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A method of obtaining the angular parts of one electron wave functions in all crystal lattices is discussed.
The functions are shown to be bases for irreducible representations of rotation groups. Tables of these func-
tions are given for use in cubic and close packed hexagonal lattices. Consideration is also given to angular
wave functions in polyatomic crystals.

1. INTRODUCTION

~ 'HE effects of the symmetry properties of crystals
on wave functions have been discussed in the

literature' and functions which transform according to
the operations of the full cubic group have been tabu-
lated —the Kubic Harmonics. ' Calculations on the band
structure of solids are greatly simplified by the use of
these and other similar functions and it was felt that
their publication would be of great assistance to anyone
undertaking such work. The functions given are for
use in all cubic lattices and the close-packed hexagonal
lattice but the general method of obtaining such func-
tions is described and can be applied to all lattices.

A systematic presentation of the underlying theory,
most of which can be found scattered through the
literature, is given as an introduction.

2. CRYSTAL SYMMETRY

The one-electron wave functions in a crystal are
solutions of Schrodinger's equation

where the Hamiltonian 3C is a function of the electron
coordinates and b is the energy.

For the ideal case of an infinite lattice there exists
a translation group V whose elements are defined by
the equation

T,r= r+n, ,a, ,

where the a, 's (i=1,2,3) are the three smallest vectors
such that the appearance of the lattice from a point
r+a, is identical with that from the point r. This
means that the crystal potential V(r) is invariant
under the operations of K The three vectors a, define
a unit cell in the lattice.

1 is an infinite Abelian group which commutes with
both 3C and h in Eq. (1) and it can be shown that the

'H. A. Bethe, Ann. Physik 3, 133 (1929); C. Eckart, Revs.
Modern Phys. 2, 344 (1930); D. H. Ewing and F. Seitz, Phys.
Rev. 43, 804 (1933); Bouckaert, Smoluchowski, and Wigner,
Phys. Rev. 50, 58 (1936); F. Seitz, ildoderrz T/zeory of Soizds
(McGraw-Hill Book Company, Inc. , New York, 1940), and in-
cluded references. F. C. Von der Lage, and H. A. Bethe, Phys.
Rev. 71, 612 (1947); C. Herring, J. Franklin Inst. 233, 525 (1952);
W. Doring and V. Zehler, Ann. Physik 13, 214 (1953); Bell,
Hum', Pincherle, Sciama, and Woodward, Proc. Roy. Soc.
(London) Ail, 217 (1953).' See reference 1, F. C. Von der Lage and H. A. Bethe.

wave functions have the form

where
P(k, r) =exp(ik r)u(k, r),

T,u(k, r) =u(k, r). (2)

Thus, it is only necessary to determine wave functions
in the unit cell, for with the use of the wave vector k
they can then be found at any point in the crystal.

If a lattice in k space, a reciprocal lattice, is defined

by the three vectors b;, where a, b, = 2zr5;, , the addition
of K=zz~b, to the wave vector introduces a factor
exp (iK r) to the wave function; this has the periodicity
of the lattice and can therefore be absorbed into
u(k, r). Thus, the translational symmetry of the lattice
can be completely described by taking the wave func-
tions to be multivalued functions of the k's lying in
the unit reciprocal lattice cell—the first Brillouin zone.

As the wave functions are to be considered as func-
tions of k it is obvious that the energy eigenvalue must
also be a function of the wave vector, so that Eq. (1)
can be written in the form

[——',~r',s+ V(r)]P(k, r) —=K(r)g(k, r) = b(k)lt (k, r). (3)

For given k and h(k) this has in general rz linearly in-

dependent degenerate solutions P, (k, r), (s = 1,2, ,rz).
About each point in the lattice one can define a

rotation group (R, whose elements are rotations through
2zr/zz and inversion (i.e., the conversion of r into —r)
such that

R, V(r) = V(r).

It is shown in Appendix I that if R; is an element of
0I such that R,k= k+0, ,b; (when R, is performed about
the center of the first Brillouin zone) then it is possible
to find an irreducible representation of the group of these
elements made up of rs-dimensional matrices Ljz,]such
that

& Lk. (k, r)]=—L4.(k,& 'r)]=L~t (k,r)]L~.] (&)

Thus in order to find the effect on the wave functions
due to the rotational symmetry of the crystal lattice it is
necessary to know

(a) The rotational group S. to be associated with the
point about which the wave functions are de-
veloped.
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(b) The subgroup (R(k) of (R whose elements leave k
invariant or change it by a sum of reciprocal
lattice vectors.

3. APPLICATION OF GROUP THEORY

In order to apply group theory to the crystal lattice
the wave functions are expanded as a complete set of
orthogonal functions about an atomic nucleus within
the unit cell:

P, (k, r) =P P A, , z, „Uz (8,y)Sz[8(k), r],
Z tn

where Uz (8,&) is a spherical harmonic; S is a function
of r, the distance from the nucleus; and A, , ~, is a
constant coefficient to be determined by boundary
conditions. This equation can be rewritten in the form

P, (k, r) =P B,& g C, r, Yr, (g,p)Sr,[b(k), r]

=P a„x.,s,[8( ), r],
L

where a particular value of I. may appear more than
once in the sum. The linear combinations of spherical
harmonics, X,L,

—the lattice harmonics —can be com-
pletely determined by group theory, for the only parts
of the wave functions which can be affected by rotation
are the lattice harmonics, and so from Eq. (4)

Rj[X,]=[Xz][J„] (the sufFix I. on both sides of the
equation is dropped for con-
venience) .

Suppose that one has a group zR(k,) which is com-
pletely determined, i.e., the matrices ['Jz, ] which
form its neth irreducible representation r, and the lat-
tice harmonics X, corresponding to them are known.
For each subgroup zR(kb) of (R(k,) it is possible to find
a matrix M such that M z[ Jz, ]M has a set of matrices
[bJz,"]running down its diagonal for each element R;
in (R (kb). That is, the representations 'I' can be re-
duced to give the irreducible representations ~F" of
zR(kb). The lattice harmonics corresponding to the
irreducible representations of R.(kb) are given by
['X, ]M. The group (R(kb) can then be used to de-
termine a further group (R(k,).

It is always possible to start with the full rotation
group for which the X, are the spherical harmonics
I'~, but for the results applicable to cubic lattices
given at the end of this paper the full cubic group
which has been determined by Von der Lage and Bethe'
was used as a starting point.

4. DETERMINATION OF PROPER WAVE FUNCTIONS

By use of the lattice harmonics corresponding to a
rotation group (R(k) it is possible to 6nd lt 's centered on
each atomic nucleus in a unit lattice cell. These f's
contain an infinite number of arbitrary constants BI,
which must be determined by the condition that a
proper wave function is smooth throughout the crystal.
To determine the constants it is usual to divide the

unit cell into subcells, one surrounding each nucleus,
and to match wave functions over the surfaces of these
sub cells. '

When matching wave functions it must be remem-
bered that they are each developed about diferent
points in the lattic- they are each centered on an
atomic nucleus. It is shown in Appendix II that this
has two important sects. Consider diferent atomic
nuclei at A„and A„where A, is at a distance S„,from

A„; then:

(a) P~ should be joined smoothly on to exp(ik S„,)P,
(b) lt „"must be considered in conjunction with P,™

where:

[J„"]=exp{ik(E—+j—')S„,}[J„"].
APPENDIX I

It is possible to dedne a rotation group S at any
point in the direct lattice, the elements of which leave
the lattice invariant. In the reciprocal lattice one can
define a rotation group S(k) for each k, whose opera-
tions 5; when performed about the center of the first
Brillouin zone satisfy the equation

S;k=k+is;,b;—=k.

Define (R(k) as the subgroup of the elements common
to zR a,nd S(k).

In this appendix it is shown that one can find an
irreducible representation of (R(k) made up of matrices
[J„]such that

R;[l(,(k,r)]=[/, (k,R, 'r)]=[pi(k, r)][Jz,] (4)

where R, is any element of (R(k).
The effect of a rotation R, on a function f(r) may be

defined by the equations

Rjf(r) = f(M, r) = [f(s)]s=M;r.
Then

RbRjf(r) =Rb{R;f(r)}= [R;f(t)]t=Mbr

= {[f(S)]s=M, t}t=Mbr = [f(S)]s MjMbr=

If RI,=RI,E, then M z
——M,MI„and it is logical and con-

sistent to write M, =R, ' so that R;f(r) = f(R; 'r) and,
in particular, Rjzt (k, r) =zz((k,Rj 'r).

Schrodinger's equation for a typical one-electron
wave function is written in the form

[——,'7',s+ U(r)]p(k, r) —=x(r)p(k, r) = 8(k)f(k, r). (3)

It is readily shown that

(a) RjV,= Vn,'
(b) A (R,B)=(R, 'A) B (A and B any vectors)

3 E.Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);J. C. Slater,
Phys. Rev. 45, 794 (1934); W. Shockley, Phys. Rev. 52, 866
(1937); W. Kohn, Phys. Rev. 87, 472 (1952); D. J. Howarth and
H. Jones, Proc. Phys. Soc. (London) A6S, 355 (1952); Bell,
Hum, Pincherle, Sciama, and Woodward, reference 1; D. P.
Jenkins and L. Pincherle, Phil. Mag. , Ser. 7, 45, 93 (1954); L. I.
SchiB, Proc. Phys. Soc. (London) A67, 1 (1954).
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and hence, that
~2 . —g2

By definition R,V(r)=V(r). Therefore the operator
R, commutes with the Hamiltonian K(r) as well as
with the energy eigenvalue 8(k). Thus, operating with

R, on both sides of Eq. (3) gives

SC(r)P(k R —'r) = h(k)P(k, R 'r). (3a)

For a given k and B(k) Eq. (3) has, in general, n
degenerate solutions

f, (k,r) =exp(ik. r)g, (k, r) (s=1,2, g).

Therefore Eq. (3a) has I solutions

P, (k,R, 'r)=exp(ik R, 'r)u. (k,R, 'r)
=exp(iR, k r)N, (k,R, 'r)—

But these are wave functions having wave vector R,k'

Therefore it is possible to define a set of e degenerate
wave functions

fi(R,k, r) =exp(iR, k r)v, (R,k, r) (3=1,2 . e)

which are also solutions of (3a). The functions

P, (k,R, 'r) must then be linear combinations of the
functions P~(R,k, r); thus

[O.(k,R,-"))=[a(R,k, ))[J ]
But R,k—=k; therefore it is possible to find a set of
matrices [J„]such that

R,[P,(k,r)]=[/, (k,R; 'r)]=[/, (k,r)][J„]. (4)

These matrices are a representation of the group
(R(k). This is shown by considering the product of any
two elements:

R 8 )=8-)[J-)
R.R,[~.)=R.&[~-)[J-))

= {R.[~.))[J-)
= {[~)[R-))[J-)
= [4~)([«-)[J-)).

If E)——EkR, then

RiB.]=[4'i][L i.]
where

[L ]=L«-]LJ-]
Thus the matrices obey the same multiplication rules

as the elements of (R(k) and so form a representation of
this group.

The row matrix [P,(k,r)] is itself the basis for a
representation of (R(k).

The e-dimensional representation F made up of the
matrices [J„)may itself be irreducible. In general,
however, it will be possible to reduce it to obtain a
number of representations, I', of (R(k) which are ir-
reducible, i.e., it will be possible to find a matrix Q
such that

Q '[J,]Q=diag([Ji "'][Ji "']' ' ' }

for all R; in (R(k); where the matrix [J~, ), which is
an element of the irreducible representation F, may
appear more than once, say c times, in this equation.
Then the direct sum for F is

Equation (4) may be written

R [4.(k, r)]Q= [4i(k, r))QQ '[Ji.)Q
and the matrix [P,(k, r)]Q can be split into several
matrices [P, (k, r)] each containing a number of terms
equal to the dimension of F . Thus for each irreducible
representation one can obtain the relation

R,[0."(k,r))=B "(k,r))[J ."]
for all R; in $,(k). [P, (k,r)] is then a basis for the
representation F .

APPENDIX II

One can develop wave functions about each atomic
nucleus in a crystal. The proper wave function, how-

ever, must be smooth throughout the whole crystal.
Therefore, one must consider the relations between the
individual nuclear wave functions which will cause
this condition to be satisfied. In this appendix it is
shown that this is done if

(a) f~ is continuous with exp(ik S„,)P,
(b) f~" is considered in conjunction with P,~,

where P„ is a wave function developed about a nucleus
at A „,S„,is the vector from the pth to the qth nucleus,
and

[J„"]=exp(ik (8-+;—')S„,}[J„"].
(a) A proper wave. function, developed about an

origin 0, is
P(k, r) =exp(ik r)N(k, r).

Consider different atomic nuclei at the points A ~ each
surrounded by a subcell; r~, is any point on the bound-

ary between the pth and qth subcells; S~,=OA, —OA„
will not, in general, be an allowed lattice translation.
The wave function developed about A „can be written

P~(k, r) =exp[ik (r—OA„)]i~(k, r —OA„).

Within the pth subcell one can define a constant P
such that:

P(k, r) =Pg„(k,r),
i.e.~

N(k, r) =P exp[ —(ik OA„)]a~(k, r —OA~).

V/ithout the loss of generality one can define
P=exp(ik OA„) so that e(k, r) =v„(k,r —OA„) in the
Pth subcell. This imposes the condition that

i,(k,r„,—OA„) = v, (k,r„,—OA, )

and means that P„(k,r) must be continuous with

exp(ik S„)P,(k, r).
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In general there is an arbitrariness in the definition
of I'. It is obvious, however, that the one chosen leads
to the most elegant formulation of the required condi-
tion. If the crystal is monatomic then S„, is a lattice
translation so that

Lattice Harmonics

Lattice harmonics having angular quantum number
of less than or equal to six are given for the full cubic
group (as Von der Lage and Bethe)' and for the close-
packed hexagonal group. They have been normalized
to 4m. To shorten the tables the direction cosines,
x/r, y/r, s/r are replaced by x, y, s; unnormalized func-
tions in the same set are denoted by letters in brackets
(e.g. , in A„(x), (f)=x' —3(p)—/5=x' 3x/5—); and only
one of three triply degenerate functions is given —the
others are obtained by cyclic interchange of coordinates.
For convenience, functions are orthogonalized over a
sphere.

The harmonics which are bases of groups of lower
order are given in terms of those of a convenient higher
order. The actual functions required are readily ob-
tained.

n„(k,r„,—OA„)—= v, (k,r, q OA,—)
and the condition that P„(k,r) be continuous with
exp(ik S„,)P, (k, r) is no longer arbitrary.

(b) Consider R, , an element of the group of opera-
tions allowed about both A~ and A „.when performed
about these points the operator is written „E., and, R;.
If E is the identity operator then:

{,R,—+,)r= {E—+,)S„,

where r is measured from any origin O. This is easily
proved.

Let e.g. , G~ comes from (—',)'[C„(1)+C„(2)].

C„(1)comes from A ~(y) and A~ (y)

C„(2) comes from A „(s) and —Af (s),

G„comes from (-,') '[A ~(y)+A „(s)]

then

,R,r=+, r'+S~q
= „R,r ~R,S~q+S ~q

and

so

{,R, Q, )r=—{E—+,)S„.
and (2)i[Ay (y) —Ar (s)].The expression on the left-hand side leaves the lattice

unchanged, and that on the right-hand side can be
only a translation which must therefore be a sum of
lattice vectors.

If P, (k, r) is a wave function based on 0 then

Thus the actual lattice harmonics which are bases of
the representation G„are

P (3/2) '[y+s]
f~ (175/8)'[y'+s' —3(P)/5]

f (105/8)2[(s2 x2)y (x2 y2)s]

hg (43659/128) l[y'+s' —10(f&)/9 —3 (p)/7]

h2 (3465/128) l[(s4+x4—6s'x') y+ (x4+y4 —6x'y') z]
h, (10395/32) l[(s'—x')y' —(x' —y') z' —(f2)/3].

p, (k, r) =exp(ik r)u, (k, r)
and

+,p, (k, r) =exp(ik +;—'r)u, (k,+,—'r);

therefore

«R,P, (k, r) =exp(ik qR, 'r)u, (k, qR, 'r)

=exp{ik (E „R,—')S„,), Rp, (k, r—).

But it is shown in Appendix I that

Thus

.R [4.(k,r)7=[4 (k, r)]l:,J .]
=[/, (k, r)7 exp{ik (E ~R; ')S~,)[~J„7—; TABLE I. The relationship between the labeling used in this paper

and that due to Bouckaert, Smoluchowski, and signer.therefore

[QJ~ )=exp{ik. (E—nR2 ')Sna)[uJ~ ] D.G,B.B.S.W.D.G.B.B.S,W.

r, z, a
X

I., M
A, T

W
N

A.

p
z, S

G
Z
D

So if a wave function is a basis for the representation
F when centered on the nucleus at A„ it must be a
basis for the representation j. when centered on the
nucleus at 3„where

[J„"]=exp{ik(E—+, ')S„)[J."7.

The SchonQiess notation for the various crystal-
lographic point groups is given to assist anyone who
wishes to consult character tables found in the literature
and the harmonics are listed in the order in which they
would appear according to such tables.

The relationship between the labeling used in this
paper and that due to Bouckaert, Smoluchowski, and
Wigner is given in Table I.
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0,—an O~ group

Cubic Symmetries

8,
8'
Bg
8„
Bf

A, and Ag
A; and A)
(doubly degenerate) A & and A h,

(triply degenerate) A„and Ad
(triply degenerate) Ar and A,

6—a D4g group

C, A, and Ag(1)
Cg A, (x)
C~ Ad(2) and A,
Cg Ag (x)
C& (doubly degenerate)

(1) A'(y)
A. (y)

( )
Ad (s)—A, (s)

Ch, Aq(2) and A~

A,, s 1

g (525/16) l[x4+y4+s' —3/5]
i (693693/32) '*[x'y"'s'+ (g)/22 —1/105)

A, i (15015/32) '[x'(y' —s')+y'(s' —x')
+s4(x2 y2)7

Az (doubly degenerate)
d (5/4) '[2x' —y' —s']

Ad(1) g (735/16) ''[2x4 —y' —s4—6(d)/7]
i (11011/32)l[2x' —y' —s' —15(g)/11—5(d)/7)
d (15/4) l[y' —s')

A z (2) g (2205/16) l[y4 —s4—6 (d) /7]
i (33033/32) i[y' —s' —15 (g)/11 —5 (d)/7]

A z (triply degenerate)
d (15)*'ys

g (2205/4) l[x'ys —(d)/7)
A g (x) ' i g (1486485/128) '[x'ys —6 (g)/11—(d)/21]

i2 (.27027/128) '[y'+s' —10y's'/3)ys
A, (triply degenerate)

Ag(x)
(»5/4) '[y' —s')ys

i (99099/16) '[x'ys (y' —s') —(g)/11)
A~ No representation of order less than nine
A r f (105)~xys
A y, (doubly degenerate)

A I, (1) h (1155/4) '[2x' —y' —s']xys
A L(2) h (3465/4) l[y' —s2)xys

Ar (triply degenerate)

f (1o5/4) '*Ly' —s']*
(1o395/16) I:(y'—s')~—(f)/3]

A „(triply degenerate)

p 3"x

, , f (175/4)'[+ —3(p)/5]
hg (43659/64) '[x' —10(f)/9 —3(p)/7)
hp (3465/64) l[y'+s' —6y's'7x

S—a Td group

C„A„(x)
Cr Ar and A~„(1)
Cr Ar (x)
C„(doubly degenerate)

( )
A„(y)
A~ (y)

(2)
A„(s)
—Af (s)

S—a D3d group

D, A, and (1/3):[A g (x)+Ay (y)+Ay (s)]
D, A; and (1/3) '[A, (x)+A, (y)+A, (s)]
Dz (doubly degenerate)

A g(1)
Dg(1) (1/6)l[2Ag (x)—Ag (y) —Ad (s)7

-(1/2) 'LA, (s) —A. (y)]
Ad(2)

D.(2) (1l2) [A'(y) —A'(s)]
. (1l6) 'I:2A g(x) —A g(y) —A g(s)]

Dr A~ and (1/3)-:[Ar (x)+Af (y)+Ay (s)]
D„Ar and (1/3)-:[A„(x)+A„(y)+A„(s))
D„(doubly degenerate)

A g(1)
D'(1) (1l6) '*L2A. (*)—A.b) —A. (s)]

-(1/2)'*[Af (s) —Af (y)]
A (, (2)

D. (2) (1l2)'*LA.(y) —A.(s)].(1/6)'[2Af (x) —Af (y) —Af (s)]

8—a C4, group

C,, and C„
Eg Cg and Cg
Eg Cg and Cf
Ed. Cg and Cf
E„(d uobly degenerate)

C. (1)"( ) Cd" (2)

~ (2)
Cu(2)

Cdirt

(1)

5—a D2d group

C,, and Cf
Ff Cf and C,

Cg and Cg
P„C„and Cg
F„(doubly degenerate)

C. (1)P,.(1) C"
(2)

Cn (2)~' (2) "C (1)

g—a D,~ group

G, C, and C~
Gg Cg and C,

(1/2)-:[C~-(»—C' (2)]
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(1/2)'[~' (1)+~~"(2)]
Gf Cf and Cg

G~ C„and Cf
(1/2) '[~n (1)+&9 (2)]
(1l2) '[&u (1)—~y(2)]

K—a D2~ group

+8 Cs and Cf'
IIf Cf and Cg
Hg Cd and CI,

II„C~and Cd
(doubly degenerate)

t=. (1)a„.(1) C' (,)
C„(2)H„(2) C"

(2)

g—a C3, group

I, D, and D„
If Df and Dg
I„ (doubly degenerate)

( )
D„(1)
Dd, (1)

I (2)
D„(2)
Dd(2)

I.,
J.y.
I.g

G, and G„
G& and GgI~

Gd andGf
G~" and Gg

BR—a C2, group

M, G, and G„
M„G„and Gg
Mg Gg" and Gf

G„and Gg

X a C2y group

X, F, and F~
X~ F~.(1)
Eg Fd and Ff

~'(2)

X—a C3 group

E. B, and (1/3)l[B (x)—B (y) —B„(s)]
Er B, and (1/3) i[Br(x)—Bf(y) —Bg(s)]
E„ (doubly degenerate)

(1/6) 'L2B.(x)+B.(y)+Bn(s)]
E,(1)& Bg(1)

.(1/2) '*[Br(y)—Br(s)]
'(1/2) '[B.(s) —B.(y)]

E„(2)~B&(2)
-(1l6) *'I 2B/(x)+Br (y)+Bf (s)]

2—a C2, group

8—a C2„group

0, G, and G~
O„G„and Gg

Od Gg and Gf
O„G„"and Gd

6'—an S4 group

I', F, and Ff
P„F„and Fg

(1/2) *'[F'(1)+~F'(2)]
(1l2) '[I"'(2)+ij'n (1)7

g—a C&~ group

Q. M, and M„
Q~ M„and Md

R—a C~h group

R, I., and I„
E„ I.~ and I.d,

S—u C&I, group

5, M, and%~
S„M„and M~

V—a C2 group

T, M, and%~
T~ M~ and M~

5,—a C2 group

U, E, and Ãg
U„ iV~ and lV„

u—a D3g

Cg S

h
~1

Z2

group

(45l4) 'L*'- 1/3]
(35/8) l[3y' —s']s
(11025/64)**[x4 —6(d)/7 —1/5]
(31185/128)**[(3y'—s') sx' —(f)/9]
(693693/256) *'[x'—15 (g)/11 —5 (d) /7 —1/7]
(3003/1024) &[y'—15y's'+ 15y's' —s')

e f (35/8)-'[y'-»']y
(31185/128)*[(y —3s')x y—(f)/9]

i (27027/128) *'[y4+s4—10y's'/3]ys

a, g (315/8) l[y' —3s']xy
i (165165/128) *'[x'y(y' —3s') —3(g)/11]

'U—a C~ group

V, U, and U„

Close-Packed Hexagonal Symmetries
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c—a C3, groupa, p (3)~x

f (175/4)'[x' 3—(P)!5)
g (315/8) &[3y'—s')sx
h (43659/64) '[x'—10(f)/9 3—(p)/7)
i (165165/128) '*[sx'(3y' —s') —3 (g) /11)

a„(doubly degenerate)

P (3)'y
d (15)hays

f (525/8) [x'y —(P)l5)
g~ (2205/4) *'[x'ys —(d)/7)

(»5/4) I
"—y')ys

h (72765/64)l[x'y —2(f)/3 —3(P)/35]
(693/128) [y —10y s +5s ]y

i& (1486485/128) '[x4y' —6(g&)/11—(d)/21)
(99099/16) [x2ys(s —y ) —(g2)/11)

c, a, and a„
af and ag

c~ (doubly degenerate)

( )
a„(1)

( )
a„(2)

ad (1) " ag(2)

d—a C2, group

d, a, and a„(2),
dg a, and ag(1)
d~ a„and aq(2)
d„ag and a~. (1)

e—a C3 group

e, b, and b„"
e„b„and bd,

e„b„and bg
(p

gl
g2

a~ (2) hg

h2

(3)&s

(15/4) 'I:y' —')
(525/ 8) 'Lsx' —(P)/5)
(22o5/16) 'L*'(y' —s') —(d) /7)
(315/ 64) '[y4 —6y's'+ s4]
(72765/64) '[sx' —2 (f)/3 —3 (p)/35]
(693/128) '[—5y4+ 10y2z' —s4]s
(1486485/512)-:[x4(y2 —s~) —6(g,)/11—(d)/21]
(99099/256) '*[x'(y4—6y's'+s4)

h—a C~ group

f aC&~ group—

m, d, and d„
m„d'„and d~

g
—a Cyg group

g, d, and d„
g„d„and dq12

—(g2)/11)

az (doubly degenerate)

d (15)'*xy

f (105)~xys

(2205/S) —:[x'y—3(d)/7)
h, (10395/4) '[x'ys —(f)/3)
h, (3465/4) '[y' —s')xys
i& (297297/64) '*[x'y —10(g)/11—5(d)/21)
i2 (90.09/128) [y4—10y's'+5s4]*y

hs ga and gy.

Particular Lattices

(15)lsx
(105/4) '[y' —s']x
(2205/8) *'[zx'—3 (d)/7)
(10395/16) '[(y' —s') x' —(f)/3)
(3465/64) *'[—y4+ 6y's' —s4]x
(297297/64) '[sx' —10(g)/11

d

g

ad(2)
2

-5(d)/21)
.i 2 (9009/128) '[5y4 —10y's'+s']sx

A one-electron wave function developed about an
atomic nucleus in a crystal has an angular part which
forms a basis for a representation of a symmetry group
fixed by its wave vector and by the rotational sym-
metry about the nucleus. In this section the symmetry
groups corresponding to wave vectors in the first Bril-
louin zone are listed for atomic nuclei in simple cubic,
body-centered cubic, face-centered cubic, and close-
packed hexagonal lattices, and the relationship be-
tween various representations is given for some simple
polyatomic crystals. "Polyatomic, " in this connection,
refers to crystals having more than one nucleus per
unit cell, e.g. , sodium forms a monatomic body-centered
lattice but silicon forms a diatomic face-centered lattice
and must be considered in the same way as zinc blende.

—a C3g group

b, a, and ayb„1v/2[a~ (1) ia„(2))—
b4, 1/v2[a„(2) ia~ (1))—
b„" a„and ag
bd 1/&2[ay(1) —iad(2))
by~ 1/&2[a~(2) —iad (1)]

ag ——a(1,1,0)

a2= a(1,0,1)

a4 ——a(0, 1,1)

bg ——4r/a(1, 1,—1)

b2 ——4rja(1,—1,1)

b4= 7r/a( —1,1,1).

a. dace-Centered Cubic I.attice

The direct lattice vectors, a;, and the reciprocal
lattice vectors, b, , are:
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k

(0,0,0)
/a(1, O,O)

~/2a (1,1,1)
m-/a (n, 0,0)

m./2a(1, 2,0)
m/2a (n,n, n)

3m/4a (O,n, n)
~/a(1, a,n)
~/a(n, 0,1)
m./a (O,n, P)
2r/a (1,n, P)
~/a(n, P,P)

m./2a(1, 2 —a
m/a(n, P,y)

0(n(1
0&n(1
0&n&1
0&n& -',

0&n(2

,n) 0 &n (1

Full
cubic

A
C
D

p
I
L
L

Q
0
R
T
V

Full
tetrahedral

B
H
I
0
P
I
R
R
U
V
V
R
U
V

Thus, the unit lattice cell is a rhombo-dodecahedron
bounded by the planes &x&y= a, &y&s= a, and

TAsrz IIa. Face-centered cubic lattice. The symmetry types for
various points in the reciprocal lattice when the potential has full
cubic symmetry or full tetrahedral symmetry.

&s&x=a, and the first Brillouin zone is a truncated
octahedron —the square faces being the planes k„k„,
k, = +m/a and the hexagonal faces the planes +k,~k„
a k, =3~/2u.

Table IIa gives the symmetry types for various points
in the reciprocal lattice when the potential has full

cubic symmetry or full tetrahedral symmetry.
1. In monatomic face-centered lattices, such as Ca,

Cu, and Pb, the potential has full cubic symmetry and
a wave function belongs to the same representation
about each nucleus in the lattice.

2. The XaCl type lattice is made up of two interpene-
trating face-centered lattices —the Na lattice based on

(0,0,0) and the Cl lattice based on g(1,0,0). Here again
the potential has full cubic symmetry about all nuclei
but at various points in lr space a wave function must
belong to a different representation about each type of
nucleus. (See Appendix II.)

(i) k=x/2a(1, 1,1)
Representation about Xa
Representation about Cl

(ii) k=7l/2a, (1,2,0)
Representation about Xa
Representation about Cl

(iii) k=m. /2a(1, 2 —n, n)
Representation about Xa
Representation about Cl

Dg
Df

D, (1)
Dy (1)

Dd (2)
Dpl(2)

Df
Dg

Pf
Pd

D„
D,

P„(1)
Pp (1)

Ty
T.

Dp (1)
D (1)

D„(2)
D (2)

Pp (2)—Pp (2)

3, Crystals having zinc blende structure are again
built up of two interpenetrating face-centered lattices,
but one, the Zn lattice, is based on (0,0,0) and the other,
the S lattice, on a/2(1, 1,1). The potential about each

nucleus, therefore, has full tetrahedral symmetry.
Once again, at certain points in k space a wave function
must belong to different representations about the two

types of nuclei.

(i) k=n./a(1, 0,0)
Representation about Zn
Representation about S

(ii) k=~/2a(1, 2,0)
Representation about Zn
Representation about S

Hf
Hd

P,
Pp"

Pp
Pyl

H„
H,

Hpl (1)
Hp. (2)

P„.
P,

Hp (2)
H„".(1)

Py
Pp

4. Calcium fluoride is taken as an example of a more
complex crystal. It is made up of three interpenetrating
face-centered lattices, a calcium lattice based on (0,0,0)
and two fluorine lattices, F~" based on a/2(1, 1,1), and
F"' based on a/2(1, 1,—1). The lattice potential, there-

fore, has full cubic symmetry a,bout the calcium nucleus
but only full tetrahedral symmetry about the fluorine
nuclei. Thus a wave function will in general be the basis
for an irreducible representation of diferent groups
about the different nuclei.

(I) k= (o,o,o)
Representation about Ca
Representation about F(')
Representation about F(2)

(ii) k=~/a(1, 0,0)
Representation about Ca
Representation about F

(iii) k=m. /2a(1, 1,1)
Representation about Ca
Representation about F

(iv) k=m. /a(n, o,o)
Representation about Ca
Representation about F

(v) k=~/2a(1, 2,0)
Representation about Ca
Representation about F(')
Representation about F(2)

A;
B;
B;

Ad
Bd
Bd

Ad.
By
Bp

Ag
Bf
Bf

A)
B;
B'

Af
B,
Bs

Aa
Bd
Bd

Afl
Bf
Bf

D,
I,

Dg
If

Dd (1)
I„(1)

D, (2)I (2)
Df
If

Dd (1)
Ip (1)

Dd. (2)
Ip (2)

Eg
Od

+d'
Od

Ed
0,

Z„(1)
(-,'):(O„—Op)

PS
Pyl I

Pyl

Pf
Pp"
Pp

Pd
Ppl

p
ppl
P„

Py (1)
(—')'(P +2P )
(-,') &(P,—gP„)

Pp. (2)
(—', )'(Py —jp,)
(-,')'(P.—P.)

C, Cg Cd Cd Cd" (1) Cd" (2) Cz Cy Cf Cf Cp (1) Cp (2)
Hp Hd Hf Hs Hp (2) Hy (1) Hf Hs Hp Hd Hy (2) Hp (1)
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At all other points in k space there is a simple and
obvious relationship between various representations.

b S.impte Cubic Lattice

The direct lattice vectors a; and the reciprocal lattice
vectors bj are

ai ——a(1,0,0); bi ——2z/a(1, 0,0);
a2 ——a(0, 1,0); b2 ——2~/a(0, 1,0);
a3= a(0,0,1). b3= 2~/a(0, 0,1).

Thus, the unit lattice cell is a cube of side a and the
first Brillouin zone a cube of side 2z/a. Symmetry types
for various points in the reciprocal lattice when the
potential has full cubic or full tetrahedral symmetry
are given in Table IIb.

There are no monatomic simple cubic crystals. The
simplest ones are diatomic, made up of two inter-
penetrating simple cubic lattices of diferent atoms
based on the points (0,0,0) and a/2(1, 1,1), such that
the potential has full cubic symmetry about each nu-
cleus, e.g. , CsCI and CuZn.

{0,0,0)
~/a(f, f, f)
n/a(0, f, f)
n /a(1, 0,0)
w/a(n, 0,0)
x/u(n, 1,1)
n/a(n, a,a)
w/a(0, n, n}
m/a(1, n,n)
m/a(n, 0,1)
7r/a (l,n,p)
x/a(0, n,p)
vr/a(n, p,p)
w/a(a, p, y)

0&n&1
0&n&1
0&n&1
0&n&1
0&n&1
0&n&1
0&n,p&1
0&n,p&1
0&n,p&1
0 &n,p)y &1

Full
cubic

C
C

0
0
R

Full
tetrahedral

B
8
H
P
0
0
I
R
R
U'

V
V
R
V

For values of 11 lying on the boundary of the first
Brillouin zone a wave function must be a basis for a
diferent representation about each type of nucleus.
The relationship between these representations is given.

TABLE IIb. Simple cubic lattice. Symmetry types for various
points in the reciprocal lattice when the potential has full cubic or
full tetrahedral symmetry.

(i) k=w/a(f, f,f)
Representation about Cs
Representation about Cl

(ii) k=n/a(0, 1,1)
Representation about Cs
Representation about Cl

(iii) k=v/a(1, 0,0)
Representation about Cs
Representation about Cl

(iv) k=m/a(n, f, f)
Representation about Cs
Representation about Cl

(v) k= vr/a(f, n,a)
Representation about Cs
Representation about Cl

(vi) k=7r/a(n, 0,1}
Representation about Cs
Representation about Cl

(vii) k=n/a(f, n, p)
Representation about Cs
Representation about Cl

A;
Ai

Ad
A„

Ag
Ay.

Ag
A;

A)
A,

Ag.
Ag

A„
Ad

C. Cd Cd' Cd Cd'r (1) Cd" (2) Cr, C~ Cr' CI C„(1) C„(2)
Cd Cd' Cd C. Cd" (2) Cd (1) Cd Cj ~ C„Ca C~ (2) C~ (1)

jVd,

L, Ld
L„

N,
N„

C, Cd Cd Cd Cd (1) Cd" (2) Cg C„Cd Cy C~ (1) C„(2)
C~ Cr, Cy Cy~ C„~ (2) C„(1) Cd C, Cd Cd Cd" (2) Cd" (1)

c. Body-Cerltered Cubic Lattice

The lattice vectors are:

ai=a(1,1,—1)

a2= a(1,—1,1)

a8 ——a(—1,1,1)

bi = z./a (1,1,0)

b2= vr/a(1, 0,1)

b3 ——n./a(0, 1,1).

The unit lattice cell is a truncated octahedron bounded

by the planes x, y, z=&a and &x&y&z=3a/2. The
first Brillouin zone is a rhombo dodecahedron bounded

by the planes &k &k„=z/a; &k„&k,=z/a and
&k,&k,=z/a. Symmetry types are listed in Table IIc.

The commonest lattices are monatomic, e.g., Na, Cs,
Sa. In these a wave function must belong to the same
reoresentation throughout the crystal.

(0,0,0)
~/u(1, 0,0)

~/2c(1, 1,1)
~/a(a, 0,0) 0&a&1

m./2a (0,1,1)
m/2a(n, a,a) 0&a&1
m/2a(2 —n, n,a) 0&n&f
~/2a(0, n, 2) 0&n&1
x/a(0, 1—n,n) 0&n &-',

n/2a(a, f,f) 0&n&1
m /a2( 2nP, P) 0 &n &—P &1
~/2a(o, a,P) 0&n,P &1
~/2a(n, p,p) 0&n &p &1
m./2u (n,p,n)

Full
cubic

A
A
8
G
I
E'
L
M
0
S
0
R
V

FU11
tetrahedral

8

0
0
I
R
S
0
S
V
R
V

TABLE IIc. Body-centered cubic lattice. The symmetry types
for various points in the reciprocal lattice when the potential has
full cubic symmetry or full tetrahedral symmetry.



320 DOROTHY G. BELL

d. Close-Packed Hexagonal Lattice

The lattice vectors are

ai ——(c,0,0) bi ——2a./c(1,0,0)
a,= (O,a,O) bs ——2a-/a(0, 1,—1/V3)

as= (O,a/2, %3a/2) bs= 2a/a(0, 0,2/~3.
The unit lattice cell is an hexagonal prism bounded

by the planes x= &c/2; y =&a/2; y+V3z =&a/2; and
V3y+z=+a/2. The first Brillouin zone is also an
hexagonal prism having as its faces the planes k,= +a./c;
k, = +2m/a&3; k„+v3k, = +4rr/a@3; and %3k„+k,
= a47r/avS.

All close-packed hexagonal lattices are diatomic
made up of two interpenetrating lattices based on
(0,0,0) and (c/2, 0,a/~3. The symmetry types for
various points in the reciprocal lattice are given in
Table IId.

(0,0,0)
s (1/c,0,0)

2s (1/2c, 2/3o, 0)
2s (n, 0,0) 0 (n &c/2
2s.(1/2c,o,y) 0 &y & 1/ov3'
2s (a,2/3a, 0) 0&a&c/2
2~(1/2c, P,~) 0&P&2/3a

) 0&y& 1/AS
2s (n,0,y) 0&a &c/2

0&y& 1/aA
2s (n,p,y)

Symmetry ty pe

At a number of points on the boundary of the first
Brillouin zone the wave function must be a basis for
different representations about each nucleus. The rela-
tionship between representations at such points is given.

TABLE IId. Close-packed hexagonal lattice. The symmetry types
for various points in the reciprocal lattice.

k= s.(1/c,0,0)
Representation about (1)
Representation about (2)

k=2s.(1/2c, 2/3o, 0)
Representation about (1)
Representation about (2)

k =2s.(1/2c,0,1/w8)
Representation about (1)
Representation about (2)

k= 2s (u, 2/3o, 0)
Representation about (1)
Representation about (2)

k= 2s.(1/2c, P,O)

Representation about (1)
Representation about (2)

e,
e„

bf,

e„
e,

o„.(2)
as (2)

b„.r
baal

bg
b,

e„
e„

ad (2)
a,.(2)

bg
b~
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