
Line	Energy in Mev	sity per 100 captures	Energy in Mev	Energy in Mev	Rel. int.	Energy in Mev
B C D E F G H I J K	$\begin{array}{c} 8.56 \pm 0.03\\ 7.77 \pm 0.03\\ 7.42 \pm 0.03\\ 6.98 \pm 0.03\\ 6.62 \pm 0.06\\ 6.12 \pm 0.03\\ 5.72 \pm 0.03\\ 5.51 \pm 0.03\\ 5.51 \pm 0.03\\ 4.46 \pm 0.04\\ 4.06 \pm 0.04\\ 3.62 \pm 0.05\\ \end{array}$	$ \begin{array}{c} 10 \\ 8 \\ 1 \\ 4 \\ 6 \\ 2 \\ 1 \\ 4 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	7.7 ± 0.2 6.2 ± 0.2 2.00 ± 0.025 1.59 ± 0.013 1.15 ± 0.010 0.784 ± 0.010	4.67 ± 0.10 3.71 ± 0.10 2.68 ± 0.10 2.40 ± 0.10 2.03 ± 0.10 1.77 ± 0.10 1.12 ± 0.10 0.70 ± 0.10	(10) (14) (19) (29)	2.84 2.45 1.14 0.75 0.48

A spin J=2 is obtained for Cl³⁶ by microwave experiments (To 49, Jo 51, Gi 52a).

For theoretical discussions of the Cl^{36} ground state see Ku 53, De 53a.

In principle the decay $Cl^{36}(E.C.)S^{36}$ with $Q_m = 0.4$ Mev is also possible, but this has not been observed.

II.
$$S^{33}(\alpha, p) Cl^{36} \qquad Q_m = -2.0$$

Not observed.

III.
$$S^{36}(p,n)Cl^{36}$$
 $Q_m = -1.2$

Not observed.

IV.
$$Cl^{35}(n,\gamma)Cl^{36}$$
 $Q_m = 8.6$

The thermal neutron absorption cross section of natural chlorine is 31.3 ± 0.8 b (Co 50), 31.5 ± 1.6 b (Hu 50), and 32.7 ± 1.6 b (Po 51) as measured by the pile oscillator method. See also La 40, Vo 43, Co 46a. As the Cl³⁷ capture cross section is small, this large cross section is mainly due to Cl³⁵.

The γ rays resulting from thermal neutron capture have been extensively investigated by several authors. See Table XLIV and also Ra 35, Ku 49, Mi 50a, Ha 50b. The 8.56-Mev line corresponds to the groundstate transition. Besides the 0.48-Mev line, all other lines can be explained by cascades from the capturing state through one excited state to the ground state. The average Q value of this reaction is 8.57 ± 0.03 Mev (Ha 52b).

V. $Cl^{35}(n,n)Cl^{35}$ $E_b = 8.6$

The data on the total neutron cross section of natural chlorine up to $E_n = 400$ ev are given by Adair (Ad 50).

In the region from $E_n=0.15$ to 1 Mev resonances are found by use of Li(p,n) neutrons with an average level distance of 14 kev. The average cross section in this region is 2.5 b (Ki 53c). See also Sn 53. In the energy range from 2.2 to 2.85 Mev the cross section is between 2.66 and 2.84 b (Ao 39) or about 3 b (Dv 53). At $E_n=2.85$ Mev $\sigma=3.42\pm0.16$ b has been found (Zi 39) and $\sigma=2.00\pm0.05$ b at 14 Mev (Co 52a).

VI. $Cl^{35}(d, p)Cl^{36}$ $Q_m = 6.3$

Q values from bombardment of enriched targets with 3.2-Mev deuterons are 6.31, 5.35, and 1.50 Mev, corresponding to the ground-state transition and transitions to levels at 0.96 and 4.81 Mev (Sh 41). With natural chlorine targets 10 proton groups are observed with Q=6.26, 3.94, 3.46, 3.03, 2.76, 2.40, 1.84, 1.18, 0.69, and 0.44 Mev. The 6.26-Mev Q value is the ground-state transition in $\text{Cl}^{35}(d,p)\text{Cl}^{37}$ (En 51b). The 3.94- and 3.03-Mev Q values have probably to be assigned to $\text{Cl}^{37}(d,p)\text{Cl}^{38}$ according to the results of Shrader and Pollard. See also Po 40a.

The angular distribution of the ground-state proton group has been measured with nuclear emulsions at $E_d=6.90$ Mev and 7.8 Mev. Butler analysis yields $l_n=2$ in both cases, with less than 4 percent admixture of $l_n=0$ (Ki 52a, Ki 53b).

VII. $Cl^{37}(\gamma, n)Cl^{36}$ $Q_m = -10.4$

The photoneutron threshold of natural chlorine is 9.95 ± 0.20 Mev (Sh 51a). This value should be assigned to the Cl³⁷ isotope, as the calculated threshold of Cl³⁵(γ ,n)Cl³⁴ is considerably higher (-12.9 Mev).

VIII.
$$A^{36}(n,p)Cl^{36}$$
 $Q_m = 0.1$

Not observed.

IX.
$$K^{39}(n,\alpha)Cl^{36} \qquad Q_m = 1.3$$

Not observed.

\mathbf{A}^{36}

(not illustrated)

Adopted mass defect: -19.6 Mev (see Introduction)

I. $S^{33}(\alpha,n)A^{36}$ $Q_m = -2.0$ Not observed.

II. $Cl^{35}(p,\gamma)A^{36}$ $Q_m = 8.5$

Eighty-six sharp resonances in the γ -ray yield from targets containing natural chlorine were found for proton energies between 500 and 2150 kev. From targets enriched in Cl³⁵ resonances were observed at 858, 888, 1102, 1258, 1484, and 1510 kev (Br 51). See also Cu 39, Ta 46.

III.
$$Cl^{35}(d,n)A^{36}$$
 $Q_m = 6.3$
Not observed.

IV.
$$Cl^{36}(\beta^{-})A^{36}$$
 See Cl^{36}

V. $K^{39}(p,\alpha)A^{36}$ $Q_m = 2.0$ Not observed.

S^{37}

(not illustrated)

Adopted mass defect: -16.6 Mev (Bl 46)

(The mass of S³⁷ is connected to the Cl³⁷ mass through the end point of the β^- spectrum.)

I. $S^{37}(\beta^{-})Cl^{37}$ $Q_m = 4.3$

The half-life is 5.04 ± 0.02 min. The β^- spectrum has been measured by Al absorption. It consists of two components with the following endpoints and relative intensities: 4.3 ± 0.3 Mev (10 percent) and 1.6 ± 0.1 Mev (90 percent). The second component is in coincidence with a 2.7 ± 0.2 Mev γ ray (Bl 46). The β^- ground state transition is evidently forbidden $\lceil \log ft = 7.0$ and $\log(W_0^2 - 1)$ ft = 9.0] while the transition to the 2.7-Mev level in Cl³⁷ is allowed ($\log ft = 4.2$).

II. $S^{36}(n,\gamma)S^{37}$ $Q_m = 5.7$

The thermal neutron activation cross section is 0.14 ± 0.04 b (Hu 52).

III.
$$S^{36}(d, p)S^{37}$$
 $Q_m = 3.4$

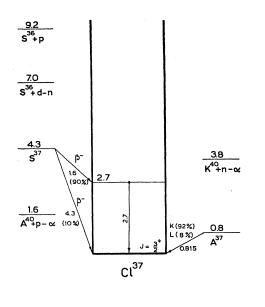
Not observed.

IV.
$$Cl^{37}(n,p)S^{37}$$
 $Q_m = -3.5$

The S³⁷ activity is produced by fast neutrons on chlorine (Bl 46). The cross section at $E_n = 14.5$ Mev is 33 ± 7 mb (Pa 53).

V.
$$A^{40}(n,\alpha)S^{37}$$
 $Q_m = -2.0$

In the bombardment of argon gas in an ionization chamber with 2.5 Mev neutrons an α -particle group is observed corresponding to a Q value of 1.8 Mev and a cross section of 0.1 mb (Gr 46). In view of the large discrepancy with the Q value calculated from the S³⁷ adopted mass ($Q_m = -2.0$ Mev) it may safely be assumed that the observed α -particle group must be assigned to the A³⁶(n,α)S³³ reaction ($Q_m = +2.0$ Mev).


C137

Adopted mass defect: -20.9 Mev (see Introduction)

I. $S^{37}(\beta^{-})Cl^{37}$ See S^{37}

II. A³⁷(E.C.)Cl³⁷ See A³⁷

No other reactions have been observed giving information on this nucleus. It can be reached in principle

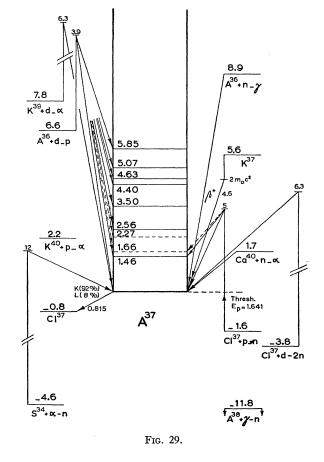
<u>_30</u> ³⁴+&-p

Fig. 28.

by $S^{34}(\alpha,p)Cl^{37}$ $(Q_m = -3.0)$, $S^{36}(p,\gamma)Cl^{37}$ $(Q_m = 9.2)$, $S^{36}(d,n)Cl^{37}$ $(Q_m = 7.0)$, $A^{38}(\gamma,p)Cl^{37}$ $(Q_m = -10.2)$, $A^{40}(p,\alpha)Cl^{37}$ $(Q_m = 1.6)$, and $K^{40}(n,\alpha)Cl^{37}$ $(Q_m = 3.8)$.

A^{37}

Adopted mass defect: -20.1 Mev


(The A³⁷ adopted mass is based on the $Cl^{37}(p,n)A^{37}$ threshold determinations. It checks very well with the observed *K*-capture energy release and with the measured A³⁶(d,p)A³⁷ Q value.)

I. $A^{37}(E.C.)Cl^{37}$ $Q_m = 0.8$

The half-life is given as 34.1 ± 0.3 days (We 44) and 35.0 ± 0.4 days (Mi 52a).

By proportional-counter measurements it has been found that besides K capture also L capture exists with $\lambda_L/\lambda_K = 0.08$ to 0.09 (Po 49a). The Auger conversion coefficient of K radiation is given as $W_K = 0.96 \pm 0.03$ (We 44). The energy spectrum of continuous γ radiation (internal bremsstrahlung) has been measured both by Pb absorption and by scintillation spectrometer. The endpoint is at 815 ± 15 kev and the shape of the spectrum agrees with the theory developed for allowed transitions (An 53). These results are confirmed in an independent investigation (Si 54). The K-capture energy release is also found by measurement of the time-offlight spectrum of Cl³⁷ recoil ions. The recoil energy is measured as 9.7 ev, while 9.67 ± 0.08 ev is calculated from the known Cl³⁷(p,n) threshold (Ro 52).

The log ft value is 5.0.

II. $S^{34}(\alpha, n)A^{37}$ $Q_m = -4.6$

Radioactive A^{37} has been produced from this reaction (We 44).

III. $Cl^{37}(p,n)A^{37}$ $Q_m = -1.6$

The threshold has been measured as $E_p = 1.60$ Mev (Bl 51), 1640 ± 4 kev (Ri 50) and 1641 ± 2 kev (Sc 52a). By nuclear emulsion technique neutron groups have been found with Q values of -1.58 and -2.99 Mev corresponding to a A^{37} level at 1.41 ± 0.05 Mev (St 52c). By the same method A^{37} levels were found at 1.40 and 1.65 Mev (Gr 50c). See also We 44.

See A³⁸ for resonances.

IV.
$$Cl^{37}(d,2n)A^{37}$$
 $Q_m = -3.8$

Radioactive A^{37} has been found from this reaction (We 44).

V. $A^{36}(n,\gamma)A^{37}$ $Q_m = 8.9$

The thermal neutron capture cross section measured by the A^{37} activity produced is 6.5 ± 1.0 b (Mc 50a).

VI. $A^{36}(d,p)A^{37}$ $Q_m = 6.6$

In Table XLV Q values and A^{37} levels are given measured from deuteron bombardment of argon gas

Author Ea (Mev)	Da - 3.		Zu 3.	
	Q values (Mev)	A ³⁷ levels (Mev)	Q values (Mev)	A ³⁷ levels (Mev)
	6.59 ± 0.03	0	6.49 ± 0.08	0
	5.06 ± 0.03	1.53	5.05 ± 0.05	1.44
	4.92 ± 0.05	1.67	• • • •	
	4.32 ± 0.05	2.27		• • •
	4.03 ± 0.03	2.56	3.93 ± 0.05	2.56
	3.13	3.46	2.95 ± 0.05	3.54
		• • •	2.09 ± 0.07	4.40
	•••	•••	1.86 ± 0.07	4.63
	1.58	5.01	1.42 ± 0.03	5.07
			$0.64 {\pm} 0.07$	5.85

TABLE XLV. Levels in A^{37} from $A^{36}(d,p)A^{37}$.

enriched in A³⁶ content and from proton energy determinations by Al absorption.

VII.
$$A^{38}(\gamma, n)A^{37}$$
 $Q_m = -11.8$

Not observed.

VIII.
$$K^{39}(d,\alpha)A^{37}$$
 $Q_m = 7.8$

Radioactive A^{37} has been found from this reaction (We 44).

IX. $K^{40}(p,\alpha)A^{37}$ $Q_m = 2.2$

Not observed.

X. $Ca^{40}(n,\alpha)A^{37}$ $Q_m = 1.7$

Radioactive A^{37} is produced by pile irradiation of calcium (Ro 52). See also We 44.

\mathbf{K}^{37}

(not illustrated)

Adopted mass defect: -14.5 Mev

(The adopted mass defect is based on the adopted mass of A^{37} and the $K^{37}(\beta^+)A^{37}$ decay energy.)

I. $K^{37}(\beta^+)A^{37}$ $Q_m = 5.6$

The half-life is measured as 1.3 ± 0.1 sec (La 48) and 1.2 ± 0.2 sec (Bo 51). The positron end point has been measured with a scintillation spectrometer as 4.57 ± 0.13 Mev (Bo 51). The log *ft* value is 3.4 in agreement with other log *ft* values of super-allowed transitions between mirror nuclei.

The assignment to K^{37} of the half-life and positron end point reported above has recently been made very uncertain by Stähelin's measurements on K^{38} (St 53b). See K^{38} "General Remarks."

II. $A^{36}(p,\gamma)K^{37}$ $Q_m = 2.5$

No resonances have been found in the bombardment with protons of $0.5 < E_p < 1.8$ Mev of silver targets containing separated A³⁶ (Br 48a).

III.
$$A^{36}(d,n)K^{37}$$
 $Q_m = 0.2$
Not observed.

IV. $K^{39}(\gamma, 2n)K^{37}$ $Q_m = -24.6$

By this reaction K³⁷ has been produced with x-rays from a 70-Mev synchrotron (La 48, Bo 51). See also K³⁸ "General Remarks."

V.
$$Ca^{40}(p,\alpha)K^{37}$$
 $Q_m = -4.7$

Not observed.

C1³⁸

Adopted mass defect: -18.6 Mev

(The adopted mass defect is based on the measured Cl^{38} beta-decay energy release and gives good agreement with the measured $Cl^{37}(d,p)Cl^{38}Q$ value.)

I. $Cl^{38}(\beta^{-})A^{38}$ $Q_m = 4.9$

The half-life is determined as 37.0 min (Va 36), 37.5 min (Hu 37, Cu 40), 37.3 ± 0.3 min (Wa 39), 38.5 ± 0.5 min (Ho 46), and 37.29 ± 0.04 min (Co 50a).

The β^- spectrum is complex and can be analyzed into three branches. Two γ rays are observed. Their energies and relative intensities determined by magnetic spectrometer are given in Table XLVI. The intensity of a potential 3.75-Mev crossover γ ray is less than 0.03 percent per β particle (My 49). The shape of the highenergy β^- spectrum and its ft value [log ft=7.5 and log(W_0^2-1) ft=9.5] are characteristic for once-forbidden transitions ($\Delta J=2$, yes) (La 50a, Wu 50). The

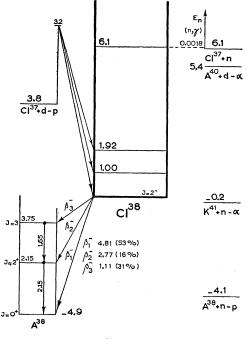


FIG. 30.

TABLE XLVI. Beta decay of Cl³⁸.

Author	Wa 39	Cu 40	It 41	Ho 46	La 50a
$\overline{E\beta_1}$ (Mev)	4.99 ± 0.06			5.2	4.81±0.05
$E\beta_2$ (Mev)				(53%) 2.70	(53.4%) 2.77 \pm 0.05
Es ₃ (Mev)	1.08 ± 0.06			(11%)	(15.8%) 1.11+0.01
,	1002000	0.15	0.10 + 0.02	(36%) 2.15	(30.8%)
E_{γ_1} (Mev)		2.15 (57%)	2.19 ± 0.03 (53%)	(57%)	
E_{γ_2} (Mev)		(43%)	1.64 ± 0.02 (47%)	(43%)	

 β^- transitions to the 2.15-Mev level are also forbidden (log ft=6.9) while those to the 3.75-Mev level are allowed (log ft=4.9). From the data given above and from the measured $\gamma - \gamma$ angular correlation (Wa 41, Ki 42, St 50) spins and parities can be assigned as shown in the A³⁸ level diagram. The parity of the A³⁸ 3.75 Mev level is still in doubt. Odd parity follows from the low ft value (log ft=4.9) of the β^- transition to this level, but the $\gamma - \gamma$ angular correlation measurements would point to even parity. See also Al 35b, Ku 36, Ri 36a, Ak 41.

For theoretical discussions of the Cl^{38} ground state see Ku 53, De 53a.

II. $Cl^{37}(n, \gamma)Cl^{38}$ $Q_m = 6.1$

The thermal neutron capture cross section is meassured from the resulting Cl³⁸ activity as 0.3 b (On 41), 0.38 b (Si 41a), and 0.56 ± 0.11 b (Se 47). At about 1 Mev the capture cross section is 0.74 mb (Hu 53a). See also Hu 49. A resonance at $E_n=1.8$ kev has been observed by a boron-absorption method (Li 47). See also Am 35, Ke 40, On 41a.

III. $Cl^{37}(n,n)Cl^{37}$ $E_b = 6.1$

For resonances in the chlorine total neutron cross section see Cl^{36} .

IV. $Cl^{37}(d,p)Cl^{38}$ $Q_m = 3.8$

From enriched target bombardments at $E_d = 3.2$ Mev and proton energy measurement by Al absorption Qvalues are found of 4.02, 3.02, and 2.10 Mev, corresponding to Cl³⁸ levels at 1.00 and 1.92 Mev (Sh 41).

See also Va 36, Ku 36, Po 40a, Ak 41, Ho 46, Cl 46a, En 51b.

V. $A^{38}(n,p)Cl^{38}$ $Q_m = -4.1$

Not observed.

VI.
$$A^{40}(d,\alpha)Cl^{38}$$
 $Q_m = 5.4$

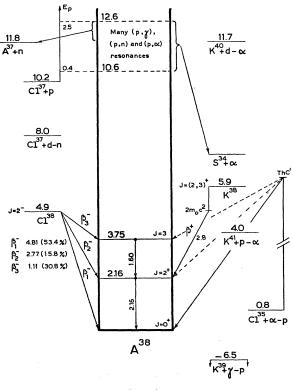
A weak β^- activity with 5-Mev end point observed by cloud chamber after the bombardment of argon with 5.3 Mev deuterons might be ascribed to this reaction (Ku 36, Bl 46a). VII. $K^{41}(n,\alpha)Cl^{38}$ $Q_m = -0.2$

Radioactive Cl³⁸ has been found from the bombardment of potassium by fast neutrons (Hu 37). The cross section at $E_n = 14.5$ Mev is 31 ± 11 mb (Pa 53).

A³⁸

Adopted mass defect:
$$-23.5$$
 Mev (see Introduction)

I. $Cl^{35}(\alpha, p)A^{38}$ $Q_m = 0.8$


From bombardment of natural chlorine by ThC' α particles and determination of proton energies by absorption in air Q values are found of 0.1, -2.5, and -4.2 Mev (Po 36a, Li 37). This experiment has been repeated with cyclotron α particles of $E_{\alpha}=7.45$ Mev and proton energy determination by Al absorption. From targets enriched in Cl³⁵ Q values are found of 0.81 ± 0.08 , -1.32 ± 0.08 , and -2.92 ± 0.08 Mev, corresponding to A³⁸ levels at 2.13 ±0.04 and 3.73 ±0.04 Mev (Kr 53).

For Q values see A^{37} .

The energies of γ rays from this reaction have been measured by pair formation in a β spectrometer as $E_{\gamma}=1.7\pm0.2$, 2.7 ± 0.3 , and 3.9 ± 0.4 Mev (Ma 37, Ma 41).

II.
$$Cl^{37}(d,n)A^{38} \qquad Q_m = 8.0$$

Not observed.

III. $Cl^{37}(p,\gamma)A^{38}$ $Q_m = 10.2$

Eighty-six sharp resonances in the γ -ray yield from targets containing natural chlorine were found for proton energies between 500 and 2150 kev. From targets enriched in Cl³⁷ a resonance was observed at 1090 kev (Br 51). From natural chlorine also resonances were found at 427, 447, 500, and 532 kev (Ta 46) and at 650, 800, and 1000 kev (Cu 39). The maximum γ -ray energy at the last three resonances has been measured by Al absorption as 14.5 Mev (Cu 39).

IV. $Cl^{37}(p,n)A^{37}$ $E_b = 10.2$ $Q_m = -1.6$

Some 130 resonances in the neutron yield are found from natural chlorine targets for proton energies from threshold (at 1641 ± 2 kev) to $E_p=2150$ kev (Sc 52a). For a list of resonance energies, relative intensities, and widths one is referred to the original paper. All these resonances can be assigned to Cl^{37} because the $Cl^{35}(p,n)A^{35}$ threshold is at $E_p=6.4$ Mev.

The region from threshold to $E_p = 2300$ kev has also been surveyed by Broström *et al.* They reported 47 resonances from natural chlorine targets and resonances at 1928, 1974, 2014, 2028, 2079, and 2108 kev from targets enriched in Cl³⁷ (Br 51). The A³⁷ yield has been measured from threshold to $E_p = 6.2$ Mev and shows many incompletely resolved resonances (Bl 51).

For Q values see A^{37} .

V. $Cl^{37}(p,\alpha)S^{34}$ $E_b = 10.2$ $Q_m = 3.0$

Ten resonances in the α -particle yield are reported for proton energies between 1450 and 2040 kev. They are assigned to Cl³⁷ because the Q value measured by proportional counter pulse-height analysis (Q=3.2Mev) agrees with the Q value expected from masses (Br 51).

VI. Cl ³⁸	$(\beta^{-}$	·)A ³⁸	See	Cl^{38}	
----------------------	--------------	-------------------	-----	-----------	--

- VII. $K^{38}(\beta^+)A^{38}$ See K^{38}
- VIII. $K^{39}(\gamma, p)A^{38}$ $Q_m = -6.5$

Not observed.

IX. $K^{40}(d,\alpha)A^{38}$ $Q_m = 11.7$

Not observed.

X. $K^{41}(p,\alpha)A^{38}$ $Q_m = 4.0$ Not observed.

K³⁸

(not illustrated)

Adopted mass defect: -17.6 Mev

(This mass defect agrees equally well with the energy release in $K^{88}(\beta^+)A^{38}$, as with the threshold of the $K^{89}(\gamma,n)K^{38}$ reaction.)

I. $K^{38}(\beta^+)A^{38}$ $Q_m = 5.9$ Mev

The half-life has been measured as 7.75 ± 0.15 min (Hu 37), 7.5 ± 0.1 min (He 37a), 7.65 ± 0.1 min (Ri 37), 7.5 min (Po 37a), 8.0 ± 0.4 min (Hu 43, Hu 42), 7.5 min (Ra 47), 7.6 min (Pe 48), 7.6 min (Wa 50a), 7.7 min (Gr 51b), and 7.5 min (Ed 52).

The positron end point is measured by Al absorption as 2.6±0.1 Mev (He 37a, Hu 37, Bl 46c) and 2.53 Mev (Ra 47), and by a double-lens spectrometer as 2.8 Mev (Gr 51b). Moreover, a γ ray is present of $E_{\gamma}=2.08$ ±0.08 Mev measured by the Compton electrons from an Al radiator (Ra 47), or 2.16±0.03 Mev measured by scintillation spectrometer (Ti 51). A level in A³⁸ at 2.15 Mev is also found in the decay of Cl³⁸. The K³⁸ β^+ decay is allowed (log ft=5.0).

For theoretical discussions of the K^{38} ground state see Ku 53, De 53a.

See also K³⁸ "General Remarks."

II. $Cl^{35}(\alpha, n)K^{38}$ $Q_m = -5.9$

Radioactive K³⁸ has been produced by this reaction by many investigators (He 37a, Hu 37, Ri 37, Ra 47) with $E_{\alpha}=7$ Mev and higher. The excitation curve for the bombardment of natural chlorine has been measured up to 8 Mev (Po 38a).

III.
$$A^{38}(p,n)K^{38}$$
 $Q_m = -6.7$

Not observed.

IV.
$$K^{39}(\gamma, n)K^{38}$$
 $Q_m = -13.2$

The threshold is 13.2 ± 0.2 Mev (Mc 49). The cross section at $E_{\gamma}=17.5$ Mev is given as 5.4 ± 1.4 mb (Wa 48) and as 9 mb (Mc 50) and the integrated cross section as 76-Mev mb (Ed 52). See also Hu 42, Hu 43, Pe 48. See also K³⁸ "General Remarks."

V. $K^{39}(n,2n)K^{38}$ $Q_m = -13.2$

The cross section of this reaction for neutrons produced by bombardment of Li with deuterons ($E_n \leq 13.8$ Mev) is about 9 mb (Wa 50a); for T(d,n) neutrons ($E_n=14.5$ Mev) 10 ± 5 mb (Pa 53). See also Po 37a, Co 51.

VI. $K^{39}(p,pn)K^{38}$ $Q_m = -13.2$

In the bombardment of KI with 18-Mev protons K³⁸ has been produced (Gr 51b, Ti 51).

VII. $Ca^{40}(d,\alpha)K^{38}$ $Q_m = 4.5$

The ground-state Q value has been measured by magnetic analysis ($\vartheta = 90^{\circ}$) as 4.650 ± 0.010 Mev (Br 54a). See also Hu 37.

GENERAL REMARKS

Recently an 0.95 ± 0.03 sec activity has been observed (St 53b) from the bombardment of potassium

with betatron γ rays. The yield was about equal to that of the 7.7-min activity for betatron energies between 16.5 and 31 Mev. The new activity cannot be assigned to K^{37} because the threshold of the $K^{39}(\gamma, 2n)$ reaction is about 25 Mev. It is suggested that the new activity be assigned to the K³⁸ ground-state decay, while the 7.7-min activity belongs to K^{38m} . The 1 sec period was also observed earlier, but it was then assigned to K³⁷ (La 48, Bo 51). If the observed positron endpoint of 4.57 ± 0.13 Mev (Bo 51) is also assigned to K^{38} the isomeric state comes out at 0.38 ± 0.3 Mev above the K^{38} ground state. From the fact that the β^+ transitions from K³⁸ to the A³⁸ ground state and from K^{38m} to the $J=2^+$ level in A³⁸ at 2.16 Mev are both allowed (log ft = 3.35 and 5.0) while no γ transitions are observed from K^{38m} to K³⁸, it can be concluded that the K^{38} spin is $J=0^+$ and the K^{38m} spin is $J=3^+$. The K^{38} ground state is then the T=1 analog of the A³⁸ ground state (St 53b, St 53c). See also Mo 53b.

C1³⁹

(not illustrated)

Adopted mass defect: -18.8 Mev

(The adopted mass defect is based on the A³⁹ mass defect and the Cl³⁹ beta-decay energy release. It gives poor agreement with the $A^{40}(\gamma, p)$ Cl³⁹ Q value measured by Wilkinson *et al.* (Wi 51).)

I. $Cl^{39}(\beta^{-})A^{39}$ $Q_m = 3.0$

The half-life is given as 55.5 ± 0.2 min (Ha 50a) and 56.5 min (Ru 52b). By analysis of an Al absorption curve the β^- decay is shown to proceed through two branches with the following end points and relative intensities: 2.96 ± 0.04 Mev (7 percent) and 1.65 ± 0.03 Mev (93 percent). The former transition is forbidden (log ft=7.6 and log(W_0^2-1)ft=9.3), while the latter is allowed (log ft=5.4). There are γ rays of 0.35 ± 0.05 Mev (conversion coefficient ≥ 0.05), 1.35 ± 0.05 Mev and possibly 3.2 Mev (0.11 percent). The 1.65 Mev β^- branch is in coincidence with γ rays and also $\gamma - \gamma$ coincidences have been observed (Ha 50a).

The Cl^{s9} decay can best be explained by assuming A^{s9} levels at 1.33 and perhaps at 1.68 Mev (Nu 53).

II. $S^{36}(\alpha, p)Cl^{39}$ $Q_m = -4.5$

A 1.1-hr activity has been observed from the bombardment of sulfur by 16-Mev α particles (Ki 39a).

III. $A^{40}(\gamma, p)Cl^{39}$ $Q_m = -12.1$

The threshold for this reaction is reported as 14.2 ± 0.2 Mev (Ha 50a). This value is probably too high because no correction was applied for penetration of the proton through the Coulomb barrier. The *Q* value at $E_{\gamma}=17.6$ Mev [Li(p,γ) radiation] has also been measured from proportional counter pulse-height analysis as -10.8 ± 0.1 Mev. A second proton group may be present leading to a Cl³⁹ level at about 1 Mev (Wi 51).

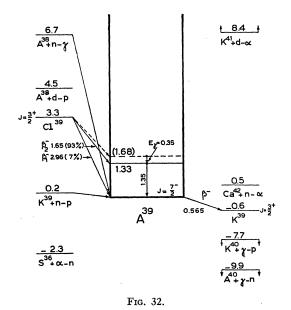
A³⁹

Adopted mass defect: -21.8 Mev

(The adopted mass defect is based on the K^{39} mass defect and the A^{39} beta-decay energy release.)

I. $A^{39}(\beta^{-})K^{39}$ $Q_m = 0.6$

The half-life has been measured as 265 ± 30 years by absolute β counting in a lens spectrometer and massspectrometric analysis of a radioactive argon gas sample (Ze 52). This is in agreement with measurements of Haslam *et al.* (Ha 50a) who find the half-life to be greater than 5 years, and with measurements of Hälg (Ha 51d) who proves that the half-life cannot be between 1 and 30 min. Formerly half-lives of 4 min (Po 37a), 160 ± 5 sec (Zu 50), and 145 ± 15 sec (Ho 51) were assigned to A³⁹.


The β^- spectrum end point is determined by lensspectrometer as 565 ± 5 kev. The shape of the spectrum is first forbidden ($\Delta J=2$, yes) which agrees with the high ft value (log ft=9.9 and log(W_0^2-1) ft=10.4) (Br 50b). No γ rays are observed (Br 50b, An 52).

The β^- end point of the 160-sec activity observed by Zucker and Watson is determined by Al absorption as about 2.1 Mev (Zu 50).

II. Cl³⁹(β⁻)A³⁹ See Cl³⁹

III. $A^{38}(n,\gamma)A^{39}$ $Q_m = 6.7$

The thermal neutron activation cross section is measured as 0.8 ± 0.2 b (Ka 52a).

IV. $A^{38}(d,p)A^{39}$ $Q_m = 4.5$

From bombardments of argon gas enriched to 1.2 percent in A^{38} content with 3.8-Mev deuterons and proton energy measurement by Al absorption, it is deduced that the ground-state Q value is smaller than 5 Mev (An 52). See also Zu 50.

V. $A^{40}(\gamma, n)A^{39}$ $Q_m = -9.9$

A 145 \pm 15 sec activity is observed from the bombardment of argon gas with the γ rays of a 70-Mev synchrotron (Ho 51). The assignment is unknown at present.

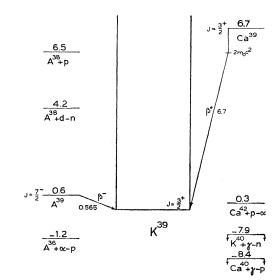
VI. $K^{39}(n,p)A^{39}$ $Q_m = 0.2$

Radioactive A³⁹ is produced by pile irradiation of potassium (Br 50b, Ze 52). See also Po 37a, Ha 51c.

VII. The following reactions leading to A³⁹ have not been observed:

S³⁶(
$$\alpha, n$$
)A³⁹ ($Q_m = -2.3$), K⁴⁰(γ, p)A³⁹ ($Q_m = -7.7$),
K⁴¹(d, α)A³⁹ ($Q_m = 8.4$), Ca⁴²(n, α)A³⁹ ($Q_m = 0.5$).

 K^{39}


Adopted mass defect: -22.4 Mev (see "Introduction")

I. $A^{39}(\beta^{-})K^{39}$ See A^{39}

II. $Ca^{39}(\beta^+)K^{39}$ See Ca^{39}

No other reactions proceeding to K^{39} have been observed. As K^{39} is the most abundant K isotope (93.1 percent) scattering experiments with protons, neutrons, deuterons, and alpha's should be feasible. Other reactions which would yield information on excited states in K^{39} are

III. $A^{36}(\alpha, p)K^{39}$ $Q_m = -1.2$

IV.
$$A^{38}(p,\gamma)K^{39}$$
 $Q_m = 6.5$
V. $A^{38}(d,n)K^{39}$ $Q_m = 4.2$
VI. $K^{40}(\gamma,n)K^{39}$ $Q_m = -7.9$
VII. $Ca^{40}(\gamma,p)K^{39}$ $Q_m = -8.4$
VIII. $Ca^{42}(p,\alpha)K^{39}$ $Q_m = 0.3$

Ca³⁹

(not illustrated)

Adopted mass defect: -15.7 Mev

(The adopted mass defect is in good agreement with the observed $\operatorname{Ca}^{40}(\gamma, n)\operatorname{Ca}^{39}$ threshold and is about halfway between the values following from the two determinations of the $\operatorname{Ca}^{39}(\beta^+)$ decay energy.

An argument against the adopted mass defect would be the resulting high ft value for the Ca³⁹ decay (log ft= 4.0). A mass defect of -17.1 Mev would yield log ft= 3.5 which is the usual value for super-allowed transitions between mirror nuclei.)

I. $Ca^{39}(\beta^+)K^{39}$ $Q_m = 6.7$

The half-life is given as 1.06 ± 0.03 sec (Hu 43), 1.1 ± 0.2 sec (Bo 51), 1.00 ± 0.03 sec (Su 53), and 1.00 ± 0.05 sec (Br 53). The assignment of a 4.5-min period formerly ascribed to Ca³⁹ is unknown at present (Po 37a, Wa 40).

The end point of the positron spectrum is determined by scintillation spectrometer as 5.13 ± 0.15 Mev (Bo 51) and by Al absorption as 6.7 ± 0.5 Mev (Br 53).

II.
$$A^{36}(\alpha, n) Ca^{39} \qquad Q_m = -8.7$$

Not observed.

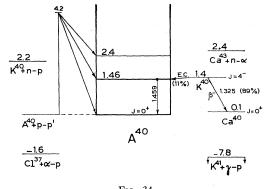
III.
$$K^{39}(p,n)Ca^{39}$$
 $Q_m = -7.5$

Not observed.

IV.
$$Ca^{40}(\gamma, n)Ca^{39}$$
 $Q_m = -15.9$

The threshold is measured as 15.8 ± 0.1 Mev (Su 53), 15.9 ± 0.4 Mev (Mc 49), and as 16.0 ± 0.3 Mev (Be 47a).

The cross section shows a maximum of 15 mb at 19.3 Mev with a half-width of 4.2 Mev. The integrated cross section is $\int \sigma dE = 69$ Mev mb (Su 53).


The cross section for 17.5-Mev γ rays from the Li(p,γ) reaction is given as 2.4 \pm 0.6 mb (Wa 48) and 1.1 mb (Mc 50).

 \mathbf{A}^{40}

Adopted mass defect: -23.3 Mev (see "Introduction")

I.
$$Cl^{37}(\alpha, p)A^{40}$$
 $Q_m = -1.6$

The yield from this reaction at $E_{\alpha} = 7.45$ Mev was found to be very low, even from targets enriched to 62 percent in Cl³⁷ content (Kr 53).

FIG. 34.

II. $A^{40}(p,p')A^{40}$

From proton scattering in argon gas at $E_p = 4.2$ Mev and detection of scattered protons in nuclear emulsions placed at several angles between 20° and 70°, levels in A⁴⁰ are found at 1.5 and 2.4 Mev. The angular distribution of elastically scattered protons follows closely the Rutherford law (He 47).

III. K⁴⁰(E.C.)A⁴⁰ See K⁴⁰

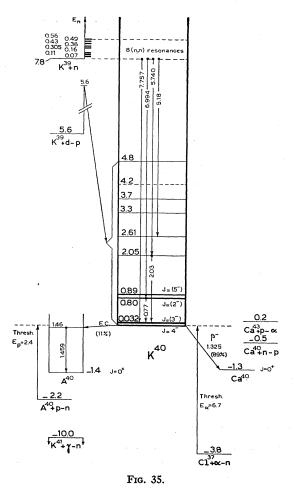
IV. Other reactions (all unobserved) leading to A^{40} are: $K^{40}(n,p)A^{40}$ ($Q_m=2.2$), $K^{41}(\gamma,p)A^{40}$ ($Q_m=-7.8$), and $Ca^{43}(n,\alpha)A^{40}$ ($Q_m=2.4$).

\mathbf{K}^{40}

Adopted mass defect: -21.9 MeV

(This mass defect derived from mass spectrometer data (see "Introduction") is in good agreement with the measured Q values of $K^{39}(n,\gamma)K^{40}$, $K^{59}(d,p)K^{40}$, and $K^{40}(\beta^{-})Ca^{40}$ and is in reasonable agreement with the Q values of $K^{40}(E.C.)A^{40}$ and $A^{40}(p,n)K^{40}$.)

I.
$$K^{40}(E.C.)A^{40}$$
 $Q_m = 1.4$ Mev
 $K^{40}(\beta^{-})Ca^{40}$ $Q_m = 1.3$ Mev


The total half-life of K^{40} is determined by the number of β^{-} 's emitted per g K, the isotopic concentration of the investigated sample and the branching ratio of electron capture over β^{-} emission.

The number of β^- particles emitted per sec per g K has been measured as 23 (Mu 30), 26 ± 5 (Br 38b), 26.8 ± 1.2 (Gr 48), 33.5 ± 5.7 (Hi 48), 30.6 ± 2.0 (St 49), 30.5 (Sp 50), 27.1 ± 1.5 (Ho 50a), 31.2 ± 3.0 (Fa 50), 28.3 ± 1.0 (Sa 50a), 22.5 ± 0.7 (Sm 50), 27.1 ± 0.6 (Go 51c), and 32.0 ± 3 (De 51). The average value $N_{\beta}=27.6$ yields a decay constant $\lambda_{\beta}=4.72\times10^{-10}$ yr⁻¹ and a β^- decay half-life $\tau=14.6\times10^8$ yr, based on a natural isotopic concentration of 1.19×10^{-4} K⁴⁰ in potassium (Ni 50, Re 52a). Measurements with enriched targets agree with these values, but have less precision, as the isotopic concentration is not known accurately enough (Bo 48, Fl 49, Sa 50a). The β^- spectrum end point has been measured by an absorption method as 1.41 ± 0.02 Mev (Hi 46, Hi 48), with scintillation spectrometers as 1.36 ± 0.05 Mev (Be 50b) and 1.28 ± 0.03 Mev (Go 51c), and with magnetic spectrometers as 1.35 ± 0.05 Mev (Dz 46), 1.36 ± 0.03 (enriched sample) (Al 50c) and 1.325 ± 0.015 Mev (Fe 52). See also He 47a, Fr 48a, Bo 48, Al 49c, Fl 49, Sm 50, De 51a. The shape of the spectrum is third forbidden (Wu 50, Al 50c, Be 50b, Go 51c, Fe 52, Ma 53b) in agreement with the spin values J=4 of K⁴⁰ (Za 41, Da 49b) and J=0 of Ca⁴⁰. The log ft value is 18.2.

For theoretical discussions of the K^{40} spin see Ku 53, De 53a.

A γ ray occurs in the decay. Its energy has been measured by absorption methods as 1.55 ± 0.05 Mev (Gl 47) and 1.54 ± 0.1 Mev (Hi 48, Hi 46), and by scintillation spectrometer as 1.47 ± 0.03 Mev (Pr 50), 1.46 ± 0.04 Mev (Be 50c), 1.462 ± 0.01 Mev (Be 50d), 1.48 ± 0.02 Mev (Ho 50b) and 1.459 ± 0.007 Mev (Go 51a). See also Be 31, Ce 49.

The number of γ rays emitted per g potassium per sec is 3.6 \pm 0.8 (Gl 47), 3.3 (Ah 48), 3.6 \pm 0.3 (Sa 49a, Co 51a), 3.0 (Sp 50), 3.6 \pm 0.4 (Fa 50), 3.1 \pm 0.3

(Ho 50a), and 3.37 ± 0.09 (Bu 53). The average 3.4 amounts to 0.123γ rays per β^- decay. Direct measurements of this ratio are 0.03 (Gr 34), 0.087 ± 0.012 (Hi 48), 0.05 (Fl 49), and 0.05 (Sm 50). No other γ rays are present in a relative intensity of 10 percent or more (Ho 50b).

As the γ -ray energy is larger than the mass-spectroscopic K⁴⁰-Ca⁴⁰ mass difference, the γ ray evidently belongs to the electron capture branch in the decay and not to K⁴⁰(β ⁻)Ca⁴⁰. An upper limit of $\beta - \gamma$ coincidences is 1 percent of the number of β 's (Me 47a) or 0.6 percent (Ho 50a).

The sequence of K capture and γ ray has been demonstrated by coincidences between γ rays and Auger electrons (Pa 52a, Pa 52b).

The branching ratio (number of electron captures over number of electron emissions) has been the subject of many investigations, as early measurements indicated a total half-life of K^{40} in conflict with geophysical considerations.

Results with screen-wall counters or other G-M counters specially devised to this purpose are N_K/N_{β^-} =1.9±0.4 (Bl 47a), <0.5 (Ho 50a), 0.135±0.040 (Sa 50a), ≤ 0.2 (Gr 51c, Gr 50d) and ≤ 0.1 (Ce 51, Ce 50). Measurements of the amount of argon in potassium containing minerals of known age lead to N_K/N_{β^-} <0.1 (Ha 47, Su 48), 0.7 (Bo 48) and 1.4±0.2 (Ah 48). Mass spectrometer studies of the K⁴⁰, A⁴⁰ and Ca⁴⁰ content in minerals lead to N_K/N_{β^-} =0.04 (Al 48e), 0.126±0.005 (In 50), 0.058 (Mo 52b), and 0.060±0.006 (Ru 53). The high values result in a short total half-life, which has to be rejected on geophysical and geochemical evidence.

There is no evidence for K capture proceeding directly to the ground state of A⁴⁰. According to the energy available in this decay positron emission would compete with electron capture. Search for positrons results in the following relative intensities: $N_{\beta^+}/N_K < 0.01$ (Be 50c), $N_{\beta^+}/N_{\beta^-} < 2 \times 10^{-5}$ (Be 50d), $N_{\beta^+}/N_{\beta^-} < 6 \times 10^{-4}$ (Co 51a) and $N_{\beta^+}/N_K = 0.01$ (Go 51b). In view of these data it seems probable, that every electron capture is followed by a γ ray of 1.46 Mev.

The large spread in the experimental values of the branching ratio opposes a definite conclusion, but a lower limit of 0.05 and an upper limit of 0.14 are above dispute. In view of the N_{γ}/N_{β} - results a subjective preference to 0.12 is given. This leads to a decay constant $\lambda_{K}=0.57\times10^{-10}$ yr⁻¹ and $\lambda=\lambda_{\beta}-\lambda_{K}=5.29\times10^{-10}$ yr⁻¹ or a total half-life of 1.31×10^{9} yr.

See also Sm 37, Gr 48a, Fi 49, Rh 50, Mo 51a, Ho 53f.

II. $Cl^{37}(\alpha, n)K^{40}$ $Q_m = -3.8$

The threshold has been determined at $E_{\alpha} = 6.7 \pm 0.6$ Mev (Po 37c) and the excitation curve up to $E_{\alpha} = 8.6$ Mev has been measured (Po 38a).

III. $A^{40}(p,n)K^{40}$ $Q_m = -2.2$

A threshold of $E_p = 2.4$ Mev has been observed (Ri 48).

IV. $K^{39}(n,\gamma)K^{40}$ $Q_m = 7.9$

The thermal neutron absorption cross section of isotopic K^{39} has been measured by pile-oscillator as 1.87 ± 0.15 b (Po 52a). For natural potassium values are given of 1.89 ± 0.06 b (Co 50), 2.11 ± 0.1 b (Ha 50), and 2.05 ± 0.1 b (Po 51). See also La 40, Vo 43, Ha 49.

The gamma rays from thermal neutron capture have been investigated by pair spectrometer and are listed in Table XLVII. The assignment of γ rays A'' and A'

TABLE XLVII. Gamma rays from thermal neutron capture in potassium (Ki 52, Br 52b, Ba 53b).

γ гау	Energy (Mev)	Intensity in photons per 100 captures	Assignment (final nucleus)
A''	9.39 ± 0.06	0.02	K41
A'	8.45 ± 0.02	0.1	K41
В	7.757 ± 0.008	3.5	K40
A' B C D E F	7.34 ± 0.02	0.1	K42
D	6.994 ± 0.007	1.3	K ⁴⁰
E	6.31 ± 0.06	0.3	
	5.740 ± 0.012	6	K^{40}
F'_{i}	5.66 ± 0.02	4	K^{40}
$F^{\prime\prime}$	5.50 ± 0.02	2.5	K ⁴⁰
G_{i} .	5.38 ± 0.03	6 2 3 4	K40
\bar{G}'	5.18 ± 0.02	2	K^{40}
H I	5.06 ± 0.02	3	K ⁴⁰
Ι	4.39 ± 0.03		K^{40}
J	4.18 ± 0.05	(6)	
K	3.92 ± 0.05	(5)	
L	3.67 ± 0.05	(8)	
	2.80		
	2.03		K ⁴⁰
	1.61		
	1.19		
	0.77		K40
		-	

to capture in \mathbb{K}^{40} is based on experiments with \mathbb{K}^{40} enriched potassium. The γ ray C is produced in the ground-state transition $\mathbb{K}^{41}(n,\gamma)\mathbb{K}^{42}$.

The γ ray *B* is the transition from the capturing state to the 32-kev level in K⁴⁰. Its high intensity is well explained by an *E*1 transition, which would give the 32-kev level $J \leq 3^-$. Gamma rays *D* and *F* are transitions to the 0.80- and 2.01-Mev levels in K⁴⁰. The assignment of the other γ rays is less certain. The intensities in Table XLVII of lines *A''* to *I* are from Ba 53, of *J*, *K*, and *L* from Ki 52 and should be corrected before being compared to the others (Ba 53b, Ki 52). See also Ku 49, Ha 52b.

Five low-energy γ rays have been found by a twocrystal scintillation spectrometer (Br 53b) and are also listed in Table XLVII.

V. $K^{39}(n,n)K^{39}$ $E_b = 7.9$

Maxima in the neutron cross section have been found by transmission measurements at $E_n = 70, 110, 160, 305$, 360, 430, 490, and 560 kev. The spread in the neutron energy was 15 kev. The highest value of the cross section was 3.7 b at 70 and 305 kev, between the maxima the cross section was ≤ 2 b (Pe 50b). The cross section at $E_n=2.46$ Mev is 3.44 ± 0.18 b, at 2.88 Mev: 3.13 ±0.15 b (Zi 39) and at 14 Mev: 2.24 ± 0.04 b (Co 52a). See also Ao 39, Ad 50.

VI. $K^{39}(d,p)K^{40}$ $Q_m = 5.6$

With an enriched (96.5 percent K³⁹) target and $E_{\alpha}=3.9$ Mev eight proton groups have been found by an Al absorption method (Sa 50). They are listed in Table XLVIII. The first three groups had been observed before (Po 40a).

TABLE XLVIII. Q values and levels from $K^{39}(d,p)K^{40}$.

Author	Po 40a	Sa 50		Bu 53a		
Energy measure- ment	Absorp- tion	Absor	ption	Magnetic	analysis	
Ed (Mev)	3.3	3.9		4.76 to 5.65		
	Q value (Mev)	Q value (Mev)	Level (Mev)	Q value (Mev)	Level (Mev)	
	5.6±0.3	5.48 ± 0.08	•••	5.576 ± 0.010 5.544 ± 0.010	0.032 ± 0.002	
	4.5 ± 0.3	4.67 ±0.09	0.81 ± 0.03	4.776 ± 0.010 4.683 ± 0.010	0.800 ± 0.010 0.893 ± 0.010	
	3.4 ±0.3	$\begin{array}{c} 3.47 \pm 0.09 \\ 2.92 \pm 0.10 \\ 2.2 \ \pm 0.1 \\ 1.8 \ \pm 0.1 \\ (1.3 \ \pm 0.1) \\ 0.7 \ \pm 0.1 \end{array}$	$\begin{array}{c} 2.01 \pm 0.03 \\ 2.56 \pm 0.05 \\ 3.3 \ \pm 0.1 \\ 3.7 \ \pm 0.1 \\ (4.2 \ \pm 0.1) \\ 4.8 \ \pm 0.1 \end{array}$			

By high resolution magnetic analysis the ground-state Q value is determined as 5.576 ± 0.010 Mev and three other levels are measured accurately (Bu 53a). See Table XLVIII.

VII. $K^{41}(\gamma, n)K^{40}$ $Q_m = -10.0$

Not observed.

VIII. $Ca^{40}(n,p)K^{40}$ $Q_m = -0.5$ Not observed.

IX. $Ca^{43}(p,\alpha)K^{40}$ $Q_m = 0.2$

Not observed.

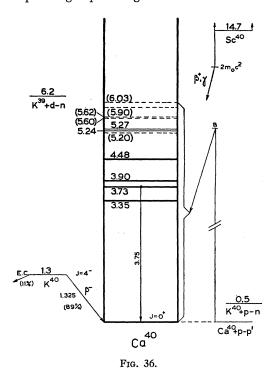
GENERAL REMARKS

The shell model would predict in K⁴⁰ low-lying states with $J=2^-$, 3^- , 4^- and 5^- resulting from a $d_{\frac{3}{2}}$ proton and $f_{7/2}$ neutron. The K⁴⁰ spin has been experimentally determined as J=4. The excited states at 32, 800, and 893 kev may be the other three members of this quadruplet. The proper spin order may in principle be deduced from the relative intensities of the four proton groups from the K³⁹(d, p)K⁴⁰ reaction observed at $E_d=5.16$ Mev and $\theta=90^\circ$. In first approximation the differential cross section would be the same ($l_n=3$) apart from a factor ($2J_f+1$). The experimental relative intensities (computed from the proton momentum spectrum given in Bu 53a) are 9, 7.9, 6.0, and 9.7. This would agree best with the relative intensities 9, 7, 5, and 11, to be expected for a spin order 4^- , 3^- , 2^- , and 5^- . Intense γ rays (probably *E*1 radiation) from thermal neutron capture in K³⁹ are only observed to the 32 and 800 kev excited states (Ba 53b) which agrees with the assignment given (En 53a).

 Ca^{40}

Adopted mass defect: -23.2 Mev (see "Introduction")

I.
$$K^{39}(d,n)Ca^{40}$$
 $Q_m = 6.2$
Not observed.


II. $K^{40}(\beta^{-})Ca^{40}$ See K^{40}

III. $K^{40}(p,n)Ca^{40}$ $Q_m = 0.5$

Not observed.

From inelastic proton scattering at $E_p = 7.7$ Mev and energy determination by Al absorption a Ca⁴⁰ level is found at 3.8 Mev. The angular distribution of inelastically scattered protons is nearly isotropic (Ha 52c). From inelastic proton scattering at proton energies between 6 and 8 Mev and magnetic analysis levels in Ca⁴⁰ are found at 3.348, 3.731, 3.900, and 4.481 Mev, all ± 10 kev, and at (5.20), 5.24, 5.27, (5.60), (5.62), (5.90), and (6.03) Mev, all ± 20 kev (Br 53d, Br 53e).

The proton group leading to the 5.20-Mev level has

recently been shown to be due to some target impurity (Br 54a).

V. $Sc^{40}(\beta^+)Ca^{40}$ $Q_m = 14.7$

Recently Sc⁴⁰ has been discovered from the Ca⁴⁰(p,n)Sc⁴⁰ reaction. The half-life is 0.22±0.03 sec. The threshold of the Ca⁴⁰(p,n) reaction is at E_p =15.9 ±1.0 Mev, which fixes the mass defect of Sc⁴⁰ as -0.5 Mev. The maximum positron energy is 9.0±0.4 Mev and a γ ray of 3.75±0.04 Mev has been found from the Sc⁴⁰(β ⁺)Ca⁴⁰ decay by scintillation spectrometer. No delayed heavy particles have been detected (Ri 53, Gl 53a).

\mathbf{A}^{41}

Adopted mass defect: -21.0 Mev

(The adopted mass defect gives good agreement both with the observed A^{41} decay energy and with the Q value measured for the $A^{40}(d,p)A^{41}$ ground-state transition.)

I. $A^{41}(\beta^{-})K^{41}$ $Q_m = 2.5$

The half-life is given as $110\pm 1 \text{ min}$ (Sn 36, Ka 52a), $109.4\pm 1 \text{ min}$ (Bl 46a), and $107\pm 3 \text{ min}$ (Br 50c).

The β^{-} decay proceeds by two branches. The groundstate transition is very weak and evidently forbidden

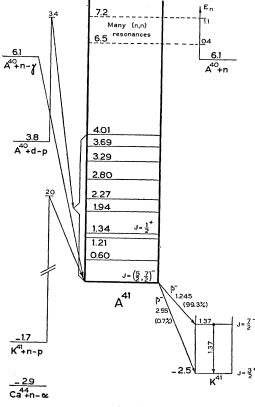


FIG. 37.

TABLE XLIX. Beta decay of A⁴¹.

Author	Method	$E_{\beta_{1 \max}}$ (Mev)	$E_{\beta_{2 \max}}$ (Mev)	Eγ (Mev)
Sn 36 Ku 36 Ri 36 Bl 46a Br 50c	Al abs. cl. chamber cl. chamber Al abs. spectrom.	~5 2.55±0.2 (0.7%)	$1.1 \\ 1.5 \\ 1.18 \pm 0.05 (99.3\%) \\ 1.245 \pm 0.005$	1.37 ± 0.06 1.3 ± 0.2

(log ft=8.6 and log (W_0^2-1) ft=10.1). The intense lowenergy branch is in coincidence with a γ ray (Bl 46a). Determinations of energies and intensities are collected in Table XLIX. The weak β^- branch with 5-Mev end point found from cloud-chamber measurements might be explained by the presence of Cl³⁸ contamination (Ku 36, Bl 46a). The Kurie plot of the low-energy β^- transition is straight down to 160 kev. Also the ft value agrees with an allowed transition (log ft=5.1). No γ ray conversion electrons are found (Br 50c). By $\beta-\gamma$ delayed coincidence measurements the half-life of the 1.3-Mev level in K⁴¹ is established as $(6.7\pm0.5)\times10^{-9}$ sec (El 52a) and 6.6×10^{-9} sec (En 53), which agrees with the theoretical value for M2 transitions.

See also Wu 50.

II. $A^{40}(n,\gamma)A^{41}$ $Q_m = 6.1$

The thermal neutron absorption cross section is 0.62 ± 0.04 b (Co 50) and the thermal neutron activation cross section is 0.53 ± 0.03 b (Ka 52a). For fission neutrons ($E_n \approx 1$ Mev) the activation cross section is 0.93 mb (Hu 53a).

III. $A^{40}(n,n)A^{40}$ $E_b = 6.1$

The argon total neutron cross section has been measured with Li(p,n) neutrons from 0.4 to 1.1 Mev with 2 kev resolution. The nonresonant total cross section is about 0.7 b. There are resonances of about 3.5 b at $E_n = 580, 600, \text{ and } 740 \text{ kev}$ and many smaller partly unresolved resonances (Gu 53). There are no resonances beneath 3 kev (Ad 50).

IV. $A^{40}(d, p)A^{41}$ $Q_m = 3.8$

Several proton groups have been observed in the deuteron bombardment of argon. Their Q values and corresponding A⁴¹ levels are collected in Table L. The

TABLE L. Reaction $A^{40}(d,p)A^{41}$.

Author Da 40 E_d (Mev) 2.4 Method Al abs	3.4	Sa 49 3.9 Al abs.	Gi 52 7.8 Nucl. emuls.	Da 49a
Q value (Mev)	es Q values	Q values (Mev)	Q values (Mev)	A ⁴¹ levels
4.37	3.84 ± 0.03	3.80 ± 0.06	3.90 ± 0.08	0
3.01	3.18 ± 0.05 2.63 ± 0.04		3.40 ± 0.08	0.66 1.21
2.23	$\begin{array}{c} 2.50 \pm 0.04 \\ 1.90 \pm 0.04 \\ 1.57 \pm 0.05 \\ 1.04 \pm 0.05 \\ 0.55 \pm 0.03 \end{array}$		2.56±0.08	1.34 1.94 2.27 2.80 3.29
	0.15 ± 0.05 -0.17 ± 0.05	1997 - 1997 -		3.69 4.01

angular distribution of the ground-state group at $E_d=7.8$ Mev, as measured by nuclear-emulsion technique, corresponds to $l_n=3$ which characterizes the A⁴¹ ground state as $(5/2 \text{ or } 7/2)^-$. The proton group leading to the 1.34-Mev level corresponds to $l_n=0$ $(J=\frac{1}{2}^+)$ or perhaps $l_n=1$ (Gi 52).

The yield of radioactive A⁴¹ has been measured up to $E_d = 5.1$ Mev (Sn 36).

IV. $K^{41}(n,p)A^{41}$ $Q_m = -1.7$

A weak 1.8-hr activity has been observed from potassium bombarded by fast neutrons (Hu 37, Po 37a). The cross section at $E_n = 14.5$ Mev is 81 ± 32 mb (Pa 53).

V.
$$Ca^{44}(n,\alpha)A^{41}$$
 $Q_m = -2.9$

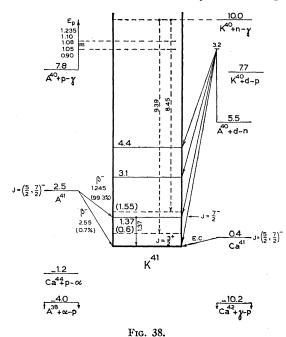
Not observed.

 K^{41}

Adopted mass defect: -23.5 Mev (see "Introduction")

I. $A^{38}(\alpha, p)K^{41}$ $Q_m = -4.0$

Not observed.


II. $A^{40}(p,\gamma)K^{41}$ $Q_m = 7.8$

Thin targets enriched in A^{40} content have been bombarded with protons from 0.5 to 1.8 Mev. Resonances in the γ -ray yield have been found (Br 48a) at

E_p	900	1050	1080	1100	1235 ke v
Rel. int.	0.2	0.4	0.5	1.0	0.5

III. $A^{40}(d,n)K^{41}$ $Q_m = 5.5$

Neutrons from the bombardment of argon with 3.2 Mev deuterons have been detected by their recoil pro-

tons with two proportional counters, separated by absorbing foils, in coincidence. The ground-state Q value has been measured as 5.97 ± 0.25 MeV and levels are observed at 1.34 ± 0.15 MeV, 3.10 MeV and 4.40 MeV (Wo 50a).

IV.
$$A^{41}(\beta^{-})K^{41}$$
 See A^{41}

V.
$$K^{40}(n,\gamma)K^{41}$$
 $Q_m = 10.0$

The thermal neutron absorption cross section of isotopic K^{40} measured by the pile-oscillator method is 66 ± 20 b (Po 52a).

Two γ rays A'' and A' of Table XLVII produced by neutron capture in potassium are assigned to K⁴¹ on account of their energies and from experiments with targets enriched in K⁴⁰. If originating from the capturing state, they would proceed to K⁴¹ levels at 0.6 and 1.55 Mev (Ba 53b, Ki 52).

VI.
$$K^{40}(d, p)K^{41}$$
 $Q_m = 7.7$

Not observed.

VII.
$$Ca^{41}(E.C.)K^{41}$$
 See Ca^{41}

VIII.
$$Ca^{42}(\gamma, p)K^{41}$$
 $Q_m = -10.2$

Not observed.

Not observed.

IX.
$$Ca^{44}(p,\alpha)K^{41}$$
 $Q_m = -1.2$

Ca⁴¹

.

Adopted mass defect: -23.1 Mev

(The adopted mass defect gives good agreement with the observed $K^{41}(p,n)Ca^{41}$ threshold and with the measured Q value of the $Ca^{40}(d,p)Ca^{41}$ reaction.)

I. $Ca^{41}(E.C.)K^{41}$ $Q_m = 0.4$

The half-life has been calculated from proportional counter measurements of the intensity of the potassium K_{α} line in pile irradiated calcium samples (Br 51a, Br 53f). If the Ca⁴⁰ thermal neutron capture cross section is taken as 0.22 b (Po 52a) then the Ca⁴¹ half-life is equal to $(1.1\pm0.3)\times10^5$ years. The log *ft* value is 10.8.

From analogous measurements the half-life is concluded to be at least several months (Sa 51a). The assignment of a half-life of 8.5 days to Ca^{41} (Wa 40) is incorrect (Ov 47, Se 47).

II. $K^{41}(p,n)Ca^{41}$ $Q_m = -1.2$

The threshold for neutron emission is at $E_p = 1.25 \pm 0.02$ Mev (Ri 50). See Ca⁴² for resonances.

III. $Ca^{40}(n,\gamma)Ca^{41}$ $Q_m = 8.3$

From samples enriched in Ca⁴⁰ content the thermal neutron absorption cross section has been measured by

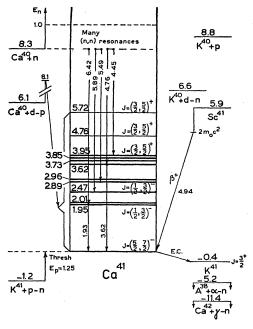


FIG. 39.

pile oscillator as 0.22 ± 0.04 b (Po 52a). For natural calcium values are given of 0.37 ± 0.04 b (Co 46a), 0.40 ± 0.02 b (Co 50), 0.43 ± 0.02 b (Ha 50), and 0.41 ± 0.02 b (Po 51). See also Vo 43, Se 47.

Gamma-ray energies and intensities from thermal neutron capture in natural calcium measured by pairspectrometer are listed in Table LI (Ki 52). Gamma rays C, D, F, I, and J check well with transitions from the capturing state to known levels in Ca⁴¹. Gamma ray L could well represent a transition from the 3.62 Mev level to ground. The assignment of the other γ rays is as yet unknown. The intensities of γ rays C and D characterize them as E1 transitions, and the spins and parities of the 1.95 and 2.47 Mev levels as $\frac{1}{2}$ or $\frac{3}{2}$ -(Ki 53e). See also Reaction V.

With a two-crystal scintillation spectrometer a γ ray of 1.93 Mev has been observed (Br 53b). It represents the transition from the first excited state in Ca⁴¹ to ground.

TABLE LI. Thermal neutron capture γ rays in natural calcium (Ki 52).

γ ray	Energy in Mev	Intensity in photons per 100 captures
A	7.83±0.05	1
B	7.43 ± 0.05	1.4
С	6.42 ± 0.03	83
D	5.89 ± 0.03	11
E	5.66 ± 0.06	3
F	5.49 ± 0.05	4
H	4.95 ± 0.03	8
Ι	4.76 ± 0.03	6
J	4.45 ± 0.05	30
L	3.62 ± 0.05	16

A recalculated value for the intensity of γ ray C is 80 photons and of γ ray D 12 photons per 100 captures in Ca⁴⁰ (Ki 53e). See also Sa 51a, Br 51a, Ha 52b.

IV.
$$Ca^{40}(n,n)Ca^{40}$$
 $E_b = 8.3$

For the calcium total neutron cross section see Adair (Ad 50). Many incompletely resolved resonances are found in the region from 30 up to 1000 kev. The cross section at $E_n = 14$ Mev is 3.19 ± 0.04 b (Co 52a).

V. $Ca^{40}(d,p)Ca^{41}$ $Q_m = 6.1$

In Table LII are collected Q values and corresponding Ca⁴¹ levels from the Ca⁴⁰(d,p)Ca⁴¹ reaction. Natural calcium targets were used in all these investigations. Only the intense groups found by magnetic analysis have been indicated in the Ca⁴¹ level diagram.

TABLE LII. $Ca^{40}(d,p)Ca^{41}$ reaction.

Author E _d (Mev) Method Ground-state Q value (Mev)	Da 39 3.1 Al abs. 6.30	Sa 49 3.9 Al abs. 6.17±0.05	Ho 53e 8.13 Al abs. 6.14±0.05	Br 53e, Br 54 2.5-7.0 Magn. analysis 6.140±0.010
Ca ⁴¹ levels (Mev)	0 1.79	$0 \\ 1.95 \pm 0.07$	$0 \\ \pm 0.05$	$0 \\ 1.947 \pm 0.010 \\ 2.015 \pm 0.010$
		2.41±0.07	2.42±0.05	$\begin{array}{c} 2.369 \pm 0.010 \\ 2.469 \pm 0.010 \\ 2.582 \pm 0.010 \\ 2.611 \pm 0.010 \\ 2.675 \pm 0.010 \end{array}$
		(3.0 ±0.1)	2.9 ±0.1	$\begin{array}{c} 2.875 \pm 0.010 \\ 2.890 \pm 0.010 \\ 2.967 \pm 0.010 \\ 3.056 \pm 0.010 \\ 3.200 \pm 0.010 \end{array}$
		(3.3 ±0.1)		3.374 ± 0.010 3.401 ± 0.010
		(3.5 ±0.1)		3.499 ± 0.010 3.529 ± 0.010
		(3.7 ± 0.1) 3.86 ± 0.07	3.6 ±0.1	3.620 ± 0.010 3.737 ± 0.010 3.855 ± 0.010
· .			3.96 ± 0.05 4.76 ± 0.08 5.72 ± 0.08	3.950 ± 0.010

Angular distributions of six proton groups have been measured. From Butler analysis $l_n=3$ $(J=5/2^- \text{ or } 7/2^-)$ is found for the ground-state group, $l_n=1$ $(J=\frac{1}{2}^- \text{ or } \frac{3}{2}^-)$ for transitions to one or both of the doublet levels near 2.0 Mev and to the 2.42-Mev level, and $l_n=2$ $(J=\frac{3}{2}^+ \text{ or } 5/2^+)$ for transitions to the levels at 3.96, 4.76, and 5.72 Mev. Shell-model assignments are discussed from these data and from the measured neutron capture probabilities (Ho 53c).

VI. $Sc^{41}(\beta^+)Ca^{41}$ $Q_m = 5.9$

Radioactive Sc⁴¹ has been produced by the Ca⁴⁰(d,n)Sc⁴¹ reaction at $E_d=8$ Mev. The half-life is 0.87 ± 0.03 sec and the end point of the β^+ spectrum is measured by cloud chamber as 4.94 ± 0.07 Mev (El 41). A recent measurement of the half-life yields 0.873 sec

(Ma 52a). The log ft value is 3.4 in agreement with other super-allowed transitions between mirror nuclei.

VII. Not observed are the reactions $A^{38}(\alpha,n)Ca^{41}$ $(Q_m = -5.2), K^{40}(p,\gamma)Ca^{41} (Q_m = 8.8), K^{40}(d,n)Ca^{41}$ $(Q_m = 6.6)$ and $Ca^{42}(\gamma,n)Ca^{41} (Q_m = -11.4)$.

\mathbf{A}^{42}

(not illustrated)

This nucleus has been produced by successive capture of two neutrons in A^{40} in a nuclear reactor. Its presence was detected by observation of the 12.5 hr K⁴² daughter activity in milkings from the irradiated argon gas. From the fact that the milkings over a period of 400 days did not show a decrease in activity of more than 20 percent, it is concluded that the half life of A^{42} is longer than 3.5 yr and that the thermal neutron activation cross section of A^{41} is larger than 0.06 b (Ka 52a).

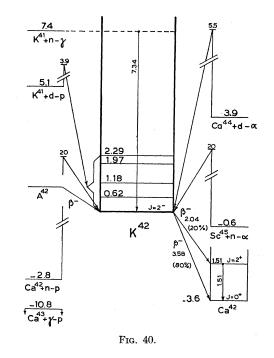
\mathbf{K}^{42}

Adopted mass defect: -22.5 Mev

(The adopted mass defect is in agreement with the K^{42} β^{-} decay energy and with the Q values measured for the $K^{41}(n,\gamma)K^{42}$ and $K^{41}(d,p)K^{42}$ reactions.)

I. $K^{42}(\beta^{-})Ca^{42}$ $Q_m = 3.6$

The half-life is given as 12.2 ± 0.2 hr (Wa 37), 12.4 ± 0.2 hr (Hu 37), 12.44 ± 0.10 hr (Si 47), 12.5 ± 0.2 hr (Si 51), 12.44 ± 0.08 hr (Ka 53), and 12.516 ± 0.007 hr (Bu 53). See also Am 35, He 35a.


The β^- spectrum is complex. Measurements of the β^- spectrum end points and the γ -ray energy are collected in Table LIII.

The shape of the high-energy β^- spectrum and its ft value (log ft=7.9 and log(W_0^2-1) ft=9.7) are in agreement with a $\Delta J = 2$, yes, assignment which characterizes K^{42} as $J=2^-$ (Si 47, Sh 49). A direct measurement by magnetic resonance in an atomic beam yields also J=2 (Be 53). An assignment of $J=2^+$ to the 1.51-Mev level in Ca⁴² is in agreement with the ft value of the low-energy β^- branch (Sh 49) (log ft=7.5) and with the measured $\beta-\gamma$ angular correlation (Be 50a, St 51c).

No polarization of the γ rays emitted under an angle

TABLE LIII. Decay of K⁴².

Author	Method	E_{β_1} (Mev)	$E_{oldsymbol{eta}_2}$ (Mev)	E_{γ} (Mev)
Ku 36	cl. chamber	4.4	1.4	
Bl 47	Al abs.	3.50 ± 0.12	2.1 and 1.4	
		(70%)	(30%)	
Si 47	spectrom.	3.58 ± 0.07	2.04	1.51
	-	(75%)	(25%)	
Si 47a	$\beta - \gamma$ coinc.		1.92	
	spectrom.		(16%)	
Ka 53	scint. spectrom.			1.51
	•			$(20\pm1)\%$

of the 90° with the β rays has been found, although some polarization is predicted from the measured $\beta - \gamma$ angular correlation (Ha 53b).

For a theoretical discussion of the K^{42} spin see De 53a.

II.
$$A^{40}(\alpha, pn)K^{42}$$
 $Q_m = -13.1$

Radioactive K^{42} has been found from the bombardment of argon with 40-Mev α particles (Ov 47, Ov 49).

III. $K^{41}(n,\gamma)K^{42}$ $Q_m = 7.4$

The thermal neutron absorption cross section of isotopic K⁴¹ is measured by pile oscillator as 1.19 ± 0.09 b (Po 52a). From the activation of natural potassium samples the thermal neutron activation cross section is measured as ≈ 1.4 b (Ra 40), ≈ 1.5 b (On 41), 0.7 b (Si 41a), and 1.0 ± 0.2 b (Se 47). At $E_n \approx 1$ Mev (fission neutrons) the activation cross section is 2.9 mb (Hu 49, Hu 53a).

Energies of thermal neutron capture γ rays have been measured by pair spectrometer (see Table XLVII). One weak γ ray (line C) of $E_{\gamma} = 7.34 \pm 0.02$ Mev could well correspond to the ground-state transition in K⁴² after capture in K⁴¹. The intensity is 0.1 photon per 100 captures in natural potassium (Ba 53b, Ki 52). See also Br 53b.

IV. $K^{41}(d, p)K^{42}$ $Q_m = 5.1$

From deuteron bombardments (at $E_d=3.9$ Mev) of potassium targets enriched to 87 percent in K⁴¹ content and range measurements of the resulting protons the following Q values have been found: 5.12 ± 0.10 , 4.50 ±0.12 , 3.94 ± 0.12 , 3.15 ± 0.18 , and 2.83 ± 0.12 Mev corresponding to the K⁴² ground state and levels at 0.62 ± 0.07 , 1.18 ± 0.07 , 1.97 ± 0.15 , and 2.29 ± 0.07 Mev (Sa 50).

See also Po 40a, Cl 46a.

V.
$$Ca^{42}(n,p)K^{42}$$
 $Q_m = -2.8$

Radioactive K^{42} has been found from the fast neutron bombardment of calcium (He 35a, Wa 37, Hu 37). The cross section for Be(d,n) neutrons ($E_d=15$ Mev) is 120 ± 12 mb (Co 51).

VI.
$$Ca^{43}(\gamma, p)K^{42}$$
 $Q_m = -10.8$

Not observed.

VII. $Ca^{44}(d,\alpha)K^{42}$ $Q_m = 3.9$

A weak K^{42} activity is found from the deuteron bombardment of calcium (Wa 37).

VIII. Sc⁴⁵(n,α)K⁴² $Q_m = -0.6$

Radioactive K^{42} has been found from the fast neutron bombardment of scandium (Am 35, He 35a, Hu 37, Wa 37d, Po 38, Wa 40a).

 Ca^{42}

Adopted mass defect: -26.1 Mev (see "Introduction").

I. $K^{39}(\alpha, p)Ca^{42}$ $Q_m = -0.3$

From bombardments of natural potassium by ThC' α particles and range measurements of the resulting

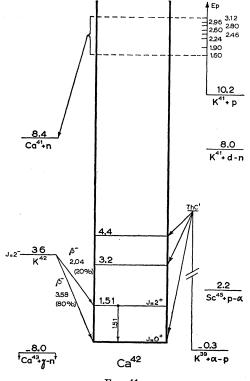


FIG. 41.

protons Q values have been found of -0.89, -2.3, and -3.5 Mev, corresponding to Ca⁴² levels at 3.2 and 4.4 Mev (Po 36a, Li 37).

Recently the ground-state Q value has been remeasured by bombardments with cyclotron α particles of $E_{\alpha} = 7.8$ Mev and range measurements yielding $Q_0 = -0.18$ Mev. Several Ca⁴² levels might be present below $E_x = 4$ Mev (Sc 53a).

II.
$$K^{41}(p,n)Ca^{41}$$
 $E_b = 10.2$ $Q_m = -1.2$

Incompletely resolved resonances are found between threshold ($E_p=1.25\pm0.02$ Mev) and $E_p=3.5$ Mev at 1.60, 1.90, 2.24, 2.46, 2.60, 2.80, 2.96, and 3.12 Mev (Br 50d, Ri 50).

III. $K^{42}(\beta^{-})Ca^{42}$ See K^{42}

IV. The following reactions leading to Ca⁴² have not observed: $K^{41}(p,\gamma)Ca^{42}$ ($Q_m = 10.2$), $K^{41}(d,n)Ca^{42}$ ($Q_m = 8.0$), $Ca^{43}(\gamma,n)Ca^{42}$ ($Q_m = -8.0$) $Sc^{42}(\beta^+)Ca^{42}$ and $Sc^{45}(p,\alpha)Ca^{42}$ ($Q_m = 2.2$).

\mathbf{K}^{43}

(not illustrated)

Adopted mass defect: -24.9 Mev

(The adopted mass defect is based on the observed $K^{43}(\beta^{-})Ca^{43}$ decay energy.)

I. $K^{43}(\beta^{-})Ca^{43}$ $Q_m = 0.8$

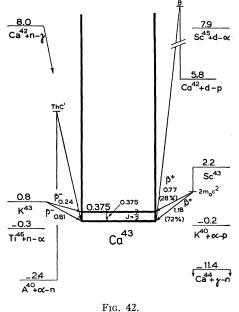
The half-life is given as 22.4 hr (Ov 49) and 21.5 hr (Ru 52b). The β^- decay is complex. By magnetic spectrometer two branches are found with end points of 0.81 and 0.24 Mev. There is a γ ray with $E_{\gamma} = 0.4$ Mev as measured by Al absorption (Ov 49).

II. $A^{40}(\alpha, p)K^{43}$ $Q_m = -2.4$

Radioactive potassium with a half-life of 22.4 hr has been separated chemically from argon gas irradiated by 40-Mev α particles (Ov 49). No protons were observed from the bombardment of argon gas by ThC' α particles (Po 37).

III.
$$Ca^{43}(n,p)K^{43}$$
 $Q_m = 0.0$

Not observed.


IV. $Ca^{44}(\gamma, p)K^{43}$ $Q_m = -11.4$ Not observed.

Ca43

Adopted mass defect: -25.7 Mev (see "Introduction")

I.
$$A^{40}(\alpha, n)Ca^{43}$$
 $Q_m = -2.4$

Several neutron groups are observed from the bombardment of argon with ThC' α particles and detection

of neutrons with a BF_3 ionization chamber. The Q value corresponding to the most energetic neutrons is given as -5.6 ± 1.0 Mev (Po 38a, Po 37c). For resonances see Ca44.

II.
$$K^{43}(\beta^{-})Ca^{43}$$
 See K^{43}

III.
$$Ca^{42}(n,\gamma)Ca^{43}$$
 $Q_m = 8.0$

The thermal neutron absorption cross section measured by pile oscillator from samples enriched in Ca⁴² is 39.7±3.2 b (Po 52a).

IV. $Ca^{42}(d,p)Ca^{43}$ $Q_m = 5.8$

At proton energies up to 6 Mev the ground-state Q value has been measured by magnetic analysis $(\vartheta = 90^{\circ})$ using enriched targets as $Q = 5.70 \pm 0.02$ MeV (Br 53e). Levels in Ca^{43} are found at 0.38, 0.61, 1.00, and 1.40 Mev, all ± 0.02 Mev (Br 54a).

V. $Sc^{43}(\beta^+)Ca^{43}$ $Q_m = 2.2$

The half-life is given as 4.4 hr (Fr 35), 4.0 ± 0.1 hr (Wa 37, Wa 37a, Wa 40a), 4.4 hr (Sa 38), 3.92±0.02 hr (Hi 45), 3.9 hr (Ha 52d), and 3.95 hr (Du 53). See also Ba 51.

TABLE LIV. Positron decay of Sc43.

Author	Method	$E_{\beta_1^+}$ (Mev)	$E_{\beta_2^+}$ (Mev)	E_{γ} (Mev)
Wa 37a Wa 40a Hi 45, Bl 46c Hi 45 Sm 42, Br 50e Ha 52d	cl. chamber Al abs. Al abs. spectrom. spectrom. spectrom.	$\begin{array}{c} 1.38 \\ 1.4 \pm 0.1 \\ 1.22 \pm 0.05 \\ 1.11 \pm 0.05 \\ 1.15 \\ 1.18 \pm 0.02 \\ (72\%) \end{array}$	0.77 ± 0.04 (28%)	0.375±0.002
Nu 53	scint. spectrom.			0.375 ± 0.004 (25 ± 2)%

The β^+ decay of Sc⁴³ is complex. Observed β^+ spectrum end points, relative intensities, and energies of γ rays are collected in Table LIV. Both β^+ transitions are allowed; $\log ft = 5.1$ for the 1.18 Mev branch and $\log ft = 4.7$ for the 0.77-Mev branch.

Several observers (Wa 40a, Hi 45, Pe 46, Ha 52d) report also a γ ray of about 1.1 Mev but this γ ray has to be assigned probably to the Sc44 decay (Ha 52d, Nu 53). In recent measurements its intensity is found to be lower than 5 percent (Nu 53).

The spin of Ca⁴³ has been measured by magnetic resonance as J = 7/2 (Je 53).

VI. Ca⁴⁴(γ ,n)Ca⁴³ $Q_m = -11.4$

The maximum cross section measured by the neutron yield is four times that of the $Ca^{40}(\gamma,n)Ca^{39}$ reaction (Go 54a).

VII. The following reactions leading to Ca⁴³ have not been observed: $K^{40}(\alpha, p)Ca^{43}$ ($Q_m = -0.2$), $Sc^{45}(d, \alpha)Ca^{43}$ $(Q_m = 7.9)$, and Ti⁴⁶ (n, α) Ca⁴³ $(Q_m = -0.3)$.

\mathbf{K}^{44}

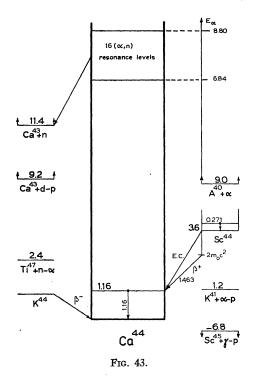
(not illustrated)

From calcium targets bombarded by fast neutrons a potassium activity of 18±1 min half-life was chemically separated. This may be K⁴⁴ produced from the $Ca^{44}(n,p)K^{44}$ reaction (Wa 37b, Wa 40). See also Hu 43b.

Ca^{44}

Adopted mass defect: -28.7 Mev (see "Introduction")

I. $K^{44}(\beta^{-})Ca^{44}$ See K⁴⁴


TI. Sc⁴⁴(β^+ , E.C.)Ca⁴⁴ $Q_m = 3.6$

The half-life is given as 4 hr (Po 37a, Po 37b, Co 38, Bo 39), 4.0±0.1 hr (Wa 37, Wa 37d, Br 50e), 4.1±0.1 hr (Wa 37a, Wa 40a), and 3.92 ± 0.03 hr (Hi 45). See also Ge 38.

There exists also an isomeric state (Sc^{44m}) decaying to the Sc⁴⁴ ground state through a 270-kev γ ray with a half-life which has been measured as 48 hr (Po 37a), 52 hr (Po 37b), 52±2 hr (Wa 37, Wa 37a, Wa 37d, Wa 40a), 58.6 ± 0.7 hr (Hi 45, Ba 51), and 57 ± 2 hr (Br 50e).

The Sc⁴⁴ ground state decays through β^+ emission followed by a γ ray of about 1.1 Mev. Measurements of the positron spectrum end point and energies of γ rays are collected in Table LV.

From $\beta^+ - \gamma$ coincidence absorption measurements it is concluded that the β^+ spectrum is simple (Cu 50). The Kurie plot of the β^+ spectrum is straight down to 350 kev (Br 50e). The log ft value is 5.3. There is also K capture (Hi 45), about equally strong as β^+ emission (Br 50e). See also Ja 37.

The internal conversion coefficient of the Sc^{44m} 270kev γ ray has been given as $\alpha_K = 0.5$ (He 41) and as $\alpha_K = 0.070 \pm 0.012$ with $\alpha_K/\alpha_L = 8 \pm 4$ (Sm 42).

See also Zy 34, He 35a, Wa 37c, Du 38, Bu 38, Ge 38, Wa 40, Ru 52b.

III. $A^{40}(\alpha, n)Ca^{43}$ $E_b = 6.0$ $Q_m = -2.4$

Sixteen resonances have been found with ThC' α particles by varying the gas pressure between source and target and counting the neutrons with a BF₃

TABLE LV. Decay of Sc44 and Sc44m.

		Sc	Sc44m	
Author	Method	E_{β^+} (Mev)	E_{γ} (Mev)	E_{γ} (kev)
Wa 37a	cl. chamber	1.63		
Ja 37	cl. chamber	1.1 ± 0.1		
Wa 40a	Al abs.	1.50 ± 0.05	1.0 ± 0.1	250
Wa 40a	spectrom.			255
He 41	spectrom.			260
Sm 42	spectrom.	1.45 ± 0.01		269.3 ± 1
Hi 45, Bl 46c	Al abs.	1.43 ± 0.05	1.33	280
Pe 46	spectrom.		(1.05)	
Br 50e	spectrom.	1.463 ± 0.005	1.16 ± 0.02	271.3 ± 0.7
Cu 50	Al abs.	1.54	1.2	
Ha 52d	spectrom.		1.15	

counter at $E_{\alpha} = 6.84$, 7.16, 7.35, 7.54, 7.70, 7.81, 7.95, 8.08, 8.17, 8.26, 8.37, 8.50, 8.58, 8.66, 8.75, and 8.80 Mev (Fu 38).

IV. The following reactions leading to Ca⁴⁴ have not been observed: K⁴¹(α ,p)Ca⁴⁴ (Q_m =1.2), Ca⁴³(n, γ)Ca⁴⁴ (Q_m =11.4), Ca⁴³(d,p)Ca⁴⁴ (Q_m =9.2), Sc⁴⁵(γ ,p)Ca⁴⁴ (Q_m =-6.8), and Ti⁴⁷(n, α)Ca⁴⁴ (Q_m =2.4).

Ca^{45}

(not illustrated)

Adopted mass defect: -27.7 Mev

(The Ca⁴⁵ mass defect is derived from the Sc⁴⁵ mass by means of the Ca⁴⁵(β ⁻)Sc⁴⁵ energy release. It agrees excellently with the mass derived from the Ca⁴⁴(d,p)Ca⁴⁵ Q value.)

I. $Ca^{45}(\beta^{-})Sc^{45}$ $Q_m = 0.2$

The half-life is given as 180 ± 10 days (Wa 40), 152 days (Ma 47, Ru 52b), 180 days (Se 47), 150 days (Ba 51), and 163.5 ± 4 days (De 53). See also Po 38.

The β^- spectrum is simple and no γ rays are observed (So 48, Me 49, Ru 52b). The end point is measured by Al absorption as 190 kev (Wa 40), 210 kev (Ma 47), 260±5 kev (So 48), 260 kev (Si 50a), 220±10 kev (Me 49) and 300 kev (Ru 52b), and by magnetic spectrometer as 255±4 kev (Ke 50), 261±4 kev (Ma 53c), and 254±3 kev (Ma 50c). The average β^- ray energy is 74.6±3 kev (Ca 52). The Kurie plot is straight down to 50 kev (Ke 50, Ma 50c). The log *ft* value is 5.7.

II.
$$Ca^{44}(n,\gamma)Ca^{45}$$
 $Q_m = 7.4$

The thermal neutron activation cross section is 0.63 ± 0.13 b (Se 47). See also Wa 40, De 53.

III. $Ca^{44}(d,p)Ca^{45}$ $Q_m = 5.2$

Radioactive Ca⁴⁵ has been produced by deuteron bombardment of calcium (Wa 40).

A preliminary value for the ground-state Q value measured by magnetic analysis (E_d up to 6 Mev, $\vartheta = 90^{\circ}$, enriched targets) is $Q = 5.19 \pm 0.02$ (Br 53e). Levels in Ca⁴⁵ are observed at 0.18, 1.43, 1.89, 2.24, 2.39, and 2.84 Mev, all ± 0.02 Mev (Br 54a).

IV. $Ca^{46}(\gamma, n)Ca^{45}$

Not observed.

V.
$$Sc^{45}(n,p)Ca^{45}$$
 $Q_m = 0.6$

Radioactive Ca⁴⁵ is produced by pile neutron bombardment of scandium (So 48). See also Wa 40.

VI.
$$Ti^{48}(n,\alpha)Ca^{45}$$
 $Q_m = -1.9$

The cross section for production of Ca⁴⁵ from bombardment of titanium by epi-cadmium pile neutrons is 3×10^{-32} cm² (He 48).

Ca^{46}

(not illustrated)

The mass defect of Ca⁴⁶ is unknown.

I. $Sc^{46}(\beta^{-})Ti^{46}$

 $Sc^{46}(\beta^+, E.C.)Ca^{46}$

Radioactive Sc⁴⁶ (τ =85 days) decays by β^- emission and not by electron capture (Mi 47) and the β^+ emission is less than 1.6×10^{-5} per β^- (Mi 51), the former in contradiction with early experiments (Wa 39a, Me 45).

II. $Ti^{49}(n,\alpha)Ca^{46}$

Not observed.

Ca⁴⁷

(not illustrated)

Adopted mass defect: -28.7 Mev

(The Ca⁴⁷ mass is connected to the Ti⁴⁷ mass through the Ca⁴⁷(β -)Sc⁴⁷(β -)Ti⁴⁷ decay. The Ca⁴⁷ decay energy (1.76±0.03 Mev) reported by Cork *et al.* (Co 53a) has been used, but for the Sc⁴⁷ decay energy the value (0.622±0.005 Mev) given by Cheng and Pool (Ch 53a) has been prefered.)

I. $Ca^{47}(\beta^{-})Sc^{47}$ $Q_m = 1.7$

The half-life is given as 5.8 days (Ma 47), 4.8 ± 0.2 days (Ba 51), 4.8 ± 0.5 days (Co 53), 4.3 ± 0.2 days (Ma 53c), and 5.35 ± 0.10 days (Co 53a).

There is general agreement about a γ ray of $E_{\gamma} = 1.3$ Mev (Ma 47, At 53, Co 53a) in the decay, but the problem of the decay scheme is all but solved.

The β^{-} spectrum end point has been measured by Al absorption as 1.1 Mev (Ma 47) and 1.2 Mev (Ba 51), but recent measurements indicate two branches. By Al absorption end points of $E_{\beta_1} = 2.0 \pm 0.2$ Mev (23 percent) and $E_{\beta_2} = 0.8 \pm 0.2$ Mev (77 percent) are found (At 53) in agreement with $E_{\beta_1}=2.060\pm0.020$ Mev (19) percent) and $E_{\beta_2}=0.685\pm0.006$ Mev (81 percent) (Ma 53c). However, an investigation by magnetic spectrometer gives $E_{\beta_1} = 1.4 \pm 0.1$ Mev (40 percent, log ft =7.7) and $E_{\beta_2} = 0.46 \pm 0.02$ Mev (60 percent, log ft = 5.7). The γ spectrum has also been studied in a magnetic spectrometer (by means of photoelectrons from a Pb radiator and conversion electrons) and by scintillation spectrometer. Gamma rays were found of $E_{\gamma 1} = 1303$ ± 40 kev, $E_{\gamma_2} = 800 \pm 25$ kev, $E_{\gamma_3} = 495 \pm 15$ kev, $E_{\gamma_4}=234.0$ kev and $E_{\gamma_5}=149.5$ kev. Conversion electrons are reported from all but the two hardest γ rays. Coincidences are observed between hard γ rays ($E_{\gamma} > 0.25$ Mev) and β particles, and between γ rays of about 0.2 Mev and energetic β particles ($E_{\beta} > 0.6$ Mev). A decay scheme based on these data shows β_1 in triple cascade with γ_4 and γ_5 , and β_2 with either γ_1 or with γ_2 and γ_3 (Co 53a).

There is also a controversy about the decay of the 3.4 day Sc⁴⁷ daughter. Whereas on the one hand a γ ray of $E_{\gamma}=159.5$ kev is reported in cascade with a single β^- spectrum of end point 0.64 ± 0.03 Mev (Co 53a), also a decay scheme is proposed consisting of a branch with E_{β} -(max)= 0.622 ± 0.005 Mev [(34 ± 4) percent] and a branch with E_{β} -(max)= 0.435 ± 0.008 Mev followed by a γ ray of $E_{\gamma}=0.185\pm0.007$ (Mev) (Ch 53a).

II. $Ca^{46}(n,\gamma)Ca^{47}$

Radioactive Ca^{47} has been produced by pile-neutron irradiation of calcium enriched in Ca^{46} content (Co 53a). See also Co 53.

III. $Ca^{48}(d,dn)Ca^{47}$ $Q_m = -9.8$

Radioactive Ca⁴⁷ has been produced by bombardment of calcium with 26-Mev deuterons (At 53).

IV. $Ti^{50}(d,\alpha p)Ca^{47}$ $Q_m = -5.5$

Radioactive Ca^{47} has been produced by this reaction with 26 Mev deuterons (At 53).

V. The following reactions leading to Ca^{47} have not been reported: $Ca^{46}(d,p)Ca^{47}, Ca^{48}(\gamma,n)Ca^{47}$ $(Q_m = -9.8)$, and $Ti^{50}(n,\alpha)Ca^{47}$ $(Q_m = -3.2)$.

Ca⁴⁸

(not illustrated)

Adopted mass defect: -30.1 Mev (see "Introduction")

I. $Ca^{48}(\beta^{-})Sc^{48}$ $Q_m = 0.4$

A search for β^- activity of natural calcium has been unsuccessful. It is concluded that the half-life of Ca⁴⁸ is longer than 2×10¹⁶ yr (Jo 52). No 44 hr Sc⁴⁸ is found in milkings from natural calcium (Ko 48). Theoretical predictions of the Sc⁴⁸ spin are as high as J=6 or 7 (Ku 53, see also De 53a). A spin value of at least 6 follows from the Sc⁴⁸ β decay (Ca 53a). See also Fr 52.

The threshold of the Ca⁴⁸(p,n)Sc⁴⁸ reaction(measured from targets enriched in Ca⁴⁸ content) is smaller than 0.65 Mev. The energy release in the Ca⁴⁸(β^{-})Sc⁴⁸ decay is thus at least 0.13 Mev (Tr 53).

II. $Ca^{48}(\beta \beta - \beta)Ti^{48}$ $Q_m = 4.3$

A sample of 72 mg Ca enriched to 89 percent in Ca⁴⁸ has been used in a search for double β^- emission. The number of coincidences observed in two scintillation spectrometers would lead to a half-life of $(5\pm 2)\times 10^{16}$ yr and a β^- end point of 3.7 ± 0.5 Mev (Mc 53).

Ca⁴⁹

(not illustrated)

Adopted mass defect: -26.8 MeV

(The Ca⁴⁹ mass defect is based on the Ca⁴⁸ mass and the observed Ca⁴⁸(d,p)Ca⁴⁹ Q value.)

I. $Ca^{49}(\beta^{-})Sc^{49}$ $Q_m = 5.5$

The half-life of Ca^{49} is 8.5 min (Ma 50b). Previously half-lives were assigned to Ca^{49} of 30 min and 2.5 hr (Wa 40, Hu 43b, Se 47, Co 51).

The 57 min daughter Sc⁴⁹ has been found in milkings from pile-irradiated calcium samples enriched in 'Ca⁴³. The Ca⁴⁹ β^- spectrum end point is measured by Al absorption as about 2.7 Mev. Hard γ rays are found in the Ca49 decay (Ma 50b).

II. $Ca^{48}(n,\gamma)Ca^{49}$ $Q_m = 5.0$

The Ca⁴⁹ activity has been observed in pile-irradiated samples enriched to 62 percent in Ca⁴⁸ content (Ma 50b). The cross section for fission neutrons $(E_n \sim 1 \text{ Mev})$ is 1.9 mb (Hu 53a).

III. $Ca^{48}(d,p)Ca^{49}$ $Q_m = 2.8$

The ground-state Q value is reported as $Q = 2.8 \pm 0.3$ Mev (cyclotron deuterons; enriched target; proton scintillation spectrometer) (Wa 53b).

RÉFERENCES

- Ad 49 Adair, Barschall, Bockelman, and Sala, Phys. Rev. 75, 1124 (1949).
- Ad 49a Adair, Bockelman, and Peterson, Phys. Rev. 76, 308(L) (1949).
- Ad 50 R. K. Adair, Revs. Modern Phys. 22, 249 (1950). Ad 53 Adler, Huber, and Hälg, Helv. Phys. Acta 26, 349
- 120
- Ag 50 Ag 52
- H. N. Agnew, Phys. Rev. 77, 655 (1950). Ageno, Cortellessa, and Querzoli, Rend. ist. super. sanita 15, 555 (1952).
- Ageno, Cortellessa, and Querzoli, Nuovo cimento 10, 281 (1953).
 L. H. Ahrens and R. D. Evans, Phys. Rev. 74, 279 Ag 53
- Ah 48 (1948).
- F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 24, Aj 52 321 (1952) Ak 41
- H. Akabori et al., Proc. Phys. Math. Soc. Japan 23, 599 (1941). Al 34
- Alichanow, Alichanian, and Dzelepow, Nature 133, 871(L) (1934). Al 35 Alichanow, Alichanian, and Dzelepow, Z. Physik 93,
- 350 (1935) Alichanow, Alichanian, and Dzelepow, Nature 136, 257(L) (1935). Al 35a
- Al 35b Alichanow, Alichanian, and Dzelepow, Nature 135,
- 393(L) (1935). L. W. Alvarez and R. Cornog, Phys. Rev. 56, 613(L) Al 39 (1939)
- Al 40 W. D. Allen and C. Hurst, Proc. Phys. Soc. (London)
- **52**, 501 (1940). H. R. Allan and C. A. Clavier, Nature **158**, 832(L) Al 46 (1946)
- H. R. Allan and C. A. Wilkinson, Proc. Roy. Soc. (London) A194, 131 (1948).
 D. E. Alburger, Phys. Rev. 73, 1014 (1948).
 R. D. Albert and C. S. Wu, Phys. Rev. 74, 847(L) Al 48
- Al 48a Al 48c
- (1948)Al 48d
- Allen, Bishop, Demers, and Halban, Nature 161, 727(L) (1948). Al 48e L. T. Aldrich and A. O. Nier, Phys. Rev. 74, 876 (1948).
- Allan, Wilkinson, Burcham, and Curling, Nature 163, 210(L) (1949). Al 49
- Al 49a
- Al 49b Al 49c
- Al 50
- D. E. Alburger, Phys. Rev. 76, 435(L) (1949).
 D. E. Alburger, Phys. Rev. 75, 51 (1949).
 D. E. Alburger, Phys. Rev. 75, 1442(L) (1949).
 D. E. Alburger and E. M. Hafner, Revs. Modern Phys. 22, 373 (1950). Al 50a L. W. Alvarez, Phys. Rev. 80, 519 (1950).
- Al 50b Alburger, Hughes, and Eggler, Phys. Rev. 78, 318(A)
- (1950) D. E. Alburger, Phys. Rev. 78, 629(L) (1950)
- Al 50c
- Al 51 Al 51a
- Am 34
- D. E. Alburger, Phys. Rev. 76, 025 (1950).
 Allen, May, and Rall, Phys. Rev. 84, 1203 (1951).
 R. C. Allen and W. Rall, Phys. Rev. 81, 60 (1951).
 J. Ambrosen, Z. Physik 91, 43 (1934).
 Amaldi, d'Agostino, Fermi, Pontecorvo, Rasetti, and Segrè, Proc. Roy. Soc. (London) A149, 522 (1935). Am 35

- Am 38
- T. Amaki and A. Sugimoto, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34, 1650 (1938). Amaldi, Bocciarelli, Cacciapuoti, and Trabacchi, Nuovo cimento 3, 15 (1946). Am 46
- Amaldi, Bocciarelli, Cacciapuoti, and Trabacchi, Nuovo cimento 3, 203 (1946). Am 46a
- Am 52
- J. Ambrosen, Nature 169, 408(L) (1952). E. B. Andersen, Z. physik. Chem. B32, 237 (1936). An 36 An 52 Anderson, Wheeler, and Watson, Phys. Rev. 87, 897(L)
- (1952). An 53 Anderson, Wheeler, and Watson, Phys. Rev. 90, 606
- (1953). H. Aoki, Proc. Phys. Math. Soc. Japan **21**, 232 (1939). Ao 39
- Ar 52 Arthur, Allen, Bender, Hausman, and McDole, Phys. Rev. 88, 1291 (1952).
- W. Arber and P. Stähelin, Helv. Phys. Acta 26, 433(A) Ar 53 (1953).
- W. Arber and P. Stähelin, Helv. Phys. Acta 26, 584(A) Ar 53a (1953)
- A64, 754(L) (1951). Aten, Greuell, and Van Dijk, Physica 19, 1049(L) (1953). As 51
- At 53 Ba 39
 - W. H. Barkas, Phys. Rev. 56, 287(L) (1939)
- W. L. Darkas, Flys. Rev. 50, 207(L) (1939).
 Barkas, Creutz, Delsasso, Sutton, and White, Phys. Rev. 58, 383(L) (1940).
 C. L. Bailey and J. H. Williams, Phys. Rev. 61, 539(L) Ba 40 Ba 42
- (1942)G. C. Baldwin and G. S. Klaiber, Phys. Rev. 70, 259 Ba 46
- (1946). (1940).
 E. C. Barker, Phys. Rev. 71, 453(L) (1947).
 G. C. Baldwin, Phys. Rev. 76, 182(A) (1949).
 J. G. Bayly, Can. J. Research 28A, 520 (1950).
 Batzel, Miller, and Seaborg, Phys. Rev. 84, 671 (1951). Ba 47
- Ba 49
- Ba 50
- Ba 51
- Ba 52 Baker, Dodd, and Simmons, Phys. Rev. 85, 1051(L) (1952).
- Bartholomew, Brown, Howell, Shorey, and Yaffe, Can. J. Phys. **31**, 714 (1953). Batzel, Crane, and O'Kelley, Phys. Rev. **91**, 939 (1953). G. A. Bartholomew and B. B. Kinsey, Can. J. Phys. **31**, 2027 (1952). Ba 53
- Ba 53a Ba 53b
 - 927 (1953).
- Bartholomew, Hawkings, Merritt, and Yaffe, Can. J. Chem. 31, 204 (1953).
 F. Behounek, Z. Physik 69, 654 (1931). Ba 53c
- Be 31
- Be 39 H. A. Bethe and W. J. Henderson, Phys. Rev. 56, 1060(L) (1939). Be 47a
- Becker, Hanson, and Diven, Phys. Rev. 71, 466(A) (1947). Be 48
- Benes, Hedgran, and Hole, Arkiv Mat. Astron. Fysik 35A, No. 12 (1948).
 B. B. Benson, Phys. Rev. 73, 7 (1948).
 J. L. Berggren and R. K. Osborne, Phys. Rev. 74, 1240(4) (1048). Be 48a
- Be 48b
- 1240(A) (1948). Be 49
 Be 49a
 L. E. Beghian and H. H. Halban, Nature 163, 366
- (1949).
- Be 50a J. R. Beyster and M. L. Wiedenbeck, Phys. Rev. 79, 728(L) (1950).
- Be 50b Bell, Weaver, and Cassidy, Phys. Rev. 77, 399(L) (1950) Be 50c
- P. R. Bell and J. M. Cassidy, Phys. Rev. 77, 409(L) (1950).
- Be 50d P. R. Bell and J. M. Cassidy, Phys. Rev. 79, 173(L) (1950).
- Beghian, Bishop, and Halban, Phys. Rev. 83, 186(L) Be 51 (1951) Be 53 E. H. Bellamy and K. F. Smith, Phil. Mag. 44, 33
- (1953). Bishop, Wilson, and Halban, Phys. Rev. 77, 416(L) (1950). Bi 50
 - A. C. Birge, Phys. Rev. 85, 753(A) (1952).
- Bi 52 Bj 34 T. Bjerge and C. H. Westcott, Nature 134, 177(L) (1934).
- Bj 34a T. Bjerge and C. H. Westcott, Nature 134, 286(L) (1934).
- T. Bjerge, Nature 139, 757(L) (1937). Bj 37
- Bleuler, Scherrer, and Zünti, Helv. Phys. Acta 18, 262(A) (1945). Bl 45

- Bl 46 E. Bleuler and W. Zünti, Helv. Phys. Acta 19, 137 (1946).
- Bleuler, Bollmann, and Zünti, Helv. Phys. Acta 19, 419(A) (1946). Bl 46a
- E. Bleuler and W. Zünti, Helv. Phys. Acta 19, 375 Bl 46c (1946).
- Bl 47 E. Bleuler and W. Zünti, Helv. Phys. Acta 20, 195 (1947).
- Bl 47a E. Bleuler and M. Gabriel, Helv. Phys. Acta 20, 67 (1947).
- Bl 47b
- E. Bleuler, Helv. Phys. Acta 20, 519 (1947). Blaser, Boehm, Marmier, and Scherrer, Helv. Phys. Acta 24, 465 (1951). Bl 51
- BI 52
- Bl 53 Bo 34
- S. D. Bloom, Phys. Rev. 88, 312 (1952).
 C. F. Black, Phys. Rev. 90, 381(A) (1953).
 T. W. Bonner and L. M. Mott-Smith, Phys. Rev. 46, 258 (1934).
- Bo 37 E. T. Booth and C. Hurst, Proc. Roy. Soc. (London) E. 1. Booth and C. Hurst, Froc. Roy. Soc. (London) A161, 248 (1937).
 W. Bothe and W. Gentner, Z. Physik 106, 236 (1937).
 W. Bothe and W. Gentner, Z. Physik 112, 45 (1939).
 L. B. Borst and J. J. Floyd, Phys. Rev. 74, 989(L)
- Bo 37a
- Bo 39 Bo 48
- (1948). Bo 50
- K. Boyer, M.I.T. Progress Rep. (L.N.S.E.) July (1950). F. J. Boley and D. J. Zaffarano, Phys. Rev. 84, 1059(L) Bo 51
- (1951). Bolgiano, Madansky, and Rasetti, Phys. Rev. 89, 679 Bo 53
- (1953).
- C. J. Brasefield and E. Pollard, Phys. Rev. 50, 296 Br 36 (1936).
- H. Brandt, Z. Physik 108, 726 (1938). G. Brubaker, Phys. Rev. 54, 1011 (1938). Br 38 Br 38a
- Br 38b A. Bramley and A. K. Brewer, Phys. Rev. 53, 502
- (1938).Br 47 Broström, Huus, and Koch, Nature 160, 498(L) (1947).
- Br 47a Broström, Huus, and Tangen, Phys. Rev. 71, 661 (1947).
- H. Bradner and J. D. Gow, Phys. Rev. 74, 1559(A) Br 48 (1948).
- Br 48a Broström, Huus, and Koch, Nature 162, 695(L) (1948). Br 49
- Brolley, Sampson, and Mitchell, Phys. Rev. 76, 624 (1949). Br 49b E. Bretscher and D. H. Wilkinson, Proc. Cambridge
- Phil. Soc. 45, 141 (1949). Br 50 H. Brown and V. Perez-Mendez, Phys. Rev. 78, 812(L)
- (1950)Br 50a E. L. Brady and M. Deutsch, Phys. Rev. 78, 558
- (1950). Br 50b Brosi, Źeldes, and Ketelle, Phys. Rev. 79, 902(L) (1950).
- Br 50c H. Brown and V. Perez-Mendez, Phys. Rev. 78, 649 (1950).
- Brown, Smith, and Richards, Phys. Rev. 77, 754(A) Br 50d (1950).
- J. A. Bruner and L. M. Langer, Phys. Rev. 79, 606 Br 50e (1950).
- Broström, Madse 1265(L) (1951). Madsen, and Madsen, Phys. Rev. 83, Br 51
- Brown, Hanna, and Yaffe, Phys. Rev. 84, 1243(L) (1951). Br 51a
- Br 53 R. Braams and C. L. Smith, Phys. Rev. 90, 995(L) (1953).
- T. H. Braid, Phys. Rev. **90**, 355(A) (1953). T. H. Braid, Phys. Rev. **91**, 442(A) (1953). Br 53a
- Br 53b Br 53c
- Breckon, Martin, Henrikson, and Foster, to be published. Br 53d
- Braams, Bockelman, Browne, and Buechner, Phys. Rev. 91, 474(A) (1953).
- Br 53e C. M. Braams (private communication).
- Brown, Yaffe, and Hanna, Proc. Roy. Soc. (London) A220, 203 (1953). Br 53f Br 53g C. P. Browne and S. F. Zimmerman, private com-
- munication.
- Br 54 C. M. Braams, Bull. Am. Phys. Soc. 29, No. 1, 2b (1954).
- Br 54a C. M. Braams, private communication.
- Bu 41 R. L. Burling, Phys. Rev. 60, 340 (1941).
- J. W. Burkig and B. T. Wright, Phys. Rev. 82, 451 Bu 51 (1951).

- Bu 53 P. R. J. Burch, Nature 172, 361(L) (1953).
- Buechner, Sperduto, Browne, and Bockelman, Phys. Rev. 91, 1502 (1953). Bu 53a
- W. W. Buechner (private communication to H. A. Bu 53b Enge).
- Bu 54 S. T. Butler and N. Austern, Phys. Rev. 93, 355(L) (1954).
- B. N. Cacciapuoti, Nuovo cimento 15, 213 (1938). Ca 38
- A. G. W. Cameron, Phys. Rev. 82, 272(L) (1951). R. S. Caswell, Phys. Rev. 86, 82 (1952). H. Casson, Phys. Rev. 89, 809 (1953). Ca 51
- Ca 52
- Ca 53 Ca 53a
- Casson, Goodman, and Krohn, Phys. Rev. 92, 1517 (1953). Ce 49
 - Ceccarelli, Merlin, and Rostagni, Nuovo cimento 6,
- 151 (1949). Ceccarelli, Quareni, and Rostagni, Phys. Rev. 80, 909(L) (1950). Ce 50
- Ceccarelli, Quareni, and Rostagni, Nuovo cimento 8, 132 (1951). Ce 51
- Lisz (1931).
 Chadwick, Constable, and Pollard, Proc. Roy. Soc. (London) A130, 463 (1931).
 J. Chadwick and J. E. R. Constable, Proc. Roy. Soc. (London), A135, 48 (1932).
 J. Chadwick and N. Feather, Intern. Conf. Phys. London (1024). Ch 31
- Ch 32
- Ch 34 London (1934). W.Y
- . Y. Chang and A. Szalay, Proc. Roy. Soc. (London) A159, 72 (1937). Ch 37
- Ch 48 F. C. Champion and R. R. Roy, Phys. Rev. 74, 5 (1948). Ch 50 G. Charpak and F. Suzor, J. phys. radium 11, 633
 - (1950)
- Churchill, Jones and Hunt, Nature 172, 460(L) (1953). L. S. Cheng and M. L. Pool, Phys. Rev. 90, 886 (1953). Ch 53
- Ch 53a Ci 38 J. Cichocki and A. Soltan, Compt. rend. 207, 423(A)
- (1938) Cl 44 E. T. Clarke and J. W. Irvine, Phys. Rev. 66, 231
- (1944). Cl 46 E. T. Clarke and J. W. Irvine, Phys. Rev. 69, 680(A) (1946)
- Cl 46a E. T. Clarke and J. W. Irvine, Phys. Rev. 70, 893 (1946).
- Cl 47
- E. T. Clarke, Phys. Rev. 71, 187 (1947). Cleland, Townsend, and Hughes, Phys. Rev. 84, 298 (1951). CI 51 Co 36
- Cork, Richardson, and Kurie, Phys. Rev. 49, 208(A) (1936). Co 38 J. M. Cork and R. L. Thornton, Phys. Rev. 53, 866
- (1938). Co 40 J. M. Cork and W. Middleton, Phys. Rev. 58, 474(L)
- (1940)Co 46a J. W. Coltman and M. Goldhaber, Phys. Rev. 69, 411 (1946).
- Cook, Jurney, and Langer, Phys. Rev. 70, 985(L) (1946). Co 46
- Co 48 Cook, Langer, and Price, Phys. Rev. 74, 548 (1948).
- Coster, Groendijk, and De Vries, Physica 14, 1 (1948). A. L. Cockcroft and G. M. Insch, Phil. Mag. 40, 1014 Co 48a Co 49
 - (1949)
- Co 50
- F. C. W. Colmer and D. J. Littler, Proc. Phys. Soc. (London) A63, 1175 (1950).
 J. W. Cobblee and R. W. Atteberry, Phys. Rev. 80, 917(L) (1950). Co 50a
- B. L. Cohen, Phys. Rev. 81, 184 (1951) Co 51
- Co 51a
- S. A. Colgate, Phys. Rev. 81, 1063(L) (1951). Collins, Nier, and Johnson, Phys. Rev. 84, 717 (1951). Cowie, Heydenburg, and Phillips, Phys. Rev. 87, 304 Co 51b Co 52 (1952)
- Coon, Graves, and Barschall, Phys. Rev. 88, 562 (1952). Co 52a
- Co 52b Collins, Nier, and Johnson, Phys. Rev. 86, 408 (1952).
- Co 53 L. G. Cook and K. D. Shafer, Phys. Rev. 90, 1121(L)
- (1953). Cork, Le Blanc, Brice, and Nester, Phys. Rev. 92, 367 Co 53a
- (1953). Cox, Van Loef, and Lind, Bull. Am. Phys. Soc. 28, Co 53b
- No. 6, 21 (1953).
- Cr 39 E. C. Crittenden, Phys. Rev. 56, 709 (1939).
- Creutz, Fox, and Sutton, Phys. Rev. 57, 567 (A) (1940). I. Curie and F. Joliot, J. phys. radium 4, 278 (1933). Cr 40
- Cu 33
- Cu 34 I. Curie and F. Joliot, J. phys. radium 5, 153 (1934).

- I. Curie and F. Joliot, Compt. rend. 198, 254 (1934). I. Curie and F. Joliot, Compt. rend. 198, 559 (1934). Cu 34a
- Cu 34b
- Curie, Joliot, and Preiswerk, Compt. rend. 198, 2089 Cu 34c (1934). Cu 39
- S. C. Curran and J. E. Strothers, Proc. Roy. Soc. (London) A172, 72 (1939). Curran, Dee, and Strothers, Proc. Roy. Soc. (London) Cu 40
- A174, 546 (1940).
 W. H. Cuffey, Phys. Rev. 79, 190(L) (1950).
 W. L. Davidson, Phys. Rev. 56, 1061(L) (1939).
 W. L. Davidson, Phys. Rev. 57, 244(L) (1940). Cu 50
- Da 39
- Da 40
- Da 48 L. Davis, Phys. Rev. 74, 1193(L) (1948)
- Da 49 P. W. Davison, Phys. Rev. 75, 757 (1949)
- Davison, Buchanan, and Pollard, Phys. Rev. 76, 890 Da 49a
- (1949). Davis, Nagle, and Zacharias, Phys. Rev. 76, 1068 (1949). Da 49b
- (1949).
 R. B. Day, Phys. Rev. 89, 908(A) (1953).
 Daniel, Koester, and Mayer-Kuckuk, Z. Naturforsch. 8a, 447(L) (1953).
 R. B. Day and R. L. Henkel, Phys. Rev. 92, 358 (1953).
 S. Devons, Proc. Roy. Soc. (London) A172, 127 (1939).
 C. F. G. Delaney, Phys. Rev. 81, 158(L) (1951).
 C. F. G. Delaney, Sci. Proc. Roy. Dublin Soc. 25, 251 (1951). Da 53 Da 53a
- Da 53b
- De 39
- De 51 De 51a
- (1951).
- C. F. G. Delaney and J. H. J. Poole, Phys. Rev. 89, 529(L) (1953). De 53
- De 53a A. De-Shalit, Phys. Rev. 91, 1479 (1953)
- K. Diebner and H. Pose, Z. Physik 75, 753 (1932). Di 32
- Di 43 R. H. Dicke and J. Marshall Jr., Phys. Rev. 63, 86 (1943)
- Di 50 B. C. Diven and G. M. Almy, Phys. Rev. 80, 407 (1950).
- Donahue, Jones, McEllistrem, and Richards, Phys. Rev. 89, 824 (1953). Do 53
- W. E. Duncanson and H. Miller, Proc. Roy. Soc. (London) A146, 396 (1934).
 J. V. Dunworth, Nature 159, 436(L) (1947). Du 34
- Du 47
- Y. E. Duval and M. H. Kurbatov, J. Am. Chem. Soc. Du 53 75. 2246 (1953)
- H. R. Dvorak and R. N. Little, Phys. Rev. 90, 618 Dv 53 (1953).
- (1953).
 Dzelepow, Kopjova, and Vorobjov, Phys. Rev. 69, 538(L) (1946).
 A. Eckardt, Naturwiss. 23, 527 (1935).
 A. Eckardt, Ann. Physik. 29, 497 (1937).
 L. S. Edwards and F. A. MacMillan, Phys. Rev. 87, 377(L) (1952).
 C. Ellin M. H. Achie Met. Action. Facility. Dz 46
- Ec 35 Ec 37
- Ed 52
- Ek 43
- 377(L) (1952).
 S. Eklund and N. Hole, Arkiv Mat. Astron. Fysik. A29, No. 26 (1943).
 C. D. Ellis and W. J. Henderson, Proc. Roy. Soc. (London) A146, 206 (1934).
 C. D. Ellis and W. J. Henderson, Proc. Roy. Soc. (London) A152, 714 (1935).
 C. D. Ellis and W. J. Henderson, Nature 126 (755(L)). El 34
- El 35
- El 35a C. D. Ellis and W. J. Henderson, Nature 136, 755(L) (1935).
- C. D. Ellis and W. J. Henderson, Proc. Roy. Soc. (London) A156, 358 (1936).
 D. R. Elliot and L. D. P. King, Phys. Rev. 60, 489 El 36
- El 41 (1941).
- El 43 Elliot, Deutsch, and Roberts, Phys. Rev. 63, 386(L) (1943).
- El-Bedewi, Middleton, and Tai, Nature 169, 235(L) El 52 (1952).
- El 52a L. G. Elliot, Phys. Rev. 85, 942(L) (1952).
- Enge, Buechner, Sperduto, and Van Patter, Phys. Rev. 83, 31 (1951). En 51 En 51a Endt, Van Patter, Buechner, and Sperduto, Phys. Rev.
- 83, 491 (1951). En 51b W. W. Ennis, Phys. Rev. 82, 304(A) (1951).
- Endt, Haffner, and Van Patter, Phys. Rev. 86, 518 En 52a (1952).
- En 52b Endt, Enge, Haffner, and Buechner, Phys. Rev. 87, 27 (1952).
- En 52c Enge, Buechner, and Sperduto, Phys. Rev. 88, 963 (1952).
- En 53
- T. C. Engelder, Phys. Rev. 90, 259 (1953).
 H. A. Enge, Univ. i Bergen Årbok, Naturvitenskap Rekke (1953). En 53a

- H. Ewald, Z. Naturforsch. 6a, 293 (1951) Ew 51
- H. Fahlenbrach, Z. Physik. **96**, 503 (1935). H. Fahlenbrach, Z. Physik. **94**, 607 (1935). Fa 35
- Fa 35a
- Fa 50 W. R. Faust, Phys. Rev. 78, 624(L) (1950).
- Fa 51
- W. K. Faust, Flys. Rev. 76, 024(L) (1930).
 C. E. Falk, Phys. Rev. 83, 499 (1951).
 N. Feather and J. V. Dunworth, Proc. Cambridge Phil. Soc. 34, 442 (1938).
 L. Feldman and C. S. Wu, Phys. Rev. 87, 1091 (1952). Fe 38
- Fe 52 Fe 53 A. J. Ferguson and H. E. Gove, Phys. Rev. 91, 439(A) (1953).
- Fi 47 Fields, Russell, Sachs, and Wattenberg, Phys. Rev. 71, 508 (1947).
- E. L. Fireman, Phys. Rev. 75, 1447(L) (1949). Fi 49
- R. E. Fields and M. Walt, Phys. Rev. 83, 479(L) Fi 51 (1951).
- Fl 34
- R. Fleischmann, Naturwiss. 22, 434(L) (1934).
 R. Fleischmann, Z. Physik. 103, 113 (1936).
 J. J. Floyd and L. B. Borst, Phys. Rev. 75, 1106(L) FI 36 Fl 49
- (1949) Fo 52 A. Folkierski, Proc. Phys. Soc. (London) A65, 1006
 - (1952).
- S. G. Forbes, Phys. Rev. 88, 1309 (1952).
 O. R. Frisch, Nature 133, 721 (1934).
 O. R. Frisch, Nature 136, 220 (1935). Fo 52a
- Fr 34
- Fr 35
- J. M. Freeman and A. S. Baxter, Nature 162, 696(L) Fr 48 (1948)
- Fr 48a S. Franchetti and M. Giovanozzi, Phys. Rev. 74, 102(L) (1948). Freier, Fulk, Lampi, and Williams, Phys. Rev. 78, 508
- Fr 50 (1950).
- A. P. French and P. B. Treacy, Proc. Phys. Soc. (London) A63, 665 (1950). Fr 50a
- Fr 50b J. M. Freeman, Proc. Phys. Soc. (London) A63, 668(L) (1950).
- J. M. Freeman and J. Seed, Proc. Phys. Soc. (London). A64, 313(L) (1951). Fr 51
- J. H. Fremlin and M. C. Walters, Proc. Phys. Soc. Fr 52 (London) A65, 911 (1952). E. Fünfer, Ann. Physik. 32, 313 (1938).
- Fu 38
- H. W. Fulbright and R. R. Bush, Phys. Rev. 74, 1323 Fu 48 (1948)
- H. W. Fulbright and J. C. D. Milton, Phys. Rev. 82, 274(L) (1951).
 Garrett, Hereford, and Sloope, Phys. Rev. 92, 1507 Fu 51
- Ga 53 (1953).
- Galonsky, Haeberli, Goldberg, and Douglas, Phys. Rev. 91, 439(A) (1953).
 W. Gentner, Z. Physik 107, 354 (1937).
 W. Gentner, Naturwiss. 26, 109(L) (1938).
 Gibert, Roggen, and Rossel, Helv. Phys. Acta 17, 97 (1944). Ga 53a
- Ge 37 Ge 38
- Gi 44
- (1944).
 W. M. Gibson and E. E. Thomas, Proc. Roy. Soc. (London) A210, 543 (1952). Gi 52
- Gi 52a
- D. A. Gilbert, Phys. Rev. **35**, 716(A) (1952). E. Gleditsch and T. Graf, Phys. Rev. **72**, 640(L) (1947). Gl 47
- Glass, Jensen, and Richardson, Phys. Rev. 90, 320(L) Gl 53 (1953)
- Gl 53a N. W. Glass and J. R. Richardson, Phys. Rev. 93, 942 (1954).
- Gl 53b
- N. W. Glass, private communication. J. Govaerts, Nature 145, 624(L) (1940). Goldhaber, Klaiber, and Scharff-Goldhaber, Phys. Rev. Go 40
- Go 44 65, 61(A) (1944) Go 46a
- Good, Peaslee, and Deutsch, Phys. Rev. 69, 313 (1946). H. E. Gove, M.I.T. Progress Rept. (L.N.S.E.) July Go 50 (1950).
- L. S. Goodman and T. R. Robillard, Argonne National Laboratory Report ANL-4476, 62 (1950).
 H. E. Gove, Phys. Rev. 81, 364 (1951). Go 50a
- Go 51
- M. L. Good, Phys. Rev. 81, 891(L) (1951). Go 51a
- Go 51b M. L. Good, Phys. Rev. 81, 1058(L) (1951).
- M. L. Good, Phys. Rev. 83, 1054(L) (1951). Go 51c
- H. E. Gove and H. F. Stoddart, Phys. Rev. 86, 572(L) Go 52 (1952).
- Go 52a H. F. Gove and A. Hedgran, Phys. Rev. 86, 574(L) (1952).
- E. Goldberg, Phys. Rev. 89, 760 (1953). Go 53
- H. E. Gove and E. B. Paul, Phys. Rev. 92, 852(A) Go 53a (1953).

- Go 53b Goodrich, Levinger, and Payne, Phys. Rev. 91, 1225 (1953)
- M. Goodrich and W. B. Payne, Phys. Rev. 93, 916 Go 53c (1954).
- Go 53d
- H. E. Gove, private communication.
 Goldberg, Haeberli, Galonsky, and Douglas, Phys. Rev., to be published.
 J. Goldemberg and L. Katz, Can. J. Phys. 32, 49 Go 53e Go 54a
- (1954)Gr 34
- L. H. Gray and G. T. P. Tarrant, Proc. Roy. Soc. (London) A143, 681 (1934). Gr 41 D. C. Grahame and H. J. Walke, Phys. Rev. 60, 909(L)
- (1941). Gr 43
- H. Groendijk and Hl. de Vries, Physica 10, 381 (1943). E. R. Graves and J. H. Coon, Phys. Rev. 70, 101(A) Gr 46
- (1946). Gr 48
- T. Graf, Phys. Rev. 74, 831(L) (1948). T. Graf, Phys. Rev. 74, 1199(L) (1948). Gr 48a
- Gr 49
- Greenless, Kewr, 17, 1199(L) (1946).
 Greenless, Kempton, and Rhoderick, Nature 164, 663(L) (1949).
 Grotdal, Lönsjö, Tangen, and Bergström, Phys. Rev. 77, 296(L) (1950).
 P. J. Grant, Proc. Phys. Soc. (London) A63, 1298 (1967). Gr 50
- Gr 50a
- (1950). Gr 50b L. Gross and D. R. Hamilton, Phys. Rev. 80, 484(L)
- (1950). J. C. Grosskreutz and K. B. Mather, Phys. Rev. 77, Gr 50c
- 580 (1950). T. Graf, Phys. Rev. **79**, 1014 (1950). Gr 50d
- Grace, Beghian, Preston, and Halban, Phys. Rev. 82, 969(L) (1951). Gr 51
- Gr 51a G. R. Grove and J. N. Cooper, Phys. Rev. 82, 505 (1951).
- Gr 51b D. Green and J. R. Richardson, Phys. Rev. 83, 891(A) (1951).
- Gr 51c
- T. Graf, Arkiv Fysik 3, 171 (1951). Grace, Lemmer, and Halban, Proc. Phys. Soc. (Lon-don) A65, 456 (1952). Gr 52
- Gr 53 P. J. Grant, Report of the Birmingham Nuclear Physics Conference (1953).
- Gu 51
- Gu 52
- P. C. Gugelot, Phys. Rev. 81, 51 (1951).
 P. C. Gugelot, Phys. Rev. 87, 525(L) (1952).
 J. B. Guernsey and C. Goodman, Phys. Rev. 92, 323 Gu 53 (1953).
- O. Haxel, Z. Physik 83, 323 (1933). O. Haxel, Z. Physik 90, 373 (1934). Ha 33
- Ha 34
- Ha 35
- O. Hazel, Z. tech. Phys. 16, 410 (1935).
 P. Harteck and H. Suess, Naturwiss. 34, 214(L) (1947).
 J. L. Hansen and J. E. Willard, Phys. Rev. 76, 597(L) Ha 47
- Ha 49
- Ha 49a
- (1950). I. Halpern, Phys. Rev. **76**, 248 (1949). Rasmussen, Schroeder, and Harris, Muehlhause, Rasmussen, Schroeder, and Thomas, Phys. Rev. 80, 342 (1950). Haslam, Katz, Moody, and Skarsgard, Phys. Rev. 80, Ha 50
- Ha 50a 318 (1950).
- Ha 50b
- B. Hamermesh, Phys. Rev. 80, 415 (1950).
 J. Halpern and A. K. Mann, Phys. Rev. 83, 370 (1951).
 B. Hamermesh and V. Hummel, Phys. Rev. 83, 663 (L) Ha 51
- Ha 51a
- T. D. Hanscome and C. W. Malich, Phys. Rev. 82, Ha 51c 304(A) (1951).
- Ha 51d W. Hälg, Helv. Phys. Acta 24, 641(A) (1951).
- Hausman, Allen, Arthur, Bender, and McDole, Phys. Rev. 88, 1296 (1952). Ha 52
- Ha 52a Haslam, Summers-Gill, and Crosby, Can. J. Phys. 30, 257 (1952).
- Ha 52b B. Hamermesh and V. Hummel, Phys. Rev. 88, 916 (1952).
- Ha 52c J. A. Harvey, Phys. Rev. 88, 162(A) (1952).
- Ha 52d Haskins, Duval, Cheng, and Kurbatov, Phys. Rev. 88, 876 (1952).
- Ha 52e Halpern, Mann, and Nathans, Phys. Rev. 88, 958(L) (1952)
- Haeberli, Galonsky, Goldberg, and Douglas, Phys. Rev. 91, 438(A) (1953). Ha 53
- Ha 53a Hansen, Kiehn, and Goodman, Phys. Rev. 92, 652 (1953).
- Ha 53b Hamilton, Lemonick, and Pipkin, Phys. Rev. 92, 1191 (1953).

- He 35
- M. C. Henderson, Phys. Rev. 48, 855 (1935). G. Hevesy and H. Levi, Nature 135, 580(L) (1935) He 35a
- Herb, Kerst, and McKibben, Phys. Rev. 51, 691 (1937). He 37
- He 37a
- Hero, Kerst, and MICKIDDEN, Phys. Rev. 51, 691 (1937).
 Henderson, Ridenour, White, and Henderson, Phys. Rev. 51, 1107 (L) (1937).
 W. J. Henderson and R. L. Doran, Phys. Rev. 56, 123 (L) (1939).
 A. C. Helmholz, Phys. Rev. 60, 415 (1941).
 Hendricks, Bryner, Thomas, and Ivie, J. Phys. Chem. 47, 469 (1943).
 Heider Manuard Data H. Data Data Cardon (1943). He 39
- He 41
- He 43
- He 47 Heitler, May, and Powell, Proc. Roy. Soc. (London) A190, 180 (1947).
- W. J. Henderson, Phys. Rev. 71, 323(L) (1947).
 R. E. Hein and A. F. Voigt, Phys. Rev. 74, 1265(A) He 47a He 48 (1948).
- He 49 Herb, Snowdon, and Sala, Phys. Rev. 75, 246 (1949).
- He 50 R. L. Henkel and H. H. Barschall, Phys. Rev. 80, 145 (1950).
- He 51 Heller, Sturcken, and Weber, Phys. Rev. 83, 848(L) (1951).
- He 52
- A. Hedgran and D. Lind, Arkiv Fysik 5, 177 (1952). N. P. Heydenburg and G. M. Temmer, Bull. Am. He 54 Phys. Soc. 29, No. 1, 11 (1954). E. Hill, Phys. Rev. 57, 1076(A) (1940).
- Hi 40
- Hibdon, Pool, and Kurbatov, Phys. Rev. 67, 289 (1945). Hi 45
- Hi 46 O. Hirzel and H. Wäffler, Helv. Phys. Acta 19, 216(A) (1946)
- Hi 47 O. Hirzel and H. Wäffler, Helv. Phys. Acta 20, 373 (1947) O. Hirzel and H. Wäffler, Phys. Rev. 74, 1553(L) Hi 48
- (1948). T. Hibdon and C. O. Muehlhause, Phys. Rev. 76,
- Hi 49a C. 100 (1949). . T. Hibdon, Phys. Rev. **79**, 747 (1950)
- Hi 50
- Hibdon, Muehlhause, Selove, and Woolf, Phys. Rev. **75**, 730(L) (1950). Hi 50 Hi 52 Hibdon, Langsdorf, and Holland, Phys. Rev. 85, 595
- (1952)N. M. Hintz and N. F. Ramsey, Phys. Rev. 88, 19 Hi 52a
- (1952). Hi 53 Hinman, Brower, and Leamer, Phys. Rev. 90, 370(A)
- (1953).
- E. Hjalmar and H. Slätis, Arkiv Fysik 4, 323 (1952). J. B. Hoag, Phys. Rev. 57, 937(L) (1940). Hj 52 Ho 40b
- Ho 41
- Hole, Holtsmark, and Tangen, Z. Physik 118, 48 (1941). Ho 46
 - N. Hole and K. Siegbahn, Arkiv Mat. Astron. Fysik A33, No. 9 (1946).
- Ho 46a
- Ho-Zah-Wei, Phys. Rev. 70, 782(L) (1946). J. R. Holt and C. T. Young, Nature 164, 1000(L) Ho 49 (1949)
- J. R. Holt and C. T. Young, Proc. Phys. Soc. (London) A63, 833 (1950). Ho 50
- Ho 50a Houtermans, Haxel, and Heintze, Z. Physik 128, 657 (1950). R. Hofstadter and J. A. McIntyre, Phys. Rev. 80, 631
- Ho 50b (1950).
- Ho 51 M. Hoffman, Phys. Rev. 83, 215(A) (1951).
- Hodgson, Gallagher, and Bowey, Proc. Phys. Soc. (London) A65, 992 (1952). Ho 52 Ho 52a R. B. Holtzmann and N. Sugarman, Phys. Rev. 87,
- 633(1952). Ho 53a J. R. Holt and T. N. Marsham, Phys. Rev. 89, 665(L)
- (1953).
- Ho 53b J. R. Holt and T. N. Marsham, Proc. Phys. Soc. (London) A66, 249 (1953).
- Ho 53c J. R. Holt and T. N. Marsham, Proc. Phys. Soc. (London) A66, 258 (1953).
- Ho 53d J. R. Holt and T. N. Marsham, Proc. Phys. Soc. (London) A66, 467 (1953). Ho 53e J. R. Holt and T. N. Marsham, Proc. Phys. Soc. (London) A66, 565 (1953).
- Ho 53f Hollander, Perlman, and Seaborg, Revs. Modern Phys. 25, 469 (1953).
 Ho 53g W. F. Hornyak and T. Coor, Phys. Rev. 92, 675 (1953)
- Ho 53h M. M. Hoffman and A. G. W. Cameron, Phys. Rev. 92, 1184 (1953).
- Hu 37 D. G. Hurst and H. Walke, Phys. Rev. 51, 1033 (1937).

- Hu 41 R. F. Humphreys and E. Pollard, Phys. Rev. 59, 942(A) (1941).
- Hu 41a
- P. Huber, Helv. Phys. Acta 14, 163 (1941). Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Acta 15, 312(A) (1942). Hu 42 Huber, Lienhard, and Wäffler, Helv. Phys. Acta 15, Hu 42a
- 314(A) (1942). Hu 43
- Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Acta 16, 33 (1943). Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Acta 16, 431(L) (1943). Hu 43a
- Huber, Lienhard, and Wäffler, Helv. Phys. Acta 16, 431(L) (1943). Hu 43b
- Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Hu 44 Acta 17, 139 (1944).
- Huber, Lienhard, and Wäffler, Helv. Phys. Acta 17, 195 Hu 44a (1944).
- Hu 45 Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Acta 18, 221 (1945)
- Hughes, Spatz, and Goldstein, Phys. Rev. 75, 1781 (1949). Hu 49
- J. Hughes, Proc. Phys. Soc. (London) A64, 797 (1951). R. Huby and H. C. Newns, Phil. Mag. 42, 1442(L) Hu 51 Hu 51a
- (1951)D. J. Hughes et al., Neutron Cross Sections AECU-Hu 52
- 2040. S. E. Hunt and W. M. Jones, Phys. Rev. 89, 1283 (1953). Hu 53
- Hughes, Garth, and Levin, Phys. Rev. 91, 1423 (1953). Hu 53a Inghram, Brown, Patterson, and Hess, Nev. 91, 1425 (1953).
 Inghram, Brown, Patterson, and Hess, Phys. Rev. 80, 916(L) (1950).
 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).
 J. Itoh, Proc. Phys. Math. Soc. Japan 23, 605 (1941).
 Iwersen, Koski, and Rasetti, Phys. Rev. 91, 1229 (1953). In 50
- In 53
- It 41
- Iw 53 (1953)
- J. C. Jacobsen, Nature 139, 879(L) (1937). Ja 37
- Jensen, Nichols, Clement, and Pohm, Phys. Rev. 85, 112 (1952). Je 52
- C. D. Jeffries, Phys. Rev. 90, 1130(L) (1953) Je 53 To 49 F. Johnston and J. E. Willard, Phys. Rev. 75, 528(L)
- (1949). Johnson, Gordy, and Livingston, Phys. Rev. 83, 1249(L) (1951). Jo 51
- Jo 52 J. W. Jones and T. P. Kohman, Phys. Rev. 85, 941(L) (1952).
- W. H. Johnson, Phys. Rev. 88, 1213(L) (1952) Jo 52a
- J. W. Jones and T. P. Kohman, Phys. Rev. 90, 495(L) Jo 53 (1953).
- W. R. Kanne, Phys. Rev. 52, 266 (1937) Ka 37
- Ka 41
- M. D. Kamen, Phys. Rev. 60, 537 (1941). M. D. Kamen, Phys. Rev. 62, 303(A) (1942). Ka 42
- Ka 51a
- L. Katz and A. S. Penfold, Phys. Rev. 81, 815 (1951). L. Katz and A. G. W. Cameron, Phys. Rev. 84, 1115 Ka 51b
- (1951). L. Katz and A. G. W. Cameron, Can. J. Phys. 29, 518 Ka 51c (1951).
- Kaufmann, Goldberg, Koester, and Mooring, Phys. Rev. 88, 673 (1952).
 S. Katcoff, Phys. Rev. 87, 886 (1952). Ka 52
- Ka 52a
- J. W. Kennedy and G. T. Seaborg, Phys. Rev. 91, 1212 (1953).
 J. W. Kennedy and G. T. Seaborg, Phys. Rev. 57, Ka 53 Ke 40 843(L) (1950
- B. H. Ketelle, Phys. Rev. 80, 758(L) (1950). K. K. Keller, Phys. Rev. 84, 884 (1951). Ke 50
- Ke 51
- Ki 39a King, Henderson, and Risser, Phys. Rev. 55, 1118(A) (1939)
- Ki 42 Kikuchi, Watase, and Itoh, Z. Physik 69, 185 (1942). Ki 51
- Kinsey, Bartholomew, and Walker, Phys. Rev. 83, 519 (1951).
- Kinsey, Bartholomew, and Walker, Phys. Rev. 85, 1012 (1952). Ki 52
- J. S. King and W. C. Parkinson, Phys. Rev. 88, 141(L) Ki 52a (1952)
- Ki 52b B. B. Kinsey and G. A. Bartholomew, Physica 18, 1112 (1952). Ki 53
- Kington, Bair, Carlson, and Willard, Phys. Rev. 89, 530(L) (1953). Ki 53a
- B. B. Kinsey and G. A. Bartholomew, Can. J. Phys. 31, 901(L) (1953).

- Ki 53b J. S. King and E. H. Beach, Phys. Rev. 90, 381(A) (1953)
- Ki 53c Kiehn, Goodman, and Hansen, Phys. Rev. 91, 66 (1953).
- Ki 53d B. B. Kinsey and G. A. Bartholomew, Can. J. Phys. 31, 537 (1953[°]). Ki 53e
- B. B. Kinsey and G. A. Bartholomew, Atomic Energy of Canada, Report GPI-15 (1953). H. Klarmann, Z. Physik **95**, 221 (1935). Kl 35
- E. D. Klema and A. O. Hanson, Phys. Rev. 73, 106 Kl 48 (1948
- J. C. Kluyver and G. Verploegh, Physica, to be pub-Kl 53 lished.
- A. König, Z. Physik 90, 197 (1934) Ko 34
- M. Kovacs, Phys. Rev. **70**, 895 (1946). T. P. Kohman, Phys. Rev. **73**, 1223(A) (1948). Ko 46 Ko 48
- Ko 52 L. J. Koester, Phys. Rev. 85, 643 (1952).
- Kr 45 Р. G. Kruger and W. E. Ógle, Phys. Rev. 67, 273 (1945)
- Kr 53 A. Z. Kranz and W. W. Watson, Phys. Rev. 91, 1472 (1953)
- Kurie, Richardson, and Paxton, Phys. Rev. 49, 368 Ku 36 (1936).
- G. Kuerti and S. N. van Voorhis, Phys. Rev. 56, Ku 39 614(L) (1939). Ku 49
 - H. E. Kubitschek and S. M. Dancoff, Phys. Rev. 76, 531 (1949).
- Ku 53
- La 34 La 35
- 531 (1949).
 D. Kurath, Phys. Rev. 91, 1430 (1953).
 E. O. Lawrence and M. S. Livingston, Phys. Rev. 45, 220(L) (1934).
 E. O. Lawrence, Phys. Rev. 47, 17 (1935).
 Lawrence, McMillan, and Thornton, Phys. Rev. 48, 402 (1925). La 35a 493 (1935).
- L. J. Laslett, Phys. Rev. 52, 529 (1937). La 37
- Langer, Mitchell, and McDaniel, Phys. Rev. 56, 962(L) (1939). La 39
- La 39a
- J. L. Lawson, Phys. Rev. 56, 131 (1939). C. Lapointe and F. Rasetti, Phys. Rev. 58, 554 (1940). La 40
- R. V. Langmuir, Phys. Rev. 74, 1559(A) (1948).
 L. J. Laslett, Phys. Rev. 76, 858(L) (1949). La 48
- La 49
- La 49a L. M. Langer and H. C. Price, Phys. Rev. 76, 641 (1949).
- La 50 Langer, Motz, and Price, Phys. Rev. 77, 798 (1950).
- La 51 H. H. Landon, Phys. Rev. 83, 1081 (1951). L. M. Langer, Phys. Rev. 77, 50 (1950).
- La 50a
- Le 33 Lewis, Livingston, and Lawrence, Phys. Rev. 44, 55(L) (1933)
- Le 40
- H. Levi, Nature 145, 588(L) (1940). Levinthal, Martinelli, and Silverman, Phys. Rev. 78, Le 50 199 (1950). M. S. Livingston and H. A. Bethe, Revs. Modern Phys. Li 37
- 9, 245 (1937).
- W. F. Libby and D. D. Lee, Phys. Rev. 55, 245 (1939). Li 39
- Li 46 Little, Long, and Mandeville, Phys. Rev. 69, 414 (1946).
- Lichtenberger, Nobles, Monk, Kubitschek, and Dan-coff, Phys. Rev. 72, 164(A) (1947). Li 47
- Li 51 Li, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512 (1951)
- C. W. Li, Phys. Rev. 88, 1038 (1952). Li 52
- Li 53 M. Lindner, Phys. Rev. 89, 1150(L) (1953).
- M. Lindner, Phys. Rev. 91, 642 (1953). Li 53a
- W. Low and C. H. Townes, Phys. Rev. 75, 529(L) Lo 49 (1949)
- E. E. Lockett and R. H. Thomas, Nucleonics 11, No. 3, Lo 53 14 (1953).
- Lüscher, Ricamo, Scherrer and Zünti, Helv. Phys. Acta 23, 561 (1950). Lu 50
- Ly 37 E. M. Lyman, Phys. Rev. 51, 1 (1937).
- W. S. Lyon and J. J. Manning, Phys. Rev. 93, 501 Ly 54 (1954)
- Ma 36 A. Nunn May and R. Vaidyanathan, Proc. Roy. Soc. (London) A155, 519 (1936)
- C. Magnan, Compt. rend. 205, 1147 (1937). Ma 37
- Ma 40 M. R. MacPhail, Phys. Rev. 57, 669 (1940).
- C. Magnan, Ann. phys. 15, 5 (1941). Ma 41
- C. E. Mandeville, Phys. Rev. 63, 387(L) (1943). H. Maier-Leibnitz, Z. Physik 122, 233 (1943). Ma 43
- Ma 43a

162

- Ma 47 D. E. Matthews and M. L. Pool, Phys. Rev. 72, 163(A) (1947).
- C. E. Mandeville, Phys. Rev. **76**, 436(L) (1949). W. Maurer, Z. Naturforsch. **4A**, 150 (1949). J. E. Mack, Revs. Modern Phys. **22**, 64 (1950). Mackin, Lidofsky and Wu, Phys. Rev. **78**, 318(A) Ma 49
- Ma 49a
- Ma 50
- Ma 50a (1950)E. der Mateosian and M. Goldhaber, Phys. Rev. 79, Ma 50b
- 192(L) (1950). Ma 50c
- Macklin, Feldman, Lidofsky and Wu, Phys. Rev. 77, 137(L) (1950). Ma 51 L. Madansky and F. Rasetti, Phys. Rev. 83, 187(L)
- (1951). Mandeville, Swan, Chatterjee and Van Patter, Phys. Ma 52
- Rev. 85, 193 (1952). W. H. Martin and S. W. Breckon, Can. J. Phys. 30, Ma 52a 643 (1952).
- Ma 53
- Ma 53a
- Ma 53b
- Ma 53c
- J. E. May and B. P. Foster, Phys. Rev. 90, 243 (1953).
 L. Marquez, Phys. Rev. 90, 330(L) (1953).
 J. H. Marshall, Phys. Rev. 91, 905 (1953).
 L. Marquez, Phys. Rev. 92, 1511 (1953).
 E. McMillan and E. O. Lawrence, Phys. Rev. 47, 343 (1953). Mc 35 (1935).
- McCreary, Kuerti and Van Voorhis, Phys. Rev. 57, 351(A) (1940). Mc 40
- McElhinney, Hanson, Becker, Duffield, and Diven, Phys. Rev. 75, 542 (1949). Mc 49
- Mc 50 McDaniel, Walker, and Stearns, Phys. Rev. 80, 807 (1950).
- Mc 50a G. E. McMurtrie and D. P. Crawford, Phys. Rev. 77, 840(L) (1950). J. A. McCarthy, Progr. Rep., (L.N.S.E.), M.I.T.,
- Mc 53 Aug. 31 (1953).
- L. Meitner, Naturwiss. 22, 388 (1934) Me 34
- L. Meitner, Naturwiss. 22, 420(L) (1934). A. Meye, Z. Physik 105, 232 (1937). Me 34a
- Me 37
- O. Merhaut, Physik. Z. 41, 528 (1940).
 O. Merhaut, Z. Physik 115, 77 (1940). Me 40
- Me 40a
- L. Meitner, Arkiv Mat. Astron. Fysik 32A, No. 6 Me 45 (1945).
- Metzger, Huber, and Alder, Helv. Phys. Acta 20, 236(A) (1947). Me 47
- Me 47a Meyer, Schwachheim, and de Souza Santos, Phys. Rev. 71, 908(L) (1947) Metzger, Alder, and Huber, Helv. Phys. Acta 21, 278 Me 48
- (1948). Me 49
- J. L. Meem and F. Maienschein, Phys. Rev. 76, 328 (1949). J. W. Meadows and R. B. Holt, Phys. Rev. 83, 1257(L) Me 51
- (1951)Me 52
- A. W. Merrison and E. R. Wiblin, Proc. Roy. Soc. (London) A215, 278 (1952). Me 53
- Meier, Ricamo, Scherrer, and Zünti, Helv. Phys. Acta 26, 451 (1953). W. E. Meyerhof and G. Lindstrom, Phys. Rev. 93 Me 53a
- 949 (1954). Mi 47 A. E. Miller and M. Deutsch, Phys. Rev. 72, 527(A)
- (1947). Halban, and Wilson, Nature 166, 1027(L) Mi 50 Mims,
- (1950).
- Mi 50a Millar, Cameron, and Glicksman, Can. J. Research 28A, 475 (1950). Mi 51 W. Mims and H. Halban, Proc. Phys. Soc. (London)
- A64, 311 (1951). C. Mileikowsky and W. Whaling, Phys. Rev. 88, 1254 Mi 52
- (1952).Mi 52a J. A. Miskel and M. L. Perlman, Phys. Rev. 87, 543(L)
- (1952)R. H. Miller and R. Sherr, Phys. Rev. 92, 848(A) Mi 53
- (1953). Mi 53a J. P. Mize and D. J. Zaffarano, Phys. Rev. 89, 902(A) (1953).
- Mi 53b Middleton, El-Bedewi, and Tai, Proc. Phys. Soc. (London) A66, 95 (1953).
- B. L. Moore, Phys. Rev. 57, 355(A) (1940). Mo 40
- H. T. Motz and R. F. Humphreys, Phys. Rev. 74, Mo 48 1232(A) (1948).
- Mo 49 K. H. Morganstern and K. P. W. Wolf, Phys. Rev. 76, 1261 (1949).

- Mo 50 H. T. Motz and R. F. Humphreys, Phys. Rev. 80, 595 (1950)
- Mooring, Koester, Goldberg, Saxon, and Kaufmann, Phys. Rev. 84, 703 (1951).
 P. Morrison, Phys. Rev. 82, 209 (1951).
 H. T. Motz and D. E. Alburger, Phys. Rev. 86, 165 Mo 51
- Mo 51a
- Mo 52 (1952)
- H. T. Motz, Phys. Rev. 85, 501 (L) (1952). A. K. Mousuf, Phys. Rev. 88, 150 (L) (1950). H. Motz, Phys. Rev. 90, 355 (A) (1953). Mo 52a
- Mo 52bMo 53
- Mo 53a
- Montalbetti, Katz, and Goldberg, Phys. Rev. 91, 659 (1953). Mo 53b
 - S. A. Moszkowski and D. C. Peaslee, Phys. Rev. 93, 941 (1954)
- Mu 30 W. Mühlhoff, Ann. Physik 7, 205 (1930).
- Mu 39 E. B. M. Murrel and C. L. Smith, Proc. Roy. Soc. (London) A173, 410 (1939).
- Mulder, Hoeksema, and Sizoo, Physica 7, 849 (1940). V. Myers and A. Wattenberg, Phys. Rev. 75, 992(L) Mu 40 My 49
- (1949)M. E. Nahmias and R. J. Walen, Compt. rend. 203, 71 Na 36
- (1936). E. Naidu and R. E. Siday, Proc. Phys. Soc. (London) Na 36a
- 48, 332 (1936) M. Nahmias and T. Yuasa, Compt. rend. 236, 2399 Na 53
 - (1953)
- Ne 37
- H. W. Newson, Phys. Rev. 51, 624 (1937).
 Y. A. Nemilov and L. I. Gedeonov, Doklady Akad. Nauk. S.S.S.R. 63, 115 (1948). Ne 48
- Ne 49a Y. A. Nemilov, Doklady Akad. Nauk. S.S.S.R. 66, 369 (1949).
- Y. A. Nemilov and B. L. Funshtein, Doklady Akad. Ne 49b Nauk. S.S.S.R. 66, 609 (1949).
- Y. A. Nemilov, Izvest Akad. Nauk. S.S.S.R., Ser. Fiz. 14, 319 (1950). Ne 50b
- N. Nereson and S. Darden, Phys. Rev. 89, 775 (1952). Ne 53
- Ni 50 A. O. Nier, Phys. Rev. 77, 789 (1950).
- Ni 52
- No 53
- A. O. Niel, Phys. Rev. 11, 765 (1950).
 L. Nilsson, Trans. Chalmers Univ. Technol. Gothenburg No. 125 (1952).
 T. B. Novey, Phys. Rev. 89, 672 (1953).
 Nussbaum, Van Lieshout, and Wapstra, Phys. Rev. 92, 207(L) (1953). Nu 53
- K. Ogata and H. Matsuda, Phys. Rev. 89, 27 (1953). Z. M. I. Ollano and R. R. Roy, Nuovo cimento 8, 77 Og 53 Ol 51
- (1951) On 41 R. D. O'Neal and M. Goldhaber, Phys. Rev. 59, 103(L) (1941)
- R. D. O'Neal, Phys. Rev. 59, 109(A) (1941). On 41a
- Op 39 F. Oppenheimer and E. P. Tomlinson, Phys. Rev. 56, 858(A) (1939)
- Ov 47 R. Overstreet and L. Jacobson, Phys. Rev. 72, 349(L) (1947).
- R. T. Overman, Abstr. Am. Chem. Soc. Meeting 111, Ov 47a p. 44P (1947).
- Ov 40 Overstreet, Jacobson, and Stout, Phys. Rev. 75, 231 (1949).
- Pa 34 R. F. Paton, Phys. Rev. 46, 229(L) (1934).
- Parkinson, Beach, and King, Phys. Rev. 87, 387(L) Pa 52 (1952)Pa 52a M. Paganelli and G. Quareni, Phys. Rev. 86, 423(L)
- (1952)M. Paganelli and G. Quareni, Nuovo cimento 9, 324 Pa 52b
- (1952) E. B. Paul and R. L. Clarke, Can. J. Phys. 31, 267 Pa 53
- (1953). W. C. Peacock and M. Deutsch, Phys. Rev. 69, 306 Pe 46
 - (1946).
- M. L. Perlman and G. Friedlander, Phys. Rev. 74, 442 Pe 48 (1948).
- R. A. Peck, Phys. Rev. 73, 947 (1948). Pe 48a
- Pe 49 R. A. Peck, Phys. Rev. 76, 1279 (1949).
- Pe 50 V. Perez-Mendez and H. Brown, Phys. Rev. 78, 812(L) (1950).
- Peterson, Barschall, and Bockelman, Phys. Rev. 79, 593 (1950). Pe 50a
- R. E. Peterson, Phys. Rev. 77, 747(A) (1950) Pe 50b
- D. C. Peaslee, Nuovo cimento 10, 1349(L) (1953). Pe 53
- Phillips, Davis, and Graves, Phys. Rev. 88, 600 (1952). Ph 52

- Pl 40 Plain, Herb, Hudson, and Warren, Phys. Rev. 57, 187 (1940)
- Pl 53 Plain, Morrison, Pitkanen, and Rogers, Phys. Rev. 92, 529(A) (1953).
- Po 29
- Po 30

164

- Po 35
- Po 36
- H. Pose, Physik. Z. 30, 780 (1929). H. Pose, Z. Physik 64, 1 (1930). H. Pose, Z. Physik 95, 84 (1935). H. Pose, Physik. Z. 37, 154 (1936). E. Pollard and C. J. Brasefield, Phys. Rev. 50, 890 Po 36a (1936)
- Po 37
- E. Pollard and C. J. Brasefield, Phys. Rev. 51, 8 (1937). Pool, Cork, and Thornton, Phys. Rev. 52, 239 (1937). Pool, Cork, and Thornton, Phys. Rev. 52, 41 (L) (1937). Po 37a Po 37b
- Po 37c Pollard, Schultz, and Brubaker, Phys. Rev. 51, 140(L) (1937).
- Po 38
- M. L. Pool, Phys. Rev. 53, 707 (1938). Pollard, Schultz, and Brubaker, Phys. Rev. 53, 351 Po 38a (1938).
- Po 40 E. Pollard and W. W. Watson, Phys. Rev. 58, 12 (1940).
- E. Pollard, Phys. Rev. 57, 1086(A) (1940). Po 40a
- E. Pollard and R. F. Humphreys, Phys. Rev. 59, Po 41 466(A) (1941).
- E. Pollard and D. E. Alburger, Phys. Rev. 74, 926 Po 48 (1948).
- Po 49 Pollard, Sailor, and Wyly, Phys. Rev. 75, 725 (1949). Pontecorvo, Kirkwood, and Hanna, Phys. Rev. 75, 982(L) (1949). Po 49a
- H. Pomerance, Phys. Rev. 83, 641 (1951).
 M. J. Poole, Phil. Mag. 43, 1060 (1952).
 H. Pomerance, Phys. Rev. 88, 412 (1952). Po 51
- Po 52
- Po 52a
- Po 52b M. L. Pool, Physica 18, 1304 (1952).
- M. L. Pool and D. N. Kundu, Phys. Rev. 91, 462(A) Po 53 (1953).
- Po 53a M. J. Poole, Phil. Mag. 44, 1398 (1953).
- P. Preiswerk and H. von Halban, Compt. rend. 201, 722 Pr 35 (1935).
- Pringle, Standil, and Roulston, Phys. Rev. 77, 840(L) Pr 50 (1950).
- F. Rasetti, Z. Physik 97, 64 (1935). Ra 35
- F. Rasetti, Phys. Rev. 58, 869 (1940). W. Ramm, Naturwiss. 30, 758 (1942). Ra 40
- Ra 42
- Ramsey, Meem, and Mitchell, Phys. Rev. 72, 639(L) (1947). Ra 47
- Rainwater, Havens, Dunning, and Wu, Phys. Rev. 73, 733 (1948). Ra 48
- E. R. Rae, Phil. Mag. 40, 1155 (1949). Ra 49
- Reilley, Allen, Arthur, Bender, Ely, and Hausman, Phys. Rev. 86, 857 (1952). Re 52
- C. Reuterswärd, Arkiv Fysik 4, 203 (1952). Re 52a
- Reardon, Krone, and Stump, Phys. Rev. 91, 334 (1953). Re 53
- G. A. Renard, J. phys. radium 14, 361 (1953). Re 53a
- Rh 49 E. H. Rhoderick, Nature 163, 848(L) (1949).
- Rh 50 E. H. Rhoderick, Proc. Roy. Soc. (London) A201, 348
- (1950). J. R. Richardson and F. N. D. Kurie, Phys. Rev. 50, Ri 36 999 (1936).
- J. R. Richardson, Phys. Rev. 49, 203(A) (1936). Ri 36a
- Ri 37 L. N. Ridenour and W. J. Henderson, Phys. Rev. 52, 889 (1937).
- J. R. Richardson, Phys. Rev. 53, 124 (1938). Ri 38
- W. Riezler, Physik. Z. 45, 191 (1944). Ri 44
- Ri 47 W. Riezler, Naturwiss. 34, 157(L) (1947).
- Ri 48 H. T. Richards and R. V. Smith, Phys. Rev. 74, 1870(L) (1948).
- Ri 50 Richards, Smith, and Browne, Phys. Rev. 80, 524 (1950).
- Ri 51 R. Ricamo, Nuovo cimento 8, 383 (1951).
- J. R. Richardson, private communication. Ri 53
- R. B. Roberts and P. H. Abelson, Phys. Rev. 72, 76(L) Ro 47
- (1947).Robinson, Ter-Pogossian, and Cook, Phys. Rev. 75, 1099(L) (1949). Ro 49
- T. R. Roberts and A. O. Nier, Phys. Rev. 79, 198(A) Ro 50 (1950).
- Ro 51 Roy, Quéquin, and Janssens, Bull. centre phys. nucléaire univ. libre Bruxelles, No. 31 (1951).

- G. W. Rodeback and J. S. Allen, Phys. Rev. 86, 446 Ro 52 (1952)
- Roderick, Lönsjö, and Meyerhof, Phys. Rev. 90, 371(A) (1953). Ro 53 H. Roderick and C. Wong, Phys. Rev. 92, 204(L)
- Ro 53a (1953). R. R. Roy and C. Godeau, Phil. Mag. 44, 1184(L) Ro 53b
- (1953). E. Rutherford and J. Chadwick, Nature 113, 457 Ru 24
- (1924).Rutherglen, Rae, and Smith, Proc. Phys. Soc. (London) Ru 51 A64, 906 (1951)
- L. Ruby and J. R. Richardson, Phys. Rev. 83, 698 Ru 51a (1951).
- Russell, Taylor, and Cooper, Phys. Rev. 86, 819(A) Ru 52 (1952)
- Ru 52a Russell, Taylor, and Cooper, Phys. Rev. 86, 653(A) (1952).
- Ru 52b Rudstam, Stevenson, and Folger, Phys. Rev. 87, 358 (1952)
- Russell, Shillibeer, Farquar, and Mousuf, Phys. Rev. 91, 1223 (1953). Ru 53
- Ru 53a J. G. Rutherglen and R. D. Smith, Proc. Phys. Soc. (London) A66, 800 (1953)
- P. Savel, Compt. rend. 198, 368 (1934). Sa 34
- Sa 35
- P. Savel, Ann. phys. 4, 88 (1935).
 R. Sagane, Phys. Rev. 50, 1141 (1936).
 N. K. Saha, Z. Physik 110, 473 (1938). Sa 36
- Sa 38 N. K. Saha, Trans. Bose Research Inst. Calcutta 14, 57 (1939). Sa 39
- Sa 47
- Sa 49
- S. G. Sachs, Phys. Rev. 70, 572(L) (1947).
 V. L. Sailor, Phys. Rev. 75, 1836 (1949).
 G. A. Sawyer and M. L. Wiedenbeck, Phys. Rev. 76, 1535(L) (1949). Sa 49a
- Sa 50
- V. L. Sailor, Phys. Rev. 77, 794 (1950). G. A. Sawyer and M. L. Wiedenbeck, Phys. Rev. 79, Sa 50a 490 (1950).
- Sa 51
- R. Sagane, Phys. Rev. 83, 174(L) (1951).
 V. L. Sailor and J. J. Floyd, Phys. Rev. 82, 960(L) Sa 51a (1951).
- Sargent, Yaffe, and Gray, Can. J. Phys. **31**, 235 (1953). Schultz, Davidson, and Ott, Phys. Rev. **58**, 1043 (1940). Sa 53
- Sc 40 Sc 48
- Schelberg, Sampson, and Mitchell, Rev. Sci. Inst. 19, 458 (1948). Sc 50 Schelberg, Sampson, and Cochran, Phys. Rev. 80, 574
- (1950).
- L. Schecter, Phys. Rev. 83, 695 (1951). Sc 51 G. E. Schrank and J. R. Richardson, Phys. Rev. 86, Sc 52 248(L) (1952)
- Schoenfeld, Duborg, Preston, and Goodman, Phys. Rev. 85, 873 (1952). Sc 52a
- G. Scharff-Goldhaber, Phys. Rev. 90, 587 (1953) Sc 53
- Sc 53a J. P. Schiffer and E. Pollard, Phys. Rev. 91, 474(A) (1953).
- Scherrer, Theus, and Faust, Phys. Rev. 91, 1476 (1953). Sc 53b
- Seren, Friedlander, and Turkel, Phys. Rev. 72, 888 Se 47 (1947).
- Seidlitz, Bleuler, and Tendam, Phys. Rev. 76, 861(L) Se 49 (1949)
- J. Seed, Phil. Mag. 44, 921(L) (1953). Se 53
- Yu-Yen Sha, Z. Physik 107, 111 (1937). Sh 37
- R. Sherr, Phys. Rev. 57, 937(L) (1940). Sh 40
- E. F. Shrader and E. Pollard, Phys. Rev. 59, 277 (1941). Sh 41
- F. B. Shull and E. Feenberg, Phys. Rev. 75, 1768(L) Sh 49 (1949).
- Shoemaker, Faulkner, Bouricius, Kaufmann, and Mooring, Phys. Rev. 83, 1011 (1951). Sh 51
- Sher, Halpern, and Mann, Phys. Rev. 84, 387 (1951). Sh 51a
- Sh 51b R. K. Sheline, Phys. Rev. 82, 954 (1951).
- Sheline, Holtzmark, and Fan, Phys. Rev. 83, 919 (1951). Sh 51c
- R. K. Sheline and N. R. Johnson, Phys. Rev. 89, 520(L) (1953). Sh 53
- R. K. Sheline and N. R. Johnson, Phys. Rev. 90, 325(L) (1953). Sh 53a
- Sh 53b R. Sherr, private communication.

Si 41

- Sh 54
- P. Shapiro, Phys. Rev. **93**, 290 (1954).
 G. J. Sizoo and C. P. Koene, Physica **3**, 1053 (1936). Si 36

G. J. Sizoo and C. Eykman, Physica 8, 868 (1941).

- Si 41a K. Sinma and F. Yamasaki, Phys. Rev. 59, 402(L) (1941).
- Si 46 K. Siegbahn, Phys. Rev. 70, 127 (1946).
- K. Siegbahn, Arkiv Mat. Astron. Fysik 34B, No. 4 Si 47 (1947).
- Si 47a K. Siegbahn and A. Johansson, Arkiv Mat. Astron. Fysik 34A, No. 10 (1947).
- Si 47b K. Šiegbahn and H. Šlätis, Arkiv Mat. Astron. Fysik 34A, No. 6 (1947).
- Si 50 K. Siegbahn and S. du Toit, Arkiv Fysik 2, 211(A) (1950).
- L. Simons, Soc. Sci. Fennica, Commentationes Phys.-Math. 15, No. 9 (1950). Si 50a Si 51
- W. K. Sinclair and A. F. Holloway, Nature 167, 365(L) (1951).
- K. Siegbahn, Arkiv Fysik 4, 223 (1952). Si 52
- Singer, Emmerich, and Kurbatov, Bull. Am. Phys. Soc. 29, No. 1, 42 (1954). Si 54 SI 51
- Slätis, Hjalmar, and Carlsson, Phys. Rev. 81, 641(L) (1951)
- Slätis, Hjalmar, and Carlsson, Arkiv Fysik 3, 315 (1951). Sl 51a SI 52 H. Slätis and K. Siegbahn, Arkiv Fysik 4, 485 (1952).
- W. R. Smythe and A. Hemmendinger, Phys. Rev. 51, 178 (1937). Sm 37
- E. Smith and E. Pollard, Phys. Rev. 59, 942(A) (1941). Sm 41
- Sm 42
- G. P. Smith, Phys. Rev. 61, 578 (1942). Smaller, May and Freedman, Phys. Rev. 79, 940 (1950). Sm 50
- K. F. Smith, Nature 167, 942(L) (1951). Sm 51 Sm 51a R. D. Smith and R. A. Anderson, Nature 168, 429(L) (1951).
- Sn 36
- Sn 52
- A. H. Snell, Phys. Rev. 49, 555 (1936).
 S. C. Snowdon, Phys. Rev. 87, 1022 (1952).
 S. C. Snowdon and W. D. Whitehead, Phys. Rev. 90, Sn 53 615 (1953).
- So 47 Solomon, Gould, and Anfinsen, Phys. Rev. 72, 1097 (1947).
- A. K. Solomon and L. F. Glendenin, Phys. Rev. 73, 415(L) (1948). So 48
- A. K. Solomon, Phys. Rev. 79, 403(L) (1950). So 50
- Sp 50 F. W. Spiers, Nature 165, 356(L) (1950).
- Sp 52 A. Sperduto and W. W. Buechner, Phys. Rev. 88, 574 (1952)
- J. H. Sreb, Phys. Rev. 81, 469(L) (1951). E. Steudel, Z. Physik 77, 139 (1932). Sr 51
- St 32
- St 48 A. Stebler and P. Huber, Helv. Phys. Acta 21, 59 (1948).
- R. W. Stout, Phys. Rev. 75, 1107(L) (1949). St 49
- St 50 R. M. Steffen, Phys. Rev. 80, 115(L) (1950).
- St 51 Strait, Van Patter, Buechner, and Sperduto, Phys. Rev. 81, 747 (1951).
- D. T. Stevenson and M. Deutsch, Phys. Rev. 83, 1202 St 51a (1951).
- St 51b A. Storruste, Meddelelse No. 185 (Universitetets Fysiske Institutt Oslo), 1951.
- St 51c D. T. Stevenson and M. Deutsch, Phys. Rev. 84, 1071(L) (1951).
- St 51d G. H. Stafford, Proc. Phys. Soc. (London) A64, 388 (1951).
- St 52 H. F. Stoddard and H. E. Gove, Phys. Rev. 87, 262 (1952).
- St 52a Stelson, Preston and Goodman, Phys. Rev. 86, 629(A) (1952).
- St 52b P. H. Stelson and W. M. Preston, Phys. Rev. 88, 1354 (1952).
- St 52c P. H. Stelson and W. M. Preston, Phys. Rev. 86, 807 (1952).
- St 53 P. Stähelin and P. Preiswerk, Nuovo cimento 10, 1219 (1953)
- P. H. Stelson, Phys. Rev. 93, 925 (1954) St 53a
- P. Stähelin, Helv. Phys. Acta 26, 691 (1953).
 P. Stähelin, Phys. Rev. 92, 1076(L) (1953). St 53b
- St 53c
- St 53d P. H. Stelson (private communication to H. E. Gove). St 54
- P. Stähelin, private communication.
- H. E. Suess, Phys. Rev. 73, 1209(L) (1948). Su 48 Su 53
- Summers-Gill, Haslam, and Katz, Can. J. Phys. 31, 70 (1953).

- Swann, Mandeville and Whitehead, Phys. Rev. 79, 598 (1950). Sw 50
- C. P. Swann and C. E. Mandeville, Phys. Rev. 87, 215(A) (1952). Sw 52
- Sz 39
- Sz 40
- A. Szalay, Z. Physik 112, 29 (1939). A. Szalay and J. Zimonyi, Z. Physik 115, 639 (1940). A. Szalay, Naturwiss. 32, 72 (1944). Sz 44 Sz 48 A. Szalay and E. Csongor, Phys. Rev. 74, 1063 (1948).
- Ta 46
- R. Tangen, Kgl. Norske Videnskab Selskabs Skrifter (1946). Taylor, Russell, Cooper, and Harris, Phys. Rev. 86, 630(A) (1952). Ta 52
- Ta 53 Takemoto, Dazai, and Chiba, Phys. Rev. 91, 1024(L)
- (1953). Teener, Seagondollar, and Krone, Phys. Rev. 89, 892(A) (1953). Te 53
- G. M. Temmer and N. P. Heydenburg, Phys. Rev. 93, 351(L) (1954). Te 54
- Te 54a
- Ti 51
- G. M. Temmer, private communication to P. Stähelin. H. K. Ticho, Phys. Rev. 84, 847 (L) (1951). C. H. Townes and L. C. Aamodt, Phys. Rev. 76, 691 (L) To 49 (1949)
- To 51 M. E. Toms and W. E. Stephens, Phys. Rev. 82, 709 (1951)
- Toops, Sampson, and Steigert, Phys. Rev. 85, 280 (1952). To 52
- **To 53** B. J. Toppel and S. D. Bloom, Phys. Rev. 91, 473(A) (1953)
- C. C. Trail and C. H. Johnson, Phys. Rev. 91, 474(A) Tr 53 (1953).
- Tu 51 J. F. Turner and P. E. Cavanagh, Phil. Mag. 42, 636 (1951).
- Va 36 S. N. Van Voorhis, Phys. Rev. 49, 889(A) (1936)
- Van Patter, Sperduto, Endt, Buechner, and Enge, Phys. Rev. 85, 142(L) (1952). Va 52a Va 52b Van Patter, Endt, Sperduto, and Buechner, Phys. Rev.
- 86, 502 (1952). Va 52c
- 86, 502 (1952).
 D. M. Van Patter and W. W. Buechner, Phys. Rev. 87, 51 (1952).
 D. M. Van Patter, Technical Report No. 57 (L.N.S.E.), M.I.T., Jan. 15 (1952).
 J. J. Van Loef (private communication).
 H. Volz, Z. Physik 121, 201 (1943).
 De Vries, Clay, and Veringa, Physica 18, 1264 (1952).
 J. R. S. Waring and W. Y. Chang, Proc. Roy. Soc. (London) A157, 652 (1936).
 H. Walke, Phys. Rev. 51, 439 (1937).
 H. Walke, Phys. Rev. 52, 400 (1937).
 H. Walke, Phys. Rev. 52, 777 (1937).
 H. Walke, Phys. Rev. 52, 699 (1937). Va 52d
- Va 53
- Vo 43 Vr 52
- Wa 36
- Wa 37 Wa 37a
- Wa 37b
- Wa 37c
- Wa 37d
- H. Walke, Phys. Rev. 52, 699 (1937). Wa 39
- Y. Watase and J. Itoh, Proc. Phys. Math. Soc. Japan 21, 626 (1939). Wa 39a
 - Walke, Williams, and Evans, Proc. Roy. Soc. (London) A171, 360 (1939).
- Walke, Thompson, and Holt, Phys. Rev. 57, 177 (1940). H. Walke, Phys. Rev. 57, 163 (1940). Wa 40 Wa 40a
- Wa 41 Y. Watase, Proc. Phys. Math. Soc. Japan 23, 618 (1941).
- Wa 47 A. Wattenberg, Phys. Rev. 71, 497 (1947).
- H. Wäffler and O. Hirzel, Helv. Phys. Acta 21, 200 Wa 48
- (1948). Wa 50 Warshaw, Chen, and Appleton, Phys. Rev. 80, 288(L) (1950).
- H. Wäffler, Helv. Phys. Acta 23, 239 (1950) Wa 50a
- Wa 52 A. H. Wapstra, Phys. Rev. 86, 561(L) (1952).
- A. H. Wapstra and A. L. Veenendaal, Phys. Rev. 91, 426(L) (1953). Wa 53
- Wa 53a A. H. Wapstra, Arkiv Fysik 6, 263 (1953).
- N. S. Wall, M.I.T. Prog. Rep. (L.N.S.E.) (August 31, Wa 53b 1953)
- We 43 H. Weltin, Phys. Rev. 64, 128(L) (1943).
- Weimer, Kurbatov, and Pool, Phys. Rev. 66, 209 (1944). We 44
- We 51 Wennerblom, Zimen, and Ehn, Svensk Kem. Tidskr. **63**, 207 (1951).
- We 51a Wentink, Koski, and Cohen, Phys. Rev. 81, 948 (1951).
- We 52 T. Westermark, Phys. Rev. 88, 573 (1952).

- Wh 39 White, Delsasso, Fox, and Creutz, Phys. Rev. 56, 512 (1939).
- White, Creutz, Delsasso, and Wilson, Phys. Rev. 59, Wh 41 63 (1941). Wh 50
- Wh 53
- 63 (1941).
 W. D. Whitehead and N. P. Heydenburg, Phys. Rev. 79, 99 (1950).
 W. D. Whitehead and S. C. Snowdon, Phys. Rev. 92, 114 (1953).
 E. Wilhelmy, Z. Physik 107, 769 (1937).
 E. E. Widdowson and F. C. Champion, Proc. Phys. Soc. (1997) (195) (1932). Wi 37
- Wi 38
- (London) **50**, 185 (1938). T. R. Wilkins and G. Kuerti, Phys. Rev. **57**, 1082(A) Wi 40
- (1940). Wi 40a T. R. Wilkins and G. Wrenshall, Phys. Rev. 58, 758(L)
- (1940).
- Wi 41
- Wi 41a
- Wi 47
- (1940).
 T. R. Wilkins, Phys. Rev. 60, 365 (1941).
 C. M. Witcher, Phys. Rev. 60, 32 (1941).
 M. L. Wiedenbeck, Phys. Rev. 72, 429 (1947).
 R. Wilson and G. R. Bishop, Proc. Phys. Soc. (London) A62, 457(L) (1949).
 D. H. Wilkinson and J. H. Carver, Phys. Rev. 83, 466(L) (1951). Wi 49 Wi 51

- Willard, Kington and Bair, Phys. Rev. 86, 259(L) Wi 52 (1952)
- Wo 50

- Wo 50a Wr 43 Wr 53 Wu 41
- (1952).
 J. L. Wolfson, Phys. Rev. 78, 176(L) (1950).
 D. C. Worth, Phys. Rev. 78, 378 (1950).
 G. A. Wrenshall, Phys. Rev. 63, 56(L) (1943).
 B. T. Wright, Phys. Rev. 90, 159(L) (1953).
 C. S. Wu, Phys. Rev. 59, 481 (1941).
 Wu, Townes and Feldman, Phys. Rev. 76, 692(L) (1953). Wu 49 (1949). C. S. Wu, Revs. Modern Phys. 22, 386 (1950). L. Yaffe and K. M. Justus, Can. J. Research B26, 734
- Wu 50
- Ya 48 (1948).
- (1948). L. Yaffe and F. Brown, Phys. Rev. 82, 332(A) (1951). Yamabe, Nozawa, and Sanada, J. Phys. Soc. (Japan) 7, 140 (1952). J. R. Zacharias, Phys. Rev. 60, 168(A) (1941). Zeldes, Ketelle, Brosi, Fultz, and Hibbs, Phys. Rev. 86, 811(L) (1952). Tinp Seely and Cohen Phys. Rev. 56, 260 (1930) Ya 51 Ya 52
- Za 41
- Ze 52
- Zi 39
- Zinn, Seely, and Cohen, Phys. Rev. 56, 260 (1939). Z. Zucker and W. W. Watson, Phys. Rev. 80, 966 (1950). Zu 50
- Zy 34 M. Zyw, Nature 134, 64(L) (1934).