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A study is made of the convergence of the Born expansions in collision problems involving a static central
potential. The scattering of each partial wave, characterized by the phase shift q&, is treated separately.
Estimates of the radii of convergence of tanql and of Sl=—e~'"i (as well as of the corresponding wave func-
tions) are established, and the truncation errors due to breaking off the Born expansions are investigated.
An appendix deals with the expansion of ql itself.
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( d' l (l+1)
+k iA(r)=) V(r)ll, (r)

&dr' r'
(1.2)

corresponding to angular momentum /, and the boun-
dary conditions

lt'i(o) =0 (1.3)

(1) In a given physical problem, does the series
converge?

(2) If the series converges but is broken off after a
finite number of terms, how large an error is introduced?

Recently the general nature of Born expansions has
been clarified by Jost and Pais' for the case of a non-
relativistic particle scattered by a static potential.
However, these authors did not investigate in any de-
tail the actual magnitude of the radius of convergence,
or the truncation error.

In the present paper we shall deal with the particu-
largely simple case of static central potentials, V(r),
which are sectionally continuous, have at most an r '
singularity at the origin, and are short range in the
sense that for some positive e

lim r'+'V (r) =0.'
'phoo

For such central potentials the three-dimensional
Schroedinger equation can be separated, leading to the
radial equations

1. INTRODUCTION

In this very simple situation it is, of course, not neces-
sary to resort to a power series expansion since the solu-
tion can be obtained for any value of A by numerical
integration. Nevertheless, it has seemed to us worth

1
~~NE of the most widely used techniques of quantum while to investigate the convergence of the Born ex-

mechanical collision theory is the develoPment of pansions, in order to have at least some reliable results
the wave function as a Power series in a Parameter 3, which may serve as guide for more complicated prob-
which measures the strength of the interaction. This lems Accordingly, we shall in the present paper derive
series, when broken off after the eth power of A. , is estimates of the radii of convergence of the Born ex-
generally called the nth Born aPProximation. ' Evi- pansions of the solutions of (1.2), as well as of the error
dently there are two questions of importance: due to breaking oG these expansions after a finite num-

*Most of the results .of the present paper have been brieRy
reported in Phys. Rev. 87, 539 (1952). This research was sup-
ported in part by the O.O.R. s R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

f Present address: Carnegie Institute of Technology, Pitts- 3 Some of our discussions will require further restrictions on
burgh 13, Pennsylvania. V(r). On the other hand, in several places, it will be permissible

M. Born, Z. Physik 38, 803 (1926). to include the limiting case of 8-function-like potentials.
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CONVERGENCE OF BORN EXPANSIONS 293

Before proceeding further we must first complete the
definition of P& by specifying its behavior for large r.
When dealing with a single angular momentum one
customary choice is

l~~ ( loryr~~:Pi(r)~sin( kr —~+tangicos~ kr —
~, (1.4)

2) 2)'
where qE is the so-called phase shift entering the well-
known expression for the scattering cross section. 4 The
expansion of this function —and in particular of tang~-
is studied in Part I, Secs. 2—9. The estimates of the
radius of convergence P, are collected in Sec. 8, and the
truncation error is treated in Sec. 9.

Another behavior at in6nity is also of interest.
Frequently the total three-dimensional wave function,
which satisfies the Schroedinger equation

(q'+k')e(r) =liV(r)e(r), (1.5)

is expanded as a power series in X. This is accomplished
by iterating the integral equation

~
&'I l»—~'I

4(r) =e'"'+—, —V(r')4'(r')dr', (1.6)
4s ~ /r —r'f

where k represents the wave vector of the incident
particle. It would be very desirable to obtain informa-
tion about the Born expansion of this three-dimensional
function. This will not be attempted in the present
paper. We shall, however, in Secs. 10—12, discuss briefly
the Born expansions of each partial wave of which 0' is
composed. This leads to a study of the radial functions
io&(r), which satisfy (1.2) and (1.3) but have the follow-

ing behavior for large r:

lim e'is" '~1"ifi P k r) = 1. (2 1)

This is an entire function of ), because it is defined by
initial conditions independent of X (see reference 2, III).
Calling

(2l—1)!!—= 1

=1 3 5 (2l—1), l)0
we now define

(kr) '

fi(h; k) =lim —— fi(lI. ; k,r),~0 (2l l) ft

(2.2)

(2.3)

which is a finite and, in general, nonvanishing complex
number; for near r=0 there are two independent solu-
tions of (1.2) behaving like r'+' and r ', respectively.
Clearly il(r) is given by the following linear combina-
tion t see (1.3), (1.4), and (2.1)]:

P(r) = $f(X; —k)f(X; k,r)
f(~; k) yf(~; —k)

—f(X; k)y(X; —k,r)]. (2.4)

Comparison with (1.3) shows that

3IIeromorphic Character of P and tang

Following reference 2 we show first that the function
f(r), defined by (1.2), (1.3), and (1.4), is a meromorphic
function of X, whose power series development is the
Born expansion. Let fi(X; k,r) be that solution of (1.2)
which satisfies the initial condition

( kri
r—+~: pi(r) —+sin~ kr

2)
f(X; k) —f(li; —k)

i tang=
f(X k)+f(li' —k)

(2.5)

Si—1 t' lsr)
+ exp i~ kr ——~, (1.7)

where Si(=—expL2igi]) is the scattering matrix element
corresponding to the angular momentum /. Estimater
of the radius of convergence, X.', of y~—and in particules
of S~—are summarized at the end of Sec. 11, and the
truncation error is discussed in Sec. 12.

The Appendix contains a brief discussion of the Born
expansion of q~ itself, which gives the best results at
high energies.

Some general comments on Born expansions will be
found in Sec. 13.

PART L BORN EXPANSION OF Qi AND OF TANni

2. General Properties

In most of the following considerations we shall deal
with one value of / at a time and will therefore fre-
quently omit the subscript l.

4 N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Clsrendon Press, Oxford, 1949), second edition, p. 24.

Equations (2.4) and (2.5) exhibit the meromorphic
character of P(r) and tang. Their common singularities
are located at those points ), at which

f(X, ; k)+f(X.; —k) =0. (2.6)

Ietegra/ Equation

The differential equation (1.2) and the boundary
conditions (1.3), (1.4) can be combined into an integral
equation.

We define two solutions of the "free" equation (1.2)
(i.e., with X=O) as follows:

ssi(r) = (kr)j, (kr),

.,(r) = (kr)n, (kr),

(2.8)

(2 9)

The Born expansions of f(r) and tang converge for

(2.7)

where P, is the magnitude of that singularity P 0 which
is located nearest the origin.
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where the so-called spherical Bessel functions j& and one obtains
nz are

(2.10) l
x(r) l'V(r)dr

(2.20)

(2.11) dr dr'x*(r) V(r)G(r, r') V(r')x(r')

N~ and v~ have the following properties:

(kr)'+'

r +~: ut (—r)~sin(kr —lzr/2);

(2l—1)!!
(kr)'

(2.12)

n&(r) —+—cos(kr —izr/2). (2.13)

Next we define the Green's function,

Gt(r, r') = (2.14)

pt (r) =ut (r)+X G (r tr') V(r')P (r't) dr'. (2.15)
dp

If in this equation we let r +~ and compare —with (1.4)
we find

Equations (1.2)—(1.4) are then clearly equivalent to the
integral equation

V(r) =Ao(r a)+BR—(r b). — (2.21)

In this case (2.19) leads to a quadratic secular equation
for P, which can be explicitly solved. One finds that for
certain ranges of A, 8, a, b, and k the solutions are real,
while for others they are complex.

At vanishing energy, however, the ), are real regard-
less of possible sign changes of V(r). This is most simply
seen by multiplying the appropriate Schroedinger
equation

t
d& l(l+1)y

&dr' r' i
(2.22)

by x~(r) and integrating from zero to infinity. Since

x(o) =0,

If U(r) does not change sign, the numerator is real
and not zero, and since G*(r,r') =G(r', r), the denomi-
nator is real. Hence all singularities X, are real.

If however U(r) does change sign, both integrals in

(2.20) may vanish, leaving open the possibility of a
complex X,. That this is, in fact, not unusual can be
verified by using as an example

tanzt t
———— u~ (r) V (r)Pt (r)dr.

k~p
(2.16) (2l—1)!!~,r~~: x(r)~—

(2.23)

The Born expansion of P~(r) arises from iteration of
(2.15), that of tanztt by substituting this series in (2.16). we obtain after an integration by parts

Position of the Singzdarities in the Complex X Plane

At a A., at which tang~ becomes infinite, the wave
function

~lp

dx ' l(l+1)—+— lxl' «
dr

(2.24)

kz

x((r) =—[f((&,; k,r)+fE(&„—k,r)]
2

(2.17)
l x l

'V(r)dr

Both numerator and denominator are real, and since
satisfies (1.2) and (1.3) [see (2.1) and (2.3)] and has the former is not zero, it follows that X, must be real.
the asymptotic behavior

+~ ~ Xl (r)~ k'0i (r). —(2.18)

x(r) =X, I G(r,r') V(r')x(r')dr'.
0

(2.19)

Multiplying by V(r)X*(r) and integrating from 0 to 00

It is, therefore, a solution of the following homogeneous
equation: ) p. singularity of smallest absolute value,

lI, ,= l4l: radius of convergence,

X,&P, : upper bound of radius of convergence,

A.~.&X,: lower bound of radius of convergence. .
(3 1)

3. Lower and. Upper Bounds for the Radius of Con-
vergence in the Limit of Vanishing Energy

I

Ke adopt the following notation:
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Ke consider first the ease of vanishing energy. If we
call

TABLE II. Various potentials, l=0.

and

(21+1)!!
&P

"& (r) =lim P(r),
A;~p pl+1

1 r'+'
G«&(r, r') =—,r&r'

23+1 r"

(3.2)
Square well

V(r) = —1,
0, r&1

2.00
2.46
2.50

Yukawa
V(r) =e r/r

1.00
1.68
2.00

Exponential
V(r) =e-r

1.00
1.45
1.60

j. r"+'
r&r'

2l+1 r

the integral Eq. (2.15) becomes

(3.3)
The result (3.9) which was derived by means of the

seemingly very crude inequality (3.5) is nevertheless
the greatest lower bound of the form A/ J'o"rl U(r)

I
dr

which is valid for all potentials. For with the particular
potential

V(r) =S(r a)—
~ "(")="'+'+ ' "( ' ') ( ')~"'( ') '

( ' ) (3.4) leads to the series
dp

(3.10)

Ioner BolrId

Clearly, for all r and r'
1 r'+'

IG"'(r,r')
I
&

2l+1 r"

Hence the series expansion of (3.4),

&P "(r)= r'"'+J G"'(r,r') V (r') (r')'+'dr'
Jp

'Aa ( Xu q'
&p«& (g) = g'+&+ -g'+&+

I

—
I

g'+&+ (3 11)
2l+1 !2l+1)

whose radius of convergence coincides with the lower
(3 5) bound given by (3.9).

In Tables I and II, X~, is compared to X for several l
values in the case of a square-well potential and for
l=o for three common potential shapes. It will be
noted that for large l, X~, is of a lower order of magni-
tude than X. and hence not a very useful estimate. A
more practical estimate for high l is derived in Sec. 7.

f
G «& (r', r")V (r") (r")'+'dr "+

Upper Bour&ds

When the potential does not change sign, upper
bounds for ), are readily obtained. In this case the
singularities are the real eigenvalues of the homogeneous
equation

is dominated by the series
&P

«& (r) = J G"'(r&r')U(r')1t «&(r')dr' (3.12).
5(r)= r'+' 1+ — rl V(r) Idr

2l+1 ~ o

It is then well known that the expression

&
IJI r"

+I ~ «(r)ldr I+
(@+1&, )

6
p

&tr'(r) V (r)dr

(3.13)

which converges, provided that
p "o

f (r) V (r)G «& (r,r') V (r') &tr(r') dr dr'

Hence

Il I ~" rl v(r) I«&»+1.
p

J i.= (21+1) rl V(r) Idr.

TABLE I. Square well, various l.
V(rl= —1, r(1=0, r)1.

(3.8) represents an upper bound of the magnitude of the
numerically smallest eigenvalue, i.e., of the radius of
convergence, for an arbitrary function &p(r). '

(3 9) A very simple, though crude, choice of &P (r) is the
"free" solution r'+', which gives

0 1 2

Z&, ——4t+2 2.00 6.00 10.00
2.46 9.87 20.16

P .= i~ (2l+1)(2l+5)' 2.50 10.50 22.50

3 Large

14.00 4l
33.22 ~l2
38.50

2l+1

dr r~'+2U(r) I dr'r'U(r')
Jp

(3.14)

' See (3.1) for definitions of ) te, ge, and g«.
5 This may be veri6ed by expanding P in a series of eigenfunc-

tions of (3.12).
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V(») =0, »)a. (4.1)

We denote by Xo(E) the singularity of smallest absolute
value corresponding to energy E=k' and begin by
calculating (&o/dE)x o. Let P(»; E) be that solution
of the Schroedinger equation

! d' /(/+1)
+E 1y(»; E) =l«&(E) V(»)y(», E) (4.2)

«d»' »' )
which vanishes at r =0 and for r &a has the form

As Table I shows, this expression gives good estimates
of X, for reasonably small /. Table II contains a compari-
son of X„, and ), for three common potential shapes,
all for /=0.

4. Behavior of the Radius of Convergence at
Low Energies

It is of interest to know how ), changes when the
energy changes from zero to small positive values.

We consider first the simplest case of a cut-oG
potential

This equation holds identically in b. We now let b—+~
and write P(»; 0) =f(—»). This gives for /=0

(d!&o(E)y/=0:
dE

pb
lim /& )

—P (»)d»
0

V (»)P'(»)d»

(8( )-P(»)}d»

V(r)P(»)d»

, (4 8)

P (»)d»
)da, (E)q

dE
V (»)P (»)d»

(4.9)

where we have used the fact that, by (4.4), f(~)=1.
For /&0, one finds, as b—+~,

(k»)N&(k»), ») a,
(2/ —1)!!

(4.3)4(»,E)=—
Equations (4.8) and (4.9) hold not only for cut-off

potentials but also under the weaker assumption that
where 2/ —1 !!is defined in 2.2 . The factor in front
is chosen so that, for small E,

1 E 1
4(»E)=-+ — +."

r' 4/ —2r' '

For E=O, (4.2) becomes

(4 4)

»'1v(»)1d»& ~.

The proof will now be outlined. , We call

F(X;E)—=f(l&; /&)+ f/, ; —0),

(4.10)

(4.11)

) d' /(/+1) q
14(;0) =l&o(0) V( )4(; 0). (45)

& d»' »' ]
so that Xo(E) satisfies the equation

F(l&o(E); E) =0. (4.12)

We now multiply (4.2) by P(r;0), (4.5) by P(»; E),
subtract, and integrate from 0 to b, where b)a. This
gives

- b

P (»; 0)—i&/ (»; E) P(»; E)~(»; 0)—
dr dr -o

+E P(»; 0)&I (»; E)d»= [ho(E)—l&o(0)]

~b
X V(»)P(»; 0)&&/(»; E)d». (4.6)

V& '(»)= V(»), »&a
(4.14)

Under the assumption (4.10), BF/BE exists for all E
including E=O, as may be verified from the expansion
of F in powers of X (cf. (5.4) below, for /=0). Further,
as F is an entire function of l&. (cf. reference 2), &&F/&!X

exists everywhere. Hence by (4.12)

/
az, (E) ~ paF/aE~

(4.13)
BE ) x=o & &&F/BX) ~=o,& =&o&o&

One now considers the family of cut-o8 potentials

0When this equation is divided by E and the limit E~
is taken, one obtains, by (4.4),

(2/+1) b" '

to each of which (4.8) and (4.9) apply and can show

b without difficulty that as a~~, f& &//~1, BF&'/BE~
P(»; 0)d» BF/BE, and BF& &/H, ~OF/H. , so that (4.8) and (4.10)

hold also for a V(») satisfying (4.10).
What we are really interested in is the rate of change

(d!&o E
V(»y~(». 0)d» (47) of 3,=1l&o1 with energy. We consider first the simpler

dE ) z o Jo case of /)0. By (2.24), the expression (4.9) can be
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rewritten as

P(r)dr
]dip(E) y "o

=—x, (0)
dE ) E p t" t'dip' l(1+1)

P dr
t.dr ) r'4p

(4.15)

we have here used the fact that since 7I,p is real, p(r),
which is real for r—+~, must be real everywhere. Thus
we see that the absolute value of Xp, i.e. X„decreases
with increasing energy, so that we may write

24 '

22 ~

20

18

l4

cl 2

IO

V(r)= -1, r ~ I

0, r~l

k/IJ V(r)dr/
0

(dl~, (E))
s&0:

& dE )g=p

si) p

P(r) dr
Jp

V (r)P(r)dr

(4.16)

6-- —————Q (k=o)/
/ gc

—t ——X„(all k)

/
/

/
I I

0 4 5 6 .7 8

Fxo. 2. Radius of convergence, X„ for the square well, l =2.

Illustrations of this behavior are shown in Figs. 1 and 2. For /=0, we find, by using (2.24) as before,

22

20

18

l 14

~u„(E)~
f,=o:

dE )ii,
j {P(~) P(r))«—

V(r)P(r)dr

(4. l8)

C

12

IO

If V(r) does not change sign, then by (2.24),

Xp(0) V(r) &0,

so that by (2.22) (with /=0), lf(r) l
is a non-

decreasing function of r and P(~)&P(r). Under these

2- g ————Lower bound, gz
/

0 l 2 5 4 5 6 7 8
k ~

Fro. 1. Radius of convergence, X„ for the square well, 1=1.
Note the initial decrease of ) ..

ka l+-,', (4.17)

where a is some "range" of the potential. This picture is
t=onfirmed by Figs. j. and 2.

The fact that, for /&0, X, decreases as the energy
increases from zero is perhaps at 6rst sight surprising.
It may, however, be qualitatively understood as follows:
At very low energies the centrifugal barrier keeps the
particle away from the scattering potential, making
it thus effectively weak. As the energy is raised, the
particle penetrates further into the region of the poten-
tial, which thus becomes electively stronger, so that
X, decreases. This decrease will continue until inter-
ference effects resulting from oscillations of P inside the
potential become important, i.e., until

R6-
V(r) = - I, r +!

0, r&l24-

22

20

18

ls

c14

I,= iik/]JV(r)dr 1
0

12-

10- g», (k=o)

(all k)
/

2- /
/

0 I

I I I I I I

2 5 4 5 6 7
k

Fzo. 3. Radius of convergence, X„ for the square well, /=0.
For k(2.3 the singularity of smallest absolute value is positive
(attractive potential), for k&2.3, negative. Thus the portions l
and lI represent the absolute values of two different singularities.
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circumstances (dX,/dE)E=o) 0, which is the intuitively
expected result. However, if V(r) changes sign, the
numerator of (4.18) may well become negative, so that
(dpi, /dE)E p&0. This may be verified by using a suit-
able 8-function potential of the type (2.21).

S. Asymptotic Behavior of the Radius of
Convergence at High Energies

In the limit of high energies regular potentials and
those with an r ' singularity near the origin require
separate treatment.

uniformly in the domain

where M is an arbitrary positive number.
We note further that, by (5.5),

-W- n

lim z„(k,0) =——
e! 2i

W—= ~ V (r)dr.
0

(5.7)

(5 8)

(5.9)

pl

f
V(r) fdr& ~. (5.1)

We exclude from the start those exceptional cases for
which fg"V (r) dr vanishes.

By (2.6) and (3.1), Xo(k) is defined as the root of

f(), ; k)+ fg&, ;
—k) =0

which has the smallest absolute value. We are therefore
led to a study of f (l&, ; k) for large k.

It can be directly verified that the function f(li; k, r)
Lsee (2.1)] is defined by the integral equation

(X$
f(g k,r) = e 'o"+

f

—
f

dr' sink(r' —r)
&k) J„

X V(r') f(li; k, r') (5.3).

Regular Poteekals

Ke shall discuss in detail only the 5 scattering by a
"regular" potential, satisfying the additional condition

Let us now assume that when k exceeds a sufficiently
large ki, Xp satisfies the inequality (5.7) for some 3II.
It then follows from (5.8) and the uniform convergence
of (5.4) that

lim Lf(X, (k),k) —e"'(~&~&"oj=0. (5.10)

Adding to this its complex conjugate and recalling that
l&,p(k) satisfies (5.2), we obtain

Hence,

lip(k) W
lcm cos —=0.

2k
(5.11)

k—+~: l&,.(k) = irk

where
0

V (r)dr +o(k), (5.12)

lim o(k)/k=0.

It will be noted that (5.11) is consistent with the as-
sumption following (5.9).

A rigorous proof of this assumption may be given as
follows: Consider only real positive A. such that

When this is iterated, one obtains the series

(5.4)
V(r)dr

0

~ k. (5.13)

where

zo(k, r) =e '""

z (k,r) = dr' sink(r —r') V(r') dr"

X ~l
dr&"& sink(ri"& —r(" '&)

r (n—S)

X V(r(»)e i&r("& ~)0. (5.5)
Clearly,

(k 0) f
& dr'

f
V (r')

f

dr"
f
V(r")

f

0 r'

00 00

X " «'"'
I
V(r'"')

f

=— «'I V(r')
I (5.6)

„{n—y)
& J,

It can then be shown directly, by virtue of (5.6) and
(5.8), that when k exceeds a su%ciently large ki,

XW
f(X; k)+ f(X; —k) = cos +R(l&. ; k), (5.14)

2k

where R is real and
f

E
f

&-,'. It follows that for every
k)ki, (5.2) has a real positive solution X, satisfying
(5.13). A fortiori, since by its definition
fr&, p f

also satisfies (5.13), which is of the required
form (5.7).

The discussion of l&0 is analogous and leads to the
same result (5.12).

Illustrations of (5.12) can be seen in Figs. 1—3.

SiegNlar Pote~ti als

We shall now consider potential shapes for which

Thus the series (5.4) for f(X; k) = f(X; k,0) converges lim r V (r) = 1.
r-+9

(5.15)



CONVERGENCE OF BORN EXPANSIONS 299

For such phtgntials it can be shown that, for l=0, smoothly at r = a is evidently

1 ~logku)"
»m .„(k,o) ~!l 2i )

(5.16)
X,

lim
) q$ ——log2ka+ —+ri,n.

~
=0,

2 ) (5.22)

where a is some "range" of the potential. ' This corre-
sponds to (5.8), when one bears in mind that the range
0&r &k ' does not contribute significantly to the
expression (5.5) for s„.

One can then show, exactly as in the case of regular
potentials, that

where e, is some integer depending on s, provided only
that

lim X,./2k =0.
lt;~co

We see that the smallest X, corresponds to either e,=0
or e,= —1, so that

irk
l

k
k—&~: lt, (k) = +oi

logka & logka)
(5.17) vrP

lim
)
—log2ka ——

~

=0""(2k 2&
(5.23)

Two features of this result are worth noting: X, in-
creases less rapidly with energy than for regular poten-
tials )see (5.8) ), a fact which is intuitively plausible.
Further, we see that at high energies X, is governed by
the singularity at the origin and independent of the
other details of the potential shape, since, for k—+~,
(5.17) becomes independent of the range a.'

The results (5.16) and (5.17) also hold for l) 0.
Instead of giving in detail the rather tedious proof of

(5.16), we shall discuss two examples.
We consider first the Schroedinger equation corre-

sponding to a cut-oG Coulomb potential,

~
—r/a

V(r) =-
a y —e

—"~~
(5.24)

which has an r ' singularity at the origin. For this
potential and l=0, f(X; k) is explicitly known, '

lpga

~(~;k)=II I
1+

m(N+2ika))
(5.25)

in agreement with (5.17).
Another example which can easily be worked out is

the Hulthen potential

( d' l()+1) ) 1
+k' ~4i(r) =~+i(r)

&dr' r' ) r
and, by (2.5), Xe is the numerically smallest value for

(5 18)
which

=0
7

=const ni(r).
(5.19)r) a.~

At the (real) X,, (k) where tangi ——~, the solution of
(5.18) has the form

~ X.(k)
P ( )=r'+'e'""F~ i +k+1, 21+2, kr ~, r&a

k

arg f(l; k) = (2ti+1)—.
2

(5.26)

Elementary considerations of the logarithm of (5.25)
lead again to the result (5.17).

The behavior of X, at high energies for the Hulthen
potential is shown in Fig. 4.

Now, provided that lt, (k)/k remains bounded and r
remains fixed, then as k~~,

6-
~(&) =

( ~-r

hr
Pi(r) —const sin

~
kr +q i lo—g2—kr ~,

—r &—a
2 2k )
Arp—&const cos( kr 2)'

where

(
v =»gl'( i+1+i—(.

(5.20)

(5.21)

The condition that the two expressions (5.18) join

' Since lim logkaq/logko2=1, for arbitrary o& and uz, Eq. (5.16)

is independent of the exact choice of a.' See reference 3, p. 53.

l I

2

FIG. 4. Radius of convergence, P., for the Hulthen potential, /=0.
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6. Lower and Upper Bounds of the Radius of
Convergence Valid. at A11 Energies

TABLE BI.Lower hound of X. valid at all energies.
X', =ti/jo"r~ V(r) ~dr .

Louver Bolted 0 1 2 3 Large

In the preceding three sections we have derived
estimates of ), in the limit of low and high energies.
We shall now establish, for each /, a lower bound of
), valid at all energies.

The discussion is very similar to that of Sec. 3. We
iterate the integral equation (1.5), which gives the series

Pt(r) =ut(r)+X
J

dr Gt(r, r )V(r )ut(r )
0

+X2 dr'Gt(r, r') V(r')

&& dr"Gt(r', r")V(r")ut(r")+

ut(r) p" Gt(r, r') ut(r')
=(kr)l +X ' dr' r'V(r')

(kr)-'* "o (rr')l (kr')l

Gt(r, r')
+X' dr' r'V (r') dr"

(t'Y)' (kr")-:

1.000 2.344 3.339 4.198 1.036{2/+1)~

Bessel functions' and are listed in Table III for the
first few values of t. To obtain the last entry in this
table the asymptotic form of the Bessel functions was
used. This lower bound is indicated in Figs. 1—4.

(For 0(l&9, IGt(r, r')/(rr') 'I attains its largest value
for r=r' In tha. tcaseit can be shown as in Sec. 3 [see
Eqs. (3.10) and (3.11)]that the estimates of Table III
are the best estimates of the form A/ fp rI VIdr. How-
ever, for 1& 10, IGt(r, r')/(rr'):I attains its largest value
for r/r'. In this case the lower bounds of Table III
are no longer attained with the 8-function potential
(3.10) and we do not know. whether or not they are
attained with any potential. However, (6.5) evidently
cannot be improved above the X, of the 5-function
potential (3.10) and the latter lies never more than
11.2 percent above (6.5). [For (3.10), as the energy
varies from 0 to ~, the smallest X. has the following
asymptotic behavior: lim X,/1. 157(21+1)l= 1.]

Upper Bounds

For potentials of Axed sign, an upper bound can be
obtained as at the end of Sec. 3:

mt= Iut(r)/(kr)-: (6.2)

Now for every 1, Iut(r)/(kr)lI and IGt(r, r')/(rr')*'I
are bounded for all r, r', and k [see Eqs. (2.8)—(2.11)
and (2.14)].Let us call

P(r) V(r)dr

P(r) V(r)G(r, r') V(r')P(r')drdr'
0 0

(6.6)

-=—IGt(~,r')/(«')'I-*

Then clearly the series (6.1) is dominated by

(6.3) P(r) V (r)dr
k 0

2 f
dr/(r)ut(r) V(r)

"0
dr'P(r')nt(r') V(r')

(kr)lmt 1+
rl «r) I«

J0 where P(r) is an arbitrary function. Unfortunately this
is a rather complicated expression and hence not very
useful.

F00 2

~0
rI v(r) Idr

+ (6.4)

so that the following is a lower bound of X, :

rI v(r) Idr.

7. The Radius of Convergence at Arbitrary Fixed
Energy in the Limit of Large l

So far we have derived various estimates for the
radius. of convergence for any given l. However, most
of these [(3.9), (3.14), (5.12), (5.17); see also Table I],
if applied to scattering at a given energy, become in-
creasingly poor as l becomes large. It is therefore for-
tunate that the foregoing estimates can be supple-

Tables of SPherica/ Besse/ PN&zctioms (Columbia University
The constants t~ can be found from tables of spherical Press, New York, 1947).
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mented by an asymptotic expression for 3, which holds
for any given E in the limit as l—+~.

We restrict ourselves in the present section to l&1.
First we consider the case of E=O, in which )p is

real (see Sec. 2). The wave function corresponding to
Xp has the following behavior at 0 and (x):

»~0: f (»)»'+'

»~~: f(»)» '

(7.1)

(7 2)

Thus Xp is the numerically smallest value of P for which
a square integrable wave function with binding energy
zero exists.

It is convenient to write the wave equation as

= U(»)4 (»),

Fro. 5. Schematic diagram of Uo(r) aud f(») (Eqs. (7.9), (7.1),
(7.2)) for a large value of l Near . ro, Up(r) resembles a parabola
and P(r) an oscillator ground-state wave function.

When this is combined with (7.4), one obtains the de-
sired result ('7.6).

We can now easily obtain a refinement of (7.6). Let

r2

l (l+1)
U(») = +)tV(»).

r

(7.3) l(l+1)
Up(»)=- +)tp(E) V(»),

r2
(7.9)

Clearly, since the logarithmic derivative of f(r) changes
sign between»=0 and»= eo, U(») must be negative
for some». Now by (1.1) the quantity I»'V(»)

I
has a

6nite maximum value, and hence X, must satisfy the
inequality

U', (») 1 f' »'V(») y

'~" l(l+1)»' E» 'V(»s))
(7.10)

where ) s(l) is. the smallest singularity corresponding to
angular momentum /. Then by (7.6)

while for any finite l
7.4 Uo(»o)

&0
l(1+1)

(7.11)
This is rigorously correct for all l.

To avoid uninteresting complications, let us now
assume that I»'V(»)

I
reaches its maximum value at

only one point, say»s, and let us choose the sign of V(»)
such that V(»,) &0 Lthe sign of V (») does not, of course,
affect )t,5. If we call

~—=~(t+1)/I "V(») I--, (7 5)

(see Fig. 5). Thus as i~re, the neighborhood of »s in

which Us(»)&0, say»t(l)&»&»s(l), shrinks to zero.
Since P(») increases with» for»&»t(l) and decreases for
»)»s(l), it is now clear that Xs is the smallest )t which

can "trap" the particle with zero binding energy near
»s. We therefore write (7.3), in the vicinity of »s, as

we shall next show that
= f Us (»o)+ Uo'(»s) (»—»s)

df
(7.6) + s Uo"(«) (»—»e)')4 (7 12)

Consider (7.3) with

)t =h.(1+e), e)0,

1 p»'V(») q
U(»)=l(f+1) -I 1—

»' 0»s'V (»p) l»s'V(»s)
V(») (7.7)

lim &1, all e&0.-"X(1+.)
(7 g)

Now keep e fixed and let t-+ eo. The shape of U(») does
not change, but its magnitude increases. In the neigh-
borhood of »s, U is negative [see (7.7)] and as l—+eo,

every solution of (6.3) acquires an increasing number of
nodes in this neighborhood. Since, however, the solu-
tion of (7.3) corresponding to )ts has no nodes, it follows
that

1(l+1)
I»p'V(»s) I

»ssV" (»p) ) &

+I 3--
I D(t+»]'

2V(»p) )
+oD (l+1)5'* (7.13).

where Us(») is given by (7.9), and determine )ts from
the condition that (7.12) has a solution, without nodes,
which vanishes as» —re~& eo .

I
In (7.12) the continuity

of U" (») near»s is presupposed; in cases where U cannot
be so expanded —e.g. the square well —a separate but
analogous discussion is necessary; see (7.15) below. ]
This solution is, of course, a harmonic oscillator ground-
state wave function, and an elementary calculation
gives
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Square well

V(r) =1, 7 (1
=0, V)1

Exact Approx

Gaussian
U(r) =exp( —r2)

Exponential
V(r) =e r

Yukawa
V(r) =e r/r

Exact Approx Exact Approx Exact Approx

0 2.5 2.7
1 99 79 123 109
2 20.1 18.3 25.7

1.5
7.2 6.3

14.6 15.6

1.7
9.4 9.3

23.0

TAm. E IV. X, calculated from the asymptotic
expressions (7.13) and (7.14).

E=—k' [see Eq. (1.2)].
o(x) denotes some f(x) with the property

lim f(x)/x=().

Numbers in [ ] indicate sections where details are
given.

Vanishing ErIer gy

A rigorous justification of this procedure presents no
diS.culty. We remark here only that as l~ ~, the spread
of the oscillator function behaves like l ', so that the
omitted terms in the expansion in (7.12) become
negligible. X„,=

In Table IV we compare, for a number of common
potentials, the results obtained from the asymptotic
expression (7.13) with the exact results. (We have also
included the exact results for l=0.) In the case of the
square well where U'(r )sand U" (rs) do not exist, we

have used the separately derived expression

[3l

L7j

X dr'r' V (r'), [3]

Behavior at Lozv Energies

) ),——(2l+1) ) rl V(r)ldr,
0

Xi, "& = l(l+1)/I r'V(r)
I

2l+1 00

dr r"+'U(r) ' dr r"+'U(r)
~0

l l (l+ 1)+3.71151[l(l+ 1)]*l
"IV,

I +o[l (l+1)j', (7.14)

where a is the range and U0 is the depth. It will be seen
that even for l=1, the asymptotic expression (7.13)
gives remarkably good results.

When the energy E is positive, an entirely analogous
discussion shows that the expression (7.13) still holds,
provided that V(r) does not change sign' and (4.10) is
satisfied. It can, in fact, be shown that in this case

l=0: (d)t. (E)/dE)s p

=~" (P(~) P(r))«—
0

~ V(r)P()«, [43
0

(dh, (E)/dE)E=p

~
00 00

P(r)dr U(r)P'(r)dr . [4]

In these expressions P(r) is the wave function corre-
sponding to E=O and the numerically smallest X for
which P(0) =0 and as r—+~, P(r) r '

which is consistent with (4.16), when one recalls that
as l—+ao, P(r) approaches an increasingly narrow oscil-
lator function centered at r=r0." Thus the energy-
dependent term is o[l(l+1)]*.

8. Summary of Estimates of the Radius
of Convergence 2,

Most of the results of Secs. 3—7 are here collected for
convenient reference. The following notation will be
used:

P, denotes the radius of convergence of the power
series expansion of the solution of (1.2) with
boundary conditions (1.3) and (1.4), and in par-
ticular of tangl.

A, l, and A. , denote a lower and upper bound of X„
respectively.

This assumption enables one to use the fact that X, is real.
It is conjectured, however, that (7.13) and (7.15) hold independ-
ently of this assumption, but no proof has been given.

'" (7.15) holds even when V'(r) and V"(r) are not continuous
near r0, e.g, , for the square well.

),(k) =~k

"Singular" potential

f
U(r)dr +o(k).

0

(lim r V (r) = 1), all l:~0
)I..(k) =7rk/logka+ o (k/logka),

where a is some "range. "

Arbitrary Energy

rl V(r)
I
dr.

See Table III for values of tl.

High Energies

"Regular" potential

IV(r)l«&~ I,
( I'

0 )

[57

[6]
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High Arrgular Mome~zta

Vanishing energy:

(6.3) and obtain

I
tan~i —(tan&&)

l (l+1)
X,=

I
"V(r) I--

where o[l(l+1)] is positive.

+o[l(l+1)], [7]
() (-+imi2 &-

dr'r'(V(r')I "

X dr ("+'&r & "+')
(
V (r("+')) (dr("+'i+

4p

X,= l(l+1)
«'I v(«) I

r(PU" (ro) q

+( 3— l[l(l+1)]' +o([l(l+1)]1), [7]
2V(r.) )

()~("+', r
I V(r)

I
drj,

—n+1

(9.3)provided that U(r) is "smooth" at the point r=ro
where r'( V (r) (

has its maximum value.
Arbitrary fixed energy:
It V(r) does not change sign and satisfies (4.10),

the last two estimates hold for arbitrary E. Furthe

1—)i( r( V(r) (dr/tt

lim( )i, (E)—X,(o)) = E/V (rp). —
i—+OO

Uamshimg Erlergy

provided the last denominator is positive. Values of
t~ and m~' are listed in Tables III and V.

[7]

If V(r) changes sign it is believed (but not proved)
that the same estimates still hold.

For simplicity we restrict ourselves here to potentials
such that

9. Truncation Error

From a practical standpoint it is important to know,
besides X„an estimate for the error in tang~, due to
breaking o6 the Born expansion after the ~th term.
On the basis of the preceding sections some estimates
of this truncation error can be directly obtained.

r"+'
I
V (r)

I
dr (~ .

tang~ 1
lim
k~o $2l+1 [(2l+1) ] (]2

—) t d" (r')2t+'V (r').
0

From (9.2) we have in the limit k—+0

(9.4)

Arbi trary Energy

Using the expansion (6.1) with the definition (2.14)
for 0, we have for large r

dr'(r')'+'V (r')

dr"Gii" (r',r")V(r") (r")'+'— (9.5)

where
P, (r) =ui(r) —tani1iv((r),

A

tang t
———— dr'uP (r') V (r')

(9.1)
where Gi'+ is deiined in (3.3).Hence, using the estimate
(3.5) for Gi'o' and defining

)2 ~cO

dr'ui(r') V (r')

XJ
dr"Gi (r',r")V (r")ui (r") . (9—.2)

0

This expansion, when broken off after the rsth term,
will be denoted by (tanrt~) & '. To estimate the trunca-
tion error, we introduce mq and ti defined in (6.2) and

T~sLE V. m&= (xlj&(x)(~, .

tang~
Tg ——lim

k~p $2l+1

we obtain directly
1

I
Ti —(2'i) '"'

I
&

L(2l+1) t!]'
00 n GO

I)I
I

"+'
) rl V(r) I

dr " r"+
I
V(r)(dr

p 0

(2l+1)"

(9.6)

(9.7)

0 1 2 3 Large

0.723 0.434 0.329 0.271 1.136(2l+1) &
kp

r( V(r) I«/(2l+»

provided the last denominator is positive.
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High Energies

We begin with a consideration of "regular" potentials
[see (5.1)].Let f'"&(X; k) be the term of order X" in
the expansion of f(X; k). We have seen in Sec. 5 that
for large k it has the following asymptotic behavior
[see (5.4), (5.8)]:

n

k—+~: tang, —(tan&, ) ~ "&

V (r)dr
,

n+1

Equation (9.13) is analogous to Eq. (9.12), so that
we can write down the following expression valid for
regular as well as singular potentials:

0
k f&-&

(1&. k) =-
n t

V (r)dr

2ik
+o(k ") . (9.8)

n+1. Cn+1

n+1-

This expression holds for all values of l. If we now de-
note by r&&"& the eth term of the Born expansion (9.2)
of tan&&/, we find, on combining (9.8) and (2.5), that

V (r)dr
&/O

(9.14)

k—+~: v)(")=P" —C(n'

n

V (r)dr
0

+o(k "&, (9.9)

where c(n' is the nth coefficient in the expansion of
tanx:

c(~) t c(3) 1 ~ ' ' c =037 ) (9.10)

4k' —Sk'

&2ki (4P+ 1)'(k2+1)
(9 11)

Clearly, the truncation error of (tan&&&) ~ "& is just
T&'"+", to within terms of o(k &"+").A somewhat more
useful expression than (9.9) for high l is

oo ~ n

U (r)dr
f/t Ic

~,(")= ),. —C(n) +0(k "), (9.12)

We see that, for large k, the odd terms of the Born
expansion of tang~ behave like k ", while the even ones
decrease more rapidly. This is illustrated by the Born
expansion corresponding to the exponential potential
Xe ", whose first two terms are, for /= 0,

4k'
tan&&0

———
!(2k J 4k'+ 1

where l = t, except when l =0 and the potential is sin-
gular, in which case l = j..

For odd I the leading term in (9.14) vanishes, since
c&"+'&=0, so that (9.14) indicates only the general
behavior of the truncation error with increasing k.
In particular, (9.14) does not include an asymptotic
expression for the truncation error of the so-called first
Born approximation. However, for potentials which are
bounded and have a bounded first derivative such an
expression can easily be obtained. From (9.2) and (2.14)
we have

g2 t'oo

T~&'& = —— drN&(r)e&(r) V(r)
P-~ 0

7 F00

X dr'N&2 (r) V (r')+ drmP (r) V(r)J,

dr'u&(r')v/(r') V(r') . (9.15)
T

By suitable integrations by parts the leading terms,
for k~ ~, can be isolated and give

(Xy'- 1
V'(r)dr+o(k ') (9.16)

(2k j .2k ~ t/L

which takes into account the fact that the particle
"sees" only that part of the potential for which
r )l/k, or, mathematically speaking, that e&(r) =0 for
r&l/k. Of course (9.9) and (9.12) are quite equiva-
lent, since the difference between their leading terms
is clearly 0(k ").

In the case of singular potentials LEq. (5.15)j,
entirely similar considerations, based on (5.16), give
the following result:

/'logkaq "
!k~00 . r &"& X" —c&"&

2k )

[See the remarks following (9.12) regarding the lower
limit of integration. ]

Combining (9.14) and (9.16) we have

tang( —(tang&) &'&

V'(r) dr
J

&//

I
V(r)«! +0(k ') (9'»)

X'( p"

3 &Jv/

for bounded potentials with bounded first derivative.

(9 13) This result is illustrated for the exponential potential
2k ) and l=0 in Table VI.
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f,(x; —k) =o.

PART II. BORN EXPANSION OF yz AND OF 8z—=e '~& whose poles are determined by the equation

10. General Relationships (10.7)

00 1
4'(r) =P (21+1)i '—yi(r)E~(cos8),

z=p kr
(10.1)

When the scattering potential has spherical sym-
metry, the three-dimensional solution %'(r) of (1.6)
can be broken up into partial waves,

It is shown in reference 2 that for k 40, these poles have
a nonvanishing imaginary part.

The difFerential equation (1.1) and boundary condi-
tions (1.2) and (10.2) can be combined in the following
integral equation for pz'.

where 8 is the angle between r and the direction of
incidence and I'z is the Legendre polynomial of order /.

pi(r) satisfies the same wave equation (1.2) and boun-
dary condition (1.3) as f&(r), but for large r,

q i(r) =ui(r)+X ) Ki(r,r') V (r') q i(r')dr', (10.8)
p

1
Kt(r, r') = ut(r)wi—(r'), r&r'

i~
—

p l~y-
r +~: p$(—r) :-( exp -i~ —kr

2( . E 2) 1
=-mi(r)ui(r'), r) r'

(10.9)

( l~q-q ( l~y—St exp i
/

kr f/ =—si—n
/

kr
2) j E 2)

Sz—1

2i

-
t'

exp ~~ kr
~

. (1O.2)
2)

y(r) = cosine'"P(r) (10.4)

The connection with f(X; k,r) of Eq. (2.1) also follows
from the asymptotic forms:

S=f(X & k)/ f(li; —k), (10.5)

&(r) = Lf(~; —k)f(X; k,r)
2f(~; —k) —f(x; k)f(x; —k,r)]. (1o.6)

Since fi(X; k,r) is an entire function of X (see refer-
ence 2), pi(r) and Si are meromorphic functions of X,

TABLE VI. Truncation error of the first Born approximation.

hU(r)= —2e "; l=O

tango

0.489122
0,247844
0.165960

(tangelo)

&'&

0.470588
0.246154
0.165517

tanrfp—(tant) 0) &'&

0.018534
0.001690
0.000443

1

12k'

0.010417
0.001303
0.000386

a This is the leading term of the right-hand side of (9.17).

The first form of (10.2) shows that Si is the ampli-
tude of the outgoing wave corresponding to unit in-
coming wave and this, by definition, is the (diagonal)
element of the scattering matrix corresponding to
angular momentum /.

Since yi and Pi both satisfy (1.2) and (1.3), their
ratio must be independent of r. Comparing them for
large r LEqs. (1.4) and (10.2)] we find that for each l

(10.3)

and
u, (r) = (kr)ji(kr),

u i(r) = (kr)[ui(kr) —iji(kr)].

(10.10)

(10.11)

2X
Si——1+— ui(r) V (r) yi(r) dr.

ik ~p
(10.12)

The Born expansion of yz is obtained by iterating
(10.8), and that of Si by substituting the series of qadi

into (10.12). Both series converge for ~X~ (X,' where
li.' is the magnitude of that solution of (10.7) which
has the smallest absolute value.

11. Estimates of the Radius of
Convergence, 2,'

We consider now the radius of convergence, X,', of
the Born expansion of yi, Eq. (10.1), and in particular
of the scattering matrix element Si, Eqs. (10.2), (10.3),
(10.5). Much of the discussion is very similar to that of
Secs. 2—7 and will therefore be only briefly sketched.
Our results for ), , particularly in the limit of high ener-
gies, are less complete than those for X,.

Vmishi~zg Energy

In the limit of vanishing energy we have, by (2.3)
and (10.6),

q (r) f(lI, ; k)+f(X; —k)
lim = lim = 1, (11.1)
k~0 P(r) k~0 2fP ~ k)

so that the power series expansions of y and P have the
same radius of convergence. Thus for each /,

0=0: 'A, '=X,

Lsee (3.9), (7.4), and (3.14)].

(11.2)

)See (2.10), (2.11) for definitions of ji and u&.] On
letting r~~ in (10.8) and comparing with the second
form of (10.2), one finds
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Lme Energy es

For /=0 no simple general result has been obtained
for the behavior of the radius of convergence X,' at low
energies. The following examples, in which the behavior
of P, and X,' are compared, may be of interest:

Square well:

V, (r| = S(r- a)
6- R=z

V(r) = —1, r&a

0, r&a,

7r2

X,= +k'+
4a'

jr2

)I,.'= +0.216k'+
4a'

Hulthen potential [Eq. (5.24)]:

f' 1
X,= a~ —+3k'+.

(a' )

(11.3)

(11.4)

(11.5)

Fzo. 6. The radii of convergence for tang(X, ) end for es'"(X,'),
for the potential h(r a) —and l=2. Note the close agreement for
ka((2+ ~.

Ke shall treat, for simplicity, only the case of /=0.
Let 3f be an arbitrary positive number. Then by virtue
of (5.10) we can choose a kt such that for all k&kt, and
for all A satisfying the inequality

(1
y, '= af —+2k'+

(a'

ka« l+-', : X.'=) .+0[(ka)"+'], (11.6)

where a is a "range, "provided that the potential satis-
fies (9.4). This is illustrated by the 5-function potential
(3.10) for which

)

i u(ka)s(ka) i

For /&1, considerations similar to those of Sec. 4
show that (4.16) holds also for X,'.

Furthermore, it can be shown from the expansion of
f(A; k) [see (5.4)] that for all I,

/X/ &Mk,

00

f(X; —k) —exp —X ~~ V (r)dr/2t', k
0

(11.9)

& s exp —M ~i U(r)dr/2 . (11.10)
0

If now, for k& kt, there exists a root of (10.7) satisfying
(11.9), the left-hand side of (11.10) would exceed the
right-hand side by at least a factor 2, leading to a con-
tradiction. Thus for all k&hj, X,'&35k, which proves
Eq. (11.8).

A similar proof can be given for higher /.

A special study of 5 scattering by the square well
(11.2) gave the result

~
u(ka)to(ka)

~ ~
u(ka)n(ka)

~

tk),'= (k/a) iogka+Oi - logka i.
&a

(11.11)

(ka) 4l+2 Singular potentials [see (5.15)]:Here we have the

I (ka)« l+ (11 7) r—esult, for all l,
2[(21+1) !!(2l—1) !!]'~

k
lim X,'

E logka ~
(11.12)See also Fig. 6, showing the close agreement of A., and

X.' for (ka) &(I+-', .

which can be established as above by using (5.16) in
place of (5.8).

Regular potentials [see (5.1)]: The Hulthen potential, (5.24), gives the rigorous
In this case we shall establish the result that for all / expression, '

lim X,'/k= ~,
j'g-moo

(11.8)

showing that, for large k', A, ,' increases more rapidly
than X, [see Eq. (5.12)].

).'=2k] 1+
1

4(k.) ) '

as is evident from (5.25) and (10.7).

(11.13)
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where

l
~Zc Sl I rl V(.) ldr,

00
(11.14)

Arbitrary ErI,ergy

Proceeding exactly as in Sec. 6, we And the following
lower bound:

Singular potentials, all l:

(kg
lim )~,

'
Elogk)

Arbitrary Energy

Sz

(11.15) /
~Zc Sl r

l
V (r) l

dr.

High Angular Momenta

Same results as for 'A„Sec. 8.

12. Truncation Error

Numerical values of sl are given in Table VII. See Table VII for values of
The lower bound (11.14) is attained, for a certain k,

with the 5-function potential (3.10), for all values of l.
This follows from the fact that for all 1,

l
K~(r, r')/(rr')'*l

attains its maximum value for r = r' (see the remarks at
the end of Sec. 6).

Large 1 at Fixed Energy

At zero energy )i.'=X„so that (7.13) applies. For
potentials of fixed sign which obey (4.10) we also have
(7.15). [See (11.6) and Fig. 6j.

Summary of Estimates of X,'

For convenience we summarize below the results of
this section (see Sec. 8). In the following )~,

' denotes
the radius of convergence of the Born expansion of the
solution of (1.2) with the boundary conditions (1.3)
and (10.2). The other symbols are explained at the
beginning of Sec. 8.

Vanishin, g Energy

X,'= X,.

See Sec. 8 for estimates.

Behavior at Low Erlergies

The Born expansion of Sz—=e"&' is obtained by sub-
stituting into (10.12) the series for pi obtained by
iterating the integral equation (A.2) (see Appendix):

2X
St——1+— dr uP(r) U(r)

2/2 oo

+ ~t dr mi(r) V(r)
ik ~0

dr'Kt (r,r') V (r')ui(r')+ . . (12.1)

YVe inquire into the error of the series 5z(") obtained by
breaking off (12.1) after the term proportional to X".

Arbitrary Energy

Proceeding exactly as in Sec. 9, we find

00 - n+l

fd)i,'i (dX,i
0 de )E=, E dZ) E=, lsi —si~"&

l

( 0

SL

See Sec. 8. Furthermore, for all t, and ka« l+-', ,

) .=~,+0[(ka) 4~+2]

where a is some "range, " provided g l
V (r) l

r"+'dr( ~.

High ErI,ergies

Regular potentials, all l:

lim X,'/k= ~.
1'e-moo

TABLE VlI. Lower bound of X,' valid at all energies.
&i.' =si/J' 0"r

I
V (r) I

«.

2 3 Large

1—I)
I

~ rlV(r)l«/si

(12.2)

s,—s, (-)
lim
k~0 k2 L+&

= 2i(Ti —Ti&"&) (12.3)

where si and mP are defined in (10.19) and (6.2) and
listed in Tables VI and V, respectively.

Vanishin. g ErIergy

Here the Born expansions of (Si—1)/2i and tanit~
are identical, so that if the potential satisfies (9.4),

SL 1.000 2.047 2.783 3.416 0.850(2t+1)i
and an estimate for the latter is given in (9.7).
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S,=ft (X; k)/ fi (X; —k) (12.4)

which follows at once from a comparison of (10.6) and
(10.10), and the asymptotic behavior (5.8) and (5.16)
of the terms in the series expansion of f(X; k), we ob-
tain the following results:

Regular potentials [see (5.11)]:

High Energies

We denote by a.&'"& the term of order X" in the expan-
sion (11.1). Using the connection

V(g) -l, Ag I

a Q h))
~ I Q, k ~ Q.I, 5 ~ p A8

FM. 7. Behavior of
the phase shift as func-
tion of P for low energies.
Note that even where
g=0.3((~/2, P/P. =0.8,
so that the Born ex-
pansion will converge
only slowly.

iX
k~~: oi'"' ————

~

——
i V(r)dr

~

u! & k ~, )

I

2 4 6 8 I l.2 I 4 ).6

+o(k ") . (12.5)

Singular potentials [see (5.15)j:
t' i logka) "

!k~~ o- '"' ———~—
n! E 2k )

logkai "
+o

I

—
I . (126)

k )
As in Sec. 9 we can therefore summarize the high-

energy results in the expression,

iX
k—+~: Si—St'"'= ————)' U(r)dr

e! k )(I,

(12.7)

soon as the phase shift corresponding to either + or
—

~X~ V(r) becomes 7r/2.

(b) If the potential changes sign, the numerically
smallest singularity is sometimes complex, so that the
Born expansion may diverge for a certain real X&, even
though for all real X of absolute value (

~
Xi

~

the phase
shift is in absolute value less than ir/2.

(c) Finally it must be noted that at low energies
[ka« l+-,', where a is some "range" of V(r)] the phase
shift remains very small, even though

~

X ~/X, may be
very close to 1, and hence the convergence of the Born
series may be very slow. This is illustrated in Fig. 7.

As far as the convergence of the 5-matrix element S~
is concerned, the value ~pit =ir/2 has no special sig-
nificance (see Sec. 10). Take, for example, the case of
a regular potential. As shown in the Appendix, Eq.
(A.9), when the energy tends to infinity, the X for which
ili= Air/2 has the following asymptotic behavior:

which is valid for both regular and singular potentials.
The term t is defined following Eq. (9.14).

U(r) dr
0

13. Conclusion

In this paper the convergence of Born expansions for
a specially simple class of scattering problems has been
studied and estimates for the radius of convergence and
truncation error have been established. In the past a
good many rules of thumb have been used to form an
idea of the validity of Born expansions but as the present
paper shows, several of these are quite unreliable. It
may be useful to comment on some of them.

Unreliable Rules of Thumb

A. gi« ir/2. —Since tangi ——~, for
~
rli

~

= n./2, the
above inequality is sometimes used as a criterion for the
rapidity of convergence of the Born expansion of tang&.

This is an extremely treacherous criterion.
(a) Considering first only potentials of fixed sign, we

must recall that the Born expansion breaks down as

On the other hand, we have seen in Sec. 11 that
asymptotically the radius of convergence has the fol-
lowing behavior:

lim (X,'/k) = ~.

Thus at sufficiently high energies the Born expansion
for Si converges, even though gi))ir/2.

B. ~XV' /E&&1.—It is sometimes believed that at
high energies the Born expansion converges, provided
that a typical depth of the potential, P V', is much less
than the total (or kinetic) energy. We have seen in
Secs. S and 11 that this criterion is not generally true.
Thus 'A„ the radius of convergence for the expansion of
tang~, behaves like E' for regular potentials and like
E**/logE for singular ones; while in the two examples
mentioned in Sec. 11 the radius of convergence for
Si, X,' behaved like E*' logE (square well) and like E&

(Hulthen potential), respectively. Thus in all of these
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cases the radius of convergence increases less rapidly
than with the first power of E.

C. The convergence improves upwith increasing energy
According to Secs, 5 and 11, this is correct for sufB-

ciently high energies. However, for low energies the
radii of convergence for both tang~ and 5~ are decreasing
functions of the energy, whenever l&1, and sometimes
even for l= 0 (Secs. 4 and 11).

D. So bound states. —It is sometimes stated that if
the potential is too weak to have a bound state, the
Born expansions for tang~ and S~ will converge. We shall
first show that this is not generally correct by a con-
sideration of potentials of fixed sign, and l&1. Let X»

be that strength of potential (say positive, with

V(r)&0) which just gives binding with energy zero.
This X» is the radius of convergence for tang~ and 5~ in
the limit of vanishing energy. (See Secs. 7 and 11).
Now consider (Xt—e) V(r) where e is a small positive
number. This potential has no bound states, and —it is
true —the Born expansion at zero energy just converges.
But at a somewhat higher energy the radii of converg-
ence X, and ),' are smaller than Xt (see Secs. 4 and 11),
so that if e is suKciently small, the Born expansion no
longer converges. Thus we have the following situation:

0&E&E».' convergence
E»&E&E2. divergence
E—+~: convergence,

The same situation occurs sometimes even for /=0, if
the potential changes sign. This may be verified with a
suitable 8-function potential of the type (2.21).

It is suggested that, when possible, these rules of
thumb be replaced by the convergence criteria sum-
marized in Secs. 8 and 11, and by the estimates of the
truncation error given in Secs. 9 and 12.

In the body of this paper we have dealt with the Born
expansions of the quantities tang~ and 5~, which arise
most naturally in collision problems. However, if in a
practical problem one wishes to achieve a certain ac-
curacy in q& with the smallest number of terms, the
best quantity to expand, particularly at high energies,

is the phase shift g~ itself. This is discussed and illus-

trated in the Appendix, where it is shown that, provided
the energy is sufficiently high, p&

—no matter how large—is accurately represented by the first Born approxi-
mation.

We have dealt exclusively, in this study, with the radii
of convergence for each partial wave, )t, (l) and )t,'(J).
If the potential is central and falls oG, at infinity, like

(1.1), then the radius of convergence A, of the three-

dimensional problem (1.6) is the smallest of all the

)t,'(t). Unfortunately, the only general result we can

derive from this is that at all energies

~ r~V(r)~dr,
Jo

as already proved in reference 2; in our treatment this
result is a consequence of (11.3) and Table VII. About
the interesting problem of the energy dependence of
A, we cannot draw any detailed conclusions.

A few remarks about nuclear scattering may be of
interest. Jost and Pais' have emphasized the failure of
the Born approximation for n ptripl-et scattering. We
should like to add that this failure arises eritirely from
the S wave. With the usual potential shapes (square
well, exponential, Yukawa) an analysis of the scattering
data" shows that the actual strength of the potential, X,
exceeds the radius of convergence for l= 0 at zero energy
by a factor of about 1.4. On the other hand, for l=1,
X is about equal to the lower bounds of the radius of
convergence valid at all energies, as given in Secs. 6
and 11. Specifically, for the square well and l=i,
we have for all energies )t/)t, (0.48, indicating a rather
comfortable convergence of the Born expansion. The
situation is similar for the other potentials.

For suKciently high energies, the Born expansions
for n-p triplet scattering converge of course also for
l=0. In the case of the square well, the critical energies
are 20 Mev for the expansion of tang and 100 Mev for
that of 5=—e"&.

APPENDIX: THE BORN EXPANSION OF n)

The Radius of Convergence

Let us first consider real X. By (10.3) and (10.5) we
have

so that

and

f()t; h) f()t; h)

f(); —h) f*(X;h)

rt=Imoog f(X; h)i,

q=0 when X=O,

(A.1)

(A.2)

(A.3)

in conformity with the usual convention.
We now extend the definition (A.2) to complex )t.

Since f(X; h) is an entire function of )t, logf(X; h) has

"E.E. Salpeter, Phys. Rev. 82, 60 (1951);J. M. Blatt and
J. D. Jackson, Phys. Rev. 76, 18 (1949).
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TAsLz VIII. Various erst Born approximations. '
V(r)= —e " l=O

In other words, if we denote the first Born approxi-
mation by the superscript"' we have, for constant g

16.1
23.3

rfexact

1.8
1.8

2.0
1.9

~ argL (t,»q) (»j tan 1
L (tanrf) (1&j

0,66 1.1
0.66 1.1

»m &()=&
Ie—+oo

on the other hand, by (A.5) and (A.6),

(A.7)

a X(» denotes the first Born approximation of the quantity X. lim (tanit) "'= i1 and lim (e"")"'= 1+2ir1, (A.8)

The First Born Approximation of n

In spite of the fact just proved, we shall now show
that at suKciently high energies the first Born approxi-
mation of q is much superior to that of 5 or tang. At
low energies the first Born approximations of q, S, and
tang are in general about equally good.

Let g be a fixed phase shift and consider the Born
expansions of g, 5, and tang as both k and X (real)
increase. Let us take for example a regular potential.
Then, provided that

~
X/k

~
remains bounded, we have,

by (5.10),

lim
~ f(X; k) —exp X I U(r)dr/2i, k

~
=0, (A.5)

r"

and hence by (A.2) and (A.3)

f
V(.)d. (=0.

)2k 3e
(A.6)

This equation shows first of all that for fixed g, ~
X/k

~

remains bounded, thus justifying (A.5), and secondly
that no matter how large g is, it is correctly represented
by the first Born approximation as k—+~ .

branch points at those X where

f(X; k) =0. (A4)

If one recalls that f(X; k) = f*(X*;—k), comparison o
f

(A.4) with (10.7) shows that the singularities of q are
the complex conjugates of the singularities of S. Hence
the radius of convergence of g is identical with that of S
(see Sec. 11).

taniI = uiX+ agX'+ aiX'+ (A.9)

from which we find

( Gi
vp=aiX+oiX'+i oa ——(X'+

3
(A.10)

bootes added iri proof: (1) T. Kikuta [Progr. Theoret.
Phys. 10, 653 (1953)j has recently made an interesting
study of various approximation methods, including the
Born approximation. Further papers on this subject by
the same author are to be published. (2) P. Urban and
K. Wildermuth I Z. Naturforsch. Sa, 594 (1953)$ state
erroneously that for a cut-off Coulomb potential the
radius of convergence X,' of 5=exp (2') increases
monotonically with energy for all /. In fact, for /&1,
dX, '/dE is negative at 8=0 as can be explicitly verified

by an argument analogous to that leading to (4.16)
(see also our Sec. 11). Urban and Wildermuth arrive
at their incorrect conclusion (page 596) by applying
their Eq. (3), derived in the limit of infinitely high
energy, to a discussion of the behavior of P,' at vanish-
ing energy.

showing that unless g«1, the first Born approximations
of tang and e"& remain substantially in error, even as
k—&~. Table VIII compares the phase shifts calculated
from the first Born approximation of q, S, and tang, for
the case of an exponential well, /=0, and the exact
p= 1.8. For large k, the results obtained by expanding g
are evidently the best.

In the case of singular potentials the situation is
entirely analogous.

A practical remark: The power series for q is most
easily obtained by calculating that for tang, Eq. (9.2),


