Mass Spectroscopic Atomic Mass Differences*†

HENRY E. DUCKWORTH, BENJAMIN G. HOGG,[‡] AND Edwin M. PENNINGTON§

Department of Physics, Hamilton College, McMaster University, Hamilton, Ontario, Canada

1. INTRODUCTION

HESE tables are concerned with atomic mass differences which have been obtained mass spectroscopically by the doublet method. They are a part of a program¹ designed to present in convenient form data pertaining to atomic masses.

2. THE DOUBLET METHOD OF MASS COMPARISON

The mass spectroscopic comparison of atomic masses is usually accomplished by studying "doublets." A doublet is a pair of mass spectral lines produced by two species of ions whose e/m values are almost, but not quite, equal. Thus, for example, a doubly charged ion, which appears on a mass spectrum at a point corresponding to one-half its mass, will frequently form a doublet with a lighter, singly charged ion. If the mass of one of the doublet members is known, the mass of the other can be computed from a knowledge of the doublet spacing and the dispersion of the mass spectrograph.

In principle, it is possible to compare the masses of atoms even if their mass spectral lines are widely separated. However, in practice, it is difficult to achieve a uniform dispersion over a large distance, whereas it is not difficult to do so for the region represented by the doublet spacing. For this reason, these tables list doublet measurements almost exclusively, manifesting the opinion of the authors that large mass differences cannot be measured with accuracy.

3. THE BRACKET METHOD OF MASS COMPARISON

This policy precludes the inclusion of the many "bracket" measurements made² by Dempster and his students. In this work, for example, the three lines formed by doubly charged Ag¹⁰⁷ and Ag¹⁰⁹, and by singly charged Fe⁵⁴, were photographed, the first two

[‡]Postdoctorate fellow under contract AF18(600)-484 with McMaster University. Now at the Royal Military College of

Canada, Kingston, Ontario. § Holder of National Research Council of Canada Scholarship. ¹ Prepared at the suggestion of the Subcommittee on Nuclear Constants of the Committee on Nuclear Science of the National Research Council as part of a program on the compilation of experimental data relating to atomic masses. Subcommittee members: T. P. Kohman, chairman, W. Whaling, vice-chairman, H. E. Duckworth, L. G. Elliott, G. Friedlander, A. O. C. Nier, I. Perlman, W. H. Sullivan, and K. Way. ² References De 38, De 38a, Gr 39, Du 42, and Ra 48.

lines bracketing the third. From these photographs the difference between the packing fraction of Fe⁵⁴ and the average packing fraction of Ag¹⁰⁷ and Ag¹⁰⁹ could be approximately determined. Although measurements of this sort were most helpful to Dempster in constructing his celebrated packing fraction curve, the errors involved were large, and the measurements are probably now of historical interest only. A complete list of all bracket results has been given by Mattauch and Flammersfeld in their 1949 Isotope Report.³

4. TABLES I AND II-SECONDARY STANDARDS OF ATOMIC MASS

In a few instances, e.g., doubly charged S³², triply charged Ti⁴⁸, etc., it is possible to compare directly the mass of a nuclide to O¹⁶, but, in general, this is not possible. As a rule, the doublet member whose mass is known is not O¹⁶, but is some atom whose mass has been deduced from that of O16 by one or more doublet comparisons, and can be regarded as a secondary standard.

The most useful secondary standards are H¹ and C¹², since combinations of these atoms can serve as reference masses at many mass numbers. It was natural, therefore, that many of the efforts of Aston, Bainbridge, and Mattauch during the 1930's were directed toward the accurate measurement of these masses. The three "fundamental doublets" used in these experiments were⁴

$$H_2^1 - D^2$$

 $D_3^2 - C^{12}$
 $C^{12}H_4^1 - O^{16}$,

from which the masses of the so-called "substandards" H^1 , D^2 , and C^{12} were calculated.

By 1940 much careful work had been done with these doublets. The situation was well summarized⁵ at the time by Mattauch and was subsequently thoroughly studied⁶ by Bainbridge, who calculated "best values" for H^1 , D^2 , and C^{12} on the basis of all the prewar data. The various masses computed during this period for these secondary standards are shown in the upper half of Table I. There is seen to be good agreement in the case of both H^1 and D^2 , but the C^{12} values are far from being consistent.

- ³ Isotope Report, Z. Naturforsch., Tubingen (1949).
 ⁴ F. W. Aston, Nature 135, 541 (1935).
 ⁵ J. Mattauch, Phys. Rev. 57, 1155 (1940).
 ⁶ K. T. Bainbridge, Proc. 7th Solvay Conference in Chemistry (15). (1947).

^{*} This work has been supported by the Office of Scientific Research, Air Research and Development Command, United States Air Force.

[†] Reprints of this article combined with others on nuclear constants published at the suggestion of the Subcommittee on Nuclear Science of the National Research Council may be obtained from the Publications Office, National Research Council, 2101 Constitution Avenue, Washington 25, D. C

	H1	D^2	C12	Reference
Aston (1936) Bainbridge and Jordan (1937) Mattauch and Bönisch (1938) Mattauch (1940) Bainbridge (1947) Ewald (1951)	$\begin{array}{r} 1.00812 \pm 4 \\ 1.00813 \pm 2 \\ 1.008132 \pm 4 \\ 1.008130 \pm 3 \\ 1.0081283 \pm 28 \\ 1.008141 \pm 2 \end{array}$	$\begin{array}{rrrrr} 2.01471 & \pm 7 \\ 2.01473 & \pm 2 \\ 2.014726 & \pm 7 \\ 2.014722 & \pm 6 \\ 2.0147186 \pm 55 \\ 2.0147315 \pm 33 \end{array}$	$\begin{array}{rrrr} 12.00355 & \pm 15 \\ 12.00398 & \pm 10 \\ 12.00387 & \pm 3 \\ 12.003861 & \pm 24 \\ 12.003856 & \pm 19 \\ 12.003807 & \pm 11 \end{array}$	a b c d e Ew 51
Collins, Nier, and Johnson (1952) Ogata and Matsuda (1953) Mattauch and Bieri (1954) Li <i>et al.</i> (nuclear reactions, 1951)	$\begin{array}{r} 1.008146 \ \pm 3 \\ 1.008145 \ \pm 2 \\ 1.0081459 \pm 5 \\ 1.008142 \ \pm 3 \end{array}$	$\begin{array}{r} 2.014740 \ \pm 6 \\ 2.014741 \ \pm 3 \\ 2.0147444 \pm 9 \\ 2.014735 \ \pm 6 \end{array}$	$\begin{array}{r} 12.003842 \ \pm 4 \\ 12.003844 \ \pm 6 \\ 12.0038231 \pm 33 \\ 12.003804 \ \pm 17 \end{array}$	Co 52 Og 53 Ma 54 f

TABLE I. Masses of the secondary standards H¹, D², C¹².

F. W. Aston, Nature 137, 357L (1936).
M. S. Livingston and H. A. Bethe, Revs. Modern Phys. 9, 373 (1937).
J. Mattauch, Z. tech. Phys. 19, 578 (1938).
^d Footnote 5.
^e Frootnote 6.
^f C. W. Li et al., Phys. Rev. 83, 512 (1951).

These masses have been remeasured since the war with greater accuracy and have also been computed from precision nuclear reaction data. The results of these recent studies are shown in the lower section of Table I. The mass spectrographic values of Ewald are in splendid agreement with the masses computed from nuclear reaction data by Li et al. in the case of all three substandards. These values, however, are in each case lower than ones obtained mass spectrographically by both Nier and his co-workers and by Ogata and Matsuda, which in turn, agree remarkably well with each other. Although the discrepancies are not too serious for H¹ and D², the results for C¹² have not seemed capable of reconciliation. Into this picture have come the recent values of Mattauch and Bieri which carry with them the lowest stated errors of any measurements to date. These are in substantial agreement with the values of Nier and Ogata for H¹ and D², but in the worrisome matter of C¹² their value agrees with neither

TABLE II. Doublets used to obtain the masses of the secondary standards H1, D2, C12.

Doub- let	ΔM in mMU	Refer- ence	Doublet	ΔM in mMU	Refer- ence
$H_2 - D$	1.53 ± 4	Ba 36	CH ₄ -O	36.3899 ± 41	Sm 53a
	(1.539 ± 2)	Ma 38		36.4086 ± 38	Ma 54
	1.52 ± 4	Ast 42	$C_2H_4 - CO$	36.443 ± 22	Ni 51
	1.549 ± 6	Ro 50		(36.451 ± 6)	Og 51
	1.5519 ± 17	Ro 51		36.423 ± 8	Og 53
	1.5503 ± 15	Ew 51		36.3877 ± 41	Sm 53
	1.545 ± 8	So 51	CH ₃ OH – O ₂	36.3748 ± 38	Da 53
	1.5492 ± 8	Og 53	$C_{3}H_{8} - CO_{2}$	72.968 ± 44	Ni 51
	1.5473 ± 7	Ma 54		72.967 ± 41	Ni 51a
$D_3 - \frac{1}{2}C$	42.19 ± 5	Ba 37		72.854 ± 15	Co 52
	(42.239 ± 21)	Ma 38	0 0	72.7752 ± 82	Da 53
	42.30 ±18	Ast 42	$O_2 - S^{32}$	17.7 ±3	Ast 42
	42.291 ± 12 42.201 ± 0	EW 51		(19.15 ± 11)	Ok 41a
	42.301 ±9	Og 55 Ma 54		17.7 ± 10	Sm 51
$CH_{4}=0$	$\frac{12.5254 \pm 52}{36.40} \pm 8$	In 36		17.03 ± 10 17.716 ± 20	Du 51
0114 0	36406 ± 40	Ma 38		17.710 ± 20 17.764 ± 7	Ew 51
	36.42 ± 9	Asa 30		17.704 ± 7 17.725 ± 8	00 51
	36.320 ± 35	Io 41		*17 7620 - 71	Sm 53b
	36.01 ± 16	Ast 42	CO_{n-CS}	(18.04 ± 23)	Or 410
	36.371 ± 12	Ew 51	002 00	17 782 +25	Ni 510
	36.478 ± 22	Ni 51		17.7643 ± 41	Sm 53a
	(36.443 ± 5)	Og 51	C₄-SO	33.182 + 7	Ni 51a
	36.427 ± 8	Co 51		33.132 + 13	Co 51
	36.415 ± 8	Og 53		33.122 + 22	Og 53
	36.399 ± 28	Eng 53	$C_6H_4 - CS_2$	87.326 ± 58	Ni 51a

the high nor the low group but practically coincides with their arithmetic mean.

The present authors have neither the omniscience nor the desire to suggest which of the various masses suggested for the secondary standards are "best" values. We prefer to list in Table II all of the doublet measurements which would be useful in such a calculation. We thus include all published values for the three fundamental doublets named in the foregoing. It will be seen that the CH_4-O mass difference is given not only by measurements of this doublet, but also by the C_2H_4 -CO mass difference, where the carbon atom is common to both ions, by the CH_3OH-O_2 mass difference, where oxygen is common to both, and by one-half the C_3H_8 – CO_2 mass difference. We also list in Table II the measured values for the CO_2-CS , C_4-SO , and $C_6H_4-CS_2$ doublets, which provide a means of obtaining the masses of H¹ and C¹² which is completely independent of the fundamental doublet route. This cycle, involving sulfur rather than deuterium, was introduced by Nier in 1951.

We have not included in Table II the doublets $O-\frac{1}{3}Ti^{48}$ and $C-\frac{1}{4}Ti^{48}$ which have been suggested⁶ by Bainbridge as another approach to the C mass. This approach has not yet been effectively exploited and the measured values do not compare in precision with those listed in Table II. Instead, they are listed in Table III as a means of calculating the mass of Ti⁴⁸.

A few doublet differences in Table II appear in parentheses. These differences have been stated to us by the individuals responsible for the original measurements to be either incorrect or highly suspect, and are included here parenthetically for the sake of completeness.

5. TABLE III-OTHER DOUBLET MEASUREMENTS

In Table III we have listed nearly all of the nonfundamental doublet differences which have been published, together with a few which have yet to appear in print. The only differences which have been intentionally omitted are a few of the very early ones

=

Element Z A	Doublet	Δ M in mMU	Refer- ence	Element Z A	Doublet	∆ M inmMU	Refer- ence
2 He 4	D ₂ -He4	25.61 ± 4 25.51 ± 8	Ba 37 Ast 42	7N 14	N14H2-O	23.69 <u>+</u> 15 23.780 <u>+</u> 32	Jo 36 Ma 38
		25.604 ± 8 25.612 ± 9	Ew 50 Ni 51		$N14H_3-OH$	23.661 ± 39 25.170 ±25	Ma 38 Ni 51
		25.603 ± 6	Og 53		02114-1112	(25.199 ± 5)	Og 51
	D ₂ H-He4H	25.6074 <u>+</u> 26	Ma 54 Ma 54			25.1493 ± 41	Og 53 Sm 53
	2He4-1/2 O He4D-1/2 C12	7.72 ± 12 16.7141+34	Ba 38 Ma 54		N14CO	25.177 ± 21 11.17 ± 20	Eng 53 Jo 36
		2(41 + 20	D = 22			11.222 ± 40	Ma 38
3 L1 6 7	$L_{17-1/2}$ N	14.43 ± 10	Ba 37			11.254 ± 79	Og 53
4 Be 9	Be9 H- B10	6.96 <u>+</u> 20	Jo 37		N1420-CO2	11.2372 ± 21 11.2371 ± 21	Sm 53 Sm 53b
	Be9H-1/2 Ne20	23.91 <u>+</u> 20	Jo 37	15	C ₂ H ₆ -N140	48.9623 ± 55 (23.82 + 8)	Sm 53 Ma 36
5 B 10	B10-1/2 Ne20	16.75 ± 15	Jo 37	.5	CH3-N 15	23.308 ± 20	Ew 46
		16.84 ± 15 16.722 ± 8	Ast 42 Og 53			(23.395 ± 5) 23.377 ± 6	Og 51 Og 53
	Be9H-B10 B10H-1/2 Ne22	6.96 <u>+</u> 20 25.1 + 5	Jo 37 Jo 37		N14H-N 15	10.74 <u>*</u> 20 10.772 <u>+</u> 20	Jo 36a Ew 46
	B10H-B11	11.60 ± 10	Jo 37			3 634 +15	
	B10H2-C	11.447 ± 14 28.75 ±20	Ug 55 Jo 37	8 O 17 18	H ₂ O-O18	(12.57 +18)	Ma 36
	• B10D-C B10F19-Si29	27.016 ± 20 34.2 \pm 6	Og 53 Ast 42			(12.0) (10.44 ±18)	Ma 37b Ast 42
	B10HF19-B11F19	11.450 ± 15	Og 53		D ₂ O-H ₂ O18	8.312 ± 12 8 309 ± 18	Ew 51
11	BIOH-BII	11.447 ± 14	Og 53		H ₂ O18-Ne20	22.391 ± 10	Ew 51
	B11-1/2 Ne22	13.60 ± 15 13.620 ± 8	Jo 37 Og 53	9 F 19	ODH-F19	18.33 <u>+</u> 29	Ast 42
	B11H-C	17.14 ± 10 17 115 ± 6	Jo 37 Og 53	, = -,	D ₂ O-F19H	16.909 ± 15 13.049 ± 15	Ew 51
	B10HF19-B11F19	11.450 ± 15	Og 53		B10F19-Si29	34.2 ± 6	Ast 42
6 C 13	CH-C13	4.5 <u>+</u> 1	Ba 36		CF19-P31 Si29F319-Sr86	(77.)	Ast 42 Ma 37
		(4.47) 4.410 ± 8	Ma 37a Ew 46		Si30F319-Sr87	(74.)	Ma 37
	C.HCC13H	4.496 ± 10 4.484 ± 10	Ew 53 Og 53	10 Ne 20	Be9H-1/2 Ne20	23.91 ± 20 16.75 ± 15	Jo 37
	B10F19-C13O	13.049 ± 15	Og 53		B10-1/2 Ne20	16.84 ± 15	Ast 42
	C ₄ C13H ₃ -N164	102.5 - 5	511 49		D ₂ O-Ne20	30.65 ± 10	Og 53 Jo 37
 7 N 14	Li7-1/2 N14 CH2-N14	14.43 ± 10 12.74 ± 8	Ba 37 Jo 36		_	30.83 ± 40 30.688 + 10	Ast 42 Ew 51
		12.581 ± 23 12.57 ± 6	Ma 38 Asa 39			30.721 ± 39 30.710 ± 11	Ni 51
		12.560 ± 15	Jo 41		CD ₄ -Ne20	63.82 ± 50	Ma 38
		12.45 ± 12 12.522 ± 12	Ew 46		H ₂ O18-Ne20 Ne20-1/2 A40	22.391 ± 10 11.30 ± 20	Ew 51 Jo 37
		12.586 ± 13 (12.594 \pm 2)	Ni 51 Og 51		,	11.14 ± 38 10.88 + 30	Ma 38
		12.564 ± 10 12 584 ± 5	Ew 51		N. JOH N. J.	11.280 ± 18	Ni 51
		12.591 ± 13	Eng 53	21	D ₂ HO-Ne21	37.212 ± 20	Jo 37 Ew 51
	CH3-N14H	12.5999 ± 36 12.563 ± 27	Ma 38	22	Ne20H-Ne21 B10H-1/2 Ne22	7.26 ± 20 25.1 ± 5	Jo 37 Jo 37
	N14H-N15	12.563 ± 13 10.74 ± 20	Jo 41 Jo 36a		B11-1/2 Ne22	13.60 ± 15 13.620 ± 8	Jo 37
		10.772 ± 20	Ew 46		D ₃ O-Ne22	45.867 ± 15	Ew 51
	CH4-N14H2	12,00,00					1

TABLE III OTHER DOUBLET MEASUREMENTS

.

Element Z A	Doublet	Δ M in mMU	Refer- ence	Element Z A	Doublet	Δ M in mMU	Refer- ence
13 A1 27	C ₂ H ₃ -A1 27	(40.5) 42.350±65 42.014±18	Ast 42 F1 43 Og 53	16 S 34	C ₃ -S34H ₂ H ₂ S34-HCl 35 C ₄ H ₂ -S34O	16.545 ± 22 6.740 ± 25 52.900 ± 40	Og 53 Ew 51 Co 51
14 Si 28	C ₂ H ₄ -Si28 CO-Si28	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Du 50c Ast 42 Du 50c Ew 51	17 Cl 35	C ₃ -HC1 35	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ast 42 Ok 40 Co 51 Og 53
29	Si28-1/2 Fe56 C130-Si29 B10F19-Si29	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Og 53 Du 50 Og 53 Ast 42	37	$H_2S34-HC1 35$ $C_3H-C1 37$	$\begin{array}{r} 6.740 \pm 25 \\ 41.2 \pm 7 \\ 42.17 \pm 9 \\ 42.001 \pm 14 \\ 11.000 \pm 14 \\ 1$	Ew 51 Ast 42 Ok 40 Og 53
30	Si29-1/2 Ni58 Si29F ₃ 19-Sr86 CH ₃ -1/2 Si30 B11F19-Si30	$\begin{array}{rrrr} 8.90 & \pm & 6 \\ (77 & &) \\ (36.80 & \pm & 8) \\ 33.948 & \pm 20 \end{array}$	Du 50 Ma 37 Du 50b Og 53		C ₃ H ₂ -HCI 37 CH ₃ Cl 37-Cr52	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Co 51 Og 53 Ast 42
	Si30-1/2 Ni60 Si30-1/3 Zr90 Si30F ₃ 19-Sr87	$\begin{array}{cccc} 8.70 & \pm & 6 \\ 5.64 & \pm & 12 \\ (74 &) \end{array}$	Du 50 Du 50b Ma 37	18 A 36	H ₂ O-1/2 A36	(27.1 ± 4) 26.702 \pm 40 26.819 \pm 28 23.6 \pm 7	Ast 42 Ni 51 Co 51
15 P 31	O ₂ -P31H CF19-P31 P31H-S32	$\begin{array}{r} 8.249 \pm 30 \\ 8.245 \pm 12 \\ 24.4 \pm 5 \\ 9.495 \pm 10 \\ \end{array}$	Ew 51 Og 53a Ast 42 Ew 51	38 40	$C_3 - A_{36}$ $C_3 H_2 - A_{38}$ $D_2 O 1/2 A_{40}$	$\begin{array}{r} 32.50 \pm 7\\ 32.501 \pm 33\\ 52.910 \pm 40\\ 41.89 \pm 20\\ 41.967 \pm 18\end{array}$	Co 51 Co 51 Jo 37
	P31H ₂ -S32H P31H ₃ -S32H ₂ P31H ₃ -S34	9.500 \pm 10 9.491 \pm 12 9.510 \pm 11 29.275 \pm 20	Og 53a Og 53a Ew 51 Ew 51		Ne20-1/2 A40	$\begin{array}{r} 41.953 \pm 12 \\ 41.953 \pm 12 \\ 41.918 \pm 14 \\ 10.9 \pm 3 \\ 11.30 \pm 20 \end{array}$	Ew 51 Og 53 Ast 42 Jo 37
16 S 32	O ₂ -S32	$\begin{array}{rrrrr} 17.7 & \pm & 3\\ (19.15 & \pm & 11)\\ 17.7 & \pm & 10\\ 17.63 & \pm & 10\\ 17.716 & \pm & 20\end{array}$	Ast 42 Ok 41a Sm 51 Du 51 Ew 51		C ₃ H ₄ -A40	11.14 + 38 11.280+ 18 67.9 + 6 (67.93 + 7) 68.877+ 35	Ma 38 Ni 51 Ast 42 Ok 40 Ni 51
	P31H-S32	17.764 ± 7 17.725 ± 8 $*17.7629\pm 71$ 9.495 ± 10	Co 51 Og 53 Sm 53b Ew 51		С ₂ О-А40 С ₃ н ₅ -А40н	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Og 53 Eng 53 Jn 52a Ok 40
	S32-1/2 Ni64 P31H ₃ -S32H ₂ S32H ₂ -S34	$\begin{array}{r} 8.48 \pm 6\\ 9.510 \pm 11\\ 20.04 \pm 32\\ 19.847 \pm 22\end{array}$	Du 51b Ew 51 Ok 4Ia Og 53	і́9К 39 40 41	С ₃ н ₃ -К39 С ₂ О-К40 С ₃ н ₅ -К41	59.905 <u>+</u> 26 31.140 <u>+</u> 81 77.361 <u>+</u> 33	Co 51 Jn 52a Co 51
	CO ₂ -CS32 CS32H ₂ -Ti46	(18.94 ± 23) 17.782 ± 25 17.7643 ± 41 34.9 ± 10	Ok 41a Ni 51a Sm 53a Ok 41a	20 Ca 40 42	C ₃ H ₄ -Ca40 C ₂ O-Ca40 C ₃ H ₆ -Ca42	68.539 ± 46 32.557 ± 9 88.247 ± 34	Ni 51 Jn 52a Co 51
	CS32H ₃ -Ti47	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Co 52 Ok 41a Co 52 Ni 51a	43 44 48	C ₃ H ₇ -Ca43 CO ₂ -Ca44 C ₄ -Ca48	96.040 ± 52 34.607 ± 59 47.59 ± 10	Co 51 Co 51 Co 51
	04-0000	$\begin{array}{r} 33.132 \pm 13 \\ 33.122 \pm 22 \\ * 33.0621 \pm 66 \end{array}$	Co 51 Og 53 Sm 53b	21 Sc 45 22 Ti 46	C ₂ O ₂ H ₅ -Sc45O CS32H ₂ -Ti46	78.317 \pm 41 34.9 \pm 10	Co 51 Ok 41a
33	S32O ₂ -Ni64 S32O ₂ -Zn64 C ₆ H ₄ -CS32 ₂ S33H ₂ -S34H	34.69 ± 7 32.682 ±20 87.326 ±58 11.377 ±32	Co 52 Co 52 Ni 51a Og 53	47	CS32H3-Ti47 1/3 Pr141-Ti47	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Co 52 Ok 41a Co 52 Du 51b
34	$C_4H-S330$ $P31H_3-S34$ $S32H_2-S34$ $S33H_2-S34$	$\begin{array}{r} 41.385 \pm 46\\ 29.275 \pm 20\\ 20.04 \pm 32\\ 19.847 \pm 22\\ 11 377 \pm 32\end{array}$	Co 51 Ew 51 Ok 41a Og 53 Og 53	48	C-1/4 Ti48 O-1/3 Ti48	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ho 53 De 38 De 38 Du 42 Du 51a
· · · · · · · · · · · · · · · · · · ·	555n2 -5 54n	11,311 - 34	5g))				

TABLE III—Continued.

TABLE III—Continued.

Element	Doublet	∧M in mMU	Refer-	Element 7. A	Doublet	∧ M in mMU	Refer-
A	_ = = = = = = = = = = = = = = = = = = =		CHCC				ence
				20 11 50	C:20 1/2 N:50	0 00 + 6	D., 50
22 11 48	O = 1/3 1148 C = 1/2 T:48	12.3 + 1	HO 55	28 N1 58	5129-1/2 N156	8.90 ± 6	St 52
	C_{2} -1/2 1148	52 16 + 46	Ok 41a		C. HNi58	$137 12 \pm 40$	Ok 41
	04-1110	52.20 + 6	Co 52		041110-11150	143.38 ± 9	Co 52
	1/3 Nd144-Ti48	22.23 + 10	Ho 53		1/2 Cd116-Ni58	17.46 ± 12	Du 50c
49	C₄H-Ti49	58.83 ± 51	Ok 41a		1/2 Sn116-Ni58	15.43 ± 6	Du 50c
	4	59.93 <u>+</u> 5	Co 52			(16.01 ± 12)	Du 51a
50	C ₄ H ₂ -Ti50	69.46 <u>+</u> 36	Ok 41a			15.35 ± 9	St 52
		70.892 ± 29	Co 52	60	Si30-1/2 Ni60	8.70 - 3	Du 50
		70.927 <u>+</u> 27	Jn 52		C ₅ -Ni60	69.59 - 31	OK 41 Sh 49
	1/3 Nd150-Ti50	25.8 ± 5	De 38a			71.4 - 5 70.20 ± 29	Co 52
		28.40 ± 17	HO 55		1/2 Sp120-Ni60	(21.66 ± 18)	Du 51a
23 V 50	C.HV50	68 36 + 12	Jn 52		1,2 0	20.07 ± 15	Du 52
51	$C_4H_2 = V51$	79.28 + 5	Co 52		1/3 Hf180-Ni60	51.42 ± 18	Du 51b
51	- 4 5			61	C ₅ H-Ni61	73.5 ± 15	Ok 41
24 Cr 50	C ₂ H-1/2 Cr50	(35.75 <u>+</u> 7)	Du 50a			80.8 ± 5	Sh 49
	C_4H_2 -Cr50	67.32 <u>+</u> 37	Og 49			78.29 ± 23	Co 52
	- 5	69.56 <u>+</u> 6	Co 52		1/2 Sn122-Ni61	22.6 - 6	Du 51a
		69.634 <u>+</u> 46	Jn 52		1/2 T-122 N:61	22.2 - 4	Ho 52a
52	$C_2H_2 = 1/2 Cr52$	45.42 <u>+</u> 0	Du 50a		1/2 W183-Ni61	(51.79 ± 12)	Du 50
	C_4H_4 -Cr52	92.03 ± 42 90.88 + 9	$C_0 52$	62	C5H2-Ni62	86.07 ± 37	Ok 41
	CH_C1 37-Cr52	47.9 ± 8	Ast 42	02		91.4 ± 3	Sh 49
	1/2 Pd104-Cr52	(12.0 ± 2)	Du 50a			88.69 ± 8	Co 52
	1/3 Gd156-Cr52	33.1 ± 6	Gr 39		1/2 Sn124-Ni62	(26.2 ± 3)	Du 51a
	•	33.46 ± 13	Ho 54			23.78 ± 12	Ho 52
53	C ₄ H ₅ -Cr53	100.87 ± 41	Og 49		1/2 Tel24-Ni62	22.97 ± 19	H0 54
		98.38 ± 8	Co 52		1/3 W 180 - N102	(55.99 - 12)	$D_{\rm U} 51b$
	1/2 Pd106-Cr53	10.55 ± 16	Du 50a	64	$O_2 = 1/2$ N104 S32 = 1/2 Ni64	20.40 - 10 8.48 ± 6	Du 51b
54	C_4H_6 -Cr54	1070 ± 40	Co 52		C _E H Ni64	104.48 ± 54	Ok 41
		107.7 - 2	00 52		C_4C13H_3 -Ni64	102.5 ± 5	Sh 49
25 Mn 55	C ₄ H ₂ -Mn55	116.58 ± 11	Co 52	<i>i</i> .	S32O ₂ -Ni64	34.69 ± 7	Co 52
23 1111 33	1/2 Pd110-Mn55	14.8 ± 3	Du 50a		1/2 Te128-Ni64	24.40 ± 15	Ho 52a
	1/2 Cd110-Mn55	13.92 ± 17	Du 50c		1/3 Os192-Ni64	59.90 ± 24	Pen 54
	1/3 Ho165-Mn55	28.3 <u>+</u> 3	Ho 54			04 20 + 5	C . 52
	<i>i</i>		D 50	29 Cu 63	1/2 Tel26-Cu63	94.39 ± 3 22.7 + 5	Du 51b
26 Fe 54	$C_2H_3 - 1/2$ Fe54	53.76 ± 11	Du 50a	·	1/3 Os189-Cu63	56.6 + 3	Pen 54
	C ₄ H ₆ -Fe54	106.53 ± 47	Og 49	65	C ₅ H ₅ -Cu65	111.59 ± 5	Co 52
	1/2 04109 5054	107.20 ± 3	Du 50a		1/2 Te130-Cu65	25.9 <u>+</u> 4	Du 51b
56	N14 = 1/4 Fe56	17.2 ± 6	De 38			25.7 <u>+</u> 2	Ho 52a
55	$C_{2}H_{4}-1/2$ Fe56	64.20 ± 20	Du 50c		1/3 Pt195-Cu65	58.0 ± 7	De 38
	CÕ-1/2 Fe56	27.44 ± 6	Du 50c			(69.8 ± 13)) Du 42
	Si28-1/2 Fe56	6.80 ± 6	Du 50			60.00 ± 10	Du 50
	C ₄ H ₈ -Fe56	(123.5 ± 17)) Ok 40	20 7 11	01/17-61	12 20	De 48
		127.13 ± 23	Og 49	30 Zn 64	0-1/4 Zno4	(12.70)	Du 50
	1/2 04112 5-54	127.82 - 10 (17.14 + 11	$D_{1} = 0.54$		$O_{2} = 1/2$ Zn64	25.246 + 22	Co 52
	1/2 Call2-Fe56	42.00 ± 15	Ho 54			* 25.38 <u>+</u>	Kr 54
57	C Ho-Fe57	133.81 ± 50	Og 49		C ₅ H ₄ -Zn64	98.2 <u>+</u> 7	Og 49
5.	- 4 9	135.09 ± 9	Co 52		SO ₂ -Zn64	32.682 ± 20	Co 52
	1/2 Cd114-Fe57	(16.42 ± 17)) Du 50c		1/2 Tel28-Zn64	(25.0 ± 5)) $Du 51b$
58	C ₄ H ₁₀ -Fe58	145.88 ± 47	Og 49		1/3 Pt192-Zn64	(59.1 ± 4)	1 Og 40
	. /	144.8 ± 4	Co 52	66	C5H6-Znob	120.87 + 5	Co 52
	1/4 Th232-Fe58	76.4 - 3	51 54		1/3 Pt198-Zn66	62.2 ± 3	Du 50
27 C - 50	1/2 Sp118-Co59	17 64 + 12	St 52		1/3 Hg198-Zn66	* 63.10	Kr 54
21 00 54	1/2 51110-0059			67	C5H7-Zn67	128.0 ± 6	Og 49
28 Ni 58	$C_{2H_{5}-1/2}$ Ni58	72.38 <u>+</u> 20	Sh 49	l		128.08 ± 5	Co 52
		71.72 ± 12	Du 50c		1/3 Hg201-Zn67	* 62.91	Kr 54
	COH-1/2 Ni58	35.06 <u>+</u> 12	Du 50c	68	OH-1/4 Zn68	21.13	De 40
	1	L	1	L		L	1

Element Z A	Doublet	∆ M in mMU	Refer- ence	Element Z A	Doublet	Δ M in mMU	Refer- ence
30 Zn 68	C ₅ H8-Zn68	135.6 <u>+</u> 6	Og 49	36 Kr 83	C ₆ H ₁₁ -Kr83	172.07 <u>+</u> 5	Co 54
		137.51 <u>+</u> 6	Co 52	84	$C_{3}H_{6}-1/2$ Kr84	91.3 <u>+</u> 6	Ast 42
	1/3 Hg204-Zn68	* 66.57 <u>+</u>	Kr 54			(91.01 ± 13)	Ke 51
70	C ₅ H ₁₀ -Zn70	134.6 ± 16	Og 49			91.30 ± 5	Co 53
		152.88 ± 5	CO 54			91.220 + 26	Co 54
31 Ga 69	C-HG269	144 75 + 4	Co 54	86	C2H7-1/2 Kr86	99.3 + 6	Ast 42
5 1 Ga 07	1/2 Ba138-Ga69	26.56 + 20	Ho 54		- 3 7 - 7	99.44 + 5	Co 53
	1/3 Pb207-Ga69	65.53 ± 20	Ho 53			99.407 <u>+</u> 32	Co 54
71	C ₅ H ₁₁ -Ga71	161.30 <u>+</u> 8	Co 54		C ₂ OH ₃ -1/2 Kr86	(63.66 ± 15)	Ke 51
					1/3 Xe129-1/2 Kr86	(13.57 ± 13)	Ke 51
32 Ge 70	C ₅ H ₁₀ -Ge70	154.30 ± 6	Co 54			12.75 + 15	H0 55
	1/2 Ce140-Ge70	(29.8 ± 2)	Du 510	27 Dh 85	C / H Rb85	189 75 + 6	Co 54
72		17235 + 5	Co 54	21 10 02	1/2 Er170-Rb85	55.8 + 4	Ho 54
72	1/2 Nd144-Ge72	(34.9 + 5)	Du 51b	87	C ₅ H ₁ , O-Rb87	171.73 ± 17	Co 54
	1/2 10111 0010	33.15 ± 10	Ho 53		5 11		
	1/2 Sm144-Ge72	33.4 <u>+</u> 4	Ho 54	38 Sr 84	C ₆ H ₁₂ -Sr84	180.70 ± 15	Co 54
73	C ₆ H-Ge73	84.51 ± 3	Co 54	86	C ₃ H ₇ -1/2 Sr86	(101.0 ± 3)	Du 51a
	1/2 Nd146-Ge73	(33.9 ± 6)	Du 51b		C ₂ OH ₃ -1/2 Sr86	64.0 ± 4	Du 51a
		32.90 ± 20	Ho 54		$C_{6}H_{14}$ -Sr86	200.25 ± 10	Lo 54
74	C ₆ H ₂ -Ge74	94.68 ± 6	Co 54		51291193-5180	(11) (11) (11) (11) (11) (11) (11) (11)	Gr 30
	1/2 Nd148-Ge74	37.40 ± 10 35.05 ± 20	Ho 54	87	$C_rH_{1}O_sr87$	172.05 + 6	Co 54
76	1/2 Sm 148 -Ge 74	35.95 ± 20	$C_0 54$		Si30F192-Sr87	(74)	Ma 37
70	1/2 Sm152-Ge76	38.10 ± 10	Ho 53		1/2 Yb174-Sr87	53.8 + 13	Gr 39
	.,			88	CO ₂ -Sr88	37.00 <u>+</u> 18	Du 51a
3 3 As 75	C ₆ H ₃ -As75	101.79 ± 4	Co 54		C ₄ H ₈ O ₂ -Sr88	146.46 + 11	Co 54
	1/2 Nd150-As75	38.55 ± 20	Ho 53		1/2 Hf176-Sr88	(62.6 + 4)	Du 51b
		38.70 ± 20	Ho 54			04.4 ± 3	10 54
	1/2 Sm150-As75	36.2 ± 4	Ho 54	30 7 80	CoHo-Y89	169.84 + 11	Co 54
94 6 - 74	CATL So74	03 14 + 7	Co 54	57107	1/2 Hf178-Y89	(62.9 ± 4)	Du 51b
34 Se 14	1/2 Nd148-Se74	36.15 ± 20	Ho 54			65.8 <u>+</u> 3	Ho 54
•	1/2 Sm148-Se74	35.0 ± 3	Ho 54				
76	C ₄ H ₄ -Se76	112.06 ± 4	Co 54	40 Zr 90	Si30-1/3 Zr90	5.64 <u>+</u> 12	Du 50b
	1/2 Sm152-Se76	40.7 ± 3	Ho 53		C ₇ H ₆ -Zr90	142.66 + 25	Co 54
77	1/2 Sm154-Se77	40.90 ± 15	Ho 54		1/2 Hf180-Zr90	(69.3 ± 3)	Du 51b
	1/2 Gd154-Se77	40.50 ± 10	Ho 54		1/2 11/2 7.01	08.55 ± 15	H0 54
78	1/2 Gd156-Se78	43.75 ± 10	Ho 54	91	1/2 W182-2F91	11.4 ± 10 67.8 ± 4	Du 51b
80	1/2 Cd160 See0	140.17 ± 4 47.15 ± 10	Ho 54			67.75 ± 15	Ho 54
	1/2 Gu100=Se80	45.50 ± 40	Ho 54	94	1/2 Os188-Zr94	71.34 ± 12	Ge 53
82	C_{H_1} -H_Se82	161.66 ± 4	Co 54	96	1/2 Os192-Zr96	71.8 <u>+</u> 2	Ge 53
0-	1/2 Dy164-Se82	47.6 ± 4	Ho 54				
	1/2 Er164-Se82	48.2 ± 2	Ho 54	41 Nb 93	C ₇ H ₉ -Nb93	164.81 ± 8	Co 54
			L		1/2 W186-Nb93	69.7 ± 3	Kr 54
35 Br 79	C ₆ H ₇ -Br79	136.42 ± 5		42 Ma 02	1/2 W184-Mo92	68.4 + 2	Ge 53
	$1/2 Br79-C_3H_3$	7436.18 ± 23	Ug 49	42 100 92	1/2 W104-M072 1/3 Pr141-1/2 Mo9	4(16.2 + 2)	Du 51b
01	1/2 Gal58-Br/9	43.30 ± 10 154 05 \pm 5	$C_0 54$	74	1/2 Os188-Mo94	73.1 ± 28	De 38
81	$1/2 Br81-C_{2}H_{4}$	$+427.00 \pm 16$	Og 49			72.56 ± 16	Ge 53
	1/2 Dv162-Br81	46.4 ± 3	Ho 54	95	1/2 Os190-Mo95	73.7 ± 29	De 38
	-//					73.0 ± 2	Ho 54
36 Kr 78	C ₃ H ₃ -1/2 Kr78	63.5 ± 8	Ast 42	96	$C_2 - 1/4 Mo96$	23.71 ± 7	Du 50b
		63.37 ± 9	Co 53		1/2 0s102-Mag6	72.8 + 29	De 38
~ ~	C TT 1/2 12-00	63.40 ± 4	Co 54	ł	1/2 05172=11070	75.46 ± 14	Ge 53
80	$C_{3}H_{4}=1/2$ Kr80	82.8 + 6	Ast 42		1/2 Pt192-Mo96	79.7 ± 29	De 38
84	03H5-1/2 Kroz	(82.90 ± 13)	Ke 51	97	1/2 Pt194-Mo97	74.7 ± 19	De 38
		82.45 ± 5	Co 53]		75.47 ± 19	Du 51a
		82.65 ± 15	Ho 53	98	1/2 Pt196-Mo98	75.3 ± 20	De 38
		82.419±28	Co 54		C II 1/4 M-100	1 10 T 3	Du 51a
83	1/2 Kr83-C ₃ H ₅	$T^{418.70} \pm 20$	0 53	100	52H-1/4 MO100	51.10 - 0	

TABLE III—Continued.

Refer-Element Refer-Element Doublet Δ M in mMU Δ M in mMU Doublet ence ence 7. Δ 98.63 ± 13 Ha 52 1/3Nd150-1/2 Mo100 20.45 + 20 Du 51b 50 Sn 118 C₃H₇O-1/2 Snl18 42 Mo 100 1/2 Sn118-Co59 17.64 ± 12 St 52 75.9 <u>+</u> 19 De 38 C₉H₁₀-Sn118 176.29 + 19 Ha 52 44 Ru 96 1/2 Os192-Ru96 $C_{9}H_{11}$ -Sn119 182.97 + 11 Ha 52 73.4 <u>+</u> 13 Gr 39 119 + 12 De 38 123.9 72.44 ± 17 Ge 53 1/2 U238-Sn119 120.4 ± 11 Gr 39 77.03 ± 25 Pen 54 1/2 Pt196-Ru98 98 St 52 121.2 ± 3 1/2 Pt198-Ru99 81.8 <u>+</u> 20 De 38 99 48.92 ± 7 Ha 52 78.4 ± 10 Gr 39 $C_{5}-1/2$ Sn120 120 1/2 Sn120-Ni60 (21.66 ± 18) Du 51a 76.33 ± 20 Pen 54 20.07 ± 15 Du 52 82.4 <u>+</u> 3 Ho 52b 1/2 Pb204-Ru102 102 56.11 <u>+</u> 7 Ha 52 82.83 ± 15 Ho 52b 122 $C_{5}H-1/2$ Sn122 1/2 Pb208-Ru104 104 22.6 <u>+</u> 6 Du 51 1/2 Sn122-Ni61 82.0 ± 15 De 38 22.2 <u>+</u> 4 Du 52 1/2 Pb206-Rh103 45 Rh 103 63.05 <u>+</u> 5 Ha 52 C5H2-1/2 Sn124 81.76 ± 10 Ho 52b 12.4 1/2 Sn124-Ni62 (26.2 + 3) Du 51a 23.78 + 12 Ho 52 71.06 ± 4 Ha 52 C₄H₃-1/2 Pd102 46 Pd 102 1/2 Pb204-Pd102 C₉H₁₂-Te120 C₅H-1/2 Te122 189.45 ± 15 Ha 52 52 Te 120 56.39 ± 4 Ha 52 39.88 ± 10 Du 50a $C_{2}H_{2}-1/4$ Pd104 122 104 20.9 ± 3 Ho 52a 1/2 Te122-Ni61 79.68 ± 5 Ha 52 C4H4-1/2 Pd104 +444.49 + 20 Ha 52 (12.0 ± 2) Du 50a 123 1/2 Te123-C5H 1/2 Pd104-Cr52 64.11 ± 5 Ha 52 82.8 ± 16 De 38 C5H2-1/2 Te124 124 1/2 Pb208-Pd104 1/2 Te124-Ni62 22.97 ± 19 Ho 52 (84.8 ± 4) Du 51a †436.80 ± 16 Ha 52 1/2 Tel25-C5H2 83.77 ± 10 Ho 52b 125 71.56 + 3 Ha 52 C₅H₃-1/2 Te126 165.65 ± 14 Ha 52 126 C8H9-Pd105 105 22.7 <u>+</u> 5 Du 51b 87.83 ± 9 Ha 52 1/2 Tel26-Cu63 C4H5-1/2 Pd106 106 10.55 ± 16 Du 50a 1/2 Te128-Zn64 Du 51b (25.0 <u>+</u> 5) 128 1/2 Pd106-Cr53 Ho 52a 1/2 Te128-Ni64 24.4 <u>+</u> 3 C₈H₁₀-Pd106 175.11 ± 18 Ha 52 C₁₀H₈-Tel28 C₅H₅-1/2 Tel30 157.09 ± 12 Ha 52 47.90 ± 8 $C_2H_3-1/4$ Pd108 $C_4H_6-1/2$ Pd108 1/2 Pd108-Fe54 Du 50a 108 85.67 + 4 Ha 52 Ha 52 130 95.24 ± 5 25.9 <u>+</u> 4 Du 51b 12.15 ± 11 Du 50a 1/2 Tel30-Cu65 Ho 52a 25.7 <u>+</u> 2. Ha 52 C4H7-1/2 Pd110 6 102.56 ± 110 7 Du 51b 1/3 Pt195-1/2 Te130 35.4 <u>+</u> 14.8 ± 3 Du 50a 1/2 Pd110-Mn55 150.16 ± 12 Ha 52 C10H7-I127 86.18 <u>+</u> 7 Ha 52 53 T 127 48 Cd 106 $C_{4}H_{5}-1/2$ Cd106 $C_{4}H_{6}-1/2$ Cd108 94.94 <u>+</u> 5 Ha 52 108 $C_{5}H_{2}-1/2 Xe^{124}$ 62.61 + 3Ha 52 $C_{4H_{7}-1/2} Cd110$ 103.10 ± 6 Ha 52 54 Xe 124 110 71.27 <u>+</u> Ha 52 7 C₃H₃-1/2 Xe126 1/2 Cd110-Mn55 13.92 <u>+</u> 16 Du 50c 126 7 Ha 52 C₁₀H₈-Xe128 159.13 <u>+</u> C₈H₁₅-Cd111 213.15 ± 8 Ha 52 128 111 C₃H₇-1/3 Xe129 Ast 42 $C_{4H_8}^{-1/2}$ Cd112 1/2 Cd112-Fe56 110.98 ± 5 Ha 52 129 112 (17.14 ± 11) Du 50c Ha 52 86.54 ± 4 222.43 ± 9 Ha 52 C₈H₁₆-Cd112 50.22 ± 13 Ke 51 228.61 ± 9 Ha 52 C₂OH₃-1/3 Xe129 C8H17-Cd113 113 $1/3 \text{ Xe} 129 - 1/2 \text{ Kr} 86 (13.57 \pm 13) \text{ Ke} 51$ C₄H₉-1/2 Cd114 118.66 ± 7 Ha 52 114 12.75 ± 15 Ho 53 82.30 ± 6 Ha 52 C3H5O-1/2 Cd114 C₅H₅-1/2 Xe130 87.43 ± 4 Ha 52 (16.42 ± 17) Du 50c 130 1/2 Cd114-Fe57 †354.93 ± 14 Ha 52 C3H6O-1/2 Cd116 131 $CO_2 - 1/3 Xe^{131}$ 89.39 ± 6 Ha 52 116 (57.56 ± 13) Ke 51 C2H4O-1/3 Xe132 132 1/2 Cd116-Ni58 17.46 ± 12 Du 50c CO2-1/3 Xe132 21.59 ± 9 Ke 51 Ha 52 21.80 ± 5 228.77 <u>+</u> 10 Ha 52 49 In 113 C₈H₁₇-In113 95.00 ± 6 Ha 52 C₅H₆-1/2 Xe132 151.20 <u>+</u> 10 Ha 52 C_9H_7 -In115 115 102.22 ± 5 Ha 52 134 C₅H₇-1/2 Xe134 109.15 ± 4 Ha 52 C₅H₈-1/2 Xe136 136 151.46 <u>+</u> 25 Ha 52 50 Sn 115 CoH7-Snl15 90.78 \pm 9 Ha 52 15.43 \pm 6 Du 50c C₃H₆O-1/2 Sn116 116 16.5 ± 2 Du 51b 1/3 Ba138-1/2 Zr92 56 Ba 138 1/2 Sn116-Ni58 26.56 ± 20 Ho 54 1/2 Ba138-Ga69 (16.01 ± 12) Du 51a 38.8 ± 3 St 52 1/3 Pb207-1/2 Bal38 15.35 ± 9 St 52 38.97 ± 13 Ho 54 160.47 ± 14 Ha 52 C₉H₈-Snll6 1/2 Th232-Sn116 (29.8 ± 2) Du 51b 1/2 Ce140-Ge70 58 Ce 140 28.4 ± 3 Ho 53 55.26 ± 16 Du 51a $C_{3}H_{3}-1/3$ Snll7 117 9 Ha 52 C9H9-Sn117 167.37 ± 17.11 ± 14 Du 51b 59 Pr 141 1/3 Pr141-Ti47 117.1 ± 3 St 52 1/2 Ú234-Sn117

TABLE III—Continued.

Element Z A	Doublet	Δ M in mMU	Refer- ence	Element Z A	Doublet	Δ M in mMU	Refer- ence
59 Pr 141	1/3 Pr141-Ti47 1/3 Pr141-1/2 Mo94	16.97 <u>+</u> 10 (11.9 <u>+</u> 2	Ho 54 Du 51b	76 Os 188	1/2 Os188-Mo94	73.1 <u>+</u> 28 72.56 <u>+</u> 16	De 38 Ge 53
60 Nd 144	1/3 Nd144-T;48	22 23 + 10	Ho 53	189	1/3 Os189-Cu63	56.6 ± 3	Pen 54
00 110 144	1/3 Nd144-1/2 Mo96	17.57 + 14	Du 51b	190	1/2 05190-10095	73.7 ± 29 73.00 + 20	De 38
	1/2 Nd144-Ge72	(34.9 ± 5)	Du 51b	192	1/3 Os192-Ni64	59.90 + 24	Pen 54
		33.15 <u>+</u> 10	Ho 53		1/2 Os192-Zr96	71.8 + 2	Ge 53
146	1/2 Nd146-Ge73	32.90 <u>+</u> 20	Ho 54		1/2 Os192-Mo96	72.8 ± 29	De 38
148	1/2 Nd148-Ge74	37.40 ± 10	Ho 54		1/2 0 102 0 01	75.46 ± 14	Ge 53
150	1/2 Nd148-Se74	36.15 ± 20	Ho 54		1/2 Os192-Ru96	75.9 ± 19	De 38
150	1/5 140150-1150	23.80 ± 3 28.40 + 17	Ho 53			72.44 + 17	Ge 53
	1/3 Nd150-1/2 Mo100	20.45 ± 20	Du 51b				
	1/2 Nd150-As75	38.55 <u>+</u> 20	Ho 53	78;Pt 192	1/3 Pt192-Zn64	(59.14 ± 19)	Du 50
		38.70 ± 20	Ho 54		1/2 Pt192-Mo96	79.7 ± 29	De 38
62 Sm 144	1/2 Sm 144 -Ge 72	334 + 4	Ho 54	194	1/2 Pt194-M097	74.7 ± 19 75.47 ± 19	De 38
148	1/2 Sm144-Ge72	35.95 + 20	Ho 54	195	C ₂ H ₂ -1/5 Pt195	30.65 ± 12	Du 50a
	1/2 Sm148-Se74	35.0 <u>+</u> 3	Ho 54	-,-	1/3 Pt195-Cu65	58.0 ± 7	De 38
150	1/2 Sm150-As75	36.2 <u>+</u> 4	Ho 54			(69.81 ± 13)	Du 42
152	1/2 Sm152-Ge76	38.10 ± 10	Ho 54		1/2 D4105 1/2 To13	60.00 ± 10	Du 50
154	1/2 Sm152-Se76 1/2 Sm154-Se77	40.7 ± 3 40.90 ± 15	Ho 54	196	1/2 Pt196-Mo98	75.3 ± 20	Du 516
154	1/2 541154-5611	40.70 - 15	110 51	170	1/2101/0-110/0	77.6 + 3	Du 51a
64 Gd 154	1/2 Gd154-Se77	40.50 ± 10	Ho 54		1/2 Pt196-Ru98	77.03 + 25	Pen 54
156	1/3 Gd156-Cr52	33.1 <u>+</u> 6	Gr 39	198	1/3 Pt198-Zn66	62.2 <u>+</u> 3	Du 50
		33.46 ± 13	Ho 54		1/2 Pt198-Ru99	81.8 ± 20	De 38
150	1/2 Gd156-Se78	43.75 ± 10 43.30 ± 10	Ho 54			76.33 ± 20	Pen 54
158	1/2 Gd158-B179 1/2 Gd160-Se80	47.15 ± 10	Ho 54			10100 1 20	
100	1/1 daroo 2000			80 Hg 198	1/3 Hg198-Zn66	* 63.10	Kr 54
66 Dy 160	1/2 Dy160-Se80	45.5 <u>+</u> 4	Ho 54	201	1/3 Hg201-Zn67	* 62.91	Kr 54
162	1/2 Dy162-Br81	46.4 <u>+</u> 3	Ho 54	204	1/3 Hg204-Zn68	* 66.57	Kr 54
164	1/2 Dy164-Se82	47.6 <u>+</u> 4	H0 54	82 Ph 204	1/2 Pb204-Bu102	82.4 + 3	Ho 52b
67 Ho 165	1/3 Hol65-Mn55	28.3 + 3	Ho 54	02 1 0 201	1/2 Pb204-Pd102	82.3 ± 20	De 38
01 110 100	1,5 110105 11100			<i>i</i>		81.0 <u>+</u> 4	Ho 52b
68 Er 164	1/2 Er164-Se82	48.25 <u>+</u> 20	Ho 54	206	1/2 Pb206-Rh103	82.0 <u>+</u> 16	De 38
168	1/3 Er168-Fe56	42.00 ± 10	Ho 54	207	1/3 Ph207-Ga69	65.53 ± 20	Ho 520
170	1/2 Er170-Rb85	55.8 <u>1</u> 4	NO 54	201	1/3Pb207-1/2 Ba138	38.8 + 4	St 52
70 Yb 172	1/2 Yb172-Sr86	53.3 <u>+</u> 13	Gr 39			38.96 <u>+</u> 13	Ho 54
174	1/2 Yb174-Sr87	53.8 <u>+</u> 12	Gr 39	208	1/2 Pb208-Ru104	82.83 <u>+</u> 15	Ho 52b
					1/2 Pb208-Pd104	82.8 ± 16	De 38
72 Hf 176	1/2 Hf176-Sr88	(62.6 ± 4) 64 4 + 3	Ho 54			83.77 + 10	Ho 52b
178	1/2 Hf178-Y89	(62.9 ± 4)	Du 51b				
	-, ,	65.8 <u>+</u> 3	Ho 54	90 Th 232	1/4 Th232-Fe58	76.4 <u>+</u> 3	St 52
180	1/3 Hf180-Ni60	51.42 <u>+</u> 18	Du 51b		1/2 Th232-Sn116	117.6 ± 12	De 38
	1/2 Hf180-Zr90	(69.3 ± 3)	Du 51b Ho 54			110.7 ± 4	51 52
		08.55 1 15	110 51	92 U 234	1/2 U234-Sn117	117.1 ± 3	St 52
74 W 182	1/2 W182-Zr91	71.4 <u>+</u> 18	De 38	238	1/2 U238-Sn119	123.9 ± 12	De 38
		67.8 <u>+</u> 4	Du 51b			120.4 ± 11	Gr 39
	1/2 W102 N1/1	67.75 ± 15	Ho. 54			121.2 ± 3	51 52
183	1/3 = W183 = W161 1/2 = W184 = 7 = 92	(51.79 ± 12) 74.1 + 18	Du 30 De 38				
104	1/2 11/01 21/2	69.3 ± 4	Du 51b				
		69.79 ± 14	Ge 53				
186	1/3 W186-Ni62	(55.99 ± 12)	Du 50				
	1/2 W186-ND93	07.1 <u>エ</u> 3	IVI DA				
76 Os 188	1/2 Os188-Zr94	71.34 <u>+</u> 12	Ge 53				
	, · · ·						
					L		L

TABLE III-Continued.

which were later superseded by improved values in the same laboratory. Thus, instead of listing all of the mass differences reported by Aston at one time or another, we have included only those given by him in Mass Spectra and Isotopes,7 which he obviously considered to be his best values. Among more recent results all doublet differences which have been published have been included. This leads to the inclusion of two or more values from the same laboratory for certain doublets. Here the reader should assume that the most recent value supersedes the earlier ones. Parentheses have the same significance as in Table II. An asterisk indicates a tentative unpublished result and a † indicates a value not properly a doublet.

In Table III the doublet measurements are arranged by elements in order of increasing atomic number Z, and all doublets except those involving C, H, and O are entered twice. Thus, for example, the doublet $Ne20-\frac{1}{2}A40$ appears under both neon and argon (with the mass number A placed on the line rather than as a superscript). Within a particular element group the doublets are arranged by isotopes and the various values for any one doublet are listed in chronological order.

As in Table II there are no "best values" given in Table III. This is not a problem in the many cases where there is only one measurement of the doublet. However, in the many other cases, where there are discordant values, we are not attempting to select one as being superior to the others. The problem of reconciling discrepant results here is similar to that described in the preceding section in connection with the fundamental doublets, although it is not as acute, since there has not been as concerted an attack upon the doublets containing heavier atoms.

TABLE IV. Nondoublet time-of-flight mass measurements.

Z	Element	Isotope	Mass (a.m.u.)	Reference
16	Sulfur	32	31.983 ± 1	Hay 51a
17	Chlorine	35	34.9805 ± 5	Hay 51a
19	Potassium	41-39	2.000 ± 1	Hay 51
		41	40.975 ± 2	Hav 51a
35	Bromine	79	78.944 ± 1	Hay 51a
		81	80.943 ± 1	Hay 51a
36	Krypton	84	83.938 ± 1	Hay 51a
37	Rubidium	85	84.9310 ± 15	Hay 51a
		87	86.9295 ± 20	Hay 51a
		87-85	1.999 ± 1	Hay 51
53	Iodine	127	(126.9415 ± 25)	Hay 51a
			126.946 ± 1	Hay 52
54	Xenon	129	128.9455 ± 15	Hay 51a
		130	129.945 ± 2	Hay 51a
		131	130.944 ± 2	Hay 51a
		132	131.945 ± 2	Hay 51a
		134	133.947 ± 2	Hay 51a
82	Lead	208	208.0416 ± 15	Ri 52
83	Bismuth	209	209.0466 ± 15	Ri 52

7 Reference Ast 42.

6. TABLE IV-NONDOUBLET TIME-OF-FLIGHT MEASUREMENTS

A number of important atomic mass measurements have been made by Hays, Richards, and Goudsmit using a helical orbit mass spectrometer which measures the time-of-flight of ions describing a number of revolutions in a uniform magnetic field. In this work the instrument has been calculated by use of two known masses, several mass units apart, lying in the same general range as the atom under study. The results of these experiments are listed in Table IV.

7. ACKNOWLEDGMENTS

The preparation of these tables has been greatly assisted by much prepublication data and also by many candid comments by individuals concerning the reliability of their own work. Persons to whom thanks are due on these counts include T. L. Collins, H. Ewald, S. A. Goudsmit, J. T. Kerr, J. Mattauch, A. O. C. Nier, K. Ogata, and L. G. Smith. In checking the completeness of this tabulation the authors have made frequent use of Aston's Mass Spectra and Isotopes,⁷ Mattauch and Flammersfeld's "1949 Isotope Report," and Bainbridge's article on mass spectroscopy in *Experimental* Nuclear Physics, Volume I.⁸

BIBLIOGRAPHY

- Asa 39
- Asada, Okuda, Ogata, and Yoshimoto, Nature 143, 797 (1939); Proc. Phys. Math. Soc. Japan 22, 41 (1940). F. W. Aston, *Mass Spectra and Isotopes* (Edward Arnold and Company, London, 1942). K. T. Bainbridge, Phys. Rev. 44, 56 (1933). K. T. Bainbridge, and E. B. Jordan, Phys. Rev. 49, 883 Ast 42
- Ba 33
- 36 Ba
 - (1936)
- Ba 37 K. T. Bainbridge and E. B. Jordan, Phys. Rev. 51, 384 (1937)Ba
 - K. T. Bainbridge, Phys. Rev. 53, 922 (1938). 38 39
- Bo A. Bönisch, dissertation, Wien, 1939.
- 51 Collins, Nier, and Johnson, Phys. Rev. 84, 717 (1951). Co
- Co 52 53
- Co Co
- Collins, Nier, and Johnson, Phys. Rev. 84, 117 (1931).
 Collins, Nier, and Johnson, Phys. Rev. 86, 408 (1952).
 T. L. Collins, "Mass Spectroscopy in Physics Research," Natl. Bur. Standards Circ. No. 522 (1953).
 Collins, Johnson, and Nier, Phys. Rev. 94, 398 (1954).
 C. C. Damm and L. G. Smith, Phys. Rev. 91, 482 (1953). 54 53 Da (1953)
- De 38
- 38a De
- A. J. Dempster, Phys. Rev. 53, 64 (1938).
 A. J. Dempster, Phys. Rev. 53, 869 (1938).
 A. J. Dempster, Phys. Rev. 74, 1225 (1948). De 48
- Du 42 H. E. Duckworth, Phys. Rev. 62, 19 (1942).
- 50 Duckworth, Johnson, Preston, and Woodcock, Phys. Du Rev. 78, 386 (1950).
- Duckworth, Woodcock, and Preston, Phys. Rev. 78, Du 50a 479 (1950).
- Du 50b Duckworth, Preston, and Woodcock, Phys. Rev. 79, 188 (1950).
- Du 50c H. E. Duckworth and R. S. Preston, Phys. Rev. 79, 402 (1950).
- Duckworth, Stanford, Olson, and Kegley, Phys. Rev. 81, 286 (1951). Du 51
- Du 51a H. E. Duckworth and R. S. Preston, Phys. Rev. 82, 468 (1951). Du 51b
- Duckworth, Kegley, Olson, and Stanford, Phys. Rev. 83, 1114 (1951). Du 52
 - H. E. Duckworth, "Atomic Masses for Elements with Z>21," U. S. Atomic Energy Commission—NYO— 981 (April 18, 1952).

⁸ K. T. Bainbridge, Experimental Nuclear Physics, E. Segrè, editor (John Wiley and Sons, Inc., New York, 1953), Vol. I.

- Eng 53 A. Engler and H. Hintenberger, Helv. Phys. Acta 26, A. Engler and R. Hintenberger, 12000 (1953).
 H. Ewald, Z. Naturforsch. 1, 131 (1946).
 H. Ewald, Z. Naturforsch. 5a, 1 (1950).
 H. Ewald, Z. Naturforsch. 6a, 293 (1951).
 H. Ewald, Z. Naturforsch. 8a, 447 (1953).
 S. Flügge and J. Mattauch, Physik. Z. 44, 181 (1943). Ew 46
- Ew 50
- Ew 51
- Ew 53
- Fl 43
- Geiger, Hogg, Duckworth, and Dewdney, Phys. Rev. 89, 621 (1953). 53 Ge
- A. C. Graves, Phys. Rev. 55, 863 (1939). Hays, Richards, and Goudsmit, Phys. Rev. 82, 345 Gr 39
- Hay 51 (1951). Hays, Richards, and Goudsmit, Phys. Rev. 84, 824 Hay 51a
- (1951). Hay 52 Hays, Richards, and Goudsmit, Phys. Rev. 85, 1065
- (1952). Ha
- R. E. Halstead, Phys. Rev. 88, 666 (1952) 52
- Ho 52 B. G. Hogg and H. E. Duckworth, Phys. Rev. 86, 567 (1952)Ho 52a B. G. Hogg and H. E. Duckworth, Can. J. Phys. 30,
- 628 (1952). Ho 52b
- B. G. Hogg and H. E. Duckworth, Can. J. Phys. 30, 637 (1952). 53 B. G. Hogg and H. E. Duckworth, Can. J. Phys. 31, Ho
- 942 (1953). B. G. Hogg and H. E. Duckworth, Can. J. Phys. 32, 65 Ho -54
- (1954). 52 In
- 52a In
- W. H. Johnson, Jr., Phys. Rev. 87, 166 (1952).
 W. H. Johnson, Jr., Phys. Rev. 88, 1213 (1952).
 E. B. Jordan and K. T. Bainbridge, Phys. Rev. 49, 883 Jo 36 (1936)
- E. B. Jordan and K. T. Bainbridge, Phys. Rev. 50, 98 Jo 36a (1936)
- 37 E. B. Jordan and K. T. Bainbridge, Phys. Rev. 51, 385 Jo (1937)40
- To 41 Jο
- E. B. Jordan, Phys. Rev. 58, 1009 (1940).
 E. B. Jordan, Phys. Rev. 60, 710 (1941).
 C. L. Kegley and H. E. Duckworth, Nature 167, 1025 Кe 51 (1951)
- J. T. Kerr, (unpublished). Kr 54

- Ma 36 J. Mattauch, Sitzber. Akad. Wiss. Wien Math. naturw. Kl. Abt. IIa, 145, 461 (1936); Phys. Rev. 50, 617 (1936)
- J. Mattauch, Naturwissenschaften 25, 170 (1937). Ma 37
- J. Mattauch and R. Herzog, Naturwissenschaften 25, Ma 37a
- 747 (1937).
- Ma 37b Ma 38
- J. Mattauch, Physik. Z. 38, 951 (1937). J. Mattauch, Physik. Z. 39, 892 (1938). J. Mattauch and R. Bieri, Z. Naturforsch. 9a, 303 Ma 54 (1954)
- È. P. Ney and A. K. Mann, Phys. Rev. 69, 239 (1946). Ne 46 Ni 51 A. O. C. Nier and T. R. Roberts, Phys. Rev. 81, 507
- (1951). A. O. C. Nier, Phys. Rev. 81, 624 (1951). Ni
- 51a 49
- Ög Og 53
- K. Ogata, Phys. Rev. 75, 200 (1949).
 K. Ogata and H. Matsuda, Phys. Rev. 89, 27 (1953).
 K. Ogata and H. Matsuda, Phys. Rev. 89, 333 (1953). 53a
- Ög Ok 40 Okuda, Ogata, Aoki, and Sugawara, Phys. Rev. 58, 578
- (1940). Ok 41
 - Òkuda, Ogata, Kuroda, Shima, and Shindo, Phys. Rev. 59, 104 (1941).
- Ok 41a T. Okuda and K. Ogata, Phys. Rev. 60, 690 (1941).
- Pen 54 E. M. Pennington, (unpublished).
- 48 W. Rall, Phys. Rev. 73, 1222 (1948). Ra
- Richards, Hays, and Goudsmit, Phys. Rev. 85, 630 Ri 52 (1952).
- T. R. Roberts, and A. O. C. Nier, Phys. Rev. 77, 746 Ro 50 (1950).
- T. R. Roberts, Phys. Rev. 81, 624 (1951). Ro 51
- A. E. Shaw, Phys. Rev. 75, 1011 (1949). \mathbf{Sh} - 49
- Sm51 L. G. Smith, Phys. Rev. 81, 295 (1951). Sm 53 L. G. Smith and C. C. Damm, Phys. Rev. 90, 324
- (1953). Sm 53a
- L. G. Smith (1953, unpublished). L. G. Smith and C. C. Damm, (1953, unpublished). Sm 53b
- Sommer, Thomas, and Hipple, Phys. Rev. 82, 697 So 51
- (1951).St Stanford, Duckworth, Hogg, and Geiger, Phys. Rev. 85, 1039 (1952). 52

Erratum: The Energies of Natural Alpha Particles Erratum: On the Convergence of Born Expansions

G. H. BRIGGS

Division of Physics, National Standards Laboratory, Commonwealth Scientific and Industrial Research Organization, Sydney, Australia

[Revs. Modern Phys. 26, 1 (1954)]

IN Table III, for "Collins et al., Weight 4," read "Collins et al., Weight 3."

In Table IV, last line, read "Mean 3.31649±0.0008 S.E."

In Table V, read

Z	Isotope	H ho 10 ⁵ oe cm	Alpha-particle energy, Mev	Disintegration energy, Mev
83	Bi ²¹⁴ α ₀			5.6100
84	(RaC) α1 Po ²¹⁰ Po ²¹⁵	3.31649	5.3007	5.5478 5.4037 7.523
86	(AcA) Rn ²¹⁹ (An) α1			6.664

WALTER KOHN

Institute for Theoretical Physics, Copenhagen, Denmark, and Department of Physics, Carnegie Institute of Technology, Pittsburgh 13, Pennsylvania [Revs. Modern Phys. 26, 292 (1954)]

HE captions for Figs. 1–3 were unfortunately interchanged. The proper captions are:

FIG. 1. Radius of convergence, λ_c , for the square well, l=0. For k < 2.3 the singularity of smallest absolute value is positive (attractive potential), for k>2.3, negative. Thus the portions I and II represent the absolute values of two different singularities.

FIG. 2. Radius of convergence, λ_c , for the square well, l=1. Note the initial decrease of λ_c .

FIG. 3. Radius of convergence, λ_c , for the square well, l=2.

It may also be helpful to point out that the printer uses the symbol **n** to denote a bold face η (see headings on pp. 292, 293, 309).

472